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Abstract

In this thesis, we use a variation of a commutator technique to prove that ¢7-stability is independent of p € [1, 0]
for convolution-dominated matrices indexed by relatively separated sets in groups of polynomial growth. Moreover,
from the inverse-closedness of the Schur matrices we deduce a Wiener type Lemma for the matrices in the
intersection of the convolution-dominated matrices, C'D,,, (A), over all polynomial weights w,,, where o € N.
Finally, applications of the convolution-dominated matrices are presented. We prove the inverse-closedness of a
non-commutative space generated by a discrete series representation restricted to a lattice in a nilpotent Lie group.
In addition, we apply the aforementioned result on ¢P-stability to show that if 7(A)g is a p-frame for the coorbit
space C'o(LP) for some p € [1, 0], then m(A)g is a ¢-frame for the coorbit space Co(L?) for each ¢ € [1, o0,
where (7, H,) is a discrete series representation of a group G of polynomial growth, A C G is a relatively
separated set and g € H,\{0} is such that Vg = (g, 7(-)g) is in the Amalgam space W, (G). Moreover, we
prove that the frame operator of the frame 7(A)g is invertible on the coorbit spaces C'o(LP) for each p € [1, o0],
under the assumption that g € H;\{0} is such that V,g = (g, 7(-)g) € Wy, (G) for each o € N.
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Introduction

1.1. Classical Wiener’s Lemma

Let us denote with <7 (T) the set of periodic continuous functions which possess an absolutely convergent Fourier
series,

o (T) = {f €C(T) : f(t) =) ane®™, |Ifllor := I(an)nezlionz) < 00}.

neZ
Norbert Wiener used the following lemma in his proof of a “Tauberian Theorem” [67].

Wiener’s Lemma. If f € /(T) such that f(z) # 0forallz € T, then 1/f € &/(T).

Thus, for f € &7 (T), instead of explicitly calculating the Fourier coefficients of the function 1/ f, with the use
of Wiener’s Lemma we can conclude that the inverse 1/ f has an absolutely convergent Fourier series by checking
whether f vanishes on T.

Naimark [47] observed that Wiener’s Lemma describes the relationship between the Banach algebra of
continuous functions on the torus, C'(T), and its Banach subalgebra of continuous functions with an absolutely
convergent Fourier series, o7 (T). He observed that for a function f € &7 (T) the assumption f(z) # 0 for each
x € T in Wiener’s Lemma is equivalent to the invertibility of the function in the Banach algebra C(T), equipped
with the pointwise multiplication. Accordingly, Naimark introduced the definition of inverse-closedness by calling
the pair (o7, %) Wiener’s pair when o7 is an inverse-closed Banach subalgebra of the Banach algebra #. For &/
and & two Banach algebras with common identity, such that &7 C %, we call o inverse-closed in A if

acd, ateB = aled.

The algebra C(T) equipped with the pointwise multiplication operation is a Banach algebra and </ (T),
equipped with the pointwise multiplication, is a Banach subalgebra of C'(T). Hence, with the introduction of the
definition of inverse-closedness we can now restate Wiener’s Lemma.

Wiener’s Lemma. The Banach algebra <7 (T) is inverse-closed in C(T).

In general, we can state Wiener type lemmas that provide the inverse-closedness of a Banach subalgebra in a
Banach algebra.

1.2. Wiener’s Lemma for convolution operators on the integers

For an absolutely summable sequence a € ¢*(Z?) we define the corresponding convolution operator as follows,
Co : (2% — 2(Z%), ¢ — c*a,
where * is the convolution on sequences defined by

x o (N2 x 2z — (2%

((@(m)peza s (0(n)peza) —axb=| > a(m)b(n —m)

d
mEZ nezd



1.2. Wiener’s Lemma for convolution operators on the integers 3

We can identify each function f € <7 (T) with the convolution operator C, € %(¢*(Z)), where a is the sequence
of the Fourier coefficients of f,ie. a = (% f(n)), ;. This mapping is well defined, since by definition for
f € o (T) we have that a = (F f(n)),,c;, € £*(Z) and hence C, is an operator in Z(¢?(Z)). Thus, we obtain
a mapping, which can be shown to be an isomorphism between the Banach algebra <7 (T) equipped with the
pointwise multiplication and the class of convolution operators (Cy ), () equipped with the composition of
operators. Therefore, we can rephrase Wiener’s Lemma in terms of convolution operators.

Wiener’s Lemma. The class of convolution operators is inverse-closed in %(¢?(Z)), or, equivalently, if
a € (*(Z) is such that C, is invertible in Z(¢?(Z)), then there exists b € ¢*(Z) such that C;, = (C,)~ ! in
B(C(Z)).

Similarly, a Wiener’s Lemma can be proved for the class of convolution operators in % (¢?(Z%)). Furthermore, the

previous can be extended for convolution-dominated matrices on Z¢. A matrix A = (A(3, j )i jeza € CL**2% i
called convolution-dominated if there exists a sequence d € ¢*(Z?) such that

4 € (CZd xZ* is a convolution-dominated matrix, then for each ¢ € ZQ(Zd)

for eachi,j € Z4. If A = (A(i, j))
and each i € Z® we have

4,J €L

|[Ac(i)| = | Y Al D) < D 1AG D) < Y 1dl =) e()] = le] + 1d] ().

JEZI JEZI JEZA

Therefore, A is pointwise dominated by the convolution operator Cy and this explains the name convolution-
dominated matrices. Baskakov [4], Gohberg, Kaashoek and Woerdeman [26] and Kurbatov [42] proved a Wiener
type Lemma for the class of convolution-dominated matrices, by showing that if A is convolution-dominated and
is invertible in (¢ (Z?)), then its inverse A~! € (¢£%(Z?)) is a convolution-dominated matrix. This result was
also proved later by Sjostrand [60] with a completely different proof, using a commutator technique.

Similar results can be obtain for other classes of matrices over the integers. Grochenig and Leinert [32]
proved a variation of Wiener’s Lemma for twisted convolution operators. These operators are defined in the same
manner as convolution operators, but with the use of a twisted convolution. Given a § > 0 we define the twisted
convolution f of two sequences a = (a(n)),,cz2a € (*(Z*?) and b = (b(n)),,cz2a € (*(Z*%) by

ahb(m,n) = Z a(k, b(m — k,n — 1)e2 01 m=k)1 v e 74,
k,lezd

For a sequence a = (a(n)), cz2a € 01(Z*4) we define the twisted-convolution operator as follows

Ct o (zY — (2, ¢ — cha

a

and we observe that C% acts on £?(Z¢) as the matrix given by

h — _ | o270i(m—Fk)-l _ .
Cl = A((m,n), (B, 1) gy (otyez20 (e alm — k,n Z))(m,n)}(k’l)ezm.

Thus, for each m, n, k, | € Z% we obtain
[A((m,n), (k,1)] = |a(m — k,n —1)]

and since a € ¢'(Z>?) we deduce that C? is a convolution-dominated matrix. The inverse-closedness for the class
of twisted convolution operators can also be proved by treating the twisted-convolution operators as convolution-
dominated matrices and using the Wiener’s lemma for the latter, see [28]. Furthermore, results for Gabor frames
and the spectral invariance of a non-commutative torus were deduced from this variation of Wiener’s Lemma by
Grochenig and Leinert [32]. In a more general setting, Sun [61, 62] studied extensively the inverse-closedness of
infinite matrices indexed by the integers and with an off diagonal decay.

A stronger version of the inverse-closedness is the norm-controlled inversion of Banach subalgebras. We say
that an inverse-closed Banach subalgebra .7 admits a norm-controlled inversion in the Banach algebra 2, if there
exists a function h : [0, 00) X [0,00) — [0, 00) such that

1A < 2 (A7 50 140 ) (1.2)



1.3. Wiener type Lemma on non-commutative groups 4

for each A € & invertible in A. Nikolski [48] introduced the term norm-control and studied the norm-controlled
inversion of various Banach, function and measure algebras. Norm-controlled inversion was also studied in
different settings, for example the norm-controlled inversion of algebras of infinite matrices was studied by Fang
and Shin [14] and by Shin and Sun [58], of convolution algebras by Samei and Shepelska [56], of differential
subalgebras by Grochenig and Klotz [30, 31] and of measure and Fourier-Stieltjes algebras by Ohrysko and
Wasilewski [49]. It should be noted that in general norm-controlled inversion is not automatic for inverse-closed
subalgebras. In [48] it is proved that the Banach algebra of continuous functions with an absolutely convergent
Fourier series, 27 (T), does not admit a norm-controlled inversion in the Banach algebra of continuous functions
on T. On the other hand, by Wiener’s Lemma we have that <7 (T) is inverse-closed in C(T). Note that the previous
also extends to the class of convolution matrices in the operator algebra %(¢?(Z)) by the isomorphism between
convolution operators and functions with an absolute convergent Fourier series. Thus, in general we do not expect
that an inverse-closed subalgebra admits a norm-controlled inversion. In that way, norm-controlled inversion is a
stronger and a quantitative version of inverse-closedness [58].

1.3. Wiener type Lemma on non-commutative groups

The Wiener’s Lemma for convolution-dominated matrices on discrete groups of polynomial growth was investi-
gated by Fendler, Grochenig and Leinert [19] and by Tessera [63]. Conversely, Tessera [64] provided an example
of a discrete group, G, of exponential growth, for which the class of convolution-dominated matrices is not
inverse-closed in the algebra of bounded operators on ¢?((G) sequences. In his paper, Tessera shows that the Schur
algebra is not inverse-closed in %(¢?(G)), however the matrix provided as a counter-example is a convolution
matrix. Thus, the result in [64] is a counter-example for the inverse-closedness of convolution-dominated matrices
over a group of exponential growth.

Moreover, Tessera [63] showed that for a discrete group G of polynomial growth, if a convolution-dominated
matrix A is bounded from below for some p € [l,00], ie. there exists C4, > 0 such that
[#l[o(c) < Cap Az () then A is bounded from below for each ¢ € [1,00]. The previous in combina-
tion with the inverse-closedness of the convolution-dominated matrices in discrete groups of polynomial growth,
proves that if a convolution-dominated matrix is bounded from below for some p € [1, 00|, then it has a left
inverse in the algebra of convolution-dominated matrices [63].

1.4. Aim of the thesis

Shin and Sun in [59] showed that a variation of Sjéstrand’s proof provides both the inverse-closedness and the
result on boundedness from below for convolution-dominated matrices indexed by the integers and Tessera
[63] claims that this method should also work for groups of polynomial growth. During the project, we have
proved, using the commutator technique by Sjostrand, that if a convolution dominated matrix is bounded from
below for some p € [1, 00|, then it is bounded from below for each ¢ € [1, o0]. In the special case of discrete
groups of polynomial growth, the previous recovers a result given by Tessera [63]. In addition, for matrices
indexed by relatively separated sets in homogeneous groups we recover the result on boundedness from below
given by Grochenig, Romero, Rottensteiner and Van Velthoven [27]. However, for matrices indexed by relatively
separated sets in locally compact groups of polynomial growth this yields new results. Moreover, using the
spectral invariance of the Schur matrices given by Sun [61], we have deduced a Wiener type Lemma for the
intersection of all polynomially weighted classes of convolution-dominated matrices in groups of polynomial
growth.

Finally, applications of the convolution-dominated matrices and the aforementioned results on non-commutative
geometry and frame theory will be presented. For the first application, following Grochenig and Leinert [32] we
prove the spectral invariance of twisted convolution operators on groups of polynomial growth. Afterwards, for a
discrete series representation (7, H ) restricted to a lattice in a nilpotent Lie group we define the non-commutative
space

A} = {A €B(Hy) : A= ayr()), a € e;(A)} (1.3)

AEA

and prove a Wiener type Lemma for this space in the operator algebra %(H ). The proof of the previous was
inspired by Grochenig and Leinert [32], who showed a Wiener type Lemma for .<7_ for the time-frequency shifts
(77, L? (Rd)). As a second application, for a discrete series representation (7, H ) of a group of polynomial growth
and g € H, we have studied the frames w(A)g, where A is a relatively separated subset of the group. Using the
result on ¢P-stability for convolution-dominated matrices, we have proved that if 7(A)g is a p-frame on the coorbit
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space C'o(LP) for some p € [1,00], then m(A)g is a g-frame on the coorbit space Co(L?) for each ¢ € [1, x].
Moreover, we have investigated the invertibility of the frame operator of m(A)g on the coorbit spaces Co(LP).
For proving the aforementioned result, we show that the Gramian matrix of the frame is a convolution-dominated
matrix indexed by A and use the Wiener type Lemma for this class of operators.

1.5. Outline

In Chapter 2, we present some important results on Banach algebras and define the spectral invariance for Banach
algebras. Groups of polynomial growth and convolution-dominated matrices on such groups are introduced
in Chapter 3. In the same chapter, we state several properties and results on groups of polynomial growth,
before defining the convolution-dominated operators. In Chapter 4, we present the key lemmas that compose the
commutator technique and will be used later in the proof of the result on the boundedness from below. Afterwards,
in Chapter 5, we prove that boundedness from below is independent of p € [1, oo] for convolution-dominated
matrices indexed by relatively separated sets in groups of polynomial growth and deduce the inverse-closedness
of the intersection, over all polynomial weights, of the class of convolution-dominated matrices. Part II concerns
applications of convolution-dominated matrices in non-commutative geometry and in frame theory. Initially, the
background needed in the applications is presented in Chapter 6. Then, we investigate the spectral invariance of a
non-commutative space and study frames in coorbit spaces, in Chapters 7 and 8, respectively. Eventually, we
conclude the thesis with Chapter 9, where we summarize the significant results and provide recommendation for
future research on convolution-dominated matrices.



Spectral Invariance

In this chapter, the definitions of spectral invariance and inverse-closedness are provided. Moreover, we present a
result by Hulanicki which provides a sufficient condition for the spectral invariance.

2.1. Banach algebras
In this section, we briefly introduce the Banach algebras, C*-algebras and important aspects of these spaces which
will be used throughout the paper. Basic notions and properties for Banach and C*-algebras can be found in [9,
46].

A vector space & with a bilinear map

BB — B
(a,b) — ab,

is called an algebra, if for each a,b,c € £
a(be) = (ab)e. (2.1)

The property (2.1) is called associativity. If, further, the algebra % has a unit, i.e. there exist 1 € & such that
alg = a = lga, for each a € A, then A is said to be a unital algebra. We call the vector subspace ./ of &
a subalgebra, if for each a,b € o7, we have ab € &7. If an algebra % admits a submultiplicative norm ||-||, i.e.
labl| < |la|| ||b|| for each a,b € 2, then the pair (4, ||-||) is called a normed algebra.

A conjugate linear map a — a* on an algebra 4 is called an involution on 4, if (a*)* = a and (ab)* = b*a*
for each a,b € 2. In that case, we call the pair (£, %) a *-algebra. A subalgebra o7 of a x-algebra 2 is called
x-subalgebra, if a* € of for each a € &/. Suppose that Z is a x-algebra. Then, an element a € A is called
self-adjoint if a = a* and normal if aa® = a*a. Moreover, if 4 is a unital *-algebra, with unit 14, then a € Z is
said to be a unitary element of # if aa* = a*a = 1 4.

An element a € 2 of a unital algebra Z is invertible in 4, if there exists b € Z such that ab = ba = 14,
where 1 is the unit of 2. We denote the set of invertible elements of % by Inv . For a unital algebra %, with
unit 14, the spectrum of an element a € 4 is defined as the set

oz(a) ={Ae€C : \g—achvB}, (2.2)
and the spectral radius of a € % is defined by

rg(a) = ) sup( )|)\|. (2.3)
cozg(a

We define the Banach algebras and Banach x-algebras as follows.

Definition 2.1.1. A complete normed algebra is called a Banach algebra. Furthermore, if %, equipped with the
norm [|-||, is a complete normed x-algebra, such that ||a*|| = ||a|| for each a € %, then £ is called a Banach
x-algebra. In the case where 48 is unital and the unit 1z € 2 is such that ||15|| = 1, then % is called a unital
Banach x-algebra.
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If o7 and # are two Banach algebras, such that o7 C %, then &7 is called a Banach subalgebra of 4. It should
be noted that the norm ||-|| ,, of a Banach subalgebra o/ C % and the norm ||-|| 4 of the Banach algebra % may
differ.

For a closed subalgebra of a unital Banach algebra, we have the following result for the spectrum of elements
in the subalgebra. See e.g. [46, Theorem 1.2.8.] for a proof of this theorem. Before stating the theorem, we present
a class of sets in the complex plane, C. For a non-empty compact set V' C C, the bounded components of C\V

are called the holes of V.

Theorem 2.1.2. Let o/ be a closed subalgebra of a unital Banach algebra 9. Moreover, suppose that .7 contains
the unit 14 of %. Then for each a € &7,
oz(a) C oy(a).

If for a € &7 we further have that 04(a) has no holes, then
oz(a) = oy(a).
If o and # are two algebras and ¢ : &/ — 2 is a linear map, such that

p(ab) = ¢(a)p(b),

then ¢ is called a homomorphism from o/ to A. Furthermore, if &/ and % are unital algebras, we say that a
homomorphism ¢ : & — % is unital if $(1./) = 1. A homomorphism ¢ from a x-algebra o/ to a x-algebra
A is called a x-homomorphism if it preserves the involutions, i.e. ¢(a*) = ¢(a)* for each a € &7. For an abelian
algebra % a non-zero homomorphism ¢ : % — C is called a character on % and the set of all characters on
2 is denoted by X (). We now state a known result in functional analysis that connects the spectrum of an
element in an abelian Banach algebra with the characters on the algebra, see e.g. [46, Theorem 1.3.4.] for a proof.

Theorem 2.1.3. Let 4 be an abelian unital Banach algebra. Then for each a € £
oz(a) = {¢(a) : ¢ € X(#A)}. (24)

Suppose that 2 is a Banach *-algebra, equipped with the norm ||-||. If for each a € % we have ||a*al|| = ||a||,
then & is called a C*-algebra. A C*-subalgebra is a closed (with respect to the algebra norm) x-subalgebra of
a C*-algebra. For a C*-algebra %, the pair (7, H,), where H is a Hilbert space and 7 : & — B(H,) isa
*-homomorphism, is called a representation of the C*-algebra 2. If 7 is an injective *-homomorphism, then the
representation is said to be faithful.

2.2. Spectral Invariance
Let &7 C 2 be two Banach algebras with common identity. We say that <7 is inverse-closed in 4, if

ateB = alew, (2.5)
foreacha € & . If 0/(a) = og(a) for each a € &7, then we call o7 spectrally invariant in A, where
ou(a) :={\€C : A — aisinvertible in &'},

denotes the spectrum of a in the unital Banach algebra &/’. By the previous definitions we deduce that inverse-
closedness and spectral invariance of a unital Banach subalgebra are equivalent.

Lemma 2.2.1. Given .&/ C % two Banach algebras with common identity, we have that
o/ is inverse-closed in Z <= o0.(a) = og(a) foreacha € 7.

The spectral invariance of a Banach subalgebra in a Banach algebra is not automatic in general. We provide an
example of a Schur matrix which is invertible in 2(¢?(N)), but not in the Schur algebra. This example is inspired
by the discussion in [63] and shows that the Schur algebra is not inverse closed in %(¢?(N)). For the following
example we first introduce the Schur algebra and the Schur norm. The Schur algebra is the Banach *-algebra
that contains all operators in Z(¢?(T"), ¢?(A)) which belong in both Z(¢*(I'), £*(A)) and Z(¢>°(T'), £>°(A)). In
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general, for countable index sets A and I we denote the norm of T € C**T in 2(¢7(T"), £(A)) by 1T oo 0y -0 (a)
and the Schur norm of 7' € CA*T' by

HT”SchuT(F—H\) = max § sup Z ‘TA ’Y| sup Z |T>\7’Y| . (2-6)
AEA Jer 7€ Xea

The Schur algebra of matrices indexed by the countable sets A and I' is defined by

S, 8) = {4 € BED), 1)) : |Allsonurron) <} 2.7)

and for A = T" we denote . (A, A) = .(A). Using the Schur test, see e.g. [22, Theorem 6.18], we obtain for each
T € CMT and each p € [1, ]

1T er(ry ser(a) < 1Tl schurr—ay » (2.8)

hence if T € (T, A), then T € Z(¢P(T"),(P(A)) for each p € [1,00)].
Note that for A = (A(A, X))y yen» B = (B X))y ven € CHN we have

supZ|AB )\)\|fsupz ZA)\k )

ACA Nren AEA e |kea

<supZZ|A)\k||Bk)\)|

AEA NN keA

§sup2sup|Bk)\|Z\A)\k
)\GA)\/EAICG kEA
S(supZM)\k‘ > (supZ|Bk)\ )
AEA keA kEA)JEA

Similarly, we have

supZ|AB AN < <supZ|A)\k > (supZ|Bk)\ )
NEA Nen NEA e

kEA \en

Combining the previous, we obtain for each A, B € CA*A

HAB||Schur(A~>A) < ||A||Schur(A~>A) ||BHSchur(A~>A) : (29)
With the following example we prove that .#(N) is not inverse-closed in %(¢*(N)).

Example 2.2.2. Let D be the dilation operator on £?(N), such that

D : /*(N) — (*(N)
e (315,5.%.0)
We then compute the adjoint of D in %(¢?(N)),
D* : (*(N) — *(N)
T = (%;)ien — (W)
ieN

and define

A=1-D"ec B(AN)) : z = (2;)ien — (x - ”—12”2) .
i€N
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The operator A € Z%({*>(N)) can be interpreted as the matrix A = (A(i,7)); jen acting on 2(N) by
Az = (ZJEN A('L,j)xj)ie

that e, (m) = 1 for n = m and e,,(m) = 0 for n # m. Then for 4, j € N we obtain

(Aey, e) = <<ej(n) _e(n— 1; + ej(2n)>n€N 7ei> P A 1)

for each 2 = (2),¢ € £*(N). For each n € Nlet e,, € £*(N) be the sequence such

2
L, Jj=i

)12, j=2i-1

) -1/2, =2
0, else

Thus, the matrix elements A(i, j) of A are given by

1, j=1
. —-1/2, j=2i—1
A(i, 7) = (Ae;, e;) = 2.10
(Z j) < e] e> 71/2, j:2l ( )
0, else
for each 7, j € N. Then, we obtain
sup > |A(i, 5)| = sup | A(i,i)] + | A(3,2i — 1)| + |A(i, 26)| = sup 1+ 1/2+1/2 =2
€N jEN i€N €N
and
sup > [A(i, )| = max d sup 3 [AG5,28),sup S [A(i, 2% — 1)]
JEN N keN jen keN jen
= max {sup |A(2k, 2k)| + |A(k, 2k)|, sup |[A(2k — 1,2k — 1)| + |A(k, 2k — 1)|}
keN keN
= 3/2.
It follows that
||AHSchu7‘(N~>N) = max Supz |A(Zv.7)| ) Sugz ‘A(Za])‘ = 27 (2‘11)

JEN jeN €N jeN
hence A € .7(N), i.e. A is a Schur matrix. Furthermore, since for z € £2(N)

1Dy = D 1(D*2)il* =

2
Toi—1 + T2

i€EN €N 2
1
= 37 7 (oaia P sl 4 2R 177))
€N

3. 2
< 1 H3U||z2(N) )

we have || D*[| 2y g2y < 1. Thus, A = I — D" is invertible in B(0*(N)) with

o0

A~ = (I_D*)—l — Z(D*)n

n=0

in 2(¢*(N)). We will show that A is not invertible in the Schur algebra. Let us assume that A is invertible in the
Schur algebra, i.e. A~ € .%(N). By Equation (2.8) we obtain that A~! € %(¢°°(N)). In order to prove our claim
we define the sequences

¢n = (n, 0y, n, ...) € £2(N).
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Since A is invertible in #(¢>°(N)), then it is bounded from below and hence there exists C4 > 0 such that
n= ||¢)TL||,€0<>(N) S CA HAd)nHew(N) = 0 (2~12)

By contradiction we have that A is not invertible in Z(¢>°(N)) and thus is not invertible in the Schur algebra.
We conclude that the Schur Algebra .#(N) is not spectrally invariant in %(¢?(N)).

In the previous example, we have defined a matrix A € .%(N), such that A is invertible in %(¢*(N)). Since A
is invertible in % (¢*(N)), then it is bounded from below for p = 2, i.e. there exists Cy 4 > 0 such that

lel 2y < Co,allAcll gy , Ve € (N).

Moreover, we have shown that A is not bounded from below for p = oo, see Equation (2.12). Thus, the previous
example shows that if a matrix is bounded from below for some p € [1, o], then it is not automatically bounded
from below for each g € [1, o).

