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Abstract

Osteoarthritis (OA) is a prevalent musculoskeletal
disease, and radiographic assessment remains the
standard for diagnosis and grading. However, ex-
pert grading is subjective and intensity-based au-
tomated methods are sensitive to imaging variabil-
ity. As a potential solution to these problems,
landmark-based approaches are worth exploring.
Landmark-based representations of bone geome-
try offer an alternative to pixel-based inputs, re-
ducing sensitivity to imaging artifacts and empha-
sizing structural variation. This thesis compares
four landmark encodings (raw x,y coordinates,
Procrustes-aligned points, pairwise distances, and
polar coordinates) and evaluates them using both
linear dimensionality reduction (PCA) and nonlin-
ear generative modeling (VAESs) on hip radiographs
from a publicly available dataset. We evaluate re-
construction fidelity, latent space traversal, correla-
tion with clinical outcomes, and classification per-
formance. Results show that raw point coordinates
provide a strong baseline, often matching or out-
performing more complex encodings in classifica-
tion, while alternative representations improved in-
terpretability but not discriminative power. PCA
preserved clinically meaningful variability, whereas
VAEs underperformed in this unsupervised setting.
These findings suggest that landmark annotations
already contain sufficient information for super-
vised OA tasks, while more advanced models may
be needed for unsupervised or generative applica-
tions.

1 Introduction

Osteoarthritis (OA) is one of the most prevalent
muscoskeletal disorders worldwide. Around 15% of

the world’s population is affected by the disease [1].
OA is mostly found in hand, knee and hip joints.
It can cause pain and discomfort or even disability
and eventually lead to patients having to undergo
surgery for a replacement of the affected joint. The
effects of OA can not be reversed through treat-
ment, but they can be made less severe, for example
through the use of physiotherapy. Early detection
of the disease plays a crucial role in reducing the
severity of symptoms.

There are multiple ways to detect OA, such as
through radiography or clinical assessment. In the
case of radiography the severity of OA is usually
estimated from an X-ray image. The OA severity
is commonly classified using the Kellgren-Lawrence
(KL) grade [2]. This grading system assigns a score
of 0-4 to an image, based on the presence of osteo-
phytes and other factors such as joint space nar-
rowing. Osteophytes are bony protrusions that de-
velop at joint margins. Joint space narrowing refers
to the reduction in distance between two bone sur-
faces, typically caused by cartilage loss. Both are
considered main radiographic features of OA [3].

Traditionally the KL grade has been assigned
by medical experts, by systematically reviewing X-
ray images for presence of the aforementioned fac-
tors. Advancements in deep learning however have
sparked growing interest in automated approaches
to classification. Various models of convolutional
neural networks have been used to classify X-ray
images of OA patients [4], [5]. These networks
learn from pixel intensities, allowing them to cap-
ture patterns such as joint space narrowing in the
images. They do so by organizing these patterns in
a latent space, an internal representation of the im-
age features that the model uses to predict the KL
grade. However, using intensity-based approaches
also brings a set of limitations. Imaging conditions



can vary, leading to differences in contrast, bright-
ness and levels of noise in the images. The net-
works have to learn to ignore these differences, in
order to focus on biologically or structurally rele-
vant patterns, rather than variations introduced by
the imaging process.

An alternative to pixel-based input is to repre-
sent the anatomy in a point-based manner. In-
stead of using raw X-ray intensities as input, we use
a landmark-based representation derived from the
X-ray: a set of coordinates at anatomically mean-
ingful locations. These landmark points are typ-
ically obtained by manual annotation by experts
or automated landmark detection algorithms. By
using points instead of pixel values, the noise in-
troduced by possible imaging artifacts and varia-
tions in brightness from the images can be omitted.
Points are a more abstract way of representing the
bone shapes needed for the classifications and al-
low a classification method to focus more on shape
information such as placement and size. It is worth
noting that this abstraction relies on the accurate
placement of landmarks, which may be subject to
annotation errors or limitations of detection algo-
rithms.

A key consideration in moving from intensity-
based input to point-based input is how these
points are encoded as model input, since different
representations can emphasize different structural
properties. In this work we focus on three repre-
sentations.

The first way to represent these points is using
a coordinate-based input representation. We can
use a set of x,y coordinates that outline the set of
relevant bones. This is a straightforward way that
is relatively easy to interpret and visualize.

However, using explicit x,y coordinates as input
lacks a few properties that are important for distin-
guishing relevant anatomical variation from irrele-
vant differences. For example, they are not invari-
ant to translation, rotation or scale. This means
that a bone that is in different positions or orien-
tations has different numerical values, even though
it represents the same underlying anatomy. The
model might interpret the differences as meaningful
variation, rather than recognizing them as the same
underlying shape. As a result, additional prepro-
cessing or alignment steps are often required to en-
sure that the representation reflects structural dif-
ferences rather than arbitrary imaging conditions.

In addition to their sensitivity to global trans-
formations such as translation, rotation, and scale,
coordinate-based inputs also make it difficult to
capture local anatomical detail. Especially for OA
classification intra-bone information is beneficial,
as OA alters not only the overall alignment of the
joint, but also the local bone shape and surface
geometry. These local changes can be critical indi-
cators of disease progression.

Although these local changes are clinically im-
portant, x,y coordinates make it difficult for a
model to directly recognize how the points are re-
lated. It receives a set of coordinates as input, but
it does not know which points are connected to
form the bone outlines. Consider a set of bones rep-
resented by x,y coordinates. Although the points
are consistently defined and ordered, a model does
not automatically know how these coordinates re-
late to one another in terms of anatomical struc-
ture. A human might be able to connect the dots
to form the set of bones, but a model would have to
learn this relational information, which becomes es-
pecially important in settings where there are mul-
tiple bones.

This suggests that it is useful to carefully define
what properties a representation should preserve
or discard. Invariances are useful to remove
things from the data that we do not want to
keep, such as rotation, but we can also establish
a set of requirements that we want to keep in the
data rather than remove it. For example, one
might want to keep the individual shapes that are
captured in a dataset, or the information about
the distances between shapes.

In this paper we study representations that offer
some of these variances. The first is a distance-
based representation. Instead of using x,y coordi-
nates, points can be described using a set of pair-
wise distances, which would make the representa-
tion invariant to translations.

Another option to represent these points is an
angle-based representation. Instead of describing
points as a set of absolute points they are described
as an angle with respect to a reference point. This
provides translation invariance and highlights rela-
tive orientation of structures, allowing the model to
focus on angular variation in bone geometry rather
than absolute position.

