<]
TUDelft

Delft University of Technology

A novel approach with safety metrics for real-time exploration of uncertain environments

Mannucci, T; van Kampen, EJ; de Visser, CC; Chu, QP

DOI
10.2514/6.2016-0637

Publication date
2016

Document Version
Accepted author manuscript

Published in
Proceedings of the AIAA guidance, navigation, and control conference

Citation (APA)

Mannucci, T., van Kampen, EJ., de Visser, CC., & Chu, QP. (2016). A novel approach with safety metrics
for real-time exploration of uncertain environments. In s.n. (Ed.), Proceedings of the AIAA guidance,
navigation, and control conference (pp. 1-16). American Institute of Aeronautics and Astronautics Inc.
(AIAA). https://doi.org/10.2514/6.2016-0637

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.2514/6.2016-0637
https://doi.org/10.2514/6.2016-0637

A novel approach with safety metrics for real-time
exploration of uncertain environments

T. Mannucci*, E. van Kampen ', C. C. de Visser *fand Q. P. Chu®
TU Delft, Delft, Zuid Holland, the Netherlands

Various research has been done on the application of Reinforcement Learning for adap-
tive controllers for aerospace, due to its core simplicity of design and its model-free ca-
pabilities resulting in a great flexibility of application. During real-life exploration of the
environment, such a controller will employ various algorithms to accelerate the collection
of significant data and therefore the convergence of the value function. If the environment
presents any form of danger for the agent, these algorithms need to cope with the additional
requirement of avoiding actions leading to such dangers, even when a definite model of the
agent in the environment is not available. In this paper, computing a safety-weighted graph
based on a tiling of the state space, and with the introduction of two different metrics for
action selection is shown as a promising method for avoiding dangers during exploration.
As proof of concept, the method is applied on two simulated tasks: a high-level navigation
task for an autonomous UAV, and a classical, low-level task of controlling the elevator
deflection of an aircraft.

Nomenclature
RL Reinforcement Learning
MDP Markov Decision Process
S state space
A action set
D dynamic law
F fatal function
w warning function
g dynamical graph
OM Operative Metric
PM Proximity Metric

I. Introduction

Reinforcement learning! (RL) is a popular control scheme in different branches of control. The core
concept of RL stems from animal adaptation to the environment. Depending on the situation provided by
the environment, the animal must adopt a behavior that allows to perform a task with varying degree of
success. If the task is correctly performed (e.g. the animal manages to find and eat food) then a positive
stimulus further roots the behavior for the animal. RL replicates this approach: an agent evaluates actions
under different states of the environment in order to collect reward, in a process called exploration. The agent
will then use the reward information to synthesize a policy with the goal of performing best at a certain task:
this is the exploitation phase. Inadequate or insufficient exploration will result in unsatisfactory exploitation,

*PhD student, Aerospace Faculty, Control & Operations Department

T Assistant professor, Aerospace Faculty, Control & Operations Department
t Assistant professor, Aerospace Faculty, Control & Operations Department
8 Associate professor, Aerospace Faculty, Control & Operations Department

1 of 16

American Institute of Aeronautics and Astronautics

but unnecessary exploration should be avoided. During learning, a conflict arises between exploring more,
training the agent further, or start exploiting the current knowledge to increase performance in the task.

In this paper another conflict will be considered, the one between performance and safety. In most RL
applications the notion of safety is usually overlooked: the behavior of the agent is driven by the more
pressing concern of exploration-exploitation, with safety being either a non-issue or embedded inside the
concept of reward?.3 Examples where these are not realistic approaches are abundant in real-life applications
and even more so in aerospace applications. For example, an airborne RL controller is constrained by the
aircraft’s flight envelope. Piloting a wheeled robot (e.g a rover) would require careful avoidance of high risk
environments such as cliffs. In all the previous examples, if the RL controller was left in complete autonomy
in selecting actions, at most driven by performance concerns, exploration would be vulnerable to incurring
in dangerous and possibly fatal situations. On the other hand, an overly conservative, “fearful” exploration
could result in an equally unacceptable controller that doesn’t learn enough to perform its task even when
a reasonably safe policy is available.

The tradeoff between performance and safety was addressed in previous work. Hans et al.* (2008) propose
an algorithm for plant control that avoids fatal transitions; however the algorithm relies on an a-priori known
safety function (acting as a go/no-go decision maker over possible actions) and a fixed backup policy valid
in all workspace. Garcia and Fernandez® (2011) have a similar approach; introducing a variable amount of
perturbation in given safe but inefficient baseline controller, discovery of new trajectory for task completion
is possible (taking however a certain degree of risk). The two share the need of a guaranteed safe controller
or backup policy in order to prevent catastrophic exploration when facing critical decisions. Moldovan and
Abbeel® (2012) define safety in terms of ergodicity of the exploration, and introduce an algorithm that still
relies on believes of the system but not on a predefined baseline policy or safe controller. Safety of the
exploration is again guaranteed within a certain degree of reliability. Gillula et al.” (2010) and Gillula and
Tomlin® (2011), while not dedicated to RL exploration, show very promising applications of reachability
analysis to the problem of planning safe control.

It was showed in previous work? how the problem of safety could be addressed by looking, in near time,
to possible backups. When following a backup, the controller would be able, in near-time, to bring the system
in a close neighborhood of a state that was previously visited. The controller would heuristically search for
backups at each time-steps, and refrain from taking actions for which no backups could be found. With
respect to the previous methods, this approach does not resort to an a-priori known safe policy, nor does rely
on any hypothesis on the system at hand. Instead, the benefit of such a scheme is to automatically induce a
cautious behavior in the agent. Extreme commands, for which the agent drifts away from the already known
situations are discarded in favor of more careful ones.

In this paper, this approach is further investigated under a different methodology. First, the state
space is turned into a discrete tiling. Then a weighted graph is generated from the uncertain, possibly non
linear dynamics, with the vertices representing elements of the tiling, and the weights representing a current
estimate of safety for the states of the vertex. The computation of a backup as an heuristic search is then
replaced by minimization of a metric over the available action set, leading to the highest level of safety in
near-time. This new methodology results in lighter computational load with ad-hoc scalable complexity.