In the case of C*-algebras, spectral invariance is automatic. Let & be a unital C*-algebra and ./ be a C*-
subalgebra of 4, containing the unit of Z. Let a = a* € o/ be a self-adjoint element of .27 Then, since a is
self-adjoint we have 0z (a) C R. Since 0 %(a) is a compact subset of the real line in C we have that C\o%(a) has
only one component which is unbounded. We deduce that o 4(a) contains no holes and hence 0 4(a) = o4 (a),
by Theorem 2.1.2. The previous can be extended for each a € 7 as follows. Let a € & and z ¢ og(a). Then
2lg—a€InvPBand (z1 —a)* (21 —a), (21 —a)(zlg — a)* € InvA. Since (214 — a)*(z1% — a) and
(21 — a)(z14 — a)* are self-adjoint elements of .27, by the equality of the spectrum for self-adjoint elements we
obtain that (215 —a)*(21%—a), (z15—a)(21z—a)* € Inv.«/. Now, since (215 — a)* (215 —a)) " (z1z—a)*
is a left inverse of (214 — a) in .« and (215 — a)* (21 — a)(z1% — a)*) "' is a right inverse of (215 — a)
in o/ we deduce that (214 — a) € Inv.eZ. Thus, 214 ¢ 0.(a). It follows that o (a) C 04(a). The inclusion
oz(a) C o4(a) comes from Theorem 2.1.2. Thus we conclude that o7 is spectrally invariant in 4, or equivalently
&/ is inverse-closed in 4.

Often Hulanicki’s Lemma [38] is used for proving the spectral invariance. We now present a version of the
result and a proof given by Fendler, Grochenig, Leinert, Ludwig and Molitor-Braun, see [18, Proposition 6.1].

Theorem 2.2.3 (Hulanicki). Let S be a x-subalgebra in the Banach *-algebra <7. Assume that there exists a
faithful *—representation (7, H) of <7,

T o — B(H),
such that

|

I (@)l sy = lim_ [l

for each x = z* € S. Moreover, suppose that & has a unit 1, € & and 7(1,) = Idy. Then, for each
x =z* € S we have

0 (x) = 0011 (m(2)).
Proof. Let x = 2* € S and let B be the commutative ||-|| ., —closed *—subalgebra of .7 generated by x and 1.

We define the norms v : & — lim, ||x”|\}oén and A : @ = [|7(@) || gy on &

Since B is generated by the self-adjoint elements x and 1., then we have that every element of B is self-adjoint.
Then, by assumption, v(y) = A(y) foreachy = y* € S and v(1) = A(1ley). In particular, v(y) = A(y) for each
y € B. Hence, v and A are equivalent norms on B.

We define B* to be the completion of B with respect to \. Note that for each € B we have

Ma*z) = (@) gy = (@) 7 (@) gy = (@) |0y = M) (2.13)
Hence, B* is a C*-algebra. By definition B* is isomorphic to (B)/\ C %(H) and thus

opr(z) =0

W(B))\(ﬂ'(ﬂf)). (2.14)
We denote with X (B) and X (B*) the set of characters on B and B, respectively. Define the map

Y : X(B — X(B)

¢ — B
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We have that this map is well-defined, since B C B?. Moreover, B is the completion of B with respect to A,
hence B is A—dense in B*. Combining the previous and the equivalence of v and A we have that 1 is continuous.
Using the same arguments we obtain that 1 is injective. On the other hand, by the density and the equivalence of
the norms for every ¢ € X (B) we can define ¢ by ¢(a) = lim,—,oc ¢(a,,) for each a € B*, where (a,,), oy € B
is a sequence such that A(a,, — a) —— 0. Note that if ¢ € X (B), then |¢|| < 1 since ¢ is a character on a
unital abelian Banach algebra, see e.g. [46, Theorem 1.3.3]. If (a,,),,cy € B and (by),,cy € B are two sequences

converging to a € B> with respect to )\, then using the equality of the norms v and A on B we have
|¢(an) — d(bn)| < v(an —by) = A(an — by) —— 0.

Hence ¢(a) is well defined for each a € B*. Moreover, since ¢ € X (B), then for eacha,b € B* and (a,,),,
(bn),,eny € B such that A(a,, — a) 222 0 and A(b, — b) 2= 0 we obtain

en& B

d(a)(b) = lim @(an)d(by) = lim ¢(anb,) = d(ab).

n—o0 n—oo
Thus, the map
Vi X(B) — X(BY)
¢ — 4
is well-defined and, similarly to ¢, we can show that the map v is continuous and injective. Moreover, we
obtain v 0 1)(¢) = ¢ for each ¢ € X (B*) and 1) 0 9)(¢) = ¢ for each ¢ € X (B). Thus, X (B*) and X (B) are

homeomorphic, that is, there exists a bijective, continuous map from X (B?*) to X (B), with a continuous inverse.
From this homeomorphism and since z € B N B* we obtain

{6(x) : € X(B)} ={¢(z) : ¢ X(B")}. (2.15)
Moreover, since B is a commutative Banach algebra, we obtain from Theorem 2.1.3
op(z) ={é(z) : ¢ € X(B)}. (2.16)
Similarly, we obtain
opr(z) ={o(x) : € X(BY)}. (2.17)
Combining the previous we deduce that
op(x) = {¢(x) : ¢ € X(B)} = {¢(x) : ¢ € X(BY)} = op(2). (2.18)

Now, since B* is a C*-algebra and x = z* we have that the spectrum o x () is real. From Equation (2.18), it
follows that o (x) is real.

Additionally, since B is a closed subalgebra of .o/, we have o0 (z) C op(x), by Theorem 2.1.2. Hence
oo (x) C R and it follows that o (2) has no holes. Moreover, 7 and B have a common unit element and hence,
by applying Theorem 2.1.2, we obtain

op(x) = oz (x).

Since o (m(x)) =opr(x) CRand w(B) is a closed subalgebra of %(H), then we obtain

-7 (7(2)) = 0o (7(2)).
by Theorem 2.1.2. We now conclude that

ow(x) =0op(r) =0opr(z) = T (m(2)) = o) (m(x)). (2.19)

O

Let A € #(H), where H is a Hilbert space. Moreover, suppose that the range M = Ran(4) C Hof Aisa
closed subspace of H,A is bijective from M onto M and there exists an operator B € %(M) such that

AB = BA = I, (2.20)
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i.e. B is the inverse of A in B(M). Let P € %(H) be the orthogonal projection onto M and A be the trivial
extension of B from M to H,ie. AT = Bon M and A" = 0 on H\ M. Then the operator AT is called the

pseudoinverse of A and satisfies
AAT = ATA=P. (2.21)

Using the Hulanicki’s Lemma, it can be shown that if an element in an inverse-closed subalgebra has a pseudoin-
verse, then its pseudoinverse belongs in the subalgebra. We will present a proof of this result given by Fornasier
and Grochenig [23], which uses Hulanicki’s lemma 2.2.3. This result will be used in Chapter 8 in order to show
that the pseudoinverse of the Gramian matrix of a frame is a convolution-dominated matrix.

Theorem 2.2.4. Suppose that & is an inverse-closed Banach subalgebra of Z(H). Let M be a closed subspace
of the Hilbert space H. Let A € .7, such that A = A* ker(A) = M+ and A : M — M is invertible. Then the
pseudoinverse A of A belongs in .27 .

Proof. Let P be the orthogonal projection onto M C H. Define
S={Be« : B=PBP}, (2.22)

with norm ||-||¢ := ||-|| ,, - Since A € S we have that S is non-empty. Moreover, S is a *-subalgebra of 7.

We define the map h : S — #(M), h(B) = B|p;. We have that h is a *-representation of .S. Furthermore,
if h(B) = 0 for B € S, then B|jy; = 0 and from B € S we have that M+ C ker(B), hence B = 0. Thus h is a
faithful *-representation of .S.

Let Sy be the closed commutative *-subalgebra of S generated by A. Then h(Sp), with the closure taken
in the operator norm ||| (), is generated by Aly;. Note that since h(Sp) is a closed x-subalgebra of the

C*-algebra (M), then h(Sp) is a a C*-subalgebra. By the invertibility of A|; in Z(M) and since h(Sp) is a
C*-subalgebra of (M), we have that (A|y;)~* € h(Sp) by the inverse-closedness of C*-subalgebras. Thus,
Idyr = Ay (Alar) ™t € h(So). It follows that there exists E' € Sy such that h(E) = Idyy, see e.g. [23, Lemma
3.3]. Since E € S and Idy = h(E) = E|pr, we deduce that ¥ = P.

By the spectral invariance of &/ in Z(H) for each B € </ we have

oz()(B) = 04(B).
Moreover, from the choice of norm on S we obtain

ty(B) =

1/n _

n nnl/n
1B™% 1B™1",

lim lim
n—oo n—oo

for each B € S. Thus, combining the previous for each B = B* € S we have

Tim [|B"|§" = v (B) =ty (B). (2.23)

Then, since M+ C ker(B) for each B = B* € S we obtain

. nil/n
Jlim ||B 1™ =ty (B) = 1Bl gy = 1Bl sary = 1 Blall sar - (2.24)
Thus, y
. n n __ _
nli{lgo IB"ls" = ||BH%(J\4) = Hh(B)||33(IVI)7 (2:25)
for each B = B* € S. Applying Hulanicki’s Lemma (Theorem 2.2.3) we deduce
05(B) = oz (MB)) = oz (Blm), (2.26)

foreach B= B* € §.

Since A : M — M is invertible, i.e. A is invertible in Z(M) we have that 0 ¢ o(r)(A|n) = o5(A).
Thus, there exists B € S such that B is the inverse of Ain S, i.e. BA = AB = P. Since B € S, we have that
B = 0on H\M and it follows that B is exactly the pseudoinverse A" of A. We conclude that AT € 7. O

From the previous Theorem we deduce that if a subalgebra is inverse-closed in Z(H ), it is also pseudoinverse-
closed.

Corollary 2.2.5. Suppose that 7 is an inverse-closed Banach subalgebra of %(H ), where H is a Hilbert space.
Then .7 is pseudoinverse-closed in Z(H), i.e. if A € &/ has a pseudoinverse AT € Z(H), then At € 7.



Convolution-dominated Matrices

In this chapter, we present locally compact groups of polynomial growth and then define relatively separated sets
in such groups. Afterwards, we introduce a class of integrable functions, known as Amalgam space, on a locally
compact group which is essential to the definition of convolution-dominated matrices that follows.

3.1. Locally compact groups

Initially, we define the notion of compactly generated locally compact groups. The basic properties presented here
can be found in [21].

Definition 3.1.1. A topological group whose topology is locally compact and Hausdorff is called a locally compact
group. We say that a topological group G is compactly generated, if there exists a relatively compact symmetric
neighbourhood, U C G, of the identity such that

¢= |y un

neNU{0}
where U™ := {u = ujuz...u, : u; € U}, forn € Nand U° = {e}, for the identity element ¢ € G.

In a locally compact group, GG, which is compactly generated by a symmetric unit neighbourhood U C G, we
define the word metric by
d(z,y) =inf{n e NU{0} : Ty € U}, (3.1)

for x,y € G. We have that the word metric is left invariant from its definition and from the symmetry of
U, we have that the word metric is symmetric. It can be furthermore shown that d(z,y) = 0 if and only if
v~ 1y € U = {e}, which is equivalent to 2 = y. Moreover we have

d(z,y) < d(z,z2) +d(z,y),

for each z,y, z € G, hence the word metric defines a (left invariant) metric on G. We denote with B(x,r) the
balls of radius r and center x € G with respect to the word metric, i.e.

B(z,r):={z€ G : d(z,z) <r}. (3-2)
Hence, for » € N we have

B(x,r)={yeG : dlz,y) <r}
:{yGG :dne N, n<r st m_lyeU”}

yeG xlye U ur=ur
neN, n<r

={yeG: yeaxU"} =2aU", (3.3)

where V denotes the closure, of the measurable set V C G, with respect to the word metric.

13
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Definition 3.1.2. A Radon measure i on a locally compact group G is a measure defined on the o —algebra B(G)
of the Borel measurable sets of G such that:

« pislocally finite, i.e. for every x € G there is a neighbourhood of x with finite measure,
« (i is inner regular, i.e. for every open V' € B(G) we have

uw(V)=sup{u(K) : K CV, K compact},
K

« is outer regular, i.e. for every V' € B(G) we have

w(V) = ilr}f{,u(K) : VCK, K €B(G), K open}.

A nonzero Radon measure, /1, on a locally compact group G is called left (resp. right) Haar measure if 1 is left
(resp. right) translation invariant, i.e. u(xV) = p(V') (resp. p(Va) = u(V)) for every measurable set £ C G and
2 € G. An important result for locally compact groups is the existence of a Haar measure, see e.g. [21, Theorem
2.10].

Theorem 3.1.3. Every locally compact group G has a unique (up to a constant) left Haar measure s.

Let G be a locally compact group and p be the (left) Haar measure on G. For each x € G we define

pe + B(G) — C (3.4)
Voo u(Va),

where B(G) is the Borel o —algebra of (G, p). Then, by the uniqueness (up to a constant) of the Haar measure we
have that there exists A(z) > 0 such that u,, = A(z)u. The function A : G — (0, 00) is called the modular
function of G. It can be shown that the modular function is a homomorphism. We call a locally compact group
unimodular if its modular function A = 1 and in that case the Haar measure is also right-invariant. Some classes
of unimodular groups are the Abelian groups, the compact groups and the locally compact groups of polynomial
growth.

3.1.1. Groups of polynomial growth
We now have all the components needed in order to define locally compact groups of polynomial growth.
Throughout this section we assume that G is a compactly generated group.

Definition 3.1.4. A compactly generated group G is called a group of polynomial growth, if for some generating
neighbourhood U C G of the identity, there exist constants C¢ > 0, D¢ € N such that

p(U™) < Cgn®e, (35)

for all n € N. The minimal exponent D¢ such that (3.5) holds is called the order of growth of the group G.
Furthermore, we say that a compactly generated group G has strict polynomial growth, if there exists a symmetric
generating neighbourhood U C G of the identity, and constants C > 0, Dg € N such that

Cg'nPe < u(U™) < CgnPe,
foralln € N.

A fundamental result on groups of polynomial growth that will be used extensively later is that in such groups
strict polynomial growth is automatic. A proof of this combines results from [35] and [43], see [20, Lemma 2.3.]
for details.

Theorem 3.1.5. ([35], [43]) Every locally compact group of polynomial growth has strict polynomial growth.

Some trivial examples of groups of polynomial growth are the Euclidean spaces R¢ and the integers Z?. For
connected Lie groups, Jenkins [40] provides a simple characterization for polynomial growth. A connected Lie
group G is said to be type R if for each X in the Lie algebra g of G the adjoint representation ad(X) : g — g
has imaginary eigenvalues [40]. Then for type R groups we have the following result by Jenkins, see [40, Theorem
1.4].
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Theorem 3.1.6 ([40]). A connected Lie group G has polynomial growth if and only if G is type R.

A Lie algebra g is said to be nilpotent if for each X € g the adjoint representation ad(X) : g — g is nilpotent,
ie. ad(X)* = 0 for some k € N. Moreover, we call a Lie group G nilpotent if its Lie algebra is nilpotent. From
this definition we deduce that each connected nilpotent Lie group is a type R group and thus, by Theorem 3.1.6, it
has polynomial growth.

Groups of polynomial growth are shown to be unimodular groups. Therefore, non-unimodular groups do not
have polynomial growth.

Lemma 3.1.7. Every locally compact group of polynomial growth is unimodular.

Proof. Let G be a locally compact group of polynomial growth, with U C G a generating unit neighbourhood
and p the Haar measure on G. If V. C ( is a measurable subset of the group, then there exists an integer
m =m(V) € N, such that V. C U™, hence

1= lim p(V)/" < lim p(VOY" < lim p(U™™)Y™ < lim (C(nm)Pe)t/m =1,

n—oo n—oo n—oo

by the polynomial growth. Thus, for every measurable V' C G we have lim,, o, u(V™)/™ = 1.
Let A : G — (0,00) be the modular function of G and let € G and V' C G be a measurable subset such
that x € V. Then, for each n € N we get

p(V)A(@)" ™ = p(Va"™t) < p(Vh),
since the modular function is an homomorphism and € V. Hence,

(n(V)A(@)" 1)

1/n < /J,(Vn)l/",

and we deduce that

Az) = lim (u(V)A(2)" " HY" < lim p(VHY" = 1. (3.6)

n—roo n— oo

Thus, for each # € G we have A(z) < 1, but since A is a homomorphism we have also A(z)™! = A(z~1) < 1.
We conclude that A(x) = 1 foreach z € G. O

We say that a metric space (G, d) is a doubling metric space if there exists C' > 0, such that for all z € G and
r>0
w(B(z,2r)) < Cu(B(z,r)).

Moreover, we say that a set V' C G has the doubling property, if there exists C' = C(V') > 0, such that for all
r€Gandr €N
w(zV?) < Cu(zV™). (3.7)

Using the strict polynomial growth, we deduce that groups of polynomial growth have the doubling property.

Lemma 3.1.8. Every locally compact group, G, of polynomial growth with the word metric is a doubling metric
space.

Proof. Let U C G be a generated unit neighbourhood of GG. By Theorem 3.1.5, G has strict polynomial growth
and hence there exist constants Cy, Cs > 0, D € N such that

CinPe < p(U™) < ConPe, (38)
for all n € N. From Equation (3.3) and the left invariance of the metric, for each » € N and x € G we obtain
i (B@,n) = p(@U”) = p(Ur).
From Equation (3.8), we have for eachn € N
u (B(:v, 2n)) = 1 (U") < Cy(2n)P0 < CoCy12Pe u (U2M) = CoCy 2P (B(m,n)) .

Thus, for each n € N using the inner regularity of the Haar measure 1 we deduce

10 (B (z,2n)) = sup p (B (m,Q(n = ;)) < Cj sup (B (:I:n - ;)) < Csp (B (x,n)),

meN meN

where C5 = C20f12DG > 0. O]
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3.1.2. Discrete sets
We define relatively separated sets, a class of discrete sets in locally compact groups, which will be used as the
index sets of matrices on such groups.

Definition 3.1.9. Let G be a locally compact group, A C G be a set in the group and let V' C G be a relatively
compact unit neighbourhood. The set A is called a relatively separated set in G, if

Rely (A) :==sup #(ANzV) < oco. (3.9)
z€G

Let A C G be a relatively separated set in the locally compact group G and let V. V' C G be relatively
compact unit neighbourhoods. By relative compactness, there exists a finite number of z; € G, @ € Iy, such
that V' C |J, z;V’. Hence,

zeG zeG zeG

Rely (A) = sup #(ANaV) < sup # (A N UxxiV’> < Z sup #(A Nzx; V')
< Z sup #(ANaV') = #(Iyy:) Rely (A). (3.10)
; T€G :
This shows that if (3.9) holds for some relatively compact unit neighbourhood V' C G, then its holds for all
relatively compact unit neighbourhoods.

The following simple characterization provides a necessary and sufficient condition for relatively separated
sets, see [25].

Lemma 3.1.10. Let A C G be a set in the locally compact group G with Haar measure p. Then A is a relatively
separated set if and only if for each measurable relatively compact set U C G and n € N there exists Cyy,, > 0,
such that

#(ANaU™) < Cypp(zU™). (3.11)

Proof. Let A C G be a relatively separated set and let n € N. Then using Equation (3.10) we obtain

#(ANzU™) < sup # (ANaU™) = Relyn (A) < ChRely (A),
zeG

where Cy = Cy(U, n) > 0. Hence,
n(U™)

n(Um)
= CU,n;“(Un) = CU,nﬂ(xUn)v

# (A N IU") < CyRely (A) =Cy Rely (A)

RelU (A)
w(U™)

by the left invariance of the measure, where the constant Cy,, > 0 is given by Cy,,, := Cj . Conversely,

let A C G be such that
#(AN2U™) < Cypp(xU™),

for a measurable relatively compact set U C G and n € N. Then taking supremum over all # € G and using the
left invariance of the Haar measure we obtain

Relyn (A) = sup # (AN aU") < sup Cypp (xU™)
zelG zeG

= Cynsup p(U") = Cypnp (U™) < oo.
zeG
Thus, A C G is a relatively separated set. O

In compactly generated groups we have that relatively separated sets are countable discrete sets.

Lemma 3.1.11. Let G be a compactly generated set and A C G be a relatively separated set. Then A is countable.
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Proof. Suppose that U C @ is a generating neighbourhood of the compactly generated G, ie. G = |J,—, U".
Then by the relative separation of A there exist C,, > 0 for each n € NU {0} such that

Hence,
#(ANU™) < sup#(ANzU") =Rely» (A) = C,, < . (3.13)
zeG
Since G = |, , U™ we deduce A = ANG = J,_, (ANTU™). Thus A is countable as the countable union of
the finite sets A N U™. O

We present a covering result for locally compact groups where relatively separated sets arise naturally. This
result will be used extensively in the following results. The proof presented here is based on a covering lemma
given by Anker [2].

Lemma 3.1.12. Let W C G be a relatively compact symmetric unit neighbourhood with non-empty interior in
the locally compact group G. Then there exists a relatively separated set Y C G such that

1. {mkWQ}zkey is a cover of G.

2. the sets {z; W}, .y are pairwise disjoint.

3. every x € G belongs to at most ’:f(vgvo)) setszW?2, x €Y.

W5
4. Rely (V) < 4000,
Proof. Let X := {{yW}er : V C G, {yW}yev are pairwise disjoint } . We define the partial order <x on
X, such that

{yW}yEVI SX {yW}y€V2 — ‘/1 g ‘/2’

for each {yW}, v, . {yW}, v, € X. Then P := (X, <x) is a partially order pair. Suppose that

P ({0 ) =)

is a chain in P, where I C #(G) and #(G) = {V C G} is the power set of G. We claim that P’ has an upper
bound. Set V' = UVieI Vi andlet a, b € V'. Then there exist V;, V; € I such that a € V; and b € V. Since P’ is
a chain in P, we have V; and V} are comparable and without loss of generality we suppose that V; <x V;. Then
Vi € Vj and hence a, b € V;. Thus, alV and bW are disjoint and we deduce that {yW}yev are pairwise disjoint.
We have that {yW}, ., is an upper bound of P’ since {yW}, .\, € X and V; <x V for each V; € I. We have
shown that an arbitrary chain in P has an upper bound, and hence we can apply Zorn’s Lemma.

By Zorn’s Lemma, there exist a maximal subset Y C G, such that the set {xW}IeY consists of pairwise
disjoint sets. Let g € G. By the maximality of {1V} _,- we have that g1V meets at least one set IV, for some
z € Y. Hence, by the symmetry of W we have g € zWW =1 = zWW C 2W?, and we deduce that

G = U aW?2, (3.14)

€Y

or, equivalently, we have that {J:WQ}I cy isacover of G.

Let ¢ € G. Assume that g belongs to m > 1 sets of the set {xWQ}Iey. Suppose that g € z;W? for
i =1, 2, ..., m, where x; € Y foreveryi = 1, 2, ..., m. Then for i € {1,2,,..m} we have that
g € 1yW? N x;W?2. Hence, there exist v;, v; € W? such that ¢ = zjv; = 2;v; and z; = mlvlvi_l. If
y € x;W, then there exists z € W such that y = x;z and we obtain y = xlvlvi_lz € x1W?2W 2. Hence
;W C 2y W2W =2W for every i € {1,2,,..m} and since the sets {z; W}, are pairwise disjoint and the measure
is left invariant we have

m m

mp(W) =3 (W) =3 pe:W) = p (Ui, z: W)

i=1

<u (mlWQW_QW) <u (a;1W5) =pu (W5) .
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5
Thus every g € G belongs to at most m < % sets zW?2, z € Y. Moreover, using the symmetry of W we
obtain
Relyy2 (V) = sup # (YﬁxW2) =sup#{zL €Y : z¢€ a:kWQ} <m < o0,
zeCG zeG
and we deduce that Y is a relatively separated set. O

We now adapt the previous result to a covering lemma for groups of polynomial growth. In this case, we cover
the group by translations of the set U?" | where U is the generating neighbourhood of the group. Furthermore,
using the strict polynomial growth we show that the maximum number of covering set that each element belongs
to can be chosen to be independent of the power V.

Lemma 3.1.13. Fix N € N. Let GG be a locally compact group of polynomial growth generated by the unit
neighbourhood U C G, with order of growth equal to D > 0. Then there exists a relatively separated and
countable set Xy C G, such that:

1. {kaZN}mkEXN is a cover of G.
2. the sets {kaN}wkeXN

3. every = € G belongs to at most C357¢ sets 2,U?N, x), € Xn, where C > 0 is a constant given by the
growth of U, i.e. C;'nP¢ < p(U™) < CgnPe for eachn € N.
4. Relyzn (XN) < CG25DG.

are pairwise disjoint.