Because each representation

encodes the



anatomy in a different way, it is not immediately
clear what information they preserve or discard,
or how they might influence model behaviour.
We therefore want to gain a better understanding
of which information can be captured in the
embeddings that machine learning models learn
from these different representations. To this
end, we examine the latent spaces produced by
both classical statistical approaches and deep
learning—based models. A latent space refers to
a compressed internal representation of the data,
where high-dimensional inputs such as coordinates
are mapped into a lower-dimensional vector that
retains the most relevant features. Studying this
space allows us to see how different input formats
emphasize or suppress certain information, for
example by revealing which anatomical features
vary smoothly along specific latent dimensions.

Building on these approaches, this thesis investi-
gates how different input representations influence
the information captured in the latent space, using
a dataset of hip joint anatomy, with OA-related
factors. We define a set of requirements to gener-
ate different representations of data. We explore
how each representation affects the structure and
interpretability of the latent space. We study this
space using two techniques: principal component
analysis (PCA) [6], which provides a simple, lin-
ear form of dimensionality reduction, and a varia-
tional autoencoder (VAE) [7], which learns a non-
linear, compressed representation of the data. With
these tools, we explore the information captured
in the latent space through latent space traver-
sal: by varying individual latent dimensions and
observing the corresponding changes in the recon-
structed anatomy we can interpret what aspects
of the shapes each dimension encodes. In addi-
tion to visualizing the information captured in the
latent space we also use the latent space vectors
as input to a simple classifier. This allows us to
see if the information captured in each representa-
tion’s latent space is useful for classifying the pres-
ence of features such as joint-space narrowing or
KL grade. Through these comparisons, we aim to
develop a deeper understanding of how the choice
of input representation shapes the organization of
latent spaces and, in turn, influences both inter-
pretability and downstream classification perfor-
mance.

2 Related work

Deep learning approaches for KL grade
classification Various studies have described the
use of deep learning approaches to assign a KL
grade to an X-ray image, but performance remains
inconsistent across grades. Pi, SW. et al. [§]
used an ensemble network to achieve an accuracy
of 74.21% on multiclass KL-grade classification.
Confusion matrices show a lower accuracy for
KL-grade 1, as the difference between grade 0 and
1 can be hard to discern, also found by others [9],
[10].

Because of this, other studies focused on a binary
classification problem: OA vs non-OA. Ureten,
Kemal, et al. [11] achieved an accuracy of 90.2% of
predicting OA vs non-OA cases. Reported results
vary across studies and datasets, with achieved
accuracies of 92.8 [12] and 82.2% [13]. While
image-based CNNs can provide good performance,
their inconsistency across grades and dependence
on subtle brightness or contrast variations suggests
that additional or alternative representations may
be valuable. Our study builds on this motivation
by exploring non-image representations.

Autoencoders in OA classification A spe-
cific kind of approach for osteoarthritis severity
classification is using an Autoencoder in com-

bination with a classification head. Farooq,
Muhammad Umar, et al. [14] use a so-called
Dual-Channel Adversarial Autoencoder.  They

used a dual-channel design to encode and decode
both knees. The latent space is also used to predict
KL-grade. The accuracy for this prediction was
75.53%. Similar to this study we also use the
latent vector as input to a classification method,
but in our work this classifier is not part of the
model architecture.

Another approach to using autoencoders for OA
classification is to introduce additional loss terms
that encourage the latent space to separate cases of
interest. Such discriminative losses can guide the
network to form representations that are not only
compact but also clinically meaningful for classifi-
cation. For example, Nasser, Yassine, et al. [15]
used a Discriminative regularized auto-encoder
(DRAE). In their approach they introduced a



discriminative loss term that helps the network
separate non-OA cases from OA cases. The study
shows that the latent space can be formed in such
a way to help classify OA cases. These works
highlight that autoencoder spaces can carry clin-
ically relevant information, when combined with
specialized objectives such as classification heads
or discriminative losses. In our study we also rely
on the latent space. However we keep the autoen-
coder architecture standard and investigate how
different input representations themselves influence
the latent space, rather than optimizing classi-
fication accuracy through architectural constraints.

Shape models and OA Although image-based
approaches can achieve decent classification per-
formance, they also face limitations as mentioned
in Section 1: sensitivity to brightness and noise
can introduce variations we do not want to learn.
This sensitivity has motivated interest in alterna-
tive representations. For osteoarthritis imaging
Van Buuren, M. M. A., et al. [16] found that
different hip shape features can be linked to the
development and progression of hip OA and the
possibility of a total hip replacement. Shape-based
models therefore demonstrate that geometry alone
carries clinically relevant information. Our study
extends this idea by comparing how different input
representations of shape behave when embedded
into a latent space

Point-based models Models exist that are
designed to work with point data. A notable
line of work that directly processes point sets is
PointNet, introduced by Qi, Charles R et al.[17].
It is a network architecture that can take entire
point clouds (unordered sets of points) as input. It
is designed for tasks like object classification and
segmentation. Due to its design the network offers
permutation invariance: the ordering of the points
does not matter. Our dataset, however, consists of
ordered anatomical landmarks, where each index
corresponds to a specific anatomical location.
In this context, permutation invariance would
discard meaningful information. Furthermore, we
do not use this model, as our emphasis is not
on leveraging specific network architectures, but
rather on studying and comparing different forms
of input representations. In contrast to PointNet,
the ordering of points in our data is informative,

making permutation invariance unsuitable. The
VAE provides a natural framework for exploring
the latent structure of those representations,
without the added complexity of architecture
specific feature learning.

Latent space exploration Latent space explo-
ration provides a means of interpreting the internal
representations of generative models. By travers-
ing latent dimensions, we can investigate whether
these abstract variables correspond to meaningful
and domain-relevant properties. For example, K.
Swannet et al. [18] use a VAE to encode and decode
a set of points that describe an airfoil shape. In this
work they traverse the latent space to show that
the dimensions of that latent space correlate with
known properties such as airfoil thickness. They
show that they can assign meaning to the black-
box nature of the latent space for generative mod-
els. This demonstrates that VAEs enable inter-
pretable exploration of latent spaces in point-based
domains. Inspired by this, we apply similar princi-
ples in the OA setting, aiming to uncover clinically
relevant structure in the latent spaces of different
input representations.

