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Abstract

In this thesis, we use a variation of a commutator technique to prove that `p-stability is independent of p ∈ [1,∞]
for convolution-dominatedmatrices indexed by relatively separated sets in groups of polynomial growth. Moreover,
from the inverse-closedness of the Schur matrices we deduce a Wiener type Lemma for the matrices in the
intersection of the convolution-dominated matrices, CDwα

(Λ), over all polynomial weights wα, where α ∈ N.
Finally, applications of the convolution-dominated matrices are presented. We prove the inverse-closedness of a
non-commutative space generated by a discrete series representation restricted to a lattice in a nilpotent Lie group.
In addition, we apply the aforementioned result on `p-stability to show that if π(Λ)g is a p-frame for the coorbit
space Co(Lp) for some p ∈ [1,∞], then π(Λ)g is a q-frame for the coorbit space Co(Lq) for each q ∈ [1,∞],
where (π,Hπ) is a discrete series representation of a group G of polynomial growth, Λ ⊆ G is a relatively
separated set and g ∈ Hπ\{0} is such that Vgg = 〈g, π(·)g〉 is in the Amalgam spaceWwα

(G). Moreover, we
prove that the frame operator of the frame π(Λ)g is invertible on the coorbit spaces Co(Lp) for each p ∈ [1,∞],
under the assumption that g ∈ Hπ\{0} is such that Vgg = 〈g, π(·)g〉 ∈Wwα

(G) for each α ∈ N.

ii



Contents

Preface i

Abstract ii

I Main 1
1 Introduction 2

1.1 Classical Wiener’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Wiener’s Lemma for convolution operators on the integers . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Wiener type Lemma on non-commutative groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Spectral Invariance 6
2.1 Banach algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Spectral Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Convolution-dominated Matrices 13
3.1 Locally compact groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Groups of polynomial growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Discrete sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Amalgam spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Local Maximal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Amalgam Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Convolution-dominated Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Key Lemmas for the Commutator Technique 33
4.1 Equivalent norm on the sequence space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Estimation of the commutator norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Estimation of the Schur norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Stability and Spectral Invariance of Convolution-dominated Matrices 46
5.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Spectral Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Applications 54
6 Coherent Frames 55

6.1 Discrete Series Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Frames and Riesz sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Twisted Group C*-algebras 58

8 Frames in Coorbit spaces 66

9 Conclusion 74

References 76

iii



Part I

Main

1



1
Introduction

1.1. Classical Wiener’s Lemma
Let us denote with A (T) the set of periodic continuous functions which possess an absolutely convergent Fourier
series,

A (T) :=

{
f ∈ C(T) : f(t) =

∑
n∈Z

ane
2πnti, ‖f‖A := ‖(an)n∈Z‖`1(Z) <∞

}
.

Norbert Wiener used the following lemma in his proof of a “Tauberian Theorem” [67].

Wiener’s Lemma. If f ∈ A (T) such that f(x) 6= 0 for all x ∈ T, then 1/f ∈ A (T).

Thus, for f ∈ A (T), instead of explicitly calculating the Fourier coefficients of the function 1/f , with the use
of Wiener’s Lemma we can conclude that the inverse 1/f has an absolutely convergent Fourier series by checking
whether f vanishes on T.

Naimark [47] observed that Wiener’s Lemma describes the relationship between the Banach algebra of
continuous functions on the torus, C(T), and its Banach subalgebra of continuous functions with an absolutely
convergent Fourier series, A (T). He observed that for a function f ∈ A (T) the assumption f(x) 6= 0 for each
x ∈ T in Wiener’s Lemma is equivalent to the invertibility of the function in the Banach algebra C(T), equipped
with the pointwise multiplication. Accordingly, Naimark introduced the definition of inverse-closedness by calling
the pair (A ,B) Wiener’s pair when A is an inverse-closed Banach subalgebra of the Banach algebra B. For A
and B two Banach algebras with common identity, such that A ⊆ B, we call A inverse-closed in B if

a ∈ A , a−1 ∈ B ⇒ a−1 ∈ A .

The algebra C(T) equipped with the pointwise multiplication operation is a Banach algebra and A (T),
equipped with the pointwise multiplication, is a Banach subalgebra of C(T). Hence, with the introduction of the
definition of inverse-closedness we can now restate Wiener’s Lemma.

Wiener’s Lemma. The Banach algebra A (T) is inverse-closed in C(T).

In general, we can state Wiener type lemmas that provide the inverse-closedness of a Banach subalgebra in a
Banach algebra.

1.2. Wiener’s Lemma for convolution operators on the integers
For an absolutely summable sequence a ∈ `1(Zd) we define the corresponding convolution operator as follows,

Ca : `2(Zd) −→ `2(Zd), c 7−→ c ∗ a,

where ∗ is the convolution on sequences defined by

∗ : `1(Zd)× `2(Zd) −→ `2(Zd)

(
(a(n))n∈Zd , (b(n))n∈Zd

)
7−→ a ∗ b =

∑
m∈Zd

a(m)b(n−m)


n∈Zd

.

2



1.2. Wiener’s Lemma for convolution operators on the integers 3

We can identify each function f ∈ A (T) with the convolution operator Ca ∈ B(`2(Z)), where a is the sequence
of the Fourier coefficients of f , i.e. a = (Ff(n))n∈Z. This mapping is well defined, since by definition for
f ∈ A (T) we have that a = (Ff(n))n∈Z ∈ `1(Z) and hence Ca is an operator in B(`2(Z)). Thus, we obtain
a mapping, which can be shown to be an isomorphism between the Banach algebra A (T) equipped with the
pointwise multiplication and the class of convolution operators (Ca)a∈`1(Z) equipped with the composition of
operators. Therefore, we can rephrase Wiener’s Lemma in terms of convolution operators.

Wiener’s Lemma. The class of convolution operators is inverse-closed in B(`2(Z)), or, equivalently, if
a ∈ `1(Z) is such that Ca is invertible in B(`2(Z)), then there exists b ∈ `1(Z) such that Cb = (Ca)

−1 in
B(`2(Z)).

Similarly, a Wiener’s Lemma can be proved for the class of convolution operators in B(`2(Zd)). Furthermore, the
previous can be extended for convolution-dominated matrices on Zd. A matrix A = (A(i, j))i,j∈Zd ∈ CZd×Zd

is
called convolution-dominated if there exists a sequence d ∈ `1(Zd) such that

|A(i, j)| ≤ d(i− j), (1.1)

for each i, j ∈ Zd. If A = (A(i, j))i,j∈Zd ∈ CZd×Zd

is a convolution-dominated matrix, then for each c ∈ `2(Zd)
and each i ∈ Zd we have

|Ac(i)| =

∣∣∣∣∣∣
∑
j∈Zd

A(i, j)c(j)

∣∣∣∣∣∣ ≤
∑
j∈Zd

|A(i, j)c(j)| ≤
∑
j∈Zd

|d| (i− j) |c(j)| = |c| ∗ |d| (i).

Therefore, A is pointwise dominated by the convolution operator Cd and this explains the name convolution-
dominated matrices. Baskakov [4], Gohberg, Kaashoek and Woerdeman [26] and Kurbatov [42] proved a Wiener
type Lemma for the class of convolution-dominated matrices, by showing that if A is convolution-dominated and
is invertible in B(`2(Zd)), then its inverse A−1 ∈ B(`2(Zd)) is a convolution-dominated matrix. This result was
also proved later by Sjöstrand [60] with a completely different proof, using a commutator technique.

Similar results can be obtain for other classes of matrices over the integers. Gröchenig and Leinert [32]
proved a variation of Wiener’s Lemma for twisted convolution operators. These operators are defined in the same
manner as convolution operators, but with the use of a twisted convolution. Given a θ > 0 we define the twisted
convolution \ of two sequences a = (a(n))n∈Z2d ∈ `1(Z2d) and b = (b(n))n∈Z2d ∈ `2(Z2d) by

a\b(m,n) =
∑
k,l∈Zd

a(k, l)b(m− k, n− l)e2πθi(m−k)·l, ∀m,n ∈ Zd.

For a sequence a = (a(n))n∈Z2d ∈ `1(Z2d) we define the twisted-convolution operator as follows

C\a : `2(Zd) −→ `2(Zd), c 7−→ c\a

and we observe that C\a acts on `2(Zd) as the matrix given by

C\a = A ((m,n), (k, l))(m,n),(k,l)∈Z2d =
(
e2πθi(m−k)·la(m− k, n− l)

)
(m,n),(k,l)∈Z2d

.

Thus, for eachm,n, k, l ∈ Zd we obtain

|A ((m,n), (k, l))| = |a(m− k, n− l)|

and since a ∈ `1(Z2d) we deduce that C\a is a convolution-dominated matrix. The inverse-closedness for the class
of twisted convolution operators can also be proved by treating the twisted-convolution operators as convolution-
dominated matrices and using the Wiener’s lemma for the latter, see [28]. Furthermore, results for Gabor frames
and the spectral invariance of a non-commutative torus were deduced from this variation of Wiener’s Lemma by
Gröchenig and Leinert [32]. In a more general setting, Sun [61, 62] studied extensively the inverse-closedness of
infinite matrices indexed by the integers and with an off diagonal decay.

A stronger version of the inverse-closedness is the norm-controlled inversion of Banach subalgebras. We say
that an inverse-closed Banach subalgebra A admits a norm-controlled inversion in the Banach algebra B, if there
exists a function h : [0,∞)× [0,∞) −→ [0,∞) such that∥∥A−1

∥∥
A

≤ h
(∥∥A−1

∥∥
B
, ‖A‖A

)
, (1.2)
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for each A ∈ A invertible in B. Nikolski [48] introduced the term norm-control and studied the norm-controlled
inversion of various Banach, function and measure algebras. Norm-controlled inversion was also studied in
different settings, for example the norm-controlled inversion of algebras of infinite matrices was studied by Fang
and Shin [14] and by Shin and Sun [58], of convolution algebras by Samei and Shepelska [56], of differential
subalgebras by Gröchenig and Klotz [30, 31] and of measure and Fourier-Stieltjes algebras by Ohrysko and
Wasilewski [49]. It should be noted that in general norm-controlled inversion is not automatic for inverse-closed
subalgebras. In [48] it is proved that the Banach algebra of continuous functions with an absolutely convergent
Fourier series, A (T), does not admit a norm-controlled inversion in the Banach algebra of continuous functions
on T.On the other hand, byWiener’s Lemma we have thatA (T) is inverse-closed inC(T).Note that the previous
also extends to the class of convolution matrices in the operator algebra B(`2(Z)) by the isomorphism between
convolution operators and functions with an absolute convergent Fourier series. Thus, in general we do not expect
that an inverse-closed subalgebra admits a norm-controlled inversion. In that way, norm-controlled inversion is a
stronger and a quantitative version of inverse-closedness [58].

1.3. Wiener type Lemma on non-commutative groups
TheWiener’s Lemma for convolution-dominated matrices on discrete groups of polynomial growth was investi-
gated by Fendler, Gröchenig and Leinert [19] and by Tessera [63]. Conversely, Tessera [64] provided an example
of a discrete group, G, of exponential growth, for which the class of convolution-dominated matrices is not
inverse-closed in the algebra of bounded operators on `2(G) sequences. In his paper, Tessera shows that the Schur
algebra is not inverse-closed in B(`2(G)), however the matrix provided as a counter-example is a convolution
matrix. Thus, the result in [64] is a counter-example for the inverse-closedness of convolution-dominated matrices
over a group of exponential growth.

Moreover, Tessera [63] showed that for a discrete group G of polynomial growth, if a convolution-dominated
matrix A is bounded from below for some p ∈ [1,∞], i.e. there exists CA,p > 0 such that
‖x‖`p(G) ≤ CA,p ‖Ax‖`p(G), then A is bounded from below for each q ∈ [1,∞]. The previous in combina-
tion with the inverse-closedness of the convolution-dominated matrices in discrete groups of polynomial growth,
proves that if a convolution-dominated matrix is bounded from below for some p ∈ [1,∞], then it has a left
inverse in the algebra of convolution-dominated matrices [63].

1.4. Aim of the thesis
Shin and Sun in [59] showed that a variation of Sjöstrand’s proof provides both the inverse-closedness and the
result on boundedness from below for convolution-dominated matrices indexed by the integers and Tessera
[63] claims that this method should also work for groups of polynomial growth. During the project, we have
proved, using the commutator technique by Sjöstrand, that if a convolution dominated matrix is bounded from
below for some p ∈ [1,∞], then it is bounded from below for each q ∈ [1,∞]. In the special case of discrete
groups of polynomial growth, the previous recovers a result given by Tessera [63]. In addition, for matrices
indexed by relatively separated sets in homogeneous groups we recover the result on boundedness from below
given by Gröchenig, Romero, Rottensteiner and Van Velthoven [27]. However, for matrices indexed by relatively
separated sets in locally compact groups of polynomial growth this yields new results. Moreover, using the
spectral invariance of the Schur matrices given by Sun [61], we have deduced a Wiener type Lemma for the
intersection of all polynomially weighted classes of convolution-dominated matrices in groups of polynomial
growth.

Finally, applications of the convolution-dominatedmatrices and the aforementioned results on non-commutative
geometry and frame theory will be presented. For the first application, following Gröchenig and Leinert [32] we
prove the spectral invariance of twisted convolution operators on groups of polynomial growth. Afterwards, for a
discrete series representation (π,Hπ) restricted to a lattice in a nilpotent Lie group we define the non-commutative
space

A 1
w =

{
A ∈ B(Hπ) : A =

∑
λ∈Λ

aλπ(λ), a ∈ `1w(Λ)

}
(1.3)

and prove a Wiener type Lemma for this space in the operator algebra B(Hπ). The proof of the previous was
inspired by Gröchenig and Leinert [32], who showed a Wiener type Lemma for A 1

w for the time-frequency shifts(
π, L2(Rd)

)
. As a second application, for a discrete series representation (π,Hπ) of a group of polynomial growth

and g ∈ Hπ we have studied the frames π(Λ)g, where Λ is a relatively separated subset of the group. Using the
result on `p-stability for convolution-dominated matrices, we have proved that if π(Λ)g is a p-frame on the coorbit
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space Co(Lp) for some p ∈ [1,∞], then π(Λ)g is a q-frame on the coorbit space Co(Lq) for each q ∈ [1,∞].
Moreover, we have investigated the invertibility of the frame operator of π(Λ)g on the coorbit spaces Co(Lp).
For proving the aforementioned result, we show that the Gramian matrix of the frame is a convolution-dominated
matrix indexed by Λ and use the Wiener type Lemma for this class of operators.

1.5. Outline
In Chapter 2, we present some important results on Banach algebras and define the spectral invariance for Banach
algebras. Groups of polynomial growth and convolution-dominated matrices on such groups are introduced
in Chapter 3. In the same chapter, we state several properties and results on groups of polynomial growth,
before defining the convolution-dominated operators. In Chapter 4, we present the key lemmas that compose the
commutator technique and will be used later in the proof of the result on the boundedness from below. Afterwards,
in Chapter 5, we prove that boundedness from below is independent of p ∈ [1,∞] for convolution-dominated
matrices indexed by relatively separated sets in groups of polynomial growth and deduce the inverse-closedness
of the intersection, over all polynomial weights, of the class of convolution-dominated matrices. Part II concerns
applications of convolution-dominated matrices in non-commutative geometry and in frame theory. Initially, the
background needed in the applications is presented in Chapter 6. Then, we investigate the spectral invariance of a
non-commutative space and study frames in coorbit spaces, in Chapters 7 and 8, respectively. Eventually, we
conclude the thesis with Chapter 9, where we summarize the significant results and provide recommendation for
future research on convolution-dominated matrices.



2
Spectral Invariance

In this chapter, the definitions of spectral invariance and inverse-closedness are provided. Moreover, we present a
result by Hulanicki which provides a sufficient condition for the spectral invariance.

2.1. Banach algebras
In this section, we briefly introduce the Banach algebras, C∗-algebras and important aspects of these spaces which
will be used throughout the paper. Basic notions and properties for Banach and C∗-algebras can be found in [9,
46].

A vector space B with a bilinear map

B × B −→ B

(a, b) 7−→ ab,

is called an algebra, if for each a, b, c ∈ B
a(bc) = (ab)c. (2.1)

The property (2.1) is called associativity. If, further, the algebra B has a unit, i.e. there exist 1B ∈ B such that
a1B = a = 1Ba, for each a ∈ B, then B is said to be a unital algebra. We call the vector subspace A of B
a subalgebra, if for each a, b ∈ A , we have ab ∈ A . If an algebra B admits a submultiplicative norm ‖·‖, i.e.
‖ab‖ ≤ ‖a‖ ‖b‖ for each a, b ∈ B, then the pair (B, ‖·‖) is called a normed algebra.

A conjugate linear map a 7−→ a∗ on an algebra B is called an involution on B, if (a∗)∗ = a and (ab)∗ = b∗a∗

for each a, b ∈ B. In that case, we call the pair (B, ∗) a ∗-algebra. A subalgebra A of a ∗-algebra B is called
∗-subalgebra, if a∗ ∈ A for each a ∈ A . Suppose that B is a ∗-algebra. Then, an element a ∈ B is called
self-adjoint if a = a∗ and normal if aa∗ = a∗a. Moreover, if B is a unital ∗-algebra, with unit 1B, then a ∈ B is
said to be a unitary element of B if aa∗ = a∗a = 1B.

An element a ∈ B of a unital algebra B is invertible in B, if there exists b ∈ B such that ab = ba = 1B,
where 1B is the unit of B. We denote the set of invertible elements of B by InvB. For a unital algebra B, with
unit 1B, the spectrum of an element a ∈ B is defined as the set

σB(a) = {λ ∈ C : λ1B − a ∈ InvB} , (2.2)

and the spectral radius of a ∈ B is defined by

rB(a) = sup
λ∈σB(a)

|λ| . (2.3)

We define the Banach algebras and Banach ∗-algebras as follows.

Definition 2.1.1. A complete normed algebra is called a Banach algebra. Furthermore, if B, equipped with the
norm ‖·‖, is a complete normed ∗-algebra, such that ‖a∗‖ = ‖a‖ for each a ∈ B, then B is called a Banach
∗-algebra. In the case where B is unital and the unit 1B ∈ B is such that ‖1B‖ = 1, then B is called a unital
Banach ∗-algebra.

6



2.2. Spectral Invariance 7

If A and B are two Banach algebras, such that A ⊆ B, then A is called a Banach subalgebra of B. It should
be noted that the norm ‖·‖A of a Banach subalgebra A ⊆ B and the norm ‖·‖B of the Banach algebra B may
differ.

For a closed subalgebra of a unital Banach algebra, we have the following result for the spectrum of elements
in the subalgebra. See e.g. [46, Theorem 1.2.8.] for a proof of this theorem. Before stating the theorem, we present
a class of sets in the complex plane, C. For a non-empty compact set V ⊆ C, the bounded components of C\V
are called the holes of V .

Theorem 2.1.2. Let A be a closed subalgebra of a unital Banach algebra B. Moreover, suppose that A contains
the unit 1B of B. Then for each a ∈ A ,

σB(a) ⊆ σA (a).

If for a ∈ A we further have that σB(a) has no holes, then

σB(a) = σA (a).

If A and B are two algebras and φ : A −→ B is a linear map, such that

φ(ab) = φ(a)φ(b),

then φ is called a homomorphism from A to B. Furthermore, if A and B are unital algebras, we say that a
homomorphism φ : A −→ B is unital if φ(1A ) = 1B. A homomorphism φ from a ∗-algebra A to a ∗-algebra
B is called a ∗-homomorphism if it preserves the involutions, i.e. φ(a∗) = φ(a)∗ for each a ∈ A . For an abelian
algebra B a non-zero homomorphism φ : B −→ C is called a character on B and the set of all characters on
B is denoted by X(B). We now state a known result in functional analysis that connects the spectrum of an
element in an abelian Banach algebra with the characters on the algebra, see e.g. [46, Theorem 1.3.4.] for a proof.

Theorem 2.1.3. Let B be an abelian unital Banach algebra. Then for each a ∈ B

σB(a) = {φ(a) : φ ∈ X(B)} . (2.4)

Suppose that B is a Banach ∗-algebra, equipped with the norm ‖·‖. If for each a ∈ B we have ‖a∗a‖ = ‖a‖2,
then B is called a C∗-algebra. A C∗-subalgebra is a closed (with respect to the algebra norm) ∗-subalgebra of
a C∗-algebra. For a C∗-algebra B, the pair (π,Hπ), where Hπ is a Hilbert space and π : B −→ B(Hπ) is a
∗-homomorphism, is called a representation of the C∗-algebra B. If π is an injective ∗-homomorphism, then the
representation is said to be faithful.

2.2. Spectral Invariance
Let A ⊆ B be two Banach algebras with common identity. We say that A is inverse-closed in B, if

a−1 ∈ B ⇒ a−1 ∈ A , (2.5)

for each a ∈ A . If σA (a) = σB(a) for each a ∈ A , then we call A spectrally invariant in B, where

σA ′(a) := {λ ∈ C : λ1A − a is invertible in A ′} ,

denotes the spectrum of a in the unital Banach algebra A ′. By the previous definitions we deduce that inverse-
closedness and spectral invariance of a unital Banach subalgebra are equivalent.

Lemma 2.2.1. Given A ⊆ B two Banach algebras with common identity, we have that

A is inverse-closed in B ⇐⇒ σA (a) = σB(a) for each a ∈ A .

The spectral invariance of a Banach subalgebra in a Banach algebra is not automatic in general. We provide an
example of a Schur matrix which is invertible in B(`2(N)), but not in the Schur algebra. This example is inspired
by the discussion in [63] and shows that the Schur algebra is not inverse closed in B(`2(N)). For the following
example we first introduce the Schur algebra and the Schur norm. The Schur algebra is the Banach ∗-algebra
that contains all operators in B(`2(Γ), `2(Λ)) which belong in both B(`1(Γ), `1(Λ)) and B(`∞(Γ), `∞(Λ)). In
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general, for countable index setsΛ andΓwe denote the norm of T ∈ CΛ×Γ inB(`p(Γ), `p(Λ)) by ‖T‖`p(Γ) →`p(Λ)

and the Schur norm of T ∈ CΛ×Γ by

‖T‖Schur(Γ→Λ) := max

sup
λ∈Λ

∑
γ∈Γ

|Tλ,γ | , sup
γ∈Γ

∑
λ∈Λ

|Tλ,γ |

 . (2.6)

The Schur algebra of matrices indexed by the countable sets Λ and Γ is defined by

S (Γ,Λ) :=
{
A ∈ B(`2(Γ), `2(Λ)) : ‖A‖Schur(Γ→Λ) <∞

}
, (2.7)

and for Λ = Γ we denote S (Λ,Λ) = S (Λ). Using the Schur test, see e.g. [22, Theorem 6.18], we obtain for each
T ∈ CΛ×Γ and each p ∈ [1,∞]

‖T‖`p(Γ) →`p(Λ) ≤ ‖T‖Schur(Γ→Λ) , (2.8)

hence if T ∈ S (Γ,Λ), then T ∈ B(`p(Γ), `p(Λ)) for each p ∈ [1,∞].
Note that for A = (A(λ, λ′))λ,λ′∈Λ , B = (B(λ, λ′))λ,λ′∈Λ ∈ CΛ×Λ we have

sup
λ∈Λ

∑
λ′∈Λ

|(AB)(λ, λ′)| = sup
λ∈Λ

∑
λ′∈Λ

∣∣∣∣∣∑
k∈Λ

A(λ, k)B(k, λ′)

∣∣∣∣∣
≤ sup
λ∈Λ

∑
λ′∈Λ

∑
k∈Λ

|A(λ, k)| |B(k, λ′)|

≤ sup
λ∈Λ

∑
λ′∈Λ

sup
k∈Λ

|B(k, λ′)|
∑
k∈Λ

|A(λ, k)|

≤

(
sup
λ∈Λ

∑
k∈Λ

|A(λ, k)|

)(
sup
k∈Λ

∑
λ′∈Λ

|B(k, λ′)|

)
.

Similarly, we have

sup
λ′∈Λ

∑
λ∈Λ

|(AB)(λ, λ′)| ≤

(
sup
k∈Λ

∑
λ∈Λ

|A(λ, k)|

)(
sup
λ′∈Λ

∑
k∈Λ

|B(k, λ′)|

)
.

Combining the previous, we obtain for each A,B ∈ CΛ×Λ

‖AB‖Schur(Λ→Λ) ≤ ‖A‖Schur(Λ→Λ) ‖B‖Schur(Λ→Λ) . (2.9)

With the following example we prove that S (N) is not inverse-closed in B(`2(N)).

Example 2.2.2. Let D be the dilation operator on `2(N), such that

D : `2(N) −→ `2(N)

x = (xi)i∈N 7−→
(x1
2
,
x1
2
,
x2
2
,
x2
2
, ...
)
.

We then compute the adjoint of D in B(`2(N)),

D∗ : `2(N) −→ `2(N)

x = (xi)i∈N 7−→
(
x2i−1 + x2i

2

)
i∈N

and define
A = I −D∗ ∈ B(`2(N)) : x = (xi)i∈N 7−→

(
xi −

x2i−1 + x2i
2

)
i∈N

.
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The operator A ∈ B(`2(N)) can be interpreted as the matrix A = (A(i, j))i,j∈N acting on `2(N) by

Ax =
(∑

j∈NA(i, j)xj

)
i∈N

for each x = (xi)i∈N ∈ `2(N). For each n ∈ N let en ∈ `2(N) be the sequence such
that en(m) = 1 for n = m and en(m) = 0 for n 6= m. Then for i, j ∈ N we obtain

〈Aej , ei〉 =
〈(

ej(n)−
ej(2n− 1) + ej(2n)

2

)
n∈N

, ei

〉
= ej(i)−

ej(2i− 1) + ej(2i)

2

=


1, j = i

−1/2, j = 2i− 1

−1/2, j = 2i

0, else

.

Thus, the matrix elements A(i, j) of A are given by

A(i, j) = 〈Aej , ei〉 =


1, j = i

−1/2, j = 2i− 1

−1/2, j = 2i

0, else

, (2.10)

for each i, j ∈ N. Then, we obtain

sup
i∈N

∑
j∈N

|A(i, j)| = sup
i∈N

|A(i, i)|+ |A(i, 2i− 1)|+ |A(i, 2i)| = sup
i∈N

1 + 1/2 + 1/2 = 2

and

sup
j∈N

∑
i∈N

|A(i, j)| = max

{
sup
k∈N

∑
i∈N

|A(i, 2k)| , sup
k∈N

∑
i∈N

|A(i, 2k − 1)|

}

= max
{
sup
k∈N

|A(2k, 2k)|+ |A(k, 2k)| , sup
k∈N

|A(2k − 1, 2k − 1)|+ |A(k, 2k − 1)|
}

= 3/2.

It follows that

‖A‖Schur(N→N) = max

sup
j∈N

∑
i∈N

|A(i, j)| , sup
i∈N

∑
j∈N

|A(i, j)|

 = 2, (2.11)

hence A ∈ S (N), i.e. A is a Schur matrix. Furthermore, since for x ∈ `2(N)

‖D∗x‖2`2(N) =
∑
i∈N

|(D∗x)i|2 =
∑
i∈N

∣∣∣∣x2i−1 + x2i
2

∣∣∣∣2
=
∑
i∈N

1

4

(
|x2i−1|2 + |x2i|2 + 2<(x2i−1x2i)

)
≤ 3

4
‖x‖2`2(N) ,

we have ‖D∗‖`2(N)→`2(N) < 1.Thus, A = I −D∗ is invertible in B(`2(N)) with

A−1 = (I −D∗)−1 =

∞∑
n=0

(D∗)n

in B(`2(N)). We will show that A is not invertible in the Schur algebra. Let us assume that A is invertible in the
Schur algebra, i.e. A−1 ∈ S (N). By Equation (2.8) we obtain that A−1 ∈ B(`∞(N)). In order to prove our claim
we define the sequences

φn = (n, n, n, ...) ∈ `∞(N).
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Since A is invertible in B(`∞(N)), then it is bounded from below and hence there exists CA > 0 such that

n = ‖φn‖`∞(N) ≤ CA ‖Aφn‖`∞(N) = 0. (2.12)

By contradiction we have that A is not invertible in B(`∞(N)) and thus is not invertible in the Schur algebra.
We conclude that the Schur Algebra S (N) is not spectrally invariant in B(`2(N)).

In the previous example, we have defined a matrix A ∈ S (N), such that A is invertible in B(`2(N)). Since A
is invertible in B(`2(N)), then it is bounded from below for p = 2 , i.e. there exists C2,A > 0 such that

‖c‖`2(N) ≤ C2,A ‖Ac‖`2(N) , ∀c ∈ `2(N).

Moreover, we have shown that A is not bounded from below for p = ∞, see Equation (2.12). Thus, the previous
example shows that if a matrix is bounded from below for some p ∈ [1,∞], then it is not automatically bounded
from below for each q ∈ [1,∞].

In the case of C∗-algebras, spectral invariance is automatic. Let B be a unital C∗-algebra and A be a C∗-
subalgebra of B, containing the unit of B. Let a = a∗ ∈ A be a self-adjoint element of A .Then, since a is
self-adjoint we have σB(a) ⊆ R. Since σB(a) is a compact subset of the real line in C we have that C\σB(a) has
only one component which is unbounded. We deduce that σB(a) contains no holes and hence σB(a) = σA (a),
by Theorem 2.1.2. The previous can be extended for each a ∈ A as follows. Let a ∈ A and z /∈ σB(a). Then
z1B − a ∈ InvB and (z1B − a)∗(z1B − a), (z1B − a)(z1B − a)∗ ∈ InvB. Since (z1B − a)∗(z1B − a) and
(z1B − a)(z1B − a)∗ are self-adjoint elements of A , by the equality of the spectrum for self-adjoint elements we
obtain that (z1B−a)∗(z1B−a), (z1B−a)(z1B−a)∗ ∈ InvA . Now, since ((z1B − a)∗(z1B − a))

−1
(z1B−a)∗

is a left inverse of (z1B − a) in A and (z1B − a)∗ ((z1B − a)(z1B − a)∗)
−1 is a right inverse of (z1B − a)

in A we deduce that (z1B − a) ∈ InvA . Thus, z1B /∈ σA (a). It follows that σA (a) ⊆ σB(a). The inclusion
σB(a) ⊆ σA (a) comes fromTheorem 2.1.2. Thus we conclude that A is spectrally invariant in B, or equivalently
A is inverse-closed in B.

Often Hulanicki’s Lemma [38] is used for proving the spectral invariance. We now present a version of the
result and a proof given by Fendler, Gröchenig, Leinert, Ludwig and Molitor-Braun, see [18, Proposition 6.1].

Theorem 2.2.3 (Hulanicki). Let S be a ∗-subalgebra in the Banach ∗-algebra A . Assume that there exists a
faithful ∗−representation (π,H) of A ,

π : A −→ B(H),

such that
‖π(x)‖B(H) = lim

n→∞
‖xn‖1/nA ,

for each x = x∗ ∈ S. Moreover, suppose that A has a unit 1A ∈ A and π(1A ) = IdH . Then, for each
x = x∗ ∈ S we have

σA (x) = σB(H)(π(x)).

Proof. Let x = x∗ ∈ S and let B be the commutative ‖·‖A −closed ∗−subalgebra of A generated by x and 1A .
We define the norms ν : x 7→ limn→∞ ‖xn‖1/nA and λ : x 7→ ‖π(x)‖B(H) on A .

SinceB is generated by the self-adjoint elements x and 1A , then we have that every element ofB is self-adjoint.
Then, by assumption, ν(y) = λ(y) for each y = y∗ ∈ S and ν(1A ) = λ(1A ). In particular, ν(y) = λ(y) for each
y ∈ B. Hence, ν and λ are equivalent norms on B.