Proof. From Theorem 3.1.5, we have that G has strict polynomial growth and hence there exist constants C¢ > 0,
D¢ € N such that
Cg'nPe < u(U™) < Cgn®e, (3.15)

forallm € N.
By Lemma 3.1.12 for W = UY, there exists a relatively separated set Xy in G such that the sets

{kuN}afkeXN are pairwise disjoint and {ka2N}M€XN is a cover of G. Moreover, every x € G belongs
5N
i((%N)) sets 2, U2, 21, € Xn. Using Equation (3.15), we obtain

to at most

p(UY) _ Ca(5N)Pe

_ 2 D
u(UN) = Cg'NDs = 0657 (3.16)

From the previous, we conclude that there exists a set Xy C G such that {xU 2N }m Xn is a cover of G, the

sets zUN, x € Xy are pairwise disjoint and every g € G belongs to at most C5257¢ sets zUN, z € Xy.
Moreover, using the symmetry of U we obtain

Relgen (Xy) = sup#(XN ﬁxUzN) = sup#{xk,N ceXy :x€ x;@’NUQN} < C0e?5P¢ < o0,
zeG zeG

Finally, since X is relatively separated in a group of polynomial growth we deduce from Lemma 3.1.11 that
Xy is countable. O

The following result provides a similar estimate as in Equation (3.11), but with a constant independent of the
power of the neighbourhood. See [25, Lemma 3.4.] for a similar proof.

Lemma 3.1.14. Let A C G be a relatively separated set in the locally compact group G with Haar measure p and
p € N. Then for each relatively compact symmetric unit neighbourhood U C G with the doubling property there
exists Dy := Dy(Rely (A), p) > 0, such that for each R > 0, and each = € G we have

# (ANzU®) < Do p(zURHP)
Proof. From Lemma 3.1.10, since A is relatively separated, for p € N there exists C,, > 0 such that

#(AN2U) < Cou(zU), z € G.
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Note that the constant C, > 0 given by Lemma 3.1.10 depends on Relyy (A) , U and p. Recall from Equation (3.7)
that, since U has the doubling property, there exists C' = C'(U) > 0 such that

p(zU?) < C p(zUP)

By applying Zorn’s Lemma, using a similar argument as in Lemma 3.1.12, there exists a relatively separated set
Xo C 2U® such that {yU*},cx, is a maximal disjoint set and {yU?’} ¢ x, is a cover of zU . Then we obtain

s(AnaUf) <# | |J Anyu®) | < Y #(AnyU?)

y€Xo y€Xo
<C, > pU*) <CC, Y ulyU?),
yeXo yeXo

by the doubling property. Furthermore, we obtain

#(AnaU) <cC,p| | yU? | <CC, p(zUH7) < Dy p(aUFP),
yeXo

where Dy := C'C,, and for the second inequality we used that if y € Xy C 2UP, then yU?P C xU%+? and that
the sets {yU”}, ¢ x, are disjoint. O

In locally compact groups, we can cover open, relatively compact unit neighbourhoods V2" by a finite number
of translations of V™. Moreover, if V is a doubling neighbourhood, then this number can be chosen to be
independent of n, as the following shows. The proof of this was provided by Van Velthoven and Voigtlaender.

Lemma 3.1.15. Let G be a locally compact group with Haar measure ;2 and let V' C G be an open relatively
compact, symmetric unit neighbourhood. Furthermore, assume that V' is a doubling neighbourhood, i.e. there
exists C' > 0 such that

p(V2) < Cu(v™),

for each n € N. Then there exists K := K (V) € N such that for each n € N, there exist 21, z3, ..., tx € G
such that

v c| |a v (3.17)

'CN

=1

Proof. Fix n € N. By Lemma 3.1.12 there exists a relatively separated set X C G, such that the sets {2V"},cx
are pairwise disjoint and {zV?"},cx is a cover of G. Set

I'={zeX : V"naV?> £0}.
Since {V?"} ¢ x is a cover of G, we have

virc | Jav (3.18)

xel
Using that {zV "}, x are pairwise disjoint and the left invariance of the Haar measure 1, we obtain
11|
[ (V™) Zu (V") =) puaV") =p (U xvn) :
xel xel
Ifz € I, then x € V4"V =27 C V6" by the symmetry of V and V" C V"V™ C V" and hence

[T p(V") = o (U wV”) Sp (VM) <p (V) <CPu(vh),
zel
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where for the last inequality we have used the doubling property of V. From the previous we conclude that
|I| < C? and thus there exist y1, ¥2, ..., yres1 € X, such that

rc®]
virc | wven. (3.19)
i=1

Lete, € {0, 1} andm € Nwithn+e, = 2m. Then by applying the previous for m there exist y1, y2, ..., yrcs] €
X, such that

[c?]
vimC U yVem,
i=1
and hence
[c?] [c®]
vergyrinre) —yim | ) v = ) gvrte
i=1 i=1
[c®] [c®]
c | wvirrevrte | wviveh
i=1 i=1
Since V3 is relatively compact and V is a unit neighbourhood, there exists 7 € N and 21, ..., zr € G such that
T
vic|Jauv
i=1
Thus,
[c®] [c1 [c®1 r
V2n - U yiV?’V”_l - U Yi U ZjVVn_l = U U ylzjV”
i=1 i=1  j=1 i=1 j=1

We conclude that there exist K := [C?]T € Nand 1, ..., zx € G such that

K
V2n C U V"
i=1
Finally, we observe that K does not depend on the choice of n € N, which proves the claim.
O

For alocally compact group G of polynomial growth, with generating neighbourhood U we have from Theorem
3.1.5 and Lemma 3.1.8 that U verifies the assumptions of the previous Lemma. Thus, there exists K := K(U) € N
such that for each n € N, there exist z1, x2, ..., tx € G with

K
U C |z (3.20)
i=1

Now, for a relatively separated set A C G we have

K
Rely2n (A) = sup # (AN zU") < sup # (A N U xatiU">

z€G zeG i—1
K K

< Z sup # (A Nzz;,U") < Z sup # (AN zU™)
i—1 *€G i—1 v€G

K
= "Relyn (A) = K Relyn (A).
i=1

This proves the following Lemma.

Lemma 3.1.16. Let G be a locally compact group of polynomial growth, with generating neighbourhood U and
let A C G be a relatively separated set. Then there exists K > 0 such that for eachn € N

RelU2n (A) S KRelUn (A) . (321)
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Lattices
A lattice in a locally compact group is a discrete set and has the group structure. In this subsection, we give a
definition for lattices and show that a lattice is also a relatively separated set in the group.

Definition 3.1.17. Let G be a locally compact group and A C G be a discrete subgroup of GG. The subgroup A
is called a lattice in G if there exists a finite Borel measure v on the quotient space G /A, which is G-invariant,
that is, for each g € G and any open subset W C G /A we have v(gW) = v(W). Moreover, if the quotient space
G/A is compact, then the lattice A is called uniform.

Let A be a lattice in the locally compact group G. Since A is a discrete group, then the subspace topology is
the discrete topology. Hence, there exists an open, non-empty subset V. of G, such that A NV, = {e}, where
e is the unit of G. By local compactness we can choose a relatively compact open unit neighbourhood W and
then by taking the intersection W N V., we deduce that W NV, is an open, non-empty unit neighbourhood and
AN (W NV.) = {e}. Thus, without loss of generality we choose V. to be relatively compact. Let V' C V, be a
unit neighbourhood such that V-1V C V.. Now, suppose that v € G and A1, Ao € ANzV. Then, \; € VIV
and we deduce that A\;'\; € V=1V C V. Since A is a lattice and in particular a subgroup we have that
)\2_1)\1 € ANV, ={e}. Hence, A\; = A2 and we deduce for each x € G that # (AN zV) < 1. Thus,

Rely (A) :=sup#(ANaV) <1, (3.22)
zeG
and we conclude that A is a relatively separated set in G. Furthermore, it can be shown that a uniform lattice in a

locally compact group of polynomial growth is also a group of polynomial growth equipped with the counting
measure.

Lemma 3.1.18. Let G be a locally compact group of polynomial growth and A is a uniform lattice in G. Then
(A, Z(N), pe) is alocally compact group of polynomial growth, where &2(A) := {V C A} is the power set of
A and

pe : P(A) — [0, 00] (3.23)
r — #l i =#{r € G : x €T},

is the counting measure on A. Moreover, the order of growth of A is equal to the one of G.

Proof. Since A is a uniform lattice in the compactly generated group we deduce that A is compactly generated,
see e.g. [10, Proposition 4.C.11], with generating neighbourhood V' C A. Suppose that U C G is the gener-
ating neighbourhood of G and G has order of growth equal to Dg € N, i.e. there exists Cs > 0 such that
w(U™) < CgnPe, where i is the Haar measure on G. Then, since G is generated by the neighbourhood U, there
exists ng € N such that V' C U™°. Using Lemma 3.1.14 we have

pe(V") =#(ANV™) <#(AN(U™)") <#(ANU™™)
< Dop (U™ 1) < DoCe(non + 1)P¢ < DyCq(2no)PonPe,
where Dy := Dg(Rely (A)) > 0. Thus, for each n € N we have
pc (V™) < CanPe,

and we deduce that A is a locally compact group of polynomial growth with order of growth equal to D¢.
O

There are classes of locally compact groups for which any lattice is automatically uniform, see [3]. Examples
of such groups are the nilpotent Lie groups and connected solvable Lie groups [3, 45]. On the other hand, it should
be noted that not every nilpotent Lie group admits a lattice, an example of such group is given in [52, Remark
2.14.].

3.2. Amalgam spaces
The Amalgam functions is a class of integrable functions on a locally compact group, that will be used in the
definition of convolution-dominated matrices. In order to define this class, we initially introduce the local maximal
functions. Most properties presented in this section can be found in [27, 54, 66]. See also [24, 36] for more on
Amalgam spaces.

Throughout this section, G denotes a compactly generated group with generating neighbourhood U C G and
(left) Haar measure u. Moreover, we equip G with the word metric d.
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3.2.1. Local Maximal Functions

For defining the local maximal functions, we denote the space of all measurable functions f : G — C by L°(G)
and the space of all locally essentially bounded functions on G by

Lo (G) == {f € L°(G) : fxx € L™(G) for every K C G compact} (3.24)
The local maximal functions are defined as follows.

Definition 3.2.1. Fix an open, symmetric, relatively compact unit neighbourhood () in G. For a function
[ € LS. (G) we define the left and right maximal functions of f by

MIQ f(x) :=esssup|f(zy)| and Mg f(x) :=esssup|f(yx)|.
yeR yeQ

Define the involution of a function f € L°(G) by f¥(z) = f(z ). Note that if f € L§°.(G), thenforz € G,
we obtain

Mg (fY) () = esssup | f¥ (zy)| = esssup | f(y 'z ™")|

yeQ yeaQ
= essesgp |f(y:c_1)| = Mg(f)(fr_l) = Mg(f)v(x),

where for the third equality we have used that () is a symmetric unit neighbourhood. Thus, if f € L{2.(G), then

loc
Mg (fY) =M3(f)". (3.25)

The local maximal functions of a function provide an estimate of the function. We present a proof for this
estimate, given in [66].

Lemma 3.2.2. For any @ C G as in Definition 3.2.1 and for each f € L (G) we have

loc
[f(2)] < Mg f(x) and |f(2)] < Mg f(),
u-almost every x € G.

Proof. Let V' C (G be an open, symmetric, relatively compact unit neighbourhood such that V'V C Q. Since G is
compactly generated, there exist a generating neighbourhood U such that

G=Ju"
neN

Using the relative compactness of U™ we can cover the sets U"” by a finite number of sets V for x € G, hence
Un C U]kv;ll Ty, V. Thus, G = [, oy 21V for a countable sequence (21 ), - We observe that for, y-almost every
r € x,V,

|[f(x)| < esssup|f(zry)|,
yeVv

and, for every z € 2'V,

esssup | f(zy)| < esssup |f(z'y)| < esssup|f(z'y)| = Mg f(2').
yev yevv yeQ

If v € 3V, then z3, € 2V~ = 2V and combining the previous we have for y-almost every = € 2,V

[f(z)] < ess sup |f(zry)] < Mg f(x). (326)

From G' = (J;cy 71V and Equation (3.26) we conclude that for p-almost every » € G

|f(@)] < MG f(=). (3.27)
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Furthermore, using the previous and Equation (3.25) we obtain for y-almost every x € G

|f(@)] = |fY(x™ )] <Mg f¥(z7") =esssup | fV (27 'y)|

yeQ
= esssup |f(y71 )| .
yeQ
Thus, using the symmetry of () we obtain
|f(z)] = esssup | f(y~"z)| = esssup |f(yz)| = M f (). (3.28)

yeERQ yeQ

3.2.2. Amalgam Function Spaces
For the rest we fix an open, symmetric, relatively compact unit neighbourhood () in the group G, unless stated
otherwise. We denote by Rel A := Relg (A) the relatively separated constant of the set A with respect to Q).

Definition 3.2.3. A normed space (Y, ||-||y) is called a function space on a measure space (G, %, 1), if Y is a
subspace of LY(G, 11). If Y is furthermore complete, then is called a Banach function space.

Definition 3.2.4. A function space (Y, ||-||y) on (G, X, i) is called solid, if for each measurable function
f € L%G, p) such that | f| < |g| p-almost everywhere for some g € Y, we have f € Y, with || f||y- < ||g]ly -

For p € [1, o] the Lebesgue space LP(G) is defined by

1(G)i={f € L%G) + I fll oy <>} (3.29)
where "
i = ([ 17a) (330)
when p € [1,00), and
17115 = sup 71, (331)

when p = co. We call a measurable weight w : G — [1, 00) submultiplicative, if w(zy) < w(x)w(y), for each
x,y € G. For a measurable, submultiplicative weight w on G and p € [1, ] the weighted L? (G) space of
functions on G is defined by

14,(G) = {1 € 1°G) + 1wl i) < 0} (3:32)

and it can be shown to be solid Banach function spaces.
We now define the Amalgam spaces.

Definition 3.2.5. Let (Y, [-||y ) be a solid function space on (G, it). The left and right Wiener Amalgam spaces
with local component L°° and global component Y are defined by

WE (L=, Y) :={feL.(G) : MfeY}, (3.33)
WEHEL>®,Y) ={f e L5(G) : M{feY}, (3.34)
with norms
1w e, vy = Mg £l (3.35)
1wz (oo, vy = MG ]l (3.36)

respectively.
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We mainly focus our attention to the study of the left and right Wiener Amalgam spaces Wé (L*>®,Y) and
Wg (L*°, Y, with local component L*°(G) and global component Y = L. (G), where w : G — [1,0) is a
measurable, submultiplicative weight and L (G) is the weighted Lebesgue function space. In some cases, we also
consider the Amalgam spaces with global component Wé (L, L1 (@) or Wg (L*, L1 (@)), i.e. the spaces
W§ (L2, WE(L>°, Ly,(G))) and W& (L>°, W5 (L, L, (G))).

It can be shown that the Amalgam spaces Wé (L*, LL(G)) and Wé{ (L*, L. (@G)) are embedded in L. (G).
From Lemma 3.2.2 and since L. (G) is a solid function space, it follows

Furthermore, the left Amalgam space Wé (L*°, L. (@)) is embedded in L>°(G).

Lemma 3.2.6. Let w : G — [1, 00) be a measurable, submultiplicative weight. For each f € LS (G) we have

£l (c) < Ca ||f||WL L, L1 (G)) (3.38)

w

where Cg > 0 and hence W(S (L, LL(G)) — L*=(QG).

Proof. If we choose a symmetric open unit neighbourhood V, such that V'V C @), then foreachz € Gandv € V
we get zV = zvv ™V C zvQ. Hence, for each f : G — C measurable we have

1l oo vy < NN poo oy = Mg S (20).

Averaging over V and using the left invariance of the Haar measure y, we obtain

||f||L°°(mV) / ML I’U dM / ML ) (7 HML fHLl(G (339)

Since G is compactly generated, then there exist {xn}neN, such that G = J,,cy %, V. This can be done by
covering the sets U™ by translations of the set V' (see proof of Lemma 3.2.2 for details). Hence,

1 L
Hf”Loo(G) = ZZII\’I ”fHLOO(an) < (V) ||MQ f||L1(G) .
By assumption, the weight w satisfies w > 1, thus

1

L
1l = oy IMe iy ey = gy M lwg e, 10

u(
and we conclude that Wé (L, LL(G)) — L™(G). O

The following estimates will be useful for the upcoming results. We present a proof by Romero, van Velthoven,
and Voigtlaender [54].

Lemma 3.2.7. Let ©, ® : G — [0, 00) be continuous functions on G and A C G be a relatively separated set in
G. Then

@(y—l)\) < M

sup @ L o T1 5 (3.40)
yEGA;X NJ(Q) || ||WQ (L=, LY (@)
and for each z, y € G
lo (A
Z oy~ NN ) < Relg (4) (M]é D * Mg 0) (y 'z). (3.41)
= Q)

Proof. If y € G and A\ € A, then for each z € AQ we have 27!\ € Q! = (@, since @ is a symmetric unit
neighbourhood. Therefore, we have y '\ = y 12271\ € y~12Q for each z € A\Q. Now, since © is continuous
and () is an open neighbourhood of the identity, we obtain

Oy~ 'A\) < sup O(z) = sup Oy~ 'zx) = Mg O(y~'2),
zeYy—12Q z€Q
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fory € G and A € A and each z € AQ. Hence, for y € G and A € A by averaging over A\@) and using the left
invariance of the Haar measure i, we obtain

Oy~ < Mg O(y ' 2)du(z) < Mg Oy~ '2)dp(2).

_ L
M()\Q) AQ H(Q) \Q

For fixed y € G we have

—~1 L L 712 2
AZe;\@(y A) S%u(@) )\QMQ@(y )du(z)
5 2 [ M5Ol e(:)au:)

AeA
/ " a2 Mh Oy L) da(z),
AEA
where we used the monotone convergence theorem for the last equality. Note that for each = € G, we have
Relg (A) > #(ANzQ) = Z Xz0(A) = Z Xxo(x)
AEA AEA
Thus, using the previous and the left invariance of 1, we get

_ Rel _ Rel Relp (A
Z@ 1)) < Q /ML 2)du(z) < Q /ML w(z) = Relg (4) 1Ollwer (e, 1 (cy) -
AEA Q)

By taking supremum over all y € G we arrive at Equation (3.40).

Using a similar technique we prove the second estimate. Initially, we observe that if y, z € G and A € A, then
for each z € AQ we have y '\ € y~12Q and A~z € Qz~'x. Hence, since ©, ® are continuous, positive and
@ is an open neighbourhood of the identity, we obtain ®(y~'A) < Mg ®(y~'2) and O(A\~'z) < MO (27 ')
Now, averaging over A, using the monotone convergence theorem and that Relg (A) > >y .5 Xaq@(2) we have

Y e e <Y @ . ML (1 2) ME ©(> 1) dpa(2)
AEA )\EA
/ 3" vaaz) M @(y~12) ME O (=~ 12)dp(2)
AeA

REIQ L “1MR O(2~ 1z >
< 2 [ Moyt MO )dn(s).

1> we obtain

> ey N ) gW/Gbeﬁ(t)Mg@(t Yy~ le)du(z)

AEA

Finally, using the left invariance of the Haar measure and the change of variables ¢t = y~

RelQ (A)
= Q)

which proves our claim. O

(MI{2 b x Mg 0) (y 'z),

The definition of the left and right Amalgam spaces can be extended to a two-sided version, where both the
left and right local maximal functions are being used. A special case of the two-sided Amalgam space, with global
component Y = Ll (@), is presented below.

Definition 3.2.8. Let G be a locally compact group and w : G — [1,00) be a measurable, submultiplicative
weight on (G, i). The two-sided Wiener Amalgam space with local component L> and global component L (G)
is defined by

Wo (L, Ly, (G)) = {f € L5.(G) : MGMS f € Li,(G)} (3.42)

with norm

w

1 llwe (zoe, 21 @y = IMG MG fHL1 @ (3.43)
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It can be shown that for discrete groups the Amalgam space is exactly the set of all summable sequences on
the discrete group.

Remark 3.2.9. Note that if G is a discrete group, equipped with the counting measure pic, then we fix Q = {e},
where e € G is the unit element on G. Then () verifies the assumptions of the above definition and hence we have
Mg Mg f(z) = ess sup, ,rcq=iey |f(y2y')| = [f| (2), for each 2 € G. Thus, using that the space LL (G, pc) for

the counting measure yic is the sequence space ¢} (G), it follows that

Wa (L%, Ly (G)) = {f € L5.(G) + |f| € Ly(G,no)} = {f € L (G) « f € 4,(G)} (3.449)
and
1w (e, 11 @y = Wl (G uey = 1l () - (3.45)

We conclude that for discrete groups
Wa (L%, Ly, (G)) = £, (G), (3.46)
equipped with the sequence norm ||| 1 @)

Let f, g € L'(G) such that f(x) > 0 and g(z) > 0 for each z € G. Then, for z € G we observe that

MG(f * g)(x) = esssup (/ F)aly™ zz)dp(y ))

ZEQ

Now, we assume that g € Wé (L°°, LL(G)) wehave f>|<M](g g € L*(G). Then by choosing a sequence converging
to the essential supremum and by applying the Dominated Convergence Theorem to that sequence, we obtain

ess sup (/Gf(y) gy~ 'zz)duly ) /f )esssup g(y ' wz)dpu(y) /f )Mg gy~ ) dp(y).

Z€EQ z€Q

Thus, for each f € L'(G) and g € Wé (L>, L1 (G)) such that f,g >0

Mg (f * g)(x) = (f * Mg g) (2), (3.47)

for pi-almost every x € G. Similarly, for g € L'(G) and f € Wg (L, LL(@)) such that f, g > 0 we have

M(f * g)(x) = = esssup ( / fly (y)> = eszsesgp ( / f (Zy)g(y‘lx)du(y)>
= /G esssup(f(zy))g(y~'x)du(y / MG f(y)g(y™ z)du(y),

z€Q

where for the second equality we have used the Dominated convergence theorem and for the third the left
invariance of the Haar measure y. Thus, for each g € L*(G) and f € Wg (L*°, LL(G)) suchthat f,g >0

MS(f * g)(x) = (MG [ g) (z), (3.48)

for p-almost every x € G.
Using Equations (3.47) and (3.48) above, we deduce that the two-sided Amalgam space is closed under
convolution.

Lemma 3.2.10. Let f € W (L™, L},(G)) and g € W (L™, L},(G)). Then
1 * 9llwg zoe, 23,y < I lwa e, 21, @) 19lwg (o, 21 - (3.49)
Moreover, we have the following embedding

Wo (L™=, Ly, (G)) x Wg (L™=, Ly, (G)) — Wq (L™=, L. (G)). (3.50)

w
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Proof. Note that

MR(f*g) ) = esssup
z€Q

[ 1t \<esssup/f| ) lgl (5~ 22)du(y)

Mb MY (f * g)(x) < M5 ME(|f] *|g]) (). (3.51)

Since L' (G) is a solid function space we have

and hence

MG MS(f * 9| 1 () < Mo MRS gD 11 ) - (3.52)

Combining the previous and Equations (3.47) and (3.48), we have

17 % glwg (. 2@ = IMEMS(S * 9|1 oy < IMEME(ST* laD s e (3.53)
= || M (M |£] % |g]) ||L}U(G) = | Mg 1+ Mg gD
< HMR fHLl (@) ||MI{29HL1 (G)

= I fllwz e, 21, 19lwg (=, 2y @) - (3.54)

w

using Young’s inequality, ie. [|[F'x G|,y < [Fllio) |Gl gy forall ' € LP(G), G € L'(G) and
p € [1, 00]. We conclude that Wg (L=, LL(G)) * WCS (L=, L} (G)) is embedded in W¢, (L, L} (G)),

WE (L, L,(G) * Wk (L™=, LL(G)) — Wq (L™, L,(G)). (3.55)

By the definition of the two-sided Amalgam space Wy (L*°, L. (G)) we have that
Wq (L, LL(G)) is embedded in the left and right Amalgam spaces. Thus, using Equation (3.55) we obtain

Wa (L%, Ly, (G)) * Wq (L™, Ly, (G)) = Wq (L, L, (G)). (3.56)
O

The following result shows that the two-sided Amalgam space W (L, L} (G)) is a Banach space. To prove
the completeness of W (L, L (G)), we use the completeness of the Lebesgue spaces L., (G). Here we only
prove the completeness of the Amalgam space with global component L., (G), however the space W (L>,Y)
for more general function spaces Y can also be shown to be complete [53, 66].