3 Representations

When designing input representations for OA anal-
ysis, not all information contained in the raw
data is equally valuable for distinguishing clinically
meaningful variation. Some aspects are irrelevant
variations, such as orientation, position or scal-
ing of the bones. Those do not reflect meaningful
anatomical differences, but can vary across images
and patients. Other aspects are essential features,
such as relative positioning of the bones, or the
bone shapes themselves. Those features carry clin-
ically relevant information for downstream tasks
like OA classification. This distinction motivates
the need for a set of requirements for our repre-
sentations. Without these requirements the model
would waste learning capacity on learning the irrel-
evant transformations. We categorize the require-
ments into two categories: invariances, which de-
scribe transformations the representation should be
insensitive to, and preservation properties, a term
we use to denote information that must be retained.



3.1 Invariances

Invariance is desirable because, in medical imaging,
these extrinsic factors are often irrelevant to the
clinical question but can vary significantly between
scans. For example, two X-ray images of different
patients may differ in orientation due to changes
in positioning during imaging, or in scale due
to differences in image magnification. Without
invariance, a model must spend part of its learning
capacity “discovering” that such transformations
do not alter the underlying anatomy, which can
reduce efficiency. It also risks overfitting: the
model might associate dataset-specific imaging
conditions with clinical outcomes.

When considering input representations for os-
teoarthritis classification it is important to identify
to which variations in the data the model should
be insensitive. Based on our knowledge of OA we
define the following invariances as desirable prop-
erties for a representation.

1. Translation Invariance: The model should
be insensitive to the absolute position of the
bones within the image. A bone located at the
top-left of an image should be interpreted iden-
tically to the same bone placed in the bottom-
right corner.

2. Rotation Invariance: The orientation of the
bone should not affect its interpretation. For
example, a femur bone presented vertically or
horizontally should still be recognized as the
same anatomical structure.

3. Scale Invariance: The size of the bone in
the image should not influence its interpreta-
tion. Whether a bone appears small or large, it
should still be understood as the same anatom-
ical entity. Scale invariance in this context
refers to invariance with respect to the imag-
ing scale (e.g., magnification or zoom), not the
actual anatomical scale.

3.2 Preservation Properties

In addition to invariances it is equally important
to specify what information should be preserved
in the representation. While irrelevant information

should be suppressed, clinically meaningful varia-
tion such as bone shape and positioning should re-
main accessible to the model. We refer to these
requirements as preservation properties and define
them below.

1. Bone-to-bone Relationship Preserva-
tion: The relative positioning between bones
should be preserved so that their anatomi-
cal relationships are not distorted. The way
they are ordered and distanced relative to
each other offers information that is useful for
downstream tasks (for example joint space nar-
rowing).

2. Bone Shape Preservation: Similarly, for
downstream tasks it is important that the rep-
resentation encodes the relevant shape char-
acteristics of the bones. Shape variations can
be indicators of properties such as joint space
narrowing or osteophyte presence.

4 Methods

In this section we describe the methods used to
investigate how different input representations of
anatomical landmarks on bone shapes affect the in-
formation captured in latent spaces. We begin by
outlining the three input types: raw coordinates,
pairwise distances and polar coordinates. Each sat-
isfy different invariance requirements introduced in
Section 3. We then describe how these representa-
tions are projected into latent spaces. Finally we
explain how latent space traversal is used to in-
terpret the dimensions of these spaces and assess
whether they correspond to meaningful anatomical
variation relevant for OA.

4.1 Input Types

¢ Raw 2D Landmark Coordinates The first
representation is simply taking the x,y coordi-
nates as input. In their raw form, these coor-
dinates are not invariant to the variances de-
scribed in Section 3. Alignment methods ex-
ist to mitigate these variances, such as Pro-
crustes alignment [19]. Procrustes alignment
is a method that removes non-shape variations
by optimally translating, rotating and scal-
ing the shapes to a reference shape. We in-



Table 1: Satisfaction of representation requirements for each input type.

Representation Type Req. 1 Req. 2 Req. 3 Req. 4 Req. 5
(Translation) (Rotation) (Scale) (Bone Relations) (Shape Preservation)

Raw 2D Landmark Coor- No No No Yes Yes

dinates

Pairwise Distances Be- Yes Yes No* Yes Yes

tween Landmarks

Polar Coordinates Yes No* No* Partial Yes

*Rotation and scale invariance can be enforced via alignment and normalization, respectively.

clude this aligned version in our comparisons,
since it provides a useful baseline against the
other representations, which encode these in-
variances directly into the feature represen-
tation rather than relying on a preprocessing
step. The number of features for a sample with
n landmark points is given by Npgints = 2n.

e Pairwise Distances Between Landmarks
A second representation is generated by tak-
ing the pairwise distances of the 2D landmark
points: di; = /(z; — 2;)® + (y; — y;)?. In this
representation, the distances remain the same
whether the points are at an angle or in a dif-
ferent place in the image. This makes this rep-
resentation rotation and translation invariant.

The pairwise distance matrix D € R"™ " is
symmetric, since d;; = dj;, and its diago-
nal entries are zero (d; = 0). Consequently,
all unique distances are contained in either
the upper or lower triangular part of the ma-
trix. For a set of n landmarks, the number
of unique distances is given by Ngistances =
@. These form the features for a single
sample. We normalize pairwise distances by
the median training-set distance to place in-
puts in a unit scale, improving numerical sta-
bility during training.

e Polar Coordinates The third representation
is derived by expressing each landmark in polar
coordinates relative to a chosen origin. Each
landmark is described by a radius (distance
from the origin) and an angle (orientation with
respect to a reference axis), which together
capture the shape’s global geometry and local
variations. In our case, the origin is defined as
the center of the femoral head, and the refer-
ence axis is taken as the line through this cen-

ter and the corner of the acetabular roof. This
choice ensures anatomical consistency across
samples. To avoid discontinuities of the angle
0; at 2w, we represent it by its sine and co-
sine. This representation is advantageous be-
cause it preserves the circular nature of angles:
values close to 0 and 27 radians remain close
in Fuclidean space, whereas using raw angle
values would incorrectly treat them as being
numerically far apart. Each landmark point is
represented as (z;,y;) > (r;,sinf;, cosb;).

This representation is invariant to global trans-
lations of the joint within the image, be-
cause all landmarks are defined relative to
the femoral head center. For a sample of n
landmarks the amount of features is equal to
Npolar = 3n.

The extent to which each of these input types
satisfies the requirements introduced in Section 3
is summarized in Table 1.

4.2 Latent Space Generation

We evaluate how the latent space structure changes
depending on the type of input that is provided.
We learn a mapping to a latent space using the
different input representations, using two methods.
By comparing classical statistical techniques and
modern deep-learning based methods we aim to as-
sess how well different approaches preserve inter-
esting clinical variation. We first establish a base-
line using principal component analysis (PCA) and
compare it to nonlinear latent representations gen-
erated by a variational autoencoder (VAE).