We define Bλ to be the completion of B with respect to λ. Note that for each x ∈ B we have

λ(x∗x) = ‖π(x∗x)‖B(H) = ‖π(x)∗π(x)‖B(H) = ‖π(x)‖2B(H) = λ(x)2. (2.13)

Hence, Bλ is a C∗-algebra. By definition Bλ is isomorphic to π(B)
λ
⊆ B(H) and thus

σBλ(x) = σ
π(B)

λ(π(x)). (2.14)

We denote with X(B) and X(Bλ) the set of characters on B and Bλ, respectively. Define the map

ψ : X(Bλ) −→ X(B)

φ 7−→ φ|B .
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We have that this map is well-defined, since B ⊆ Bλ. Moreover, Bλ is the completion of B with respect to λ,
hence B is λ−dense in Bλ. Combining the previous and the equivalence of ν and λ we have that ψ is continuous.
Using the same arguments we obtain that ψ is injective. On the other hand, by the density and the equivalence of
the norms for every φ ∈ X(B) we can define φ̃ by φ̃(a) = limn→∞ φ(an) for each a ∈ Bλ, where (an)n∈N ⊆ B

is a sequence such that λ(an − a)
n→∞−−−−→ 0. Note that if φ ∈ X(B), then ‖φ‖ ≤ 1 since φ is a character on a

unital abelian Banach algebra, see e.g. [46, Theorem 1.3.3]. If (an)n∈N ⊆ B and (bn)n∈N ⊆ B are two sequences
converging to a ∈ Bλ with respect to λ, then using the equality of the norms ν and λ on B we have

|φ(an)− φ(bn)| ≤ ν(an − bn) = λ(an − bn)
n→∞−−−−→ 0.

Hence φ̃(a) is well defined for each a ∈ Bλ. Moreover, sinceφ ∈ X(B), then for each a, b ∈ Bλ and (an)n∈N ⊆ B,
(bn)n∈N ⊆ B such that λ(an − a)

n→∞−−−−→ 0 and λ(bn − b)
n→∞−−−−→ 0 we obtain

φ̃(a)φ̃(b) = lim
n→∞

φ(an)φ(bn) = lim
n→∞

φ(anbn) = φ̃(ab).

Thus, the map

ψ̃ : X(B) −→ X(Bλ)

φ 7−→ φ̃,

is well-defined and, similarly to ψ, we can show that the map ψ̃ is continuous and injective. Moreover, we
obtain ψ̃ ◦ ψ(φ) = φ for each φ ∈ X(Bλ) and ψ ◦ ψ̃(φ) = φ for each φ ∈ X(B). Thus, X(Bλ) and X(B) are
homeomorphic, that is, there exists a bijective, continuous map fromX(Bλ) to X(B), with a continuous inverse.
From this homeomorphism and since x ∈ B ∩Bλ we obtain

{φ(x) : φ ∈ X(B)} =
{
φ(x) : φ ∈ X(Bλ)

}
. (2.15)

Moreover, since B is a commutative Banach algebra, we obtain from Theorem 2.1.3

σB(x) = {φ(x) : φ ∈ X(B)} . (2.16)

Similarly, we obtain
σBλ(x) =

{
φ(x) : φ ∈ X(Bλ)

}
. (2.17)

Combining the previous we deduce that

σB(x) = {φ(x) : φ ∈ X(B)} =
{
φ(x) : φ ∈ X(Bλ)

}
= σBλ(x). (2.18)

Now, since Bλ is a C∗-algebra and x = x∗ we have that the spectrum σBλ(x) is real. From Equation (2.18), it
follows that σB(x) is real.

Additionally, since B is a closed subalgebra of A , we have σA (x) ⊆ σB(x), by Theorem 2.1.2. Hence
σA (x) ⊆ R and it follows that σA (x) has no holes. Moreover, A and B have a common unit element and hence,
by applying Theorem 2.1.2, we obtain

σB(x) = σA (x).

Since σ
π(B)

λ(π(x)) = σBλ(x) ⊆ R and π(B)
λ
is a closed subalgebra of B(H), then we obtain

σ
π(B)

λ(π(x)) = σB(H)(π(x)),

by Theorem 2.1.2. We now conclude that

σA (x) = σB(x) = σBλ(x) = σ
π(B)

λ(π(x)) = σB(H)(π(x)). (2.19)

Let A ∈ B(H), where H is a Hilbert space. Moreover, suppose that the rangeM = Ran(A) ⊆ H of A is a
closed subspace of H ,A is bijective fromM ontoM and there exists an operator B ∈ B(M) such that

AB = BA = IM , (2.20)
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i.e. B is the inverse of A in B(M). Let P ∈ B(H) be the orthogonal projection ontoM and A† be the trivial
extension of B from M to H , i.e. A† = B on M and A† = 0 on H\M . Then the operator A† is called the
pseudoinverse of A and satisfies

AA† = A†A = P. (2.21)

Using the Hulanicki’s Lemma, it can be shown that if an element in an inverse-closed subalgebra has a pseudoin-
verse, then its pseudoinverse belongs in the subalgebra. We will present a proof of this result given by Fornasier
and Gröchenig [23], which uses Hulanicki’s lemma 2.2.3. This result will be used in Chapter 8 in order to show
that the pseudoinverse of the Gramian matrix of a frame is a convolution-dominated matrix.

Theorem 2.2.4. Suppose that A is an inverse-closed Banach subalgebra of B(H). LetM be a closed subspace
of the Hilbert space H . Let A ∈ A , such that A = A∗, ker(A) =M⊥ and A :M −→M is invertible. Then the
pseudoinverse A† of A belongs in A .

Proof. Let P be the orthogonal projection ontoM ⊆ H. Define

S = {B ∈ A : B = PBP} , (2.22)

with norm ‖·‖S := ‖·‖A . Since A ∈ S we have that S is non-empty. Moreover, S is a ∗-subalgebra of A .
We define the map h : S −→ B(M), h(B) = B|M .We have that h is a ∗-representation of S. Furthermore,

if h(B) = 0 for B ∈ S, then B|M = 0 and from B ∈ S we have thatM⊥ ⊆ ker(B), hence B = 0. Thus h is a
faithful ∗-representation of S.

Let S0 be the closed commutative ∗-subalgebra of S generated by A. Then h(S0), with the closure taken
in the operator norm ‖·‖B(M), is generated by A|M . Note that since h(S0) is a closed ∗-subalgebra of the
C∗-algebra B(M), then h(S0) is a a C∗-subalgebra. By the invertibility of A|M in B(M) and since h(S0) is a
C∗-subalgebra of B(M), we have that (A|M )−1 ∈ h(S0) by the inverse-closedness of C∗-subalgebras. Thus,
IdM = A|M (A|M )−1 ∈ h(S0). It follows that there exists E ∈ S0 such that h(E) = IdM , see e.g. [23, Lemma
3.3]. Since E ∈ S and IdM = h(E) = E|M , we deduce that E = P.

By the spectral invariance of A in B(H) for each B ∈ A we have

σB(H)(B) = σA (B).

Moreover, from the choice of norm on S we obtain

rA (B) = lim
n→∞

‖Bn‖1/nA = lim
n→∞

‖Bn‖1/nS ,

for each B ∈ S.Thus, combining the previous for each B = B∗ ∈ S we have

lim
n→∞

‖Bn‖1/nS = rA (B) = rB(H) (B). (2.23)

Then, sinceM⊥ ⊆ ker(B) for each B = B∗ ∈ S we obtain

lim
n→∞

‖Bn‖1/nS = rB(H) (B) = ‖B‖B(H) = ‖B‖B(M) = ‖B|M‖B(M) . (2.24)

Thus,
lim
n→∞

‖Bn‖1/nS = ‖B‖B(M) = ‖h(B)‖B(M) , (2.25)

for each B = B∗ ∈ S. Applying Hulanicki’s Lemma (Theorem 2.2.3) we deduce

σS(B) = σB(M)(h(B)) = σB(M)(B|M ), (2.26)

for each B = B∗ ∈ S.
Since A : M −→ M is invertible, i.e. A is invertible in B(M) we have that 0 /∈ σB(M)(A|M ) = σS(A).

Thus, there exists B ∈ S such that B is the inverse of A in S, i.e. BA = AB = P. Since B ∈ S, we have that
B = 0 on H\M and it follows that B is exactly the pseudoinverse A† of A. We conclude that A† ∈ A .

From the previous Theorem we deduce that if a subalgebra is inverse-closed in B(H), it is also pseudoinverse-
closed.

Corollary 2.2.5. Suppose that A is an inverse-closed Banach subalgebra of B(H), where H is a Hilbert space.
Then A is pseudoinverse-closed in B(H), i.e. if A ∈ A has a pseudoinverse A† ∈ B(H), then A† ∈ A .



3
Convolution-dominated Matrices

In this chapter, we present locally compact groups of polynomial growth and then define relatively separated sets
in such groups. Afterwards, we introduce a class of integrable functions, known as Amalgam space, on a locally
compact group which is essential to the definition of convolution-dominated matrices that follows.

3.1. Locally compact groups
Initially, we define the notion of compactly generated locally compact groups. The basic properties presented here
can be found in [21].

Definition 3.1.1. A topological group whose topology is locally compact and Hausdorff is called a locally compact
group. We say that a topological group G is compactly generated, if there exists a relatively compact symmetric
neighbourhood, U ⊆ G, of the identity such that

G =
⋃

n∈N∪{0}

Un,

where Un := {u = u1u2...un : ui ∈ U}, for n ∈ N and U0 = {e}, for the identity element e ∈ G.

In a locally compact group, G, which is compactly generated by a symmetric unit neighbourhood U ⊆ G, we
define the word metric by

d(x, y) = inf
{
n ∈ N ∪ {0} : x−1y ∈ Un

}
, (3.1)

for x, y ∈ G. We have that the word metric is left invariant from its definition and from the symmetry of
U , we have that the word metric is symmetric. It can be furthermore shown that d(x, y) = 0 if and only if
x−1y ∈ U0 = {e}, which is equivalent to x = y.Moreover we have

d(x, y) ≤ d(x, z) + d(z, y),

for each x, y, z ∈ G, hence the word metric defines a (left invariant) metric on G. We denote with B(x, r) the
balls of radius r and center x ∈ G with respect to the word metric, i.e.

B(x, r) := {z ∈ G : d(x, z) < r} . (3.2)

Hence, for r ∈ N we have

B(x, r) = {y ∈ G : d(x, y) ≤ r}
=
{
y ∈ G : ∃n ∈ N , n ≤ r s.t. x−1y ∈ Un

}
=

y ∈ G : x−1y ∈
⋃

n∈N , n≤r
Un = Ur


= {y ∈ G : y ∈ xUr} = xUr, (3.3)

where V denotes the closure, of the measurable set V ⊆ G, with respect to the word metric.

13
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Definition 3.1.2. A Radon measure µ on a locally compact group G is a measure defined on the σ−algebra B(G)
of the Borel measurable sets of G such that:

• µ is locally finite, i.e. for every x ∈ G there is a neighbourhood of x with finite measure,
• µ is inner regular, i.e. for every open V ∈ B(G) we have

µ(V ) = sup
K

{µ(K) : K ⊂ V , K compact} ,

• µ is outer regular, i.e. for every V ∈ B(G) we have

µ(V ) = inf
K

{µ(K) : V ⊂ K, K ∈ B(G), K open} .

A nonzero Radon measure, µ, on a locally compact group G is called left (resp. right) Haar measure if µ is left
(resp. right) translation invariant, i.e. µ(xV ) = µ(V ) (resp. µ(V x) = µ(V )) for every measurable set E ⊆ G and
x ∈ G. An important result for locally compact groups is the existence of a Haar measure, see e.g. [21, Theorem
2.10].

Theorem 3.1.3. Every locally compact group G has a unique (up to a constant) left Haar measure µ.

Let G be a locally compact group and µ be the (left) Haar measure on G. For each x ∈ G we define

µx : B(G) −→ C (3.4)
V 7−→ µ(V x),

where B(G) is the Borel σ−algebra of (G, µ).Then, by the uniqueness (up to a constant) of the Haar measure we
have that there exists ∆(x) > 0 such that µx = ∆(x)µ. The function ∆ : G −→ (0,∞) is called the modular
function of G. It can be shown that the modular function is a homomorphism. We call a locally compact group
unimodular if its modular function ∆ ≡ 1 and in that case the Haar measure is also right-invariant. Some classes
of unimodular groups are the Abelian groups, the compact groups and the locally compact groups of polynomial
growth.

3.1.1. Groups of polynomial growth
We now have all the components needed in order to define locally compact groups of polynomial growth.
Throughout this section we assume that G is a compactly generated group.

Definition 3.1.4. A compactly generated group G is called a group of polynomial growth, if for some generating
neighbourhood U ⊆ G of the identity, there exist constants CG > 0, DG ∈ N such that

µ(Un) ≤ CGn
DG , (3.5)

for all n ∈ N. The minimal exponent DG such that (3.5) holds is called the order of growth of the group G.
Furthermore, we say that a compactly generated group G has strict polynomial growth, if there exists a symmetric
generating neighbourhood U ⊆ G of the identity, and constants CG > 0, DG ∈ N such that

CG
−1nDG ≤ µ(Un) ≤ CGn

DG ,

for all n ∈ N.

A fundamental result on groups of polynomial growth that will be used extensively later is that in such groups
strict polynomial growth is automatic. A proof of this combines results from [35] and [43], see [20, Lemma 2.3.]
for details.

Theorem 3.1.5. ([35], [43]) Every locally compact group of polynomial growth has strict polynomial growth.

Some trivial examples of groups of polynomial growth are the Euclidean spaces Rd and the integers Zd. For
connected Lie groups, Jenkins [40] provides a simple characterization for polynomial growth. A connected Lie
group G is said to be type R if for each X in the Lie algebra g of G the adjoint representation ad(X) : g −→ g
has imaginary eigenvalues [40]. Then for type R groups we have the following result by Jenkins, see [40, Theorem
1.4].
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Theorem 3.1.6 ([40]). A connected Lie group G has polynomial growth if and only if G is type R.

A Lie algebra g is said to be nilpotent if for eachX ∈ g the adjoint representation ad(X) : g −→ g is nilpotent,
i.e. ad(X)k = 0 for some k ∈ N. Moreover, we call a Lie group G nilpotent if its Lie algebra is nilpotent. From
this definition we deduce that each connected nilpotent Lie group is a type R group and thus, by Theorem 3.1.6, it
has polynomial growth.

Groups of polynomial growth are shown to be unimodular groups. Therefore, non-unimodular groups do not
have polynomial growth.

Lemma 3.1.7. Every locally compact group of polynomial growth is unimodular.

Proof. Let G be a locally compact group of polynomial growth, with U ⊆ G a generating unit neighbourhood
and µ the Haar measure on G. If V ⊆ G is a measurable subset of the group, then there exists an integer
m = m(V ) ∈ N, such that V ⊆ Um, hence

1 = lim
n→∞

µ(V )1/n ≤ lim
n→∞

µ(V n)1/n ≤ lim
n→∞

µ(Unm)1/n ≤ lim
n→∞

(C(nm)DG)1/n = 1,

by the polynomial growth. Thus, for every measurable V ⊆ G we have limn→∞ µ(V n)1/n = 1.
Let ∆ : G −→ (0,∞) be the modular function of G and let x ∈ G and V ⊆ G be a measurable subset such

that x ∈ V . Then, for each n ∈ N we get

µ(V )∆(x)n−1 = µ(V xn−1) ≤ µ(V n),

since the modular function is an homomorphism and x ∈ V . Hence,(
µ(V )∆(x)n−1

)1/n ≤ µ(V n)1/n,

and we deduce that

∆(x) = lim
n→∞

(µ(V )∆(x)n−1)1/n ≤ lim
n→∞

µ(V n)1/n = 1. (3.6)

Thus, for each x ∈ G we have ∆(x) ≤ 1, but since ∆ is a homomorphism we have also ∆(x)−1 = ∆(x−1) ≤ 1.
We conclude that ∆(x) = 1 for each x ∈ G.

We say that a metric space (G, d) is a doubling metric space if there exists C > 0, such that for all x ∈ G and
r > 0

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Moreover, we say that a set V ⊆ G has the doubling property, if there exists C = C(V ) > 0, such that for all
x ∈ G and r ∈ N

µ(xV 2r) ≤ Cµ(xV r). (3.7)
Using the strict polynomial growth, we deduce that groups of polynomial growth have the doubling property.

Lemma 3.1.8. Every locally compact group, G, of polynomial growth with the word metric is a doubling metric
space.

Proof. Let U ⊆ G be a generated unit neighbourhood of G. By Theorem 3.1.5, G has strict polynomial growth
and hence there exist constants C1, C2 > 0, DG ∈ N such that

C1n
DG ≤ µ(Un) ≤ C2n

DG , (3.8)

for all n ∈ N. From Equation (3.3) and the left invariance of the metric, for each r ∈ N and x ∈ G we obtain

µ
(
B(x, r)

)
= µ (xUr) = µ (Ur) .

From Equation (3.8), we have for each n ∈ N

µ
(
B(x, 2n)

)
= µ

(
U2n

)
≤ C2(2n)

DG ≤ C2C
−1
1 2DGµ

(
U2n

)
= C2C

−1
1 2DGµ

(
B(x, n)

)
.

Thus, for each n ∈ N using the inner regularity of the Haar measure µ we deduce

µ (B (x, 2n)) = sup
m∈N

µ

(
B

(
x, 2(n− 1

m

))
≤ C3 sup

m∈N
µ

(
B

(
x, n− 1

m

))
≤ C3µ (B (x, n)) ,

where C3 = C2C
−1
1 2DG > 0.
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3.1.2. Discrete sets
We define relatively separated sets, a class of discrete sets in locally compact groups, which will be used as the
index sets of matrices on such groups.

Definition 3.1.9. Let G be a locally compact group, Λ ⊆ G be a set in the group and let V ⊂ G be a relatively
compact unit neighbourhood. The set Λ is called a relatively separated set in G, if

RelV (Λ) := sup
x∈G

# (Λ ∩ xV ) <∞. (3.9)

Let Λ ⊆ G be a relatively separated set in the locally compact group G and let V, V ′ ⊂ G be relatively
compact unit neighbourhoods. By relative compactness, there exists a finite number of xi ∈ G, i ∈ IV,V ′ , such
that V ⊆

⋃
i xiV

′. Hence,

RelV (Λ) = sup
x∈G

#(Λ ∩ xV ) ≤ sup
x∈G

#

(
Λ ∩

⋃
i

xxiV
′

)
≤
∑
i

sup
x∈G

#(Λ ∩ xxiV ′)

≤
∑
i

sup
x∈G

#(Λ ∩ xV ′) = #(IV,V ′)RelV ′ (Λ) . (3.10)

This shows that if (3.9) holds for some relatively compact unit neighbourhood V ⊂ G, then its holds for all
relatively compact unit neighbourhoods.

The following simple characterization provides a necessary and sufficient condition for relatively separated
sets, see [25].

Lemma 3.1.10. Let Λ ⊆ G be a set in the locally compact group G with Haar measure µ.Then Λ is a relatively
separated set if and only if for each measurable relatively compact set U ⊆ G and n ∈ N there exists CU,n > 0,
such that

# (Λ ∩ xUn) ≤ CU,nµ (xU
n) . (3.11)

Proof. Let Λ ⊆ G be a relatively separated set and let n ∈ N. Then using Equation (3.10) we obtain

# (Λ ∩ xUn) ≤ sup
x∈G

# (Λ ∩ xUn) = RelUn (Λ) ≤ C0 RelU (Λ) ,

where C0 = C0(U, n) > 0. Hence,

# (Λ ∩ xUn) ≤ C0 RelU (Λ) = C0
µ(Un)

µ(Un)
RelU (Λ)

= CU,nµ(U
n) = CU,nµ(xU

n),

by the left invariance of the measure, where the constant CU,n > 0 is given by CU,n := C0
RelU (Λ)
µ(Un) . Conversely,

let Λ ⊆ G be such that
# (Λ ∩ xUn) ≤ CU,nµ (xU

n) ,

for a measurable relatively compact set U ⊆ G and n ∈ N.Then taking supremum over all x ∈ G and using the
left invariance of the Haar measure we obtain

RelUn (Λ) = sup
x∈G

# (Λ ∩ xUn) ≤ sup
x∈G

CU,nµ (xU
n)

= CU,n sup
x∈G

µ (Un) = CU,nµ (U
n) <∞.

Thus, Λ ⊆ G is a relatively separated set.

In compactly generated groups we have that relatively separated sets are countable discrete sets.

Lemma 3.1.11. Let G be a compactly generated set and Λ ⊆ G be a relatively separated set. Then Λ is countable.
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Proof. Suppose that U ⊆ G is a generating neighbourhood of the compactly generated G, i.e. G =
⋃∞
n=0 U

n.
Then by the relative separation of Λ there exist Cn > 0 for each n ∈ N ∪ {0} such that

RelUn (Λ) = Cn <∞. (3.12)

Hence,
# (Λ ∩ Un) ≤ sup

x∈G
# (Λ ∩ xUn) = RelUn (Λ) = Cn <∞. (3.13)

Since G =
⋃∞
n=0 U

n we deduce Λ = Λ ∩G =
⋃∞
n=0 (Λ ∩ Un). Thus Λ is countable as the countable union of

the finite sets Λ ∩ Un.

We present a covering result for locally compact groups where relatively separated sets arise naturally. This
result will be used extensively in the following results. The proof presented here is based on a covering lemma
given by Anker [2].

Lemma 3.1.12. LetW ⊆ G be a relatively compact symmetric unit neighbourhood with non-empty interior in
the locally compact group G.Then there exists a relatively separated set Y ⊆ G such that

1.
{
xkW

2
}
xk∈Y

is a cover of G.
2. the sets {xkW}xk∈Y are pairwise disjoint.

3. every x ∈ G belongs to at most µ(W
5)

µ(W ) sets xW 2, x ∈ Y .

4. RelW 2 (Y ) ≤ µ(W 5)
µ(W ) .

Proof. Let X :=
{
{yW}y∈V : V ⊆ G, {yW}y∈V are pairwise disjoint

}
.We define the partial order ≤X on

X, such that

{yW}y∈V1
≤X {yW}y∈V2

⇐⇒ V1 ⊆ V2,

for each {yW}y∈V1
, {yW}y∈V2

∈ X.Then P := (X,≤X) is a partially order pair. Suppose that

P ′ =
({

{yW}y∈Vi
, Vi ∈ I

}
, ≤X

)
is a chain in P, where I ⊆ P(G) and P(G) = {V ⊆ G} is the power set of G. We claim that P ′ has an upper
bound. Set V ′ =

⋃
Vi∈I Vi and let a, b ∈ V ′.Then there exist Vi, Vj ∈ I such that a ∈ Vi and b ∈ Vj . Since P ′ is

a chain in P , we have Vi and Vj are comparable and without loss of generality we suppose that Vi ≤X Vj .Then
Vi ⊆ Vj and hence a, b ∈ Vj .Thus, aW and bW are disjoint and we deduce that {yW}y∈V are pairwise disjoint.
We have that {yW}y∈V is an upper bound of P ′ since {yW}y∈V ∈ X and Vi ≤X V for each Vi ∈ I.We have
shown that an arbitrary chain in P has an upper bound, and hence we can apply Zorn’s Lemma.

By Zorn’s Lemma, there exist a maximal subset Y ⊂ G, such that the set {xW}x∈Y consists of pairwise
disjoint sets. Let g ∈ G. By the maximality of {xW}x∈Y we have that gW meets at least one set zW , for some
z ∈ Y . Hence, by the symmetry ofW we have g ∈ zWW−1 = zWW ⊆ zW 2, and we deduce that

G =
⋃
x∈Y

xW 2, (3.14)

or, equivalently, we have that
{
xW 2

}
x∈Y is a cover of G.

Let g ∈ G. Assume that g belongs to m ≥ 1 sets of the set
{
xW 2

}
x∈Y . Suppose that g ∈ xiW

2 for
i = 1, 2, ..., m, where xi ∈ Y for every i = 1, 2, ..., m. Then for i ∈ {1, 2, , ..m} we have that
g ∈ x1W

2 ∩ xiW
2. Hence, there exist v1, vi ∈ W 2 such that g = x1v1 = xivi and xi = x1v1v

−1
i . If

y ∈ xiW , then there exists z ∈ W such that y = xiz and we obtain y = x1v1v
−1
i z ∈ x1W

2W−2W . Hence
xiW ⊆ x1W

2W−2W for every i ∈ {1, 2, , ..m} and since the sets {xiW}i are pairwise disjoint and the measure
is left invariant we have

mµ(W ) =

m∑
i=1

µ(W ) =

m∑
i=1

µ(xiW ) = µ (∪mi=1xiW )

≤ µ
(
x1W

2W−2W
)
≤ µ

(
x1W

5
)
= µ

(
W 5
)
.
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Thus every g ∈ G belongs to at most m ≤ µ
(
W 5

)
µ(W ) sets xW 2, x ∈ Y . Moreover, using the symmetry ofW we

obtain

RelW 2 (Y ) = sup
x∈G

#
(
Y ∩ xW 2

)
= sup
x∈G

#
{
xk ∈ Y : x ∈ xkW

2
}
≤ m <∞,

and we deduce that Y is a relatively separated set.

We now adapt the previous result to a covering lemma for groups of polynomial growth. In this case, we cover
the group by translations of the set U2N , where U is the generating neighbourhood of the group. Furthermore,
using the strict polynomial growth we show that the maximum number of covering set that each element belongs
to can be chosen to be independent of the power N.

Lemma 3.1.13. Fix N ∈ N. Let G be a locally compact group of polynomial growth generated by the unit
neighbourhood U ⊂ G, with order of growth equal to DG > 0. Then there exists a relatively separated and
countable set XN ⊂ G, such that:

1.
{
xkU

2N
}
xk∈XN

is a cover of G.

2. the sets
{
xkU

N
}
xk∈XN

are pairwise disjoint.

3. every x ∈ G belongs to at most C2
G5

DG sets xkU2N , xk ∈ XN , where CG > 0 is a constant given by the
growth of U , i.e. C−1

G nDG ≤ µ(Un) ≤ CGn
DG for each n ∈ N.

4. RelU2N (XN ) ≤ CG
25DG .

Proof. FromTheorem 3.1.5, we have thatG has strict polynomial growth and hence there exist constants CG > 0,
DG ∈ N such that

C−1
G nDG ≤ µ(Un) ≤ CGn

DG , (3.15)

for all n ∈ N.
By Lemma 3.1.12 for W = UN , there exists a relatively separated set XN in G such that the sets{

xkU
N
}
xk∈XN

are pairwise disjoint and
{
xkU

2N
}
xk∈XN

is a cover of G. Moreover, every x ∈ G belongs

to at most µ(U
5N )

µ(UN )
sets xkU2N , xk ∈ XN . Using Equation (3.15), we obtain

µ
(
U5N

)
µ(UN )

≤ CG(5N)DG

C−1
G NDG

= C2
G5

DG . (3.16)

From the previous, we conclude that there exists a set XN ⊂ G such that
{
xU2N

}
x∈XN

is a cover of G, the
sets xUN , x ∈ XN are pairwise disjoint and every g ∈ G belongs to at most CG25DG sets xU2N , x ∈ XN .
Moreover, using the symmetry of U we obtain

RelU2N (XN ) = sup
x∈G

#
(
XN ∩ xU2N

)
= sup
x∈G

#
{
xk,N ∈ XN : x ∈ xk,NU

2N
}
≤ CG

25DG <∞,

Finally, since XN is relatively separated in a group of polynomial growth we deduce from Lemma 3.1.11 that
XN is countable.

The following result provides a similar estimate as in Equation (3.11), but with a constant independent of the
power of the neighbourhood. See [25, Lemma 3.4.] for a similar proof.

Lemma 3.1.14. Let Λ ⊆ G be a relatively separated set in the locally compact group G with Haar measure µ and
ρ ∈ N. Then for each relatively compact symmetric unit neighbourhood U ⊆ G with the doubling property there
exists D0 := D0(RelU (Λ) , ρ) > 0, such that for each R ≥ 0, and each x ∈ G we have

#
(
Λ ∩ xUR

)
≤ D0 µ(xU

R+ρ)

Proof. From Lemma 3.1.10, since Λ is relatively separated, for ρ ∈ N there exists Cρ > 0 such that

#
(
Λ ∩ zU2ρ

)
≤ Cρµ(zU

2ρ), z ∈ G.
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Note that the constant Cρ > 0 given by Lemma 3.1.10 depends on RelU (Λ) , U and ρ. Recall from Equation (3.7)
that, since U has the doubling property, there exists C = C(U) > 0 such that

µ(xU2ρ) ≤ C µ(xUρ)

By applying Zorn’s Lemma, using a similar argument as in Lemma 3.1.12, there exists a relatively separated set
X0 ⊆ xUR such that {yUρ}y∈X0

is a maximal disjoint set and {yU2ρ}y∈X0
is a cover of xUR. Then we obtain

#
(
Λ ∩ xUR

)
≤ #

 ⋃
y∈X0

(
Λ ∩ yU2ρ

) ≤
∑
y∈X0

#
(
Λ ∩ yU2ρ

)
≤ Cρ

∑
y∈X0

µ(yU2ρ) ≤ CCρ
∑
y∈X0

µ(yUρ),

by the doubling property. Furthermore, we obtain

#
(
Λ ∩ xUR

)
≤ CCρ µ

 ⋃
y∈X0

yUρ

 ≤ CCρ µ(xU
R+ρ) ≤ D0 µ(xU

R+ρ),

where D0 := CCρ and for the second inequality we used that if y ∈ X0 ⊆ xUR, then yUρ ⊆ xUR+ρ and that
the sets {yUρ}y∈X0

are disjoint.

In locally compact groups, we can cover open, relatively compact unit neighbourhoods V 2n by a finite number
of translations of V n. Moreover, if V is a doubling neighbourhood, then this number can be chosen to be
independent of n, as the following shows. The proof of this was provided by Van Velthoven and Voigtlaender.

Lemma 3.1.15. Let G be a locally compact group with Haar measure µ and let V ⊆ G be an open relatively
compact, symmetric unit neighbourhood. Furthermore, assume that V is a doubling neighbourhood, i.e. there
exists C > 0 such that

µ(V 2n) ≤ Cµ(V n),

for each n ∈ N.Then there exists K := K(V ) ∈ N such that for each n ∈ N, there exist x1, x2, ..., xK ∈ G
such that

V 2n ⊆
K⋃
i=1

xiV
n. (3.17)

Proof. Fix n ∈ N. By Lemma 3.1.12 there exists a relatively separated set X ⊂ G, such that the sets {xV n}x∈X
are pairwise disjoint and {xV 2n}x∈X is a cover of G. Set

I :=
{
x ∈ X : V 4n ∩ xV 2n 6= ∅

}
.

Since {xV 2n}x∈X is a cover of G, we have

V 4n ⊆
⋃
x∈I

xV 2n. (3.18)

Using that {xV n}x∈X are pairwise disjoint and the left invariance of the Haar measure µ, we obtain

|I|µ(V n) =
|I|∑
i=1

µ(V n) =
∑
x∈I

µ(xV n) = µ

(⋃
x∈I

xV n

)
.