Theorem 3.2.11. Let G be a locally compact group with Haar measure 1 and w : G — [1, 00) be a measurable,
submultiplicative weight on G. Then W (L, L., (G@)) is a Banach space.

Proof. Let f, g € Wo(L>, LL (Q@)) we obtain

M ME(f + 9)(x) = esssup |(f + g)(yay')| < esssup |f(yay')| + ess sup g(yay)
v,y €Q Y,y €Q v,y €Q

< Mg Mg f(2) + Mg Mg g(x).
Then using the triangle inequality and that L} (G) is solid we have

— |IML MR L R L MR
Il.f +QHWQ(LOO,L}U(G)) - HMQ MQ(f+g)||L}U(G) =< ||MQMQfHL},,(G) + HMQ MQgHLb(G)
< W llwore.r @y + 19llwo e, (&) -
Moreover, since Mg (cf) = |¢| Mg(f) and M§(cf) = [¢| M§(f) for each ¢ € C and each f € W (L>, L,,(G)),
we deduc.e. the absolute }.10m0genei.ty of [|"lw(L,11 ()) from the absolute homogeneity of ”'”Lij(cl;) . By
the definition of the maximal functions we have that || f[|,,, (LW’L}U(G)) > 0 for each f € Wq(L*>, L,,(G)).
Now, if ”f”WQ(Loo L1 (cy = 0 then we have HML MB f||L1 ) = 0 and hence Mg M§ f = 0, u—almost
everywhere in G. Using Lemma 3.2.2 we deduce that f = 0 yu— " almost everywhere in GG. Thus, we conclude that

(VVQ(LOQ7 LL(@)), H'”WQ(LOO,L}U(G))) is a normed space.
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To show that (WQ(L“’,L}U(G)), ||'||WQ(L°°,L11U(G))) is complete, it suffices to show that if
(fa)nen € Wa (L%, Ly, (G)) with 35, iy | fallwg (o<, ()) < 00 then

S € Wo(L™, LL(G)).

neN

Using Lemma 3.2.2, for each n € N we have |f,| < Mg Mg f,, and hence, since LL (G) is a solid function space
(see the inequalities 3.37), we obtain

> Mallzy ey < Do IMEMS Fall 1y oy = D Mnllwg z 21,y < o

neN neN neN

By the completeness of L, (G) we define f := 3" . fu € Ly, (G). For g, = Mg M§ f,, we have

Z ”gnHL}U(G) = Z HMCLQ Mg f”HL}U(G) - Z ”f”HWQ(L"‘%L}U(G)) <0

neN neN neN

and using once again the completeness of L;, (G) we deduce that ), gn € L3, (G), or equivalently

> MEMg fr

neN

< 0.
L, (G)

For pi— almost every x € G

ML MR f(z) = ||fXQJ:QHLoo(G < Z ||anQ»LQ||Loo(G) = ZML MR fa(2).
neN neN

Since L,,(G) is solid, from the previous we deduce that Mg Mg f € L,,(G), which completes the proof. O

It should be noted that the two-sided Amalgam space W (L, L. (G)) is independent of the choice of open,
relatively compact, symmetric unit neighbourhood @), with equivalent norms [53, 66].

We now define the subspace of continuous functions in the Amalgam space, which will be shown to be closed
in the two-sided Amalgam space. Furthermore, this subspace will be used in the next section for the definition of
convolution-dominated matrices in locally compact groups. Initially, we show that the subspace of continuous
Amalgam functions is closed, by following the proof given by Voigtlaender [66].

Lemma 3.2.12. The subspace
C(G)NWq(L>, Ly,(G)) (3.57)
is a closed subspace of W (L>°, L1 (G)).

Proof. Let (fn),en € C(G) NWq (L™, L, (G)) be a sequence such that f, 272 f € Wo(L™®, LL(G)) with
convergence in Wg (L, L. (G)). Now, suppose that V; C G is a compact set, then choosing a symmetric
open unit neighbourhood V, such that VV' C (@), and from the compactness of V;, we have that there exist
1, ..., Ny € G such that

Vo C )V,

ECZ

Then, for each i = 1, ..., N, by averaging over V (see Equation (3.39) in the proof of Lemma 3.2.6) we obtain

1 Xaiv | oo () < (7 Mg fHLl(G)

and hence
N

N
1
||fXVo||L<x>(G) < ; Il f Xz VHLoo(G) Z TV) ||M5f||L1(G) :

=1
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Thus,
1 xvell Lo (c) < Cvo@ 1w (noe, 11 (@) » (3.58)

where Cy, o > 0. For a relatively compact open set V7 C G we have

n,m—0o

”(fn - fm)lenLoc(G) < ||(fn - fm)XWHLm(G) < CW,Q ||fn - fm”WQ (L*=, LL (@) 0

using the estimate in Equation (3.58) and the convergence of the sequence (f,)
C (V1) we have that there exists gy; € C(V1) such that

nen - From the completeness of

n—oo

H(fn 79V1)XV1HL°°(G) 0.

Similarly, for a relatively compact open set V5 C G we define gy, € C(V3) such that

n—oQ

”(fn - sz)XVg HLOC(G) — 0.

Thus, for two relatively compact open sets Vi, Vo C G we have

|(9V2 - gV1)XV1ﬂV2||L°°(G) < ||<fn - ng)XVlﬁvz HLOC(G) + ”(fn - sz)XV10V2HL°°(G)

n—oo

<I(fn = gvi)xvill oy + 11 = 9v2 )XWl oo () —— 05 (3.59)

hence gy, = gy, on Vi N Va. Since G is compactly generated, we have G = |J,°_ U™ where U C G is a
relatively compact symmetric unit neighbourhood and we define h,, = gym € C(G) (similarly to gy, ) such that

n—roo

1(fn — hm)XUm”LOO(G) — 0.

Then we define
g9(z) = hy(z), foreachz € U™ (3.60)

and by Equation (3.59) we have that g € C(G). Let K C G be a compact set. Then since G is compactly generated
there exists mg := mo(K) > 0 such that K C U™ and hence

1(frn = 9xK XKl Lo () < 1 (fn = gxU™m0)XU™0 [ oo (3

n— oo

< |(fa = Bmo)xumo ll e () —— 0.

Therefore, f,, converges pointwise to g € C'(G). We conclude that g € C(G) is a continuous representative of
f € Wo(L>™, L} (G@)) and hence f,, converges to g € C(G) N Wq(L*>, L. (G)) in the amalgam norm. Thus,
C(G)NWq(L>, LL(G)) is a closed subspace of W (L, L. (G)). O

Since from the previous C'(G) NWq (L, L. (G)) is a closed subspace of W (L, L1 (G)) and from Theorem
3.2.11 we have that W (L, L} (G)) is a Banach space, we deduce that C(G)NWq(L>, L} (G)) is also a Banach
space.

We denote the subspace of continuous Amaglam functions by

Wa (C, Ly,(G)) = C(G) NWo (L™, L, (G))

and we interpret this space as the two-sided Amalgam space with local component C'(G) and and global component
LL (G). Moreover, since the Amalgam space is independent of the choice of @, for a measurable, submultiplicative
weight w on G we use the notation

Wy (G) = C(G) NWG(L™, L, (G)),

WiH(G) = C(G) NWG(L>, L, (G)),

and
W (G) = C(G) N W (L™, LL(Q))

throughout the rest of the paper.
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3.3. Convolution-dominated Matrices

With the preparation done over the previous sections, we can now define the convolution-dominated matrices
indexed by relatively separated sets in locally compact groups. Throughout this section we make the same
assumptions as the previous section. Precisely, we assume that G is a compactly generated with generating
neighbourhood U C G and (left) Haar measure p, equipped with the word metric d.

Definition 3.3.1. Let A, I' C G be two relatively separated sets and let w : G — [1,00) be a measurable,
submultiplicative weight on G. We say that a matrix A = (A(X,7))yep yer € CA¥T is w-enveloped by a

non-negative function © € Wg, (C, L} (G)) and write A < ©, if
[AxY) <O 1), (3.61)

forall A\ € A, v € T'. We define the space of convolution-dominated matrices in C**" by

CD,(T,A) == {A € CMT . 30 € Wy (C, L.(G)) suchthat A < O} (3.62)
and the norm

1Allop, ra) = igf{H@HWQ ety | A=OEWQ(C, L;(G))} . (3.63)
We refer to the norm above as the convolution-dominated norm. Furhermore, when A = I' we denote

CDy(A) = CDy (A, A).

For a discrete group G, using (3.46), we have that the convolution-dominated matrices on a discrete group
are all the matrices A = (A(\, 7))y jeq € CY*Y such that |A(\, )| < ©(A~1v), for some © € £} (G). This
recovers the definition of convolution-dominated matrices in [19, 63].

The following Proposition proves that (C’Dw (T, A), |- ||CDw(F7A)) is complete, but also it is embedded in the

algebra of operators Z(¢P(T"), ¢P(A)), for each p € [1, oo]. The previous embedding follows from the fact that the
convolution-dominated matrices C'D,, (", A) have also a finite Schur norm as defined in Equation (2.6). For the
aforementioned results we include a proof given in [54].

Proposition 3.3.2. Let A, I, K C G be relatively separated sets in G and let w : G — [1, 00) be a measurable,
submultiplicative weight on G. Then

1. (C’Dw(l", A), ”'”CD“,(F,A)) is a Banach space,
2. forall M € CD,(I',K)and N € CD,(A,T'), we have

Rel (T')
IMNlcp, k) < Q) IMlicp, .m0 INlep,ar (3.64)

3. forall p € [1,00], CD,, (T, A) is embedded in Z(¢P(T'), £P(A)), with

max{Rel (A)Rel (T")}
ANl g er (r),er (a)) < 1(Q) IAllep,, @A) (3.65)

forall A € CD,(T,A).

Proof. 1. The triangle inequality and the absolute homogeneity of the norm ||-[|op, (r 5, can be shown using
Theorem 3.2.11 and the properties of the norm [|-||yy;., (1. 11 () - Similarly, we have that [ Al Ay = 0 for
each A € CD,, (T, A). Moreover, for A € CD,,(T', A) using Lemma 3.2.7 we have for each envelope O of A and
eachAe A,yel

AN < OT) <18l (poe .21 (6)) - (3.66)
Taking supremum over all envelopes of A we have
[A(A,7)] < ”AHCDw(F,A)’ (3.67)

hence if ||Al|cp,, o) = 0 then A = 0. Thus, CD,,(I', A) is a normed vector space.
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To show that C'D,,(I", A) is complete, it suffices to prove that every absolute convergence series is convergent

in CD,, (T, A). Let (Ay,),, . be a sequence in CD,, (', A), such that

Z [Anllcp, @A) < oo
neN

neN

Applying the same arguments we used for Equation (3.67), it can be shown that
Z ‘An()‘77)‘ < Z ||A71HCDW(F7A) <0

for each A € A and v € I'. By the completeness of C for each A € A and v € I' we define
A7) =) An(\y) eC

neN

and A := (A()\,7)) € CA*T'_ We choose an envelope ©,, for each A,, such that

AEA, vE

1OnllwgL=,11 (6)) < 2l Anllep, (r.a) -

Using that
> 8allwg ey 2D 1 4nllep,ma) < o0
n=m+1 neN

and that W (C, L,,(G)) is complete, we deduce that ®,,, :== > | 0, € Wq(L>, L,(G)) with

1@mllwg = nen < Do 1Onllwg(ze oy ay <

n=m-+1
for each m € N. Then,
n=1 n=1 n=m+1
< Y 0T =3y
n=m-+1

for each A € A and v € T. Thus,
A=A,
n=1

and we deduce that A = 3
space.
2. Let M == (M(k,7)) e, qer € CDw(l,K), N = (N(7, ) yer, aea € CDw(A,T') and suppose that
0, ® € Wg(C, L. (G)) are envelopes of M and N respectively. Then for each A € A,k € K we obtain

RelQ (F)

((MN) (5, M) < D IMEADNEA)] <D 0BT £ —= (MO + MG ®) (x7 1)),
yel yer M(Q)

m—0o0
NPmllwgze ry@n < Do 1€nllwywe 2y 0
CD,,(T',A) n=m+1

Ay, € CD,, (T, A). From the previous, we conclude that CD,, (T, A) is a Banach

neN

using Equation (3.41). Since from Equation (3.49)

50 M8 1y ) < M6 1 P @l o 1

<Ollwyp=,r1 @) 12wy e L1 (@) »
it follows that M N is enveloped by Mb O * Mg P € Wo(L>,LL(G)) and

ReIQ (F)
IMNllcp,am) < R 1O1lwg Lo, @) 1Rllwy (Lo, L1 () -
Thus, taking infimum over all envelopes © of M and ® of N we deduce

Rel (T')
IMNlcp, k) < Q) IMlcp, .m0 IV lep, ar - (3.68)
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3. Let A € CD,(T,A) and © € Wy (C, L. (G)) be an envelope of A. Then, using Lemma 3.2.7 we obtain

Relg () Relg (1)
su AN <su o ly) < ——2 |0 _ cRelo ) g .
p%; V) Aey‘% )= @) Plwg crnen = =gy 1Pllwer~ iy
and
_ Relp (A)
sup Y [AN ) S sup YOIy =sup YOV (7)< = 19 w111, )
V€T 3 oa Vel jen Vel fi 1(Q)
Relg (A) Relg (A)
= Q) H@HWS(LDC,L%U(G)) < Q) ||®||WQ(L°°,L%U(G))
Hence,

max su A(A , su A(A < max Relg (A) Relg (I)
P ;7)| 5 sup )]

Aser €T Nea M@ @
Relg (A), Relg (T
_ max { eQM((C;) elo (1)} 1®1wq iz,

and taking infimum over all envelopes © € Wg(L>, L} (@)) of A we obtain

max {Relg (A) ,Relg (T’
max supz AN, )] supz [AN )] p < { QM((C;) o)} HAHCDw(F,A)'

Aser Y€ Nea

Thus, from the previous and Schur’s Test, see e.g. [22, Theorem 6.18], we deduce that

max {Relg (A),Relg (T')}
1Al er (0,00 (a)) < QM(Q) N [Allep, @,a) (3.69)

for each p € [1, 00].
O

From Part 2 of Theorem 3.3.2, we deduce that the multiplication in C'D,,(A) is left and right continu-
ous. Then, since (CDw (A), ||~HCD“)(A)) is a Banach space, there exists a norm ||-[[p, (4, Which makes

(CDw (A, -llep., (A)) a Banach algebra, see e.g. [55, Theorem 10.2].

topology as H'HCDw(A)'



Key Lemmas for the Commutator Technique

In this chapter we prove several lemmas that are required in the proof of the result on ¢P-stability and then we
proceed to prove the result in Section 5.1.

Throughout this chapter, we fix a locally compact group G of polynomial growth generated by the symmetric,
relatively compact, unit neighbourhood U C G and we assume that the growth rate of the group is given by
C&lnDG < p(0m™) < CanPe for each n € N, where C, D > 0 are constants. Moreover, assume that
A, T' C G are two relatively separated sets in G. The group G is equipped with the word metric d and the
Haar measure y, which is both left and right invariant (see Lemma 3.1.7). Moreover, we fix an open, symmetric,
relatively compact unit neighbourhood ) and without loss of generality we can further assume that ) C U. For
eacha € N,

we : G — [1,00) (4.1)
z — (14+d(z,e))”

denotes the measurable, submultiplicative polynomial weight on G.

For the upcoming results, we use the notation < and 2 for inequalities up to a constant, and < when we have
equality up to a constant, that is when a < b < a we denote a < b. Furthermore, when the previous symbols
have a subscript, then the constant of the inequality depends on the subscript, e.g. we denote by a <,,, b the
inequality a < Cb, where C' = C(m) > 0. Recall that Rely (A) = sup_ . # (A N xV) is the relatively separation
constant of the set A C G with respect to V' C G and we denote by Rel(A) = Relg (A) the relatively separation
constant of the set A C G with respect to the fixed unit neighbourhood @ C A.

4.1. Equivalent norm on the sequence space

Initially, we define a sequence of functions on the group that acts as a partition of unity, up to a constant, and
then we define an equivalent norm on the sequence space ¢4(A) for each g € [1, 00|, depending on the sequence
of functions.

Before stating the next lemma, we recall that for each N € N Lemma 3.1.13 defines a relatively separated
and countable set Xy and a covering of GG. Using an enumeration of the countable set Xy we uniquely deter-
mine the elements of Xy by Xn = {zx,n : k € N}. Using this notation, we have from Lemma 3.1.13 that
{a:kUQN}xk NEXn is a cover of G.

Lemma 4.1.1. Fix N € N. Suppose that Xy C G is the relatively separated set and {:cka UzN }Ik vexy I8 the

cover of G given by Lemma 3.1.13. Then, for each z;, v € Xy there exists a function 1/},{\’ : G — [0,00), such
that 0 < ¢ < 1,4 is supported in zx yU*Y, for each p € [1, oc] we have

1/p
t<|{ Y ()] <KCEsPe, 4.2)
K, NEXN
where K = K(G,U) > 0 and for each z, y € G we have
) 1

33
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where C,, > 0 is independent of N. Moreover, for the multiplication operators W1 defined for each z; x € Xy
as follows

TN . P(T) — ¢P(1)
e (U8 () ) ep »

we have for each p, ¢ € [1, ]

el gary S H (HMCHM)) SN llellgary > Ve € £9(D), (4.4)

T, NEXN ¢a

with constants that depend on N, but are independent of p, ¢ € [1, 00]. Moreover, for p € [1, oc] we have

S ey Ve € 2(T), (4.5)

llellenry S H(H‘I’IICVCHEP(F))

T, NEXN || gp

with constants independent of N and p € [1, c0].
Proof. Fix ¢ € C2°([—2,2]), such that 0 < ¢ <1, ¢ = 1 on [—1, 1] and define

1/),];] :G — [0,00)

T (d(x;\;“v)> )

for each x5, ;v € Xy . For each z € G we have

xT,T r,x
Sl = S0 (V) < Snia (V)
k
= ZX[—4N,4N] (d(z,zk,n)) = #{k : zk,N € XN, |d(z,25,n)| < 4N}
:#{k D XTE,N ExU4NﬂXN} < sup#{k: DTN Ea:U4NﬁXN}

e

SKsup#{k : ka\/ExUQNﬁXN},
zeG

where K := K(G, U) > 0 is the constant given by Lemma 3.1.16. Then, using Lemma 3.1.13 we obtain

Zwk <Ksup#{k xk,NEIUQNﬂXN}:KRelUw (XN)SKC%5DG. (4.6)
zeG

Furthermore, since {z;, yU?" },, \cx, is a cover of G we get
N T, Tk N T, Tk N)
Sl = S (V) 2 S (V)
:#{k : | (JC,I]C7N)‘S2N}:#{]€ : ;Ek7NE.TU2NﬂXN}Zl.

Thus for each x € G we have 1 < Zk z/J,iV(x) < KC%E)DG. Similarly, it can be shown that for each z € G we
have

1<ZX[ n (wxw> Zw( DTN >p

and

(S (5) ) 2o (M) = Do (52 o

k
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Hence,
1/p

t< | > ey < KC&5P¢. (4.7)

T, NEXN

By the smoothness of 1) we deduce that 1) is a Lipschitz function, hence for z,y € G we obtain

i (@) = (y)] = ‘1/) <W> —v (W)’

< Lip(y) ‘2;7 (d(z, zp,n) — d(y, wk,N))‘

< Lip() 5 d(@,9)]

where Lip(1)) > 0 is the Lipschitz constant of 1) and

R (2) — v )] < [ ()] + [ ()] < 2.

08 (@) ~ o )] < min {2, Lip(0) 5 do) | < Comin {1, 55 e} (49

where Cy, > 0 depends on the Lipschitz constant of v and is independent of V.
Let I C G be a relatively separated subset of G. For each 2, y € X define the multiplication operator W&
as follows

TN L P(T) — ¢7(T)
e (U (e) er s

for p € [1,00]. Note that if ¢ < p, then ||y||,, < ||y|/,s. Moreover, in d dimensional spaces we have for each

p,q € [1,0] e
||yng < dmex(1/p=1/20) ||yHeq~

Since

#supp (U |r) = # (L Nap nUY) < sgg# (TN 2U*) = Relyan (') Sy Rel(T') < oo,

then for p, ¢ € [1, o]
H\IJ;CVCHZP(F) < H‘I’f«VCHel(r) < # (supp (¥3'|r)) ||\I!f€VcHex(F) (4.9)

< sup{#(supp (TR o)} 2R el o )

S~ Rel(D) H‘I’gCHeMF) < Rel(T') H\I}QZCHZ‘?(F) '
Similarly
H‘I’iVCHm(r) <y H\I/;CVCHZP(F). (4.10)
Hence
1% el gy =N 1R el oy (4.11)

with constant that depends on N, but independent of p, ¢ € [1, 00]. For each p € [1, 00| we have from Equation
4.7)

1/p
1< (Z YN (@P) < KC&5P¢,
k
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hence, for ¢ € (P(T") we obtain

1/p 1/p p\ 1/p
ey = [ Dol ] <X <Z w;iV(v)p) (7]
~yerl ~yerl k
1/p 1/p
= WP = (Z [ cHZ(m>
vel k k
_ N
= (1% ellry), |,
and
1/p 1/p
N N_||P N
|(1e¥ o), |, = (Z o) c||m)> — [ S e
k Vel &
1/p p\ 1/p 1/p
(Z((zaor) won) ) < (Swezseror
~yel k ~yel
= KCg57° HCH@(F) : (4.12)
Therefore,
- N
lellrcey = || (198 ell ey ) ], @13)
with constants independent of p € [1,00] and N € N. This proves the equivalence in (4.5).
Moreover, combining the previous and Equation (4.11) we conclude that
- N
HC”ZQ(I‘) ~N H (H\Ijk CH[?(F))k e (4-14)
with constants that depend on N, but are independent of p, ¢ € [1, oo]. This proves Equation (4.4).
O

4.2. Estimation of the commutator norms
The proof of the ¢P-stability result is inspired by the commutator technique used by Sjostrand in [60]. Variations
of this technique were used by Sun [61] and Grochenig, Romero, Rottensteiner and Van Velthoven [27] for the
{P-stability result for convolution-dominated matrices indexed by a relatively separated set in the Euclidean space
R? and in homogeneous groups, respectively, by Shin and Sun [59] for the proof of the inverse-closedness of
Banach subalgebras, but also in [14, 58] for the proof of norm-controlled inversion.

Recall from Equation (2.6) that for a matrix B = (Bj y)xea yer € CA*T the Schur norm is given by

||BHSchur(F~>A) ‘= max § sup Z ‘B/\KY‘ , sup Z IB/\KY‘
AEA er €L NeA

Following this commutator technique, we proceed to estimate the Schur norm of the commutators
[A, UTEY : P() — (P(A),

where \I'kN and \I/f[ are defined by Lemma 4.1.1 for z, v, z; v € Xn. For N € N, Xy given by Lemma 3.1.13 and
(\I/iv)xk,NeXN given by Lemma 4.1.1, we define the matrix V¥ = (VN(k’j))ack,N,zj,NeXN € CXv*XN with
elements given by

VN (k,j) = ||[A, wﬁ]wf”smm (4.15)

T'—A)’

for each z; v, ;v € XN.
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Lemma 4.2.1. Fix N, a € N. Suppose that A € CA*T" and there exists © € W,,_(G) such that for each A € A
andy el
[ A7) < O ). (4.16)

Let On(z) := @(z)min{l, d(;&e)} € C(G). Then for Xy, as defined in Lemma 3.1.13, and for each

TN, ;N € XN we have

1ONlw(c) d(zp,n, zj,n) < 10N

VN(k ) S
min { Oy -

(4.17)

d(a:k,N, xj,N) > 10N,

k

N@iNUSN HW(G)} ’

where the constant in the above inequality depends on the relatively separated sets A and I', but is independent
of N.