The rest of the paper is structured as follows. In section II, the problem of safe exploration, and the
hypothesis upon which this work relies will be discussed. In section III, the mathematical framework upon
which the method relies will be introduced in the form of a graph generating procedure, and of two safety
metrics. In section IV the algorithm itself will be thoroughly discussed. In section V two simulated applica-
tions of the method will be presented: a quadrotor navigation task, and an elevator control task. Finally in
section VI the conclusions will be drawn.

The following notation will be adopted. Bold characters and brackets will be used to indicate vector
quantities. Square brackets will indicate intervals, while curly brackets will indicate sets. Infimum and
supremum of interval ¢ will be indicated respectively as i and i. Symbol - will represent scalar product, x
will represent set combination, and = will represent elementwise product.

II. Fundamentals of Reinforcement Learning in dangerous environments

A. Reinforcement learning

This section will present a classic framework of RL, known as a Markov Decision Process (MDP). It can be
identified by a tuple of five elements: state, action, transition, reward and discount. Let S be the set of all

2 of 16

American Institute of Aeronautics and Astronautics

possible states that the system can assume. In case of tasks where multiple states are considered, e.g. the
agent internal state and the environment external state, S would consist of the combination of the two. In
most real-life tasks s € S is a state vector whose components represent various physical quantities. In the
present work , § will be an hybrid space with elements s in the form

S:($1,l’2,"'7xm, 217"'7'271)' (1)
with the generic continuous coordinate z; € [z;, Z;] € R and with the generic discrete coordinate
zj € {zj1, -+, 25} < R. This formulation can represent physical systems with logical or discrete attributes.

In the event that S is purely continuous, it will be informally referred to as natural.

Let A(s,t) be the set of available actions to the agent and controller. For each couple of state and
action, transitions between states are governed by a dynamic law. The formulation for such a law drastically
changes with the model. For purely discrete systems, D : § x A — S. For purely continuous systems,
D:S x A— R For hybrid systems such as hybrid automatas, the formulation can get more complex.'?
In this paper it will be assumed that D can be written as

i'rl(t) =D (l.l(t)v Tt xm(t)a Zl(t)a ER) Zn(t)a a)
D Sbm(t) =Dy, (xl(t)a I xm(t)a Zl(t)v) Zn(t)a a) (2)
z1(t + dt) = Dppg1 (x1(8), -+, 2w (t), 21(t), -+, zn(t), a)
Zn(t +dt) = Dpin, (1(t), -, 2m(t), 21(2), -+, 2a(t), a).

Function D of Eq. (2) depends only on current state and action: this is the Markov property. Additionally,
D is assumed not to be explicitly dependent on time. The fourth element of the tuple is a reward function
R :S x A — R, which can be stochastic. After each action, the agent receives the reward r yielded by
the function, which represents an immediate, short-term benefit. The goal of the agent is to maximize the
long-term benefit in the form of the cumulative expected reward:

J(s,m)=F (2 ’ykm> (3)
k=0

where v < 1 is a discount factor. Obtaining the optimal policy

7*(s) : m* = argmax J(s',), Vs'€S (4)

is in general a difficult task. D can be unknown or only approximately known. Reward function R can
be hidden or stochastic; it can also be poorly informative, e.g. only yielding a reward at the end of the task,
and none during the task itself. Also, the state space S can be vast even for relatively simple problems: most
algorithms have proof of finding 7* only when § is finite. The more difficult the task, the more exploration
will be needed to obtain a satisfactory policy.

B. Safe exploration

If the task presents any form of danger, a second conflict must be resolved between exploration and safety.
In order to do so, it is useful to extend the previous framework with additional elements. A fatal function
F : 8 — {0,1} indicates whether a state is either safe or fatal. A fatal state can be seen as a state for which
the agent encounters an unacceptable condition; for example if the agent is harmed, e.g. a crash or a failure,
or if it cannot proceed further in its task, e.g. running out of fuel or battery, or even if the agent damages
its surroundings, e.g. hurting a human user. This purposely broad definition includes all those events that,
while not directly part of the agent’s task, must be avoided regardless of future cumulative reward, or else
the task is considered to fail. A warning of danger denominated risk perception® is assumed in the form of
an unknown function W : § — {0, 1} that indicates if danger is perceived within a known neighborhood of
the current state s. This warning function will be used by the agent to individuate fatal states and avoid
them. This definition is sufficiently generic to include information derived from sensors, discrete warnings
and expert input alike.

3 of 16

American Institute of Aeronautics and Astronautics

C. Bounding dynamic law

In the event of D being unknown'! or approximated,'? various algorithms exist to to discover an appropriate
policy. Theoretically speaking, the agent could perform trial-and-error investigations, accumulating reward
and at the same time updating its policy in the total absence of a model, or by observing transitions
to improve its approximation of D. The first class of model-free methods is not ideal for handling safe
exploration, since it is inherently based on reward, to which fatal states are not associated. The second class
of model-based methods is more apt for such a task, since it allows to predict future states of the system.
However, unless a perfect model is available, the consequent error in the prediction means that prevention of
the fatal states depends on the precision of the approximation. Consider those cases where the uncertainty
can be bounded. Then, predictions on future states of the system can be handled by such tools as interval
analysis'? to yield a bounding law

Z1(t) € Dy (x1(t), -+ 5 xm(t), 21(t), -+, zn(t), a)
p.) im®) Eﬁmfxl(t)’ (), (), e za(D), a) 5
z21(t + dt) € Dy (x1(), -+, zm(t), 21(8), -+, zn(t), a)
Zn(t 4+ dt) € Dy (21(), -+, Tm(t), z1(8), -+, 2n(1), a).

The difference between the actual D and D is in that while the first predicts s exactly, the second predicts
a set {s} such that s € {s}. An immediate consequence of such a modelization is that, while it allows to
take into account the uncertainty inherent to the system, predicted trajectories tend to bloat in time as
uncertainties accumulate.