If x ∈ I , then x ∈ V 4nV −2n ⊆ V 6n by the symmetry of V and xV n ⊆ V 6nV n ⊆ V 7n and hence

|I|µ(V n) = µ

(⋃
x∈I

xV n

)
≤ µ

(
V 7n

)
≤ µ

(
V 8n

)
≤ C3µ (V n) ,
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where for the last inequality we have used the doubling property of V. From the previous we conclude that
|I| ≤ C3 and thus there exist y1, y2, ..., ydC3e ∈ X , such that

V 4n ⊆
dC3e⋃
i=1

yiV
2n. (3.19)

Let εn ∈ {0, 1} andm ∈ Nwith n+εn = 2m. Then by applying the previous form there exist y1, y2, ..., ydC3e ∈
X , such that

V 4m ⊆
dC3e⋃
i=1

yiV
2m,

and hence

V 2n ⊆ V 2(n+εn) = V 4m ⊆
dC3e⋃
i=1

yiV
2m =

dC3e⋃
i=1

yiV
n+εn

⊆
dC3e⋃
i=1

yiV
1+2εnV n−1 ⊆

dC3e⋃
i=1

yiV
3V n−1.

Since V 3 is relatively compact and V is a unit neighbourhood, there exists T ∈ N and z1, ..., zT ∈ G such that

V 3 ⊆
T⋃
i=1

ziV.

Thus,

V 2n ⊆
dC3e⋃
i=1

yiV
3V n−1 ⊆

dC3e⋃
i=1

yi

T⋃
j=1

zjV V
n−1 =

dC3e⋃
i=1

T⋃
j=1

yizjV
n.

We conclude that there existK := dC3eT ∈ N and x1, ..., xK ∈ G such that

V 2n ⊆
K⋃
i=1

xiV
n.

Finally, we observe thatK does not depend on the choice of n ∈ N, which proves the claim.

For a locally compact groupG of polynomial growth, with generating neighbourhoodU we have fromTheorem
3.1.5 and Lemma 3.1.8 that U verifies the assumptions of the previous Lemma. Thus, there existsK := K(U) ∈ N
such that for each n ∈ N, there exist x1, x2, ..., xK ∈ G with

U2n ⊆
K⋃
i=1

xiU
n. (3.20)

Now, for a relatively separated set Λ ⊆ G we have

RelU2n (Λ) = sup
x∈G

#
(
Λ ∩ xU2n

)
≤ sup
x∈G

#

(
Λ ∩

K⋃
i=1

xxiU
n

)

≤
K∑
i=1

sup
x∈G

# (Λ ∩ xxiUn) ≤
K∑
i=1

sup
x∈G

# (Λ ∩ xUn)

=

K∑
i=1

RelUn (Λ) = K RelUn (Λ) .

This proves the following Lemma.

Lemma 3.1.16. Let G be a locally compact group of polynomial growth, with generating neighbourhood U and
let Λ ⊆ G be a relatively separated set. Then there existsK > 0 such that for each n ∈ N

RelU2n (Λ) ≤ K RelUn (Λ) . (3.21)
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Lattices
A lattice in a locally compact group is a discrete set and has the group structure. In this subsection, we give a
definition for lattices and show that a lattice is also a relatively separated set in the group.

Definition 3.1.17. Let G be a locally compact group and Λ ⊆ G be a discrete subgroup of G.The subgroup Λ
is called a lattice in G if there exists a finite Borel measure ν on the quotient space G/Λ, which is G-invariant,
that is, for each g ∈ G and any open subsetW ⊆ G/Λ we have ν(gW ) = ν(W ). Moreover, if the quotient space
G/Λ is compact, then the lattice Λ is called uniform.

Let Λ be a lattice in the locally compact group G. Since Λ is a discrete group, then the subspace topology is
the discrete topology. Hence, there exists an open, non-empty subset Ve of G, such that Λ ∩ Ve = {e}, where
e is the unit of G. By local compactness we can choose a relatively compact open unit neighbourhoodW and
then by taking the intersectionW ∩ Ve we deduce thatW ∩ Ve is an open, non-empty unit neighbourhood and
Λ ∩ (W ∩ Ve) = {e}. Thus, without loss of generality we choose Ve to be relatively compact. Let V ⊆ Ve be a
unit neighbourhood such that V −1V ⊆ Ve. Now, suppose that x ∈ G and λ1, λ2 ∈ Λ∩xV.Then, λ1 ∈ λ2V

−1V
and we deduce that λ−1

2 λ1 ∈ V −1V ⊆ Ve. Since Λ is a lattice and in particular a subgroup we have that
λ−1
2 λ1 ∈ Λ ∩ Ve = {e}. Hence, λ1 = λ2 and we deduce for each x ∈ G that # (Λ ∩ xV ) ≤ 1. Thus,

RelV (Λ) := sup
x∈G

# (Λ ∩ xV ) ≤ 1, (3.22)

and we conclude that Λ is a relatively separated set in G. Furthermore, it can be shown that a uniform lattice in a
locally compact group of polynomial growth is also a group of polynomial growth equipped with the counting
measure.

Lemma 3.1.18. Let G be a locally compact group of polynomial growth and Λ is a uniform lattice in G.Then
(Λ, P(Λ), µC) is a locally compact group of polynomial growth, where P(Λ) := {V ⊆ Λ} is the power set of
Λ and

µC : P(Λ) −→ [0,∞] (3.23)
Γ 7−→ #Γ := # {x ∈ G : x ∈ Γ} ,

is the counting measure on Λ.Moreover, the order of growth of Λ is equal to the one of G.

Proof. Since Λ is a uniform lattice in the compactly generated group we deduce that Λ is compactly generated,
see e.g. [10, Proposition 4.C.11], with generating neighbourhood V ⊆ Λ. Suppose that U ⊆ G is the gener-
ating neighbourhood of G and G has order of growth equal to DG ∈ N, i.e. there exists CG > 0 such that
µ(Un) ≤ CGn

DG , where µ is the Haar measure on G. Then, since G is generated by the neighbourhood U , there
exists n0 ∈ N such that V ⊆ Un0 . Using Lemma 3.1.14 we have

µC(V
n) = # (Λ ∩ V n) ≤ # (Λ ∩ (Un0)

n
) ≤ # (Λ ∩ Un0n)

≤ D0µ
(
Un0n+1

)
≤ D0CG(n0n+ 1)DG ≤ D0CG(2n0)

DGnDG ,

where D0 := D0(RelU (Λ)) > 0.Thus, for each n ∈ N we have

µC(V
n) ≤ CΛn

DG ,

and we deduce that Λ is a locally compact group of polynomial growth with order of growth equal to DG.

There are classes of locally compact groups for which any lattice is automatically uniform, see [3]. Examples
of such groups are the nilpotent Lie groups and connected solvable Lie groups [3, 45]. On the other hand, it should
be noted that not every nilpotent Lie group admits a lattice, an example of such group is given in [52, Remark
2.14.].

3.2. Amalgam spaces
The Amalgam functions is a class of integrable functions on a locally compact group, that will be used in the
definition of convolution-dominated matrices. In order to define this class, we initially introduce the local maximal
functions. Most properties presented in this section can be found in [27, 54, 66]. See also [24, 36] for more on
Amalgam spaces.

Throughout this section, G denotes a compactly generated group with generating neighbourhood U ⊆ G and
(left) Haar measure µ. Moreover, we equip G with the word metric d.
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3.2.1. Local Maximal Functions
For defining the local maximal functions, we denote the space of all measurable functions f : G −→ C by L0(G)
and the space of all locally essentially bounded functions on G by

L∞
loc(G) :=

{
f ∈ L0(G) : fχK ∈ L∞(G) for everyK ⊆ G compact

}
(3.24)

The local maximal functions are defined as follows.

Definition 3.2.1. Fix an open, symmetric, relatively compact unit neighbourhood Q in G. For a function
f ∈ L∞

loc(G) we define the left and right maximal functions of f by

ML
Q f(x) := ess sup

y∈Q
|f(xy)| and MR

Q f(x) := ess sup
y∈Q

|f(yx)| .

Define the involution of a function f ∈ L0(G) by f∨(x) = f(x−1). Note that if f ∈ L∞
loc(G), then for x ∈ G,

we obtain

ML
Q(f

∨)(x) = ess sup
y∈Q

|f∨(xy)| = ess sup
y∈Q

∣∣f(y−1x−1)
∣∣

= ess sup
y∈Q

∣∣f(yx−1)
∣∣ = MR

Q(f)(x
−1) = MR

Q(f)
∨(x),

where for the third equality we have used that Q is a symmetric unit neighbourhood. Thus, if f ∈ L∞
loc(G), then

ML
Q(f

∨) = MR
Q(f)

∨. (3.25)

The local maximal functions of a function provide an estimate of the function. We present a proof for this
estimate, given in [66].

Lemma 3.2.2. For any Q ⊂ G as in Definition 3.2.1 and for each f ∈ L∞
loc(G) we have

|f(x)| ≤ ML
Q f(x) and |f(x)| ≤ MR

Q f(x),

µ-almost every x ∈ G.

Proof. Let V ⊆ G be an open, symmetric, relatively compact unit neighbourhood such that V V ⊆ Q. Since G is
compactly generated, there exist a generating neighbourhood U such that

G =
⋃
n∈N

Un.

Using the relative compactness of Un we can cover the sets Un by a finite number of sets xV for x ∈ G, hence
Un ⊆

⋃Nn

k=1 xk,nV.Thus,G =
⋃
k∈N xkV for a countable sequence (xk)k∈N .We observe that for, µ-almost every

x ∈ xkV ,

|f(x)| ≤ ess sup
y∈V

|f(xky)| ,

and, for every z ∈ z′V ,

ess sup
y∈V

|f(zy)| ≤ ess sup
y∈V V

|f(z′y)| ≤ ess sup
y∈Q

|f(z′y)| = ML
Q f(z

′).

If x ∈ xkV , then xk ∈ xV −1 = xV and combining the previous we have for µ-almost every x ∈ xkV

|f(x)| ≤ ess sup
y∈V

|f(xky)| ≤ ML
Q f(x). (3.26)

From G =
⋃
k∈N xkV and Equation (3.26) we conclude that for µ-almost every x ∈ G

|f(x)| ≤ ML
Q f(x). (3.27)
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Furthermore, using the previous and Equation (3.25) we obtain for µ-almost every x ∈ G

|f(x)| =
∣∣f∨(x−1)

∣∣ ≤ ML
Q f

∨(x−1) = ess sup
y∈Q

∣∣f∨(x−1y)
∣∣

= ess sup
y∈Q

∣∣f(y−1x)
∣∣ .

Thus, using the symmetry of Q we obtain

|f(x)| = ess sup
y∈Q

∣∣f(y−1x)
∣∣ = ess sup

y∈Q
|f(yx)| = MR

Q f(x). (3.28)

3.2.2. Amalgam Function Spaces
For the rest we fix an open, symmetric, relatively compact unit neighbourhood Q in the group G, unless stated
otherwise. We denote by RelΛ := RelQ (Λ) the relatively separated constant of the set Λ with respect to Q.

Definition 3.2.3. A normed space (Y, ‖·‖Y ) is called a function space on a measure space (G,Σ, µ), if Y is a
subspace of L0(G,µ). If Y is furthermore complete, then is called a Banach function space.

Definition 3.2.4. A function space (Y, ‖·‖Y ) on (G,Σ, µ) is called solid, if for each measurable function
f ∈ L0(G,µ) such that |f | ≤ |g| µ-almost everywhere for some g ∈ Y , we have f ∈ Y , with ‖f‖Y ≤ ‖g‖Y .

For p ∈ [1,∞] the Lebesgue space Lp(G) is defined by

Lp(G) :=
{
f ∈ L0(G) : ‖f‖Lp(G) <∞

}
, (3.29)

where

‖f‖Lp(G) =

(∫
G

|f |p dµ
)1/p

, (3.30)

when p ∈ [1,∞), and
‖f‖Lp(G) = sup

G

|f | , (3.31)

when p = ∞. We call a measurable weight w : G −→ [1,∞) submultiplicative, if w(xy) ≤ w(x)w(y), for each
x, y ∈ G. For a measurable, submultiplicative weight w on G and p ∈ [1,∞] the weighted Lpw(G) space of
functions on G is defined by

Lpw(G) :=
{
f ∈ L0(G) : ‖fw‖Lp(G) <∞

}
(3.32)

and it can be shown to be solid Banach function spaces.
We now define the Amalgam spaces.

Definition 3.2.5. Let (Y, ‖·‖Y ) be a solid function space on (G,µ). The left and right Wiener Amalgam spaces
with local component L∞ and global component Y are defined by

WL
Q (L∞, Y ) :=

{
f ∈ L∞

loc(G) : ML
Q f ∈ Y

}
, (3.33)

WR
Q (L∞, Y ) :=

{
f ∈ L∞

loc(G) : MR
Q f ∈ Y

}
, (3.34)

with norms

‖f‖WL
Q (L∞, Y ) =

∥∥ML
Q f
∥∥
Y

(3.35)

‖f‖WR
Q (L∞, Y ) =

∥∥MR
Q f
∥∥
Y

(3.36)

respectively.
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We mainly focus our attention to the study of the left and right Wiener Amalgam spacesWL
Q (L∞, Y ) and

WR
Q (L∞, Y ), with local component L∞(G) and global component Y = L1

w(G), where w : G → [1,∞) is a
measurable, submultiplicative weight and L1

w(G) is the weighted Lebesgue function space. In some cases, we also
consider the Amalgam spaces with global componentWL

Q (L∞, L1
w(G)) orWR

Q (L∞, L1
w(G)), i.e. the spaces

WL
Q (L∞, WR

Q (L∞, L1
w(G))) andWR

Q (L∞, WL
Q (L∞, L1

w(G))).
It can be shown that the Amalgam spacesWL

Q (L∞, L1
w(G)) andWR

Q (L∞, L1
w(G)) are embedded in L1

w(G).
From Lemma 3.2.2 and since L1

w(G) is a solid function space, it follows

‖f‖L1
w(G) ≤

∥∥ML
Q f
∥∥
L1

w(G)
and ‖f‖L1

w(G) ≤
∥∥MR

Q f
∥∥
L1

w(G)
. (3.37)

Furthermore, the left Amalgam spaceWL
Q (L∞, L1

w(G)) is embedded in L∞(G).

Lemma 3.2.6. Let w : G −→ [1,∞) be a measurable, submultiplicative weight. For each f ∈ L∞
loc(G) we have

‖f‖L∞(G) ≤ CQ ‖f‖WL
Q (L∞, L1

w(G)) , (3.38)

where CQ > 0 and henceWL
Q (L∞, L1

w(G)) ↪−→ L∞(G).

Proof. If we choose a symmetric open unit neighbourhood V , such that V V ⊆ Q, then for each x ∈ G and v ∈ V
we get xV = xvv−1V ⊆ xvQ. Hence, for each f : G→ C measurable we have

‖f‖L∞(xV ) ≤ ‖f‖L∞(xvQ) = ML
Q f(xv).

Averaging over V and using the left invariance of the Haar measure µ, we obtain

‖f‖L∞(xV ) ≤
1

µ(V )

∫
V

ML
Q f(xv)dµ(v) =

1

µ(V )

∫
xV

ML
Q f(v)dµ(v) ≤

1

µ(V )

∥∥ML
Q f
∥∥
L1(G)

. (3.39)

Since G is compactly generated, then there exist {xn}n∈N, such that G =
⋃
n∈N xnV . This can be done by

covering the sets Un by translations of the set V (see proof of Lemma 3.2.2 for details). Hence,

‖f‖L∞(G) = sup
n∈N

‖f‖L∞(xnV ) ≤
1

µ(V )

∥∥ML
Q f
∥∥
L1(G)

.

By assumption, the weight w satisfies w ≥ 1, thus

‖f‖L∞(G) ≤
1

µ(V )

∥∥ML
Q f
∥∥
L1

w(G)
=

1

µ(V )
‖f‖WL

Q (L∞, L1
w(G))

and we conclude thatWL
Q (L∞, L1

w(G)) ↪−→ L∞(G).

The following estimates will be useful for the upcoming results. We present a proof by Romero, van Velthoven,
and Voigtlaender [54].

Lemma 3.2.7. Let Θ, Φ : G→ [0,∞) be continuous functions on G and Λ ⊆ G be a relatively separated set in
G. Then

sup
y∈G

∑
λ∈Λ

Θ(y−1λ) ≤ RelQ (Λ)

µ(Q)
‖Θ‖WL

Q (L∞, L1(G)) , (3.40)

and for each x, y ∈ G ∑
λ∈Λ

Φ(y−1λ)Θ(λ−1x) ≤ RelQ (Λ)

µ(Q)

(
ML

Q Φ ∗MR
Q Θ
)
(y−1x). (3.41)

Proof. If y ∈ G and λ ∈ Λ, then for each z ∈ λQ we have z−1λ ∈ Q−1 = Q, since Q is a symmetric unit
neighbourhood. Therefore, we have y−1λ = y−1zz−1λ ∈ y−1zQ for each z ∈ λQ. Now, since Θ is continuous
and Q is an open neighbourhood of the identity, we obtain

Θ(y−1λ) ≤ sup
x∈y−1zQ

Θ(x) = sup
x∈Q

Θ(y−1zx) = ML
Q Θ(y−1z),
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for y ∈ G and λ ∈ Λ and each z ∈ λQ. Hence, for y ∈ G and λ ∈ Λ by averaging over λQ and using the left
invariance of the Haar measure µ, we obtain

Θ(y−1λ) ≤ 1

µ(λQ)

∫
λQ

ML
Q Θ(y−1z)dµ(z) ≤ 1

µ(Q)

∫
λQ

ML
Q Θ(y−1z)dµ(z).

For fixed y ∈ G we have ∑
λ∈Λ

Θ(y−1λ) ≤
∑
λ∈Λ

1

µ(Q)

∫
λQ

ML
Q Θ(y−1z)dµ(z)

=
1

µ(Q)

∑
λ∈Λ

∫
G

ML
Q Θ(y−1z)χλQ(z)dµ(z)

=
1

µ(Q)

∫
G

∑
λ∈Λ

χλQ(z)ML
Q Θ(y−1z)dµ(z),

where we used the monotone convergence theorem for the last equality. Note that for each x ∈ G, we have

RelQ (Λ) ≥ # (Λ ∩ xQ) =
∑
λ∈Λ

χxQ(λ) =
∑
λ∈Λ

χλQ(x).

Thus, using the previous and the left invariance of µ, we get∑
λ∈Λ

Θ(y−1λ) ≤ RelQ (Λ)

µ(Q)

∫
G

ML
Q Θ(y−1z)dµ(z) ≤ RelQ (Λ)

µ(Q)

∫
G

ML
Q Θ(z)dµ(z) =

RelQ (Λ)

µ(Q)
‖Θ‖WL(L∞,L1(G)) .

By taking supremum over all y ∈ G we arrive at Equation (3.40).
Using a similar technique we prove the second estimate. Initially, we observe that if y, x ∈ G and λ ∈ Λ, then

for each z ∈ λQ we have y−1λ ∈ y−1zQ and λ−1x ∈ Qz−1x. Hence, since Θ, Φ are continuous, positive and
Q is an open neighbourhood of the identity, we obtain Φ(y−1λ) ≤ ML

Q Φ(y
−1z) and Θ(λ−1x) ≤ MR

Q Θ(z−1x).
Now, averaging over λQ, using the monotone convergence theorem and that RelQ (Λ) ≥

∑
λ∈Λ χλQ(x) we have∑

λ∈Λ

Φ(y−1λ)Θ(λ−1x) ≤
∑
λ∈Λ

1

µ(Q)

∫
λQ

ML
Q Φ(y

−1z)MR
Q Θ(z−1x)dµ(z)

≤ 1

µ(Q)

∫
G

∑
λ∈Λ

χλQ(z)ML
Q Φ(y

−1z)MR
Q Θ(z−1x)dµ(z)

≤ RelQ (Λ)

µ(Q)

∫
G

ML
Q Φ(y

−1z)MR
Q Θ(z−1x)dµ(z).

Finally, using the left invariance of the Haar measure and the change of variables t = y−1z we obtain∑
λ∈Λ

Φ(y−1λ)Θ(λ−1x) ≤ RelQ (Λ)

µ(Q)

∫
G

ML
Q Φ(t)M

R
Q Θ(t−1y−1x)dµ(z)

≤ RelQ (Λ)

µ(Q)

(
ML

Q Φ ∗MR
Q Θ
)
(y−1x),

which proves our claim.

The definition of the left and right Amalgam spaces can be extended to a two-sided version, where both the
left and right local maximal functions are being used. A special case of the two-sided Amalgam space, with global
component Y = L1

w(G), is presented below.

Definition 3.2.8. Let G be a locally compact group and w : G → [1,∞) be a measurable, submultiplicative
weight on (G,µ). The two-sided Wiener Amalgam space with local component L∞ and global component L1

w(G)
is defined by

WQ (L∞, L1
w(G)) :=

{
f ∈ L∞

loc(G) : ML
Q M

R
Q f ∈ L1

w(G)
}

(3.42)

with norm

‖f‖WQ (L∞, L1
w(G)) =

∥∥ML
Q M

R
Q f
∥∥
L1

w(G)
. (3.43)
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It can be shown that for discrete groups the Amalgam space is exactly the set of all summable sequences on
the discrete group.

Remark 3.2.9. Note that if G is a discrete group, equipped with the counting measure µC , then we fix Q = {e},
where e ∈ G is the unit element onG. ThenQ verifies the assumptions of the above definition and hence we have
ML

Q MR
Q f(x) = ess supy,y′∈Q={e} |f(yxy′)| = |f | (x), for each x ∈ G.Thus, using that the space L1

w(G,µC) for
the counting measure µC is the sequence space `1w(G), it follows that

WQ (L∞, L1
w(G)) =

{
f ∈ L∞

loc(G) : |f | ∈ L1
w(G,µC)

}
=
{
f ∈ L∞

loc(G) : f ∈ `1w(G)
}

(3.44)

and

‖f‖WQ (L∞, L1
w(G)) = ‖|f |‖L1

w(G,µC) = ‖f‖`1w(G) . (3.45)

We conclude that for discrete groups

WQ (L∞, L1
w(G)) = `1w(G), (3.46)

equipped with the sequence norm ‖·‖`1w(G) .

Let f, g ∈ L1(G) such that f(x) ≥ 0 and g(x) ≥ 0 for each x ∈ G. Then, for x ∈ G we observe that

ML
Q(f ∗ g)(x) = ess sup

z∈Q

(∫
G

f(y)g(y−1xz)dµ(y)
)
.

Now, we assume that g ∈WL
Q (L∞, L1

w(G)) we have f ∗ML
Q g ∈ L1(G). Then by choosing a sequence converging

to the essential supremum and by applying the Dominated Convergence Theorem to that sequence, we obtain

ess sup
z∈Q

(∫
G

f(y)g(y−1xz)dµ(y)
)

=

∫
G

f(y) ess sup
z∈Q

g(y−1xz)dµ(y) =
∫
G

f(y)ML
Q g(y

−1x)dµ(y).

Thus, for each f ∈ L1(G) and g ∈WL
Q (L∞, L1

w(G)) such that f, g ≥ 0

ML
Q(f ∗ g)(x) =

(
f ∗ML

Q g
)
(x), (3.47)

for µ-almost every x ∈ G. Similarly, for g ∈ L1(G) and f ∈WR
Q (L∞, L1

w(G)) such that f, g ≥ 0 we have

MR
Q(f ∗ g)(x) = ess sup

z∈Q

(∫
G

f(y)g(y−1zx)dµ(y)
)

= ess sup
z∈Q

(∫
G

f(zy)g(y−1x)dµ(y)
)

=

∫
G

ess sup
z∈Q

(f(zy))g(y−1x)dµ(y) =
∫
G

MR
Q f(y)g(y

−1x)dµ(y),

where for the second equality we have used the Dominated convergence theorem and for the third the left
invariance of the Haar measure µ.Thus, for each g ∈ L1(G) and f ∈WR

Q (L∞, L1
w(G)) such that f, g ≥ 0

MR
Q(f ∗ g)(x) =

(
MR

Q f ∗ g
)
(x), (3.48)

for µ-almost every x ∈ G.
Using Equations (3.47) and (3.48) above, we deduce that the two-sided Amalgam space is closed under

convolution.

Lemma 3.2.10. Let f ∈WR
Q (L∞, L1

w(G)) and g ∈WL
Q (L∞, L1

w(G)). Then

‖f ∗ g‖WQ (L∞, L1
w(G)) ≤ ‖f‖WR

Q (L∞, L1
w(G)) ‖g‖WL

Q (L∞, L1
w(G)) . (3.49)

Moreover, we have the following embedding

WQ (L∞, L1
w(G)) ∗WQ (L∞, L1

w(G)) ↪−→WQ (L∞, L1
w(G)). (3.50)
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Proof. Note that

MR
Q(f ∗ g)(x) = ess sup

z∈Q

∣∣∣∣∫
G

f(y)g(y−1zx)dµ(y)
∣∣∣∣ ≤ ess sup

z∈Q

∫
G

|f | (y) |g| (y−1zx)dµ(y)

and hence
ML

Q M
R
Q(f ∗ g)(x) ≤ ML

Q M
R
Q(|f | ∗ |g|)(x). (3.51)

Since L1(G) is a solid function space we have∥∥ML
Q M

R
Q(f ∗ g)

∥∥
L1

w(G)
≤
∥∥ML

Q M
R
Q(|f | ∗ |g|)

∥∥
L1

w(G)
. (3.52)

Combining the previous and Equations (3.47) and (3.48), we have

‖f ∗ g‖WQ (L∞, L1
w(G)) =

∥∥ML
Q M

R
Q(f ∗ g)

∥∥
L1

w(G)
≤
∥∥ML

Q M
R
Q(|f | ∗ |g|)

∥∥
L1

w(G)
(3.53)

=
∥∥ML

Q(M
R
Q |f | ∗ |g|)

∥∥
L1

w(G)
=
∥∥(MR

Q |f | ∗ML
Q |g|)

∥∥
L1

w(G)

≤
∥∥MR

Q f
∥∥
L1

w(G)

∥∥ML
Q g
∥∥
L1

w(G)

= ‖f‖WR
Q (L∞, L1

w(G)) ‖g‖WL
Q (L∞, L1

w(G)) , (3.54)

using Young’s inequality, i.e. ‖F ∗G‖Lp(G) ≤ ‖F‖Lp(G) ‖G‖L1(G), for all F ∈ Lp(G), G ∈ L1(G) and
p ∈ [1,∞].We conclude thatWR

Q (L∞, L1
w(G)) ∗WL

Q (L∞, L1
w(G)) is embedded inWQ (L∞, L1

w(G)),

WR
Q (L∞, L1

w(G)) ∗WL
Q (L∞, L1

w(G)) ↪−→WQ (L∞, L1
w(G)). (3.55)

By the definition of the two-sided Amalgam space WQ (L∞, L1
w(G)) we have that

WQ (L∞, L1
w(G)) is embedded in the left and right Amalgam spaces. Thus, using Equation (3.55) we obtain

WQ (L∞, L1
w(G)) ∗WQ (L∞, L1

w(G)) ↪−→WQ (L∞, L1
w(G)). (3.56)

The following result shows that the two-sided Amalgam spaceWQ(L
∞, L1

w(G)) is a Banach space. To prove
the completeness ofWQ(L

∞, L1
w(G)), we use the completeness of the Lebesgue spaces L1

w(G). Here we only
prove the completeness of the Amalgam space with global component L1

w(G), however the spaceWQ(L
∞, Y )

for more general function spaces Y can also be shown to be complete [53, 66].

Theorem 3.2.11. Let G be a locally compact group with Haar measure µ and w : G→ [1,∞) be a measurable,
submultiplicative weight on G. ThenWQ(L

∞, L1
w(G)) is a Banach space.

Proof. Let f, g ∈WQ(L
∞, L1

w(G)) we obtain

ML
Q M

R
Q(f + g)(x) = ess sup

y,y′∈Q
|(f + g)(yxy′)| ≤ ess sup

y,y′∈Q
|f(yxy′)|+ ess sup

y,y′∈Q
|g(yxy′)|

≤ ML
Q M

R
Q f(x) +ML

Q M
R
Q g(x).

Then using the triangle inequality and that L1
w(G) is solid we have

‖f + g‖WQ(L∞,L1
w(G)) =

∥∥ML
Q M

R
Q(f + g)

∥∥
L1

w(G)
≤
∥∥ML

Q M
R
Q f
∥∥
L1

w(G)
+
∥∥ML

Q M
R
Q g
∥∥
L1

w(G)

≤ ‖f‖WQ(L∞,L1
w(G)) + ‖g‖WQ(L∞,L1

w(G)) .

Moreover, since ML
Q(cf) = |c|ML

Q(f) and MR
Q(cf) = |c|MR

Q(f) for each c ∈ C and each f ∈ WQ(L
∞, L1

w(G)),
we deduce the absolute homogeneity of ‖·‖WQ(L∞,L1

w(G)) from the absolute homogeneity of ‖·‖L1
w(G) . By

the definition of the maximal functions we have that ‖f‖WQ(L∞,L1
w(G)) ≥ 0 for each f ∈ WQ(L

∞, L1
w(G)).

Now, if ‖f‖WQ(L∞,L1
w(G)) = 0 then we have

∥∥ML
Q MR

Q f
∥∥
L1

w(G)
= 0 and hence ML

Q MR
Q f = 0, µ−almost

everywhere in G. Using Lemma 3.2.2 we deduce that f = 0 µ−almost everywhere in G.Thus, we conclude that(
WQ(L

∞, L1
w(G)), ‖·‖WQ(L∞,L1

w(G))

)
is a normed space.
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To show that
(
WQ(L

∞, L1
w(G)), ‖·‖WQ(L∞,L1

w(G))

)
is complete, it suffices to show that if

(fn)n∈N ⊆WQ(L
∞, L1

w(G)) with
∑
n∈N ‖fn‖WQ(L∞,L1

w(G)) <∞, then∑
n∈N

fn ∈WQ(L
∞, L1

w(G)).

Using Lemma 3.2.2, for each n ∈ N we have |fn| ≤ ML
Q MR

Q fn and hence, since L1
w(G) is a solid function space

(see the inequalities 3.37), we obtain∑
n∈N

‖fn‖L1
w(G) ≤

∑
n∈N

∥∥ML
Q M

R
Q fn

∥∥
L1

w(G)
=
∑
n∈N

‖fn‖WQ(L∞,L1
w(G)) <∞.

By the completeness of L1
w(G) we define f :=

∑
n∈N fn ∈ L1

w(G). For gn = ML
Q MR

Q fn we have∑
n∈N

‖gn‖L1
w(G) =

∑
n∈N

∥∥ML
Q M

R
Q fn

∥∥
L1

w(G)
=
∑
n∈N

‖fn‖WQ(L∞,L1
w(G)) <∞

and using once again the completeness of L1
w(G) we deduce that

∑
n∈N gn ∈ L1

w(G), or equivalently∥∥∥∥∥∑
n∈N

ML
Q M

R
Q fn

∥∥∥∥∥
L1

w(G)

<∞.

For µ− almost every x ∈ G

ML
Q M

R
Q f(x) = ‖fχQxQ‖L∞(G) ≤

∑
n∈N

‖fnχQxQ‖L∞(G) =
∑
n∈N

ML
Q M

R
Q fn(x).

Since L1
w(G) is solid, from the previous we deduce that ML

Q MR
Q f ∈ L1

w(G), which completes the proof.

It should be noted that the two-sided Amalgam spaceWQ(L
∞, L1

w(G)) is independent of the choice of open,
relatively compact, symmetric unit neighbourhood Q, with equivalent norms [53, 66].

We now define the subspace of continuous functions in the Amalgam space, which will be shown to be closed
in the two-sided Amalgam space. Furthermore, this subspace will be used in the next section for the definition of
convolution-dominated matrices in locally compact groups. Initially, we show that the subspace of continuous
Amalgam functions is closed, by following the proof given by Voigtlaender [66].

