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abstract
In many countries digital maps are created and provided by the national cadastres:
Usually they consist of multiple polygons, each with an exact location and shape,
describing which kind of surface can be found at the position of the polygon (e. g.
building, street, vegetation). They must be accurate and well maintained, as they are
used by companies or authorities for purposes like urban planning or demographic
statistics. However, especially cities are in a constant change. Old buildings are
torn down, new buildings are built, and complete streets and neighbourhoods are
changed. Monitoring these changes is difficult and identifying and updating the
virtual maps is still done mostly manually today.

A method is developed to detect changes on the ground and identify changes for
the virtual maps automatically using machine learning approaches. As input data
the virtual map, their corresponding aerial images and point clouds from different
years are needed. As a case study for this thesis, this method is developed and
applied to the BGT, the Dutch virtual map with a resolution of 20cm. The research
area is the city of Haarlem for 2017 and 2018. High resolution aerial images are
used in combination with point clouds created by Photogrammetry.

The output is again a digital map of the area where every polygon has a probability
score of how likely its category (for example building, street, etc..) changed. This
can support the manual updating process eminently, as a minor percentage of poly-
gons (for which the algorithm was unsure) must be checked manually. The research
question of this thesis is to check whether this change detection is feasible even for
highly heterogeneous structures like cities. Many visual changes in the aerial im-
ages are happening that are not relevant for the virtual map. In the one year, a street
can be full of colourful cars, in the other year, the street is empty and completely
grey. Many scenes are easy for humans to distinguish but are challenging for an
algorithm. The goal is to detect a high amount of true changes while keeping the
number of false positives low to reduce the manual work as much as possible.

To achieve good change detection and answer the research questions, the machine
learning library of XGBoost is used. It provides a gradient boosting framework
for many different environments, including Python. Many weak learners, each
classifying a change only with a very low detection rate (for example minimum
height of all points inside the polygon), are combined to get a strong learner. This
learner should be able to classify polygons with a high accuracy into polygons that
change and polygons that do not change.

With this method it is possible to detect a high amount of changes. 80% of all
changes can be found within a reasonable number of False positives. Especially for
buildings almost all changes can be identified. It is furthermore possible to localize
the changes in larger polygons. However, not all changes can be identified, so that
this approach should be seen as an aid for manual change detection and not to
replace it.
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1 I N T R O D U C T I O N

Many countries and companies offer freely available digital maps that can be used
by everybody and that play an important role as valuable input data for projects
of many stakeholders, let it be companies, scientist or authorities. According to
the study of the consulting company AlphaBeta [2017], digital maps generate cus-
tomer benefits worth over 550 billion US$ and create approximately 4 million jobs.
These digital maps usually consist of polygons that describe the exact shape, sur-
face type and depending on the map, additional information like the construction
date for buildings or vegetation type. Figure 1.1 shows an exemplary digital map
of Amsterdam.

Figure 1.1: Example for a digital map ( c© Gemeente Amsterdam)

Providers of these digital maps are facing two problems:

1. Cities are the subject of constant change which sometimes changes having an
influence to the whole structure of neighbourhoods. For example, according
to the statistic authority of the Netherlands in 2018 more than 71.000 new
buildings (around 6%) were built in the Netherlands1. But not only buildings,
also streets and public places are changing regularly.

2. Digital maps on the other hand are static and can only display a snapshot of
the structure of a city at a certain time. Static in this context means that once
the map is created and uploaded to a server, it will remain in this version for
a certain time. Usually, the accuracy of the digital map is sufficient for a while,
but inevitably these maps must be updated again.

Hence, in order to be useful, these maps must be constantly updated and all changes
on the surface must be considered and applied. This updating process is still mostly
done by a manual workforce of specialized companies: Employees are considering
the existing map and aerial imagery from both the date of the map and the latest
date of recording. If they recognize changes between the images, the map must be
changed accordingly.

1 see CBS.

1

https://www.amsterdam.nl/stelselpedia/bgt-index/
https://www.cbs.nl/en-gb/news/2020/05/almost-71-thousand-new-build-homes-in-2019
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The goal of this thesis is to support the updating process by an automatic change
detection with a Machine Learning (ML)-algorithm. These kind of algorithms are
used with great success in many problems regarding geographical data, so that it
seemed to be a promising approach to consider for this thesis. Due to their efficiency
and popularity among the ML-community, the library of XGBoost was selected for
this project. More reasons can be found in § 2.3.3.

Aerial images and point clouds of two different years are incorporated with exist-
ing maps as the source for polygons. For every polygon for both years different
information (features) are extracted. Based on these features, the algorithm should
be able to detect changes between both years. Each polygon of the digital map will
be given a probability of how likely a change has happened between the two time
steps. As a large number of polygons will be processed, a high degree of automati-
zation and efficiency is desired. However, this detection is not a trivial task, as there
are many obstacles for change detection, e.g. temporary changes or heterogeneous
classes. These obstacles must be considered and algorithms developed that can still
enable a reasonably accurate detection of true changes.

In this thesis the whole approach is executed as a use-case using data from the
Basisregistratie Grootschalige Topografie (BGT), the digital map of the Netherlands
from the Dutch government. It is already existing for multiple years so that different
versions of the same area are available for two consecutive years. Furthermore,
suitable input data (aerial images & point clouds) in high quality are at hand for
both respective years. However, this algorithm is not limited to this specific input
data, but can be used for every digital map with categorized polygons.

1.1 motivation
The problem described in the introduction is addressed by Readar2, the company
in which the research is carried out. The company is based in the Netherlands and
specialized in data mining from aerial images and height data. Many municipali-
ties of the Netherlands are already customers of the company, so that the current
demand for an automatic change detection is known.

The manual updating process described previously is prone to errors: Changes can
be very small, e.g. a small new path is built in a park and partly hidden under
trees and can be overlooked, or actual changes can be handled incorrectly as can
be seen in Figure 1.2, where the house in the middle of the figure is new and the
polygon was not drawn accordingly. With the change detection developed in this
thesis, these errors cannot be prevented, but will be recognized during the change
detection so that they can be corrected.

Figure 1.2: polygon of a house (red) not correctly drawn

2 for more information see Readar.

https://readar.com/en/
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Moreover, the opposite is also possible, that changes are plotted even though they
do not exist, for example a truck standing close to a building is recognized as
an extension of the building. Furthermore, the classification of when a change
happened can be very subjective, e.g. if a construction site is already a building or
still bare terrain. The results of this manual change detection are fluctuating quality
of the updated maps.

Another big drawback of the manual approach is the time needed for updating. As
complete municipalities must be considered, the area that must be checked manu-
ally can be quite large. Even though it seems to be a promising strategy for man-
ual change detection to only focus on completely new built areas in which many
changes are happening, changes can also consist just for one house in an otherwise
untouched area. In every case, the whole area must be searched.

Developing a new supporting algorithm can both support the quality and decrease
the time needed for change detection. After applying this algorithm, every polygon
will have a probability-score describing how likely this polygon has changed. Focus
can be set on the polygons with a higher probability instead of having to check
the whole area for changes. Depending on the minimum probability until which
polygons are checked, a certain percentage of all changes can be guaranteed to be
recognized.

Instead of using traditional pixel- or object based comparison methods, the focus
will be set on ML, more precisely gradient boosting using XGBoost. An explanation
of this library can be found in § 2.3.3.

1.2 research questions
This study will investigate if ML using gradient boosting methods like XGBoost is
able to support change detection for digital maps. The main research question for
this thesis is:

To what extent can the change detection be automatized using Machine Learning algorithms
like gradient boosting?

Automatizing the whole process of recognizing changes is a challenging task. Even
with good input data the same surface or structures can be diverse in texture. Veg-
etation in spring is mostly green, whereas in late autumn the trees usually have no
leaves and therefore less green pixels. Streets can be grey, but also multicoloured if
the aerial image is taken while many cars were waiting on this street during a traffic
jam. Still these classes must be recognized as identical and labelled as no change.
This thesis researches to what extent this can be done by ML-algorithms and how
good the results describe the reality.

Additionally to the main research question the following sub-questions will be an-
swered:

1. Which features of the input data can be used in terms of costs and benefits?
Even though it would be possible to just collect as many features as possible
this would not be a good approach. Some features will be very important
whereas other features will hardly improve the results. Less features means
less preparation of the data and less processing time in total. Thus, it must
be assessed which features are beneficial for the change detection and still
reasonable in the effort to get them.
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2. Which information except height can be used from 3D point clouds?
Incorporating point clouds next to the aerial images allows to use a lot of new
features that can be used for an extended change detection. Some features
from 3D point clouds are easy to get and used in many applications, namely
statistical information (min, max, avg, ..) for the height. This thesis will
examine which additional features can be derived from the point clouds.

3. Which metric can be used to evaluate the results?
A reasonable evaluation of the results is very important and there are many
metrics to determine the success of the ML-model. But not every metric can be
used equally well. The metrics that can be used to evaluate the results will be
investigated.

4. Is it possible to locate the exact position in which the change has happened?
For some polygons a change does not affect the complete polygon, but only a
small subset of it. A good example would be large field in which a small house
has been built. Especially for large polygons it would be helpful to locate
exactly where the change in the polygon happened and therefore increase
the usability of this change detection algorithm. This thesis researches if a
localization of the change is possible in regards of needed effort and quality.

1.3 scope
In this master thesis only change detection for polygons with the ML-technique of
XGBoost is applied. The polygons and their shapes are already predefined by the
digital map and will not be changed or redrawn. The complete method is seen
as a support for the manual change detection and is not intended to replace it.
Furthermore, this thesis will not compare different ML techniques.

1.4 thesis outline
This thesis is structured in the following way:

Chapter 2 introduces the theoretical background that is necessary to understand
the workflow and methods of the thesis. This includes the creation of the
input data, the basic concept of ML and especially the concepts of Gradient
boosting and XGBoost. Furthermore, the theoretical background of the fea-
tures is explained.

Chapter 3 gives an overview about the current state of the research in the topic of
change detection in a geographical context.

Chapter 4 describes the methodology of the change detection for a digital map
using aerial images and point clouds.

Chapter 5 describes the actual implementation of the algorithm with the exact
settings. Design decisions are explained in this chapter.

Chapter 6 describes the results of the algorithm and comparison to existing meth-
ods. A small chapter with recommendations for reproducers can be found
here.

Chapter 7 presents the conclusions drawn from this thesis and answers explicitly
the research questions. Furthermore, the most important contributions of this
thesis and future work are discussed.



2 T H E O R E T I C A L B A C KG R O U N D

This chapter gives a short technical background for the data and the concepts used
in this thesis.

§ 2.1 explains the basics of the input data and how they are created. The most
important information source for the BGT is the official website of the Ministerie
van Binnenlandse Zaken en Koninkrijksrelaties [2018] (Dutch Ministry of Interiors).
The other main sources for the input data are Ruzgiene [2012] for aerial images, Vos-
selman and Maas [2010] (LIDAR) and Szeliski [2011] (Photogrammetry) for point
clouds. Even though the input data was provided from the company, it is crucial to
understand the basics of their creation, as that can give important information for
the later feature selection for the ML-algorithm.

§ 2.2 gives a small introduction to ML. The basic concepts are explained mainly with
web resources. There are many different blogs and high-quality developer guides
available, for example the online developer guide for ML from Amazon1 or Kaggle2.
For the explanation of gradient boosting (§ 2.3) and XGBoost (§ 2.3.3) the YouTube-
videos of Statquest of Josh Starmer3 provide excellent information. Even though
the algorithms are already implemented in the XGBoost library, understanding the
concepts of XGBoost is necessary to understand the results and in order to improve
them.

In § 2.4 small explanations of the technical background of the features are given.
Different sources were used and are described in the respective chapters.

2.1 input data
The input data for this thesis consists of three different data sources:

1. Digital map consisting of polygons (§ 2.1.1)

2. Aerial imagery (§ 2.1.2)

3. Point cloud (§ 2.1.3)

Representative for the digital map, the creation and attributes of the BGT are de-
scribed. For the algorithm used in this thesis the point cloud will be converted into
a Digital Surface Model (DSM). Therefore, a small explanation of this model and
how it is created will be given in § 2.1.4.