4.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a sta-
tistical technique for dimensionality reduction
that projects high-dimensional data onto a lower-
dimensional subspace while preserving as much
variance as possible. It works by computing orthog-
onal basis vectors, called principal components,
which are ordered by the amount of variance they
explain in the data. The first component captures
the largest possible variance, the second component
captures the largest remaining variance orthogonal
to the first, and so on.

In the context of our experiments, PCA serves as
a baseline for understanding how much of the clini-
cally relevant structure in the data can be captured
without nonlinear transformations.

4.2.2 Variational Autoencoder

A VAE is a type of generative model that learns
to encode input data into a low-dimensional latent
space and then reconstruct it from that space. Fig-
ure 1 illustrates the flow of information in a vari-
ational autoencoder, from the input data through
the encoder to the latent representation, and subse-
quently through the decoder to the reconstructed
output. Unlike standard autoencoders, VAEs in-
troduce a probabilistic framework: instead of en-
coding each input into a fixed point, the encoder
outputs the parameters of a Gaussian distribution,
namely a mean g and standard deviation o. A
latent vector z is then sampled from this distri-
bution using the reparameterization trick, which
ensures differentiability during training. The de-
coder maps z back to the input space to produce
a reconstruction . The model is trained by min-
imizing a loss that combines two terms: a recon-
struction loss, which measures how well £ matches
the original input z, and a Kullback—Leibler (KL)
divergence term, which regularizes the learned la-
tent distribution to be close to a standard normal
prior. By mapping high-dimensional shape data
into a lower-dimensional latent space, the VAE of-
fers a compact and potentially interpretable repre-
sentation of structural joint variations.

4.3 Latent Space Traversal

Once the latent space has been learned we can in-
terpret it using latent space traversal. This traver-

sal allows us to see how changes in the latent space
translate to changes in reconstructions. To do this,
we gradually change the values of one latent vari-
able while keeping the others fixed to a mean la-
tent vector, and then reconstruct the corresponding
bone shapes.

Visualizing the reconstructions is straightforward
when using raw coordinates, as the output can di-
rectly be plotted as landmark positions, but for
pairwise distances we require extra steps. We first
have to convert the encoded triangle of the matrix
to a full distance matrix. From this we recover
approximate landmark coordinates using multidi-
mensional scaling [20]. The resulting shape is then
aligned to a reference shape using Procrustes align-
ment. In our case we align to the mean of the raw
coordinates. This ensures a correct orientation that
allows for meaningful comparison between samples
and representations.

The polar coordinates are visualized by convert-
ing them back to x,y coordinates. Similarly the re-
sulting shape is centered and rotated to a common
orientation such that it enables meaningful com-
parisons.

By observing how these shapes change along a
smooth path in latent space, we can see which
anatomical features are being captured by specific
dimensions, and whether these changes are mean-
ingful in the context of osteoarthritis.

4.4 Classifier

To quantify the information captured in the latent
space of a generative model we utilize a Logistic
Regression model to perform a downstream classi-
fication task. We use this to evaluate whether the
information captured in the latent spaces is clin-
ically meaningful. The rationale is that if a low-
capacity linear model can successfully separate OA
from non-OA samples in the latent space, then the
learned representation encodes features relevant to
the disease.

For the PCA baseline, the principal component
scores for each sample serve directly as the embed-
ding. For the VAE, each input is encoded into a
latent distribution, and we use the mean vector of
this distribution as the latent representation. This
is essentially the output of the encoder. These em-
beddings are then provided as input to the logistic
regression model to predict the severity scores.
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Figure 1: Schematic of a variational autoencoder (VAE). The encoder maps the input x to latent
parameters p and o. A latent vector z is sampled and passed through the decoder to reconstruct . The
training objective combines reconstruction loss with a Kullback—Leibler (KL) divergence term, forming

the total VAE loss.

5 Experiments

To explore the effect of different input representa-
tions on the latent space we have designed a set of
experiments that answer the following questions:

1. How does the choice of input representation af-
fect the structure and semantics of the learned
latent space in point-based shape models?

2. To what extent does the latent space encode
semantically relevant or clinically meaningful
information and does this depend on the input
representation?

To answer the first research question, we use
both principal component analysis (PCA) and
the variational autoencoder (VAE) described in
Section 4.2.2. For each input representation, we
feed the data to each dimensionality reduction
method and generate latent vectors. We can
traverse the latent dimensions to see what char-
acteristics are captured in each dimension. We
use a traversal step of five standard deviations
for most representations, as this magnitude is
sufficient to reveal clear differences between latent
dimensions. For polar coordinates, however, a
smaller step of two standard deviations already
produces discernible variation. Using a smaller
step size in this case reduces visual distortion
and results in reconstructions that are easier to
interpret.

To quantify the discriminative information we
use the latent vectors generated by PCA and the
VAE and feed those to the classifier described in
Section 4.4. This enables us to evaluate whether
the structure learned by each method preserves in-
formation relevant to downstream prediction tasks.
We want to measure classification performance us-
ing the latent vector as input to classify the fol-

lowing features: joint space narrowing scores, 0s-
teophyte scores and OA severity scores. We also
compute correlation scores between individual la-
tent dimensions and each target feature, allowing
us to quantify the strength and nature of the rela-
tionships present in the latent space for both meth-
ods.

5.1 Dataset

The dataset used in this research is the Cohort Hip
and Cohort Knee (CHECK) [21] dataset. It is a
longitudinal set, as it contains data obtained from
patients at multiple time points. It contains X-ray
images of hips of patients with varying OA scores.
For each sample we also have expert-derived ordi-
nal scores (0-3) describing radiographic features of
osteoarthritis. These include:

¢ Joint-space narrowing (JSIN)

— Medial joint-space narrowing
— Superior joint-space narrowing

— Posterior joint-space narrowing
e Osteophytes

— Inferior acetabular osteophytes
— Superior acetabular osteophytes
— Inferior femoral osteophytes

— Superior femoral osteophytes

e Kellgren-Lawrence grade

Joint space narrowing quantifies the reduction
of space between the femoral head and the ac-
etabulum. Osteophyte scores indicate the pres-
ence of bony protrusions at specific acetabular or
femoral locations. To illustrate the anatomical re-
gions where these features are assessed, Figure 2
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Figure 2: Tllustration of the mean landmark con-
figuration across all samples in the dataset. Land-
marks are grouped into anatomical subregions, in-
cluding the proximal femur, greater trochanter,
posterior wall, ischium and pubis, foramen, and ac-
etabular roof.

shows the mean landmark configuration with points
grouped by subregion.