Lemma 3.2.12. The subspace

C(G) ∩WQ(L
∞, L1

w(G)) (3.57)

is a closed subspace ofWQ(L
∞, L1

w(G)).

Proof. Let (fn)n∈N ⊂ C(G) ∩WQ(L
∞, L1

w(G)) be a sequence such that fn
n→∞−−−−→ f ∈WQ(L

∞, L1
w(G)) with

convergence in WQ (L∞, L1
w(G)). Now, suppose that V0 ⊆ G is a compact set, then choosing a symmetric

open unit neighbourhood V , such that V V ⊆ Q, and from the compactness of V0 we have that there exist
x1, ..., xN ∈ G such that

V0 ⊆
N⋃
i=1

xiV.

Then, for each i = 1, ..., N , by averaging over V (see Equation (3.39) in the proof of Lemma 3.2.6) we obtain

‖fχxiV ‖L∞(G) ≤
1

µ(V )

∥∥ML
Q f
∥∥
L1(G)

and hence

‖fχV0‖L∞(G) ≤
N∑
i=1

‖fχxiV ‖L∞(G) ≤
N∑
i=1

1

µ(V )

∥∥ML
Q f
∥∥
L1(G)

.
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Thus,
‖fχV0

‖L∞(G) ≤ CV0,Q ‖f‖WQ (L∞, L1
w(G)) , (3.58)

where CV0,Q > 0. For a relatively compact open set V1 ⊆ G we have

‖(fn − fm)χV1
‖L∞(G) ≤

∥∥(fn − fm)χV1

∥∥
L∞(G)

≤ CV1,Q
‖fn − fm‖WQ (L∞, L1

w(G))

n,m→∞−−−−−→ 0

using the estimate in Equation (3.58) and the convergence of the sequence (fn)n∈N . From the completeness of
C(V1) we have that there exists gV1 ∈ C(V1) such that

‖(fn − gV1)χV1‖L∞(G)
n→∞−−−−→ 0.

Similarly, for a relatively compact open set V2 ⊆ G we define gV2 ∈ C(V2) such that

‖(fn − gV2)χV2‖L∞(G)
n→∞−−−−→ 0.

Thus, for two relatively compact open sets V1, V2 ⊆ G we have

‖(gV2
− gV1

)χV1∩V2
‖L∞(G) ≤ ‖(fn − gV1

)χV1∩V2
‖L∞(G) + ‖(fn − gV2

)χV1∩V2
‖L∞(G)

≤ ‖(fn − gV1
)χV1

‖L∞(G) + ‖(fn − gV2
)χV2

‖L∞(G)
n→∞−−−−→ 0, (3.59)

hence gV2 = gV1 on V1 ∩ V2. Since G is compactly generated, we have G =
⋃∞
m=0 U

m where U ⊆ G is a
relatively compact symmetric unit neighbourhood and we define hm = gUm ∈ C(G) (similarly to gV1

) such that

‖(fn − hm)χUm‖L∞(G)
n→∞−−−−→ 0.

Then we define
g(x) = hm(x), for each x ∈ Um (3.60)

and by Equation (3.59) we have that g ∈ C(G). LetK ⊆ G be a compact set. Then sinceG is compactly generated
there existsm0 := m0(K) > 0 such thatK ⊆ Um0 and hence

‖(fn − gχK)χK‖L∞(G) ≤ ‖(fn − gχUm0 )χUm0‖L∞(G)

≤ ‖(fn − hm0
)χUm0‖L∞(G)

n→∞−−−−→ 0.

Therefore, fn converges pointwise to g ∈ C(G).We conclude that g ∈ C(G) is a continuous representative of
f ∈ WQ(L

∞, L1
w(G)) and hence fn converges to g ∈ C(G) ∩WQ(L

∞, L1
w(G)) in the amalgam norm. Thus,

C(G) ∩WQ(L
∞, L1

w(G)) is a closed subspace ofWQ(L
∞, L1

w(G)).

Since from the previousC(G)∩WQ(L
∞, L1

w(G)) is a closed subspace ofWQ(L
∞, L1

w(G)) and fromTheorem
3.2.11 we have thatWQ(L

∞, L1
w(G)) is a Banach space, we deduce thatC(G)∩WQ(L

∞, L1
w(G)) is also a Banach

space.
We denote the subspace of continuous Amaglam functions by

WQ (C, L1
w(G)) = C(G) ∩WQ(L

∞, L1
w(G))

andwe interpret this space as the two-sided Amalgam space with local componentC(G) and and global component
L1
w(G). Moreover, since the Amalgam space is independent of the choice ofQ, for a measurable, submultiplicative

weight w on G we use the notation

WL
w (G) = C(G) ∩WL

Q(L
∞, L1

w(G)),

WR
w (G) = C(G) ∩WR

Q (L∞, L1
w(G)),

and
Ww(G) = C(G) ∩WQ(L

∞, L1
w(G))

throughout the rest of the paper.
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3.3. Convolution-dominated Matrices
With the preparation done over the previous sections, we can now define the convolution-dominated matrices
indexed by relatively separated sets in locally compact groups. Throughout this section we make the same
assumptions as the previous section. Precisely, we assume that G is a compactly generated with generating
neighbourhood U ⊆ G and (left) Haar measure µ, equipped with the word metric d.

Definition 3.3.1. Let Λ, Γ ⊆ G be two relatively separated sets and let w : G → [1,∞) be a measurable,
submultiplicative weight on G. We say that a matrix A = (A(λ, γ))λ∈Λ, γ∈Γ ∈ CΛ×Γ is w-enveloped by a
non-negative function Θ ∈WQ (C, L1

w(G)) and write A ≺ Θ, if

|A(λ, γ)| ≤ Θ(λ−1γ), (3.61)

for all λ ∈ Λ, γ ∈ Γ.We define the space of convolution-dominated matrices in CΛ×Γ by

CDw(Γ,Λ) :=
{
A ∈ CΛ×Γ : ∃Θ ∈WQ (C, L1

w(G)) such that A ≺ Θ
}

(3.62)

and the norm

‖A‖CDw(Γ,Λ) := inf
Θ

{
‖Θ‖WQ (L∞, L1

w(G)) : A ≺ Θ ∈WQ (C, L1
w(G))

}
. (3.63)

We refer to the norm above as the convolution-dominated norm. Furhermore, when Λ = Γ we denote
CDw(Λ) = CDw(Λ,Λ).

For a discrete group G, using (3.46), we have that the convolution-dominated matrices on a discrete group
are all the matrices A = (A(λ, γ))λ,γ∈G ∈ CG×G such that |A(λ, γ)| ≤ Θ(λ−1γ), for some Θ ∈ `1w(G).This
recovers the definition of convolution-dominated matrices in [19, 63].

The following Proposition proves that
(
CDw(Γ,Λ), ‖·‖CDw(Γ,Λ)

)
is complete, but also it is embedded in the

algebra of operators B(`p(Γ), `p(Λ)), for each p ∈ [1,∞]. The previous embedding follows from the fact that the
convolution-dominated matrices CDw(Γ,Λ) have also a finite Schur norm as defined in Equation (2.6). For the
aforementioned results we include a proof given in [54].

Proposition 3.3.2. Let Λ, Γ, K ⊆ G be relatively separated sets in G and let w : G→ [1,∞) be a measurable,
submultiplicative weight on G.Then

1.
(
CDw(Γ,Λ), ‖·‖CDw(Γ,Λ)

)
is a Banach space,

2. for allM ∈ CDw(Γ,K) and N ∈ CDw(Λ,Γ), we have

‖MN‖CDw(Λ,K) ≤
Rel (Γ)
µ(Q)

‖M‖CDw(Γ,K) ‖N‖CDw(Λ,Γ) , (3.64)

3. for all p ∈ [1,∞], CDw(Γ,Λ) is embedded in B(`p(Γ), `p(Λ)), with

‖A‖B(`p(Γ),`p(Λ)) ≤
max{Rel (Λ)Rel (Γ)}

µ(Q)
‖A‖CDw(Γ,Λ) , (3.65)

for all A ∈ CDw(Γ,Λ).

Proof. 1. The triangle inequality and the absolute homogeneity of the norm ‖·‖CDw(Γ,Λ) can be shown using
Theorem 3.2.11 and the properties of the norm ‖·‖WQ(L∞,L1

w(G)) . Similarly, we have that ‖A‖CDw(Γ,Λ) ≥ 0 for
each A ∈ CDw(Γ,Λ). Moreover, for A ∈ CDw(Γ,Λ) using Lemma 3.2.7 we have for each envelope Θ of A and
each λ ∈ Λ, γ ∈ Γ

|A(λ, γ)| ≤ Θ(λ−1γ) ≤ ‖Θ‖WQ(L∞,L1
w(G)) . (3.66)

Taking supremum over all envelopes of A we have

|A(λ, γ)| ≤ ‖A‖CDw(Γ,Λ) , (3.67)

hence if ‖A‖CDw(Γ,Λ) = 0 then A = 0.Thus, CDw(Γ,Λ) is a normed vector space.
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To show that CDw(Γ,Λ) is complete, it suffices to prove that every absolute convergence series is convergent
in CDw(Γ,Λ). Let (An)n∈N be a sequence in CDw(Γ,Λ), such that∑

n∈N
‖An‖CDw(Γ,Λ) <∞.

Applying the same arguments we used for Equation (3.67), it can be shown that∑
n

|An(λ, γ)| ≤
∑
n

‖An‖CDw(Γ,Λ) <∞

for each λ ∈ Λ and γ ∈ Γ. By the completeness of C for each λ ∈ Λ and γ ∈ Γ we define

A(λ, γ) :=
∑
n∈N

An(λ, γ) ∈ C

and A := (A(λ, γ))λ∈Λ, γ∈Γ ∈ CΛ×Γ.We choose an envelope Θn for each An such that

‖Θn‖WQ(L∞,L1
w(G)) ≤ 2 ‖An‖CDw(Γ,Λ) .

Using that
∞∑

n=m+1

‖Θn‖WQ(L∞,L1
w(G)) ≤ 2

∑
n∈N

‖An‖CDw(Γ,Λ) <∞

and thatWQ(C,L
1
w(G)) is complete, we deduce that Φm :=

∑∞
n=m+1 Θn ∈WQ(L

∞, L1
w(G)) with

‖Φm‖WQ(L∞,L1
w(G)) ≤

∞∑
n=m+1

‖Θn‖WQ(L∞,L1
w(G)) <∞

for eachm ∈ N.Then,∣∣∣∣∣
(
A−

m∑
n=1

An

)
(λ, γ)

∣∣∣∣∣ =
∣∣∣∣∣A(λ, γ)−

m∑
n=1

An(λ, γ)

∣∣∣∣∣ ≤
∞∑

n=m+1

|An(λ, γ)|

≤
∞∑

n=m+1

Θn(λ
−1γ) = Φm(λ−1γ)

for each λ ∈ Λ and γ ∈ Γ. Thus,∥∥∥∥∥A−
m∑
n=1

An

∥∥∥∥∥
CDw(Γ,Λ)

≤ ‖Φm‖WQ(L∞,L1
w(G)) ≤

∞∑
n=m+1

‖Θn‖WQ(L∞,L1
w(G))

m→∞−−−−→ 0

and we deduce that A =
∑
n∈NAn ∈ CDw(Γ,Λ). From the previous, we conclude that CDw(Γ,Λ) is a Banach

space.
2. Let M := (M(κ, γ))κ∈K, γ∈Γ ∈ CDw(Γ,K), N := (N(γ, λ)) γ∈Γ, λ∈Λ ∈ CDw(Λ,Γ) and suppose that
Θ, Φ ∈WQ(C,L

1
w(G)) are envelopes ofM and N respectively. Then for each λ ∈ Λ, κ ∈ K we obtain

|(MN) (κ, λ)| ≤
∑
γ∈Γ

|M(κ, γ)| |N(γ, λ)| ≤
∑
γ∈Γ

Θ(κ−1γ)Φ(γ−1λ) ≤ RelQ (Γ)

µ(Q)

(
ML

Q Θ ∗MR
Q Φ
)
(κ−1λ),

using Equation (3.41). Since from Equation (3.49)∥∥ML
Q Θ ∗MR

Q Φ
∥∥
WQ(L∞,L1

w(G))
≤
∥∥ML

Q Θ
∥∥
WR

Q (L∞,L1
w(G))

∥∥MR
Q Φ
∥∥
WL

Q (L∞,L1
w(G))

≤ ‖Θ‖WQ(L∞,L1
w(G)) ‖Φ‖WQ(L∞,L1

w(G)) ,

it follows thatMN is enveloped by ML
Q Θ ∗MR

Q Φ ∈WQ(L
∞, L1

w(G)) and

‖MN‖CDw(Λ,K) ≤
RelQ (Γ)

µ(Q)
‖Θ‖WQ(L∞,L1

w(G)) ‖Φ‖WQ(L∞,L1
w(G)) .

Thus, taking infimum over all envelopes Θ ofM and Φ of N we deduce

‖MN‖CDw(Λ,K) ≤
Rel (Γ)
µ(Q)

‖M‖CDw(Γ,K) ‖N‖CDw(Λ,Γ) . (3.68)
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3. Let A ∈ CDw(Γ,Λ) and Θ ∈WQ(C,L
1
w(G)) be an envelope of A.Then, using Lemma 3.2.7 we obtain

sup
λ∈Λ

∑
γ∈Γ

|A(λ, γ)| ≤ sup
λ∈Λ

∑
γ∈Γ

Θ(λ−1γ) ≤ RelQ (Γ)

µ(Q)
‖Θ‖WL

Q (L∞,L1
w(G)) ≤

RelQ (Γ)

µ(Q)
‖Θ‖WQ(L∞,L1

w(G))

and

sup
γ∈Γ

∑
λ∈Λ

|A(λ, γ)| ≤ sup
γ∈Γ

∑
λ∈Λ

Θ(λ−1γ) = sup
γ∈Γ

∑
λ∈Λ

Θ∨(γ−1λ) ≤ RelQ (Λ)

µ(Q)
‖Θ∨‖WL

Q (L∞,L1
w(G))

=
RelQ (Λ)

µ(Q)
‖Θ‖WR

Q (L∞,L1
w(G)) ≤

RelQ (Λ)

µ(Q)
‖Θ‖WQ(L∞,L1

w(G))

Hence,

max

sup
λ∈Λ

∑
γ∈Γ

|A(λ, γ)| , sup
γ∈Γ

∑
λ∈Λ

|A(λ, γ)|

 ≤ max
{
RelQ (Λ)

µ(Q)
,
RelQ (Γ)

µ(Q)

}

≤ max {RelQ (Λ) ,RelQ (Γ)}
µ(Q)

‖Θ‖WQ(L∞,L1
w(G))

and taking infimum over all envelopes Θ ∈WQ(L
∞, L1

w(G)) of A we obtain

max

sup
λ∈Λ

∑
γ∈Γ

|A(λ, γ)| , sup
γ∈Γ

∑
λ∈Λ

|A(λ, γ)|

 ≤ max {RelQ (Λ) ,RelQ (Γ)}
µ(Q)

‖A‖CDw(Γ,Λ) .

Thus, from the previous and Schur’s Test, see e.g. [22, Theorem 6.18], we deduce that

‖A‖B(`p(Γ),`p(Λ)) ≤
max {RelQ (Λ) ,RelQ (Γ)}

µ(Q)
‖A‖CDw(Γ,Λ) , (3.69)

for each p ∈ [1,∞].

From Part 2 of Theorem 3.3.2, we deduce that the multiplication in CDw(Λ) is left and right continu-
ous. Then, since

(
CDw(Λ), ‖·‖CDw(Λ)

)
is a Banach space, there exists a norm |||·|||CDw(Λ) which makes(

CDw(Λ), |||·|||CDw(Λ)

)
a Banach algebra, see e.g. [55, Theorem 10.2]. Moreover, |||·|||CDw(Λ) induces the same

topology as ‖·‖CDw(Λ).



4
Key Lemmas for the Commutator Technique

In this chapter we prove several lemmas that are required in the proof of the result on `p-stability and then we
proceed to prove the result in Section 5.1.

Throughout this chapter, we fix a locally compact group G of polynomial growth generated by the symmetric,
relatively compact, unit neighbourhood U ⊂ G and we assume that the growth rate of the group is given by
C−1
G nDG ≤ µ(Un) ≤ CGn

DG for each n ∈ N, where CG, DG > 0 are constants. Moreover, assume that
Λ, Γ ⊆ G are two relatively separated sets in G. The group G is equipped with the word metric d and the
Haar measure µ, which is both left and right invariant (see Lemma 3.1.7). Moreover, we fix an open, symmetric,
relatively compact unit neighbourhood Q and without loss of generality we can further assume that Q ⊆ U. For
each α ∈ N,

wα : G −→ [1,∞) (4.1)
x 7−→ (1 + d(x, e))α

denotes the measurable, submultiplicative polynomial weight on G.
For the upcoming results, we use the notation . and & for inequalities up to a constant, and � when we have

equality up to a constant, that is when a . b . a we denote a � b. Furthermore, when the previous symbols
have a subscript, then the constant of the inequality depends on the subscript, e.g. we denote by a .m b the
inequality a ≤ Cb, where C = C(m) > 0. Recall that RelV (Λ) = supx∈G # (Λ ∩ xV ) is the relatively separation
constant of the set Λ ⊆ G with respect to V ⊆ G and we denote by Rel(Λ) = RelQ (Λ) the relatively separation
constant of the set Λ ⊆ G with respect to the fixed unit neighbourhood Q ⊆ Λ.

4.1. Equivalent norm on the sequence space
Initially, we define a sequence of functions on the group that acts as a partition of unity, up to a constant, and
then we define an equivalent norm on the sequence space `q(Λ) for each q ∈ [1,∞], depending on the sequence
of functions.

Before stating the next lemma, we recall that for each N ∈ N Lemma 3.1.13 defines a relatively separated
and countable set XN and a covering of G. Using an enumeration of the countable set XN we uniquely deter-
mine the elements of XN by XN = {xk,N : k ∈ N}. Using this notation, we have from Lemma 3.1.13 that{
xkU

2N
}
xk,N∈XN

is a cover of G.

Lemma 4.1.1. Fix N ∈ N. Suppose that XN ⊆ G is the relatively separated set and
{
xk,NU

2N
}
xk,N∈XN

is the
cover of G given by Lemma 3.1.13. Then, for each xk,N ∈ XN there exists a function ψNk : G −→ [0,∞), such
that 0 ≤ ψNk ≤ 1, ψNk is supported in xk,NU4N , for each p ∈ [1,∞] we have

1 ≤

 ∑
xk,N∈XN

(
ψNk
)p1/p

≤ KC2
G5

DG , (4.2)

whereK = K(G,U) > 0 and for each x, y ∈ G we have∣∣ψNk (x)− ψNk (y)
∣∣ ≤ Cψ min

{
1,

1

2N
d(x, y)

}
, (4.3)

33
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where Cψ > 0 is independent of N . Moreover, for the multiplication operators ΨNk defined for each xk,N ∈ XN

as follows

ΨNk : `p(Γ) −→ `p(Γ)

c 7−→
(
ψNk (γ) c(γ)

)
γ∈Γ

,

we have for each p, q ∈ [1,∞]

‖c‖`q(Γ) .N
∥∥∥∥(∥∥ΨNk c∥∥`p(Γ))xk,N∈XN

∥∥∥∥
`q

.N ‖c‖`q(Γ) , ∀c ∈ `q(Γ), (4.4)

with constants that depend on N , but are independent of p, q ∈ [1,∞]. Moreover, for p ∈ [1,∞] we have

‖c‖`p(Γ) .
∥∥∥∥(∥∥ΨNk c∥∥`p(Γ))xk,N∈XN

∥∥∥∥
`p

. ‖c‖`p(Γ) , ∀c ∈ `p(Γ), (4.5)

with constants independent of N and p ∈ [1,∞].

Proof. Fix ψ ∈ C∞
c ([−2, 2]), such that 0 ≤ ψ ≤ 1, ψ = 1 on [−1, 1] and define

ψNk : G −→ [0,∞)

x 7→ ψ

(
d(x, xk,N )

2N

)
,

for each xk,N ∈ XN . For each x ∈ G we have

∑
k

ψNk (x) =
∑
k

ψ

(
d(x, xk,N )

2N

)
≤
∑
k

χ[−2,2]

(
d(x, xk,N )

2N

)
=
∑
k

χ[−4N,4N ](d(x, xk,N )) = # {k : xk,N ∈ XN , | d(x, xk,N )| ≤ 4N}

= #
{
k : xk,N ∈ xU4N ∩XN

}
≤ sup
x∈G

#
{
k : xk,N ∈ xU4N ∩XN

}
≤ K sup

x∈G
#
{
k : xk,N ∈ xU2N ∩XN

}
,

whereK := K(G, U) > 0 is the constant given by Lemma 3.1.16. Then, using Lemma 3.1.13 we obtain∑
k

ψNk (x) ≤ K sup
x∈G

#
{
k : xk,N ∈ xU2N ∩XN

}
= K RelU2N (XN ) ≤ KC2

G5
DG . (4.6)

Furthermore, since {xk,NU2N}xk,N∈XN
is a cover of G we get

∑
k

ψNk (x) =
∑
k

ψ

(
d(x, xk,N )

2N

)
≥
∑
k

χ[−1,1]

(
d(x, xk,N )

2N

)
= #{k : | d(x, xk,N )| ≤ 2N} = #

{
k : xk,N ∈ xU2N ∩XN

}
≥ 1.

Thus for each x ∈ G we have 1 ≤
∑
k ψ

N
k (x) ≤ KC2

G5
DG . Similarly, it can be shown that for each x ∈ G we

have

1 ≤
∑
k

χ[−1,1]

(
d(x, xk,N )

2N

)p
≤
∑
k

ψ

(
d(x, xk,N )

2N

)p
and (∑

k

ψ

(
d(x, xk,N )

2N

)p)1/p

≤
∑
k

ψ

(
d(x, xk,N )

2N

)p
≤
∑
k

χ[−2,2]

(
d(x, xk,N )

2N

)p
≤ KC2

G5
DG .
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Hence,

1 ≤

 ∑
xk,N∈XN

ψNk (x)p

1/p

≤ KC2
G5

DG . (4.7)

By the smoothness of ψ we deduce that ψ is a Lipschitz function, hence for x, y ∈ G we obtain

∣∣ψNk (x)− ψNk (y)
∣∣ = ∣∣∣∣ψ(d(x, xk,N )

2N

)
− ψ

(
d(y, xk,N )

2N

)∣∣∣∣
≤ Lip(ψ)

∣∣∣∣ 1

2N
(d(x, xk,N )− d(y, xk,N ))

∣∣∣∣
≤ Lip(ψ)

1

2N
|d(x, y)| ,

where Lip(ψ) > 0 is the Lipschitz constant of ψ and

|ψNk (x)− ψNk (y)| ≤ |ψNk (x)|+ |ψNk (y)| ≤ 2.

Thus ∣∣ψNk (x)− ψNk (y)
∣∣ ≤ min

{
2, Lip(ψ)

1

2N
d(x, y)

}
≤ Cψ min

{
1,

1

2N
d(x, y)

}
, (4.8)

where Cψ > 0 depends on the Lipschitz constant of ψ and is independent of N .
Let Γ ⊂ G be a relatively separated subset of G. For each xk,N ∈ XN define the multiplication operator ΨNk

as follows

ΨNk : `p(Γ) → `p(Γ)

c 7→
(
ψNk (γ)c(γ)

)
γ∈Γ

,

for p ∈ [1,∞]. Note that if q ≤ p, then ‖y‖`p ≤ ‖y‖`q . Moreover, in d dimensional spaces we have for each
p, q ∈ [1,∞]

‖y‖`p ≤ dmax(1/p−1/q,0) ‖y‖`q .

Since

# supp
(
ΨNk |Γ

)
= #

(
Γ ∩ xk,NU4N

)
≤ sup
x∈G

#
(
Γ ∩ xU4N

)
= RelU4N (Γ) .N Rel(Γ) <∞,

then for p, q ∈ [1,∞] ∥∥ΨNk c∥∥`p(Γ) ≤ ∥∥ΨNk c∥∥`1(Γ) ≤ #
(
supp

(
ΨNk |Γ

)) ∥∥ΨNk c∥∥`∞(Γ)
(4.9)

≤ sup
k

{#(supp
(
ΨNk |Γ

)
)}
∥∥ΨNk c∥∥`∞(Γ)

.N Rel(Γ)
∥∥ΨNk c∥∥`∞(Γ)

≤ Rel(Γ)
∥∥ΨNk c∥∥`q(Γ) .

Similarly ∥∥ΨNk c∥∥`q(Γ) .N ∥∥ΨNk c∥∥`p(Γ) . (4.10)

Hence ∥∥ΨNk c∥∥`q(Γ) �N ∥∥ΨNk c∥∥`p(Γ) , (4.11)

with constant that depends on N , but independent of p, q ∈ [1,∞]. For each p ∈ [1,∞] we have from Equation
(4.7)

1 ≤

(∑
k

ψNk (x)p

)1/p

≤ KC2
G5

DG ,
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hence, for c ∈ `p(Γ) we obtain

‖c‖`p(Γ) =

∑
γ∈Γ

|c(γ)|p
1/p

≤

∑
γ∈Γ

(∑
k

ψNk (γ)p

)1/p

|c(γ)|

p1/p

=

∑
γ∈Γ

∑
k

|ψNk (γ)c(γ)|p
1/p

=

(∑
k

∥∥ΨNk c∥∥p`p(Γ)
)1/p

=
∥∥∥(∥∥ΨNk c∥∥`p(Γ))k∥∥∥`p ,

and

∥∥∥(∥∥ΨNk c∥∥`p(Γ))k∥∥∥`p =

(∑
k

∥∥ΨNk c∥∥p`p(Γ)
)1/p

=

∑
γ∈Γ

∑
k

|ψNk (γ)c(γ)|p
1/p

=

∑
γ∈Γ

(∑
k

ψNk (γ)p

)1/p

|c(γ)|

p1/p

≤

∑
γ∈Γ

(KC2
G5

DG)p|c(γ)|p
1/p

= KC2
G5

DG ‖c‖`p(Γ) . (4.12)

Therefore,
‖c‖`p(Γ) �

∥∥∥(∥∥ΨNk c∥∥`p(Γ))k∥∥∥`p (4.13)

with constants independent of p ∈ [1,∞] and N ∈ N. This proves the equivalence in (4.5).
Moreover, combining the previous and Equation (4.11) we conclude that

‖c‖`q(Γ) �N
∥∥∥(∥∥ΨNk c∥∥`p(Γ))k∥∥∥`q (4.14)

with constants that depend on N , but are independent of p, q ∈ [1,∞]. This proves Equation (4.4).

4.2. Estimation of the commutator norms
The proof of the `p-stability result is inspired by the commutator technique used by Sjöstrand in [60]. Variations
of this technique were used by Sun [61] and Gröchenig, Romero, Rottensteiner and Van Velthoven [27] for the
`p-stability result for convolution-dominated matrices indexed by a relatively separated set in the Euclidean space
Rd and in homogeneous groups, respectively, by Shin and Sun [59] for the proof of the inverse-closedness of
Banach subalgebras, but also in [14, 58] for the proof of norm-controlled inversion.

Recall from Equation (2.6) that for a matrix B = (Bλ,γ)λ∈Λ,γ∈Γ ∈ CΛ×Γ the Schur norm is given by

‖B‖Schur(Γ→Λ) := max

sup
λ∈Λ

∑
γ∈Γ

|Bλ,γ | , sup
γ∈Γ

∑
λ∈Λ

|Bλ,γ |

 .

Following this commutator technique, we proceed to estimate the Schur norm of the commutators

[A,ΨNk ]ΨNj : `p(Γ) −→ `p(Λ),

whereΨNk andΨNj are defined by Lemma 4.1.1 for xk,N , xj,N ∈ XN . ForN ∈ N,XN given by Lemma 3.1.13 and(
ΨNk
)
xk,N∈XN

given by Lemma 4.1.1, we define the matrix V N =
(
V N (k, j)

)
xk,N ,xj,N∈XN

∈ CXN×XN with
elements given by

V N (k, j) :=
∥∥[A,ΨNk ]ΨNj

∥∥
Schur(Γ→Λ)

, (4.15)

for each xk,N , xj,N ∈ XN .
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Lemma 4.2.1. Fix N,α ∈ N. Suppose that A ∈ CΛ×Γ and there exists Θ ∈Wwα
(G) such that for each λ ∈ Λ

and γ ∈ Γ
|A(λ, γ)| ≤ Θ(λ−1γ). (4.16)

Let ΘN (x) := Θ(x)min
{
1, d(x,e)2N

}
∈ C(G). Then for XN , as defined in Lemma 3.1.13, and for each

xk,N , xj,N ∈ XN we have

V N (k, j) .


‖ΘN‖W (G) , d(xk,N , xj,N ) ≤ 10N

min
{
‖ΘN‖W (G) ,

∥∥∥ΘχU5Nx−1
k,Nxj,NU5N

∥∥∥
W (G)

}
, d(xk,N , xj,N ) > 10N ,

(4.17)

where the constant in the above inequality depends on the relatively separated sets Λ and Γ, but is independent
of N .

Proof. For γ ∈ Γ and λ ∈ Λ, we have(
[A,ΨNk ]ΨNj

)
λ,γ

=
(
Aλ,γψ

N
k (γ)− ψNk (λ)Aλ,γ

)
ψNj (γ) = −

(
ψNk (λ)− ψNk (γ)

)
Aλ,γψ

N
j (γ). (4.18)

Hence, Equation (4.3) and the estimates
∣∣ψNj (γ)

∣∣ ≤ 1 and |Aλ,γ | ≤ Θ(λ−1γ) give∣∣∣([A,ΨNk ]ΨNj
)
λ,γ

∣∣∣ = ∣∣ψNk (λ)− ψNk (γ)
∣∣ |Aλ,γ | ∣∣ψNj (γ)

∣∣
≤
∣∣ψNk (λ)− ψNk (γ)

∣∣Θ(λ−1γ)

≤ CψΘ(λ−1γ)min
{
1,

d(λ, γ)
2N

}
. Θ(λ−1γ)min

{
1,

d(λ−1γ, e)

2N

}
= ΘN (λ−1γ),

where the symmetry and the left invariance of the metric are used for the last inequality. Then we have

sup
λ∈Λ

∑
γ∈Γ

∣∣∣([A,ΨNk ]ΨNj
)
λ,γ

∣∣∣ . sup
λ∈Λ

∑
γ∈Γ

ΘN (λ−1γ) ≤ RelQ (Γ)

µ(Q)
‖ΘN‖WL(G) ≤

RelQ (Γ)

µ(Q)
‖ΘN‖W (G) ,

by Lemma 3.2.7. Similarly, we have

sup
γ∈Γ

∑
λ∈Λ

∣∣∣([A,ΨNk ]ΨNj
)
λ,γ

∣∣∣ . sup
γ∈Γ

∑
λ∈Λ

ΘN (λ−1γ) ≤ sup
γ∈Γ

∑
λ∈Λ

Θ∨
N (γ−1λ)

≤ RelQ (Λ)

µ(Q)
‖Θ∨

N‖WL(G) =
RelQ (Λ)

µ(Q)
‖ΘN‖WR(G)

≤ RelQ (Λ)

µ(Q)
‖ΘN‖W (G) .

Thus,

V N (k, j) :=
∥∥[A,ΨNk ]ΨNj

∥∥
Schur(Γ→Λ)

= max

sup
λ∈Λ

∑
γ∈Γ

∣∣∣([A,ΨNk ]ΨNj
)
λ,γ

∣∣∣ , sup
γ∈Γ

∑
λ∈Λ

∣∣∣([A,ΨNk ]ΨNj
)
λ,γ

∣∣∣


. max
{
RelQ (Γ)

µ(Q)
,
RelQ (Λ)

µ(Q)

}
‖ΘN‖W (G) .