D. Lead-to-fatal states

Freichard and Asama'4 introduced the notion of inevitable collision states for robots in obstacle avoidance
tasks. These are all those combinations of speed and positions for which a collision with an obstacle is
inevitable. Applying this same concept to the fatal states, viewing them as “obstacles” inside S, will yield
the lead-to-fatal (LTF) states. A LTF state is a condition of the agent from which all possible future
trajectories intersect the fatal set s : F(s) = 1. If an agent assumes a LTF state, it will have a fatal
occurrence sometimes in the future. Avoiding LTF states is just as important as avoiding fatal states, but
while the latter can be perceived by means of risk-perception, the former cannot. This problem is aggravated
by the bloating of predicted trajectories generated by the uncertain law D. In previous work,® a possible
approach to solving this problem was found in constraining the evolution of the system to a neighborhood
of previously visited and reliable conditions. This approach will be followed in this work as well by selecting
actions that optimize a safety metric.

E. Assumptions

In the remainder of this paper the following assumptions will be made:
1. S will be considered to be as indicated by Eq. (1);
2. A will be considered to be state and time independent;
3. Disa time-independent bounding law of D ;

4. F and W will be considered to be time independent but otherwise unknown.

III. Tiling approach and metrics

This section is divided in two parts. In the first part, it will show a method to obtain a directed graph
G whose vertices will represent the states of the system, and whose edges will represent transitions between

4 of 16

American Institute of Aeronautics and Astronautics

states through actions. The procedure to generate the graph follows three steps. First, the state space is
partitioned into tilings, each representing a vertex. Then, the action set A is converted into a representative
subset to reduce the complexity of the graph. Third, the bounding law D is applied to connect the state
vertices through action edges. In the second part of the section, two metrics will be discussed. Each metric
assigns a value to each action of the agent depending on the predicted trajectory, given the current knowledge
of the environment and the previous history of the exploration. This value will indicate which action is the
safest.

A. Tiling and graph generation

1. Tiling

As a first step, the state space S is partitioned into a tiling by mean of tile coding.'® Excluding tile borders,
each element of S belongs to one tile. Different tiles do not need to be identical or to follow a definite
pattern: in various applications, the size and shape of the tiles vary locally and even adaptively.!® However,
a tiling with identical tiles is considered in this work for reasons that will become clearer in the following.

Such a tiling can be seen as the result of evenly partitioning the continuous coordinates of & into intervals
of fixed width A;:

[z, Tl = [z, 2+ A U [z, + A 2 4248 U U [T - A T (6)

so that each tile represents a unique combination of continuous intervals and discrete components:

[z + (= 1) A1, oy +70- Ag] XX [z, + (T — 1) - Ay Zyy + T A] X 210, X 00 X 20, (7)

where vector 7 = (71, -+, Tim+n) is the index of the tile, indicating its position inside the whole tiling.
Figure 1 illustrates an example of such a tiling. Each tile will constitute a vertex in the final graph.

S

211 212 213

NNEANEANEANEAN
NNEANEANEANEAN
NNEANEANEANEAN

v
DNEANEANEANEAN
NNEANEANEA NN

MNEANEANEAN

2 AN T1

Figure 1: A simple example of an even tiling of an hybrid system with 3 continuous components z1, xo and
x3, and with one discrete component z;. The tile with index 7 = (4, 5, 1, 2) is shaded in red. All tiles have
the same size due to each component having been evenly divided.

2. Actions

Actions of the agent determine transitions between states of the system, and are thus represented in the
graph as edges between vertices. In theory, the agent can perform any of the actions in set .A. However, the

5 of 16

American Institute of Aeronautics and Astronautics

more actions available to the agent, the more the number of outbound edges per vertex and consequently
the more complex the graph. In the limit, if A is not finite, an infinite number of edges should be generated.
Therefore, as a second step, a representative subset Ay, is extracted from the action set A. Limiting the
choice of A,y to a reasonable amount is key to speeding up the graph generation.

3. Graph generation

Having the vertices given by the tiling, and the edges given by subset Ay,p, the bounding law D of Eq. (5)
is invoked to generate the graph. One convenient form for D is the interval form

ﬁ1=[£z, 51]7121777’)1 (8)

Interval notation for D comes natural when considering systems whose uncertainty derives from param-
eters which are intervals. It is always possible to switch to this notation by considering the highest and the
lowest value among the set of the possible outputs D;. It will be thus assumed that such a formulation is
available. As a further step, the dynamics will be discretized in time. The time-step At should be chosen
with the same order of magnitude of the fastest dynamics. However, the shorter the time-step, the more the
tiling must be refined: the reason for this will be explained later in this section. After this last iteration, the
discrete dynamics will be in the following form:

z1(t+ At) e Dy (x1(t), -+, 2m(t), 21(8), -+, 2za(t), a(t))
ey Lo (t + At) € Dy (z1(2), -+ 5 (1), 21(1), -+, 2a(t), a(t)) (9)
21 (t+ At) € Dyt (m1(t), -+, Tm(t), 21(L), -+, za(t), a(t))
kzn(t + At) € f)m+n (56‘1<t), R xm(t)v Zl(t)? T Zn(t)v a(t))

The procedure for generating the graph G is now straightforward. Each vertex will represent a tile. Given
a tile and an action a € Agyup, Eq. (9) is executed for all states in the tile to yield the set of possible next
states. A directed edge, labeled with the current action, is drawn from the “starting” tile/vertex to all
tiles/vertices with a non-empty intersection with this set. Note that the result is technically a multi-graph,
since each edge is possibly connected to multiple vertices. If any state of the generated set is not in S, then
the action is forfeited. No edge labeled with this action is generated. The need for a trade-off in terms of
time-step and coarsity of the tiling can be now explained. If in a time-step the system transitions from a state
belonging to a tile to a different state in a different tile, this transition is shared, in the graph formulation,
by all states belonging to the starting tile. If the tiles are too large when compared to the time-step, sharing
this transition will result in an artificially accelerated representation of the dynamics, hence the need for a
trade-off when selecting the time-step value.

The interval formulation of the dynamics and the fixed-grid tiling reduce the computational burden of the
graph generation. For example, if state x; increases of an amount comprised between Az, and Az;, in terms
of tiling representation that means increasing component 7; of the index of an amount comprised between
Az, /A;, rounded down, and Ax;/A;, rounded up. This computational advantages make for a quick and
robust graph generation. A natural drawback of the using partitions with fixed widths is that the coarsity
of the tiling cannot be increased or decreased locally. While this is inefficient, it should be noted that, in
the absence of any form of tiling-refinement method,'” selecting a non-uniform tiling is a difficult problem
that requires prior knowledge of the case in exam.