Because the distribution of these ordinal labels
is highly imbalanced (see Table 2), we convert the
scores to binary targets by mapping 0 to negative
and > 1 to positive. For kellgren we map 0 and 1 to
negative and > 2 to positive, since grade 2 marks
the presence of definite radiographic osteoarthritis.
This binarization strategy is commonly adopted in
related work to address imbalance and to reflect
clinically meaningful cut-offs in OA diagnosis [22],
[23]. The dataset contains 2061 samples for which
at least one of the scores is available.

The images in the CHECK dataset have been
converted to a set of 2D coordinates using
BoneFinder [24], a fully automatic software tool de-
signed to outline and segment skeletal structures
from 2D radiographs by placing a set of points
along the bone contour or at key landmark posi-
tions. This results in a set of 80 landmark points
per hip side, outlining the femoral head and acetab-
ular region. Landmarks were distributed across
anatomically meaningful subregions, including the
proximal femur, greater trochanter, posterior wall,
ischium and pubis, foramen, and acetabular roof.

Table 2: Distribution of ordinal (0-3) and binarized
(0 vs. >1) scores for each feature in the CHECK
dataset.

Feature 0 1 2 3]0 (bin) >1 (bin)
jsn_medial 1208 688 95 1 1208 784
jsn_superior 1410 535 40 7 1410 582
jsn_posterior 1897 35 5 - 1897 40
osteo_acet_inf 1515 276 93 10 1515 379
osteo_acet_sup 536 343 127 15 536 485
osteo_fem_inf 1302 504 102 3 1302 609
osteofemsup 1011 683 257 27 1011 967
kellgren* 639 808 508 38 1447 546
*For Kellgren, binarization is defined as 0-1 — 0 and >2
— 1.

5.2 PCA Dimensionality Analysis

Before fixing the dimensionality of the latent spaces
used in subsequent experiments, we used PCA to
determine the amount of variance explained by the
different dimensions.

Results showed that the first three principal com-
ponents already captured over 95% of the variance
in the data, with subsequent components contribut-
ing only marginally. To balance compactness with
flexibility, we therefore fixed the latent dimension-
ality at eight dimensions for all models (both PCA
and VAE). This choice ensures consistency across
methods while allowing additional latent capacity
to capture variations beyond the dominant modes.

5.3 VAE Design

We use a symmetric multilayer perceptron VAE tai-
lored to the sample size and landmark dimension-
ality. For each sample the input is flattened. The
encoder maps this input through two hidden lay-
ers (both 64 units) before branching into separate
linear layers that output the mean (u) and log-
variance (logo?) of the latent distribution. From
these parameters, an 8-dimensional latent vector z
is sampled using the reparameterization trick. The
decoder mirrors this structure, expanding from the
latent dimension back through 64 and 64 units be-
fore reconstructing the output.

The model is optimized using Adam with a learn-
ing rate of 1 x 1073 and trained for 500 epochs. To
ensure robustness of the evaluation and to miti-
gate variance due to train—test splits, we employ
5-fold cross-validation throughout all experiments.
We utilize a mean squared error loss.



It is worth noting that we deliberately employ a
relatively shallow, fully connected VAE rather than
deeper or convolutional architectures often used in
image-based studies. Since our inputs are landmark
coordinates rather than pixel grids, convolutional
layers would not exploit local spatial structure.

5.4 Evaluation Metrics

We use two evaluation metrics to assess the quality
of latent representations: root mean squared error
(RMSE) and the area under the receiver operating
characteristic curve (AUC). RMSE evaluates recon-
struction fidelity, while AUC assesses the predictive
utility of latent features in a downstream classifica-
tion task.

5.4.1 Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) is the
square root of the mean squared difference between
reconstructed and original features. It expresses
reconstruction accuracy in the same units as the
input data, making the errors more interpretable
than raw MSE. Since the VAE is trained with an
MSE-based reconstruction loss, RMSE provides a
natural and directly comparable evaluation metric
for assessing how closely the model’s reconstruc-
tions match the input features. For each represen-
tation we construct the set of points and compare
the original set of points to the set of points recon-
structed by the encoding method.

5.4.2 Area Under the ROC Curve (AUC)

To evaluate the quality of the logistic regression
probes, we use the AUC. The ROC curve plots
the true positive rate against the false positive rate
across different classification thresholds. The AUC
provides a threshold-independent measure of sep-
arability, with values close to 1 indicating strong
discrimination for OA features, while values near
0.5 indicate random performance.

We chose AUC over simple accuracy because OA
labels can be imbalanced across the dataset, and ac-
curacy can be misleading in such settings. AUC is
more robust to class imbalance, as it considers the
model’s ranking ability across all thresholds rather
than its performance at a single decision boundary.
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Reporting AUC provides a fairer and more inter-
pretable assessment of how well the latent spaces
capture clinically meaningful information relevant

to OA.

5.5 Correlation Analysis of Latent
Features

In addition to reconstruction fidelity (RMSE) and
predictive performance (AUC), we also investigate
how individual latent dimensions relate to clini-
cal variables. To do this, we extract the latent
vectors for each sample using either the VAE en-
coder (taking the mean p of the latent distribu-
tion) or PCA projections. For each representation
type (raw points, Procrustes-aligned points, pair-
wise distances, and polar coordinates), we compute
correlations between latent dimensions and clinical
outcome measures.

Correlations are calculated using Spearman’s
rank coefficient, which captures monotonic associa-
tions and is robust to non-linear effects. This choice
is motivated by the fact that clinical scores are or-
dinal rather than continuous, making rank-based
correlation more appropriate than Pearson corre-
lation, which assumes linear relationships. To aid
interpretation, results are visualized in correlation
heatmaps, with statistically significant associations
(after multiple-testing correction) highlighted. The
rationale is that if specific latent dimensions consis-
tently correlate with known radiographic markers
of osteoarthritis, this can complement the recon-
struction and classification analyses.

6 Results

6.1 Latent Space Visualisation

Figure 3 shows traversal of the latent space of a
VAE for the different input representations. The
figure shows that across input types, there are
always latent dimensions that show no differences
when traversed. For raw and Procrustes-aligned
points we see almost no difference across all latent
dimensions. If we look at pairwise distances we see
more pronounced differences in global structure
for dimension 2, with more local differences for di-
mension 1. Note that due to the non-deterministic
nature of the VAE the ordering of these dimensions
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Figure 3: Traversal of the latent space of the VAE for different input representations. Each subplot shows
the effect of varying a single latent dimension while holding the others fixed, with rows corresponding
to different input types: (a) raw point coordinates, (b) Procrustes-aligned points, (c) pairwise distances,
and (d) polar coordinates. For each representation, the reconstructed bone shapes reveal which kinds
of variation are captured by the latent dimensions. For example, distance- and polar-based inputs yield
more visible global and angular changes than raw or Procrustes-aligned points, where traversals show
little or no variation. This illustrates how the choice of input representation influences the interpretability

of the learned latent space.