2.1.1 BGT

The BGT is a digital map describing the surface structure of the entire Netherlands.
As can be seen in figure 2.1 it consists of categorized polygons each having a unique
id and describing the size and shape of a real life object. Furthermore, each polygon
is geo-referenced with the accuracy of these polygons up to 20 cm as described by
Ministerie van Binnenlandse Zaken en Koninkrijksrelaties [2018]. There are many
different classes for the polygons to describe the surface as accurately as possible.

1 available at Amazon.
2 available at Kaggle.
3 available at Statquest.

5

https://docs.aws.amazon.com/machine-learning/index.html
https://www.kaggle.com/kanncaa1/machine-learning-tutorial-for-beginners
https://statquest.org
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Figure 2.1: BGT and aerial image of the same scene

According to the official website [Ministerie van Binnenlandse Zaken en Koninkri-
jksrelaties, 2018] following main categories of classes are recorded:

• buildings: all kind of buildings (residential as well as industrial)

• roads: all kind of streets, bike-lanes and sidewalks

• water: lakes, rivers but also canals

• green: all kind of vegetation (forests, agriculture, parks, etc..)

• railway lines: the entire rail network of ProRail

• works of art: bridges, tunnels and other objects

The basic infrastructure for the BGT (publishing and communication) is handled
by one authority (Publieke Dienstverlening Op de Kaart, PDOK). However, there
are many more stakeholders responsible for creating and updating the BGT. Each
municipality, the Rijkswaterstaat (Ministry for Infrastructure), the Dutch Railway
company and many more are involved in this process with different responsibil-
ities. They have to supply the data for this digital map according to standard-
ized agreements for classes and quality. Even though agreements exist, due to this
high number of data providers the accuracy and exact handling of different classes
(which class should be assigned to a certain object?) is still different throughout the
Netherlands.

Many people or companies rely on the BGT and it is often used as the basis for fur-
ther applications. These include for example architects using the digital map as an
additional instrument for designing buildings 4 or private companies using it as in-
put data 5. For authorities in the Netherlands the BGT is even more important. They
are obliged by law to use this digital map in all projects that require a map as a foun-
dation [ Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, 2017]. Example
projects are listed on the official website and include urban planning, visualizing
statistics and many more processes.

2.1.2 Aerial images

As the name already specifies, aerial images are images taken by airborne vehicles
like airplanes, helicopters or, as the most recent developments in this field, drones.
The most common vehicles for aerial images of complete cities are still airplanes, as
they can usually cover the whole area in a single flight and can carry the weight of
the cameras needed for a sufficient resolution. Not every type of aerial image can
be used for this thesis. Multiple requirements must be fulfilled with some general
requirements following [Ruzgiene, 2012]:

4 see here.
5 see here.

https://www.gemeente.nu/blog/basisregistratie-topografie-werkt-architecten/
https://readar.com/leads-voor-windmolenfabrikant/
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• geo-referenced: The coordinate system as well as the exact position of every
pixel of the image must be known.

• visible: No clouds or other obstacles should be in the image, a clear view on
all objects is required.

• overlapped: In order to merge the multiple images, they must overlap.

Furthermore, these images can be specified in two different sub-categories (compare
Hu et al. [2016]):

• Ortho-image: A geo-referenced photograph of the surface with a uniform
scale.

• Trueortho-image: An ortho-image with all vertical features re-projected and
no visible lean.

The difference between both image types can be seen in figure 2.2. In the ortho-
images the houses are not completely oblique and small parts of the front facade
can be seen (in the red circle). The Trueortho-image instead is corrected and no
facade can be seen. These images are created by merging multiple overlapping
ortho-images. From each image only the non-oblique parts are taken.

Figure 2.2: Ortho-Image (left) and trueortho-image (right) of same scene at different time
steps

Another important feature of the aerial image is its resolution. In order to get mean-
ingful results and assure a change detection even for smaller objects it is important
to have a good resolution of the aerial images. Resolution in this case is defined
as the distance between two pixels. The higher the resolution the more pixels can
be found for the same area. To achieve a change detection for an object, it must
be possible to extract enough information for this particular object. As Cai [2003]
describes in his paper, at least around 1000 pixels are needed for humans to detect
objects with tendencies to higher numbers of 2000 pixels for more complex objects.
These numbers should be reached for all considered polygons in this thesis as well.

2.1.3 Point cloud

A point cloud is a set of points in the space each having coordinates usually setting
the position in x, y and z-direction. Multiple points together form a set of points
that can describe objects or natural landscapes in 3D. In this case, the point cloud
describes the surface structure of the research area with x and y as the exact position
of the point and z as its height.
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There are two main techniques to create a point cloud of the surface: LIDAR and
photogrammetry.

• LIDAR
LIDAR (Light Detection And Ranging) describes a method in which laser
beams are used to extract information about the profile of a surface. It ex-
ploits the fact that the speed of light is a natural constant with a velocity of
299.792.458 m/s. The LIDAR scanner emits a laser beam to a point on the
surface. There the beam gets reflected and returns to the emitter. Both times,
when sending the laser and when it is returning, are saved. With this informa-
tion the exact distance between the scanner and the surface can be calculated.

The most common way to get large scale point clouds for urban areas is air-
borne laser-scanning. Similar to the creation of aerial images, the scanning
device is mounted to an airborne vehicle (mostly airplanes) together with a
high precision GPS and timing device. The process of scanning is done repeat-
edly with the rays being emitted in different directions.

The advantages of LIDAR data are its high accuracy and high density of
points. Only few processing is needed after collecting the data and the point
cloud can be used almost instantaneously. Next to the height values, addi-
tional information is available due to some physical attributes of LIDAR (like
first and last return or point density, for more information about this topic see
Scaioni et al. [2018]).

• 3D Photogrammetry
A newer approach for creating point clouds is 3D photogrammetry, in which
the 3D information of an object or surface is extracted from 2D images. It
can be used to create point clouds for complete cities and landscapes using
overlapping aerial images. Image pairs, two images capturing the same scene
from different angles, are used to gather 3D information in a process called
computer stereo vision. Readers with interest in this topic are referenced to
Szeliski [2011].

In a simple view, three main steps must be taken to create a point cloud from
overlapping aerial images:

1. Rectification
To simplify the complete process the images must be rectified so that the
image plane is equal. Depending on the source of the images, this step
is not necessary. For many aerial images the camera is mounted in a way
that the photographs have the same image plane already.

2. Stereo matching
Correspondent pixels in the image pairs must be found to determine in
which relation the images are located to each other. As the images are
rectified the corresponding pixels are located on the same line. Many
different algorithms exist for this tasks, with the simplest one matching
the images by pixel patches up into more advanced algorithms using
neural networks for stereo matching. The distances between matching
pixels are saved and can be also visualized in the form of a disparity
map.

3. Triangulation
In this step the transformation from 2D to 3D information is happening.
Not only the disparity values but also exact information from the camera
and the pictures are needed. This includes focal length of the camera and
the exact positions of the camera when making the image pairs. With all
this information the z-position (height) of a point in the image can be
calculated using matrix equations.
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When used for airborne imagery, this process is also known as stereo pho-
togrammetry. Airborne images are taken in parallel movement and in so-
called blocks, roughly rectangular areas. Usually the image overlaps 30% to
the side and 60% to the forward [Kraus, 1997].

2.1.4 DSM

Even though it is possible to use the height information from the points of the point
cloud directly, it is a common approach to convert the point cloud into a DSM. It is
an elevation model that includes the surface of not only the ground but everything
located on it, for example buildings, trees or cars [Zhou, 2017].

Like for an aerial image, the DSM is a raster in which each cell contains the height
instead of colour information. The advantage of having this model as opposed to
a point cloud is that information can be extracted in the same way as for the aerial
images.

2.2 machine learning
The field of machine learning is a preamble for many different techniques where an
artificial system learns with data and tries to derive general rules from examples.
The focus and central point of ML is the process of learning. Already Mitchell [1997]
describes learning as follows:

A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.

In the context of this thesis, task T is the change detection with performance mea-
sure P, which could be for example the relation between correctly and incorrectly
recognized changes. Experience E are the provided polygons with labeled changes
(specified if a polygon is changing or not). The tasks T can be summarized into a
model, which describes the way of getting from the input data to the desired output
(probability of change). Training is the process of adapting this model so that it can
predict the output correctly.

Some key words are important to know when describing the input data for ML

[Bhattacharjee, 2017]. An entry describes one entity of the dataset, in the case of
the thesis, one single polygon. A feature is defined as an individual measurable
property of an entry. The number of features used is the dimension of the data.
Note that the features of a polygon are derived separately for both years. The target
values are the outcome for every entry that the model should predict, in this case
it would be the probability for every polygon that it is changing between the time-
steps.
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While training a model, there is always the risk of under- and overfitting the model
[Amazon, 2020]. Figure 2.3 displays both scenarios.

Figure 2.3: Comparison of underfitting, balanced and overfitting ( c© Amazon Machine learn-
ing)

The ultimate goal of a ML algorithm is to find the balanced model. The general trend
of the training data is recognized and new data can be predicted correctly. The
underfitting model performs poorly on the training data and is unable to capture
the relationship between X (input data) and Y (target values). That can happen
when the model training was stopped to early or the model is too simple (too few
features). The opposite is overfitting. The model fits perfectly to the example data
and can predict the target values precisely. However, this model is trained to predict
exactly the values from the example and did not capture the general relationship
between X and Y. It can be caused by having models, that are too specific for the
existing data.

2.2.1 Learning methods

Three main types of algorithms can be distinguished in ML as described by Dwivedi
[2019]: Supervised vs unsupervised learning vs reinforcement learning. The first
step when applying a ML technique is to identify the learning type needed.

• Supervised learning describes a setting in which labeled data is already avail-
able. The target values that should be predicted are already known and the
challenge is to label correctly: the input data with unknown ground truth
must be sorted into the different labels.

• For unsupervised learning labeled data is not available. Only the raw data
is used to detect patterns or cluster the data. There are no right or wrong
answers, only more or less precise patterns or clusters.

• In reinforcement learning no raw data is given to the algorithm and instead
an agent interacts with its environment. It must explore the environment and
find which tasks give which rewards. A lot of trial and error is involved in
this process. It is mainly used for robotics, gaming and navigation. This task
is different from the other two tasks as it cannot be used for the prediction of
target values.

2.2.2 Categories

An important step when applying ML for a problem is to define the required task.
Depending on the type of ML algorithm and the target data, a different task is
required [Soni, 2019], as can be seen in table 2.1:

https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
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Supervised Unsupervised

Discrete Classification Clustering

Continuous Regression Dimensionality reduction

Table 2.1: Overview machine learning tasks

Discrete data can only take certain values (for example categories), whereas contin-
uous data can take any value.

In classification and regression, specific relationships between features and target
values must be found to label the input data. In classification the target values
have determined categories that can be used for labeling (for example change or
no change), whereas in regression data will be labeled with continuous values (for
example the height of a building).

In clustering, the goal is to learn the inherent structure of the data without having
to provide explicit labels beforehand. In dimensionality reduction it is the goal to
discover the relationships between individual features. This allows to represent the
data using only the interrelate features and therefore reduce the number of columns
without losing information (a dataset that of 100 features can be reduced to one with
50 columns).

2.3 gradient boosting
Gradient boosting is a ML technique that can be used for both classification and re-
gression. XGBoost follows the principles of gradient boosting with some differences
in modeling details. Therefore, for the understanding of XGBoost it is important to
understand gradient boosting beforehand.

Boosting can be described as a process in which weak learners are combined [Mayr
et al., 2014] into a strong learner that can reduce both bias and variance (in the
context of ML; a description can be found in § 4.4). A simple example for boosting
would be a scenario, in which a set of candidates should be classified if they like
computer games or not. One weak learner, like gender of the candidates (with the
assumption that males likes computer games and females not), would already give a
first estimation but would lead to many incorrectly classified candidates. Including
more weak learners (age, study direction, internet usage times) can improve the
results.