Proof. Fory € I"and A € A, we have
(A, TR0, = (Axa i () = 98 (VAN 7 () = = (U () = o (7)) Anady (). (418)

Hence, Equation (4.3) and the estimates WJJN (7)] < 1and|Ay,| < O(A"1y) give

(1w 1e), | = [0 ) = el )] 1l [0 ()]
<R (N =R (N O(A)

_ . d(\, )
< ! 2
< Cy©(A™7y) min {1, oN }

SOM 1) mm{l, d@v)}

2N
=On(A1y),

where the symmetry and the left invariance of the metric are used for the last inequality. Then we have

_ Relg (T") Relg (')
su A, TN su On(A <=2 o vy < ——=—11© ,
sop 3|14 w210, | 5 s 3 u@) O¥lwe@ = =g 9% v
by Lemma 3.2.7. Similarly, we have
supZ‘([A N ‘<supZ@N)\ v) <supz:@v (y~N)
7€l yen 7€l xen 7€l \ea
RelQ( ) RelQ (A)
< (S)¢ =——10
Q) 1O lwz (s ita) 1O llwra)
RelQ( )
< On
Thus,
VN (k,j) = H[A,\I/N ‘I'NHSC}LW(F_>A ax supZ’ (14, T supZ‘ ([A, T ]w )A’y’
AeA A €L Yea ’
Relg (I') Relg (A)}
< max{ Q , (C]
w@ @) 1o

Now, we prove refined estimates for k, j such that x; v, 2; v € Xy and d(zx N, 2z, n) > 10N. Let vy € G.
Then we have
10N < d(xk,N,xj,N) < d(l‘k,N,’}’) + d(%xj’N)

and hence we obtain
AN < d(zp,n,v) or 4N < d(zjn,7),
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using the symmetry of the metric. This implies that

v ¢ supp ¢y or v ¢ suppey .
Thus for each v € G we have
O (N (7) = 0,
foreach k, j suchthat xy v, 2~ € Xy and d(zx N, 2z, n) > 10N. Then, using Equation (4.18) and the previous
we obtain for each x5 n,z; v € Xn such that d(x v, x; n) > 10N.

/S\uI/)\Z‘ ([4, T} \I!N ‘ < supZ?ﬁk \A,\yw ) < SUPZWC )%V(’Y)
€ 'yEF
< swp > B en T Yl ()
AEAﬁsuppw}:’ ’yel—‘ﬁsuppwjv
< swp Yo W e T Y ().

4N
AEANZR NUSY S epna; nUAN

Note thatif A € A N CEk’NU4N andyeI'N xj’NU‘lN, then
_ -1 _
A 1’y S (mk’NU‘lN) $j7NU4N = U4N$k}\,$j,NU4N,
by the symmetry of U. Thus,

sup > |(14, w2]0)), < sup > wFmen e ()

4N
AEA ~€T AeANzp NU ’YGFQIJ‘,NU‘LN

-1 -1
< sup Z O MXpang 1t o, yuan (A7)
AEANae NUY yel Naj; NUAN '

We want to apply Equation (3.40) to the previous, however Equation (3.40) was proved for continuous functions. We

can apply Equation (3.40) to a sequence of continuous functions that approximates the function ©x;4 Narl z; yUAN>
k,N*J
or to a continuous function that estimates the function @XU4 Nol ) NUAN: Here we estimate @XU4 Nl o, yUAN

by a continuous function on G. Let € C(R), such that 0 < n < 1and n(z) = 1, for |z| € [d (th,x.j’N) -
8N, d(zk N,z n) + 8N] and n(z) = 0, for |z| ¢ [d(zk N, zjNn) — 8N — 1,d(xk n,xjn) + 8N + 1]. Then
n(d(-,e)) : G — [0, 1] is continuous on G and

Xuan gt coan S 1(d(5€)) < Xpswy 1o, wusy-

Thus, from Equation (3.40) and the previous it follows

i‘ég Z ‘ ([A, q;llc\/]\p;\/)kﬁ‘ < sup Z @()\_1’7)XU4NQC;_§V”NU4N (A1) (4.19)
er '

4N
kEAﬂxk,NU ’YEFI'WJ,‘J'YNU‘LN

<sup YOy (d(A 1, €)) (4.20)
)‘EA'yeF
<109 e)lle) < |Oxpavart, WUSNHW(G), (4.21)

with constants that depend on the relatively separated sets A and I, but are independent of V.
Similarly, we obtain

sup » ‘ [A, U ]w ‘ < sup > N (V)] Axy ) <sup Y (MO )w (7)
7€l xea I'Xea Vel xen
- -1
< sup Z 0" (v A)XU‘*NzT}\,zk NU4N(7 A)
yEL Ny nUAN AEA Ny, N UAN » '
< sup Z 0" (v 71>\)XU4Nw L NU4N( 71)‘)

. 4N
yelNez;nU AGAﬂzk,NU‘lN

A

\
H(@Xuswx;}vmj,ww) W(G) HGXU”%N%NU HW(G)'
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Thus for k, j such that d(zx, N,z n) > 10N we have

N N N N
V¥ (k,j) = ||[A, 0] HSchur(F—ﬂ\) N “9XU5Nm;,1Jvmj«NU5N"W(G)7

with constants that depend on the relatively separated sets A and I, but are independent of V.

4.3. Estimation of the Schur norm

In this section, following the commutator technique from [60] we estimate the Schur norm of the matrix V'~
defined by the commutators, see Equation (4.15) for the definition of V. We show that the norm of the matrix
V¥ goes to zero as N approaches infinity. In that way, we can define a new matrix as the Neumann series of
powers of the matrix V¥ for some V.

In the next lemma, we define a Schur matrix in .’ (X, ), which provides an estimate of the norm of a sequence
in ¢P(A) after the application of the multiplication operator \I/kN ! (see Lemma 4.1.1). This is the last step before
proving the result on the ¢P-stability for the class of convolution-dominated matrices.

Lemma 4.3.1. Fix a € N, such that @ > Dg. Suppose that A € C**!" and that there exists © € W,,_(G), such
that foreach A € Aandy e T

A\ )] < OATH). (4.22)

Furthermore, assume that A is bounded from below for some p € [1, o], i.e. there exists C4 > 0 such that
||C||ep(1“) <Ca HACHep(A) ; Yee P(I). (4.23)
Then there exists N7 € N such that for X, given by Lemma 3.1.13 and (‘1/2]1) given by Lemma 4.1.1,

Th,Nq EX’N1

there exists W € (X, ) such that for each x5 n, € Xn;,

H\Iffjlc i Y Wikj) H\Iljlec

Tj, Ny €X Ny

4.24
sy’ (a.24)

<
£p(T)

for each ¢ € £>°(T").
Proof. Step 1: Commutator technique
Since A is bounded from below for p € [1, o0, there exists C'4 > 0 such that
lellepry < CallAcllpppy, Ve € ().
Without loss of generality we can assume that
ey < 1Acllp(ay > Ve € £2(T). (4.25)
Then for ¢ € £>°(I") we have

||\Il§cvc||ep(r) =< HA‘I}gCH@(A) < H\I’;CVACH@(A) +]/[4, \I’{ﬁv]CHeP(A)’

where the second inequality comes from the triangle inequality and AWY = [A, UN]+W¥N A, Using > (V) =1
(See Lemma 4.1.1), we have that there exists C5 ,, > 0 such that C’Q_i < Z](d);v)Q < (3,4, and hence

[0 ellry < 191 Acliny + Cow || 32 14 (2) "
zj NEXN £P(A)
< H\IIiVAcHZP(A) +Coy Z[Aa ‘I’llcv]‘l’jv H\I];‘VCH@(F)
J ep(T)—p(A)
< H\I/QIACH”(A) + o Z[Aa e ||\II§VCH£p(F)
J Schur(I'—A)

< H\I]{CVACHZP(A) + 0211/) Z ||[A’ \Ijiv]l:[}?[HSchur(F%A) ||\Ij§VCHZp(F) ’
J
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Thus, for each 7, v € X

H\IJQ’CHW(F) < ||\IJ£]AC||@)(A) + Cay Z VN(k,j) H\IJ;‘VCHep(r)’ (4.26)

r; NEXN

where we recall that VN (k, j) = ||[4, U} for each zy N, ;8 € XN.

]\IJ;V ||Schu7’(F—>A)’

Step 2: Estimate V'V (k, j)
From Lemma 4.2.1 we have for each x v, z; v € Xy

H@N“W(G) ) d(zp,n, zj,n) < 10N
VN, ) S 9§
min ||@N||W(G)a @XUSNJB’:}N%*NUWHW(G) ) d(xk,Nyxj,N) > 10N,
1O~ lw () - d(zg,n, 25,8) < 50N
< (4.27)
HGXUSNQU;,lzvmj,NU5N HW(G) , d(zk,N, 2jn) > 50N,
foreach z1 v, ;v € Xn.
Since
||VN||Schur(XNﬁXN) = max Sup Z [V¥(k,j)|, sup Z [V (k. 5)|
T, NE XN 2, NE XN r; NEXN T NE XN
< sup > VR DI+ sap Y V(R
T, NEXN 2, NEXN Tj NE N e NE XN
Then, to estimate the Schur norm of V¥V it suffices to estimate the following sums
Si= sup > VN (k,5)| + sup > (VN (k, )| (4.28)
xk*NGXN .’Ej‘NEXN Tj,NEXN l'k,NGXN
d(zp,N,xj N)SEON d(zp,N,xj, N)SE0N
and
Sy = sup > [VN(k,j)| + sup > VN (K, 5)| - (4.29)
Tk, NEXN z; NEXN zj,NEXN i, NEXN
d(a}k,N,aijN)>50N d(wk,N,zj’N)>50N
Step 3: Estimate S
Using the estimate from Equation (4.27) we obtain
S1 < sup > [VN(k,j)| +  sup > [V (k, )
T, NEXN 2, NEXN T; NEXN T NEXN
d(ajk_’N,a:ij)Sf)ON d(zk,N-,Tj,N)S5ON
S osup > 1Onllw(e +  sup > 1O~ (e -
Tk, NEXN z; NEXN zj,NEXN i, NEXN

d(ajk_’N,IjYN)§50N d(wk,N,Ij,N)SE)ON
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Then

Tp, NEXN

S1 5 ”@NHW @) ( sup #{LUj}N € Xn: d(xk,Na«Tj,N) < 50N}>

+ ”eN”W(G ( Sup #{xk,N € Xn: d(xk’N,mj,N) < 50N}>

zj, NEXN

<Onllwe ( sup. #{mij € Xy:ajN € xkaUSON}>

+ H@N”W(G) ( sup #{o:ka € Xn:apnN € J?LNUSON}) .

zj, NEXN

From Lemma 3.1.13 we have that each € G belongs to at most CéSDG sets 4, U*N with y,, € Xy, or,
equivalently, we have Relj2v (X ) < C45P¢. Hence, by applying multiple times Lemma 3.1.16 we obtain

#{l‘j’N e Xn: T;N € l'k’NU5ON} < #{.Tj’N € Xn: T;N € LL’k,NU64N} < RelUG4N (XN) (4.30)
S KRCIUSQN (XN) S K5 ReleN (XN) S K5C(2;5DG, (4.31)

where K := K (G, U) > 0 is the constant given by Lemma 3.1.16. Similarly,
#{zpn € Xy tapn € 25 NUN} < KPRelpen (Xy) < KPCE5P6,

hence

Sl 5 H@N”W(G) ( sup #{xj,N € Xn: TjN € :Ck,NUSON}>
N

Tk, NE

+ ”@NHW(G) < sup #{xk,N € Xn:apnN € xj,NUSON}>

z; NEXN

s|@N||W(G>< sup  K°C25P9 4 sup K50é5D6>

T, NE XN z;, NE XN
< 2K°CZ579 |On [l (o
Slenlwe s (4.32)

with constants that depend on G, A, I" and are independent of N.

Step 4: Estimate S
Using the estimate from Equation (4.27) we obtain

N .
sup Z |V (k,j)| < sup Z H@XUSNQT;’lNzJ)NUsNHW(G)
T, NE XN zj NE XN T, NE XN z; NE XN
d(wk,N,Ij,N)>5ON d(zk)N,:Ej,N)>5ON
< Sup Z /Mé Mg(exUSka_,lewijU\')N)(‘r)dp’(x)
:Ek,NEXN aijNEXN G
d(Zk,N,wj,N)>50N
< sup > / Mg MG(O) () MG MG (Xpron gy 1, o) (@)da(2)
T, NE XN 2, NE XN G
d(mkﬁN Zj, N)>50N
< oup S [ MO e s, oo ()l
xk,NEXN > ’

zjNEXN
d(ZDk NHTj, N)>50N
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where for the last inequality we have used that if = ¢ UGNx,;}Vx%NUGN, then yxy' ¢ U5N:E;jvl‘j7NU5N for
each y,y’ € Q. Moreover, observe that for fixed € G and for each z, v € Xy

#{[L’j’NGXN : SI,'EUSNLC;}V(EJ"NUGN}:#{:I,‘ijGXN : xj’NG:rkVNUGNxU6N},
by the symmetry of U. For z € UNzUSY using the triangle inequality of the metric we have
d(z,e) < 6N +d(z,e) + 6N =d(z,e) + 12N,

or, equivalently, by the definition of the word metric z € U4(*¢)+12N Hence from Lemma 3.1.14 for p = 1 we
obtain

# {xj,N cXy :z€ UGNa:,;}V:cj7NU6N} =# {zij €Xny :zjN€ oshNUd(m’e)erN}
<3 (XN A mk7NUd(m,e)+12N)
SH (wk,NUd(x’e)JrlzN-"_l) (4.33)
_y (Ud(m,e)+12N+1)
< Cg(d(z,e) + 12N + 1)Pe,

where for the last inequality we have used the polynomial growth. Note that the constant in (4.33) is given by
Lemma 3.1.14, hence it depends on Rely; (X ) and p = 1. Since Relyy (X ) < Relgen (Xy) < CE5P¢ from
Lemma 3.1.12, we obtain that the implicit constant above is independent of N. From the previous we obtain for
fixed i, v € XN

Z XUON o7 N UON (x) =# {ijv eXy i zx€ UGNx,;j\,zj,NUSN} < Og(d(w,e) + 12N + 1)P<,

T; NEXN

for each x € G, with constant independent of N. Moreover, for z € UGNI,; %\,xijUGN andd(zk N, z; n) > 50N

we have from the inverse triangle inequality of the metric that d(z, ¢) > 37N and hence z € G\U?®". Combining
the previous and using the monotone convergence theorem, it follows

Sup Z |VN(k’j)| < Sup Z H@XUE’NQE1 zj, NUSN H
T, NE XN T; NEXN T, NE XN ejNE Xn k,NL3, W(G)
d(@k, N 25,8 )>50N d(zh, 5,25, 5 ) >50N
< swp S [ MEMEO) @1, e ()
T, NEXN 2, NEXN G ,
d(:L‘kYN,QL‘j,N)>5ON
= Mg M5 (© d
= sup > L MB(O) () Xyonar o, o (2)dp(2)
Ty, NE XN 2 NEXN G\U36N k,NTi,
d(xk,,N:xj,N)>50N
= sup Mg M§(©) () ST Xpewat . e (@)dp(z)
zp, NE XN JG\UBN Qe USNzy vz, nU

zj NEXN
d(xk,N,xj,N)>E50N

< sup /G o MEMB(O)@) (A, ) + 12V + 1) dp)

Tk, NE XN

< sup /G\USGN ME Mg(@)(x)ch (d(z,e) + 1)Pedu(z),

T, NEXN

where for the last inequality we have used that 12N < 36N < d(z,e). Thus, for the polynomial weight
wpg : x> (d(z,e) + 1)P¢ we obtain

sup S VK 5/

T, NEXN 2, NEXN G\U36N
d(mkyN,I]‘,N)>5ON

MIQ Mg(@) (.TZ)UJDG (m)du(az) = ||@XG\U36N ||WwDG @ -
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Similarly, we obtain

sup Z VA (k. 5)| < [[Oxc\ven ||WwDG @)

fI:j,NGXN zpNE XN
d(:vk,N,CEj’N)>50N

Thus,
Sy=sup > [VN(k,j)| +  sup > VN (k. )|
T, NE XN 1, NEXN z; NEXN Tr NE XN
d(avk)N,zj,N)>50N d(l’k‘N,l’J‘,N)>50N
Sloxevvsr |y, (@ (4.34)
WD

with constant that depends on G, A, I and is independent of N.

Step 5: Estimate Schur norm of V'V
Combining the estimates given by Equations (4.32) and (4.34) it follows

V™ senurxn—xn) < St + 82 S1ONw (6 + [|Oxc\wssn ||WwDG @)

with constants independent of N. Using the Dominated Convergence Theorem, since © € W, (G), witha > Dg,
we obtain

|‘VNHSChu7"(XN—>XN) S ”@NHW(G) + H@XG\UBGNHWWDG(G) N=oo g

Thus, there exists N7 € N such that

1

IV lschurcn, - x0) < 565

(4.35)
for Cy , > 0 from Equation (4.26). Recall from Equation (2.9) that for matrices A, B € (X, ) we have

||AB||Schur(XNl~>XN1) < ||AHSchur(XN1~>XN1) ||BHSchur(XN1~>XN1) . (436)

Hence we can define the Neumann series

We=T+4 ) (CopyVN)™ e CXmixXm, (4.37)
m=1
From Equation (4.36) we have
m 1
Ni\m Ny -
H(V ) HSchur(XNl—)XNl) < HV HSchur(XNlﬁXNl) < (202¢)m (438)
and it follows that
oo o0 1
Ny ||™ m o
||W||Schur(XN1 —XnNy) < 1nZ:0 ||C27'¢'V ' ||Schur(XN1 —XnNy) < 7nZZOC271/) (202,w)m - 2’ (439)
hence W € ./ (X, ).
Now recall Equation (4.26),
g ’ < H\IJNlA H C VN (k, j H\IJNI .
H ke wm — Ik ¢ e (A) * M’zj: (k, J) || e e(T)
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Applying Equation (4.26) twice we obtain

e <|lw a4 o VNU(k H\I/N ‘
H L C oy = L Ac ZP(A)+ 2,11;; (k,7) je )
<|lwMa c VN (k, Hq/f.VlA H o VNG H\pN
= || W CZP(A)‘F M}Zj: ( J)( J CZP(A)+ 2,1&; (J, 1) ||V, CZP(F)
<||wM 4 C VN (s H\I/NlA
= k c EP(A)+ 25#’? ( .7) J ¢ (M)

R D NATEI
J %

oM a H N (k. H\IleA
H k CZP(A)JFCM’;V (ks 3) || ¥ New(ay

+C3, D VN R, )V (4, 0)
i g

‘\Ilf»vlc

e (T)

—|jw A Ca Y V™ ) 0] Ac| 3 v (ki) | .
H w Ac ZP(A)+ 2,w2j: (k. j) |0 Ac ZP(A)+ M,zi:( ) (ki) || 0 e .
Similarly, by applying Equation (4.26) n times we obtain
n—1
N1 < N1 m N1 m y Nl
H\Ijk New ey _H\pk Ac e (A) erZ:lCszj:(V )" (. 5) H\IIJ Ac o (A)
05, VI k) U] (4.40)
J

Since ||'H€<,C(XN1) < H~||€,,(XN1) we obtain

o))
)

From Schur’s Test, see e.g. [22, Theorem 6.18] and the proof of Theorem 3.3.2 for an application, we have that

= (CoV™) (e
e () (Coy ) (( 7 ¢

asry (o

Coy Y (V) () W

J

<

/P

y S v (4.41)

HvNIH.%(ZP(XNl HSchur(XNlﬁXNl) '

Then, using
1

IV s, 0000 = oy

for m € N, and the equivalence of norms given by Lemma 4.1.1, we obtain

n N1 n . Nl < Nl n H Nl
Cz,wzj:(v ) (k’])H\IIJ UNevry = (Gt <( Hie ﬂ’(D))Hﬂ,
n N N
< 02,1/; ||V 1Hga’(ép(XNl)) ((HWJ ]C U’(F)) )
J op
n Ni\n N
< 02,1/; ||(V 1) ||Schu7‘(XN1*>XN1) ((H\IIJ IC Z”(F)> > H
J ¢p

N
S Ci;l,w ||(V 1)n||Schur(XN1—>XN1) ||C||2p(p)

1 n oo
< on llellge (ry =20,
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Thus, taking n — oo in Equation (4.40) and using the Definition (4.37) we have
< lim || v Ac

n—1
cm YNy (g H\I/NIA
¢p(T) — m—oo op(A) + z:: 2% Zj:( ) ( 7.]) j

+C’2¢Z VN1 k;j)H j

lim ‘\Ikalc

n—oo

£ (A)

ep(r)

:H\IlglAc

n—1
; m Niym . N,
e (A) + 7}1{20; oYy ;(V )™ (ky 5) H\I/j Ac )

+ lim CM,Z vk, ) e

o2 (1)

[, - S5 e
m=1 7

+ Z (CQ7¢VN1)7" (H\Ilj-lec

£r(A)

w))j (#)

M))j (k)

:H\IlglAc

£r(A)

<H+ Z (Ca.y V) ) (H\IJNl

=W (H\IJMACH@(A)) (k)

Thus, for each ¢ € £*°(T') and =5, N, € X,

< Y Wk quj.VIA

Zj,Nq Ny

(4.42)

Ny
v

o7(I) (A’

where W € ./ (Xn,). O



Stability and Spectral Invariance of
Convolution-dominated Matrices

In this chapter, we prove that ¢P-stability is independent of p € [1, o] for convolution-dominated matrices indexed
by relatively separated sets in groups of polynomial growth, by using the lemmas proved in the previous chapter.
In Section 5.2, we state Wiener type Lemmas for convolution-dominated matrices in groups of polynomial growth.
Throughout this chapter we make the same assumptions as in Chapter 4.

5.1. Stability

We now have all the ingredients needed to prove the independence of ¢P-stability from p € [1, o] for the class of
convolution-dominated matrices indexed by relatively separated sets in a group of polynomial growth.
A matrix A € ZB((P(T'), P(A)) is said to have £P-stability if there exists C}, > 0 such that

Gy lellerry < [1Ae

ey < Cpllellerry Ve tP(T).

We will show that if a convolution-dominated matrix has ¢P-stability for some p € [1, 00|, then it has ¢2-stability
for each g € [1, o0].

Initially, we show that if a convolution-dominated matrix A € C'D,,, . (A, T') is bounded from below for some
p € [1,00], ie. there exists Cs , > 0 such that

lellerry < CapllAclleray Ve € £7(D),

then A is bounded from below for each ¢ € [1, 00]. The proof given below was inspired by the method developed
in [27, 33, 59] and is based on the commutator technique used in Lemma 4.3.1 and the norm equivalence given in
Lemma 4.1.1.

Theorem 5.1.1. Let A, I' C G be two relatively separated sets in a locally compact group of polynomial growth
and let o € N, such that & > D¢, where D¢ is the order of growth of G. Suppose that A € CD,,_ (I, A) and A
is bounded from below for some p € [1, 00, i.e. there exists C'4 ;, > 0 such that

lcllerry < CapllAcllenay Ve € P(T).
Then there exists C’y > 0, such that for all ¢ € [1, 00] and ¢ € £4(T"),
lelleary < CallAclgany-

Proof. From Lemma 4.3.1 and for Xy and (\Ifiv)xk ex, given by Lemma 3.1.13 and Lemma 4.1.1, respectively,
we have that there exist Ny € Nand W € .# (X, ) such that

o

) N
oy = Car 2 W(k’j)H\I]lec

, 5.1
) (.1)
Tj, Ny €X Ny

46
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for each k£ with z, n, € Xy, . Thus, we obtain

M
H(H B Z‘“(F))k

1/q
q

= Z H\Ilivlc

eq(XN1) 'fkleEXN]

r(T)

IN

(M)

f”“))j) (k)>q
éP(A)>w,-,N1eXN1) (k))

w (H\IJ?WACHZP(A))

S Y Wik H\Izj.lec
J

T, Ny €EX Ny

- = <0A7,, (W (H\p;VIAc

ZTk,Ny EX Ny

< Cay ((W (H\Ifélec

= CA,p

1/q

Tk, Ny EX Ny 09(Xn,)

fq(XNl)

(H\IIQHAC

< Cap Wl s (xn, )

ZP(A)> Tk, N EX Ny

(H\IkalAc

where for the last inequality we have used that the Schur matrices are embedded in the spaces #(¢?(Xy;,)) for
each g € [1, 00| by the Schur’s Test, see e.g. [22, Theorem 6.18].
On the other hand, from the equivalence of the norms given by Lemma 4.1.1, we obtain

(H\I/ivlc

£4(X Ny )

9

4(XnNy)

< CA»I) ||W||Schur(XN1 —XnNyp)

ZP(A)> ZTk,Ny EX Ny

HCHeq(r) Sh

ZT’(F)>:E}97N1€XN1 ZQ(XNl)

and

v ”AC”eq(A) )
ZQ(XNl)

(lead, )
fP(A) Th,Nq EX’N1

with constants independent of p, ¢ € [1, cc]. Thus, combining the previous

VG
(H kC ep(r))k

Sny Cap ||WHSchur(XNl—>XN1) ||AC||eq(A) )

||0Heq(r) Sh

‘(H\IIQHAC

f"’(A)) k

Thus, there exists Cy := C, (A, N1, p) > 0 such that for each ¢ € [1, 00] and ¢ € ¢9(T") we have

< CA,P ||WHSchur(XN1 —XnN,)

ZQ(XNI) Zq(XNl)

lellgaqry < CallAcllyaa) - (5.2)
O

From the embedding of the class of convolution-dominated matrices C'D,,, . (I', A) into Z(¢P(I"), £P(A)),
see Theorem 3.3.2, we have that every matrix A € C'D,,, _(I', A) is bounded as an operator in Z(¢*(T'), £(A)).
Hence, if A is also bounded from below in Z(¢P(T"), £?(A)), then it has ¢P-stability. Combining the previous and
Theorem 5.1.1 we have that if A € CD,,, (I, A) has ¢P-stability for some p € [1, oc], then it has £9-stability for
all ¢ € [1, 00]. This proves the following result.