Now, we prove refined estimates for k, j such that xk,N , xj,N ∈ XN and d(xk,N , xj,N ) > 10N . Let γ ∈ G.
Then we have

10N < d(xk,N , xj,N ) ≤ d(xk,N , γ) + d(γ, xj,N )

and hence we obtain
4N < d(xk,N , γ) or 4N < d(xj,N , γ),
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using the symmetry of the metric. This implies that

γ /∈ suppψNk or γ /∈ suppψNj .

Thus for each γ ∈ G we have
ψNk (γ)ψNj (γ) = 0,

for each k, j such that xk,N , xj,N ∈ XN and d(xk,N , xj,N ) > 10N.Then, using Equation (4.18) and the previous
we obtain for each xk,N , xj,N ∈ XN such that d(xk,N , xj,N ) > 10N.

sup
λ∈Λ

∑
γ∈Γ

∣∣∣([A,ΨNk ]ΨNj
)
λ,γ

∣∣∣ ≤ sup
λ∈Λ

∑
γ∈Γ

ψNk (λ) |Aλ,γ |ψNj (γ) ≤ sup
λ∈Λ

∑
γ∈Γ

ψNk (λ)Θ(λ−1γ)ψNj (γ)

≤ sup
λ∈Λ∩ suppψN

k

∑
γ∈Γ∩ suppψN

j

ψNk (λ)Θ(λ−1γ)ψNj (γ)

≤ sup
λ∈Λ∩ xk,NU4N

∑
γ∈Γ∩ xj,NU4N

ψNk (λ)Θ(λ−1γ)ψNj (γ).

Note that if λ ∈ Λ ∩ xk,NU
4N and γ ∈ Γ ∩ xj,NU

4N , then

λ−1γ ∈
(
xk,NU

4N
)−1

xj,NU
4N = U4Nx−1

k,Nxj,NU
4N ,

by the symmetry of U . Thus,

sup
λ∈Λ

∑
γ∈Γ

∣∣∣([A,ΨNk ]ΨNj
)
λ,γ

∣∣∣ ≤ sup
λ∈Λ∩ xk,NU4N

∑
γ∈Γ∩ xj,NU4N

ψNk (λ)Θ(λ−1γ)ψNj (γ)

≤ sup
λ∈Λ∩ xk,NU4N

∑
γ∈Γ∩ xj,NU4N

Θ(λ−1γ)χU4Nx−1
k,Nxj,NU4N (λ−1γ).

Wewant to apply Equation (3.40) to the previous, however Equation (3.40) was proved for continuous functions. We
can apply Equation (3.40) to a sequence of continuous functions that approximates the functionΘχU4Nx−1

k,Nxj,NU4N ,
or to a continuous function that estimates the functionΘχU4Nx−1

k,Nxj,NU4N . Here we estimateΘχU4Nx−1
k,Nxj,NU4N

by a continuous function on G. Let η ∈ C(R), such that 0 ≤ η ≤ 1 and η(z) = 1, for |z| ∈ [d(xk,N , xj,N ) −
8N, d(xk,N , xj,N ) + 8N ] and η(z) = 0, for |z| /∈ [d(xk,N , xj,N ) − 8N − 1, d(xk,N , xj,N ) + 8N + 1]. Then
η (d(·, e)) : G −→ [0, 1] is continuous on G and

χU4Nx−1
k,Nxj,NU4N ≤ η (d(·, e)) ≤ χU5Nx−1

k,Nxj,NU5N .

Thus, from Equation (3.40) and the previous it follows

sup
λ∈Λ

∑
γ∈Γ

∣∣∣([A,ΨNk ]ΨNj
)
λ,γ

∣∣∣ ≤ sup
λ∈Λ∩ xk,NU4N

∑
γ∈Γ∩ xj,NU4N

Θ(λ−1γ)χU4Nx−1
k,Nxj,NU4N (λ−1γ) (4.19)

≤ sup
λ∈Λ

∑
γ∈Γ

Θ(λ−1γ)η
(
d(λ−1γ, e)

)
(4.20)

. ‖Θη (d(·, e))‖W (G) ≤
∥∥∥ΘχU5Nx−1

k,Nxj,NU5N

∥∥∥
W (G)

, (4.21)

with constants that depend on the relatively separated sets Λ and Γ, but are independent of N .
Similarly, we obtain

sup
γ∈Γ

∑
λ∈Λ

∣∣∣([A,ΨNk ]ΨNj
)
λ,γ

∣∣∣ ≤ sup
γ∈Γ

∑
λ∈Λ

ψNk (λ) |Aλ,γ |ψNj (γ) ≤ sup
γ∈Γ

∑
λ∈Λ

ψNk (λ)Θ(λ−1γ)ψNj (γ)

≤ sup
γ∈Γ∩ xj,NU4N

∑
λ∈Λ∩ xk,NU4N

Θ∨(γ−1λ)χU4Nx−1
j,Nxk,NU4N (γ−1λ)

≤ sup
γ∈Γ∩ xj,NU4N

∑
λ∈Λ∩ xk,NU4N

Θ∨(γ−1λ)χ∨
U4Nx−1

k,Nxj,NU4N (γ−1λ)

.
∥∥∥(ΘχU5Nx−1

k,Nxj,NU5N )∨
∥∥∥
W (G)

=
∥∥∥ΘχU5Nx−1

k,Nxj,NU5N

∥∥∥
W (G)

.
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Thus for k, j such that d(xk,N , xj,N ) > 10N we have

V N (k, j) =
∥∥[A,ΨNk ]ΨNj

∥∥
Schur(Γ→Λ)

.
∥∥∥ΘχU5Nx−1

k,Nxj,NU5N

∥∥∥
W (G)

,

with constants that depend on the relatively separated sets Λ and Γ, but are independent of N .

4.3. Estimation of the Schur norm
In this section, following the commutator technique from [60] we estimate the Schur norm of the matrix V N
defined by the commutators, see Equation (4.15) for the definition of V N . We show that the norm of the matrix
V N goes to zero as N approaches infinity. In that way, we can define a new matrix as the Neumann series of
powers of the matrix V N1 for some N1.

In the next lemma, we define a Schur matrix inS (XN1
), which provides an estimate of the norm of a sequence

in `p(Λ) after the application of the multiplication operator ΨN1

k (see Lemma 4.1.1). This is the last step before
proving the result on the `p-stability for the class of convolution-dominated matrices.

Lemma 4.3.1. Fix α ∈ N, such that α ≥ DG. Suppose that A ∈ CΛ×Γ and that there exists Θ ∈Wwα
(G), such

that for each λ ∈ Λ and γ ∈ Γ
|A(λ, γ)| ≤ Θ(λ−1γ). (4.22)

Furthermore, assume that A is bounded from below for some p ∈ [1,∞], i.e. there exists CA > 0 such that

‖c‖`p(Γ) ≤ CA ‖Ac‖`p(Λ) , ∀c ∈ `p(Γ). (4.23)

Then there exists N1 ∈ N such that for XN1
given by Lemma 3.1.13 and

(
ΨN1

k

)
xk,N1

∈XN1

given by Lemma 4.1.1,

there existsW ∈ S (XN1
) such that for each xk,N1

∈ XN1∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

≤ CA
∑

xj,N1
∈XN1

W (k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

, (4.24)

for each c ∈ `∞(Γ).

Proof. Step 1: Commutator technique
Since A is bounded from below for p ∈ [1,∞], there exists CA > 0 such that

‖c‖`p(Γ) ≤ CA ‖Ac‖`p(Λ) , ∀c ∈ `p(Γ).

Without loss of generality we can assume that

‖c‖`p(Γ) ≤ ‖Ac‖`p(Λ) , ∀c ∈ `p(Γ). (4.25)

Then for c ∈ `∞(Γ) we have∥∥ΨNk c∥∥`p(Γ) ≤ ∥∥AΨNk c∥∥`p(Λ)
≤
∥∥ΨNk Ac∥∥`p(Λ)

+
∥∥[A,ΨNk ]c

∥∥
`p(Λ)

,

where the second inequality comes from the triangle inequality andAΨNk = [A,ΨNk ]+ΨNk A. Using
∑
j(ψ

N
j )2 � 1

(See Lemma 4.1.1), we have that there exists C2,ψ > 0 such that C−1
2,ψ ≤

∑
j(ψ

N
j )2 ≤ C2,ψ , and hence

∥∥ΨNk c∥∥`p(Γ) ≤ ∥∥ΨNk Ac∥∥`p(Λ)
+ C2,ψ

∥∥∥∥∥∥
∑

xj,N∈XN

[A,ΨNk ]
(
ΨNj
)2
c

∥∥∥∥∥∥
`p(Λ)

≤
∥∥ΨNk Ac∥∥`p(Λ)

+ C2,ψ

∥∥∥∥∥∥
∑
j

[A,ΨNk ]ΨNj

∥∥∥∥∥∥
`p(Γ)→`p(Λ)

∥∥ΨNj c∥∥`p(Γ)
≤
∥∥ΨNk Ac∥∥`p(Λ)

+ C2,ψ

∥∥∥∥∥∥
∑
j

[A,ΨNk ]ΨNj

∥∥∥∥∥∥
Schur(Γ→Λ)

∥∥ΨNj c∥∥`p(Γ)
≤
∥∥ΨNk Ac∥∥`p(Λ)

+ C2,ψ

∑
j

∥∥[A,ΨNk ]ΨNj
∥∥
Schur(Γ→Λ)

∥∥ΨNj c∥∥`p(Γ) .
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Thus, for each xk,N ∈ XN∥∥ΨNk c∥∥`p(Γ) ≤ ∥∥ΨNk Ac∥∥`p(Λ)
+ C2,ψ

∑
xj,N∈XN

V N (k, j)
∥∥ΨNj c∥∥`p(Γ) , (4.26)

where we recall that V N (k, j) =
∥∥[A,ΨNk ]ΨNj

∥∥
Schur(Γ→Λ)

, for each xk,N , xj,N ∈ XN .

Step 2: Estimate V N (k, j)
From Lemma 4.2.1 we have for each xk,N , xj,N ∈ XN

V N (k, j) .


‖ΘN‖W (G) , d(xk,N , xj,N ) ≤ 10N

min
{
‖ΘN‖W (G) ,

∥∥∥ΘχU5Nx−1
k,Nxj,NU5N

∥∥∥
W (G)

}
, d(xk,N , xj,N ) > 10N ,

≤


‖ΘN‖W (G) , d(xk,N , xj,N ) ≤ 50N∥∥∥ΘχU5Nx−1

k,Nxj,NU5N

∥∥∥
W (G)

, d(xk,N , xj,N ) > 50N ,
(4.27)

for each xk,N , xj,N ∈ XN .
Since

∥∥V N∥∥
Schur(XN→XN )

= max

 sup
xk,N∈XN

∑
xj,N∈XN

∣∣V N (k, j)
∣∣ , sup

xj,N∈XN

∑
xk,N∈XN

∣∣V N (k, j)
∣∣

≤ sup
xk,N∈XN

∑
xj,N∈XN

∣∣V N (k, j)
∣∣+ sup

xj,N∈XN

∑
xk,N∈XN

∣∣V N (k, j)
∣∣

Then, to estimate the Schur norm of V N it suffices to estimate the following sums

S1 = sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )≤50N

∣∣V N (k, j)
∣∣+ sup

xj,N∈XN

∑
xk,N∈XN

d(xk,N ,xj,N )≤50N

∣∣V N (k, j)
∣∣ (4.28)

and
S2 = sup

xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∣∣V N (k, j)
∣∣+ sup

xj,N∈XN

∑
xk,N∈XN

d(xk,N ,xj,N )>50N

∣∣V N (k, j)
∣∣ . (4.29)

Step 3: Estimate S1

Using the estimate from Equation (4.27) we obtain

S1 ≤ sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )≤50N

∣∣V N (k, j)
∣∣+ sup

xj,N∈XN

∑
xk,N∈XN

d(xk,N ,xj,N )≤50N

∣∣V N (k, j)
∣∣

. sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )≤50N

‖ΘN‖W (G) + sup
xj,N∈XN

∑
xk,N∈XN

d(xk,N ,xj,N )≤50N

‖ΘN‖W (G) .
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Then

S1 . ‖ΘN‖W (G)

(
sup

xk,N∈XN

# {xj,N ∈ XN : d(xk,N , xj,N ) ≤ 50N}

)

+ ‖ΘN‖W (G)

(
sup

xj,N∈XN

# {xk,N ∈ XN : d(xk,N , xj,N ) ≤ 50N}

)

≤ ‖ΘN‖W (G)

(
sup

xk,N∈XN

#
{
xj,N ∈ XN : xj,N ∈ xk,NU

50N
})

+ ‖ΘN‖W (G)

(
sup

xj,N∈XN

#
{
xk,N ∈ XN : xk,N ∈ xj,NU

50N
})

.

From Lemma 3.1.13 we have that each x ∈ G belongs to at most C2
G5

DG sets ymU2N with ym ∈ XN , or,
equivalently, we have RelU2N (XN ) ≤ C2

G5
DG . Hence, by applying multiple times Lemma 3.1.16 we obtain

#
{
xj,N ∈ XN : xj,N ∈ xk,NU

50N
}
≤ #

{
xj,N ∈ XN : xj,N ∈ xk,NU

64N
}
≤ RelU64N (XN ) (4.30)

≤ K RelU32N (XN ) ≤ K5 RelU2N (XN ) ≤ K5C2
G5

DG , (4.31)

whereK := K(G, U) > 0 is the constant given by Lemma 3.1.16. Similarly,

#
{
xk,N ∈ XN : xk,N ∈ xj,NU

50N
}
≤ K5 RelU2N (XN ) ≤ K5C2

G5
DG ,

hence

S1 . ‖ΘN‖W (G)

(
sup

xk,N∈XN

#
{
xj,N ∈ XN : xj,N ∈ xk,NU

50N
})

+ ‖ΘN‖W (G)

(
sup

xj,N∈XN

#
{
xk,N ∈ XN : xk,N ∈ xj,NU

50N
})

≤ ‖ΘN‖W (G)

(
sup

xk,N∈XN

K5C2
G5

DG + sup
xj,N∈XN

K5C2
G5

DG

)
≤ 2K5C2

G5
DG ‖ΘN‖W (G)

. ‖ΘN‖W (G) , (4.32)

with constants that depend on G, Λ, Γ and are independent of N .

Step 4: Estimate S2

Using the estimate from Equation (4.27) we obtain

sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∣∣V N (k, j)
∣∣ ≤ sup

xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∥∥∥ΘχU5Nx−1
k,Nxj,NU5N

∥∥∥
W (G)

≤ sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∫
G

ML
Q M

R
Q(ΘχU5Nx−1

k,Nxj,NU5N )(x)dµ(x)

≤ sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∫
G

ML
Q M

R
Q(Θ)(x)ML

Q M
R
Q(χU5Nx−1

k,Nxj,NU5N )(x)dµ(x)

≤ sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∫
G

ML
Q M

R
Q(Θ)(x)χU6Nx−1

k,Nxj,NU6N (x)dµ(x),
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where for the last inequality we have used that if x /∈ U6Nx−1
k,Nxj,NU

6N , then yxy′ /∈ U5Nx−1
k,Nxj,NU

5N for
each y, y′ ∈ Q. Moreover, observe that for fixed x ∈ G and for each xk,N ∈ XN

#
{
xj,N ∈ XN : x ∈ U6Nx−1

k,Nxj,NU
6N
}
= #

{
xj,N ∈ XN : xj,N ∈ xk,NU

6NxU6N
}
,

by the symmetry of U . For z ∈ U6NxU6N using the triangle inequality of the metric we have

d(z, e) ≤ 6N + d(x, e) + 6N = d(x, e) + 12N,

or, equivalently, by the definition of the word metric z ∈ U d(x,e)+12N . Hence from Lemma 3.1.14 for ρ = 1 we
obtain

#
{
xj,N ∈ XN : x ∈ U6Nx−1

k,Nxj,NU
6N
}
= #

{
xj,N ∈ XN : xj,N ∈ xk,NU

d(x,e)+12N
}

≤ #
(
XN ∩ xk,NU d(x,e)+12N

)
. µ

(
xk,NU

d(x,e)+12N+1
)

(4.33)

= µ
(
U d(x,e)+12N+1

)
≤ CG(d(x, e) + 12N + 1)DG ,

where for the last inequality we have used the polynomial growth. Note that the constant in (4.33) is given by
Lemma 3.1.14, hence it depends on RelU (XN ) and ρ = 1. Since RelU (XN ) ≤ RelU2N (XN ) ≤ C2

G5
DG from

Lemma 3.1.12, we obtain that the implicit constant above is independent of N . From the previous we obtain for
fixed xk,N ∈ XN∑
xj,N∈XN

χU6Nx−1
k,Nxj,NU6N (x) = #

{
xj,N ∈ XN : x ∈ U6Nx−1

k,Nxj,NU
6N
}
. CG(d(x, e) + 12N + 1)DG ,

for each x ∈ G, with constant independent ofN . Moreover, for x ∈ U6Nx−1
k,Nxj,NU

6N and d(xk,N , xj,N ) > 50N

we have from the inverse triangle inequality of the metric that d(x, e) ≥ 37N and hence x ∈ G\U36N . Combining
the previous and using the monotone convergence theorem, it follows

sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∣∣V N (k, j)
∣∣ ≤ sup

xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∥∥∥ΘχU5Nx−1
k,Nxj,NU5N

∥∥∥
W (G)

≤ sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∫
G

ML
Q M

R
Q(Θ)(x)χU6Nx−1

k,Nxj,NU6N (x)dµ(x)

= sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∫
G\U36N

ML
Q M

R
Q(Θ)(x)χU6Nx−1

k,Nxj,NU6N (x)dµ(x)

= sup
xk,N∈XN

∫
G\U36N

ML
Q M

R
Q(Θ)(x)

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

χU6Nx−1
k,Nxj,NU6N (x)dµ(x)

. sup
xk,N∈XN

∫
G\U36N

ML
Q M

R
Q(Θ)(x)(d(x, e) + 12N + 1)DGdµ(x)

≤ sup
xk,N∈XN

∫
G\U36N

ML
Q M

R
Q(Θ)(x)2DG(d(x, e) + 1)DGdµ(x),

where for the last inequality we have used that 12N ≤ 36N ≤ d(x, e). Thus, for the polynomial weight
wDG

: x 7→ (d(x, e) + 1)DG we obtain

sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∣∣V N (k, j)
∣∣ .

∫
G\U36N

ML
Q M

R
Q(Θ)(x)wDG

(x)dµ(x) =
∥∥ΘχG\U36N

∥∥
WwDG

(G)
.
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Similarly, we obtain

sup
xj,N∈XN

∑
xk,N∈XN

d(xk,N ,xj,N )>50N

∣∣V N (k, j)
∣∣ . ∥∥ΘχG\U36N

∥∥
WwDG

(G)

Thus,

S2 = sup
xk,N∈XN

∑
xj,N∈XN

d(xk,N ,xj,N )>50N

∣∣V N (k, j)
∣∣+ sup

xj,N∈XN

∑
xk,N∈XN

d(xk,N ,xj,N )>50N

∣∣V N (k, j)
∣∣

.
∥∥ΘχG\U36N

∥∥
WwDG

(G)
, (4.34)

with constant that depends on G, Λ, Γ and is independent of N .

Step 5: Estimate Schur norm of V N
Combining the estimates given by Equations (4.32) and (4.34) it follows∥∥V N∥∥

Schur(XN→XN )
≤ S1 + S2 . ‖ΘN‖W (G) +

∥∥ΘχG\U36N

∥∥
WwDG

(G)
,

with constants independent ofN . Using the Dominated ConvergenceTheorem, sinceΘ ∈Wwα
(G), with α ≥ DG,

we obtain ∥∥V N∥∥
Schur(XN→XN )

. ‖ΘN‖W (G) +
∥∥ΘχG\U36N

∥∥
WwDG

(G)

N→∞−−−−→ 0.

Thus, there exists N1 ∈ N such that ∥∥V N1
∥∥
Schur(XN1

→XN1
)
≤ 1

2C2,ψ
, (4.35)

for C2,ψ > 0 from Equation (4.26). Recall from Equation (2.9) that for matrices A,B ∈ S (XN1
) we have

‖AB‖Schur(XN1
→XN1

) ≤ ‖A‖Schur(XN1
→XN1

) ‖B‖Schur(XN1
→XN1

) . (4.36)

Hence we can define the Neumann series

W := I+
∞∑
m=1

(C2,ψV
N1)m ∈ CXN1

×XN1 . (4.37)

From Equation (4.36) we have∥∥(V N1)m
∥∥
Schur(XN1

→XN1
)
≤
∥∥V N1

∥∥m
Schur(XN1

→XN1
)
≤ 1

(2C2,ψ)m
(4.38)

and it follows that

‖W‖Schur(XN1
→XN1

) ≤
∞∑
m=0

∥∥C2,ψV
N1
∥∥m
Schur(XN1

→XN1
)
≤

∞∑
m=0

Cm2,ψ
1

(2C2,ψ)m
= 2, (4.39)

henceW ∈ S (XN1
).

Now recall Equation (4.26),∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

≤
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+ C2,ψ

∑
j

V N1(k, j)
∥∥∥ΨN1

j c
∥∥∥
`p(Γ)

.
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Applying Equation (4.26) twice we obtain∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

≤
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+ C2,ψ

∑
j

V N1(k, j)
∥∥∥ΨN1

j c
∥∥∥
`p(Γ)

≤
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+ C2,ψ

∑
j

V N1(k, j)

(∥∥∥ΨN1
j Ac

∥∥∥
`p(Λ)

+ C2,ψ

∑
i

V N1(j, i)
∥∥∥ΨN1

i c
∥∥∥
`p(Γ)

)

≤
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+ C2,ψ

∑
j

V N1(k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

+ C2,ψ

∑
j

V N1(k, j)C2,ψ

∑
i

V N1(j, i)
∥∥∥ΨN1

i c
∥∥∥
`p(Γ)

=
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+ C2,ψ

∑
j

V N1(k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

+ C2
2,ψ

∑
i

∑
j

V N1(k, j)V N1(j, i)
∥∥∥ΨN1

i c
∥∥∥
`p(Γ)

=
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+ C2,ψ

∑
j

V N1(k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

+ C2
2,ψ

∑
i

(
V N1

)2
(k, i)

∥∥∥ΨN1
i c
∥∥∥
`p(Γ)

.

Similarly, by applying Equation (4.26) n times we obtain∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

≤
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+

n−1∑
m=1

Cm2,ψ
∑
j

(V N1)m(k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

+ Cn2,ψ
∑
j

(V N1)n(k, j)
∥∥∥ΨN1

j c
∥∥∥
`p(Γ)

. (4.40)

Since ‖·‖`∞(XN1
) ≤ ‖·‖`p(XN1

) we obtain

Cn2,ψ
∑
j

(V N1)n(k, j)
∥∥∥ΨN1

j c
∥∥∥
`p(Γ)

= (C2,ψV
N1)n

((∥∥∥ΨN1
j c
∥∥∥
`p(Γ)

)
j

)
(k)

≤

∥∥∥∥∥(C2,ψV
N1)n

((∥∥∥ΨN1
j c
∥∥∥
`p(Γ)

)
j

)∥∥∥∥∥
`p

.

From Schur’s Test, see e.g. [22, Theorem 6.18] and the proof of Theorem 3.3.2 for an application, we have that∥∥V N1
∥∥

B(`p(XN1
))
≤
∥∥V N1

∥∥
Schur(XN1

→XN1
)
. (4.41)

Then, using ∥∥(V N1)m
∥∥
Schur(XN1

→XN1
)
≤ 1

(2C2,ψ)m
,

form ∈ N, and the equivalence of norms given by Lemma 4.1.1, we obtain

Cn2,ψ
∑
j

(V N1)n(k, j)
∥∥∥ΨN1

j c
∥∥∥
`p(Γ)

≤

∥∥∥∥∥(C2,ψV
N1)n

((∥∥∥ΨN1
j c
∥∥∥
`p(Γ)

)
j

)∥∥∥∥∥
`p

≤ Cn2,ψ
∥∥V N1

∥∥
B(`p(XN1

))

∥∥∥∥∥
((∥∥∥ΨN1

j c
∥∥∥
`p(Γ)

)
j

)∥∥∥∥∥
`p

≤ Cn2,ψ
∥∥(V N1)n

∥∥
Schur(XN1

→XN1
)

∥∥∥∥∥
((∥∥∥ΨN1

j c
∥∥∥
`p(Γ)

)
j

)∥∥∥∥∥
`p

. Cn2,ψ
∥∥(V N1)n

∥∥
Schur(XN1

→XN1
)
‖c‖`p(Γ)

≤ 1

2n
‖c‖`p(Γ)

n→∞−−−−→ 0.
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Thus, taking n→ ∞ in Equation (4.40) and using the Definition (4.37) we have

lim
n→∞

∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

≤ lim
n→∞

∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+

n−1∑
m=1

Cm2,ψ
∑
j

(V N1)m(k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

+ Cn2,ψ
∑
j

(V N1)n(k, j)
∥∥∥ΨN1

j c
∥∥∥
`p(Γ)

=
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+ lim
n→∞

n−1∑
m=1

Cm2,ψ
∑
j

(V N1)m(k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

+ lim
n→∞

Cn2,ψ
∑
j

(V N1)n(k, j)
∥∥∥ΨN1

j c
∥∥∥
`p(Γ)

=
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+

∞∑
m=1

Cm2,ψ
∑
j

(V N1)m(k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

=
∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

+

∞∑
m=1

(C2,ψV
N1)m

(∥∥∥ΨN1
j Ac

∥∥∥
`p(Λ)

)
j

(k)

=

(
I+

∞∑
m=1

(C2,ψV
N1)m

)(∥∥∥ΨN1
j Ac

∥∥∥
`p(Λ)

)
j

(k)

=W
(∥∥ΨN1

· Ac
∥∥
`p(Λ)

)
(k)

Thus, for each c ∈ `∞(Γ) and xk,N1 ∈ XN1∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

≤
∑

xj,N1
∈XN1

W (k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

, (4.42)

whereW ∈ S (XN1).



5
Stability and Spectral Invariance of
Convolution-dominated Matrices

In this chapter, we prove that `p-stability is independent of p ∈ [1,∞] for convolution-dominated matrices indexed
by relatively separated sets in groups of polynomial growth, by using the lemmas proved in the previous chapter.
In Section 5.2, we state Wiener type Lemmas for convolution-dominated matrices in groups of polynomial growth.
Throughout this chapter we make the same assumptions as in Chapter 4.

5.1. Stability
We now have all the ingredients needed to prove the independence of `p-stability from p ∈ [1,∞] for the class of
convolution-dominated matrices indexed by relatively separated sets in a group of polynomial growth.

A matrix A ∈ B(`p(Γ), `p(Λ)) is said to have `p-stability if there exists Cp > 0 such that

C−1
p ‖c‖`p(Γ) ≤ ‖Ac‖`p(Λ) ≤ Cp‖c‖`p(Γ) ∀ c ∈ `p(Γ).

We will show that if a convolution-dominated matrix has `p-stability for some p ∈ [1,∞], then it has `q-stability
for each q ∈ [1,∞].

Initially, we show that if a convolution-dominated matrix A ∈ CDwDG
(Λ,Γ) is bounded from below for some

p ∈ [1,∞], i.e. there exists CA,p > 0 such that

‖c‖`p(Γ) ≤ CA,p‖Ac‖`p(Λ) ∀ c ∈ `p(Γ),

then A is bounded from below for each q ∈ [1,∞].The proof given below was inspired by the method developed
in [27, 33, 59] and is based on the commutator technique used in Lemma 4.3.1 and the norm equivalence given in
Lemma 4.1.1.

Theorem 5.1.1. Let Λ, Γ ⊆ G be two relatively separated sets in a locally compact group of polynomial growth
and let α ∈ N, such that α ≥ DG, where DG is the order of growth of G. Suppose that A ∈ CDwα(Γ,Λ) and A
is bounded from below for some p ∈ [1,∞], i.e. there exists CA,p > 0 such that

‖c‖`p(Γ) ≤ CA,p‖Ac‖`p(Λ) ∀ c ∈ `p(Γ).

Then there exists C ′
A > 0, such that for all q ∈ [1,∞] and c ∈ `q(Γ),

‖c‖`q(Γ) ≤ C ′
A‖Ac‖`q(Λ).

Proof. From Lemma 4.3.1 and for XN and
(
ΨNk
)
xk,N∈XN

given by Lemma 3.1.13 and Lemma 4.1.1, respectively,
we have that there exist N1 ∈ N andW ∈ S (XN1) such that∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

≤ CA,p
∑

xj,N1
∈XN1

W (k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

, (5.1)

46
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for each k with xk,N1
∈ XN1

.Thus, we obtain

∥∥∥∥(∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

)
k

∥∥∥∥
`q(XN1

)

=

 ∑
xk,N1

∈XN1

∥∥∥ΨN1

k c
∥∥∥q
`p(Γ)

1/q

≤

 ∑
xk,N1

∈XN1

CA,p∑
j

W (k, j)
∥∥∥ΨN1

j Ac
∥∥∥
`p(Λ)

q1/q

=

 ∑
xk,N1

∈XN1

(
CA,p

(
W

(∥∥∥ΨN1
j Ac

∥∥∥
`p(Λ)

)
j

)
(k)

)q1/q

≤ CA,p

∥∥∥∥∥∥
((

W

(∥∥∥ΨN1
j Ac

∥∥∥
`p(Λ)

)
xj,N1

∈XN1

)
(k)

)
xk,N1

∈XN1

∥∥∥∥∥∥
`q(XN1

)

= CA,p

∥∥∥W (∥∥ΨN1
· Ac

∥∥
`p(Λ)

)∥∥∥
`q(XN1

)

≤ CA,p ‖W‖B(`q(XN1
))

∥∥∥∥∥
(∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

)
xk,N1

∈XN1

∥∥∥∥∥
`q(XN1

)

≤ CA,p ‖W‖Schur(XN1
→XN1

)

∥∥∥∥∥
(∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

)
xk,N1

∈XN1

∥∥∥∥∥
`q(XN1

)

,

where for the last inequality we have used that the Schur matrices are embedded in the spaces B(`q(XN1
)) for

each q ∈ [1,∞] by the Schur’s Test, see e.g. [22, Theorem 6.18].
On the other hand, from the equivalence of the norms given by Lemma 4.1.1, we obtain

‖c‖`q(Γ) .N1

∥∥∥∥∥
(∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

)
xk,N1

∈XN1

∥∥∥∥∥
`q(XN1

)

and ∥∥∥∥∥
(∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

)
xk,N1

∈XN1

∥∥∥∥∥
`q(XN1

)

.N1
‖Ac‖`q(Λ) ,

with constants independent of p, q ∈ [1,∞]. Thus, combining the previous

‖c‖`q(Γ) .N1

∥∥∥∥(∥∥∥ΨN1

k c
∥∥∥
`p(Γ)

)
k

∥∥∥∥
`q(XN1

)

≤ CA,p ‖W‖Schur(XN1
→XN1

)

∥∥∥∥(∥∥∥ΨN1

k Ac
∥∥∥
`p(Λ)

)
k

∥∥∥∥
`q(XN1

)

.N1
CA,p ‖W‖Schur(XN1

→XN1
) ‖Ac‖`q(Λ) ,

Thus, there exists C ′
A := C ′

A(A,N1, p) > 0 such that for each q ∈ [1,∞] and c ∈ `q(Γ) we have

‖c‖`q(Γ) ≤ C ′
A ‖Ac‖`q(Λ) . (5.2)

From the embedding of the class of convolution-dominated matrices CDwDG
(Γ,Λ) into B(`p(Γ), `p(Λ)),

see Theorem 3.3.2, we have that every matrix A ∈ CDwDG
(Γ,Λ) is bounded as an operator in B(`p(Γ), `p(Λ)).