B. Metrics

In this section we will introduce two metrics: an operative metric (OM) that will embed information deriving
from the warning function, and a proximity metric (PM) that will account for the degree of exploration of
the system in near-time. Both metrics can be applied to either one vertex or to a collection C' of vertexes,
and the output will depend on the current state of the exploration.

6 of 16

American Institute of Aeronautics and Astronautics

1. Operative metric

F and W are functions defined over the original S, and hidden to the agent. The goal of the OM is to embed
this information into an approximation of the function F that can be readily relied upon by the agent at
each time step. Define four real valued quantities gesp > Gsafe » Qunc » qfar. At the moment of graph
generation, all vertices are initialized with a value equal to gy representing the notion that S is unknown at
the start. When W(s) is invoked, if no risk is perceived, all tiles that entirely fall within the perception range
are labeled as safe. The values of vertices corresponding to the safe tiles is replaced by gsqfc. Tiles whose
elements are only partially in range or not in range are unaltered. Finally, the value of current vertex/tile
will be updated to gesp. Conversely, in the event that risk is perceived, at least one of the tiles currently in
range contains a fatal state. Therefore, all tiles that fall even partially in range of the risk perception, and
that are still unexplored (i.e. whose vertices have value gun,.) are considered potentially fatal: their value
is updated to gfq:. For a collection of vertices C' the value will be the average ¢ of all vertices v in the
collection. Value replacement is applied at every time-step of the exploration to increasingly improve the
agent’s approximation of F. It should be noted that individuating which tiles fall in range of the perception
is simplified by the use of an even tiling. An example of the application of the OM is shown in figure 2.

Qunc Gsafe

Gexp

Figure 2: An example of the operative metric. Explored tiles (blue) are assigned the highest value gcy,. Safe
tiles (blank) are assigned a reduced value gsqf. Which is significantly higher than the value qyn. assigned to
unexplored tiles (grey). Finally, those states that have been perceived as possibly fatal (red) are assigned
the lowest value qfq:.

2. Proximity metric

As the name suggests, the PM evaluates vertices with respect to their closeness to previously visited states.
In order to account for closeness, a definition of distance between two vertices v and v’ is introduced as

dist(v, v') = |p* (r— 7)|, (10)

where 7 is the index of v, 7’ is the index of v/, and p € R™*" is a vector of positive weights. Essentially, the
distance between tiles is computed as the rescaled norm of the difference in position inside the tiling. When
considering a system with only continuous components, this distance is the tiling equivalent of computing
the Eulerian distance between two states in a rescaled state space. As for the discrete components of the
state, the assumption is made here that the discrete values can be ordered in such a way that the difference
in indexing is still indicative of a progressively changing condition. The term p acts as a rescaling vector for
state space S: depending on the weights assigned, the same difference in index of two components will have
a different contribution to the metric. This can be used to include previous knowledge into the definition of
distance. For example, more relevant components of the state could be assigned a higher weight than less
influential or more easily controllable components.

7 of 16

American Institute of Aeronautics and Astronautics

Now that a distance is introduced, the metric can be properly discussed. At each time-step, the controller
observes its current state and adds it to a list of previously visited states Syst. Given a vertex v and a list
Siist, the following metric can be applied:

prox(v, Sist) = — min dist(v, v' |8’ € V') (11)
8'EShist
i.e. the proximity of a tile is its distance to the nearest tile containing an explored state, changed in sign.
The higher the proximity, the lesser the current state differs from a state already visited and thus known;
conversely, the lower the proximity, the more unknown the state. The following extension is applied when
considering a collection of states C. First, the center ¢ of the collection is found. Then the proximity of C'
is equal to the proximity of ¢ plus an additional uncertainty term:

prox(C, Sist) = prox(c, Sist) — nmax dist(c,v") (12)
v'e

with a positive weighting term 1 < 1. This additional term is proportional to the distance of ¢ from
the furthest tile of the collection. Therefore, applying this metric not only accounts for the mean distance
between a tile and a collection, but also for the dispersion in the collection. A. Figure 3 shows an example
of the application of the metric. The state space has two continuous components x; and xo. The slight grey
square represent the collection C', with its center ¢. The blue tiles represent those tiles containing a visited
state s € Sjis;. With a weight vector p = (2, 1), tile v/, is the one with the highest proximity of —4+/2, higher
than that of v” which is equal to —8. Therefore v/, is the “nearest” tile under this metric even though v”
is nearer inside the unweighted tiling. Finally, a term proportional to the distance between ¢ and vy, the
furthest tile of the collection, must be added to compute the proximity of the whole collection.

Figure 3: An example of proximity computation for collection C. The black tile ¢ is the center of the
collection. The blue tiles are tiles containing a visited state. Among these, with the assigned weight vector,
vl is the nearest tile to ¢. A term proportional to the distance between ¢ and vy must then be added to
compute the proximity.

IV. Algorithm description

This section will illustrate the algorithm for safe exploration in detail. Initially, ¢ = tg, s = s¢. It will
be assumed that at the start of the exploration no risk is perceived, i.e. W(sg) = 0. The goal of the agent
is to select an action among the available set Ay, which will keep exploration safe. Actions are considered
in the form of commands a = {a(t), a(t + At), --- , a(t + k- At)}. The graph G can be invoked to predict
the final state of the system after the application of a command. This final state can be evaluated with a
safety metric: the command that optimizes the metric is the safest. This approach can then be seen as a
variant of Model Predictive Control.'® However, given the formulation of the metrics and the uncertainties
in the available predictions, it is not advisable to look for a solution to the optimization problem in close
form. Instead, the optimal command will be selected among a restricted selection of candidates.