Corollary 5.1.2. Let A, I' C G be two relatively separated sets in a locally compact group of polynomial growth
and let & € N, such that o > D¢, where D¢ is the order of growth of G. If A € CD,,_ (T", A) has ¢P-stability for
some p € [1, 00], then it has ¢?-stability for all ¢ € [1, o0].
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Remark 5.1.3. Assuming further that G is abelian, by using similar estimates it can be shown that the results of
this section are true for matrices in CD,,_ (T', A), for any polynomial weight (o« € N), but also in the unweighted
case (o = 0). Precisely, using the commutativity of the group in the proof of Lemma 4.3.1 we can obtain a uniform
bound in Equation (4.33), independent of € G and z;, ;v € X . This recovers the result by Shin and Sun [59]
for relatively separated sets in the Euclidean space R%.

The following theorem extends Theorem 5.1.1 and proves that if a convolution-dominated operator is bounded
from below on a subspace for some p € [1, 00], then it is bounded from below on the subspace for each ¢ € [1, co].
The proof presented below was inspired by similar results in [29] and [27] for Euclidean spaces and homogeneous
groups, respectively.

Theorem 5.1.4. Let A, I' C G be two relatively separated sets in a locally compact group of polynomial growth
and let a € N be such that « > D¢ + 1, where D¢ is the order of growth of G. Suppose that P € CD,,_(T)
and P is idempotent, i.e. P2 = P. Moreover, suppose that A € CD,,_ (', A) and for p € [1, 00|, there exists
C4p > 0, such that for all ¢ € ¢P(T")

[Pellerry < CapllAPclen(a)- (53)
Then there exists C’ > 0, such that for all ¢ € [1, 0] and ¢ € £4(T"),

[ Pclleary < C'||APc|ga(n)- (5.4)

Proof. Since P € CD,,_(T') and A € CD,,_ (T, A), then by Theorem 3.3.2 we deduce that I — P € CD,,_(I)
and AP € CD,,_(T', A). Hence, there exist ©1,05 € W,,_(G) such that foreach A € Aandy €T

[(AP)(A, )] < ©1(A719) (5.5)
and for each v, € T
(I = P)(v,7)] < O2(v714"). (5.6)
Then the operator
A () — (M) & (P(D) (5.7)

¢ +— (APc, (I — P)c),
is well defined and bounded. By using Equation (5.3) we have for each ¢ € ¢7(T")
| Ac

From the previous and ||c[| 4, ry < [|Pcll oy + [|(I = P)cl|gp (1), it follows that for each ¢ € £7(T')

Hﬁc

_ Define the group G = G x R, with multiplication (z, z) - (, () = (zy, z + (), foreach z,y € Gand 2, € R.
G is a locally compact group with Haar measure y, such that for each measurable sets V; C G and Vo C R
we have p((V1,V2)) = pe(Vi)ur(Va), where pi is the Haar measure on G and pg is the Lebesgue measure

— -1
i = 1APelo + 10 = Pelom = Cy I1Peloy + 10 = Pleloy - 69)

Z el oy - 5.9

on R, see e.g. [21]. It follows that G is a group of polynomial growth generated by (U, Br(0,1)), where U is
the generating neighbourhood of G and Bg(0,1) = {z € R : |z| < 1} and G has order of growth equal to
Dg = D¢ + 1. Moreover, we define the following relatively separated sets, A=Ax{0}CGT=Tx{1}CG
and Q= AUT - G. B

We consider the matrix B € C2*I'| such that for each A\ € A and ~ el

B((X,0),(+,1)) = (AP)(A\,7"), (5.10)

and for each vy, € T
B((7.1),(v,1) = (I = P)(v,7)- (5.11)

Note that B can be identified with the operator A, by identifying A with A and I’ with T.



5.2. Spectral Invariance 49

Let ¢y € C°(R), such that supp(¢)) C [—2,2] and ¢ = 1 on [—1, 1]. We define

©:G —C (5.12)
(z,2) — (O1(z) + O2(z))¥(2)

and the weight W, on G, such that W (z, z) = (14d(z, €) 4 |2|)®. Note that w, is exactly the polynomial weight

on G of order . Since O1,05 € W, (G) and ¢ € C(R), it follows that © € W (G) By the definition of
the matrix B and Equations (5.5) and (5.6) we obtain for each A € A and v,7 € T

1B((X,0), (7, D))l £O1(A71) < (©1(A71) + ©O2(A7)p(1 - 0) =O((\,0) 7' (v, 1)) (5.13)
and

1B((7:1), (7, D) £ ©2(v71) < (B1(v 1) +©2(v )1 = 1) =0((v, 1) 7' (v, ). (5.14)
Thus, B € CDg; (Q, f) Moreover, by identifying B and A and using Equation (5.9) we deduce that B is
bounded from below for p. Then since B € CD 5= (Q, f) is bounded from below for pand o > Dg +1 = Dg

we can apply Theorem 5.1.1. Hence B is bounded from below for each ¢ € [1, oo] (with constant independent of
q). Thus, using once more the identification of B and A, there exists C’ > 0 such that for each ¢q € [1, o]

”Cng(r) < Ac

, Ve e £4(1). 5.15
La(A)@ea(T) ¢ () (5:15)

It follows that for each ¢ € [1, 0] for each ¢ € £9(T")

1Pl oy < C H,ZPC

= ”APPCqu(A) + (I = P)Pellga(ry = C’ HAPCH@(A) ’ (5.16)

o ¢a(A)@09(T) )

where for the last equality we have used that P? = P. O

5.1.1. Discussion
We now discuss the optimality of the weight assumption in Theorem 5.1.1 and we compare the results of this
section with similar results in the literature.

Recall that for relatively separated subsets A and I in a group G of polynomial growth, Theorem 5.1.1 proves
that if a convolution-dominated matrix in C'D,,(T', A) is bounded from below for some p € [1, o], then it is
bounded from below for each ¢ € [1, 00}, under the assumption that w is the polynomial weight given by

w=ws:G—[1,00), z+— (1 +d(x,e))?,

where o € N and a > D¢ with D¢ the order of growth of the group. For general relatively separated sets
Theorem 5.1.1 yields new results, however we expect that the assumptions of the theorem could be improved.
Tessera [63] showed that in the case of matrices indexed by discrete groups of polynomial growth Theorem 5.1.1
holds for each polynomial weight (o € N). Therefore, if we take a discrete subgroup A in a group of polynomial
growth that also has polynomial growth, for example a uniform lattice (see Lemma 3.1.18), then by Tessera [63]
we have that the aforementioned results hold for the convolution-dominated matrices CD,,_ (A) for each o € N.
On the other hand, Theorem 5.1.1 proves the ¢P-stability result only for « > D, where D¢, is the order of growth
of the group. From the previous, we expect that the assumption on the order « of the weight could be improved,
however the estimates in the commutator technique seem not good enough to do so and hence another method
should be used to obtain optimal assumptions.

For abelian groups of polynomial growth we have from Remark 5.1.3 the result on ¢”-stability for the
convolution-dominated matrices C'D,,(A) for every polynomial weight, but also in the unweighted case. Since
this proves the spectral invariance in the uweighted case we have the optimal result and, moreover, we recover
the result given by Shin and Sun [59].

5.2. Spectral Invariance

In this section, we state an inverse-closedness type result for the intersection of the convolution-dominated
matrices indexed by a relatively separated set, CD,,_ (A), for a € N and the spectral invariance of convolution-
dominated matrices in discrete groups of polynomial growth given by Fendler, Grochenig and Leinert in [19].
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The commutator technique used in Lemma 4.3.1 was first used by Sjostrand [60] for proving the spectral
invariance, however Shin and Sun [59] observed that this technique proves also the result on ¢P-stability. For
proving the spectral invariance of convolution-dominated matrices using the commutator technique, we should
estimate the convolution-dominated norm of the matrix V* in Lemma 4.3.1, instead of the Schur norm. During
the project we have attempted to prove the spectral invariance using the commutator technique, but did not
succeed. Furthermore, inspired by the use of auxiliary norms in [58], we have also attempted using the commutator
technique with auxiliary norms. The estimates used in the commutator technique seem not good enough in
order to prove the spectral invariance, therefore we now present a Wiener type Lemma for the intersection of
polynomially weighted convolution-dominated matrices. For this, we follow a different method by using the
spectral invariance of the weighted Schur matrices given by Sun [61].

Initially, we define the weighted Schur matrices indexed by a relatively separated set A, for each polynomial
weight

W : G — [1,00), z — (1 +d(x,e)),

a € NU {0} and each p € [1, c0] as follows

T (A) = {A €TV L Al o < oo}, (5.17)

where

1/p 1/p
A = su A N )wa AN + su A N wa AN P . (5.18)
1AL, . ) A€R<Z| (A N Jwe >|> p <Z| (AN Jwa (AHN))]

NEA AEA \ \en

for p € [1,00) and

1Al oy = sup [AN N )wa(ATIN)], (5.19)
e AN EA
for p = oco. Note that the norms ||-[[ ., (o) and H'Hé"l,wo (A) are equivalent, therefore the definition of the
unweighted Schur matrices .#7 4, (A) given in (5.17) and .#’(A) given in (2.7) coincide. Moreover, we observe
that by definition we have
1Alls o) S HAlLs L, )

for each A € .7 4, (A) and each polynomial weight, hence
A we (A) C S, (A). (5.20)
From Lemma 3.2.7, see also the proof of Proposition 3.3.2, we deduce

<9 RelQ (A)

A ——||A ,
” ||y1,7,,a(A)f ,U(Q) ” ”CD (A)

Wy

therefore
CDu, () € F1 (M), (521)

Sun [61] proved the spectral invariance of the weighted Schur matrices indexed by a discrete set with
polynomial growth, under further assumptions on the weight, see [61, Theorem 4.1]. We present below Sun’s
[61] spectral invariance for . ,,, (A), where w, is the polynomial weight of order o € N, and A is a relatively
separated set in a group of polynomial growth. We do not present the proof given of the result, however we show
that the assumptions of the theorem are verified, see [61, Theorem 4.1] for a complete proof.

Theorem 5.2.1 ([61]). Let A be a relatively separated set in a group, G, of polynomial growth. Moreover, suppose
that o € N and wy, is the polynomial weight on the group given by w,, : £ — (1 +d(z,€))®. Then 7] 4, (A) is
inverse-closed in Z(¢£%(A)).

Proof. Since o > 0 we have from [61, Example A.2] that w, verifies the conditions of [61, Theorem 4.1].

We equip the relatively separated set A with the restriction to A of word metric of the group, da = d|a, and
the counting measure pc given by
pe  P(A) — [0,00) (5.22)

V +—#Vi=#{zeA:2eV},
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where Z(A) := {V C A} is the power set of A. Then using Lemma 3.1.14 and the polynomial growth of the
group we obtain

(B, (2,m)) = # (AN By(w,n) < # (AN 2U™) < pu(aU™) = u(U™) < CenPe,

for each z € A and n € N. Thus, the triple (A, puc, da ) verifies the assumptions of [61, Theorem 4.1].
From the previous we can apply [61, Theorem 4.1] and this proves the claim. O

We now show that for a relatively separated set A, if a matrix A belongs in the convolution-dominated matrices
CD,,, (A) for each polynomial weight w,, @ € N and A is invertible in Z(¢%(A)), then A~ € CD,,_(A) for
each a € N. The proof of the following result is based on the spectral invariance of the Schur matrices and the
inclusions

CDwu (A) - yl,wu (A) - yw,w(x (A)7
that hold for each a € N.

Theorem 5.2.2. Let A C G be a relatively separated set in a locally compact group of polynomial growth and let
w,, be the polynomial weight on the group given by w, : « — (1 + d(z, €))*. Suppose that A € CD,,_(A) for
each o € N and A is invertible in (¢%(A)). Then A= € CD,,, (A) for each o € N.

Proof. Suppose that G is compactly generated by the open, relatively compact, unit neighbourhood U . Moreover,
suppose that the growth of the generating neighbourhood is given by

,U'(Un) < CGnDG )

where C > 0 and D¢ > 0 is the order of growth of the group.

Let o € N be such that & > D¢ + 2. Since A € CD,,, (A), we have that A € .#7 ,,,, (A), from the inclusion
(5.21). From the spectral invariance of .%; ,,, (A) in Z(¢2(A)), given by Theorem 5.2.1, and the invertibility of A
in Z((*(A)), it follows that A= € .7} ,, (A). Moreover, using the inclusion (5.20) we have that

A7 = (47T N) € Foows (M),

AN EA

hence

A~ sup [ATH A N )wa(ATTN)| < o0, (5.23)

1 _
Hy“’”a W AN EA

From the above we obtain that for each A\, \’ € A

AT L) <] wo(ATIN) T (5.24)

~1
Ao
By the submultiplicativity of the weight w,, we have for each z € G and y,y’ € Q
wa (@) = waly ™ yay' ()71 < waly™Hwa(yay wa((y) ™)

hence
wa(x)71 = wa(yil)ilwa(yl'y/)ilwa((y/)il)il-
Since the previous holds for each y, 3y’ € @, by taking the supremum over y,y’ € @, we obtain
wa (@)t 2 Dy Mg MG (wit)(x), (5.25)

where D1 = sup, ,/cq wa(y™1) twa((y') 1)t > 0. Then, using G = |J,—, U™, we have

-1 _ L R —1
[|w ||W7,,u7(DG+2)(G) —/GMQMQ(wa )(@)Wa—Dg+2(z)du(w)

< Dy [ 0 @ac (o2 ()0

=D (/Ul w,}éw(x)du(a:) + ,;/U wBLH(a:)du(x)) .

n+1 \U"
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We observe that for each n € N, if z € Un*1\U", then d(z, e) > n and

1 1 1
-1 = = < .
Wpe+2() = Y T T d(w, e))Pet? = (1§ n)Pat?

Thus,

n=1

- D, (M(Ul) + ZM(Un+1\Un)M1)1)G+2> .

n=1

el trgen @ =1 </U tute +Z/n+1\m Wdu( )>

Using the polynomial growth we deduce

.- 1
1 <D HPe ————
||wo/ waa_(DG“)(G) s (CGJrnZlC’G(nJr ) (1+n)Pe+2
D, C <1 + i _ ) < 00
= 1 G 2 .
— (1+n)
Thus w, ! € W, W (i) (G-
From [A7'(\,\V)| < HA_IHy ) wa(ATIN) 7L, for each A\, ) € A and w;! € W, (pgi2 (G) it
follows that o
“tecop, (A). (5.26)

a—(Dg+2)
Since @ € N, a > D¢ + 2 was chosen arbitrary we deduce that A=1 € CDwa—(DG+2) (A) foreacha € N, o >
D¢ + 2. Thus, A1 € CD,,_ (A) for each o € N, which proves our claim. O

Note that an operator A € Z(¢£?(A)) is invertible if and only if A is bounded from below. On the other hand,
for p € [1,00], p # 2 this equivalence is not true. Combining Theorem 5.1.1 and 5.2.2 we deduce the following
result on left invertibility, inspired by [63].

Theorem 5.2.3. Let A C G be arelatively separated set in a locally compact group of polynomial growth. Suppose
that A € CD,,_ (A) for each o € N. Then the following are equivalent:

(i) A isbounded from below for some p € [1, o],
(ii) A is bounded from below for each p € [1, o],
(i) B = (A*A)~1A* defines a left inverse for A and B € CD,,, (A) for each o € N.

Proof. The equivalence (i) <= (ii) is true by Theorem 5.1.1. It is left to prove the equivalence (ii) <= (iii).
(ii) = (iii): From (ii) we have that A is bounded from below for p = 2, hence there exists C 4 > 0 such that

lellagay < CoallAelagny . Ve € C(A) 627)
Then for each ¢ € ¢?(A) we obtain
HA*ACHp(A) ||C||e2( > (A" Ac,c)2 ) = ||AC||52 ) = c3 A ||CHe2(A

Thus A*A is bounded from below for p = 2. It follows that A*A is injective in %(¢?(A)). Suppose that
n—oo

(¢n)pen C £2(A), is a sequence such that A*Ac,, —— b € Ran(A*A) in £%(A). Then (A*Acy,), oy is a Cauchy

sequence and from the boundedness from below we deduce that (c,,),, .y is also a Cauchy sequence. Thus, there

exists ¢ € 2(A) such that ¢, ——= ¢ in £2(A) and from the continuity we obtain A*Ac = b. From the previous,

it follows that A* A has closed range. Since A* A is self adjoint and injective we have that

Ran(A*A) = Ran(A*A) = ker(A*A)* = (2(A).
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Thus, A* A is bijective and hence invertible. For the inverse (A*A) ™! of A* A, using the boundedness from below
of A* A we obtain for each ¢ € (2(A)

Coa|[(A*A < A" AA"A) || oy = elliziay

) 10”42(/\)
Thus, (A*A)~! € B(¢%(A)) and (A* A)~! is the inverse of A* A in B((?(A)).

Since A € CD,,_(A) for each @ € N, we have A* € CD,,_(A) for each @ € N and since CD,,_(A) is
closed under multiplications (see Proposition 3.3.2) we have A*A € CD,,_(A) for each a € N. Moreover,
A*A € CD,,, (A) for each @ € N and A* A is invertible in %(¢*(A)), hence it follows from Theorem 5.2.2 that
that (A*A)~! € CD,,_ (A) for each a € N. Therefore, B = (A*A)~*A* € CD,,, (A) for each o € N and since
B = (A*A)~'A* A = I, we have that B defines a left inverse for A in CD,,_(A) for each o € N.

(iii) = (ii): Let p € [1, o0]. From the embedding C'D,,, (A) — B(¢?(A)) given by Proposition 3.3.2, it follows
that B defines a left inverse for A in #(¢P(A)). Thus

lellenay = 1BACloa)y < 1Bl ggerayy 1ACll g () - (5.28)
It follows that A is bounded from below for p € [1, o¢0]. Since p € [1, co] was chosen arbitrary (ii) follows. [

Fendler, Grochenig and Leinert in [19] showed that the convolution-dominated matrices over a discrete group
of polynomial growth are spectrally invariant for each polynomial weight and in the unweighted case. We state
below the aforementioned result by Fendler, Grochenig and Leinert, see [19, Theorem 1] for a proof.

Theorem 5.2.4 ([19]). Let G be a discrete group of polynomial growth. Suppose &« € NU {0} and the weight w,,
in G is given by wy, : & — (1 4+ d(x,e))®, where d is the word metric on G. Then CD,,_ (G) is inverse-closed
in B(02(Q)).

Recall that a uniform lattice in a group of polynomial growth is a group of polynomial growth equipped with
the counting measure, see Lemma 3.1.18. Thus, the previous result can also be applied to uniform lattices in
groups of polynomial growth.
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Coherent Frames

In this chapter, we introduce the background needed in order to present the applications of convolution-dominated
matrices that were studied during the project. Throughout this part we assume that G is a locally compact group
of polynomial growth, with Haar measure p, generating neighbourhood U C G and order of growth equal to
Dg > 0.

6.1. Discrete Series Representations

In this section we define the discrete series o —representations, which will be used for the applications presented
in the upcoming chapters. More details on discrete series o —representations can be found in [1, 5, 39, 51].
Before we define o —projective representations, we initially introduce the notion of a cocycle on a group.

Definition 6.1.1. Let o : G x G — T be a Borel measurable function. The function o is called a cocycle on G if
() oz, y2)o(y, ) = olwy, 2)o(z, y) for each 2, y, 2 € G,
(il) o(x, e) =0o(e, x) =1 for each x € G, where e is the identity element in G.

An element x € G is said to be o—regular, if for each element y € Z(z) := {# € G : xz = zx} we have
oz, y) = oly, ).
Definition 6.1.2. A mapping 7 : G — % (H), where % (H) denotes the unitary operators in #(H), is a

o—projective unitary representation (m, H) of G on a Hilbert space H if the following conditions are satisfied:

(i) the map G > z — (f,n(z)g) € Cis a Borel measurable function for each f, g € H,
(i) 0 : G x G —> Tis afunction on G, such that 7(z)7n(y) = o(x, y)w(xy) for each z, y € G,
(iii) 7(e) = Iy, .

Note that from (i) of the previous definition we deduce that o is a Borel measurable function and from (ii) we
obtain the properties (i) and (ii) of Definition 6.1.1. Thus, if 7 is a o-projective representation then we deduce that
o is a cocycle on G. Moreover, if (7, H;) is a c—projective unitary representation, then w(x) € % (H) for each
x € G and we obtain

Thus,
n(x)* = o(z,z=)m(z™h). (6.1)

Similarly, for each z € G, we obtain that
n(x)* = o(z= L, z)m(zh). (6.2)
From the previous we deduce that for each x € G,

o(z,z™ ) = oz, z). (6.3)
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A subspace V' of H is called 7(G)-invariant if 7(g)V C V for each g € G. The o —projective representation
(m, Hy) is said to be irreducible if the only closed 7(G)-invariant subspaces are {0} and H,. For f,g € H, we
define the matrix coefficient associated with the representation (7, H), by

Vyf(x) = (f, m(x)g) (6.4)

for x € G. We call the irreducible o —projective representation (7, H) a discrete series o —representation, if there
exists g € H;\{0} such that

Vog = (g, 7(")g) € L*(G). (6:5)
For a discrete series o — representation (m, H) it can be shown that there exists a unique d, > 0, such that the
orthogonality relations

/G (1, 7(@)g1) (o, 7@)g)dpu() = iqh 1) (g, 92, (6.6)

hold for each f1, f2, g1, g2 € Hy, see [1, 51]. The constant d is called the formal dimension of 7.

6.2. Frames and Riesz sequences
The definition of Frames and Riesz sequences that are of interest in the application in Chapter 8, are presented in
this section. The definitions and properties presented here can be found in [6].
Let
T G — B(H,) (6.7)

be a o-projective unitary representation of G. Suppose that A is a relatively separated subset of G. For g € H,;
we consider the set of vectors

m(A)g:={r(N)g : A€ A}. (6.8)

A frame is a set of vectors in a Hilbert space that generalizes the notion of orthonormal basis. We restrict our
attention to frames of the form m(A)g for g € H,.

Definition 6.2.1 (Frame). A set w(A)g is called a frame for H, if there exist constants A, B > 0 such that the
frame inequalities

AllfIT, < D1 7Ng)* < B, (6.9)

AEA
hold for each f € H,. In that case, the vector g is called a frame vector and the constants A, B are called the

frame bounds.

From the first of the frame inequalities (6.9) we deduce that the set 7(A)g is complete. On the other hand, by
the second frame inequality (6.9), which is known as the Bessel bound, we obtain that the frame operator, defined
as follows

Sy : Hy — Hy (6.10)
for= Sef =Y (f, 7(N)g)m(Ng,

AEA

is well-defined and bounded. Note that 7(A)g being a frame is equivalent to the frame operator S, being a
bounded, positive-definite and invertible operator on H. Note that any f € H, admits the expansions

F=88"F = (f, Sy m(Ng)m(N)g (6.11)
AEA

= S, S f= D (f, 7(N)g)Sy ' m(N)g, (6.12)
AEA

where the summations converge unconditionally.
A set m(A)g is called a Bessel sequence if it verifies the Bessel bound, i.e. there exists B > 0 such that

Y m N9 < BIIfIlG, » (6.13)

AEA
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for each f € H,, and then the vector g € H is called a Bessel vector. In that case, the coefficient operator, given by

Cy : Hy — 2(A) (6.14)
o= Cof = ({f, m(A\)g))rea -

is well-defined and bounded. Hence, its adjoint, the reconstruction operator
D, : *(A) — H, (6.15)

¢ = (e )ren — Cof = ) exm(M)g,
A€EA

is also a well-defined and bounded operator from #2(A) to H,. We denote the space of Bessel vectors by B.
Definition 6.2.2. A set w(A)g is called a Riesz sequence in H, if there exist constants A, B > 0 such that

Y- ar(Ng

A€A

2 2
Allellzay < < Bllellyza) (6.16)

holds for each ¢ = (c))aea € £2(A). In that case the constants A, B are called the Riesz bounds and the vector
g € H is called a Riesz vector.