For both the description of decision trees and the description of the functionality of
gradient boosting, the YouTube-tutorials of Statquest were used. For more extensive
information to gradient boosting the reader is referred to the paper of Natekin and
Knoll [2013].

2.3.1 Decision Trees

For the following description of Gradient boosting and XGBoost it is eminent to
understand the concept of a decision tree and how it is constructed. A decision tree
is a directed graph that depicts every possible outcome of a question/decision. It
always has one root node, usually multiple internal nodes and multiple end leaf
nodes. In figure 2.4 a simple decision tree is displayed that detects if a polygon has
changed. Every leaf can have a different number of decision levels and nodes can
be used multiple times. The blue boxes are the separators, the black values describe
the condition and the red/green boxes contain the final outcome.
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Figure 2.4: Example for a decision tree

Many ML algorithms use decision trees to predict the outcome values. When design-
ing complicated decision trees, including multiple features and leaves, the order of
the features plays an important role, for example which feature should be the root
node. A common way to determine the order is calculating the impurity for each
feature. Impurity is a value that describes how many different target values are in
an end leaf. An end leaf that has only target values of one class is considered as
pure. There are multiple ways to calculate this value, a common approach is using
the Gini-impurity. Following steps describe the procedure of creating the decision
tree:

1. A simple decision tree for each feature is created. For a Boolean field it is
a simple yes/no question, for a categorical field each category is tried out.
Numerical values are ordered ascending and the average weight between each
entry is taken and a tree is created.

2. For each leaf node of the tree, the number of true and false values are counted.
If both true and false values are in the same leaf (which is usually the case),
they are considered as impure. The exact amount of impurity can be measured
with formula 2.1:

impurity = 1− (
nTrue

nTrue + nFalse
)2 − (

nFalse
nTrue + nFalse

)2 (2.1)

3. To get the total value of impurity for one tree, the values of both leaves must be
combined using the average. As both leaves can represent a different number
of entries, the weighted average must be calculated.

4. The decision tree with the lowest impurity score divides the dataset the best.
The corresponding features should therefore be considered earlier and can be
found at the top of the decision tree.

5. To get more levels for the final decision tree the process is repeated with the
entries left in the end leaf node of the decision tree with the lowest impurity
score.
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2.3.2 Functionality

Gradient boosting incorporates many weak learners and decision trees to fit a model
based on training data. Creating the model consists of multiple steps used both for
regression and classification with only some minor differences. The creation of the
model will be explained with a small exemplary dataset, consisting of three features
that should predict the outcome feature, e.g. classify if the entry is a building or
not. Table 2.2 displays the example data:

id squared shape colour height (m) building

1 yes red 12 yes
2 yes gray 87 yes
3 no red 44 no
4 yes green 19 no
5 no gray 32 yes
6 no red 14 yes

Table 2.2: Example data for classification using gradient boosting

1. As a first step an initial prediction value is calculated. If the outcome feature
is continuous, just the average value of the outcome feature is taken. For a
categorical outcome feature, the initial prediction value is calculated with the
likelihood using formula 2.2:

prediction value =
elog(

nTrue
nFalse

)

1 + elog(
nTrue
nFalse

)
(2.2)

In this case the probability of an entry being a building is 0.7.

Then a so called pseudo residual is calculated for every entry by subtracting
the initial prediction value from the real outcome value as shown in table 2.3.
If the outcome value is not continuous, 1 or 0 are used to replace the true and
false values. For the exemplary dataset the following values are calculated:

id outcome initial prediction value pseudo residual

1 yes (1) 0.7 0.3
2 yes (1) 0.7 0.3
3 no (0) 0.7 -0.7
4 no (0) 0.7 -0.7
5 yes (0) 0.7 0.3
6 yes (0) 0.7 0.3

Table 2.3: Exemplary initial prediction value and pseudo residual
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2. Next, a decision tree with the three available features is created to predict the
pseudo residuals. In the end leaves, the pseudo residuals of each entry, that
follow the path to this leaf, are saved. The rules for creating the tree that
describes the data best, are described in § 2.3.1. Usually the number of leaves
for that tree are limited, with the number of leaves influencing the end results.
In this example, the number of leaves is limited to three.

Figure 2.5: decision tree for predicting the residuals (output values in brackets)

Figure 2.5 displays the decision tree for predicting the residuals. As the num-
ber of leaves is limited, values from buildings and no buildings can be seen in
the end leaves. The model is not perfect yet, as there are still different target
values in the end leaf.

3. For each end leaf an output value must be calculated. If the outcome features
are continuous, the output value is the average value of all values inside an
end leaf. For categorical outcome features, the output value can be calculated
with a transformation using formula 2.3:

output value =
∑ residuali

∑[prev. prob.i ∗ (1− prev. prob.i)]
(2.3)

When the first tree is built, the previous probability refers to the probability
of an initial leaf. Figure 2.5 displays the output values for the example in
brackets.

4. Following, the predictions of table 2.3 are updated by combining the initial
probability with the leaves of the decision tree. When adding the values of
the decision tree usually a learning rate is applied to scale the contribution
of a single tree and minimize the influence. Thus, if a decision tree does not
split the entries well it will not cause a lot of false classified data. Formula 2.4
depicts this process. For this example, the learning rate is set to 0.8. Table 2.4
displays all values for each entry.

new pred. Value = old pred. value + (learning rate ∗ output value) (2.4)

Similar to step 1 the new prediction must be converted into a probability using
formula 2.5:

probability =
eprediction

1 + eprediction (2.5)
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id initial pred. value output value new pred. value new Probability

1 0.7 1.4 1.8 0.9
2 0.7 -1 -0.1 0.5
3 0.7 -1 -0.1 0.5
4 0.7 -3.3 -1.94 0.1
5 0.7 1.4 1.8 0.9
6 0.7 1.4 1.8 0.9

Table 2.4: Probability values for dataset

5. With many entries having now different probabilities, new residuals can be
calculated. These residuals can be used to build a new tree. The new predic-
tion values are applied again with the learning rate to the old values. This
continues until the maximum permitted number of trees or the residuals are
smaller than a threshold value.

As can be seen in Figure 2.6, all trees together form the model that is applied on
new data to calculate the target values.

Figure 2.6: Creation of new model with decision trees and learning rate

2.3.3 XGBoost

XGBoost started as a research project at the University of Washington [Chen and
Guestrin, 2016] and is short for eXtreme Gradient Boost. It is an implementation
of gradient boosting machines and it is currently the last step in the evolution of
tree-based decision systems as shown in figure 2.7. It is an open source software
library that is used for many ML-tasks.
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Figure 2.7: Evolution of tree-based decision systems ( c© Vishal Morde)

It is used in this thesis for implementing the model for change detection and se-
lected for the following reasons:

• According to several benchmarks (for example of Pafka [2020]) XGBoost is
one of the fastest ML-algorithms. This includes both the time for training the
model as well as applying the model to unknown data. It scales well with
the number of objects to classify and also the number of features has a small
influence on computation times.

• It can be used within the python environment and is well documented.

• The importance of features can easily be derived from the model and there are
functions within the package to display this importance. This helps to select
only meaningful features for the change detection and get rid of features that
only have a very low impact.

• XGBoost has many built-in mechanics (for example pruning the decision trees)
that makes it very resilient to overfitting.

Even though it shares many similarities with gradient boosting, it is different in the
details. The basic concept of building trees and adding them to calculate the target
values is the same. The biggest difference is how the trees are built. Like Gradient
boosting in the previous chapter, XGBoost will be explained with example data and
with a focus on the differences to Gradient boosting. The maximum tree level for
this example is two. Table 2.5 displays example data:

id height difference (m) change

1 4 no
2 8 yes
3 12 yes
4 18 no

Table 2.5: Example data for XGBoost

The following steps are taken to create a model in XGBoost:

1. Again, an initial prediction value and the residual of each value must be cal-
culated. For XGBoost for both regression and classification it is always set to
the same value, 0.5 being the default. True and false values are again replaced
by 1 and 0 and the residuals are calculated.

https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d
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2. Like at gradient boosting a tree must be designed. In this case however all
residuals are put together in one starting leaf to calculate the so-called simi-
larity score formula 2.6. Lambda is a regularization parameter and is 0 in this
example.

Similarity score =
(∑ Residuals)2

∑(prev. prob. ∗ (1− prev. prob.)) + λ
(2.6)

For the example data the similarity score would be 0, as the two positive and
the two negative values cancel each other out. Afterwards it must be checked
if there is a better prediction. Usually the average value of two following
entries is taken.

3. Figure 2.8 displays an example-tree with a split based on the average value
between feature 3 and 4. In the brackets the similarity scores are displayed.

Figure 2.8: Decision tree (similarity scores in brackets)

To quantify how much better the new leaves cluster similar residuals, the gain
must be calculated using formula 2.7.

gain = SimilarityLe f t + SimilarityRight − SimilarityRoot (2.7)

The gain for this tree would be 1.33. No other threshold is giving a higher
gain, thus this split is the right one.

4. As the left end node has multiple residuals it is possible to split it again like
before by selecting the split with the maximum gain. In this case the split
would be performed with height < 6 as here a maximum gain of 2.66 can be
found. In figure 2.9 the new tree can be found. As the tree-level is limited to
2, no further leaves are added.

Figure 2.9: Decision Tree with end leaves
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5. In contrast to gradient boosting, XGBoost also includes some limitations re-
garding the trees, including cover, pruning and regularization. All processes
simplify already available trees to make the algorithm more resilient to over-
fitting. With cover a minimum number of residuals per leaf can be assured.
Pruning means that every new leaf and the gain is checked if their result ex-
ceeds a certain limit (a parameter called gamma). If this is not the case, the
leaf is pruned. When raising lambda (regularization parameter), the gain of
the leaves will decrease and pruning is more likely.

6. Like in Gradient boosting new residuals are calculated using the already
known formulas described in § 2.3.2.

This process of building trees from value, simplify them and calculating new residu-
als is repeated many times until the maximum number of allowed trees. By default,
these trees are built with trying out all features and select every time the features
that would give the maximum gain. Like in gradient boosting, a model is built from
the trees. s Contrary to the standard gradient boosting method some more Quality
of life (QoL)-features are implemented with some important ones mentioned the
following, such as [Brownlee, 2016a]:

• Parallel processing is possible

• built-in handling of missing values

• built-in randomization

2.4 features
The term ”feature” describes an attribute of a single polygon and its correspondent
geographical extent on the aerial image or the point cloud in this thesis. Many
features are collected as weak learners and are the foundation for the ML change
detection. This section describes the features used in this thesis.

2.4.1 Colour features

Colour features describe the aerial images itself. They are easy to derive but very
susceptible to small changes (A street with cars has different values as a street
without cars).

RGB
The provided aerial images - like most digital photographs - consist of three differ-
ent bands: red, green and blue. Each band describes the intensity of this particular
colour for each pixel of the image. Depending on the intensity of each of red, green
and blue a different mixed colour is present. The values are easy to derive from
images and many algorithms exists for this colour scheme. However, it is strongly
influenced by shadow [Jang et al., 2019].

HSV
Like Red Green Blue (RGB) the Hue Saturation Value (HSV) colour space consist of
three different bands: Hue, saturation and value. Instead of defining the colour with
the intensity of a certain colour, it is described via Hue (which colour), Saturation
(how intense is the colour) and value (how light/dark is the colour). It is more
similar to how humans perceive colour. The advantage of HSV is that shadow only
influences the value-band and not the other two bands.
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2.4.2 Height features

Height features are derived from the point cloud or the DSM. Furthermore, two
other features can be directly derived from the height:

• Slope describes how fast the height is rising between two points.

• Aspect is related to slope but describes the direction of the slope.

2.4.3 Polygon features

Instead of looking at the values from the aerial image or the point cloud, attributes
from the polygon itself are used to extract features. Simple attributes like the size
or shape of a polygon, but also derived features like the compactness (how similar
is the shape of polygon to a square) of the polygon can give valuable information.
Furthermore the original category of the polygon can be used as an input.