8 of 16

American Institute of Aeronautics and Astronautics

Although any set of candidate commands can be evaluated under the proposed metrics, the following
restrictions were imposed in this work. A first restriction comes from noticing that there is a limit on how
many steps ahead can be efficiently predicted by G. Each edge of the graph can connect the starting vertex
to more than one arrival vertex, due to the the inherent uncertainties in D. Asa result, predictions of arrival
tiles tend to bloat, and are less and less useful with the increase of the time steps. So, candidate commands
will have a duration in time equal or shorter than a predefined number of steps k4. This limits the set
to a finite number of candidates. Depending on the application in exam and the duration of a time-step, a
lower limit k,,;, on the length of the command might also be imposed. This is due to the fact that some
dynamics might be slower than others. Then a minimum amount of iterations are needed to observe the
effect of the command in said dynamics. A further selection will be made by considering candidates in the
form:

a:at)=alt+At)=---=at+k-At)=a (13)

i.e. constant commands. The reason for this choice is the following. When considering commands lasting
considerably in time, the optimal command could be expected to present significant variations in the actions
involved. However, when considering commands that are severely limited in time (such as those considered
in this paper), it is more meaningful to consider constant commands that truly represent the effect of the
atomic actions, rather than commands with mixed actions whose effects might be conflicting. This selection
reduces the number of metric evaluations per time-step to a fixed amount, i.e. the cardinality of Ag,;, times
the number of allowed time-steps ko — Emin-

Figure 4 summarizes the algorithm. The composing element of the algorithm are the graph G, a predefined
set of action Ay, generating a set of commands {a}, a warning function W(s) and a safety metric. The
system starts in state sp, which in the graph G corresponds to current vertex vg. G can now predict the
trajectory of the system under command a = {a(t), a(t + At), --- , a(t + k- At)}. First, follow the outbound
edge of vy corresponding to action a(t) to individuate the one-step ahead collection of vertices. From these,
follow the outbound edges corresponding to action a(t + At), to individuate the two-step ahead collection.
By proceeding iteratively, individuate the final collection of states C(a). The collection is evaluated by the
metric to give the value of the command. After repeating this process for all candidate commands, the
optimal command a* is selected, and corresponding action a*(t) is performed in the system. The new state
s1 is observed. Finally, the metric history of exploration is updated with the previous state sg, and the
approximation of F is updated with the current warning signal w. The process then repeats.

When individuating collections C, it can happen at any iteration that the outbound edge indicated by the
current command is not present. This is because some state and action pairs can reach states outside of the
state space S, and therefore outside of the graph. This edges are excluded from G during graph generation.
If a command indicates to perform an action for which no edge is available, then it is removed from the
candidates for the current optimization. Also, it is important for the validity of the method to verify that
arrival vertices C' are as safe as possible. This is intrinsically included in the use of the operational metric
due to the very low value of fatal states. If the chosen metric does not intrinsically include such a penalty,
as with the proximity metric, a separate check must be performed, and if any command results in safety to
be violated, it should be either discarded or heavily penalized.

V. Applications

This section will present two applications of the algorithm: a navigation task for a quadrotor and a
control task for an aircraft with uncertain elevator dynamics. These particular tasks have been selected for
two reasons. First, they represent two separated aspects of interest in current research on learning controllers,
i.e. autonomous flight and in-flight fault management. Second, the tasks involve very different dynamics
with different control challenges. For each task, a controller with the OM, a controller with the PM, and an
exploratory controller selecting random actions are applied and compared.

A. Quadrotor navigation task

This simulated task consists in controlling a quadrotor inside a room, while avoiding hitting the walls. The
quadrotor is equipped with sensors that allow to identify the walls at a given distance. The dynamics D of
the quadrotor are schematically represented by the hybrid system of Eq. (14):

9 of 16

American Institute of Aeronautics and Astronautics

> System

Metric e g la} Asub

¥ ¥

Figure 4: The algorithm for action selection. Given current state s, the corresponding tile in graph G is
individuated. Then, candidate commands a(t) are evaluated to yield vertices collections C. Each collection is
evaluated under the current metric, and then optimal action a* is performed. A new state is then generated
from the system and observed. In addition, the metric is updated with the current status of exploration,
provided by the state and by the warning function W.

+@/}C if clock +1if forw A 0 # +1
i=Vcos(¥); g=Vsin(¥); V=0V ¢ ={ 4 ifcclock ;A0=12 Tifbacknf+—1 (14)
0 else 0 else

where = and y indicate the position of the quadrotor, V' and % respectively speed and heading, and 6
the pitch configuration: positive, negative, or neutral pitch. The set of actions A comprises forw and back
to increase and decrease the pitch; clock to steer clockwise and c_clock to steer counter-clockwise; and
the neutral action neut. Eq. (14) was devised to account for the core dynamics of a generic quadrotor. To
fit the model to a specific platform, the values of acceleration V, and turning rate d}c can be specified to
represent the actual performance. In this application, however, it will be assumed that the agent is unaware
of the exact capabilities of the quadrotor, having at its disposal only an uncertain modelA’lA) obtained by
replacing the true values V, and ¢, with their interval equivalent V, = [0.24, 0.6]= and Ve = [7/4, /3]
s~1. Substituting this intervals in Eq. (14) yields the uncertain dynamic law D used by the controller.

It will now be shown how to generate the graph for the application of the algorithm. In this case, the
state space S is not finite. A restriction of S to conform it to Eq. (1) will be then performed. States x and
y are physically bounded by the dimension of the square room: x,y € [—5, 5] m. The angle) is bounded
between —m and 7, and 0 is already restricted in the formulation of the dynamics. Therefore, only the speed
V needs to be artificially restricted. In the present work, V' e [-1.2, 1.2] 2 is selected. This value is high
enough to provide an efficient exploration, but not too challenging for the controller.

Then, all continuous coordinates of the restricted S are evenly divided into 20 intervals; discrete config-
uration @ is left unaltered. This results in a finite tiling of 4.8 -10° tiles. The action set A is already atomic,

80 Asup = A. The bounding law D is obtained by replacing V. with V, and zf;c with z/;c Then actions forw,
back, clock, c_clock and neut are evaluated for each tile with a time-step At of 0.5s, generating the graph.
This choice of At is motivated by the need of a sufficiently long time-step to correctly represent the pitch
configuration transition, but nonetheless small enough to allow for a faithful incremental form as in Eq. (9).
Then, eligible commands are chosen as constant commands with duration comprised between k,,;, = 3 and
kmaz = 5 time steps. A function W simulates the presence of on-board sensors: the quadrotor receives a
warning signal when within 2.5m of any wall. Hitting a wall or abandoning the restricted state space S
results in a failure. A succesful task consists in reaching 300 iterations without a failure. Each episode is
initialized in a random condition:

0 =05 yo =05 Ve [04, 0.6]; e[, 7]; Vee Ve thoe (15)

Either the OM, the PM or a random selector are implemented during execution to complete the algorithm.