Hence, if A is also bounded from below in B(`p(Γ), `p(Λ)), then it has `p-stability. Combining the previous and
Theorem 5.1.1 we have that if A ∈ CDwDG

(Γ,Λ) has `p-stability for some p ∈ [1,∞], then it has `q-stability for
all q ∈ [1,∞].This proves the following result.

Corollary 5.1.2. Let Λ, Γ ⊆ G be two relatively separated sets in a locally compact group of polynomial growth
and let α ∈ N, such that α ≥ DG, whereDG is the order of growth of G. If A ∈ CDwα

(Γ,Λ) has `p-stability for
some p ∈ [1,∞], then it has `q-stability for all q ∈ [1,∞].
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Remark 5.1.3. Assuming further that G is abelian, by using similar estimates it can be shown that the results of
this section are true for matrices in CDwα

(Γ,Λ), for any polynomial weight (α ∈ N), but also in the unweighted
case (α = 0). Precisely, using the commutativity of the group in the proof of Lemma 4.3.1 we can obtain a uniform
bound in Equation (4.33), independent of x ∈ G and xk,N ∈ XN . This recovers the result by Shin and Sun [59]
for relatively separated sets in the Euclidean space Rd.

The following theorem extends Theorem 5.1.1 and proves that if a convolution-dominated operator is bounded
from below on a subspace for some p ∈ [1,∞], then it is bounded from below on the subspace for each q ∈ [1,∞].
The proof presented below was inspired by similar results in [29] and [27] for Euclidean spaces and homogeneous
groups, respectively.

Theorem 5.1.4. Let Λ, Γ ⊆ G be two relatively separated sets in a locally compact group of polynomial growth
and let α ∈ N be such that α ≥ DG + 1, where DG is the order of growth of G. Suppose that P ∈ CDwα

(Γ)
and P is idempotent, i.e. P 2 = P . Moreover, suppose that A ∈ CDwα

(Γ,Λ) and for p ∈ [1,∞], there exists
CA,p > 0, such that for all c ∈ `p(Γ)

‖Pc‖`p(Γ) ≤ CA,p‖APc‖`p(Λ). (5.3)

Then there exists C ′ > 0, such that for all q ∈ [1,∞] and c ∈ `q(Γ),

‖Pc‖`q(Γ) ≤ C ′‖APc‖`q(Λ). (5.4)

Proof. Since P ∈ CDwα
(Γ) and A ∈ CDwα

(Γ,Λ), then by Theorem 3.3.2 we deduce that I − P ∈ CDwα
(Γ)

and AP ∈ CDwα(Γ,Λ). Hence, there exist Θ1,Θ2 ∈Wwα(G) such that for each λ ∈ Λ and γ ∈ Γ

|(AP )(λ, γ)| ≤ Θ1(λ
−1γ) (5.5)

and for each γ, γ′ ∈ Γ
|(I − P )(γ, γ′)| ≤ Θ2(γ

−1γ′). (5.6)

Then the operator

Ã : `p(Γ) −→ `p(Λ)⊕ `p(Γ) (5.7)
c 7−→ (APc, (I − P )c) ,

is well defined and bounded. By using Equation (5.3) we have for each c ∈ `p(Γ)∥∥∥Ãc∥∥∥
`p(Λ)⊕`p(Γ)

= ‖APc‖`p(Λ) + ‖(I − P )c‖`p(Γ) ≥ C−1
A,p ‖Pc‖`p(Γ) + ‖(I − P )c‖`p(Γ) . (5.8)

From the previous and ‖c‖`p(Γ) ≤ ‖Pc‖`p(Γ) + ‖(I − P )c‖`p(Γ), it follows that for each c ∈ `p(Γ)∥∥∥Ãc∥∥∥
`p(Λ)⊕`p(Γ)

& ‖c‖`p(Γ) . (5.9)

Define the group G̃ = G×R, with multiplication (x, z) · (y, ζ) = (xy, z+ ζ), for each x, y ∈ G and z, ζ ∈ R.
G̃ is a locally compact group with Haar measure µ, such that for each measurable sets V1 ⊆ G and V2 ⊆ R
we have µ((V1, V2)) = µG(V1)µR(V2), where µG is the Haar measure on G and µR is the Lebesgue measure
on R, see e.g. [21]. It follows that G̃ is a group of polynomial growth generated by (U,BR(0, 1)), where U is
the generating neighbourhood of G and BR(0, 1) = {z ∈ R : |z| < 1} and G̃ has order of growth equal to
DG̃ = DG+1. Moreover, we define the following relatively separated sets, Λ̃ = Λ×{0} ⊆ G̃, Γ̃ = Γ×{1} ⊆ G̃

and Ω = Λ̃ ∪ Γ̃ ⊆ G̃.
We consider the matrix B ∈ CΩ×Γ̃, such that for each λ ∈ Λ and γ′ ∈ Γ

B ((λ, 0), (γ′, 1)) = (AP )(λ, γ′), (5.10)

and for each γ, γ′ ∈ Γ
B ((γ, 1), (γ′, 1)) = (I − P )(γ, γ). (5.11)

Note that B can be identified with the operator Ã, by identifying Λ̃ with Λ and Γ̃ with Γ.
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Let ψ ∈ C∞
c (R), such that supp(ψ) ⊆ [−2, 2] and ψ = 1 on [−1, 1]. We define

Θ : G̃ −→ C (5.12)
(x, z) 7−→ (Θ1(x) + Θ2(x))ψ(z)

and the weight w̃α on G̃, such that w̃α(x, z) = (1+d(x, e)+ |z|)α. Note that w̃α is exactly the polynomial weight
on G̃ of order α. Since Θ1,Θ2 ∈Wwα(G) and ψ ∈ C∞

c (R), it follows that Θ ∈Ww̃α

(
G̃
)
. By the definition of

the matrix B and Equations (5.5) and (5.6) we obtain for each λ ∈ Λ and γ, γ′ ∈ Γ

|B ((λ, 0), (γ′, 1))| ≤ Θ1(λ
−1γ′) ≤ (Θ1(λ

−1γ′) + Θ2(λ
−1γ′))ψ(1− 0) = Θ((λ, 0)−1(γ′, 1)) (5.13)

and

|B ((γ, 1), (γ′, 1))| ≤ Θ2(γ
−1γ′) ≤ (Θ1(γ

−1γ′) + Θ2(γ
−1γ′))ψ(1− 1) = Θ((γ, 1)−1(γ′, 1)). (5.14)

Thus, B ∈ CDw̃α

(
Ω, Γ̃

)
. Moreover, by identifying B and Ã and using Equation (5.9) we deduce that B is

bounded from below for p. Then since B ∈ CDw̃α

(
Ω, Γ̃

)
is bounded from below for p and α ≥ DG + 1 = DG̃

we can apply Theorem 5.1.1. Hence B is bounded from below for each q ∈ [1,∞] (with constant independent of
q). Thus, using once more the identification of B and Ã, there exists C ′ > 0 such that for each q ∈ [1,∞]

‖c‖`q(Γ) ≤ C ′
∥∥∥Ãc∥∥∥

`q(Λ)⊕`q(Γ)
, ∀c ∈ `q(Γ). (5.15)

It follows that for each q ∈ [1,∞] for each c ∈ `q(Γ)

‖Pc‖`q(Γ) ≤ C ′
∥∥∥ÃPc∥∥∥

`q(Λ)⊕`q(Γ)
= C ′ ‖APPc‖`q(Λ) + ‖(I − P )Pc‖`q(Γ) = C ′ ‖APc‖`q(Λ) , (5.16)

where for the last equality we have used that P 2 = P .

5.1.1. Discussion
We now discuss the optimality of the weight assumption in Theorem 5.1.1 and we compare the results of this
section with similar results in the literature.

Recall that for relatively separated subsets Λ and Γ in a group G of polynomial growth, Theorem 5.1.1 proves
that if a convolution-dominated matrix in CDw(Γ,Λ) is bounded from below for some p ∈ [1,∞], then it is
bounded from below for each q ∈ [1,∞], under the assumption that w is the polynomial weight given by

w = wα : G −→ [1,∞), x 7−→ (1 + d(x, e))α,

where α ∈ N and α ≥ DG with DG the order of growth of the group. For general relatively separated sets
Theorem 5.1.1 yields new results, however we expect that the assumptions of the theorem could be improved.
Tessera [63] showed that in the case of matrices indexed by discrete groups of polynomial growth Theorem 5.1.1
holds for each polynomial weight (α ∈ N). Therefore, if we take a discrete subgroup Λ in a group of polynomial
growth that also has polynomial growth, for example a uniform lattice (see Lemma 3.1.18), then by Tessera [63]
we have that the aforementioned results hold for the convolution-dominated matrices CDwα(Λ) for each α ∈ N.
On the other hand, Theorem 5.1.1 proves the `p-stability result only for α ≥ DG, whereDG is the order of growth
of the group. From the previous, we expect that the assumption on the order α of the weight could be improved,
however the estimates in the commutator technique seem not good enough to do so and hence another method
should be used to obtain optimal assumptions.

For abelian groups of polynomial growth we have from Remark 5.1.3 the result on `p-stability for the
convolution-dominated matrices CDw(Λ) for every polynomial weight, but also in the unweighted case. Since
this proves the spectral invariance in the uweighted case we have the optimal result and, moreover, we recover
the result given by Shin and Sun [59].

5.2. Spectral Invariance
In this section, we state an inverse-closedness type result for the intersection of the convolution-dominated
matrices indexed by a relatively separated set, CDwα

(Λ), for α ∈ N and the spectral invariance of convolution-
dominated matrices in discrete groups of polynomial growth given by Fendler, Gröchenig and Leinert in [19].
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The commutator technique used in Lemma 4.3.1 was first used by Sjöstrand [60] for proving the spectral
invariance, however Shin and Sun [59] observed that this technique proves also the result on `p-stability. For
proving the spectral invariance of convolution-dominated matrices using the commutator technique, we should
estimate the convolution-dominated norm of the matrix V N in Lemma 4.3.1, instead of the Schur norm. During
the project we have attempted to prove the spectral invariance using the commutator technique, but did not
succeed. Furthermore, inspired by the use of auxiliary norms in [58], we have also attempted using the commutator
technique with auxiliary norms. The estimates used in the commutator technique seem not good enough in
order to prove the spectral invariance, therefore we now present a Wiener type Lemma for the intersection of
polynomially weighted convolution-dominated matrices. For this, we follow a different method by using the
spectral invariance of the weighted Schur matrices given by Sun [61].

Initially, we define the weighted Schur matrices indexed by a relatively separated set Λ, for each polynomial
weight

wα : G −→ [1,∞), x 7−→ (1 + d(x, e))α,

α ∈ N ∪ {0} and each p ∈ [1,∞] as follows

Sp,wα
(Λ) :=

{
A ∈ CΛ×Λ : ‖A‖Sp,wα (Λ) <∞

}
, (5.17)

where

‖A‖Sp,wα (Λ) = sup
λ∈Λ

(∑
λ′∈Λ

∣∣A(λ, λ′)wα(λ−1λ′)
∣∣p)1/p

+ sup
λ′∈Λ

(∑
λ∈Λ

∣∣A(λ, λ′)wα(λ−1λ′)
∣∣p)1/p

, (5.18)

for p ∈ [1,∞) and
‖A‖Sp,wα (Λ) = sup

λ,λ′∈Λ

∣∣A(λ, λ′)wα(λ−1λ′)
∣∣ , (5.19)

for p = ∞. Note that the norms ‖·‖Schur(Λ→Λ) and ‖·‖S1,w0 (Λ) are equivalent, therefore the definition of the
unweighted Schur matrices S1,w0(Λ) given in (5.17) and S (Λ) given in (2.7) coincide. Moreover, we observe
that by definition we have

‖A‖S∞,wα (Λ) ≤ ‖A‖S1,wα (Λ) ,

for each A ∈ S1,wα(Λ) and each polynomial weight, hence

S1,wα(Λ) ⊆ S∞,wα(Λ). (5.20)

From Lemma 3.2.7, see also the proof of Proposition 3.3.2, we deduce

‖A‖S1,wα (Λ) ≤ 2
RelQ (Λ)

µ(Q)
‖A‖CDwα (Λ) ,

therefore
CDwα(Λ) ⊆ S1,wα(Λ). (5.21)

Sun [61] proved the spectral invariance of the weighted Schur matrices indexed by a discrete set with
polynomial growth, under further assumptions on the weight, see [61, Theorem 4.1]. We present below Sun’s
[61] spectral invariance for S1,wα(Λ), where wα is the polynomial weight of order α ∈ N, and Λ is a relatively
separated set in a group of polynomial growth. We do not present the proof given of the result, however we show
that the assumptions of the theorem are verified, see [61, Theorem 4.1] for a complete proof.

Theorem 5.2.1 ([61]). Let Λ be a relatively separated set in a group, G, of polynomial growth. Moreover, suppose
that α ∈ N and wα is the polynomial weight on the group given by wα : x 7−→ (1 + d(x, e))α. Then S1,wα

(Λ) is
inverse-closed in B(`2(Λ)).

Proof. Since α > 0 we have from [61, Example A.2] that wα verifies the conditions of [61, Theorem 4.1].
We equip the relatively separated set Λ with the restriction to Λ of word metric of the group, dΛ = d |Λ, and

the counting measure µC given by

µC : P(Λ) −→ [0,∞) (5.22)
V 7−→ #V := # {x ∈ Λ : x ∈ V } ,
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where P(Λ) := {V ⊆ Λ} is the power set of Λ.Then using Lemma 3.1.14 and the polynomial growth of the
group we obtain

µC(BdΛ(x, n)) = # (Λ ∩Bd(x, n)) ≤ # (Λ ∩ xUn) . µ(xUn) = µ(Un) ≤ CGn
DG ,

for each x ∈ Λ and n ∈ N. Thus, the triple (Λ, µC , dΛ) verifies the assumptions of [61, Theorem 4.1].
From the previous we can apply [61, Theorem 4.1] and this proves the claim.

We now show that for a relatively separated setΛ, if a matrixA belongs in the convolution-dominated matrices
CDwα

(Λ) for each polynomial weight wα, α ∈ N and A is invertible in B(`2(Λ)), then A−1 ∈ CDwα
(Λ) for

each α ∈ N. The proof of the following result is based on the spectral invariance of the Schur matrices and the
inclusions

CDwα
(Λ) ⊆ S1,wα

(Λ) ⊆ S∞,wα
(Λ),

that hold for each α ∈ N.

Theorem 5.2.2. Let Λ ⊆ G be a relatively separated set in a locally compact group of polynomial growth and let
wα be the polynomial weight on the group given by wα : x 7−→ (1 + d(x, e))α. Suppose that A ∈ CDwα

(Λ) for
each α ∈ N and A is invertible in B(`2(Λ)). Then A−1 ∈ CDwα

(Λ) for each α ∈ N.

Proof. Suppose that G is compactly generated by the open, relatively compact, unit neighbourhood U . Moreover,
suppose that the growth of the generating neighbourhood is given by

µ(Un) ≤ CGn
DG ,

where CG > 0 and DG > 0 is the order of growth of the group.
Let α ∈ N be such that α ≥ DG + 2. Since A ∈ CDwα(Λ), we have that A ∈ S1,wα(Λ), from the inclusion

(5.21). From the spectral invariance of S1,wα(Λ) in B(`2(Λ)), given by Theorem 5.2.1, and the invertibility of A
in B(`2(Λ)), it follows that A−1 ∈ S1,wα

(Λ). Moreover, using the inclusion (5.20) we have that

A−1 =
(
A−1(λ, λ′)

)
λ,λ′∈Λ

∈ S∞,wα(Λ),

hence ∥∥A−1
∥∥

S∞,wα (Λ)
= sup
λ,λ′∈Λ

∣∣A−1(λ, λ′)wα(λ
−1λ′)

∣∣ <∞. (5.23)

From the above we obtain that for each λ, λ′ ∈ Λ∣∣A−1(λ, λ′)
∣∣ ≤ ∥∥A−1

∥∥
S∞,wα (Λ)

wα(λ
−1λ′)−1. (5.24)

By the submultiplicativity of the weight wα we have for each x ∈ G and y, y′ ∈ Q

wα(x) = wα(y
−1yxy′(y′)−1) ≤ wα(y

−1)wα(yxy
′)wα((y

′)−1)

hence
wα(x)

−1 ≥ wα(y
−1)−1wα(yxy

′)−1wα((y
′)−1)−1.

Since the previous holds for each y, y′ ∈ Q, by taking the supremum over y, y′ ∈ Q, we obtain

wα(x)
−1 ≥ D1 ML

Q M
R
Q(w

−1
α )(x), (5.25)

where D1 = supy,y′∈Q wα(y−1)−1wα((y
′)−1)−1 > 0. Then, using G =

⋃∞
n=0 U

n, we have

∥∥w−1
α

∥∥
Ww

α−
(
DG+2

) (G)
=

∫
G

ML
Q M

R
Q(w

−1
α )(x)wα−DG+2(x)dµ(x)

≤ D1

∫
G

w−1
α (x)wα−(DG+2)(x)dµ(x)

= D1

(∫
U1

w−1
DG+2(x)dµ(x) +

∞∑
n=1

∫
Un+1\Un

w−1
DG+2(x)dµ(x)

)
.
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We observe that for each n ∈ N, if x ∈ Un+1\Un, then d(x, e) ≥ n and

w−1
DG+2(x) =

1

wDG+2(x)
=

1

(1 + d(x, e))DG+2
≤ 1

(1 + n)DG+2
.

Thus,

∥∥w−1
α

∥∥
Ww

α−
(
DG+2

) (G)
≤ D1

(∫
U1

1dµ(x) +
∞∑
n=1

∫
Un+1\Un

1

(1 + n)DG+2
dµ(x)

)

= D1

(
µ(U1) +

∞∑
n=1

µ(Un+1\Un) 1

(1 + n)DG+2

)
.

Using the polynomial growth we deduce

∥∥w−1
α

∥∥
Ww

α−
(
DG+2

) (G)
≤ D1

(
CG +

∞∑
n=1

CG(n+ 1)DG
1

(1 + n)DG+2

)

= D1CG

(
1 +

∞∑
n=1

1

(1 + n)2

)
<∞.

Thus w−1
α ∈Wwα−

(
DG+2

)(G).
From

∣∣A−1(λ, λ′)
∣∣ ≤

∥∥A−1
∥∥

S∞,wα (Λ)
wα(λ

−1λ′)−1, for each λ, λ′ ∈ Λ and w−1
α ∈ Wwα−

(
DG+2

)(G) it
follows that

A−1 ∈ CDwα−
(
DG+2

)(Λ). (5.26)

Since α ∈ N, α ≥ DG + 2 was chosen arbitrary we deduce that A−1 ∈ CDwα−
(
DG+2

)(Λ) for each α ∈ N, α ≥
DG + 2. Thus, A−1 ∈ CDwα

(Λ) for each α ∈ N, which proves our claim.

Note that an operator A ∈ B(`2(Λ)) is invertible if and only if A is bounded from below. On the other hand,
for p ∈ [1,∞], p 6= 2 this equivalence is not true. Combining Theorem 5.1.1 and 5.2.2 we deduce the following
result on left invertibility, inspired by [63].

Theorem 5.2.3. LetΛ ⊆ G be a relatively separated set in a locally compact group of polynomial growth. Suppose
that A ∈ CDwα

(Λ) for each α ∈ N. Then the following are equivalent:

(i) A is bounded from below for some p ∈ [1,∞],

(ii) A is bounded from below for each p ∈ [1,∞],

(iii) B = (A∗A)−1A∗ defines a left inverse for A and B ∈ CDwα(Λ) for each α ∈ N.

Proof. The equivalence (i) ⇐⇒ (ii) is true by Theorem 5.1.1. It is left to prove the equivalence (ii) ⇐⇒ (iii).
(ii)⇒ (iii): From (ii) we have that A is bounded from below for p = 2, hence there exists C2,A > 0 such that

‖c‖`2(Λ) ≤ C2,A ‖Ac‖`2(Λ) , ∀ c ∈ `2(Λ). (5.27)

Then for each c ∈ `2(Λ) we obtain

‖A∗Ac‖`2(Λ) ‖c‖`2(Λ) ≥ 〈A∗Ac, c〉`2(Λ) = ‖Ac‖2`2(Λ) ≥ C2
2,A ‖c‖2`2(Λ) .

Thus A∗A is bounded from below for p = 2. It follows that A∗A is injective in B(`2(Λ)). Suppose that
(cn)n∈N ⊆ `2(Λ), is a sequence such that A∗Acn

n→∞−−−−→ b ∈ Ran(A∗A) in `2(Λ). Then (A∗Acn)n∈N is a Cauchy
sequence and from the boundedness from below we deduce that (cn)n∈N is also a Cauchy sequence. Thus, there
exists c ∈ `2(Λ) such that cn

n→∞−−−−→ c in `2(Λ) and from the continuity we obtain A∗Ac = b. From the previous,
it follows that A∗A has closed range. Since A∗A is self adjoint and injective we have that

Ran(A∗A) = Ran(A∗A) = ker(A∗A)⊥ = `2(Λ).
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Thus, A∗A is bijective and hence invertible. For the inverse (A∗A)−1 of A∗A, using the boundedness from below
of A∗A we obtain for each c ∈ `2(Λ)

C2,A

∥∥(A∗A)−1c
∥∥
`2(Λ)

≤
∥∥A∗A(A∗A)−1c

∥∥
`2(Λ)

= ‖c‖`2(Λ) .

Thus, (A∗A)−1 ∈ B(`2(Λ)) and (A∗A)−1 is the inverse of A∗A in B(`2(Λ)).
Since A ∈ CDwα

(Λ) for each α ∈ N, we have A∗ ∈ CDwα
(Λ) for each α ∈ N and since CDwα

(Λ) is
closed under multiplications (see Proposition 3.3.2) we have A∗A ∈ CDwα

(Λ) for each α ∈ N. Moreover,
A∗A ∈ CDwα(Λ) for each α ∈ N and A∗A is invertible in B(`2(Λ)), hence it follows fromTheorem 5.2.2 that
that (A∗A)−1 ∈ CDwα(Λ) for each α ∈ N. Therefore, B = (A∗A)−1A∗ ∈ CDwα(Λ) for each α ∈ N and since
B = (A∗A)−1A∗A = I , we have that B defines a left inverse for A in CDwα

(Λ) for each α ∈ N.
(iii)⇒ (ii): Let p ∈ [1,∞]. From the embeddingCDw1

(Λ) ↪−→ B(`p(Λ)) given by Proposition 3.3.2, it follows
that B defines a left inverse for A in B(`p(Λ)). Thus

‖c‖`p(Λ) = ‖BAc‖`p(Λ) ≤ ‖B‖B(`p(Λ)) ‖Ac‖`p(Λ) . (5.28)

It follows that A is bounded from below for p ∈ [1,∞]. Since p ∈ [1,∞] was chosen arbitrary (ii) follows.

Fendler, Gröchenig and Leinert in [19] showed that the convolution-dominated matrices over a discrete group
of polynomial growth are spectrally invariant for each polynomial weight and in the unweighted case. We state
below the aforementioned result by Fendler, Gröchenig and Leinert, see [19, Theorem 1] for a proof.

Theorem 5.2.4 ([19]). Let G be a discrete group of polynomial growth. Suppose α ∈ N ∪ {0} and the weight wα
in G is given by wα : x 7−→ (1 + d(x, e))α, where d is the word metric on G. Then CDwα

(G) is inverse-closed
in B(`2(G)).

Recall that a uniform lattice in a group of polynomial growth is a group of polynomial growth equipped with
the counting measure, see Lemma 3.1.18. Thus, the previous result can also be applied to uniform lattices in
groups of polynomial growth.
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6
Coherent Frames

In this chapter, we introduce the background needed in order to present the applications of convolution-dominated
matrices that were studied during the project. Throughout this part we assume that G is a locally compact group
of polynomial growth, with Haar measure µ, generating neighbourhood U ⊆ G and order of growth equal to
DG > 0.

6.1. Discrete Series Representations
In this section we define the discrete series σ−representations, which will be used for the applications presented
in the upcoming chapters. More details on discrete series σ−representations can be found in [1, 5, 39, 51].

Before we define σ−projective representations, we initially introduce the notion of a cocycle on a group.

Definition 6.1.1. Let σ : G×G −→ T be a Borel measurable function. The function σ is called a cocycle onG if

(i) σ(x, yz)σ(y, z) = σ(xy, z)σ(x, y) for each x, y, z ∈ G,

(ii) σ(x, e) = σ(e, x) = 1 for each x ∈ G, where e is the identity element in G.

An element x ∈ G is said to be σ−regular, if for each element y ∈ ZG(x) := {z ∈ G : xz = zx} we have
σ(x, y) = σ(y, x).

Definition 6.1.2. A mapping π : G −→ U (Hπ), where U (Hπ) denotes the unitary operators in B(Hπ), is a
σ−projective unitary representation (π, Hπ) of G on a Hilbert space Hπ if the following conditions are satisfied:

(i) the map G 3 x 7−→ 〈f, π(x)g〉 ∈ C is a Borel measurable function for each f, g ∈ Hπ,

(ii) σ : G×G −→ T is a function on G, such that π(x)π(y) = σ(x, y)π(xy) for each x, y ∈ G,

(iii) π(e) = IHπ
.

Note that from (i) of the previous definition we deduce that σ is a Borel measurable function and from (ii) we
obtain the properties (i) and (ii) of Definition 6.1.1. Thus, if π is a σ-projective representation then we deduce that
σ is a cocycle on G.Moreover, if (π, Hπ) is a σ−projective unitary representation, then π(x) ∈ U (Hπ) for each
x ∈ G and we obtain

π(x)π(x)∗ = IHπ = π(e) = π(xx−1) = σ(x, x−1)π(x)π(x−1).

Thus,
π(x)∗ = σ(x, x−1)π(x−1). (6.1)

Similarly, for each x ∈ G, we obtain that

π(x)∗ = σ(x−1, x)π(x−1). (6.2)

From the previous we deduce that for each x ∈ G,

σ(x, x−1) = σ(x−1, x). (6.3)
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A subspace V of Hπ is called π(G)-invariant if π(g)V ⊆ V for each g ∈ G.The σ−projective representation
(π, Hπ) is said to be irreducible if the only closed π(G)-invariant subspaces are {0} and Hπ. For f, g ∈ Hπ we
define the matrix coefficient associated with the representation (π, Hπ), by

Vgf(x) = 〈f, π(x)g〉 , (6.4)

for x ∈ G.We call the irreducible σ−projective representation (π, Hπ) a discrete series σ−representation, if there
exists g ∈ Hπ\{0} such that

Vgg = 〈g, π(·)g〉 ∈ L2(G). (6.5)

For a discrete series σ− representation (π, Hπ) it can be shown that there exists a unique dπ > 0, such that the
orthogonality relations ∫

G

〈f1, π(x)g1〉 〈f2, π(x)g2〉dµ(x) =
1

dπ
〈f1, f2〉〈g1, g2〉, (6.6)

hold for each f1, f2, g1, g2 ∈ Hπ , see [1, 51]. The constant dπ is called the formal dimension of π.

6.2. Frames and Riesz sequences
The definition of Frames and Riesz sequences that are of interest in the application in Chapter 8, are presented in
this section. The definitions and properties presented here can be found in [6].

Let
π : G −→ B(Hπ) (6.7)

be a σ-projective unitary representation of G. Suppose that Λ is a relatively separated subset of G. For g ∈ Hπ

we consider the set of vectors
π(Λ)g := {π(λ)g : λ ∈ Λ} . (6.8)

A frame is a set of vectors in a Hilbert space that generalizes the notion of orthonormal basis. We restrict our
attention to frames of the form π(Λ)g for g ∈ Hπ.

Definition 6.2.1 (Frame). A set π(Λ)g is called a frame for Hπ , if there exist constants A, B > 0 such that the
frame inequalities

A ‖f‖2Hπ
≤
∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤ B ‖f‖2Hπ
(6.9)

hold for each f ∈ Hπ . In that case, the vector g is called a frame vector and the constants A, B are called the
frame bounds.

From the first of the frame inequalities (6.9) we deduce that the set π(Λ)g is complete. On the other hand, by
the second frame inequality (6.9), which is known as the Bessel bound, we obtain that the frame operator, defined
as follows

Sg : Hπ −→ Hπ (6.10)

f 7−→ Sgf =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g,

is well-defined and bounded. Note that π(Λ)g being a frame is equivalent to the frame operator Sg being a
bounded, positive-definite and invertible operator on Hπ. Note that any f ∈ Hπ admits the expansions

f = SgS
−1
g f =

∑
λ∈Λ

〈f, S−1
g π(λ)g〉π(λ)g (6.11)

= S−1
g Sgf=

∑
λ∈Λ

〈f, π(λ)g〉S−1
g π(λ)g, (6.12)

where the summations converge unconditionally.
A set π(Λ)g is called a Bessel sequence if it verifies the Bessel bound, i.e. there exists B > 0 such that∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B ‖f‖2Hπ
, (6.13)
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for each f ∈ Hπ , and then the vector g ∈ Hπ is called a Bessel vector. In that case, the coefficient operator, given by

Cg : Hπ −→ `2(Λ) (6.14)
f 7−→ Cgf = (〈f, π(λ)g〉)λ∈Λ ,

is well-defined and bounded. Hence, its adjoint, the reconstruction operator

Dg : `2(Λ) −→ Hπ (6.15)

c = (cλ)λ∈Λ 7−→ Cgf =
∑
λ∈Λ

cλπ(Λ)g,

is also a well-defined and bounded operator from `2(Λ) to Hπ.We denote the space of Bessel vectors by Bπ.

Definition 6.2.2. A set π(Λ)g is called a Riesz sequence in Hπ , if there exist constants A, B > 0 such that

A ‖c‖2`2(Λ) ≤

∥∥∥∥∥∑
λ∈Λ

cλπ(λ)g

∥∥∥∥∥ ≤ B ‖c‖2`2(Λ) (6.16)

holds for each c = (cλ)λ∈Λ ∈ `2(Λ). In that case the constants A, B are called the Riesz bounds and the vector
g ∈ Hπ is called a Riesz vector.

The first inequality in (6.16) provides that a Riesz sequence is linearly independent. Furthermore, if a Riesz
sequence is complete, then it is called a Riesz basis for Hπ.



7
Twisted Group C*-algebras

An application of the spectral invariance of the convolution-dominated matrices in non-commutative geometry is
presented in this chapter. The result is applied to prove a Wiener type Lemma for the non-commutative space
generated by linear combinations of representations of nilpotent Lie groups restricted to lattices.

Let Λ be a uniform lattice in the locally compact group, G, of polynomial growth with order of growth equal
to DG > 0. The lattice Λ is equipped with the counting measure,

µC : P(Λ) −→ [0,∞) (7.1)
V 7−→ #V := # {x ∈ V } ,

where P(Λ) := {V ⊆ Λ} is the power set of Λ. Recall that (Λ, µC) is a locally compact group of polynomial
growth, with order of growth equal to DG, by Lemma 3.1.18. For a fixed α ∈ N ∪ {0} we fix the weight function

w = wα : Λ −→ [1,∞), x 7→ (1 + d(x, e))α.

Throughout this chapter, we assume that π : Λ −→ U (Hπ) is the restriction, to the lattice Λ, of a discrete
series σ-representation of G on the Hilbert space Hπ , as defined in Chapter 6.1.