2.4.4 Progressive features

This term describes features in which the feature value is not directly derived from
the input source, but must be processed first. Some features require gray-scale
images, so that the aerial images must be converted beforehand.

Shadow calculation
Humans can recognize shadow when looking at an object, for the computer this is
more difficult. The colour information of a polygon with shadow is different and
that must be considered for the change detection.

For all aerial images used in this thesis the exact position as well as date and time,
where and when the image was taken is known. This information is used to recalcu-
late the exact position of the sun (based on Bhattacharya et al. [2019]). Furthermore,
a height model of the area is also available. Both pieces of information can be
combined to recalculate exactly locations that can be expected being in the shadow.
This information can be used as a feature for the ML algorithm by calculating the
percentage of shadow pixels in a polygon.

However, it is important to note that this method cannot deliver perfect results:
Shadows created by buildings or other opaque structures are reconstructed in a
better way than shadows from trees. Trees allow some light to shine through, thus
their created shadow is not completely shaded but more dim.

Haralick features
These features were originally developed for analysis of medical images but are
now commonly used for all kind of image analysis by assessing the texture in im-
ages. Gray level co-occurrence matrices are used as a method to quantify the spatial
relation of neighbouring pixels in an image.

Figure 2.10: Functionality of Haralick features ( c© Löfstedt et Al.)

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212110
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Haralick features are calculated by counting the spatial relation between the inten-
sity of gray values in the image [Brynolfsson et al., 2017]. Figure 2.10 depicts a
simple example:

1. A matrix with the size NxN must be created, in which N is the number of
different gray level values in the image, in this case N=3.

2. For every combination of two colors the combination of gray level pairs in the
image is counted for a certain direction. In this case the direction is from left to
right, with the reference pixel always being the column and the neighbouring
value being the row. In this case, only once a gray value of 1 directly right at
a gray value of 3 (red) is found and this value is therefore 1. A pixel value of
2 however is located two times directly right of a gray value of 3, so that this
value is 2 (blue). These calculations are done for every combination. In this
image only the direction from left to right is considered, however in total 8

directions and 8 different matrices are possible.

3. For further usage the matrix must be normalized. Standard practice is to
calculate an average from all matrices to get an rotational invariance.

4. This matrix can be used to calculate multiple statistics. In figure 2.10 two
example features (Homogeneity and Contrast) are displayed 6.

Fourier transform
With this method images are decomposed into its sine and cosine components. For
digital images the Discrete Fourier transform is used. Every image is translated in a
Fourier transform that is unique for an image. However, similar images have similar
Fourier transforms. These images can then be presented through a corrugation
function a 3D-curve in which peaks and valleys are found (see figure 2.11. The
number of peaks and their structure can be measured and used as features. For
more information please refer to Popa and Cernăzanu-Glăvan [2018].

Figure 2.11: Image and its Fourier transform and 3D curve

Local binary pattern
Local Binary Patterns (LBP) are visual descriptors used for image classification in
computer vision. They are used to distinguish between different surface textures
and convert them into numeric representations. Whereas Haralick features are con-
sisting of a global texture representation, LBP are considering local representations
of the textures [Rosebrock, 2020].

Figure 2.12: Functionality of Local binary pattern ( c© Rosebrock)

6 A complete list of features can be found here.

https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv/
http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
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Figure 2.12 shows the basic principle of this method: A small window is put at every
pixel of the gray-scale image. If the pixel at a certain position has a higher intensity,
the corresponding value is set to 0, if the intensity is lower, the corresponding value
is set to 1. This window can be stored as a vector of the length 8 and therefore
be converted to a decimal (transformation from binary representation). The range
of numbers that can be represented with 8 digits is from 0-255. The values of all
numbers of all pixels are displayed as a histogram. The values of this histogram (a
256-sized vector) are used as features for XGBoost.

Adaptations of LBP can be made with different numbers of pixels that are counted
and different sizes of the window. Furthermore can the size of the vector be reduced
by a technique referred to uniform patterns [Ojala et al., 2002].
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The development of change detection as the process of identifying changes between
objects or scenes in different time series coincides with the history of remote sens-
ing [Théau, 2008]. It is used in many applications for research, business or manage-
ment. Representative three papers from different fields using change detection are
displayed to present that change detection is used in many different disciplines of
both physical and human geography and with different approaches:

• crop monitoring: de Bie et al. [2008] incorporate change detection techniques
to identify the extent and nature of land cover units. On satellite images of the
same region in a 10-day period they compared unsupervised classifications.
Different profiles of changes are used then for identification.

• urban growth: Hegazy and Kaloop [2015] use change detection to map the
urban growth and the change in the land usage. Remote sensing imagery is
used for classification of the surface and simple change detection methods
are applied. This information of how the surface is changing can be used for
optimized urban planning.

• large scale urbanization: Taubenböck et al. [2012] are using object-oriented
classification on remote-sensing imagery to do a worldwide monitoring of
urban area. Afterwards pixel-based change detection is used to get insights
for urbanization, risk management or population assessment.

With the higher availability of remote sensing data and increasing performance of
computer systems more algorithms for change detection were developed. Already
around 1990 Singh [1989] presented an overview of different methods for change
detection using remote sensing images, including pixel-based comparisons or the
usage of indices like NDVI. Since then, change detection is a recurring topic of
research with many different methods. A comprehensive overview about change
detection techniques is given by Lu et al. [2004]. Ban and Yousif [2016] created
an updated overview for change detection algorithms with the focus on both opti-
cal and SAR-images. The recent development of incorporating 3D information for
change detection is considered in the overview of Qin et al. [2016].

The two major data sources used for change detection are satellite images and aerial
imagery from UAV/airplanes. Even though satellite images can include valuable
information in their additional bands and more algorithms exist for these kind of
images, they have some disadvantages especially for urban change detection: The
access to these images is more limited and expensive and the resolution especially
for urban scenes is usually too low. For these reasons mainly research based on
aerial imagery will be discussed in this chapter.

For urban scenes many researchers focus their change detection on certain types
of objects, in most cases buildings [Nebiker et al., 2014; Pang et al., 2018]. Due
to their structure and attributes (mostly squared with a certain height) identifying
and applying change detection for buildings is easier than for example streets and
buildings are usually of higher economic interest. Less papers can be found for
road detection, as this object type is more difficult to identify and to apply change
detection to. However, there are papers handling change detection for roads, such
as Song et al. [2005].
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To the contrary of the approach presented in this thesis, many studies apply change
detection directly to the aerial images and do not have a digital map as an indicator
of the original surface structure. Instead the objects for change detection must be
segmented beforehand. However, few papers have a similar approach with digital
maps as an additional data source [Knudsen and Olsen, 2003] or are even only using
digital maps [Zhou et al., 2018]. The methodology of merging their input sources
with the digital map can be transferred on this thesis as well.

In general, three main categories of change detection methods can be distinguished
and will be discussed in separate chapters of this thesis:

• 3.1 Traditional methods using only images as input

• 3.2 Height methods using images and height information as input

• 3.3 Machine-learning based methods

Finally, chapter 3.4 will give a conclusion of the relevant work with a focus on how
the methods can be incorporated for this thesis.

3.1 traditional methods
These methods were the first do be developed and only use aerial images as an input
for change detection. Many algorithms originally developed for satellite images
can be used for aerial images as well. The whole topic of change detection with
images as an input has been explored by many researchers and there are many
different approaches available. As Hussain et al. [2013] describe in their paper, the
trend in change detection is from simple pixel-based methods to more object-based
approaches [Peng and Zhang, 2017; Shi et al., 2012]. Many of these papers describe
algorithms to extract information from the image that also can be used as features
for ML algorithms.

A good introduction and overview about pixel-based methods can be found in
the book of İlsever and Ünsalan [2012]. They are describing multiple methods
for change detection based on the pixel values itself. Furthermore, they introduce
texture-based descriptors by using a grey-occurrence matrix. Several of the methods
described can be used directly in this thesis to create features as input for the ML-
algorithm. However, pixel-based comparison are becoming less common as change
detection is moving towards object-based comparisons due to better results. These
methods are a good source for features that can be used for our algorithms:

• Benedek and Sziranyi [2009] propose a probabilistic model to detect changes
in aerial images from different years and seasonal conditions. Information
from three different observations (statistics of global intensity, local correlation
and contrast) is utilized in a conditional Mixed Markov Model. Changes that
are statistically unusual are detected and considered as real changes. They
achieve an overall accuracy of 90 to 95%, however their approach is more
suited to change detection for larger regions and less for urban scenes with
smaller objects. Especially their ideas for correlation and contrast could be
used as features in this project.

• Rowe and Grewe [2001] are describing a system of automatic change detection
especially for buildings and roads. They are extracting line segments with the
canny-edge-detector for different input images and are cancelling out overlap-
ping edges. The left-over edges are a good estimation for changes and can
be used as a support for manual change detection. Their idea of using canny-
edge-detection for identifying changes could also be used as an additional
feature for the ML algorithm.
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• Pang et al. [2018] propose a method for object-based change detection in
which the objects are created by watershed segmentation and multiple fea-
tures are extracted based on these objects with a special focus set on local
binary patterns. These patterns could be used in this thesis as well.

3.2 height methods
As an additional input these methods also use height information next to the aerial
images for change detection. Height is a very good indicator to detect changes,
especially for buildings and is usually derived from point clouds. These methods
first came up when LIDAR was available, as before acquiring point clouds in bigger
scale was not possible.

In the last few years 3D photogrammetry became more common as an additional
source for point clouds. Even though it lacks some additional information in com-
parison to LIDAR point clouds (number of points, first and last return), its accuracy
especially in vertical direction, easy availability and lower costs are clear advantages
for bigger scale change detection [TerraDrone, 2019].

Two main use cases of point clouds can be found in change detection. First, the
point cloud can be used as an additional information input and change detection is
mainly done on the images. Often the point clouds are furthermore converted to the
DSM to assure the inter-operability [Teo and Shih, 2013; Murakami et al., 1999]. This
approach will be adopted for this thesis with converting the photogrammetry-based
point cloud into a DSM.

Second, next to the usage as an additional feature, the point clouds are also often
used as a pre-selection. Pang et al. [2018] use photogrammetry point clouds to pre-
select building areas for change detection using graph-cut algorithms. For a further
change detection an algorithm incorporating straight lines from edge detection was
developed. This algorithm is promising for this thesis as well, as the straight lines
could be a valuable feature.

The other possible approach is to rely more on the points itself. The colour infor-
mation from the images is projected on the points of the point cloud and infor-
mation is derived directly from the points. Du et al. [2016] propose an automatic
method to detect changes for buildings with aerial images and LIDAR data. Fur-
thermore, an additional photogrammetric point cloud is created from the images
and co-registered with the available point cloud to increase the number of points.
The dense point cloud from several time points is compared for height and grey-
scale difference. The change detection is enhanced using graph cuts, which could
be used as an additional feature.
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3.3 machine learning methods
The underlying idea of ML approaches is using example data for changes to extract
general rules when a change happens and apply these to new data. In the last years
these approaches were continuously improved and are currently the most used
approaches for change detection. Many different techniques are available in ML with
different goals, so that there is no best to use. Vignesh et al. [2019] compare several
ML-techniques especially for change detection. They conclude that deep learning
algorithms produce a better accuracy than traditional ML-approaches. However,
deep learning approaches need even more datasets for training which are often not
available.