(d) Polar coordinates
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Figure 4: Traversal of the latent space of PCA for different input representations. As in Figure 1, rows
correspond to (a) raw point coordinates, (b) Procrustes-aligned points, (c¢) pairwise distances, and (d)
polar coordinates. Here, traversals show that PCA components often capture global transformations,
such as x- and y-translations when using raw coordinates, whereas Procrustes alignment reduces such
effects and shifts the components toward local shape variation. Polar coordinates emphasize angular
changes, with dimension 0 in particular reflecting rotational effects. This comparison highlights how
linear embeddings distribute variance differently across representations.
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is arbitrary. Using polar coordinates shows more
pronounced differences across different dimensions.
Dimensions 0, 3 and 4 show relatively large
differences in global structure. In contrast to the
other input representations we see that dimension
0 also captures angular variation when the polar
coordinate representation is used.

Figure 4 shows traversal of the latent space
of PCA for the different input representations.
We used a step of one standard deviation, which
was sufficient to illustrate variation without over-
whelming the visualisation. We see that using
points as input results in latent dimensions that
seem to capture the variations in the data well.
Dimension 0 encodes y translation, dimension
1 encodes x translation. There is no dimension
that is left out, as they all seem to capture some
form of shape variation. When using Procrustes
alignment we see that these effects are mitigated,
as the alignment already removes the translation
variances. The dimensions become less descriptive
of global structure and focus more on local varia-
tion. For pairwise distances this is quite similar.
The dimensions mostly capture variances that
translate points, but for polar coordinates we also
see that dimension 0 captures angular variation.

Table 3 summarizes the reconstruction per-
formance of both the Variational Autoencoder
(VAE) and Principal Component Analysis (PCA)
across the four feature representations consid-
ered. Across all representations, PCA consistently
achieves lower reconstruction error than the VAE.
The Procrustes representation produces extremely
small errors for both methods. However, these
values should not be directly compared to those
of the other representations, as Procrustes align-
ment removes absolute scale information. Con-
sequently, the reported RMSE reflects only resid-
ual shape differences after optimal superimposition,
which by construction are on a different numeri-
cal scale and therefore not directly interpretable
against the other feature sets.

6.2 Classification

Figure 5 shows classification performance across
clinical features and input representations, using
the AUC as a metric. The raw input types overall

Representation

Raw x,y coordinates 4.05 2.30
Procrustes™® 0.0071 0.0038
Pairwise Distances 14.81 1.95
Polar coordinates 4.92 2.34
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Table 3: Reconstruction errors (RMSE) for differ-
ent feature representations using VAE and PCA.
Lower values indicate better reconstruction fidelity.
*Procrustes errors are reported on a different scale,
since absolute size information is lost during align-
ment and unrecoverable in reconstruction.

achieved higher AUC scores than their PCA or
VAE counterparts. The PCA representations
generally maintained comparable performance.
The VAE representations however consistently
underperform across all feature sets, indicating
poor suitability of VAE latent encodings for this
downstream classification task.

Overall classification performance was not that
strong, except for JSN posterior, suggesting that
posterior narrowing is the most robustly captured
and discriminative feature when considering points
as input representation.

Raw and PCA based approaches exhibited rela-
tively low variance, whereas VAE based approaches
showed higher variances, for example for using dis-
tances to predict JSN Posterior. This variance
highlights a lack of stability in nonlinear latent
spaces when applied to a clinically relevant clas-
sification task.

6.3 Correlation

Figure 6 shows a correlation matrix between the
latent dimensions of the VAE based on Procrustes-
aligned points and clinical features. Values are gen-
erally close to zero, indicating weak or no associa-
tions between the learned latent space and clinical
outcomes. This result aligns with the underper-
formance of VAE encodings in classification tasks
(Figure 5), underscoring their limited interpretabil-
ity and clinical utility in the present context. While
only one matrix is shown here for illustration, the
correlation patterns observed for other input repre-
sentations and methods were qualitatively similar,

VAE RMSE PCA RMSE
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Figure 5: Classification performance (AUC, mean + standard deviation) across clinical features and

input representations.

Columns correspond to representations derived from raw points, Procrustes-

aligned points, pairwise distances, and angles, each in raw, PCA, or VAE-transformed space. Rows
represent clinical features including joint space narrowing (JSN, medial/posterior/superior), osteophytes
(acetabular /femoral, inferior/superior), and Kellgren—Lawrence grade.

with no consistent strong associations emerging.

7 Discussion

The results of this thesis provide insight into
how different geometric representations of bone
structures affect the performance of latent variable
models in osteoarthritis (OA) feature classifica-
tion. By systematically comparing raw point
coordinates, Procrustes-aligned points, polar co-
ordinates, and pairwise distances, and evaluating
these under both linear (principal component
analysis, PCA) and nonlinear (variational autoen-
coder, VAE) frameworks, we assessed not only the
predictive utility of each representation but also
the interpretability and consistency of the learned
models.
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The traversal analyses demonstrate that the
kinds of variation present in each representation
of the input geometry are directly reflected in the
latent space, regardless of whether the embedding
method is linear (PCA) or nonlinear (VAE). Each
representation emphasizes different geometric
properties of the joint, and these biases are carried
over into the resulting latent dimensions, shaping
their interpretability and informativeness.

Raw Cartesian coordinates offer the most direct
encoding of point locations but also embed large
amounts of nuisance variation. In both PCA and
VAE traversals, the dominant dimensions captured
simple global transformations such as translations,
rather than meaningful shape differences. This
is especially clear in PCA, where the first two
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features.

components aligned almost perfectly with vertical
and horizontal shifts. For the VAE, traversals
across raw point dimensions produced almost no
visible change, suggesting that the nonlinear model
either failed to exploit these raw signals or col-
lapsed them into a degenerate representation. This
interpretation is consistent with the reconstruction
errors in Table 3: although VAEs achieved a
moderate RMSE on raw coordinates, this fidelity
did not translate into meaningful latent variation,
highlighting the disconnect between reconstruction
accuracy and interpretability.