10 of 16

American Institute of Aeronautics and Astronautics

1. Operative metric for quadrotor control

The values q are initialized as gezp = 1, @safe = 0, qunc = —100, qfqr = —106. A typical behaviour resulting
from the application of the metric is shown in figure 5a. In the first instants of flight, the quadrotor is far
from the walls. Initially, the controller does not alter the pitch configuration, but instead select actions neut,
clock and c_clock repeatedly to move around the room at constant speed. After a few iterations, when
the central region of the room have been explored, actions forw and back are selected as well: it can be
noted in the figure that the agent occasionally inverts the direction of flight. When in proximity of a wall,
the UAV adopts two strategies to avoid collision. The most common strategy is steering with a costant rate
until the collision is avoided. A second strategy, highlighted in figure 5b, consists in changing pitch as to
invert direction of flight. This less frequent option is adopted by the controller only in such cases where
steering is not a reliable option, e.g. when the quadrotor is headed towards a corner. Simulations show how
applying the OM results in a safe flight that avoids collisions and at the same time explores the environment
accordingly.

Drone control with Operative Metric Drone control with Operative Metric
5} Trajectory | 1= Trajectory
@® Start position @® Start position
® End position ® End position
at g at / /]
3 R 3 R
2 g 2 g
> >
Q Q
g0 1 g o J
S S
8 -1t 1 8 -1t 1
o o
2] 2]
_3] _3]
4 | 4 |
5] 5]
i i
-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
Coordinate x [m] Coordinate x [m]
(a) Safe trajectory at almost constant speed. (b) The controller changes pitch configuration (in green)

Figure 5: Two sample simulations with the operative metric. The black dot represents the starting position
of the quadrotor in the room (delimited by black lines). The blue line represent the trajectory. The red dot
represent the final position.

2. Prozimity metric for quadrotor control

The gain vector p is selected as:

p = (pz py pvpy po) = (5,5, 2, 1, 1) (16)

A lower gain is assigned to those components of the state that are immediately accessible from the
controller, i.e. 1 and 6. Increasingly higher gains are assigned to V, y and z, aiming to a more cautious
controller in those components that are harder to control. The proportional weight 7 of Eq. (12) is assigned as
0.3. The results showed two different behavior depending on the initial evolution of the system. The steering
performance of the quadrotor (indicated by the term .) is high enough for it to perform a continuous and
steady turn during the whole task (figure 6a). If the controller performs such a turn in the first instants of
motion, he will “learn” how to perform a constant turn, and will keep turning indefinitely. This manoeuver
will result in a safe flight, but at the cost of halting the exploration. This is the result of the driving concept
behind the metric: the controller replicates already encountered conditions. A different behavior stemming
from the same concept is shown in figure 6b. In the event that a turn is not performed, the controller will
instead make the quadrotor pitch backward in order to reduce the flight speed. When the flight speed is
sufficiently low in modulus, the controller will select repeteadly the neutral action neut until the quadrotor
approaches collision with a wall. The controller will again pitch backward. At this point, two outcomes

11 of 16

American Institute of Aeronautics and Astronautics

are possible: if the speed of the quadrotor is sufficiently high, the controller will not be able to prevent a
collision. Otherwise, the controller will manage to invert the direction of flight, and as soon as the quadrotor
will start flying in reverse, the controller will resume a neutral pitch and let the system drift with neut. As
a result, the controller will have “learned” a manoeuver consisting in pitching back and fourth, and from
this point onward, will consistently rely on it for the duration of the task.

Drone control with Proximity Metric Drone control with Proximity Metric
T T T T T T T T T T T

Trajectory Trajectory

T T T
50 5
® Start position ® Start position
® End position ® End position

Coordinate y [m]
o -
T T

Coordinate y [m]
o -
T T

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
Coordinate x [m] Coordinate x [m]

(a) Safe trajectory with constant turn manoeuver. (b) Safe trajectory with pitching manoeuver.

Figure 6: Two typical behaviors with proximity metric. The black dot represents the starting position of
the quadrotor in the room (delimited by black lines). The blue line represent the trajectory. The red dot
represent the final position.

As a final comparison, the mean duration of task observed by random action is of 19.3 iterations, equiv-
alent to 9.65 seconds. With the OM, the controller achieved completion of the task at every run. With
the PM, the controller managed completion of the task on 44% of the runs, with minimum duration of 34
iterations and mean duration of 161.

B. Elevator control task

The second task presented in this paper consists in controlling the deflection of the elevator of an aircraft
with nominal longitudinal dynamics:

h h 0 300 —300 0 0
O l=al ? |+Bosa-| 0 0 0 T T (17)
« o 0 o0 —0.64 0.938 Bg"e
g q 0 0 —1.568 —0.879 B

assuming constant speed V' = 300 ft/s. Terms h, 6, a, ¢ and J. are deviations from the initial conditions of
altitude, pitch angle, angle of attack, pitch rate and elevator deflection. Bf = —1.4-1072 and Bge = —0.1137
are the control coefficients. A change from nominal conditions is introduced by replacing the control matrix B
with B € B = [1.05- B, 0.95- B]. This can represent either a small malfunction or a unexpected deterioration
of the control surface. The goal of the controller is to prevent the aircraft to leave a flight altitude range
of [—80, 80]ft from the initial level flight, while at the same time avoiding a stall by maintaining « in the
range [—15°, 12°].

Consider now how h and « can be controlled via elevator deflection according to Eq. (17). The main
effect of control action d. is a pitch acceleration . The dynamic of « is not sensibly affected by d. due to the
small value of Bf , and is dominated by ¢ and by « itself. Altitude rate h depends on the angle v = 6 — «,

whose derivative can be written as a: §y = 6 — & =~ 0.062 - q + 0.64 - . Summarizing, h depends on 7,

12 of 16

American Institute of Aeronautics and Astronautics

which is mainly controlled through «. In turn, o can be controlled through ¢, which is controllable through
elevator deflection d.. Therefore, this task is an example of low-level control with highly structured, almost
hierarchical dynamics.