The classic way for ML techniques is a foregoing, determined feature collection with
following training. Pessoa et al. [2019] are using a random forest approach for
change detection using remote sensing images to create high density photogram-
metric point clouds. Radiometric and geometric features are collected and used
separately and combined for the training of a change detection algorithm. With
combined features a very high accuracy of 98% positive detected results could be
achieved. Even though the images consisted of an additional NIR-band, which will
not be available in this thesis, the collected features and design of the approach
gives valuable information for feature extraction, especially regarding the geomet-
ric features. To minimize the efforts for feature extraction Han et al. [2019] are using
pre-trained feature extraction networks (for example ResNet or AlexNet). These net-
works are pre-trained to extract information from images and convert into numer-
ical values. Zong et al. [2013] are combining high resolution aerial images and LI-
DAR data for an improved change detection. They apply three supervised ML meth-
ods (Artificial Neural Network, Support Vector Machine and Logitboost algorithm)
and compare their results. Their results state that these approaches for change
detection can give better results than the traditional methods. Furthermore, they
suggest using random sampling to improve the results even more. However, the
results should be considered with caution. Only small scenes with many changes
were used as an input which does not represent reality in urban structures. Still
this paper can be used for performance comparisons with the approach described
in this thesis.

A recently developed ML technique especially suited for images is a Convolutional
Neural Network (CNN). This algorithm can learn itself what are important features.
A good example is the paper of Ji et al. [2019] for change detection of buildings.
Next to the change detection process this paper also introduces a method for gener-
ating own samples for positive changes, something that could be used for other ML

approaches. For this thesis this paper adds less to the actual ML part but contains
useful information on how to evaluate the results with scores.

Even though XGBoost is a recently developed library (stable release in 2019), it
is already used with success in many applications with aerial imagery, mostly for
classification [Georganos et al., 2018; Zhang et al., 2019]. Cao et al. [2019] were ex-
ploring classification especially for urban scenery incorporating multi-source geo-
spatial data and different classification approaches. They come to the conclusion
that XGBoost performed best due to its attributes for handling overfitting and miss-
ing data. Their paper can be used as inspiration for the own workflow of this thesis.
Change detection approaches are used less often with the only example found con-
sidering change detection for land coverage in the paper of Abdullah et al. [2019].
Similar to this thesis, features from different years were processed and following a
classification with XGBoost was applied for change detection. As input data only
satellite images were used and the change detection was applied on a larger scale
for land coverage. However, the general process stays the same and can give valu-
able information regarding feature selection and evaluation.
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3.4 conclusion
As can be seen in table 3.1 the majority of methods for change detection is focusing
on a certain type of objects.

Category Buildings Vegetation Streets Water

Abdullah et al. X
Benedek and Sziranyi X X X X

Cao et al. X X
Ji et al. X

Knudsen and Olsen X
Nebiker et al. X

Pang et al. X
Rowe and Grewe X

Song et al. X
Zhou et al. X

Zhang et al. X
Zong et al. X

This Thesis X X X X

Table 3.1: Overview about the papers and the target objects for change detection

Holistic approaches in which multiple object types are considered are rare. This
paper tries to fill this gap using a ML approach.

To have a better overview about the reviewed papers, table 3.1 sorts them accord-
ingly to their input data and the type of their algorithms.

Figure 3.1: Overview about the papers and their input sources and techniques

Even though there are many different methods with object-based change for almost
every input data, the trend is clearly going to the direction of machine learning, as
these methods can deliver good results with less effort for data preparation. Find-
ings from change detection from other fields, e.g. change detection in photos or
medical images, can be used as an inspiration source for change detection in aerial
images.
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However, there is no direct paper which can lead as a guideline of implementing or
adapting the change detection process using XGBoost. Most ML-approaches today
are focussing on deep learning or CNN. However, based on the experiences of
Abdullah et al. [2019] and Cao et al. [2019], it it useful to try out XGBoost for change
detection combining multiple input sources. Even though it was mainly used for
classification until now, applying it to change detection promises interesting results.
From all the papers a general procedure of a change detection algorithm can be
extracted (not necessary in this order):

• Select the method for change detection.

• Select which object types should be detected.

• Select the suitable input data.

• Select which features are needed.

As a closing remark it was noted during the research, that an up-to-date overview
of change detection methods using machine and deep learning methods and their
results is still missing.
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As a conclusion from § 3 it can be said that change detection is usually applied
only on certain classes and less in a holistic approach considering multiple classes
together. Furthermore, the combination of map and aerial images is not researched
yet to full extent. Therefore, in cooperation with Readar, a method was developed
to detect changes in aerial images based on a digital map with a use-case of the BGT.
In this chapter the complete methodology of the developed change detection will
be explained. However, not direct instructions will be given, instead the theoretical
background of the methodology will be part of this chapter. Decisions for a certain
method or parameters can be found in § 5.4, the results can be found in § 6.

With considering the definitions made in § 2.2 for the learning method, the ML-
algorithm used in this thesis can be defined as a supervised classification:

• Supervised: Labeled data is already available, as the target data is already
available. Polygons missing this information will be sorted in one of these
two categories: changing or not changing.

• Classification: Even though the probabilities assigned are continuous, the gen-
eral outcome is discrete with the target data consisting of two defined values:
changing or not changing.

The structure of this chapter is as follows:

• § 4.1 is describing the workflow of the algorithm.

• § 4.2 is describing the preparation of the data before features can be extracted.

• § 4.3 is describing the extraction of features.

• § 4.4 is describing the actual creation of the model, both tuning of the hyper-
parameters and the training.

• § 4.5 is describing the evaluation of the results of the model.

The last two paragraphs are not part of the original workflow for change detection.
Instead they are explaining how to locate the predicted changes in a polygon (§ 4.6)
and give an overview about the possible obstacles that can occur during the project
(§ 4.7).

4.1 workflow
The goal is to develop a method based on ML using XGBoost, that can detect changes
for digital maps with aerial images and point clouds as input data. In figure 4.1 the
workflow for this method can be seen.

The complete workflow can be divided in three large parts:

1. Data preparation
The input data is cleaned and prepared for the feature extraction.

2. Feature extraction
The features needed for the ML training are extracted.
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3. Machine learning
The model for change detection is trained and evaluated. This part is ex-
plained in two chapters, as the training and the evaluation of the model take
a substantial amount of work.

Figure 4.1: Workflow for the change detection algorithm

The workflow is describing the ideal situation, in which the starting features and
the first trained model already enable a sufficient change detection. In reality this is
usually not the case: Information (and therefore features) may be missing or some
features are lowering the quality of the change detection. Parameters and features
for the trained model can and must be changed to improve the quality. Therefore,
for the last part of ML an iterative workflow is chosen. Figure 4.2 describes this
process:
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Figure 4.2: Iterative Process for change detection

Whenever a model is trained it is evaluated afterwards. Did the detection rate
improve? Are there less false classified changes? The results are quantified not
only on change detection itself, but furthermore on the polygons, for example by
looking at polygons in QGIS that are false classified and see the values of their
features. With this information it can be derived, which information is perhaps
missing (therefore which new features must be collected) or which information is
misleading. A new model is trained with different parameters and/or features and
then is evaluated again.

4.2 preparation of the data
Especially for the training of a ML model the data quality is really important and
can determine the success of the complete project. The input data must thus be
cleaned before it can be used. It must be assured that all input data - aerial images,
point clouds and polygons - are geo-referenced in the same coordinate system, as
otherwise the input data cannot be linked to each other.

4.2.1 Convert point cloud

When combining a point cloud with aerial images, it is useful to convert the point
cloud into a DSM, as then both data sources can be used together more easily: The
same programs can be used for visualization and the same algorithms can be used
for data extraction.

A DSM can be created out of a point cloud with various methods as described in
Zhou [2017]. The regular grid approach is the most commonly used: An empty
raster with the extent of the point cloud is created. For each cell all points that are
spatially located inside this cell are collected and their average height is taken as the
height for the cell. Note that this approach is only working if there is at least one
point for every cell, otherwise this cell will contain a Not a Number (NaN)-value.
However, this is not a substantial problem, as feature extraction and the ML-model
can work with these values.

4.2.2 Clean polygons

Depending on the input map, polygons can overlap. As can be seen for example
in figure 4.3, the polygons for streets (red) and the polygon for water (blue) are
overlapping. However, the polygon for water was drawn at the complete extent
of the river and is also located underneath the bridge. When extracting attributes
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of the polygons as features, these polygons would disturb the results, as the water
polygon would contain attributes of the streets above.

Figure 4.3: Example for overlapping polygons

The solution to this problem is simply to cut the polygons. At every pixel in the
research area only one category of polygon should be located. This category must
be the category that is visible at the aerial image. For the depicted case in figure 4.3,
the single water polygon would be split in a multi polygon, consisting of in total
two polygons left and right of the bridge.

Depending on the input data for the polygons some other cleaning must be done
as well. Even though the ids for the polygons are usually unique, sometimes they
can occur multiple times, as older versions of the same polygon exist and were not
deleted. Only the newest polygons should be used and the older polygons with the
same id should be removed.

4.2.3 Identify changes

To identify the changes, it is very important to define a change in the context of this
change detection beforehand.

Definition of change
Change is not a uniform, predefined difference between two states. Depending on
the use-case, change can be defined in many different ways. Chen et al. [2012]
defines (land cover) change as ”variations in the state of physical materials on the
earth surface (..)”. According to Bouchaffra et al. [2015], three activities can be
embedded in the change detection: perceiving the change, the type of change and
location of the change. In this thesis two of these three attributes are relevant:
Perceiving that a change has occurred and localizing it.

These two mentioned examples already demonstrate that a generally applicable
definition of change is difficult. Especially in the context of this thesis, while using
a ML approach with digital maps as the key factor for recognizing changes, there
are more things to consider:

1. Administrative or small changes
The BGT differentiates between classes that only differ in an administrative
nature. There are for example separate classes for wegdeel and ondersteunend-

wegdeel. The first class contains main roads whereas the second class contains
sections of the road that are less used. However, even for a human it is some-
times difficult to distinguish between both classes. A focus must be set to find
differences for both classes even though their visual appearance is similar (for
example due to the size or form of the correspondent polygons).

2. Seasonal Changes
Vegetation has a different visual appearance in different seasons. Especially
trees can influence the change detection a lot, with visible ground beneath the
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trees in the winter and complete green leaves in the summer with no ground
visible. Field’s appearance also changes throughout the seasons. However, all
these changes are no changes in the context of change detection.

3. Temporal Changes
Aerial images are snapshots of the daily life in cities. Cars are waiting at red
traffic lights, tables are outside of restaurants or there is a market on the main
square. All these changes and many more cause a visual difference in the
aerial image without being permanent. Hence, they are no changes in the
context of change detection.

4. Construction Sites
A special case of temporal changes are construction sites. Often it takes more
than one year to finish a building and a construction site can be found both
years. However, in one year the structure of this construction site can change
a lot, especially regarding the height of the constructed buildings. Depending
on the exact change, a construction site will be considered as a change from a
ML algorithm (for example construction pit vs. house with some floors already
built).

This thesis adopts an own definition of change. This definition can differ from the
requirements of changes at the digital map but is necessary to ensure a successful
change detection using ML techniques:

• Everything, that is a clear visual change in the aerial image is considered a
change. Even if there is no change in the class (old building is replaced by a
new building with a different visual appearance) it is considered a change.

• However, these visual changes must be permanent. Temporal changes or sea-
sonal changes are not defined as a change.

• Construction sites are considered as changes if a change in appearance or a
change in height can be found. Otherwise training of the ML model is more
difficult or even impossible.

Usually, a change detected by the algorithm is important to consider for the creators
of the digital map, even if the class is not changing. In the example of a replaced
building even though the class stays the same, the shape of the new building is
likely to be different and the digital map needs to be adapted.

Having a most accurate classification of the existing changes in the input data is
very important for reliable results for the ML algorithm. These polygons are used
for training and testing the model and must be correctly classified. As a foundation
for changes, the adapted BGT polygons (see § 4.2.2) of 2017 and 2018 are compared
and changes in the object class at the same location are monitored. However, these
changes alone are not sufficient. Often there are changes occurring within a BGT-
class or the polygons are not drawn accurately. A manual change detection with a
visual examination if a polygon is changing or not must be done as well.