Procrustes-aligned points were designed to
remove translation and scaling variance prior
to modeling. As expected, this reduced global
transformation effects, with PCA components
shifting toward more local shape variations. In
the VAE, however, traversals of Procrustes aligned
points remained largely uninformative, producing
little to no variation across dimensions. Procrustes
alignment successfully removed these irrelevant
variations, but in doing so it also eliminated
residual global differences that might have carried
clinical signal, leaving even less variation for
the VAE to organize into interpretable latent
dimensions.

1

Pairwise distances provide a representation that
discards absolute coordinate information. With
this representation, the VAE latent space exhibited
more variation across dimensions. In the VAE,
distance inputs yielded at least some latent dimen-
sions that showed more granular shifts. However,
the overall weak performance suggests this is less
a strength of the distance encoding and more a
mismatch between the VAE architecture and the
geometric structure of the input, which limited the
model’s ability to organize variability into clinically
meaningful dimensions. Table 3 shows that VAEs
produced very high RMSE on distance matrices
(14.81), suggesting difficulty in reconstructing this
representation faithfully, whereas PCA achieved
relatively low error (1.95). This mismatch likely
explains the weak and unstable latent organization
in the VAE.

Polar coordinates provided the most distinctive
and interpretable latent traversals across both
PCA and VAE. By explicitly encoding angular
information relative to a central point, this rep-
resentation made rotational differences directly
accessible to the embedding methods. In the VAE,
several latent dimensions (notably dimensions 0,

5



3, and 4) produced more distinctive traversals,
showing angular variations. In PCA we can see
the same phenomenon, with dimension 0 strongly
tied to rotational effects. At the same time, these
clear rotational patterns should be interpreted
with caution. It is not obvious that such rotations
correspond to genuine anatomical variation in the
patient population. For instance, patients are
not systematically rotated around the femoral
head in reality. It may be that polar coordinates
simply reparameterize the same positional vari-
ability that appears as x/y shifts in the Cartesian
representation, making it easier for the models
to express this as rotation. Thus, while polar
coordinates yield more interpretable traversals, it
remains uncertain whether they provide a more
faithful reflection of clinically meaningful variation.

The visualisation results illustrate the kinds of
variation each representation makes accessible; the
next question is whether these differences translate
into meaningful improvements in classification.
One of the most important findings that follows
from the classification is that raw point coordi-
nates, which represent the direct spatial locations
of anatomical landmarks, often perform as well as
or better than all latent representations. While
this may partly be explained by the fact that
the raw representation retains the full geometric
information, it also suggests that the discrimi-
native signal for OA-related features is not less
accessible in the original landmark configurations
than in the transformed representations, meaning
that a linear classifier can already exploit much
of this information without additional invariance
constraints.

The strong baseline performance of raw coordi-
nates implies multiple things. First, it indicates
that the complexity introduced by non-linear trans-
formations, such as VAEs, may not always lead
to benefits for downstream tasks. Instead, the
introduction of such methods in an unsupervised
way can even decrease discriminative power if they
fail to preserve clinically relevant variability dur-
ing compression. For example, regularization can
smooth out or suppress small but clinically mean-
ingful variations if those variations do not con-
tribute much to reconstruction quality.

Second, it highlights that datasets with consis-
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tent landmarks may already be powerful enough
for diagnostic tasks without requiring alternative
ways to represent them. This is particularly
relevant in clinical settings where interpretability
and reproducibility are essential: if raw points
already make for competitive classification results,
research can focus on making the methods more
interpretable.

While raw points performed well as a baseline
overall, the Procrustes-aligned representations
provided subtle improvements in certain con-
texts. By removing translation, rotation, and
scale differences, Procrustes alignment ensures
that classification relies only on shape differences
rather than variability related to positioning or
orientation. For features such as joint space nar-
rowing (JSN superior) Procrustes-aligned points
offered slightly higher AUC scores compared to
unaligned raw points. This suggests that removing
irrelevant global transformations can bring minor
improvement at least for shape-specific tasks.

Having examined how different input represen-
tations influence classification, we now turn to
the embedding methods themselves. PCA-based
representations provided another perspective on
variability by expressing the data along orthogonal
axes of maximum variance. PCA vectors showed
more variation than their VAE counterparts
and were inherently ordered by their amount of
variation. In terms of classification performance,
PCA-based models performed comparable to raw
coordinates. This demonstrates PCA’s strength as
both a dimensionality-reduction and interpretabil-
ity tool. By emphasizing variance structure in
the data, PCA can highlight clinically meaningful
modes of variability that might otherwise be
obscured. However, PCA’s reliance on variance
rather than discriminative power means that
not all principal components necessarily align
with clinical outcomes.  While PCA captures
structure in the dataset, it does not explicitly
optimize for prediction. Thus, while its outputs
are interpretable in the sense that each dimension
seems to capture a certain kind of variance, they
may not always translate to the highest possible
classification performance. This is however not
a PCA-specific limitation but rather one for
unsupervised dimensionality reduction techniques



in general, including VAEs.

VAEs consistently performed worse than PCA
across all input representations.  Classification
results based on VAE encodings were close to
random (AUC values around 0.48-0.54), and
correlations between latent dimensions and clin-
ical features were negligible. This suggests that
the VAE failed to encode clinically meaningful
variability into the latent dimensions. Instead, the
learned encodings appeared diffused, capturing
global structural variability without mapping it
effectively to clinically relevant outcomes. There
were no clear dimensions that could be correlated
to single clinical features. VAEs are optimized to
reconstruct input data while maintaining a smooth
latent space, but this does not guarantee that
their latent dimensions align with disease features.
Indeed, the lack of interpretability observed in the
correlation analysis confirms that the VAE en-
codings were not clinically meaningful. Although
this may seem surprising, it is less unexpected
when considering that PCA can be interpreted
as a special case of a linear VAE. Unlike PCA,
however, VAEs balance reconstruction with latent
regularization rather than maximizing explained
variance, which in small datasets with subtle
anatomical differences can lead to diffused and
clinically uninformative encodings. It should also
be noted that this underperformance may depend
on the VAE configuration: factors such as model
depth, regularization strength, and the choice of
reconstruction loss can strongly affect the ability of
VAEs to capture subtle anatomical variability, and
alternative architectures may perform differently.

The results also reveal clear differences in the
difficulty of predicting specific clinical features.
Among the evaluated outcomes, joint space narrow-
ing (particularly the posterior and superior mea-
sures) consistently achieved the highest AUCs, with
values up to 0.75 in some representations. This
suggests that changes in joint space geometry are
reliably captured by landmark-based methods. By
contrast, osteophyte features yielded lower AUCs
(generally between 0.55 and 0.62), reflecting the
subtler and more localized nature of osteophyte
growth. Landmark-based representations may not
capture these features as effectively. The Kell-
gren—Lawrence (KL) grade also presented a chal-
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lenge, with all methods yielding relatively medium
performance. This aligns with prior literature,
which consistently reports the difficulty of auto-
mated KL grading due to its composite nature. The
KL score integrates multiple radiographic features
into a single grade.