It will now be shown how to generate the graph for the application of the algorithm. The state space
S is natural with two unbounded states: 6 and g, for which respectively [—n/4, 7/4] and [—7/2, 7/2] are
selected as allowed excursions. The grid partition uses 25 intervals for each state, for a total of 25* = 390625
vertices. The action subset is restricted to the four different deflections 6, € Asup = {—4°, —2°, 2°, 4°}.
A bounding model is obtained by replacing B with B in Eq. (17). A function W simulates the presence of
on-board warnings: the agent receives a warning signal when within 30ft of the upper or lower limit altitude
treshold, and within 6° of the boundaries of a. The time-step At was chosen as 0.1s. Eligible commands
have been chosen as constant commands with duration comprised between k,;, = 3 and k;,q = 5 time
steps. Violating the constraints on h or «, or abandoning the restricted state space S results in a failure. A
successful task consists in reaching 600 iterations without a failure. Each episode is initialized from starting
conditions:

ho=0;0=0; g=0; go=0 (18)

and with a randomly assigned control matrix B’ € B. Either the OM, the PM or a random selector are
implemented during execution to complete the algorithm.

1. Operative metric for elevator control

The values g have been initialized as gezp = 1, @safe = 0, Gune = —100, qrar = —108, as in the previous task.
In figure 7, a typical behavior for the controller with the OM is showed. Initially, the controller succeeds
in keeping flight path angle ~ sufficiently small. However, as the flight height decreases, the controller does
not compensate for the altitude loss, because in near-time the predicted states are safe. This is due to the
limited scope of the uncertain predictions. As the system approaches the unsafe boundaries of the height
range, the commands with the most duration among the candidates (i.e. 5 time steps) become unsafe. The
controller is left with the commands of shorter duration as feasible candidates. As the boundaries become
nearer, the set of feasible commands restricts even more, to the commands with a duration of 3 time steps.
At approximately 13.5 seconds, all near-time predictions become unsafe. In this event, the controller selects
a random action, which rapidly leads to a failure of the task.

2. Proxzimity metric for elevator control

Similarly to the previous application, the gain vector p is selected as:

P = (ph P86 Pa pq) = (67 47 2, 1) (19)

that is, the lower the authority of the controller over the state component, the higher the gain assigned.
A typical trajectory for the controller with the PM will be now presented. In figure 8, the aircraft starts
pitching down, and gradually decreases in altitude. As can be seen in the top of the figure, after a few
seconds -y is held almost constant by the controller. This is the result of the formulation of the proximity
metric. The controller starts with no visited states. As soon as either a positive or negative flight path
angle is experienced, the controller tries to keep the system in this flight condition: this is an example of
trailing effect. The higher penalty on deviation in flight altitude keeps this effect under control, limiting the
excursion. However, around 27 seconds from the start of the task, the aircraft reaches the boundaries of the
region identified as safe. As with the previous example with the OM, in figure 8 the controller is not able to
guarantee safety, and switches to a random selection of actions which leads to a violation of the constraints.

Figure 9 shows a different behaviour with the same controller. During this run the controller manages
to keep the flight path angle in between [—1°, 1°], alternating level flight and mild descent/ascension. This
results in a safe flight and in a successful completion of the task; however, only a limited exploration of the
environment is achieved during the task. As a final comparison, the mean duration of the task observed by
randomly selecting actions for the elevator control task is of 60 iterations, equivalent to 6 seconds. With
the OM, the controller achieved completion of the task 15.7% of the runs, with a minimum duration of 58
iterations, and a mean duration of 154. With the PM, the controller managed completion of the task 22%
of the runs, with a minimum duration of 129 iterations, and a mean duration of 350 iterations.

13 of 16

American Institute of Aeronautics and Astronautics

Elevator control with Operative Metric
I T T

E o 7

g 201 .

S 4oL 2
[}

S -601- -

£ -80 i i i i i i 1l
<

0 0.5 1 15 2 2.5 3 35 4 45 5

) x 10"

Distance travelled [ft]

. T T T T
g0 1 —
TS —t
S> g ' 1
5L !

T 2-ar ! S

[i i i i i i L I

Deviation of angle
of attack a [deg]
VL) o
j
i

!
ES
)
IS
o
@
=
1S5)
e
~
=
IS
N
o

Elevator
deflection 6e [deqg]
o

-5
time [s]

Figure 7: A typical behavior for the controller with the OM during an elevator control task. The altitude
loss h with respect to distance traveled is depicted in the top plot. The middle plot shows the change of
flight path angle v with respect to time, while the last plot shows the deviation of angle of attack a with
time. The red dashed lines indicate the time of metric failure.

Elevator control with Proximity Metric

a
=]

Altitude loss [ft]
)

|
= !

S a
S o

=)

Flight path
angle y[deg]

o

|
»

Deviation of angle
of attack o [deg]
)

N

o

o
|

I I i i i
5 10 15 20 25 30
time [s]

Elevator
deflection 69 [deg]
1
&

Figure 8: A typical behavior for the controller with the PM. The top plot shows altitude loss h. The middle
plot shows the change of flight path angle v with respect to time, while the last plot shows the deviation of
angle of attack o with time. In this example, the controller does not manage to avoid violating the altitude

constraint.

14 of 16

American Institute of Aeronautics and Astronautics

Elevator control with Proximity Metric

20 T T T T

Altitude loss [ft]

i i i i i i i i
0 2 4 6 8 10 12 14 16 18
Distance travelled [ft] x 10°

Flight path
angle y[deg]
o

Deviation of angle
of attack o [deg]
iR o
é
i

Elevator
deflection 69 [deg]
OA

5 10 15 20 25 30 35 40 45 50 55 60
time [s]

Figure 9: A different episode with the application of the PM. The controller with PM manages to maintain a
sufficiently reduced flight path angle v and to achieve safe flight. However, this results in limited exploration
of the environment during the task.