4.3 feature extraction
Even though it would be possible to just input the numeric values of each pixel from
the aerial image and the DSM and apply a separate change detection for every pixel,
it is not advised. Object information like the size of the polygon are lost, changes
in the colour would already imply a change and it would take too long to evaluate
every pixel. Instead feature extraction is used, a ”mapping from raw image pixels to
discriminative high-dimensional data space” as defined by Cheng and Han [2016].
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In this thesis features are gathered for each polygon for each year individually.
A polygon is derived from the object from the digital map and usually describes a
uniform object like a building or a street. However, in some cases these polygons are
drawn in larger scale and can describe a more complex area with different structures
located inside (for example the premise of a company containing a parking lot and
several buildings). All pixels that are located inside this polygon are used together
as an input to extract features. To achieve this, the polygon is depicted on the aerial
images and the DSM.

Only the polygons of 2017 (the year of the input map) are known. The polygons for
2018 would be part of the new map and do no exist yet (or at least are not known).
To get the features for 2017 and 2018, the aerial images and point clouds from 2017

and 2018 are used, but only the polygons from 2017 are used for the shapes (see
figure 4.4). All features therefore are related to the polygons from the same year.

Figure 4.4: Components used in feature extraction

Examples for the actual values of features for a polygon can be found in the annex
at § 8.1.

4.3.1 Clipping Input data

Most methods that create features out of images only work with the input data
having a rectangular format (either because the algorithm is designed this way or
the input data must have the form of an array). However, as can be seen in figure
4.5, most real life objects do not have a rectangular shape. Even if they would have
a rectangular shape it is very likely rotated.

Figure 4.5: Example for a non rectangular polygon
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The solution to this problem is clipping and replacing values. In the first step the
image is clipped to a rectangular shape, consisting of the minimum and maximum
x- and y-values of the polygon. In the second step, all pixels that do not belong
to this polygon are replaced with the value NaN. It is a numeric value, however it
should express an undefined or non-displayable value. When processing the image,
pixels with a NaN-value are ignored.

4.3.2 Calculating features

Depending on the exact feature type different algorithms and methods are applied.
In general, the workflow for calculating features is the same for each polygon and
both years:

1. get the clipped input data

2. get the numerical values of the pixels

3. apply algorithms on these values and calculate a numeric value

4. store this numerical value in the database

The following features were extracted from the beginning:

• RGB: statistical information about the values of red-, green- and blue of the
pixels.

• HSV: statistical information about the values of hue-, saturation- and value of
the pixels.

• Height: statistical information about the height pixels.

• Slope: statistical information about the slope of a polygon.

• Aspect: dominant direction of the slope of a polygon.

• Shadow: percentage of the pixels that have a shadow.

• Shape: Information about the shape of the polygon.

• Haralick: Haralick features for the polygon.

• Category: Category of the polygon in 2017.

• LBP: Local binary patterns for the polygon.

• Fourier: Fourier transfom for the polygon.

4.3.3 Merging data

Both datasets from 2017 and 2018 are merged based on their gml-id. This attribute is
a unique identifier for every polygon extracted from the BGT. As the same polygons
are used for both years it is certain that the same ids can be found in both datasets.
Some features are removed in this process, as they are identical for both years and
therefore contain unnecessary information. E.g the area of a polygon is calculated
in both years, but as the polygons are the same, their size is identical. So only one
area-feature is kept, the other is deleted.

Afterwards the changes are added as an additional variable to the data to use them
later as the target value. The information for the change is coming from a Post-
greSQL table. If an ID is located in this table, the value for this column is 1 (a
change has happened), otherwise this value is 0 (no change has happened).
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4.3.4 Preparation of the features

XGBoost allows only numerical values as an input. However, some of the extracted
features are not numerical, the best example is the feature category. Not using it is
not an option, as it contains important information for the change detection. In this
case the text values must be encoded as numbers in a process called categorical en-
coding. A categorical value is transformed into one or multiple numerical features.
There are multiple options available for this process [Laurae, 2017]:

• Numeric encoding
This is the most basic categorical encoding. Every unique text value is just
translated into a unique numerical value. Either an arbitrary number is as-
signed or a number in order. As this approach only replaces the values, no
additional columns are needed. However, with just numeric values a relation-
ship between the classes can be implied (two categories a and b are replaced
with values a=1 and b=2. Now it is implied that b is double the value a). This
false information can decrease the quality of the results.

• One-Hot encoding
To overcome the problems of implied false relationships between categories,
One-Hot encoding can be used. As can be seen in figure 4.6 for every unique
non-numerical value a new column (F1 to F3) is created. All entries that are
different from this value have the value 0, entries with the same value have the
value 1. There is no relationship between the encoded values, but depending
on the number on unique values, many new columns are created.

Figure 4.6: Comparison of One-Hot encoding (left) and binary encoding (right)

• Binary encoding
Similar to One-Hot encoding new columns are created to overcome the prob-
lem of implied relationships. However, in this method binary information is
used to encode these categories which results in less columns being needed.
Instead of using a new column for every unique value, only as many columns
as bits are needed to distinguish between the unique values. For example
with eight different values, three columns would be needed, as three bits are
needed to describe the number eight. As shown in figure 4.6, the number of
columns is already reduced by one.

4.4 model training
In this section the training of the model of the XGBoost algorithm is described. As
shown in figure 4.7 the actual training is only a part of the whole procedure. Equally
important is the right split of the data and a solid selection of the hyper parameters.

When training a binary classification model, two terms are important to know, as
they are the two general types of errors influencing the quality of the model [Yao,
2019].
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Figure 4.7: Workflow for tuning and training of the model ( c© scikit-learn)

• Bias is the overall difference between expected predictions made by the model
and true values.

• Variance describes how much predictions for the given point vary.

The ultimate goal is to keep both errors small. Training a model always means
finding a balance between these two factors. The model should not predict too
few good results (underfitting) but also not create a model predicting all results
correctly just for the training data (overfitting).

4.4.1 Splitting the data

As a first step the data must be split. A small part of the data should be put away
and never be considered during the training. This set is the test data. As can be
seen in figure 4.8, the complete training is done only with the training data. If
the complete data would be used for training, the following evaluations would be
distorted. Instead of predicting new values, the results are directly derived from
the training and the model would perform great. But as soon as completely new
data must be evaluated, the model fails. The model is overfitting.

Figure 4.8: Example for k-cross folding with k = 5 ( c© scikit-learn)

There are multiple options for the splitting of the data. First the ratio between
training and test data must be decided. In both sets there must be positive target
values. Second, it must be decided on how to split the data:

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
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1. It is possible to shuffle the data and then randomly select a percentage of the
data as the test data. However, with a very imbalanced dataset it would be
possible that there are positive values available in the test-set.

2. The percentage of test-data can also be applied individually for positive and
negative values. A certain percentage of all entries with positive and the same
percentage for all entries with negative values are selected as test data. It is
therefore certain that there are always positive values available in the test-set.

3. Both of those methods use randomly selected data. However, sometimes it is
important to also consider the spatial relationship between polygons. It was
noticed that changes are usually clustered: In most cases multiple polygons
located next to each other all are changing and it is more rare that only a
single polygon is changing. It can be valuable to have polygons located next
to each other in the same test- or training set. An option would be to base the
selection of data on the tiles used for the change detection (75% of the tiles as
a training-set and 25% as a test-set)

Depending on the exact training method used, the training data also must be split
again in the actual training data and a smaller set of validation data.

4.4.2 Model parameters

As described in § 2.2, many different models are available for ML as well as for
XGBoost. Some basic decisions for the model must be taken beforehand as they
are the foundation for the whole operation. The following general parameters are
important:

• Booster
Decides which booster should be used. A booster is a kind of a framework and
defines the methods and parameter that can be used. As the whole algorithm
should be tree-based, gbtree is the only possible selection.

• Objective
Specify the learning task of the algorithm. This value is depending of the de-
sired result of the model. For binary classification the most common selection
is binary:logistic.

• Eval metric
The evaluation metric defines how the quality of the model is measured. De-
pending on the dataset itself and the desired results, different parameters can
be used here. As these parameters are exactly the same as in the later evalua-
tion of the whole model, they are described in § 4.5.2.

• Scale pos weight
With a very unbalanced dataset, such as the the one used for this thesis, this
parameter can set the focus on the positive samples and helps in faster con-
vergence of the model to improve the results. Usually the weight is calculated
with formula 4.1:

scale pos weight =
number o f negative target values
number o f positive target values

(4.1)

However, with a very imbalanced dataset this parameter can get very large
values and can be calculated instead with formula 4.2.

scale pos weight =

√
number o f negative target values
number o f positive target values

(4.2)



38 methodology

There are some parameters that are not important for change detection itself, but
are useful to adapt:

• Verbosity
This parameter controls the printing of messages. In default mode only error
messages are printed. However, especially during development it can be help-
ful to see exactly how many trees are used and the exact attributes of these
trees.

• N thread
The number of different threads (virtual cores) that are used by the algorithm.
By default, the maximum number is used. However, sometimes this behaviour
is not desired and less threads can be set with this parameter.

Learning task parameters specify the learning task and correspond to the actual
learning objective. There are more parameters available, however these are usually
less important and have a very small influence on the end-results. The following
parameters were adapted:

• Learning rate (eta)
The learning rate describes the influence of a new decision tree. A smaller
learning rate prevents overfitting and makes the model more conservative.

• N estimators
The number of gradient boosted trees and equivalent to the number of boost-
ing rounds. More trees allow more complex models but are also more likely
to overfit.

• Max depth
With the max depth the maximum depth of a tree can be set. Increasing this
number means that the trees can be more complex and possible interactions
between features can be recognized. However, it also more susceptible to
overfitting. This setting only describes the maximum allowed depth, therefore
trees can still have a smaller depth (if they are pruned for example).

• Min child weight
Defines the minimum sum of weights of all observations required in a leaf. It
is used to control overfitting, as higher values prevent learning very specific
relationships between features.

• Colsample bytree
The number of features that are randomly sampled when building a tree. In-
stead of using all attributes for a tree, each time only a subset is used, so
that every tree is built from different features. This reduces overfitting of the
model.

4.4.3 Parameter tuning

There are many different ways to tune the hyper parameters1. Usually the parame-
ters are discretized beforehand with a list of possible values [Restrepo, 2019]. The
number of possible combinations can rise quickly, with every parameter having six
values. With five parameters there would be 6ˆ5 = 7.776 possible combinations. The
following two methods are most commonly used:

• Grid Search
If there is a smaller number of parameters that are tuned Grid Search can
be applied. All combinations of parameters are tried and evaluated. This
method will give the best combination of parameters, however it can take a
long calculation time with many possible combinations.

1 see Wikipedia for a full list.

https://en.wikipedia.org/wiki/Hyperparameter_optimization
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• Random approach
In this approach a random value is selected for each parameter. The advantage
is its easy implementation and it is likely (with a sufficient number of rounds)
to come close to optimal parameters. However, there is a high chance that
often the search focuses on uninteresting parts and not every combination is
tried out. This approach is selected if there is a high number of parameters to
tune, as not every combination is selected.

A good way to avoid overfitting and increase the quality of the hyper-parameter
tuning is cross validation as depicted in figure 4.8. In cross validation the whole
test-data set is split in k multiple folds. Every evaluation is done k times, each time
a model is trained using k-1 folds and the last fold is used as validation data. The
performance measure of a k-fold cross validation is the average of the validations
in the loop. The disadvantage is that the number of models needed to be created
and evaluated is k-times bigger. When using cross-validation no validation data is
needed.

Another method to prevent overfitting is the usage of early stopping for getting
n estimators [Brownlee, 2019a]. The performance of the model is monitored with
looking at the test-set. If the performance of this set is not improving over a certain
number of rounds or is even decreasing (due to overfitting), the training is stopped.
The time-step in which the data is not improving any longer is the new number for
n estimators.

4.4.4 Training & applying the model

Change detection can be considered as a binary classification, with having the
change as True- and no change as a False-value. When training the model, XGBoost
builds a model considering the previously determined hyper-parameters. Like de-
scribed in § 2.3.3, features are randomly selected to build the best-fitting decision
trees. These trees together form the model. The training itself is done in back-
ground by calling a function and the created model can be saved as file for later use.
All data from the training-set is used to train the model.