Recall from (6.13) that π(Λ)g is a Bessel sequence, if there exists B > 0 such that∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤ B ‖f‖2Hπ
,

for each f ∈ Hπ and in that case g ∈ Hπ is called a Bessel vector. Under the assumption that π is the restriction
to Λ of a discrete series σ−representation, it can be shown that the Bessel vectors are dense in the Hilbert space
Hπ , see [39, Lemma 7.1.].

Lemma 7.1 ([39]). The Bessel vectors Bπ ⊆ Hπ of the restriction π to Λ are norm dense in Hπ.

Using the cocycle σ we define the following σ-twisted convolution on `1(Λ) for each a, b ∈ `1(Λ)

a ∗σ b(λ1) =
∑
λ2∈Λ

σ(λ2, λ
−1
2 λ1)a(λ2)b(λ

−1
2 λ1), (7.2)

for λ1 ∈ Λ, and the σ-twisted involution

a∗σ (λ) = σ(λ, λ−1)a(λ−1), (7.3)

for λ ∈ Λ. The σ-twisted convolution of a, b ∈ `1(Λ) is well defined on `1(Λ), since for each λ1 ∈ Λ we have

|a ∗σ b(λ1)| ≤
∑
λ2∈Λ

∣∣σ(λ2, λ−1
2 λ1)a(λ2)b(λ

−1
2 λ1)

∣∣ = ∑
λ2∈Λ

|a| (λ2) |b| (λ−1
2 λ1) = |a| ∗ |b| (λ1). (7.4)

Thus, for a, b ∈ `1(Λ), using Young’s inequality we obtain

‖a ∗σ b‖`1(Λ) =
∑
λ∈Λ

|a ∗σ b(λ)| ≤
∑
λ∈Λ

|a| ∗ |b| (λ) = ‖|a| ∗ |b|‖`1(Λ) ≤ ‖a‖`1(Λ) ‖b‖`1(Λ) .
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We deduce that the sequence space `1(Λ) is a Banach *-algebra with the σ-twisted convolution and involution, and
similarly we have that the weighted sequence space `1w(Λ) is a Banach *-algebra with the σ-twisted convolution
and involution.

For each a ∈ `1w(Λ) we define the twisted-convolution operator

Cσa : `2(Λ) −→ `2(Λ) (7.5)
c 7−→ c ∗σ a.

Note that for each c ∈ `2(Λ)

‖Cσa c‖
2
`2(Λ) = ‖c ∗σ a‖2`2(Λ) =

∑
λ∈Λ

|c ∗σ a(λ)|2 ≤
∑
λ∈Λ

(|c| ∗ |a| (λ))2 = ‖|c| ∗ |a|‖2`2(Λ) ≤ ‖c‖2`2(Λ) ‖a‖
2
`1(Λ) ,

by Young’s inequality and hence Cσa ∈ B(`2(Λ)) is well-defined. We denote by C∗(`1) the C∗-algebra generated
by
{
Cσa : a ∈ `1w(Λ)

}
⊆ B(`2(Λ)). From the inverse-closedness of the class of convolution-dominated matrices

we deduce that the class of twisted-convolution operators is inverse-closed in B(`2(Λ)). This was shown by
Gröchenig [28] for lattices in the Euclidean spaces Rd and his proof can be extended for uniform lattices in groups
of polynomial growth.

Theorem 7.2. Let a ∈ `1w(Λ) and

Cσa : `2(Λ) −→ `2(Λ)

c 7−→ c ∗σ a.

Suppose that Cσa is invertible in B(`2(Λ)). Then there exists b ∈ `1w(Λ), such that (Cσa )−1 = Cσb .

Proof. For each λ ∈ Λ and c ∈ `2(Λ) observe that

Cσa c(λ) = c ∗σ a(λ) =
∑
γ∈Λ

σ(γ, γ−1λ)c(γ)a(γ−1λ)

Hence, the action of Cσa can be interpreted as the matrix action

A := (A(λ, γ))λ,m∈Λ =
(
σ(γ, γ−1λ)a(γ−1λ)

)
λ,γ∈Λ

∈ CΛ×Λ. (7.6)

Then, we have

|A(λ, γ)| =
∣∣a(γ−1λ)

∣∣ = |a∨| (λ−1γ).

Recall that the two-sided Amalgam space of continuous functions on the discrete group Λ is the space

Ww(Λ) = `1w(Λ). (7.7)

Thus, since a ∈ `1w(Λ) and by the definition of the convolution-dominated matrices on Λ we have A ∈ CDw(Λ)
and

‖Cσa ‖CDw(Λ) = ‖A‖CDw(Λ) = ‖a∨‖Ww(Λ) = ‖a∨‖`1w(Λ) = ‖a‖`1w(Λ) . (7.8)

Using the spectral invariance of convolution-dominated matrices indexed by discrete groups of polynomial growth
in the operator algebra B(`2(Λ)), that is by applying Theorem 5.2.4 for G = Λ, we deduce that there exists
B ∈ CDw(Λ) such that (Cσa )−1 = B.

Moreover, by the invertibility of Cσa in B(`2(Λ)) there exist b ∈ `2(Λ) such that

b ∗σ a = Cσa b = δe.

We have that the operator Cσb is defined on the sequences with finite support, c00(Λ), and for each c ∈ c00(Λ) we
obtain

Cσa (C
σ
b −B)c = Cσa (c ∗σ b−Bc) = c ∗σ b ∗σ a− CσaBc = c ∗σ δe − c = 0.

Hence, by injectivity of Cσa on `2(Λ) we obtain that (Cσb −B)c = 0 for each c ∈ c00(Λ) and by the density of
c00(Λ) in `2(Λ) we have that Cσb = B in B(`2(Λ)).Then, by following the same analysis we used to deduce
Equation (7.8) we have

‖b‖`1w(Λ) = ‖Cσb ‖CDw(Λ) = ‖B‖CDw(Λ) . (7.9)

Thus, b ∈ `1w(Λ) since B ∈ CDw(Λ).
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For a = (aλ)λ∈Λ ∈ `2(Λ) the formal sum
∑
λ∈Λ aλπ(λ) is denoted by

π(a) =
∑
λ∈Λ

aλπ(λ). (7.10)

For a ∈ `1w(Λ) we obtain

‖π(a)‖B(Hπ)
=

∥∥∥∥∥∑
λ∈Λ

aλπ(λ)

∥∥∥∥∥
B(Hπ)

≤
∑
λ∈Λ

|aλ| ‖π(λ)‖B(Hπ)
≤
∑
λ∈Λ

|aλ| = ‖a‖`1(Λ) ≤ ‖a‖`1w(Λ) ,

since π(λ) ∈ U (Hπ) for each λ ∈ Λ. Thus, the integrated representation π of `1w(Λ) given by Equation (7.10) is
well-defined. Note that for each a = (aλ)λ∈Λ , b = (bλ)λ∈Λ ∈ `1(Λ) we have

π(a)π(b) =

(∑
λ∈Λ

aλπ(λ)

)(∑
λ′∈Λ

bλ′π(λ′)

)
=

∑
λ,λ′∈Λ

aλπ(λ)bλ′π(λ′)

=
∑

λ,λ′∈Λ

aλbλ′σ(λ, λ′)π(λλ′).

By using the change of variable λ′ 7→ λ−1m and by changing the order of summation we obtain

π(a)π(b) =
∑
λ∈Λ

∑
m∈Λ

aλbλ−1mσ(λ, λ
−1m)π(m) =

∑
m∈Λ

(∑
λ∈Λ

σ(λ, λ−1m)aλbλ−1m

)
π(m)

=
∑
m∈Λ

(a ∗σ b)mπ(m) = π(a ∗σ b),

for each a = (aλ)λ∈Λ , b = (bλ)λ∈Λ ∈ `1(Λ).Moreover, for each a = (aλ)λ∈Λ ∈ `1(Λ) and f, h ∈ Hπ we have

〈π(a)f, h〉 =

〈∑
λ∈Λ

aλπ(λ)f, h

〉
=
∑
λ∈Λ

aλ〈π(λ)f, h〉 =
∑
λ∈Λ

aλ〈f, π(λ)∗h〉

=
∑
λ∈Λ

aλ〈f, σ(λ−1, λ)π(λ−1)h〉 =

〈
f,
∑
λ∈Λ

σ(λ−1, λ)aλπ(λ
−1)h

〉

=

〈
f,
∑
λ∈Λ

a∗σ

λ−1π(λ
−1)h

〉
=

〈
f,
∑
λ∈Λ

a∗σ

λ π(λ)h

〉
= 〈f, π(a∗σ )h〉,

using that Λ is a discrete group and a∗σ (λ) = σ(λ, λ−1)a(λ−1), for each λ ∈ Λ. Thus,

π(a)∗ = π(a∗σ ). (7.11)

We then define the non-commutative space

A 1
w := π(`1w(Λ))

{
A ∈ B(Hπ) : A = π(a) =

∑
λ∈Λ

aλπ(λ), a ∈ `1w(Λ)

}
, (7.12)

where w = wα : Λ −→ [1,∞), x 7→ (1 + d(x, e))α and the vector subspace

A 0 : = π(c00(Λ)) =

{
A ∈ B(Hπ) : A = π(a) =

∑
λ∈Λ

aλπ(λ), a ∈ c00(Λ)

}
, (7.13)

where c00(Λ) is the set of all sequences a ∈ `∞(Λ) with finitely many non zero a(λ), λ ∈ Λ.We denote with
C∗(Λ, π) the closure of A 0 in the operator norm on Hπ, i.e.

C∗(Λ, π) = A 0
‖·‖B(Hπ) .
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Since every closed subalgebra of a C∗-algebra is again also a C∗−algebra, it follows that C∗(Λ, π) is a C∗-algebra.
Furthermore, for S ⊆ B(Hπ) we denote the commutant by

S
′
= {A ∈ B(Hπ) : AB = BA, ∀B ∈ S} ,

or, equivalently, S
′
is the set of all operators that commute with the elements of S. By von Neumann’s double

commutant theorem, see e.g. [9, Theorem 6.4.], we obtain that

(C∗(Λ, π))
′′
= C∗(Λ, π)

sot
= C∗(Λ, π)

wot
,

where ·sot and ·wot denote the closure with respect to the strong and weak operator norm respectively. Since by
definitionC∗(Λ, π) is the closure of A 0 we deduce that the von Neumann algebra π(Λ)

′′
is the double commutant

of the C∗-algebra C∗(Λ, π),

π(Λ)
′′
= (C∗(Λ, π))

′′
. (7.14)

Since the norm topology is stronger than the strong operator topology (sot) and weak operator topology (wot), i.e.
if a net is convergent in norm then it is convergent in sot and wot, we deduce that

C∗(Λ, π)
sot

= A 0
‖·‖B(Hπ)

sot

= A 0
sot

(7.15)

and similarly

C∗(Λ, π)
wot

= A 0
wot
. (7.16)

Thus, combining the previous we obtain

π(Λ)
′′
= (C∗(Λ, π))

′′
= A 0

sot
= A 0

wot
. (7.17)

The following result given by Caspers and Van Velthoven [5] provides a Fourier-type expansion of each
operator in the von Neumann algebra π(Λ)

′′
on the subspace of Bessel vectors, under the assumption that (π,Hπ)

is a discrete series σ−representation of G.

Proposition 7.3 ([5]). If T ∈ π(Λ)
′′
then there exists c = (cλ)λ∈Λ ∈ `2(Λ) such that

Tg = π(c)g =
∑
λ∈Λ

cλπ(λ)g, (7.18)

for each g ∈ Bπ.

In general, the coefficients given in Equation (7.18) do not need to be unique, e.g. when the projective kernel
p kerπ := {x ∈ G : π(x) ∈ TIHπ} is not trivial, p kerπ 6= {e}, and p kerπ ∩ Λ 6= {e}. Motivated by this, we
call the pair (π,Λ) a uniqueness pair if the expansion given by Proposition 7.3 is unique for each T ∈ π(Λ)

′′
. The

following result explains the importance of (π,Λ) being a uniqueness pair.

Lemma 7.4. Suppose that the pair (π,Λ) is a uniqueness pair. If T ∈ π(Λ)
′′
, c ∈ `2(Λ) and

Tg = π(c)g =
∑
λ∈Λ

cλπ(λ)g = 0

for each g ∈ Bπ ⊆ Hπ, then c = 0.

Proof. We have T = π(c) ∈ π(Λ) and T = π(c) = 0 on the dense subspace Bπ . Since (π,Λ) is a uniqueness pair
then by the uniqueness of the expansion it follows that c = 0.

We present some examples for which the (π,Λ) is a uniqueness pair.

Remark 7.5. The pair (π,Λ) is a uniqueness pair in the following cases:

(i) (Λ, σ) satisfies Kleppner’s condition, see [41]. We say that the pair (Λ, σ) satisfies Kleppner’s condition
if the conjugacy class CΛ(λ) :=

{
γλγ−1 : γ ∈ Λ

}
of any σ−regular element λ ∈ Λ\{e} is infinite, see

[39].



62

(ii) if the projective representation
(
π, L2(Rd)

)
of R2d is defined by

π(x, ξ) : L2(Rd) −→ L2(Rd), f 7→ e2πiξ·f(· − x)

and Λ is a lattice in R2d, see [32, Lemma 3.3.].
(iii) the group G verifies the condition B(G) = Z(G) and π has a trivial projective kernel. We denote by B(G)

the set of all x ∈ G for which the conjugacy class CG(x) =
{
yxy−1 : y ∈ G

}
has a compact closure

and the projective kernel of the representation π is defined by p kerπ = {x ∈ G : π(x) ∈ TIHπ
}. By

combining results from [5] and [13] it can be shown that under these assumptions (π,Λ) is a uniqueness
pair. In particular, this is satisfied for simply connected nilpotent Lie groups, see [13].

We will prove a Wiener type Lemma for the non-commutative space A 1
w in the C∗-algebra C∗(Λ, π), by using

an adaptation of the method proposed by Gröchenig [28] and used by Gröchenig and Leinert in [32] in the case of
time-frequency shifts.

Theorem 7.6 (Spectral Invariance). Suppose that the pair (π,Λ) is a uniqueness pair. If a ∈ `1w(Λ) is such that
π(a) is invertible in B(Hπ), then there exists b ∈ `1w(Λ) such that π(a)−1 = π(b).

In order to prove Theorem 7.6, we first prove some useful norm estimates for π(a), where a ∈ `1w(Λ). The
proof of the following estimate is similar to a result given by Gröchenig and Leinert, see [32, Lemma 3.4.].

Lemma 7.7. For each a ∈ `2(Λ) we have

‖a‖`2(Λ) ≤ ‖Cσa ‖B(`2(Λ)) . (7.19)

Moreover, for each a ∈ `1w(Λ) we have

‖π(a)‖B(Hπ)
≤ ‖Cσa ‖B(`2(Λ)) . (7.20)

Proof. For the first estimate assume a ∈ `2(Λ). Then, since

‖Cσa δe‖`2(Λ) = ‖a‖`2(Λ)

we deduce
‖a‖`2(Λ) ≤ ‖Cσa ‖B(`2(Λ)) . (7.21)

We will now prove the second estimate. Let a ∈ `1w(Λ). Let z /∈ σB(`2(Λ))(C
σ
a ). Then by the spectral invariance

of twisted convolution operators, see Theorem 7.2, there exists b ∈ `1w(Λ) such that (Cσz−a)−1 = Cσb . Then since

‖Cσb ‖B(`1(Λ)) = ‖b‖`1(Λ) ,

we deduce Cσb ∈ B(`1(Λ)) and hence z /∈ σB(`1(Λ))(C
σ
a ). Thus,

σB(`1(Λ))(C
σ
a ) ⊆ σB(`2(Λ))(C

σ
a ) (7.22)

and
rB(`1(Λ))(C

σ
a ) ≤ rB(`2(Λ))(C

σ
a ). (7.23)

Let a ∈ `1w(Λ). Then

‖π(a)‖B(Hπ)
=

∥∥∥∥∥∑
λ∈Λ

aλπ(λ)

∥∥∥∥∥
B(Hπ)

≤
∑
λ∈Λ

|aλ| ‖π(λ)‖B(Hπ)
≤ ‖a‖`1(Λ) = ‖Cσa ‖B(`1(Λ)) ,

since π(λ) ∈ U (Hπ) for each λ ∈ Λ. Hence

rB(Hπ)(π(a)) = lim
n→∞

‖π(a)n‖1/nB(Hπ)
= lim
n→∞

‖π(a ∗σ ... ∗σ a)‖1/nB(Hπ)

≤ lim
n→∞

∥∥Cσa∗σ...∗σa

∥∥1/n
B(Hπ)

= lim
n→∞

‖(Cσa )n‖
1/n
B(`1(Λ)) = rB(`1(Λ))(C

σ
a ).

Thus,

‖π(a)‖2B(Hπ)
= ‖π(a)∗π(a)‖B(Hπ)

= rB(Hπ)(π(a)
∗π(a)) ≤ rB(`1(Λ)) ((C

σ
a )

∗Cσa ) .

Using Equation (7.23) we obtain

‖π(a)‖2B(Hπ)
≤ rB(`1(Λ))((C

σ
a )

∗Cσa ) ≤ rB(`2(Λ))((C
σ
a )

∗Cσa ) = ‖(Cσa )∗Cσa ‖B(`2(Λ)) = ‖Cσa ‖
2
B(`2(Λ)) .

This proves our claim.
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The following equality of norms is essential in applying Hulanicki’s Lemma (Theorem 2.2.3) for the proof of
spectral invariance (Theorem 7.6). We follow the proof given in [32, Theorem 3.1].

Lemma 7.8. Suppose that the pair (π,Λ) is a uniqueness pair. Then, for each a ∈ `1w(Λ)

‖Cσa ‖B(`2(Λ)) = ‖π(a)‖B(Hπ)
. (7.24)

and there exist an isometric *-homomorphism h : C∗(`1) −→ C∗(Λ) such that h(Cσa ) = π(a)∗, for each
a ∈ `1w(Λ).

Proof. Let A ∈ C∗(`1).Then, there exists a sequence {an}n∈N ⊆ `1w(Λ) such that∥∥A− Cσan
∥∥

B(`2(Λ))

n→∞−−−−→ 0.

From the previous lemma we have ‖b‖`2(Λ) ≤ ‖Cσb ‖B(`2(Λ)) for each b ∈ `2(Λ), hence we obtain

‖an − am‖`2(Λ) ≤
∥∥Cσan−am∥∥B(`2(Λ))

=
∥∥Cσan − Cσam

∥∥
B(`2(Λ))

.

Thus, by convergence of
{
Cσan

}
n∈N we deduce that {an}n∈N is a Cauchy sequence in `2(Λ).Thus, there exists

a ∈ `2(Λ) such that ‖an − a‖`2(Λ)
n→∞−−−−→ 0.Then for each c ∈ `1(Λ) we obtain

‖(A− Cσa )c‖`2(Λ) ≤
∥∥(A− Cσan)c

∥∥
`2(Λ)

+
∥∥(Cσan − Cσa )c

∥∥
`2(Λ)

≤
∥∥A− Cσan

∥∥
B(`2(Λ))

‖c‖`1(Λ) + ‖an − a‖`2(Λ) ‖c‖`1(Λ)
n→∞−−−−→ 0,

and hence
Ac = Cσa c = c ∗σ a, (7.25)

for each c ∈ `1(Λ). Since `1(Λ) is dense in `2(Λ) we deduce that A = Cσa = · ∗σ a in B(`2(Λ)). From Lemma
7.7 we have

‖π(an)− π(am)‖B(Hπ)
= ‖π(an − am)‖B(Hπ)

≤
∥∥Cσan−am∥∥B(`2(Λ))

≤
∥∥Cσan − Cσam

∥∥
B(`2(Λ))

,

hence we deduce that (π(an))n ⊆ C∗(Λ, π) is a Cauchy sequence since
∥∥A− Cσan

∥∥
B(`2(Λ))

n→∞−−−−→ 0. Thus,

there exists a unique T ∈ C∗(Λ, π) such that ‖π(an)− T‖B(Hπ)
n→∞−−−−→ 0.Moreover, recall that if g ∈ Bπ then

(π(λ)g)λ∈Λ is a Bessel sequence, hence there exists B := B(g) > 0 such that∥∥∥∥∥∑
λ∈Λ

cλπ(λ)g

∥∥∥∥∥
2

Hπ

≤ B ‖c‖2`2(Λ) ,

for each c ∈ `2(Λ).Therefore, for each g ∈ Bπ we deduce

‖(π(a)− T )g‖Hπ
≤ ‖(π(a)− π(an))g‖Hπ

+ ‖π(an)− T‖B(Hπ)
‖g‖Hπ

≤ B1/2 ‖a− an‖`2(Λ) + ‖π(an)− T‖B(Hπ)
‖g‖Hπ

n→∞−−−−→ 0.

Thus, T = π(a) on Bπ.
We have shown that for each A ∈ C∗(`1) there exists a unique T ∈ C∗(Λ, π). Define

h : C∗(`1) −→ C∗(Λ),

as the mapping such that h(A) = T ∗, for A and T as defined above. Note that by construction of h we have
h(Cσa ) = π(a)∗ for a ∈ `1w(Λ), by choosing the constructing sequence (an)n∈N ⊆ `1w(Λ) as an = a for each
n ∈ N.

We will now prove that h is a *-homomorphism. Recall that for each a, b ∈ `1w(Λ) we have

π(a ∗σ b) = π(a)π(b) and π(a)∗ = π(a∗σ). (7.26)
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Let A, B ∈ C∗(`1). Since for each A, B ∈ C∗(`1), from the analysis above there exist (an)n∈N ⊆ `1w(Λ) and
(bn)n∈N ⊆ `1w(Λ) such that

‖h(A)− π(an)
∗‖B(Hπ)

n→∞−−−−→ 0

and
‖h(B)− π(bn)

∗‖B(Hπ)
n→∞−−−−→ 0.

Moreover, there exist a, b ∈ `2(Λ) such that A = Cσa and B = Cσb in B(`2(Λ)) and h(A) = π(a)∗ and
h(B) = π(b)∗ on Bπ . Then, using Equation (7.26) we obtain

h(AB) = h(CσaC
σ
b ) = h(Cσb∗σa) = π(b ∗σ a)∗ = lim

n→∞
π(bn ∗σ an)∗

= lim
n→∞

(π(bn)π(an))
∗
= lim
n→∞

π(an)
∗π(bn)

∗ = π(a)∗π(b)∗

= h(Cσa )h(C
σ
b ) = h(A)h(B)

on Bπ , where the limits are taken in B(Hπ). By density of the Bessel vectors Bπ (see Lemma 7.1) we deduce that

h(AB) = h(A)h(B) (7.27)

on Hπ and hence h is an homomorphism.
Furthermore, we have

h(A∗) = h((Cσa )
∗) = h(Cσa∗σ ) = π(a∗σ )∗ = lim

n→∞
π(a∗σ

n )∗

= lim
n→∞

π(an) = π(a) = (π(a)∗)
∗
= h(Cσa )

∗ = h(A)∗,

on Bπ , where the limits are taken in B(Hπ) and using once more the density of the Bessel vectors Bπ we deduce
that

h(A∗) = h(A)∗ (7.28)

on Hπ and hence h is an *-homomorphism.
Suppose that T ∗ = h(A) ∈ C∗(Λ, π) and T = 0. Then by definition of h there exists a ∈ `2(Λ) such that

A = Cσa and T = π(a) on Bπ. Hence, π(a) = 0 on Bπ . Since T = 0, we have T ∈ π(Λ)
′′
and since T = π(a)

on Bπ then it follows by Lemma 7.4 that a = 0. From the previous we deduce that h is injective. Since every
injective *-homomorphism between C∗ algebras is isometric, see e.g. [46, Theorem 3.1.5.], we conclude that h is
isometric. Thus, for each a ∈ `1w(Λ) we obtain

‖Cσa ‖B(`2(Λ)) = ‖h(Cσa )‖B(Hπ)
= ‖π(a)∗‖B(Hπ)

= ‖π(a)‖B(Hπ)
. (7.29)

Suppose a ∈ `1w(Λ) and (Cσa )
∗ = Cσa , i.e. a = a∗σ . Then from Lemma 7.8 we have

rB(`2(Λ))(C
σ
a ) = ‖Cσa ‖B(`2(Λ)) = ‖h(Cσa )‖B(Hπ)

= ‖π(a)‖B(Hπ)
,

where h : C∗(`1) −→ C∗(Λ) is the isometric *-homomorphism defined in Lemma 7.8. Then by Theorem 2.2.3 we
obtain

σB(`2(Λ))(C
σ
a ) = σB(Hπ)(π(a)), (7.30)

for each a = a∗σ . Now suppose that a ∈ `1w(Λ) is such that π(a) is invertible in B(Hπ). Then
π(a∗σ∗σa) = π(a)∗π(a) is invertible in B(Hπ). From Equation (7.30) we deduce that Cσa∗σ∗σa is invertible
in B(`2(Λ)). Similarly we deduce that Cσa∗σa∗σ is invertible in B(`2(Λ)). Then Cσa∗σ (Cσa∗σ∗σa)

−1 is a right
inverse and (Cσa∗σa∗σ )

−1Cσa∗σ is a left inverse of Cσa in B(`2(Λ)). Thus if π(a) is invertible in B(Hπ) then Cσa
is invertible in B(`2(Λ)). Similarly, we deduce that if Cσa is invertible in B(`2(Λ)) then π(a) is invertible in
B(Hπ). Thus,

π(a) =
∑
λ∈Λ

aλπ(λ) ∈ Inv(B(Hπ)) ⇐⇒ Cσa ∈ Inv(B(`2(Λ))). (7.31)

Using the previous we will now prove Theorem 7.6.
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Proof of Theorem 7.6. Let a ∈ `1w(Λ) and A = π(a) ∈ A 1
w . Assume that A = π(a) is invertible in B(Hπ).

Then from (7.31), it follows that Cσa is invertible in B(`2(Λ)). Hence, since twisted convolution operators are
inverse-closed in B(`2(Λ)) (see Theorem 7.2) we deduce that there exists b ∈ `1w such that (Cσa )−1 = Cσb and
a ∗σ b = δe = b ∗σ a. Thus,

π(a)π(b) = π(a ∗σ b) = π(δe) = I (7.32)

and similarly

π(b)π(a) = π(b ∗σ a) = π(δe) = I, (7.33)

hence π(a)−1 = π(b) ∈ B(Hπ). This proves the theorem.

Define the non-commutative space

A 1
∞ :=

{
A ∈ B(Hπ) : A =

∑
λ∈Λ

aλπ(λ), a ∈ `1wα
(Λ) ,∀α ∈ N

}
, (7.34)

where wα : Λ −→ [1,∞), x 7→ (1 + d(x, e))α. Applying Theorem 7.6 for A 1
wα

for each α ∈ N we obtain Wiener
type Lemma of A 1

wα
in C∗(Λ, π). Furthermore, taking the intersection of A 1

wα
, α ∈ N, we deduce a Wiener type

Lemma for the smooth non-commutative space A 1
∞ =

⋂
α∈N A 1

wα
in C∗(Λ, π).

Theorem 7.9. Suppose that the pair (π,Λ) is a uniqueness pair. If A ∈ A 1
∞ such that A−1 ∈ B(Hπ), then

A−1 ∈ A 1
∞.

The previous recovers the Wiener type Lemma for the smooth non-commutative torus given by Connes [8],
where the smooth non-commutative torus is defined by (7.34), where Λ is a lattice in R2d and

(
π, L2(Rd)

)
is the

projective representation of time-frequency shifts.
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Frames in Coorbit spaces

In this chapter, we present applications of the `p-stability and spectral invariance of convolution-dominated
matrices in frame theory. We prove that if π(Λ)g is a p-frame on the coorbit space Co(Lp) for some p ∈ [1,∞],
then π(Λ)g is a q-frame on the coorbit space Co(Lq) for each q ∈ [1,∞]. Moreover, we show that the frame
operator of a frame π(Λ)g for Hπ is not only invertible over the Hilbert space Hπ , but also as an operator on the
coorbit spaces Co(Lp).

Throughout this chapter we assume that (π,Hπ) is a discrete series σ-representation of the group G of
polynomial growth. For each α ∈ N ∪ {0}, we denote by wα the weight function on G given by

wα : G −→ [1,∞), x 7→ (1 + d(x, e))α.

We denote by 〈·, ·〉 the inner product of the Hilbert space Hπ and we define the following subspace

A1
π =

{
g ∈ Hπ : Vgg ∈ L1(G)

}
. (8.1)

Moreover, for a vector g ∈ A1
π\{0} we define

H1 = H1(g) =
{
f ∈ Hπ : Vgf ∈ L1(G)

}
(8.2)

and equip H1 with the norm
‖f‖H1 := ‖Vgf‖L1(G) . (8.3)

Then, H1 is a Banach space with respect to the norm ‖·‖H1 , see [7, 15, 65], and H1(g) is independent of the
choice of g with equivalent norms ‖·‖H1(g) � ‖·‖H1(g′) for g, g

′ ∈ A1
π\{0}, see [7, 15, 65]. Moreover, it can be

shown that H1(g) is continuously embedded in Hπ and H1(g) is norm dense in Hπ , see e.g. [65, Lemma 4.3].
Let R1 =

(
H1
)∗

=
(
H1(g)

)∗ be the anti-dual of H1 as a Banach space, i.e. R1 is the set of all anti-linear
functionals on the Banach space H1(g). We denote the anti-linear pairing for each f ∈ R1 and h ∈ H1 by

〈f, h〉R1,H1 = f(h). (8.4)

We have thatHπ andH1 are continuously embedded inR1,Hπ ↪−→ R1 andH1 ↪−→ R1, see e.g [65, Lemma 4.6].
Moreover, the pairing 〈·, ·〉R1,H1 extends the inner product 〈·, ·〉, that is for each f ∈ Hπ and h ∈ H1 we have

〈f, h〉R1,H1 = 〈f, h〉, (8.5)

using the embedding Hπ ↪−→ R1, see e.g [65, Lemma 4.6].
For a vector g ∈ A1

π\{0} and p ∈ [1,∞] we define the coorbit space of Lp(G),

Co(Lp) = Cog(L
p) =

{
f ∈ R1 : Vgf = 〈f, π(·)g〉R1,H1 ∈ Lp(G)

}
, (8.6)

equipped with the norm
‖f‖Co(Lp) = ‖Vgf‖Lp(G) . (8.7)
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The coorbit spaces are Banach spaces and are independent of the choice of g ∈ A1
π\{0}, with equivalent norms

[7, 15, 16, 65]. Moreover, it can be shown that Co(L2) = Hπ , see e.g. [15, Corollary 4.4]. For more details on
coorbit spaces we refer the reader to [7, 15, 16, 65].

For a vector g ∈ A1
π\{0}, it can be proved that the coorbit spaces Co(Lp) are embedded in R1 for each

p ∈ [1,∞], see e.g. [15] and [65, Proposition 4.8]. Moreover, for p = 1 the coorbit space Co(L1) is equal to
H1(g), see e.g. [65, Proposition 4.10 and Lemma 4.12] for a proof.

Proposition 8.1 ([15, 65]). Let g ∈ A1
π\{0}. Then:

(i) Cog(Lp) ↪−→ R1(g) =
(
H1(g)

)∗, for each p ∈ [1,∞],
(ii) Cog(L1) = H1(g).
(iii) Cog(L2) = Hπ .