The first inequality in (6.16) provides that a Riesz sequence is linearly independent. Furthermore, if a Riesz
sequence is complete, then it is called a Riesz basis for H.



Twisted Group C*-algebras

An application of the spectral invariance of the convolution-dominated matrices in non-commutative geometry is
presented in this chapter. The result is applied to prove a Wiener type Lemma for the non-commutative space
generated by linear combinations of representations of nilpotent Lie groups restricted to lattices.
Let A be a uniform lattice in the locally compact group, G, of polynomial growth with order of growth equal
to Dg > 0. The lattice A is equipped with the counting measure,
pe  P(A) — [0,00) (7.1)
V r—#Vi=#{z eV},

where Z(A) := {V C A} is the power set of A. Recall that (A, ) is a locally compact group of polynomial
growth, with order of growth equal to D¢, by Lemma 3.1.18. For a fixed & € NU {0} we fix the weight function

W=wWy: A —[1,00), z— (1+d(z,e))*

Throughout this chapter, we assume that 7 : A — % (H,;) is the restriction, to the lattice A, of a discrete
series o-representation of GG on the Hilbert space H, as defined in Chapter 6.1.
Recall from (6.13) that 7w(A)g is a Bessel sequence, if there exists B > 0 such that

ST TN < B,
AEA

for each f € H, and in that case g € H is called a Bessel vector. Under the assumption that 7 is the restriction
to A of a discrete series 0 —representation, it can be shown that the Bessel vectors are dense in the Hilbert space
H,, see [39, Lemma 7.1.].

Lemma 7.1 ([39]). The Bessel vectors B, C H, of the restriction 7 to A are norm dense in H.

Using the cocycle o we define the following o-twisted convolution on £} (A) for each a, b € £1(A)

ax, b(\) = Y o(A2, A A)a(A)b(A; A, (7.2)

Ao€EA

for A\; € A, and the o-twisted involution

a*(\) = o\, A-Da(AD), (7.3)

for A\ € A. The o-twisted convolution of a, b € £(A) is well defined on £*(A), since for each \; € A we have

jaxe bAD < D Jo(Az, AT A)a(2)bg A = D lal (A2) bl (A" A1) = lal + o] (\1). - (7.4)
A2€A A2€A

Thus, for a, b € £*(A), using Young’s inequality we obtain

la %o bl ay = D laxe B < D lal + (b (A) = lllal * [blll g1y < llalls ) 18ller ) -

AEA AEA

58
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We deduce that the sequence space £ (A) is a Banach *-algebra with the o-twisted convolution and involution, and
similarly we have that the weighted sequence space /. (A) is a Banach *-algebra with the o-twisted convolution
and involution.

For each a € (. (A) we define the twisted-convolution operator

Co : 2(A) — (2(A) (7.5)
c —> C*g Q.

Note that for each ¢ € £2(A)
o 2 2 2 2 2 2
ICTeliz(ay = e %o allzziy = D lexa a* < D (el * lal (1) = lllel = lalllizay < llelzzgay lalliay
AEA AEA

by Young’s inequality and hence C¢ € %(¢?(A)) is well-defined. We denote by C*(¢1) the C*-algebra generated
by {CS : a € (L (A)} C B(¢*(A)). From the inverse-closedness of the class of convolution-dominated matrices
we deduce that the class of twisted-convolution operators is inverse-closed in %(¢?(A)). This was shown by
Grochenig [28] for lattices in the Euclidean spaces R? and his proof can be extended for uniform lattices in groups
of polynomial growth.

Theorem 7.2. Let a € ¢} (A) and
C7 : 12(A) — £*(A)

a

c — C %, a.
Suppose that C? is invertible in Z(¢*(A)). Then there exists b € £} (A), such that (C9)~! = Cf.
Proof. For each A € A and ¢ € £2(A) observe that
Coe(N) = cxoaX) =Y oy, 7 Ne(v)al(y™'N)
yEA

Hence, the action of C'J can be interpreted as the matrix action
A= (AAN) s men = (@7 Nal(r7A) Loy € TV (7.6)
Then, we have
A = la(yTIN)| = [a”| (A1),
Recall that the two-sided Amalgam space of continuous functions on the discrete group A is the space
Wiy (A) = £, (D). (7.7)

Thus, since a € £. (A) and by the definition of the convolution-dominated matrices on A we have A € C'D,,(A)
and

Il

ICTlepuay = 1Allepymy = lallw, a) = lla” e ay = lalle (a) - (7.8)

Using the spectral invariance of convolution-dominated matrices indexed by discrete groups of polynomial growth
in the operator algebra %(¢?(A)), that is by applying Theorem 5.2.4 for G = A, we deduce that there exists
B € CD,(A) such that (C9)~! = B.
Moreover, by the invertibility of C7 in 2(¢£%(A)) there exist b € £2(A) such that
bxea=Cgb=0.

We have that the operator Cy is defined on the sequences with finite support, c¢oo(A), and for each ¢ € coo(A) we
obtain

Co(CYf —B)ce=CZ(c*;b— Bc) =c*,b*ya—CIBe=cx, 0. —c=0.
Hence, by injectivity of CJ on ¢?(A) we obtain that (Cf — B)c = 0 for each ¢ € coo(A) and by the density of
coo(A) in 2(A) we have that Cf = B in Z(¢?(A)). Then, by following the same analysis we used to deduce
Equation (7.8) we have
bl 2y = 1CF lep,, a) = 1Bllcpy a) - (7.9)

Thus, b € (L (A) since B € CD,,(A). O
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For a = (ax),c, € (*(A) the formal sum Y, ., axw(}) is denoted by

m(a) = Z a)m(). (7.10)

AEA

For a € £ (A) we obtain

Z axm(\)

AEA

< Z lax] ||7"()‘)||@(H,,) < Z lax| = ||a||el(A) < HGHQU(A)’
B(H) AEA AEA

||7T(G)Hga(H,,) =

since m(\) € % (H,) for each A € A. Thus, the integrated representation 7 of /1 (A) given by Equation (7.10) is
well-defined. Note that for each a = (ax),cy » b = (bx),cp € £ (A) we have

m(a)m(b) = (Z WT(A)> <Z bw(X)> = > axm(Nbym(XN)

AEA MNeA AN EA

= > axbyo(AX)T(WN).
AN EA

By using the change of variable \’ — A~!m and by changing the order of summation we obtain

m(a)w(b) = Z Z axby-1mo (A, A7 Im)m(m) = Z <Z U()\,/\_lm)a,\bAl,n) m(m)

AeA meA meAN \\eA

= Z (a %5 b)mm(m) = w(a %, b),

meA

for each a = (ax)ycp s b= (ba)yep € £*(A). Moreover, for each a = (ax),c, € ¢'(A) and f,h € H, we have

(m(a)f, h) = <Zaw<A)ﬁh> =Y ax(mNf,h) = ax(f,m(A\)*h)

AEA AEA AEA

= Z ax(f,ocA"L, ) r(A"HR) = <f7 Z o(A 1 )\)a>\7r(/\1)h>

AEA AEA

- <f7 Zazm<A‘1>h> - <f, Za’;ﬂw<x>h> = (f.m(a>")h),

AEA AEA

using that A is a discrete group and a*> (\) = (A, A=1)a(A~1), for each A € A. Thus,
m(a)" = m(a*). (7.11)

We then define the non-commutative space

A} =Ll (N)) {A € B(H;) : A=m(a)= Z axm(A), a € K}U(A)} ) (7.12)
AEA

where w = wy, : A — [1,00), z — (1 + d(z,e))* and the vector subspace
Y =7(con(N)) = {A € B(Hy) : A=m(a)= Z axm(A), a € COO(A)} , (7.13)

where co(A) is the set of all sequences a € £°°(A) with finitely many non zero a()\), A € A. We denote with
C*(A, 7) the closure of &7 in the operator norm on H, i.e.

C* (A, ’]T) — @”'H.@(Hﬂ-) .
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Since every closed subalgebra of a C*-algebra is again also a C*—algebra, it follows that C*(A, ) is a C*-algebra.
Furthermore, for S C %(H,) we denote the commutant by

S ={Ae B(H,) : AB=BAVBeS},

or, equivalently, S is the set of all operators that commute with the elements of S. By von Neumann’s double
commutant theorem, see e.g. [9, Theorem 6.4.], we obtain that

sot

(@A) =CEm" =0
where ' and *"*' denote the closure with respect to the strong and weak operator norm respectively. Since by
definition C* (A, ) is the closure of .«7° we deduce that the von Neumann algebra 7r(A)  is the double commutant
of the C*-algebra C*(A, ),

(A = (C*(A, 7)) . (7.14)
Since the norm topology is stronger than the strong operator topology (sot) and weak operator topology (wot), i.e.
if a net is convergent in norm then it is convergent in sot and wot, we deduce that

t
sot

O, = 0 = _ 70 (7.15)

and similarly

wot wot

Cr A" =0 (7.16)

Thus, combining the previous we obtain

" —=sot —=wot

(A = (C*(A, 7)) =0 =0 . (7.17)

The following result given by Caspers and Van Velthoven [5] provides a Fourier-type expansion of each
operator in the von Neumann algebra 7w(A) on the subspace of Bessel vectors, under the assumption that (7, H)
is a discrete series o —representation of G.

Proposition 7.3 ([5]). If T € 7(A)" then there exists ¢ = (ex)rea € £2(A) such that
Tg=m(c)g= Y _ cam(N)g, (7.18)
AEA
for each g € B;.

In general, the coefficients given in Equation (7.18) do not need to be unique, e.g. when the projective kernel
pkerm:={x € G : w(x) € TIy_} is not trivial, pker m # {e}, and pker m N A # {e}. Motivated by this, we
call the pair (7, A) a uniqueness pair if the expansion given by Proposition 7.3 is unique for each T’ € 7r(A)”. The
following result explains the importance of (7, A) being a uniqueness pair.

Lemma 7.4. Suppose that the pair (7, A) is a uniqueness pair. If 7' € w(A)”, ¢ € £2(A) and

Tg=m(c)g = Z ext(N)g=0
AEA

for each g € B, C H,,thenc = 0.

Proof. We have T'= w(c) € m(A) and T' = m(c) = 0 on the dense subspace B. Since (7, A) is a uniqueness pair
then by the uniqueness of the expansion it follows that ¢ = 0. O

We present some examples for which the (7, A) is a uniqueness pair.
Remark 7.5. The pair (7, A) is a uniqueness pair in the following cases:

(i) (A, o) satisfies Kleppner’s condition, see [41]. We say that the pair (A, o) satisfies Kleppner’s condition
if the conjugacy class Cx () := {yAy~! : v € A} of any o—regular element A € A\{e} is infinite, see
[39].
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(ii) if the projective representation (7, L?(R%)) of R?? is defined by
w(z,€) + L*(R?) — L*(RY), f > *™f(- — )

and A is a lattice in R??, see [32, Lemma 3.3.].

(ili) the group G verifies the condition B(G) = Z(G) and = has a trivial projective kernel. We denote by B(G)
the set of all x € G for which the conjugacy class C(z) = {yxy Lyyeqd } has a compact closure
and the projective kernel of the representation 7 is deﬁned by pkerm = {x € G : w(z) € TIg, }. By
combining results from [5] and [13] it can be shown that under these assumptions (7, A) is a uniqueness
pair. In particular, this is satisfied for simply connected nilpotent Lie groups, see [13].

We will prove a Wiener type Lemma for the non-commutative space <7 in the C*-algebra C* (A, 7), by using
an adaptation of the method proposed by Grochenig [28] and used by Grochenig and Leinert in [32] in the case of
time-frequency shifts.

Theorem 7.6 (Spectral Invariance). Suppose that the pair (7, A) is a uniqueness pair. If a € £ (A) is such that
7(a) is invertible in Z(H ), then there exists b € £. (A) such that 7(a)~! = 7 (b).

In order to prove Theorem 7.6, we first prove some useful norm estimates for 7(a), where a € ¢} (A). The
proof of the following estimate is similar to a result given by Gréchenig and Leinert, see [32, Lemma 3.4.].

Lemma 7.7. For each a € /2(A) we have
lallezay < 1€ g2 (ny) - (7.19)
Moreover, for each a € £} (A) we have
(@)l e,y < NCT ez - (7.20)
Proof. For the first estimate assume a € ¢2(A). Then, since
1C% bellez(ay = llall 2 (ay
we deduce
lallezny < 1€ 22 (ny) - (7.21)
We will now prove the second estimate. Let a € £},(A). Let z ¢ 0.5(,2(r))(CJ). Then by the spectral invariance
of twisted convolution operators, see Theorem 7.2, there exists b € £ (A) such that (C7_,)~! = C7. Then since
||Cg\|@(el(A )y T Hb“zl(A) )
we deduce Cf € Z(¢'(A)) and hence z ¢ 0501 (a))(CJ). Thus,
oz (0) (CF) € om(e2(1)) (CF) (7.22)
and
ra0 (A)(Ca) < a2 a))(CF). (7.23)
Let a € ¢1 (A). Then
> axam(d)

||7T(G)H(@(HW) = < Z lax] [l (A ||@ Hp) = ”aHZl(A) ||Cg‘|(@(el(/\))a

AEA B(H.,) AEA
since m(A) € % (H,) for each A € A. Hence
. 1/n . 1/
taaga (7(a)) = Tim_[m(@)" sy = Tl 20 @)
1/" 1/n o
< = = .
> nlgr;o [ — B(H,) hm [1(er4 ||3a(el(A = 10 () (CF)

Thus,
17 (@), = I7(@)* (@) | o1, ) = T (7(@) (@) < ragenay) ((CF)*CF).
Using Equation (7.23) we obtain
I (@) | 5ar.y <t ) (C)*CI) < raper(an (C*CT) = (CI)*CZ gz (ayy = ICS a2 -

This proves our claim. O
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The following equality of norms is essential in applying Hulanicki’s Lemma (Theorem 2.2.3) for the proof of
spectral invariance (Theorem 7.6). We follow the proof given in [32, Theorem 3.1].

Lemma 7.8. Suppose that the pair (7, A) is a uniqueness pair. Then, for each a € £} (A)
1€ | zezay) = I (@)l g(ar,y - (7.24)

and there exist an isometric *-homomorphism h : C*(¢') — C*(A) such that h(C?) = m(a)*, for each
a € lL(A).

Proof. Let A € C*(¢'). Then, there exists a sequence {a, }nen C £1,(A) such that

HA_anHBB(Z?(A)) 0.

From the previous lemma we have [|b[| 2 () < [|C} H%(P(A)) for each b € ¢2(A), hence we obtain

Han - CLm”[A’(A) < Hcgn*am

B2(N)) Hcgn - Cgmng(ﬁ(A)) :

Thus, by convergence of {CJ }neN we deduce that {a,}, .\ is a Cauchy sequence in ¢*(A). Thus, there exists
n—roo

a € ¢*(A) such that ||a, — allp2(ny —— 0. Then for each ¢ € 01 (A) we obtain

”(A - Cg)C”EQ(A) < H(A - an)CHZ?(A) + H(an - Cg)cng(A)
n—00

<|A- anH:@(p(A)) lellgray + llan = allpzp) il a)y —— 0,

and hence
Ac=Clc=cx*, a, (7.25)

for each ¢ € £*(A). Since ¢*(A) is dense in ¢?(A) we deduce that A = C? = - %, a in B(¢*(A)). From Lemma
7.7 we have

[m(an) — W(am)Hga(Hw) = [|m(an — am)”gg(HW) < Hcgn—amH@([z(A)) < Hcgn -Ca. B(L2(N))

n—oQ

hence we deduce that (7(ay)),, € C*(A, ) is a Cauchy sequence since ||A — —— 0. Thus,

ca, ||ga(z2(A))
there exists a unique " € C*(A, ) such that || (an) — T'l| 54, 2729 ). Moreover, recall that if g € B, then

(m(X)g) e is a Bessel sequence, hence there exists B := B(g) > 0 such that
2
2
<B ||C||e2(A) )
Hr

>Ny

AEA

for each ¢ € ¢*(A). Therefore, for each g € B, we deduce

l(m(a) = T)gll g, < (w(a) = 7(an)gllm, +lI7(an) = Tll g, 191,

n—oo

< B2 |la — anllg2ay + Im(an) = Tll e, 9l r, == 0.

Thus, T' = 7(a) on B;.
We have shown that for each A € C*(¢') there exists a unique 7' € C*(A, ). Define

hoo C*(0Y) — C*(A),

as the mapping such that h(A) = T*, for A and T as defined above. Note that by construction of h we have
h(CS) = w(a)* for a € £L(A), by choosing the constructing sequence (a,,) C ¢ (A) as a, = a for each
ncN.

We will now prove that & is a *-homomorphism. Recall that for each a, b € £ (A) we have

neN

m(axs b) = m(a)w(b) and 7(a)* = w(a}). (7.26)

o
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Let A, B € C*({"). Since for each A, B € C*({!), from the analysis above there exist (ax), ey € /3, (A) and
(bn)pen € C4(A) such that

11(A) = 7(an) N gar,) “— O

and
n— o0

|h(B) — 7'r(bn)*HgE(Hﬂ) — 0.

Moreover, there exist a, b € (*(A) such that A = CJ and B = Cf in B(¢{*(A)) and h(A) = 7w(a)* and
h(B) = 7(b)* on B;. Then, using Equation (7.26) we obtain
h(AB) = h(C;CY) = hCE,_,) = m(b*s a)* = le 7(by %5 an)*

= lim_(n(b)n(a,))" = lim 7(a,)"7(b,)" = n(a)* ()"
— h(CD)R(CE) = h(A)h(B)
on B, where the limits are taken in Z(H ). By density of the Bessel vectors B, (see Lemma 7.1) we deduce that
h(AB) = h(A)h(B) (7.27)

on H, and hence h is an homomorphism.
Furthermore, we have

h(A") = h((C7)7) = h(Cg.) = m(a™)" = lim m(a,”)*

n
n—oo

— lim m(a,) = n(a) = (v(a)")" = h(CY)" = h(A)",

n—oo

on B, where the limits are taken in .Z(H,;) and using once more the density of the Bessel vectors B, we deduce
that

h(A*) = h(A)* (7.28)

on H, and hence h is an *-homomorphism.

Suppose that T* = h(A) € C*(A,7) and T = 0. Then by definition of / there exists a € £*(A) such that
A= C?and T = n(a) on B,. Hence, 7(a) = 0 on B;. Since T = 0, we have T € 7(A)" and since T = n(a)
on B then it follows by Lemma 7.4 that @ = 0. From the previous we deduce that & is injective. Since every
injective *-homomorphism between C* algebras is isometric, see e.g. [46, Theorem 3.1.5.], we conclude that h is
isometric. Thus, for each a € (1 (A) we obtain

ICal(e2a)) = ICO g1,y = I1m(a) | gty = 1T (@)l g,y - (7.29)
O

Suppose a € (1 (A) and (C9)* = C7,ie. a = a*s. Then from Lemma 7.8 we have
ra2(a) (Cq) = HCgHgg(e?(A)) = ||h(Cg)||gg(H,) = ||7T(a)||@(H,,),

where h : C*(¢') —s C*(A) is the isometric *-homomorphism defined in Lemma 7.8. Then by Theorem 2.2.3 we
obtain

oz (n)(Cq) = o(m,)((a)), (7.30)

for each a = a**. Now suppose that a € /L (A) is such that m(a) is invertible in %(H,). Then
m(a*"*sa) = m(a)*m(a) is invertible in % (H,). From Equation (7.30) we deduce that CY.,, , is invertible
in Z(3(A)). Similarly we deduce that CZ, ., is invertible in Z(¢*(A)). Then CZ., (CZ.,, o) " is a right
inverse and (CJ, ., ) 'CY., is aleft inverse of CJ in (¢*(A)). Thus if 7(a) is invertible in (H) then CJ
is invertible in Z(¢%(A)). Similarly, we deduce that if C7 is invertible in Z(¢*(A)) then 7(a) is invertible in
P (H,). Thus,

m(a) = Z axm(\) € nv(B(H,)) < C7 € Inv(B({*(N))). (7.31)

Using the previous we will now prove Theorem 7.6.



65

Proof of Theorem 7.6. Let a € (L (A) and A = 7(a) € /.. Assume that A = m(a) is invertible in Z(H,).
Then from (7.31), it follows that C¢ is invertible in %(¢?(A)). Hence, since twisted convolution operators are
inverse-closed in %(¢%(A)) (see Theorem 7.2) we deduce that there exists b € ¢}, such that (C?)~! = C¢ and
a*y; b= 0, = b*, a. Thus,

m(a)m(b) = w(a*, b) =7(6e) =1 (7.32)
and similarly

w(b)m(a) = (b *y a) = w(de) =1, (7.33)
hence m(a)~t = m(b) € B(H,). This proves the theorem. O

Define the non-commutative space

AL = {A €B(Hy) : A= arr()), a€ L), (A) Vae N} : (7.34)
AEA

where wq : A — [1,00), 2 — (1+d(z,e))*. Applying Theorem 7.6 for 7, for each o € N we obtain Wiener

type Lemma of 7, in C*(A, ). Furthermore, taking the intersection of <7, , a € N, we deduce a Wiener type

Lemma for the smooth non-commutative space ., = (|, ey @, in C*(A, ).

Theorem 7.9. Suppose that the pair (7, A) is a uniqueness pair. If A € &7} such that A= € %(H,), then
At e},

The previous recovers the Wiener type Lemma for the smooth non-commutative torus given by Connes [8],
where the smooth non-commutative torus is defined by (7.34), where A is a lattice in R?? and (7, L?(R?)) is the
projective representation of time-frequency shifts.



Frames in Coorbit spaces

In this chapter, we present applications of the ¢P-stability and spectral invariance of convolution-dominated
matrices in frame theory. We prove that if 7(A)g is a p-frame on the coorbit space C'o(LP) for some p € [1, 0],
then 7(A)g is a g-frame on the coorbit space Co(L?) for each ¢ € [1,00]. Moreover, we show that the frame
operator of a frame 7(A)g for H is not only invertible over the Hilbert space H., but also as an operator on the
coorbit spaces Co(LP).

Throughout this chapter we assume that (7, H) is a discrete series o-representation of the group G of
polynomial growth. For each o € NU {0}, we denote by w, the weight function on G given by

We : G — [1,00), = — (1 +d(z,e))°.
We denote by (-, -) the inner product of the Hilbert space H, and we define the following subspace
AL ={geH, : Vge L'(G)}. (8.1)
Moreover, for a vector g € AL\{0} we define
H' = H'(g) = {f € Hy : Vof € LY(G)} (32)

and equip H' with the norm
[l g == ||ng||L1(G) : (8.3)

Then, H' is a Banach space with respect to the norm ||-|| 51, see [7, 15, 65], and H'(g) is independent of the
choice of g with equivalent norms ||-[| ;71 () =< ||l g1y for g, 9" € AL\{0}, see [7, 15, 65]. Moreover, it can be

shown that H'(g) is continuously embedded in H, and H'(g) is norm dense in H,, see e.g. [65, Lemma 4.3].
Let R! = (Hl)* = (Hl(g))* be the anti-dual of H'! as a Banach space, i.e. R! is the set of all anti-linear
functionals on the Banach space H'(g). We denote the anti-linear pairing for each f € R' and h € H! by

(fh) e = f(h). (84)

We have that H,; and H' are continuously embedded in R', H,, — R' and H' — R!, see e.g [65, Lemma 4.6].
Moreover, the pairing (-, ) g1 g1 extends the inner product (-, -), that is for each f € H, and h € H' we have

<f7 h>R1,H1 = <f, h>’ (8~5)

using the embedding H, — R1, see e.g [65, Lemma 4.6].
For a vector g € AL\{0} and p € [1, 00] we define the coorbit space of LP(G),

Co(LP) = Coy(LP) = {f ER' : Vyf = (f, 7()9) jups € LP(G)}, (8.6)

equipped with the norm
Wllcoin = IVafll iy - (5)
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The coorbit spaces are Banach spaces and are independent of the choice of g € AL\{0}, with equivalent norms
[7, 15, 16, 65]. Moreover, it can be shown that Co(Lz) = H,, see e.g. [15, Corollary 4.4]. For more details on
coorbit spaces we refer the reader to [7, 15, 16, 65].

For a vector g € AL\{0}, it can be proved that the coorbit spaces Co(LP) are embedded in R! for each
p € [1,00], see e.g. [15] and [65, Proposition 4.8]. Moreover, for p = 1 the coorbit space C'o(L') is equal to
H'(g), see e.g. [65, Proposition 4.10 and Lemma 4.12] for a proof.