4.5 model evaluation
In order to evaluate the model, the test-set is applied to the trained model from § 4.4.
Changes are predicted and can then be compared with the real changes. Contrary
to the training, it is very important to only use the features and never the target
values. Two options are available for binary classification:

• predict
This option will just return the most likely class, in the case of change detec-
tion either 0 (no change) or 1 (change).

• predict proba
This option will return both probabilities for the two classes (0 first and 1 as
second probability). The sum of both values is always 1.

Multiple insights can be extracted from the model. This includes the importance of
the features of the models as well as the results of the model during tuning and the
results for the final evaluation set.
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4.5.1 Feature evaluation

Feature evaluation means that the features used in the model are viewed individ-
ually. Important and less important features can be recognized and a selection of
final features for the model can be done.

Feature importance
Feature importance is already implemented in the XGBoost package. After a suc-
cessful training all features can be displayed ranked based on different criteria.

Standard evaluation criteria offered by XGBoost are:

• Weight
The number of times a feature occurs in a tree of the model. The more often a
feature occurs in a tree, the more often it is used to split the data.

• Gain
Relative contribution of a feature to the model and describes the improvement
in accuracy brought by this feature. For every tree this gain is difference and
the average value is calculated. The higher the value, the more important this
feature is for the model.

• Total gain
The same as gain, but instead of calculating the average gain the sum of all
gains is returned.

• Coverage
Relative number of observations related to this feature. Whenever a decision
is made in this tree for an end note using this feature, its coverage is increas-
ing. Like gain this value is different for every tree and the average value is
calculated. The higher the value, the more often it is used for end notes. The
values are given as a percentage for all features.

• Total coverage
The same as coverage, but instead of calculating the average coverage the sum
of all coverages is returned.

SHAP
Shapely Additive exPlanations is a library for python developed by Lundberg and
Lee [2017] and uses a game theoretic approach to explain the output of ML models.
It allows to see directly the contributions of features on a global but also individual
scale for every polygon. Furthermore, it can plot how features are correlated with
other features. An example for feature evaluation with SHAP can be seen in the
paper of Parsa et al. [2020]. Several different predictions are possible, a selection of
useful predictions for tree-based models is presented in this paragraph.

To explain the predictions of tree-based algorithms, special plots are available based
on a paper from the same authors with special focus on these algorithms [Lundberg
et al., 2020]:

Individual predictions describe the feature importance for a single entry. The for-

cePlot shows the features and how much they are contributing to push the model
output for a particular entry away from the base value, e.g. as a base value there is
a probability of 0.5 that a polygon has changed and the feature “area” lowers the
probability by 0.2.

Global predictions are predictions on the features based on all entries together. The
summaryPlot displays an overview of all used features. Each feature is plotted
with all entries and their respective feature values. The dependence plot instead is
plotting two features against each other in order to recognize correlations between
features.
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SHAP is used as an additional source for evaluating the feature importance. In
comparison to the built-in tools from XGBoost, it is focussing on the feature values
of the entries itself.

4.5.2 Result evaluation

Instead of looking at single features, the complete model is evaluated to check how
successful the model can classify unknown results. It is therefore also a measure-
ment of how useful the model will be for the future task. These evaluations are
used at many opportunities, including the hyper-parameter tuning, for model se-
lection and for the final evaluation of the project success. However, there are many
different evaluation models all with a focus on different parameters.

A general problem of all evaluations is the basic definition of what a successful
model is. Is it more important to get all True-values (maybe even with a cost of
many false classified values) or is it more important to have less False-values? This
decision is really dependent on the use-case the model is applied for.

Confusion matrix
A classic approach often used for binary classification in ML is the Confusion Matrix
(CM). It is a table with a specific layout in which the results of the model can be
displayed. An example for the layout is depicted in table 4.1.

Change
Positive Negative

Prediction
True TP TN
False FP FN

Table 4.1: Example for Confusion matrix

In this matrix the number of predicted target values (changes) are compared with
the number of actual target values. Following four combinations are possible (based
on this project):

• True Positive (TP): Real change and change detected

• True Negative (TN): No real change and no change detected

• False Positive (FP): No real change and change detected

• False Negative (FN): Real change and no change detected

The advantage of the CM is the easy visualization of the performance of the model.
The performance is not displayed as an abstract number but with values that also
people with less technical background can understand. However, there are two
problems. First, to distinguish between True or False a threshold must be set when a
probability of a change is considered as True or False. Depending on this threshold
the performance of the model can differ a lot. Second, multiple CM from different
models are difficult to compare:

• Which values should be ranked higher? Less FP or more TP?

• With a different number of input entries in different confusion matrices it is
difficult to compare them directly.

• Matrices with different thresholds cannot be compared.

A threshold is always a value between 0 and 1 and converts the probability of a
polygon into the two classes change and no change. Every polygon with a prob-
ability smaller than the threshold is considered as no change, every polygon with
a probability equal or higher is considered as a change. For the threshold usually
default values like 0.1, 0.5 or 0.9 are used. With lower thresholds more changes can
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be detected with the cost of having more non changes detected as changes. With
a higher threshold less changes are detected but also less non changes. Another
approach is to calculate the threshold mathematically2. For this approach it is tried
to find a point in which the combined value of precision and recall is the maximum.

Curves
Curves are a visual description of the model and can bypass the problem of setting
an initial threshold. Instead of having one threshold, all possible threshold values
from 0 to 1 are displayed. It is important to know that the threshold values are not
displayed on these curves. These values are implied with the curve itself. Different
curves are available that can highlight different attributes of the model [Brownlee,
2018]:

• ROC-curve
This curve, also known as Receiver operating characteristic (ROC)-curve, shows
the trade-off between the True positive rate (TPR), also known as sensitivity
and False Positive rate (FPR), also known as inverted specificity, with the first
on the y-axis and the former on the x-axis. The TPR tells what proportion of
positive labeled entries are correctly labeled, the FPR tells the proportion of
negative labeled entries that were incorrectly labeled. At the top right corner
everything is labeled as positive, at the bottom left corner everything is labeled
negative. The probability for a change is 0.0 on on the left side of the curve,
whereas it is 1,0 is on the right side.

– Specificity
This value, also known as True negative rate (TNR), is part of the ROC-
curve. It is calculated using formula 4.3.

speci f icity =
tn

tn + f p
(4.3)

– FPR
The FPR is another part of the ROC-curve. It is calculated using formula
4.4.

FPR =
f p

f p + tn
(4.4)

The more the curve tends to the upper left corner, the better the model makes
correct predictions. An ideal curve goes straight up and then horizontal to the
right. When using a random assigner, the curve would be a straight line from
the bottom left to the top right. Every model that has a line below this curve
is a worse classifier than using a random approach.

• Precision recall curve
As the name suggests, the Precision-Recall (PR)-curve plots the precision of
a classifier with the recall of a classifier. Depending on the threshold these
values are changing. These curves are more commonly used with imbalanced
datasets where the few examples are positive, as the high number of FP are not
displayed. For this curve only the correct prediction of the true target values
are important.

The more the curve tends to the upper right corner, the better the model
classifies the positive results correctly.

2 see here.

https://stackoverflow.com/questions/28719067/roc-curve-and-cut-off-point-python/
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• Economic curve
The economic curve is a curve used by Readar for many projects. It describes
the number of entries that must be checked manually to assure a certain per-
centage of found changes. The more the the curve tends to the upper left
corner, the more economic is the model.

With balanced datasets it is better to use the ROC-curve, whereas the PR-curve is bet-
ter used with imbalanced datasets. For imbalanced datasets the ROC-curve gives too
optimistic views so that the performance of the model is overestimated [Brownlee,
2018].

Scores
Scores are defined in this thesis as evaluation criteria consisting of a single number
that can describe the output of a model. There are two main sources from which
these numbers can be derived: The CM and from the curves of the model.

Like the CM, the derived scores are dependent on the threshold value. There are
more scores available, however the presented scores are the most common ones
used in a ML context [Ferreira, 2018; Gunawardana and Shani, 2009].

• Accuracy
One of the best-known evaluation scores both in binary classification as well
as in ML is the accuracy. It is calculated using formula 4.5 and is the fraction
of right classified polygons.

accuracy =
tp + f p

tp + f p + tn + f n
(4.5)

• Precision
Precision gives an indication how many of the positive predicted results are
correctly classified and is calculated using formula 4.6. It is an important
indicator to consider if the number of FP should be reduced.

precision =
tp

tp + f p
(4.6)

• Recall
This value, also known as sensitivity, gives the percentage of positive changes
that were recognized correctly. It is calculated using formula 4.7.

recall =
tp

tp + f n
(4.7)

• F1 Score
The F1 score also measures the accuracy, however only the positive results are
important. It is calculated using formula 4.8.

F1Score = 2 ∗ precision ∗ recall
precision + recall

(4.8)
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There are also parameters that are derived from curves and are therefore indepen-
dent from setting a certain threshold.

• AUC
The Area under curve (AUC) is used to describe a curve in a single number.
It describes how much area of a plot is located under the curve and is used
as a method to compare different models. To assure comparability between
different plots this number is expressed as the percentage of the total area of
a plot. Even though AUC is the general name for this technique, it is usually
referred to the ROC-curve.

• PR-AUC
Similar to the normal AUC, this parameter describes the area under curve,
however in this case it is referred to the AUC from the PR-curve.

4.6 locating changes in polygons
Many polygons only cover a small area and if a change is detected, usually the
change is occurring in the whole extent of the polygon. However, for some polygons
(either because they have a large area and/or a very irregular shape) only a part of
the polygon is changing and localizing this change visually in this polygon is more
difficult.

A possible solution is to split polygons in smaller units and apply a change detection
on these units. The change detection will therefore be refined and only the polygons
that contain changes are marked. Then it is easier to localize the changes in large
polygons. Splitting the polygons can be done in different ways:

• Geometric splitting
The simpler method is splitting the polygon in smaller polygons just based on
geometric algorithms. This can include using a grid, triangulation or methods
that split a polygon in sub-parts of equal size and shape.

• Image segmentation
A more progressive method would use image segmentation methods to split
the polygons based on certain attributes. All parts where this attribute is
similar form one unit. This can be done based on colour, height or both.

A positive side effect next to the localization of the changes is that the results of
the model are improved. Many errors in the classification are caused by polygons
in which only a small subset is changing. Due to its small extent, this change
is not depicted within the features of this polygon. The statistical values are less
influenced. In the smaller subsets of this polygon it is more likely to have polygons,
in which full extent of the area is changing. This is depicted better within the
features and it is more likely to detect this change.

4.7 possible obstacles
In the following section obstacles for this project and their mitigations are listed.

• Temporal differences in the aerial images
As visible in figure 4.9 the input aerial images can be very different depending
on the recording time. Vegetation in spring is most likely very green and
prevent the view to objects beneath it, whereas in winter it is more brown and
objects beneath can be seen. Therefore, the colour features of some polygons
will be very different and hard to classify using ML. A possible solution to this
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problem would be to rely less on the colour information and more on features
reluctant to temporal changes.

Figure 4.9: Same scene in 2017 (left) and 2018 (right)

• Variation inside the classes
The same classes can have a big variation and therefore a different shaping
with multiple colours or textures. Again figure 4.9 is a good example for this
obstacle. This street has a lot of deviations (trees) that will influence especially
the RGB values for this polygon. Other streets do not have these deviations.
Still both need to be correctly identified as streets. Not only the colour in-
formation but also texture information must be considered with caution here.
More successful is in this case a focus on the shape of the polygon (a street is
long but thin).

• Imbalanced number of classes
Cities undergo constant changes, even though compared to the total size of the
city the number of changes are small (for the research area of Haarlem there
are around 150.000 polygons and 1.400 changes, around 1%). This imbalance
makes it difficult to get a good change detection using ML. A possible solution
would be to increase the importance of detecting true changes. Furthermore,
it would be possible to increase the number of training data with changes, so
that a balance between changes and non-changes is assured.