For studying the boundedness of operators on coorbit spaces we need the following subspaces of A1
π . For

w : G −→ [1,∞) a measurable, submultiplicative weight on G we define the subspaces

A1
π,w =

{
g ∈ Hπ : Vgg ∈ L1

w(G)
}

(8.8)

and

B1
w = {g ∈ Hπ : Vgg ∈Ww(G)} , (8.9)

whereWw(G) is the weighted Amalgam space of continuous functions. For the class of w-integrable representa-
tions we have that the subspaces A1

π,w and B1
w are non-trivial. A representation π is said to be a w-integrable

representation if there exists g ∈ Hπ\{0} such that Vgg = 〈g, π(·)g〉 ∈ L1
w(G). For a w−integrable represen-

tation we have by definition that A1
π,w is non-trivial and we can further show that the vector space B1

w is also
non-trivial [17].

Lemma 8.2. Suppose that w : G −→ [1,∞) is a measurable, submultiplicative weight onG. If π is an irreducible,
w−integrable representation, then there exists h ∈ Hπ, h 6= 0 such that Vhh ∈Ww(G).

Proof. Since π is a w−integrable representation, there exists f ∈ Hπ, f 6= 0 such that Vff ∈ L1
w(G). Let

φ ∈ Cc(G).We denote by π(φ) the operator on the Hilbert space Hπ given by

〈f1, π(φ)f2〉 =
∫
G

〈f1, π(x)f2〉φ(x)dµ(x), (8.10)

for each f1, f2 ∈ Hπ.Then for each x ∈ G we obtain∣∣Vπ(φ)fπ(φ)f(x)∣∣ = |〈π(φ)f, π(x)π(φ)f〉| ≤
∫
G

∫
G

|〈π(z)f, π(x)π(y)f〉| |φ(z)| |φ(y)|dµ(z)dµ(y).

From the σ−projectivity of the representation we have∣∣Vπ(φ)fπ(φ)f(x)∣∣ ≤ ∫
G

∫
G

∣∣〈f, π(z−1xy)f〉
∣∣ |φ(y)| |φ(z)|dµ(z)dµ(y)

≤
∫
G

∫
G

∣∣Vff(z−1xy)
∣∣ |φ(y)| |φ(z)|dµ(z)dµ(y)

≤
∫
G

(|φ| ∗ |Vff |) (xy) |φ(y)|dµ(y)

=

∫
G

(|φ| ∗ |Vff |) (xy)
∣∣φ∨(y−1)

∣∣dµ(y)
= (|φ| ∗ |Vff | ∗ |φ∨|) (x).

Hence, using Equations (3.47) and (3.48) we deduce∥∥Vπ(φ)fπ(φ)f∥∥Ww(G)
=
∥∥ML

Q M
R
Q Vπ(φ)fπ(φ)f

∥∥
L1

w(G)
=
∥∥ML

Q M
R
Q (|φ| ∗ |Vff | ∗ |φ∨|)

∥∥
L1

w(G)

=
∥∥MR

Q |φ| ∗ |Vff | ∗ML
Q |φ∨|

∥∥
L1

w(G)

≤
∥∥MR

Q |φ|
∥∥
L1

w(G)
‖|Vff |‖L1

w(G)

∥∥ML
Q |φ∨|

∥∥
L1

w(G)

≤ ‖φ‖Ww(G) ‖Vff‖L1
w(G) ‖φ

∨‖Ww(G) .
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Since φ has compact support and Vff ∈ L1
w(G) we conclude that∥∥Vπ(φ)fπ(φ)f∥∥Ww(G)

<∞, (8.11)

and thus h = π(φ)f ∈ Hπ\{0} is such that Vhh ∈Ww(G), or equivalently h ∈ B1
w\{0}.

Moreover, in order to define and prove the boundedness of the frame operator on coorbit spaces we will use a
result for molecules in a Hilbert space. We follow [34, 54] for the definition of molecules.

Definition 8.3. Let g ∈ B1
w\{0}. Let Λ be a relatively separated set in G. A set (gλ)λ∈Λ ⊆ Hπ is called a

w−molecule, if there exists Θ ∈Ww(G) such that

|Vggλ| (x) = |〈gλ, π(x)g〉| ≤ Θ(λ−1x), (8.12)

for each λ ∈ Λ and x ∈ G.

If (gλ)λ∈Λ ⊆ Hπ is a w−molecule, then for each λ ∈ Λ

‖Vggλ‖L1(G) ≤
∫
G

∣∣Θ(λ−1x)
∣∣dµ(x) = ‖Θ‖L1(G) <∞, (8.13)

hence gλ ∈ H1 for each λ ∈ Λ. Moreover, the functions Vggλ, λ ∈ Λ have a common envelope, Θ ∈ Ww(G),
therefore the assumption in (8.12) is stronger than assuming gλ ∈ H1 for each λ ∈ Λ. Note that if g ∈ B1

w\{0},
then for each λ ∈ Λ and x ∈ G we have

Vgπ(λ)g(x) = |〈π(λ)g, π(x)g〉| =
∣∣〈g, π(λ−1x)g

〉∣∣ = ∣∣Vgg(λ−1x)
∣∣

and Vgg ∈Ww(G). Thus, if g ∈ B1
w\{0}, then π(Λ)g is automatically a w−molecule.

For a w−molecule (gλ)λ∈Λ ⊆ Hπ , the coefficient operator

C : f 7−→
(
〈f, gλ〉R1,H1

)
λ∈Λ

and the reconstruction operator
D : c = (cλ)λ∈Λ 7−→

∑
λ∈Λ

cλgλ

can be shown to be bounded as operators from Cog(L
p) into `p(Λ) and from `p(Λ) into Cog(Lp), respectively,

see e.g. [65, Proposition 6.11.] and [54]. Hence, we deduce that S = DC is a bounded operator defined on
Cog(L

p).

Lemma 8.4 ([65]). Let g ∈ B1
w\{0}. If (gλ)λ∈Λ ⊆ Hπ is a w−molecule then the operators

C : Cog(L
p)−→`p(Λ) (8.14)

f 7−→
(
〈f, gλ〉R1,H1

)
λ∈Λ

and

D : `p(Λ) −→Cog(L
p) (8.15)

c = (cλ)λ∈Λ 7−→
∑
λ∈Λ

cλgλ

are well-defined and bounded. Moreover,

S : Cog(L
p)−→Cog(L

p) (8.16)

f 7−→
∑
λ∈Λ

〈f, gλ〉R1,H1gλ

is a well-defined and bounded operator.
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We now present an application of the `p-stability result in p-frames. From Lemma 8.4 we have that for
g ∈ B1

wα
\{0} the coefficient operator of π(Λ)g, defined by

Cg,Λ : Cog(L
p)−→`p(Λ) (8.17)

f 7−→
(
〈f, π(λ)g〉R1,H1

)
λ∈Λ

is well-defined and bounded. The system π(Λ)g is said to be a p-frame for Cog(Lp) if there exist A,B > 0 such
that for each f ∈ Cog(L

p)

A ‖f‖Cog(Lp) ≤ ‖Cg,Λf‖`p(Λ) ≤ B ‖f‖Cog(Lp) . (8.18)

Note that the above definition of a 2-frame for Cog(L2) coincides with the definition of a frame on the Hilbert
space Hπ given by Definition 6.2.1, since Cog(L2) = Hπ by Proposition 8.1.

Using Theorem 5.1.1 we will prove that for g ∈ B1
wα

, if π(Λ)g is a p-frame for Cog(Lp) for some p ∈ [1,∞],
then π(Λ)g is a q-frame for Cog(Lq) for each q ∈ [1,∞].

Theorem 8.5. Let G be a group of polynomial growth, with order of growth equal to DG > 0. Suppose
that (π,Hπ) is a discrete series σ-representation of the group G and Λ ⊆ G is a relatively separated set. Fix
g ∈ B1

wα
\{0}, where α ≥ DG + 1. If π(Λ)g is a p-frame for Cog(Lp) for some p ∈ [1,∞], then π(Λ)g is a

q-frame for Cog(Lq) for each q ∈ [1,∞].

Before proving the previous theorem, we state a result on the existence of canonical dual frames which are
also molecules, see [54, Theorem 5.3].

Proposition 8.6 ( [54]). Let (π,Hπ) be a discrete series σ-representation of the groupG of polynomial growth. Fix
α ∈ N and h ∈ B1

wα
\{0}. Then there exists a relatively separated set Γ ⊆ G, such that π(Γ)h is a p-frame for each

p ∈ [1,∞], the canonical dual frame
(
h̃γ

)
γ∈Γ

of π(Γ)h in Hπ is a wα-molecule and there exists Θ ∈Wwα
(G)

such that for each γ ∈ Γ and x ∈ G ∣∣∣Vhh̃γ(x)∣∣∣ ≤ Θ(γ−1x). (8.19)

Moreover, for each p ∈ [1,∞] we have that (h̃γ)γ∈Γ is a p-frame and for each f ∈ Co(Lp) we have the following
expansions

f =
∑
γ∈Γ

〈f, π(γ)h〉R1,H1 h̃γ =
∑
γ∈Γ

〈f, h̃γ〉R1,H1π(γ)h. (8.20)

The proof of Theorem 8.5 presented below is inspired by [27, Theorem 2.2], which proves a similar result in
the setting of homogeneous groups.

Proof of Theorem 8.5. Fix p ∈ [1,∞] and suppose that π(Λ)g is a p-frame for Cog(Lp). Let

Cg,Λ : Cog(L
p)−→`p(Λ) (8.21)

f 7−→
(
〈f, π(λ)g〉R1,H1

)
λ∈Λ

and

Dg,Λ : `p(Λ) −→Cog(L
p) (8.22)

c = (cλ)λ∈Λ 7−→
∑
λ∈Λ

cλπ(λ)g

be the coefficient and reconstruction operators of π(Λ)g, respectively.
From Proposition 8.6 and for h ∈ B1

wα
\{0}, there exists a relatively separated set Γ ⊆ G such that π(Γ)h and

its dual frame (h̃γ)γ∈Γ are a q-frames for each q ∈ [1,∞] and there exists Θ ∈Wwα(G) such that for each γ ∈ Γ
and x ∈ G ∣∣∣Vhh̃γ(x)∣∣∣ ≤ Θ(γ−1x). (8.23)

We denote by Ch,Γ and Dh,Γ the coefficient and reconstruction operators of π(Γ)h and by Ch̃ and Dh̃ the
coefficient and reconstruction operators of (h̃γ)γ∈Γ.
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We define the operators
A := Cg,ΛDh,Γ : `p(Γ) −→ `p(Λ) (8.24)

and
P := Ch̃Dh,Γ : `p(Γ) −→ `p(Γ). (8.25)

By Lemma 8.4 we have that A and P are well-defined and bounded. For each λ ∈ Λ, γ ∈ Γ

A(λ, γ) = 〈π(γ)h, π(λ)g〉R1,H1 = 〈π(γ)h, π(λ)g〉 (8.26)

and hence

|A(λ, γ)| = |〈π(γ)h, π(λ)g〉| = |〈π(λ)g, π(γ)h〉| =
∣∣〈g, π(λ−1γ)h〉

∣∣ = |Vhg| (λ−1γ). (8.27)

From h, g ∈ B1
wα

we have Vhh, Vgg ∈ Wwα
(G), hence Vhg ∈ Wwα

(G) from e.g. [65, Lemma 4.5]. Thus,
A ∈ CDwα

(Γ,Λ). Moreover, for each γ, γ′ ∈ Γ

P (γ, γ′) = 〈π(γ′)h, h̃γ〉R1,H1 = 〈π(γ′)h, h̃γ〉 (8.28)

and hence from Equation (8.23) we obtain

|P (γ, γ′)| =
∣∣∣〈π(γ′)h, h̃γ〉∣∣∣ = ∣∣∣〈h̃γ , π(γ′)h〉∣∣∣ = ∣∣∣Vhh̃γ∣∣∣ (γ′) ≤ Θ(γ−1γ′). (8.29)

From Θ ∈Wwα
(G), it follows that P ∈ CDwα

(Γ). From the expansion (8.20) in Proposition 8.6 we have

f =
∑
γ∈Γ

〈f, h̃γ〉R1,H1π(γ)h = Dh,ΓCh̃f,

for each f ∈ Co(Lp). Thus,
P 2 = Ch̃Dh,ΓCh̃Dh,Γ = Ch̃Dh,Γ = P (8.30)

on `p(Γ), i.e. P is idempotent.
For each c ∈ `p(Γ) we have that f = Dh,Γc ∈ Co(Lp) and then

‖APc‖`p(Λ) =
∥∥Cg,ΛDh,ΓCh̃Dh,Γc

∥∥
`p(Λ)

=
∥∥Cg,ΛDh,ΓCh̃f

∥∥
`p(Λ)

= ‖Cg,Λf‖`p(Λ) , (8.31)

where we have used that f = Dh,ΓCh̃f, for each f ∈ Co(Lp). Since π(Λ)g is a p-frame by assumption and
(h̃γ)γ∈Γ is a p-frame by Proposition 8.6, we obtain

‖APc‖`p(Λ) = ‖Cg,Λf‖`p(Λ) & ‖f‖Co(Lp) &
∥∥Ch̃f∥∥`p(Γ) = ∥∥Ch̃Dh,Γc

∥∥
`p(Γ)

. (8.32)

Thus, for each c ∈ `p(Γ)

‖APc‖`p(Λ) &
∥∥Ch̃Dh,Γc

∥∥
`p(Γ)

= ‖Pc‖`p(Γ) . (8.33)

Since α ≥ DG + 1, A ∈ CDwα
(Γ,Λ), P ∈ CDwα

(Γ), P 2 = P and Equation (8.33) holds, the assumptions of
Theorem 5.1.4 are satisfied. Hence, by applying Theorem 5.1.4 there exists C ′ > 0 such that for each q ∈ [1,∞]

C ′ ‖APc‖`q(Λ) ≥ ‖Pc‖`q(Γ) . (8.34)

Fix q ∈ [1,∞]. For each f ∈ Co(Lq) from the Expansion (8.20) there exists cf := Ch̃f ∈ `q(Γ) such that
f = Dh,Γcf . Then for each f ∈ Co(Lq) we have

C ′ ‖Cg,Λf‖`q(Λ) = C ′ ∥∥Cg,ΛDh,ΓCh̃f
∥∥
`q(Λ)

= C ′ ∥∥Cg,ΛDh,ΓCh̃Dh,Γcf
∥∥
`q(Λ)

= C ′ ‖APcf‖`q(Λ) ≥ ‖Pcf‖`q(Γ) =
∥∥Ch̃Dh,Γcf

∥∥
`q(Γ)

=
∥∥Ch̃f∥∥`q(Γ) ,

using Equation (8.34). Then using that (h̃γ)γ∈Γ is a q-frame (Proposition 8.6) we obtain for each f ∈ Co(Lq)

C ′ ‖Cg,Λf‖`q(Λ) ≥
∥∥Ch̃f∥∥`q(Γ) & ‖f‖Co(Lq) . (8.35)

On the other hand, from g ∈ Bwα
\{0} and Lemma 8.4 we have that Cg,Λ is bounded on Co(Lq). Hence by

combining the previous

‖f‖Co(Lq) . ‖Cg,Λf‖`q(Λ) . ‖f‖Co(Lq) . (8.36)

for each f ∈ Co(Lq). Thus, π(Λ)g is a q-frame. Since q ∈ [1,∞] was chosen arbitrary, the previous proves our
claim.
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For the next results, we define the following subspace of the Hilbert space Hπ

B∞
π :=

⋂
α∈N

B1
wα

= {f ∈ Hπ : Vff ∈Wwα(G), ∀α ∈ N} , (8.37)

where wα is the submultiplicative weight on G given by

wα : G −→ [1,∞), x 7→ (1 + d(x, e))α,

for each α ∈ N.

Remark 8.7. For classes of projective representations π of simply connected nilpotent Lie groups, the space B∞
π

is non-trivial, i.e. B∞
π 6= {0}. Assuming that G is a simply connected nilpotent Lie group, we define the smooth

vectors
H∞
π = {f ∈ Hπ : [x 7−→ π(x)f ] ∈ C∞(G ;Hπ)} . (8.38)

It can be shown that H∞
π is norm dense in Hπ , see e.g. [11]. Let g be the Lie algebra of G, with basis

{Y1, Y2, ..., Yd}. We define the algebra D(G) of all differential operators D : C∞(G) −→ C∞(G), such that
D =

∑
β∈(N∪{0})d cβY

β1

1 Y β1

2 · · · Y βd

d , with finitely many non-zero cβ ∈ C. Then, a function F ∈ C∞(G)

belongs in the Schwartz space, i.e. F ∈ S(G), if for all D ∈ D(G) and α ∈ N ∪ {0}

‖F‖D,α := ‖DF‖L∞
wα

(G) <∞. (8.39)

See [44, 57] for more on the Schwartz space on Lie groups. For g ∈ H∞
π , it can be shown that

Vgg = 〈g, π(·)g〉 ∈ S(G),

see [11, 12, 37, 50]. In particular, this shows that Vgg ∈
⋂
α∈NWwα(G). Therefore, it follows thatB∞

π is non-trivial
for nilpotent Lie groups.

Using the Wiener type Lemma for the convolution-dominated matrices
⋂
α∈N CDwα

(Λ), given by Theorem
5.2.2, we prove that if π(Λ)g is a frame for the Hilbert space Hπ, then the dual frame

(
S−1
g π(λ)g

)
λ∈Λ

is a
wα−molecule for each α ∈ N, under the assumption g ∈ B∞

π .

Lemma 8.8. Let g ∈ B∞
π \{0}. Suppose that π(Λ)g is a frame for Hπ with frame operator Sg.Then the dual

frame (hλ)λ∈Λ =
(
S−1
g π(λ)g

)
λ∈Λ

of π(Λ)g is a wα-molecule for each α ∈ N.

Proof. If π(Λ)g is a frame, then the frame operator Sg is invertible in B(Hπ). Denote by

A = (〈π(λ)g, π(λ′)g〉)λ,λ′∈Λ

and
B =

(
〈S−1
g π(λ)g, S−1

g π(λ′)g〉
)
λ,λ′∈Λ

the Gramian matrix of π(Λ)g and its dual frame (hλ)λ∈Λ, respectively. Then, by [23, Lemma 3.1.], we obtain

B = (A†)2A, (8.40)

where A† is the pseudoinverse of A in B(`2(Λ)).
Since g ∈ B∞

π we have Vgg ∈Wwα
(G) for each α ∈ N and for each λ, λ′ ∈ Λ we have

|A(λ, λ′)| = |〈π(λ)g, π(λ′)g〉| =
∣∣〈g, π(λ−1λ′)g

〉∣∣ = ∣∣Vgg(λ−1λ′)
∣∣ ,

hence A ∈ CDwα
(Λ) for each α ∈ N. From the previous and the inclusion (5.21) it follows that A ∈ S1,wα

(Λ)
for each α ∈ N. From Corollary 2.2.5 we deduce that A† ∈ S1,wα

(Λ) for each α ∈ N, since A† is the
pseudoinverse ofA = A∗ in B(`2(Λ)) and S1,wα(Λ) is inverse-closed in B(`2(Λ)), seeTheorem 5.2.1. Moreover,
B = (A†)2A ∈ S1,wα(Λ) for each α ∈ N, since S1,wα(Λ) is closed under composition. Then, following the
proof of Theorem 5.2.2 we deduce that B ∈

⋂
α∈N CDwα

(Λ).
For λ ∈ Λ we obtain using the frame decomposition (6.11) for hλ = S−1

g π(λ)g

hλ =
∑
λ′∈Λ

〈hλ, S−1
g π(λ′)g〉π(λ′)g =

∑
λ′∈Λ

〈hλ, hλ′〉π(λ′)g. (8.41)
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Then, for each λ ∈ Λ and each x ∈ G

|Vghλ(x)| =

∣∣∣∣∣Vg
(∑
λ′∈Λ

〈hλ, hλ′〉π(λ′)g

)
(x)

∣∣∣∣∣ =
∣∣∣∣∣∑
λ′∈Λ

〈hλ, hλ′〉Vg (π(λ′)g) (x)

∣∣∣∣∣
≤
∑
λ′∈Λ

|〈hλ, hλ′〉| |Vg (π(λ′)g) (x)| =
∑
λ′∈Λ

|B(λ, λ′)|
∣∣∣Vgg((λ′)−1

x)
∣∣∣ .

Fix α ∈ N. Since B ∈
⋂
β∈N CDwβ

(Λ), there exists Θ ∈Wwα(G) such that |B(λ, λ′)| ≤ Θ(λ−1λ′).Thus,

|Vghλ(x)| =
∑
λ′∈Λ

Θ(λ−1λ′)
∣∣∣Vgg((λ′)−1

x)
∣∣∣

and from Lemma 3.2.7 we obtain

|Vghλ(x)| ≤
RelQ (Λ)

µ(Q)

(
ML

Q Θ ∗MR
Q |Vgg|

)
(λ−1x)

Then using Equations (3.47) and (3.48) we have∥∥(ML
Q Θ ∗MR

Q |Vgg|
)∥∥
Wwα (G)

=
∥∥ML

Q M
R
Q
(
ML

Q Θ ∗MR
Q Vgg

)∥∥
L1

wα
(G)

=
∥∥MR

Q
(
ML

Q Θ
)
∗ML

Q
(
MR

Q |Vgg|
)∥∥
L1

wα
(G)

≤
∥∥MR

Q M
L
Q Θ
∥∥
L1

wα
(G)

∥∥ML
Q M

R
Q (|Vgg|)

∥∥
L1

wα
(G)

≤ ‖Θ‖Wwα (G) ‖Vgg‖Wwα (G) .

From Θ ∈ Wwα
(G) and Vgg ∈ Wwα

(G) we deduce that ML
Q Θ ∗ MR

Q |Vgg| ∈ Wwα
(G) and then (hλ)λ∈Λ is a

wα-molecule. Since α ∈ N was chosen arbitrary, it follows that (hλ)λ∈Λ is a wα-molecule for each α ∈ N.

The analysis above is sufficient for proving the following result. We fix a vector g ∈ B∞
π . Moreover, we

assume that π(Λ)g defines a frame for Hπ , or equivalently the frame operator

Sg : Hπ−→Hπ (8.42)

f 7−→
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g

is invertible in B(Hπ). Then, the frame operator Sg is well-defined and invertible as an operator on the coorbit
spaces Cog(Lp) for p ∈ [1,∞].

Theorem 8.9. Fix p ∈ [1,∞]. Suppose that (π,Hπ) is a discrete series σ-representation of the group G of
polynomial growth and Λ ⊆ G is a relatively separated set. Fix g ∈ B∞

π \{0} and assume that π(Λ)g is a frame
for Hπ . Then the frame operator

S : Cog(L
p)−→Cog(L

p) (8.43)

f 7−→
∑
λ∈Λ

〈f, π(λ)g〉R1,H1π(λ)g

is well-defined and invertible.

Proof. Fix α ∈ N. Note that for each λ ∈ Λ and x ∈ G we obtain

|Vgπ(λ)g| (x) = |〈π(λ)g, π(x)g〉| =
∣∣〈g, π(λ−1)π(x)g

〉∣∣ = ∣∣〈g, π(λ−1x)g
〉∣∣ = |Vgg| (λ−1x).

Moreover, from the assumption g ∈ B∞
π \{0} we have Vgg ∈ Wwα

(G). Thus, by combining the previous we
deduce that π(Λ)g is a wα−molecule and hence by applying Lemma 8.4 we obtain that

S : Cog(L
p)−→Cog(L

p) (8.44)

f 7−→
∑
λ∈Λ

〈f, π(λ)g〉R1,H1π(λ)g
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is a well-defined and bounded operator, i.e. S ∈ B(Cog(L
p)).

By Lemma 8.8 we deduce that the dual frame (hλ)λ∈Λ =
(
S−1π(λ)g

)
λ∈Λ

of π(Λ)g is a wβ-molecule for each
β ∈ N, since g ∈ B∞

π \{0} and π(Λ)g is a frame. In particular, (hλ)λ∈Λ is a wα-molecule. Thus, from Lemma 8.4
we obtain that the operator

Sh : Cog(L
p)−→Cog(L

p) (8.45)

f 7−→
∑
λ∈Λ

〈f, hλ〉R1,H1hλ

is well-defined and bounded. On the other hand, from the duality of the frames (hλ)λ∈Λ and π(Λ)g and since
〈·, ·〉R1,H1 extends 〈·, ·〉 we obtain for each f ∈ Hπ

S−1
h f = (Sh|Hπ )

−1f =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g =
∑
λ∈Λ

〈f, π(λ)g〉R1,H1π(λ)g = Sf. (8.46)

Hence Sh = S−1 in B(Hπ). In particular Sh = S−1 on H1 ⊆ Hπ , and hence from Proposition 8.1 we have
Sh = S−1 on Cog(L1) = H1.

From the previous we have for each f ∈ H1

f = SShf =
∑
λ∈Λ

〈Shf, π(λ)g〉π(λ)g =
∑
λ∈Λ

〈f, Shπ(λ)g〉π(λ)g =
∑
λ∈Λ

〈f, hλ〉π(λ)g.

Then, from [65, Corollary 6.13] it follows that f = SShf for each f ∈ R1. Moreover, since

f = ShSf =
∑
λ∈Λ

〈f, π(λ)g〉Shπ(λ)g =
∑
λ∈Λ

〈f, π(λ)g〉hλ,

for each f ∈ H1, by applying [65, Corollary 6.13] it follows that f = ShSf for each f ∈ R1. In particular, using
the embedding given by Proposition 8.1, we have f = SShf = ShSf for each f ∈ Cog(L

p). We conclude that
Sh = S−1 on Cog(Lp). Thus, from Sh ∈ B(Cog(L

p)) it follows that S has an inverse in B(Cog(L
p)). This

proves our claim.

If for g ∈ B∞
π \{0} ⊆ B1

wDG+1
we assume that π(Λ)g is a q-frame for some q ∈ [1,∞], then fromTheorem

8.5 it follows that π(Λ)g is a 2-frame, or, equivalently, π(Λ)g is a frame for Hπ . Therefore, for g ∈ B∞
π \{0},

such that π(Λ)g is a q-frame for some q ∈ [1,∞], the assumptions of Theorem 8.9 are satisfied. This proves the
following result.

Corollary 8.10. Fix p ∈ [1,∞]. Suppose that (π,Hπ) is a discrete series σ-representation of the group G of
polynomial growth and Λ ⊆ G is a relatively separated set. Fix g ∈ B∞

π \{0} and assume that π(Λ)g is a q-frame
for some q ∈ [1,∞]. Then the frame operator

S : Cog(L
p)−→Cog(L

p) (8.47)

f 7−→
∑
λ∈Λ

〈f, π(λ)g〉R1,H1π(λ)g

is well-defined and invertible.
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Conclusion

In this thesis, we intended to study convolution-dominated matrices on locally compact groups of polynomial
growth and investigate the `p-stability and the spectral invariance of this algebra of operators. Using a commutator
technique by Sjöstrand [60] we have proved that if a convolution-dominated matrix is bounded from below for
some p ∈ [1,∞], then it is bounded from below for each q ∈ [1,∞]. The previous was proved for the weighted
class of convolution-dominated matrices, CDw(Λ), under the assumption that wα is a polynomial weight of order
α ≥ D, whereD is the order of growth of the group. This result is new for matrices indexed by general relatively
separated sets in a group of polynomial growth. In the case of convolution-dominated matrices indexed by a
uniform lattice in a group of polynomial growth, we recover the result on boundedness from below given by
Tessera [63], however Tessera [63] proved the result for each polynomial weight.

Regarding the spectral invariance, using a result given by Sun [61] we have deduced that if a matrix, indexed
by a relatively separated set Λ in a group G of polynomial growth, belongs in CDwα(Λ) for each polynomial
weight wα, α ∈ N and is invertible in B(`2(Λ)), then its inverse belongs in CDwα(Λ) for each α ∈ N. Fendler,
Gröchenig and Leinert in [19] showed that the weighted class of convolution-dominated matrices over a discrete
group of polynomial growth is spectrally invariant for each polynomial weight, but also in the unweighted case.
We expect a similar result for convolution-dominated matrices indexed by relatively separated sets in groups of
polynomial growth, however our estimates in the commutator technique do not seem to be good enough to obtain
this spectral invariance.

Additionally, during the project we have studied applications of convolution-dominated matrices and applica-
tions of the `p-stability and spectral invariance of such matrices. In general, spectral invariance of algebras of
matrices is useful for studying invertibility and offers a tool to check whether the inverse of a matrix preserves its
decay. The spectral invariance of convolution-dominated matrices can be applied to a smooth non-commutative
torus that was studied by Connes [8]. For a lattice Λ ⊆ R2d and the representation

(
π, L2(Rd)

)
of R2d given by

π(x, ξ) : L2(Rd) −→ L2(Rd), f 7→ e2πiξ·f(· − x)

for each x, ξ ∈ Rd, we define the smooth non-commutative torus as follows

A 1
∞ :=

{
A ∈ B(L2(Rd)) : A =

∑
λ∈Λ

aλπ(λ), a ∈ `1wα
(Λ) ,∀α ∈ N

}
. (9.1)

Connes [8] showed that if A ∈ A 1
∞, such that A is invertible in B(L2(Rd)), then A−1 ∈ A 1

∞ and we have
extended this in a more general setting by applying the spectral invariance of convolution-dominated matrices.
For a uniform lattice Λ in a nilpotent Lie group and a discrete series σ−representation (π,Hπ), we have shown a
Wiener type Lemma for the non-commutative space

A 1
wα

=

{
A ∈ B(Hπ) : A =

∑
λ∈Λ

aλπ(λ), a ∈ `1wα
(Λ)

}
(9.2)

in B(Hπ), where α ∈ N∪ {0}. This recovers the Wiener type Lemma given by Gröchenig and Leinert [32] in the
case of

(
π, L2(Rd)

)
given by π(x, ξ) : f 7→ e2πiξ·f(·−x) for (x, ξ) ∈ R2d, but also it recovers the result given by
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Connes [8], by taking the intersection
⋂
a∈N A 1

wα
. In the aforementioned application several results from frame

theory were used in the proof and, therefore, we decided to investigate further applications in frame theory. For
this we assume that G is a group of polynomial growth, (π,Hπ) is a discrete series σ−representation and Λ is a
general relatively separated set in the group, in contrast to the previous application where Λ was a discrete group.
During the project, we have studied frames in the coorbit spaces Co(Lp) and using the result on `p-stability we
have proved that for w = wα, where α ∈ N, α ≥ DG+1, if g ∈ Hπ\{0} is such that Vgg = 〈g, π(·)g〉 ∈Ww(G)
and π(Λ)g is a p-frame for Co(Lp) for some p ∈ [1,∞], then π(Λ)g is a q-frame for Co(Lq) for each q ∈ [1,∞].
Moreover, it was proved that if g ∈ Hπ\{0} is such that Vgg = 〈g, π(·)g〉 ∈

⋂
a∈NWwα

(G) and π(Λ)g is a frame
for Hπ , then the frame operator is invertible on the coorbit spaces Co(Lp), for p ∈ [1,∞].

There are some interesting directions for future research on convolution-dominated matrices. First of all,
it would be interesting to check the optimality of the assumption on the weight in the `p-stability result. The
estimates used in the commutator technique followed in the proof seem not good enough to improve the result,
therefore another method should be used. Moreover, an option for future research would be to investigate the
spectral invariance of convolution-dominated matrices indexed by relatively separated sets. A variation of the
method followed by Sun [61] for the spectral invariance of the Schur matrices could be used for this result. Another
interesting direction is investigating whether spectral invariance holds for convolution-dominated matrices in the
algebra B(`p) on the space of p-summable sequences `p, for p ∈ (0, 1). Recall that for abelian groups, we have
shown that boundedness from below is independent of p ∈ [1,∞] for convolution-dominated matrices, in the
unweighted case and for polynomial weights. An interesting question is whether for such matrices the result
holds in the case of a logarithmic weight [63]. Moreover, based on the previous the interplay between the growth
of the group and the weight can be investigated, since currently, this interplay is not well-understood.
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