Proposition 8.1 ([15, 65]). Let g € AL\{0}. Then:

(i) Coy(LP) — R'(g) = (H'(g))", for each p € [1,00],
(i) Cog(L') = H'(g).
(iii) Co4(L?) = H.

For studying the boundedness of operators on coorbit spaces we need the following subspaces of AL. For
w : G — [1,00) a measurable, submultiplicative weight on G we define the subspaces

AL ={9€H, : Vyge LL(G)} (8.8)
and
By ={g9 € Hx : Vgg € Wu(G)}, (8.9)

where W,,(G) is the weighted Amalgam space of continuous functions. For the class of w-integrable representa-
tions we have that the subspaces A}, and B,, are non-trivial. A representation 7 is said to be a w-integrable
representation if there exists g € H,\{0} such that V,g = (g, 7(-)g) € L. (G). For a w—integrable represen-
tation we have by definition that A}nw is non-trivial and we can further show that the vector space B, is also
non-trivial [17].

Lemma 8.2. Suppose that w : G — [1, 00) is a measurable, submultiplicative weight on G. If 7 is an irreducible,
w—integrable representation, then there exists h € H., h # 0 such that V,,h € W, (G).

Proof. Since  is a w—integrable representation, there exists f € Hy, f # 0 such that Vyf € L. (G). Let
¢ € C.(G). We denote by 7(¢) the operator on the Hilbert space H, given by

(fr.m(6)fa) = /G (from(2) fo) Bl dpu(a), (8.10)

for each f1, fo € H,. Then for each x € G we obtain

Ve sm(0)f ()] = [{m(8) f, m(2)m(d) )] < /G/G [(m(2).f, w(@)m(y) )] [6(2)] [9(y)] dpa(z)dpa(y)-

From the o —projectivity of the representation we have

Veorsr@ 1@ < [ [ 11776000 160)]16:)| dn()dinty)
GJG
< /G /G Vi £z )| 6()] 16(2)] du(2)dpa(y)
< /G (6] * V3 1) (29) [6(»)] duy)

= [ ol 1V ) |6 )| dutw
= (¢l = [V 1+ 16"]) ().
Hence, using Equations (3.47) and (3.48) we deduce
HV"T(¢)f7T(¢)fHW“,(G) = HMIQ Mg Vw(¢)f7T(¢)fHL%U(G) = HMIQ Mlé (|| * Ve f] * |¢v|)”L3U(G)
= HM‘é 6] % [V f| + Mg |¢v|||L}U(G)
< [IMG ISy (o IV £l () MG 1671 L1
< N8llw, ) Vi fllzs ) 19 I c) -
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Since ¢ has compact support and Vy f € L, (G) we conclude that
||V7T(¢)f7r(¢)f’|ww(g) < 00, (8.11)

and thus h = 7(¢)f € H,\{0} is such that V,h € W,,(G), or equivalently h € BL\{0}. O

Moreover, in order to define and prove the boundedness of the frame operator on coorbit spaces we will use a
result for molecules in a Hilbert space. We follow [34, 54] for the definition of molecules.

Definition 8.3. Let g € B, \{0}. Let A be a relatively separated set in G. A set (gx) oy C Hr is called a
w—molecule, if there exists © € W,,(G) such that

Vgl (z) = [{gx, m(x)g)| < OA "), (8.12)
foreach A € Aand z € G.

If (9a) xen € Ho is a w—molecule, then for each A € A

”Vgg)\”Ll(G) < /G |@()\71:U)| d/“(x) = ”@”Ll(G) < 00, (8.13)

hence g, € H' for each A € A. Moreover, the functions Vg, A € A have a common envelope, © € W,,(G),
therefore the assumption in (8.12) is stronger than assuming g, € H! for each A\ € A. Note that if g € B.\{0},
then for each A € A and z € G we have

Vor(Ng(z) = [(m(N)g, m(2)g)| = [(g, 7 (A" 'z)g)| = |Veg(A ')

and Vg € W,,(G). Thus, if g € B} \{0}, then 7(A)g is automatically a w—molecule.
For a w—molecule (gx),cn € Hr, the coefficient operator

C:f— (<fvg>\>Rl7H1)/\eA

and the reconstruction operator

D:c=(c\)yep — ZC/\QA
XA

can be shown to be bounded as operators from C'o,(LP) into £P(A) and from ¢7(A) into C'o,(LP), respectively,
see e.g. [65, Proposition 6.11.] and [54]. Hence, we deduce that S = DC is a bounded operator defined on
Cog(LP).

Lemma 8.4 ([65]). Let g € BL\{0}. If (9x),cp € Hr is a w—molecule then the operators

C : Cog(LP)—P(A) (8.14)
f — ((f, 97 R1,m1) ep
and
D :(P(A) —+Coy(LP) (8.15)
c=(cx)rear— Z CAgA
AEA

are well-defined and bounded. Moreover,

S : Cog(LP)—Co,4(LP) (8.16)
f — Z<f7 IA)RYH1GA
A€EA

is a well-defined and bounded operator.
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We now present an application of the ¢P-stability result in p-frames. From Lemma 8.4 we have that for
g € By, \{0} the coefficient operator of 77(A)g, defined by

Cyn : Cog(LP)—LP(A) (8.17)
f — (<f77r(>‘)g>R1,H1))\eA

is well-defined and bounded. The system 7(A)g is said to be a p-frame for Coog(LP) if there exist A, B > 0 such
that for each f € Co,(LP)

Allfllco, ey S NCqafllenay < Blflco, e - (8.18)

Note that the above definition of a 2-frame for Co,(L?) coincides with the definition of a frame on the Hilbert
space H given by Definition 6.2.1, since Co,(L?) = H, by Proposition 8.1.

Using Theorem 5.1.1 we will prove that for g € B}, ,if m(A)g is a p-frame for Co,(L?) for some p € [1, 0],
then w(A)g is a g-frame for Co,(L9) for each g € [1, 00].

Theorem 8.5. Let G be a group of polynomial growth, with order of growth equal to Dg > 0. Suppose
that (w, H,) is a discrete series o-representation of the group G and A C G is a relatively separated set. Fix
g € B, \{0}, where @ > D¢ + 1. If 7(A)g is a p-frame for Coy(L?) for some p € [1,oc], then 7(A)g is a
g-frame for Cog4(L?) for each g € [1, o0].

Before proving the previous theorem, we state a result on the existence of canonical dual frames which are
also molecules, see [54, Theorem 5.3].

Proposition 8.6 ( [54]). Let (7, H,) be a discrete series o-representation of the group G of polynomial growth. Fix
o € Nand h € B}, \{0}. Then there exists a relatively separated set I' C G, such that 7(T") 1 is a p-frame for each
p € [1, 00, the canonical dual frame (ﬁ’y)yel‘ of 7(T')h in H is a w,-molecule and there exists © € W,,_(G)
such that foreachy € I"'andz € G

|Vis (@)] < ©(7712). (8.19)

Moreover, for each p € [1, co] we have that (h-)~cr is a p-frame and for each f € Co(LP) we have the following
expansions

F=Y (fmh) by = (fhy)pr (7). (8.20)

~el’ ~el’

The proof of Theorem 8.5 presented below is inspired by [27, Theorem 2.2], which proves a similar result in
the setting of homogeneous groups.

Proof of Theorem 8.5. Fix p € [1, 00] and suppose that w(A)g is a p-frame for Cog(L?). Let

Cyon = Coy(LP)—sP(A) (8.21)
f »—>(<f,7T(/\)g>R1,H1),\eA
and
Dyr: (M) 5 Coy(LP) (8.22)
¢ = (@sea— D exm(\)g
AEA

be the coefficient and reconstruction operators of 7(A)g, respectively.
From Proposition 8.6 and for h € B, \{0}, there exists a relatively separated set I' C G such that 7(T")h and

its dual frame (TLW)A,GF are a g-frames for each ¢ € [1, 00| and there exists © € W,,_(G) such that for eachy € T
andz € G

Vil ()| < ©(r"2). (8.23)

We denote by Cp, 1 and Dy, r the coefficient and reconstruction operators of 7(I')h and by C5, and D, the

coefficient and reconstruction operators of (hv)vep.
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We define the operators

A:=CyaDpyr: P(I') — (P(A) (8.24)
and
P .= CﬂDhT : EP(F) — é”(F) (8.25)
By Lemma 8.4 we have that A and P are well-defined and bounded. For each A € A,y € T
AN y) = (m(V)h, 7(N)g)rr i1 = (m(y)h, w(N)g) (8.26)
and hence
A = [(7(Nh, T(AN)g)| = [(x(N)g, 7(Mh)| = [{g, 7(A"IN)h)| = [Vigl (A™1). (8.27)

From h,g € B}, we have V,h,V,g € W, (G), hence V;,g € W, (G) from e.g. [65, Lemma 4.5]. Thus,
AecCD,, (T, A) Moreover, for each v,7 € T

P(y.9) = (n(Y)h.ho) o = (m(7 ) B (8.28)
and hence from Equation (8.23) we obtain
PO, )] = [(m( Vs T = (s w3 )Y = [Viha| () < ©(371), (8.29)
From © € W,,_(G), it follows that P € C'D,,_(T"). From the expansion (8.20) in Proposition 8.6 we have

F=>Yx frha) ()b = Dy rCy f,

yel

for each f € Co(LP). Thus,
pP? = CzDh,FCTLDh,F = C}:thr‘ =P (8.30)

on (P(T"), i.e. P is idempotent.
For each ¢ € ¢P(T") we have that f = Dy, pc € Co(LP) and then

||APCH£1,(A) = HCmADh,FCﬁDhICHp(A) = ’|Cg7ADh,FCﬁngp(A) = HCg,Angp(A)) (8.31)

where we have used that f = Dy, rC; f, for each f € Co(L”). Since w(A)g is a p-frame by assumption and
(hy)~er is a p-frame by Proposition 8.6, we obtain

||APC||zp(A) = HC’g,Angp(A) 2 ||f||Co(LP) 2 chfH@(p) = ||C'7LDh,FC||Zp(F)- (8.32)
Thus, for each ¢ € ¢P(T")
HAPCHZP(A) ~ HCTLDhICHm»(p) = ”PCHZP(F)‘ (833)

Since « > Dg + 1, A € CD,,_ (T',A), P € CD,,_(T'), P> = P and Equation (8.33) holds, the assumptions of
Theorem 5.1.4 are satisfied. Hence, by applying Theorem 5.1.4 there exists C’ > 0 such that for each ¢ € [1, ]

C' | APc o (ny = 1Pl gary - (8.34)

Fix ¢ € [1,00]. For each f € Co(L?) from the Expansion (8.20) there exists ¢y := C5 f € £9(I') such that
f = Dy rcy. Then for each f € Co(L9) we have

CNCo.aflliaiay = €' || Cor Pnr g fllyagay = O | Coa Drr CDnrey [l puia
=C' ||APCf||e<z(A) = ||Pcf||eq(r) = HCEDh-,FCszq(r) ||C f”eq )

using Equation (8.34). Then using that (% )~er is a g-frame (Proposition 8.6) we obtain for each f € C'o(L?)

c’ Hcg Af”eq (A) = HC ngq(p ~ ||f||co(Lq) (835)

On the other hand, from g € B,,, \{0} and Lemma 8.4 we have that C x is bounded on C'o(L?). Hence by
combining the previous

Hf”co([,q) 5 ||Cg,Af||zq(A) S ”f”co(m) . (8~36)

for each f € Co(L?). Thus, m(A)g is a g-frame. Since ¢ € [1, c0] was chosen arbitrary, the previous proves our
claim. O
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For the next results, we define the following subspace of the Hilbert space H,
By = (B, ={f €Hx : Vif € W, (G), Va €N}, (8.37)
aeN

where w,, is the submultiplicative weight on G given by
W : G — [1,00), = (1 +d(z,e)),
for each o € N.

Remark 8.7. For classes of projective representations 7 of simply connected nilpotent Lie groups, the space B°
is non-trivial, i.e. BS® # {0}. Assuming that G is a simply connected nilpotent Lie group, we define the smooth
vectors

HX={feH; : [x—7n(z)f] € C*(G;H:)}. (8.38)

It can be shown that H2° is norm dense in H,, see e.g. [11]. Let g be the Lie algebra of G, with basis
{Y1,Y3,...,Yq}. We define the algebra Z(G) of all differential operators D : C*°(G) — C*°(G), such that
D = 3 semuope Yy Yf", with finitely many non-zero cg € C. Then, a function F' € C*°(G)
belongs in the Schwartz space, i.e. F' € S(G),ifforall D € 2(G) and « € NU {0}

HFHD,a = ||DFHL3;Q(G) < 00. (8.39)
See [44, 57] for more on the Schwartz space on Lie groups. For g € H°, it can be shown that

Vg = (g, 7(")g) € S(G),

see [11, 12, 37, 50]. In particular, this shows that Vg € ﬂa en W, (@Q). Therefore, it follows that B> is non-trivial
for nilpotent Lie groups.

Using the Wiener type Lemma for the convolution-dominated matrices [,y CDw, (A), given by Theorem
5.2.2, we prove that if 7(A)g is a frame for the Hilbert space H,, then the dual frame (Sg_lﬂ(/\)g))\eA is a
wq—molecule for each o € N, under the assumption g € B2°.

Lemma 8.8. Let g € B3°\{0}. Suppose that 7(A)g is a frame for H, with frame operator S;. Then the dual
frame (hx)ycp = (Sg’lw()\)g))\eA of m(A)g is a we-molecule for each o € N.

Proof. If m(A)g is a frame, then the frame operator S, is invertible in %(H). Denote by

A= ((r(N)g,7(N)g)xxren

and
B = ((S;'m(Ng, S5 m(N)9))\ yven

the Gramian matrix of 7(A)g and its dual frame (hy ), ,, respectively. Then, by [23, Lemma 3.1.], we obtain
B = (A")%4, (8.40)

where AT is the pseudoinverse of A in Z((?(A)).
Since g € B2° we have Vg € W, (G) for each @ € N and for each A, A’ € A we have

AN = 1{m(N)g, 7 (X)g)l = [{g, T (AT X)g)| = [Veg(ATIX)

hence A € CD,,, (A) for each a € N. From the previous and the inclusion (5.21) it follows that A € .7 ,,, (A)
for each @ € N. From Corollary 2.2.5 we deduce that AT € %, (A) for each o € N, since AT is the
pseudoinverse of A = A* in (¢*(A)) and .7} ., (A) is inverse-closed in (¢%(A)), see Theorem 5.2.1. Moreover,
B = (A")2A € ¥ 4, (M) for each a € N, since .} ,,_ (A) is closed under composition. Then, following the
proof of Theorem 5.2.2 we deduce that B € [,y C D, (A).

For A € A we obtain using the frame decomposition (6.11) for sy = S, '7(\)g

)

ha =Y (b, Sy w(N)ghm(N)g = > (b, ha)w(N)g. (8.41)

NeEA ANeA
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Then, for each A € A and each x € G

Vy (Z (B, h»>w<x>g> ()

NeA

[Voha(z)] = D (hay han)Vy (m(N)g) ()

NeA

< 3 1 ) 1V, (r(X)g) (@) = 3 IBOWX) [Vag (X))

NeEA NeEA

Fix o € N. Since B € (¢ CDuy (A), there exists © € Wy, (G) such that [B(A, X)[ < O(A~LN). Thus,

Vyha(z)l = Y~ ©AIY)

Vag (X))

N EA
and from Lemma 3.2.7 we obtain
Relg (A) _
Vaha(@)] < == (Mg © Mg |Vagl) (A~')

Then using Equations (3.47) and (3.48) we have

I (Mg © Mg [Vagl) [y, () = Mo Mg (Mg © * Mo Vig) [,

= [[Mg (Mg ©) Mg (MG [Vyal) |, ()
< [MEME O, (g IMEME (VagDl,,
< ®llw.,. IIngHWwa(G) :

From © € Wy, (G) and Vyg € W, (G) we deduce that Mg © * M{ [Vyg| € Wy, (G) and then (hy)yc, is a
wq-molecule. Since « € N was chosen arbitrary, it follows that (h)) AeA 18 @ wq-molecule foreacha e N. [

The analysis above is sufficient for proving the following result. We fix a vector g € B:°. Moreover, we
assume that w(A)g defines a frame for H, or equivalently the frame operator

Syt Hy—H, (8.42)
fo—=Y (frNg)m(Ng

AEA

is invertible in Z(H ). Then, the frame operator S, is well-defined and invertible as an operator on the coorbit
spaces Cog(LP) for p € [1,00].

Theorem 8.9. Fix p € [1,00]. Suppose that (7, H,) is a discrete series o-representation of the group G of
polynomial growth and A C G is a relatively separated set. Fix g € B;°\{0} and assume that 7(A)g is a frame
for H,. Then the frame operator

S : Coy(LP)—Co,4(LP) (8.43)
f — Y ([ 7(Ng)rm (Mg
AEA

is well-defined and invertible.
Proof. Fix a € N. Note that for each A € A and z € G we obtain
[Ver(Ngl () = [(m(N)g, 7 (2)g)| = [(g, 7 (A" ") (2)g)| = [(g, 7 (A" 2)g)| = [Vog| (A '2).

Moreover, from the assumption g € B°\{0} we have Vg € W,,_(G). Thus, by combining the previous we
deduce that w(A)g is a w,—molecule and hence by applying Lemma 8.4 we obtain that

S : Cog(LP)—Co,4(LP) (8.44)
f — Y (N9 R mm(Ng

AEA
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is a well-defined and bounded operator, i.e. S € Z(Coy(L?)).

By Lemma 8.8 we deduce that the dual frame (hy) 4 = (S7'7(\)g) vea of T(A)g is a ws-molecule for each
B € N, since g € Bx°\{0} and m(A)g is a frame. In particular, (h),c, is @ wo-molecule. Thus, from Lemma 8.4
we obtain that the operator

S : Cog(LP)—Coy(LP) (8.45)
f Y (o ha)re
AeA

is well-defined and bounded. On the other hand, from the duality of the frames (h),., and 7(A)g and since
(-,-)rr m1 extends (-, -) we obtain for each f € Hy

Sitf = Sula ) =D (L rNgm(Ng =Y (f7(Ng) rrmm(\g = Sf. (8.46)

AEA AEA

Hence S, = S~ !in %(H). In particular S), = S~1on H' C H,, and hence from Proposition 8.1 we have
Sp,=S"1onCoy(L') = H*.
From the previous we have for each f € H*

F=8Sf = (SufimNg)7(Ng =D (f:Sum(Ng) 7(N)g =D (f, ) T(N)g.

AEA AEA AEA

Then, from [65, Corollary 6.13] it follows that f = S5}, f for each f € R'. Moreover, since

F=58u8f=>(£,7(Ng) Sum(N)g =>_ {f,7(A\)g) hax,

A€A AEA

for each f € H', by applying [65, Corollary 6.13] it follows that f = S5 Sf for each f € R'. In particular, using
the embedding given by Proposition 8.1, we have f = 5SS, f = S, Sf for each f € Coy(L?). We conclude that
Sp, = S~ on Co,(LP). Thus, from S;, € B(Coy(LP)) it follows that S has an inverse in #(Co,(LP)). This
proves our claim. O

If for g € B°\{0} C BiDGH we assume that 7(A)g is a g-frame for some ¢ € [1, cc], then from Theorem
8.5 it follows that 7(A)g is a 2-frame, or, equivalently, 7(A)g is a frame for H,. Therefore, for g € B2°\{0},
such that 7(A)g is a ¢g-frame for some ¢ € [1, 00|, the assumptions of Theorem 8.9 are satisfied. This proves the
following result.

Corollary 8.10. Fix p € [1,00]. Suppose that (7, H,) is a discrete series o-representation of the group G of
polynomial growth and A C G is a relatively separated set. Fix g € B2°\{0} and assume that 7(A)g is a ¢-frame
for some ¢ € [1, cc]. Then the frame operator

S Cog(LP)—Coy4(LP) (8.47)
f — Z<f» 7r()‘)9>R1,H17T(>‘)9
AeA

is well-defined and invertible.



Conclusion

In this thesis, we intended to study convolution-dominated matrices on locally compact groups of polynomial
growth and investigate the /P-stability and the spectral invariance of this algebra of operators. Using a commutator
technique by Sjostrand [60] we have proved that if a convolution-dominated matrix is bounded from below for
some p € [1, 00], then it is bounded from below for each g € [1, 0c]. The previous was proved for the weighted
class of convolution-dominated matrices, C'D,,(A), under the assumption that w,, is a polynomial weight of order
o > D, where D is the order of growth of the group. This result is new for matrices indexed by general relatively
separated sets in a group of polynomial growth. In the case of convolution-dominated matrices indexed by a
uniform lattice in a group of polynomial growth, we recover the result on boundedness from below given by
Tessera [63], however Tessera [63] proved the result for each polynomial weight.

Regarding the spectral invariance, using a result given by Sun [61] we have deduced that if a matrix, indexed
by a relatively separated set A in a group G of polynomial growth, belongs in C'D,,_ (A) for each polynomial
weight w,, o € N and is invertible in Z(¢?(A)), then its inverse belongs in C'D,,, (A) for each o € N. Fendler,
Grochenig and Leinert in [19] showed that the weighted class of convolution-dominated matrices over a discrete
group of polynomial growth is spectrally invariant for each polynomial weight, but also in the unweighted case.
We expect a similar result for convolution-dominated matrices indexed by relatively separated sets in groups of
polynomial growth, however our estimates in the commutator technique do not seem to be good enough to obtain
this spectral invariance.

Additionally, during the project we have studied applications of convolution-dominated matrices and applica-
tions of the ¢P-stability and spectral invariance of such matrices. In general, spectral invariance of algebras of
matrices is useful for studying invertibility and offers a tool to check whether the inverse of a matrix preserves its
decay. The spectral invariance of convolution-dominated matrices can be applied to a smooth non-commutative
torus that was studied by Connes [8]. For a lattice A C R?? and the representation (7, L?(R?)) of R?? given by

n(x,€) : LX(RT) — L*(RY), f = T f(- —2)
for each z, £ € R?, we define the smooth non-commutative torus as follows
AL = {A € BL*RY) : A= axr()), a€l), (A),Vac N} . (9.1)
AeA

Connes [8] showed that if A € </, such that A is invertible in (L?(R%)), then A~! € /1 and we have
extended this in a more general setting by applying the spectral invariance of convolution-dominated matrices.
For a uniform lattice A in a nilpotent Lie group and a discrete series o —representation (7, H, ), we have shown a
Wiener type Lemma for the non-commutative space

oy = {A € B(Hy) : A=) ayt(N), acll, (A)} (9.2)

A€A

in #(H), where o € NU {0}. This recovers the Wiener type Lemma given by Gréchenig and Leinert [32] in the
case of (m, L*(R%)) given by m(z,§) : f > €™ f(- — ) for (z,£) € R??, but also it recovers the result given by
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Connes [8], by taking the intersection [,y szlia. In the aforementioned application several results from frame
theory were used in the proof and, therefore, we decided to investigate further applications in frame theory. For
this we assume that G is a group of polynomial growth, (7, H) is a discrete series o —representation and A is a
general relatively separated set in the group, in contrast to the previous application where A was a discrete group.
During the project, we have studied frames in the coorbit spaces Co(LP) and using the result on ¢P-stability we
have proved that for w = w,, where « € N, o« > D¢ + 1, if g € H;\{0} is such that Vg = (g, 7(-)g) € Wy (G)
and 7(A)g is a p-frame for Co(LP) for some p € [1, 0], then w(A)g is a ¢-frame for C'o(L?) for each ¢ € [1, 00].
Moreover, it was proved that if g € H\{0} is such that Vg = (g, 7(-)g) € ,cy Wuw. (G) and w(A)g is a frame
for H,, then the frame operator is invertible on the coorbit spaces C'o(L?), for p € [1, o0].

There are some interesting directions for future research on convolution-dominated matrices. First of all,
it would be interesting to check the optimality of the assumption on the weight in the ¢P-stability result. The
estimates used in the commutator technique followed in the proof seem not good enough to improve the result,
therefore another method should be used. Moreover, an option for future research would be to investigate the
spectral invariance of convolution-dominated matrices indexed by relatively separated sets. A variation of the
method followed by Sun [61] for the spectral invariance of the Schur matrices could be used for this result. Another
interesting direction is investigating whether spectral invariance holds for convolution-dominated matrices in the
algebra % ((”) on the space of p-summable sequences ¢7, for p € (0, 1). Recall that for abelian groups, we have
shown that boundedness from below is independent of p € [1, o] for convolution-dominated matrices, in the
unweighted case and for polynomial weights. An interesting question is whether for such matrices the result
holds in the case of a logarithmic weight [63]. Moreover, based on the previous the interplay between the growth
of the group and the weight can be investigated, since currently, this interplay is not well-understood.
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