Taken together, these findings also highlight
more general lessons about the role of invari-
ances and assumptions in representation learning.
Whether a representation emphasizes translation,
rotation, or angular structure is not a neutral
choice: it determines which forms of variability
dominate the latent space and, consequently, what
the model can learn. In our case, PCA primarily
surfaced global translations, echoing earlier work
showing that unsupervised methods often capture
high-variance but clinically uninteresting transfor-
mations. This is not necessarily “wrong,” but it
underscores that the usefulness of a representation
depends on the task: for supervised classification,
raw points already carry the necessary discrimina-
tive signal, whereas for unsupervised exploration,
invariance choices can decide whether meaning-
ful or trivial modes of variation are recovered.
Whether it actually helps to enforce invariances
really depends on how the data were preprocessed,
how much nuisance variation is still left, and what
specific clinical question has to be answered.

Finally, several methodical limitations of this
work should be acknowledged. First, the analy-
ses were performed on a relatively modest dataset
of 2,061 samples, all drawn from a single co-
hort (CHECK). Although we used five-fold cross-
validation to mitigate overfitting, the absence of
external validation means that the generalizability
of our findings to other populations, imaging pro-
tocols, or landmarking procedures remains uncer-
tain. Studies with other datasets would be neces-
sary to determine whether the trends observed here
are generalizable.

Second, the study depends entirely on landmarks
provided by a single automatic annotation tool
(BoneFinder). While this ensured anatomical con-
sistency across samples, it also introduces the risk
that systematic errors or biases in landmark detec-
tion propagate throughout all downstream analy-
ses. Small misplacements of landmarks can accu-
mulate when transformed into distance or angular
representations, potentially distorting the geome-



try in ways that affect both reconstruction quality
and latent interpretability. Future work could ben-
efit from comparing multiple annotation pipelines
or incorporating manual validation to quantify the
reliability of the input landmarks.

Third, we limited ourselves to relatively simple
latent variable models: PCA as a linear baseline
and a shallow VAE as a nonlinear counterpart.
This was a deliberate design choice to prioritize
interpretability and to isolate the effect of differ-
ent input representations. However, it also means
that we cannot rule out that more expressive mod-
els such as deeper VAEs or graph neural networks
(GNN) could better preserve subtle shape varia-
tions relevant to osteoarthritis. A GNN could work
better in this setting by representing landmarks as
nodes connected through anatomical or geometric
adjacency, allowing the model to capture localized
dependencies through message passing, rather than
flattening all coordinates into a global vector where
such local structure is easily lost.

Fourth, our evaluation metrics come with im-
portant notes. Reconstruction error (RMSE) pro-
vides a measure of reconstruction ability but does
not necessarily align with clinical relevance, since
small geometric discrepancies may be visually or
clinically inconsequential. Correlation analyses be-
tween latent dimensions and clinical scores were re-
stricted to linear or monotonic associations. This
means that more complex nonlinear relationships,
which could exist between anatomy and OA pro-
gression, may have been overlooked. The logistic
regression probes we used are intentionally simple,
offering a clean test of whether information is al-
ready linearly accessible in the latent space, but
they cannot see more complex relationships that
other classifiers can use.

Finally, there are challenges in interpreting latent
traversals. While they offer intuitive visualisations
of how latent dimensions correspond to variation,
there is no guarantee that the observed changes
are explained by anatomical changes. For example,
the rotations observed in the polar representation
may reflect how the model is parameterized rather
than actual rotational variation in patient anatomy.
Similarly, the absence of variation in VAE traver-
sals for point-based inputs may reflect model col-
lapse, entanglement of features, or insufficient clin-
ical signal in the representation, and these possibil-
ities cannot be disentangled with certainty in this
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work.

8 Conclusion

This thesis investigated how different geometric
representations, ranging from raw 2D coordinates
to engineered latent features, interact with latent
variable models (PCA, VAE) to shape the resulting
latent space and influence downstream OA classifi-
cation performance. Our experiments demonstrate
that, for the task of classifying radiographic OA
features from hip landmarks, the raw point coordi-
nates remain a strong baseline, often outperforming
or matching more complex latent representations.
This indicates that when landmark annotations are
consistently defined, much of the clinically relevant
signal is already embedded in the original configu-
rations, and linear classifiers can access it without
additional transformations.

Latent representations based on pairwise dis-
tances or polar coordinates did not yield con-
sistent improvements in supervised classification
tasks. While these representations offered more
interpretable latent traversals (distances capturing
relative geometry and polar coordinates empha-
sizing angular variation), they did not translate
into stronger discriminative power. This highlights
an important distinction: interpretability does not
guarantee discriminative power. Some variations
are clinically meaningful but not discriminative
(anatomical size), while others are neither (orienta-
tion). Polar rotations belong to the latter, reflect-
ing artifacts rather than anatomy.

The comparison of PCA and VAEs in this set-
ting showed that nonlinear embeddings, at least in
the form of a shallow VAE applied to 2D landmark
data, did not provide advantages over PCA. In this
unsupervised setting, the VAE’s compression and
KL regularization sometimes suppressed subtle but
clinically meaningful variation, leading to latent
spaces that were less discriminative than their lin-
ear counterparts. This suggests that the complex-
ity introduced by nonlinear generative models does
not necessarily improve classification, and in some
cases may even reduce performance if the models
fail to preserve clinically relevant features.

Taken together, these findings underscore both
the promise and the limits of geometric encodings
in osteoarthritis research. Point-based inputs re-



main competitive for supervised diagnostic tasks,
but relational encodings may be more suitable for
unsupervised tasks that aim to discover new shape
patterns, and generative models may add value
in data augmentation or scenarios where invari-
ance to positioning is essential. At the same time,
the study also has limitations: reliance on a sin-
gle dataset and landmarking tool, the use of rela-
tively shallow latent models, and the difficulty of
ensuring that latent traversals correspond to true
biological processes. These limitations primarily
constrain the generalizability of the findings rather
than invalidating the main conclusions. Future
work should address these limitations by validating
results across larger and more diverse datasets and
testing on different architectures (e.g., graph neu-
ral networks or point-cloud models). Furthermore,
advancing evaluation strategies beyond reconstruc-
tion error and simple correlations will be beneficial
to directly assess clinical utility.
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