VI. Conclusions and future work

This paper introduced a new approach for Reinforcement Learning exploration of systems with uncertain
dynamics and in unsafe environments. The approach revolves around three main elements. The first is the
presence of a warning function through which the agent can individuate the fatal states in the environment.
The second is an uncertain graph representing the system uncertain model. The system’s state space is
partitioned via tiling, possibly requiring restricting the space to a bounded subset. A finite representative
subset is extracted from among all possible actions available to the agent. The graph can then be generated.
The third constituent of the framework is a safety metric, which evaluates candidate commands of the agent
at every time-step. Solving this optimization problem yields the action ultimately performed. Two metrics
have been proposed: an Operative Metric assigning values to vertices depending on the current belief of
safety, and a Proximity Metric computing distances between vertices of the graph and previously visited
states. Both approaches have been tested on two different simulated applications: a quadrotor navigation
task, for a hybrid, high-level control, and an elevator deflection task, for a low-level control. In the quadrotor
task, the Operative Metric was found to be effective in achieving safe exploration, showing intelligent behavior
in the selection of the available actions. The proximity metric was not always able to avoid collisions, and
resulted in limited exploration. In the elevator task, the operative metric was able to enforce safety only
for the first instants of flight. The proximity metric performed better by limiting the rate of altitude loss,
achieving longer duration of the task.

The results show that the operative metric enables a reactive controllers that employ the current knowl-
edge of the environment to achieve a good exploration. However the formulation of the metric can be
detrimental in tasks with hierarchical dynamics, due to the the limited duration of the available commands,
and given the uncertainties in trajectory predictions. Applying the proximity metric has the effect of re-
straining the evolution of the system. While this results in general in a more efficient prevention of fatal
occurrences for system with hierarchical dynamics, as shown in the elevator control task, it can also lead
to severely reduced exploration, as in the quadrotor task. In all cases, the two metrics resulted in longer
duration of tasks when compared to a random controller.

Summarizing, the results of the simulations indicate that the approach is able to introduce cautious
behavior in the agent for high-level and low-level control. However, two considerations are necessary. First,

15 of 16

American Institute of Aeronautics and Astronautics

a controller with either metric still encounters fatal occurrences. A second aspect to consider, especially
when considering high-level control, is that the approach can result, as in the application of the proximity
metric to the quadrotor task, in a reduced exploration of the environment. Nonetheless, the two applica-
tions of the controller with safety metrics indicate that the approach presented in this work is promising,
overall increasing safety in unknown environment without relying on an exhaustive prediction of all possible
evolutions of the system, relying instead on an approximated modeling of the dynamics. Future work will
include the design and evaluation of new metrics and the implementation of such a controller in conjunction
with additional elements to promote exploration. A combination of the two metrics seems a promising field
of investigation as well.

References

ISutton, R.S., Barto, A.G., Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, (1998)

2Coraluppi, S.P., Marcus, S.I., Risk-sensitive and minimaxz control of discrete-time, finite-state Markov decision processes,
Automatica, Vol. 35, Iss. 2, pp. 301-309, (1999)

3Heger, M., Consideration of Risk in Reinforcement Learning, 11th International Machine Learning Conference, Rutgers
University in New Brinswick,NJ, (1994)

4Hans, A., Schneegaf3, D., Schifer, A.M., Udluft, S., Safe Ezploration for Reinforcement Learning, ESANN’2008 pro-
ceedings, European Symposium on Artificial Neural Networks- Advances in Computational Intelligence and Learning, Bruges,
Belgium, (2008).

5Garcfa, J., Fernandez, F., Policy Improvement through Safe Reinforcement Learning in High-Risk Tasks, IEEE Symposium
on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), Paris, France, pp. 76-83, (2011)

6Moldovan, T.M., Abbeel, P., Safe Ezploration in Markov Decision Processes, Proceedings of the 29t" International Con-
ference on Machine Learning, Edinburgh, Scotland, UK, (2012)

"Gillula, J.H., Huang, H., Vitus, M.P., Tomlin, C.J., Design of guaranteed safe maneuvers using reachable sets: Autonomous
quadrotor aerobatics in theory and practice, JEEE International Conference on Robotics and Automation (ICRA), Anchorage,
AK, pp. 1649-1654, (2010)

8Gillula, J.H., Tomlin, C.J., Guaranteed safe online learning of a bounded system,JEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), San Francisco, CA, pp. 2979-2984, (2011)

9Mannucci, T., van Kampen, E., De Visser, C.C., Chu, Q.P. SHERPA: a safe exploration algorithm for Reinforcement
Learning controllers, Proceedings of the SciTech AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida,
(2015)

10Henzinger, T.A. The Theory of Hybrid Automata, Proceedings of the Eleventh Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 278-292, (1996).

U Watkins, C.J.C.H., Learning from delayed rewards, PhD Thesis, University of Cambridge, England, (1989)

12 Abbeel, P., Quigley, M., Ng, A.Y., Using Inaccurate Models in Reinforcement Learning, Proceedings of the 23'4 Inter-
national Conference on Machine Learning, Pittsburgh, PA, (2006)

13Moore, R.E., Interval Arithmetic and Automatic Error Analysis in Digital Computing, Ph.d. Dissertation, Department of
Mathematics, Stanford University, Stanford, California, Published as Applied Mathematics and Statistics Laboratories Technical
Report No. 25, (1962)

MFEreichard, T., Asama, H.,Inevitable collision states. A step towards safer robots?, proceedings of IEEE International
Conference on Intelligent Robots and Systems (IROS), pp. 388-393, (2003)

15Sutton, R.S., Generalization in reinforcement learning: Successful examples using sparse coarse coding, in Tesauro, G.,
Touretzky, D., Leen, T., eds.: Advances in Neural Information Processing Systems 8, Cambridge, MA, MIT Press, (1996)

16Whiteson, S., Taylor, M.E., Stone, P. Adaptive Tile Coding for Value Function Approzimation, Al Technical Report
AI-TR-07-339, University of Texas at Austin, (2007)

171in, S., Wright, R., Evolutionary Tile Coding: An Automated State Abstraction Algorithm for Reinforcement Learning,
in Abstraction, Reformulation, and Approximation, volume WS-10-08 of AAAI Workshops, AAAI, (2010)

8Morari, M., Garcia, C.E., Prett, D.M., Model predictive control: theory and practice, in Automatica 25 (3), pp.335348,
(1989)

16 of 16

American Institute of Aeronautics and Astronautics