• Small proportion of change
Sometimes only a small part of the polygon is actually changing. A good
example would be a huge field on which a small house is built. Most of
the polygon is still a field and only a little bit has changed. Many features
(like average) will only be slightly changed and a detection of this change is
difficult. Features must be found that change significantly even if only small
changes occur (and are furthermore robust to temporal changes).
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In this chapter the exact implementation of the algorithm is described. This includes
a specification of the input data and the decisions made during the execution of the
project. Afterwards the results and computation times are displayed and compared
with other methods.

5.1 research area
The research area for this master thesis is the municipality of Haarlem, a city located
northwest of Amsterdam in the Netherlands (see figure 5.1). All data and therefore
the training and validation of the ML-algorithm is limited to the boundaries of the
city.

Figure 5.1: Location of Haarlem ( c© Wikipedia)

The city was selected to be the study area, as it has a good BGT-quality and aerial
imagery in high resolution is available. Both digital map and aerial images are
available for the consecutive years of 2017 and 2018. With this imagery a point cloud
could be created via photogrammetry. Furthermore, a good selection of different
surface textures can be found, among them a traditional inner city core with small
houses, residential areas with gardens, business and industrial areas, waterways
and even some agricultural area.

5.2 input data
In the following sections the input datasets of the BGT (§ 5.2.1), the aerial images (§
5.2.2) and the point cloud (§ 5.2.3) are specified.

5.2.1 BGT

The polygons from the digital map are available in a structured format. Each row is
one unique polygon and consist of a unique ID (the gml-id), the class and its exact
location and shape. The data is available for both 2017 and 2018.

https://commons.wikimedia.org/wiki/File:LocatieHaarlem.png
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The classes of the BGT are used as a category for the change detection. However, not
all classes are considered in this thesis for the following reasons:

• For some classes the small sample size is too small and too little data is avail-
able to train a model for these particular classes.

• Some classes (for example kunstwerkeel - additional infrastructure resources)
consist only of polygons with a very small shape and the resolution of the
aerial images is not high enough to extract meaningful information.

• Some classes are not visible on the aerial images and no information can be
extracted. Examples include tunneldeel (tunnel structures under the ground)
or overbruggingsdeel (parts of street that are on bridges; looking exactly like
the class wegdeel)

The classes used for change detection in this master thesis can be seen in figure 5.2.

Figure 5.2: Used BGT class in this thesis (marked with red lines)

Table 5.1 gives an detailed overview about the distribution of the objects. Even
without the other possible classes, the input BGT data covers over 99% of the city
area of Haarlem with a total number of 161.762 objects.

Class Description Number of Objects coverage (km2)

Pand Buildings 81.104 5.715

Wegdeel Streets & ways 32.742 6.381

Gebouwinstallatie Building installations 1.536 0.018

Overigbouwwerk Other buildings 1.495 0.078

Waterdeel Waterways 2.048 4.681

Begroeidterreindeel Vegetation 12.777 8.533

Onbegroeidterreindeel Bare ground 19.894 6.751

Ondersteunendwaterdeel Supporting waterways 3.050 0.446

Ondersteunendwegdeel Supporting streets 7.116 0.935

Table 5.1: Amount and coverage of BGT-objects

The data for the BGT is available on websites of the Dutch Government 1.

1 see here.

https://www.pdok.nl/downloads/-/article/basisregistratie-grootschalige-topografie-bgt-
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5.2.2 Aerial images

The aerial images used in this thesis are part of the stereo10-dataset. This dataset
is provided by the company Cyclomedia and contains true-ortho imagery for the
complete Netherlands. It is offered on an annual basis and has a resolution of 10

cm. To assure its usability for digital processing, the images are usually taken in the
leafless season of early spring and late autumn and with no present disturbances
like clouds. A maximum visibility is therefore assured.

Images for both 2017 and 2018 are used as input data. They are available in the TIFF-
format and consist of three bands (RGB). However, these images were captured in
April and thus have already some green vegetation.

5.2.3 Point cloud

The point cloud is created with 3D photogrammetry from the aerial imagery used
in this thesis. It was created by the company using an internally developed ap-
proach. Complementary to the default algorithms used for 3D photogrammetry a
ML technique is used to improve the results.

As the point cloud is created by photogrammetry, the number of points is equally
distributed for the different surfaces. For some parts that are occluded on the aerial
images no height information is available. However, in comparison to the total area
these parts are negligible.

5.2.4 Changes

Based on the criteria defined in § 4.2.3 the changes were detected manually. In
order to ensure a maximum accuracy with no polygons left unchecked, the whole
research area was split in tiles of 250x250m and each tile checked separately. In
total, there are 1.378 polygons that are changing between 2017 and 2018. Compared
to the total number of polygons, only 0.85% of the polygons are changing. Table 5.2
shows the exact distribution of changes.

Class Changes (% of class)

Pand 464 (0,57)
Wegdeel 323 (0,99)
Gebouwinstallatie 4 (0,26)
Overigbouwwerk 4 (0,27)
Waterdeel 6 (0,29)
Begroeidterreindeel 271 (2.12)
Onbegroeidterreindeel 186 (0,03)
Ondersteunendwaterdeel 6 (0,2)
Ondersteunendwegdeel 114 (1,6)

Table 5.2: Changes per class

5.3 tools
The prototype software was mainly created in Python with additional Matlab scripts
called via an API. Data storage and management was done in PostgreSQL with the
PostGIS extension. For data preparation, visualization and evaluation QGIS was
used. In the following subsections these components are described.
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5.3.1 PostgreSQL

Data storage is done using the database management system PostgreSQL with Post-
GIS extension for spatial data. Figure 5.3 shows the structure of the database.

Figure 5.3: Database scheme for the features

The two feature tables (features 2017 and features 2018) contain all the collected fea-
tures for the polygons respective for the separate years. The unique id (derived from
the gml id) is the primary key. The column polygon contains the exact shape of the
polygon. For both years the id and the shape are from 2017, as the polygons from
2018 are not known. As one feature table contains around 160.000 entries and to en-
able a smooth selection via geometry, the polygon column has a spatial index. The
table changes is linked with the gml id from 2017 to both tables features 2017 and
features 2018. An ID is only located in the table changes if the belonging polygon is
changing.

Three tables store all the data needed for the change detection. Note that only a
simplified schema is shown in figure 5.3, in reality the table for the features consist
of more columns (one column for each collected feature). The actual input data
itself is not stored in the database but as files.

5.3.2 Python

Python is the main language used in this application with all major tasks developed
as python applications. The advantages of python are its easy readability, easy-to-
use environments (both developing and executing) and its extensive number of
libraries. The following libraries are used (this list is not complete but a selection of
the most important libraries):

• NumPy
NumPy2 adds support for multi-dimensional arrays and matrices along with
mathematical operations. It is mainly used for calculating features.

• Pandas
Similar to NumPy, Pandas3 allows to handle multi-dimensional arrays and
matrices. The focus is less on mathematical operations and more on the data
storage. It supports headers for the arrays and a mixing of numeric and text
values (in comparison to NumPy). It is used for the whole data storage and
for the communication with XGBoost.

• SciPy
SciPy4 is a library used for scientific computing. It adds support for many
image recognition features that are used for change detection. Furthermore, it
enables additional settings and evaluations for XGBoost.

2 see website of Numpy.
3 see website of Pandas.
4 see website of Scipy.

https://numpy.org/
https://pandas.pydata.org/
https://www.scipy.org/
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• Scikit-learn
Scikit-learn5 is a library specially designed for ML. It adds many algorithms
for classification, regression, etc. as well as expanded functionalities for XG-
Boost.

5.3.3 XGBoost

Even though XGBoost is used in this thesis as a python plugin, due to its impor-
tance it will be mentioned separatly. Next to python, XGBoost is available in more
different languages (like R, C, Java, etc..).

There are multiple ways to access the XGBoost objects and functions, the most com-
mon method and the one used in this thesis is accessing it with the integration of
Scikit-learn. To use the algorithm, a new XGBoost-object must be created, whereas
the exact statements are different for the categories mentioned in § 2.2.2.

With these objects all required tasks can be executed: Tuning, training and predict-
ing the target values. These models can be saved as files, allowing a later usage.
For more information about the syntax and how to use this library it is referred to
Brownlee [2016b].

5.3.4 Matlab

Matlab is used for two special algorithms that are available in this environment:
Calculation of the shadow and the Fourier transform. Only the Matlab-engine and
the files containing the code need to be available, the algorithms can be called via
python and processed further.

5.3.5 QGIS

QGIS is an open-source geo-information-system and in this thesis mainly used for
visualizing and evaluation of the geo-data. It is possible to display the polygons,
aerial images and DSM in order to get own visual impressions of the data. Addition-
ally, the detected changes can be displayed here. The manual change detection and
the splitting of the polygons is done using QGIS.

5.4 design decisions
In this section, the particular design decisions made during the implementation are
explained. The exact numbers and parameters can be found as well as decisions for
certain methods. It is separated in following paragraphs:

• Data preparation (§ 5.4.1)

• Feature extraction (§ 5.4.2)

• Model training (§ 5.4.3)

• Model evaluation (§ 5.4.4)

• Locating changes (§ 5.4.5)

5 see website of Scikit.

https://scikit-learn.org/stable/
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5.4.1 Data preparation

The grid approach is used to create the DSM. A self written python application is
used to convert the point cloud. To simplify the feature extraction, the cell-size
and extent of the DSM is identical to the cell-size and extent of the aerial image.
Afterwards QGIS is used to calculate the slope and the aspect from the DSM.

As there are many overlapping polygons in the BGT (see § 4.2.2), the polygons were
overlayed and split if necessary. The split is done based on a ranking, in which
the higher ranked polygon is kept and the lower ranked is cut if polygons are
overlapping. If the cutted polygon consists of multiple polygons afterwards it is
converted into a multi-polygon. Categories are ranked in the following order with
consideration of which polygons are usually visible in comparison to each other.

1. gebouwinstallatie

2. pand

3. overigbouwerk

4. begroeidterreindeel

5. onbegroeidterreindeel

6. wegdeel

7. waterdeel

8. ondersteunendwegdeel

9. ondersteundendwaterdeel

To support the manual change detection, the whole research area was tiled tem-
porary in squares of 250x250m and each tile was checked individually for existing
changes. The rules described in § 4.2.3 were applied. Polygons with a surface area
of less than 2m2 are not considered for change detection. Their size is too small to
extract meaningful information and ensure a successful classification of changes.

5.4.2 Feature extraction

Even though many features can be extracted relatively simply from the input data,
for some features conversion of the data or other procedures are required. This
section describes the decisions made during extraction of the features:

• One feature in the dataset, precisely the category of the polygon, is not numer-
ical but in text-format. Even though One-Hot-Encoding or binary encoding
are technically the correct methods, simple numeric encoding was selected
as according to tests made by Laurae [2017], the differences in quality are
negligible with data having a small number of cardinalities.

• For the feature extraction using Fourier transformation and shadow calcula-
tion, algorithms were already developed for another project of the company
and the existing Matlab-scripts could be reused.

• For the Haralick features and the LBP a python package (Mahotas6) for com-
puter vision was used. For more information for Mahotas it is referred to
Coelho [2013].

6 see website of Mahotas.

https://mahotas.readthedocs.io/en/latest/
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During training and evaluating the intermediate models using the test-data, some
features were removed or new features were tested and included (if they improved
the results). The final results can be found in § 6. The following new features
improved the results and were included (some features did not improve the results
and were discarded; their description can be found in § 5.4.2):

• Bhattacharyya distance
XGBoost can also be used for multi-label classification, meaning that instead of
two probabilities for True and False it is possible to calculate the probabilities
for a polygon to belong in multiple classes. A simple model was created
(with tuning and training exactly like in the change detection and using the
same features) for classification. For each polygon and each year a probability
distribution was calculated. It consists of a probability for every BGT-class of
how likely this polygon belongs to this class.

The Bhattacharyya distance describes a property used in statistics and mea-
sures the similarity of two different probability distributions. It is used to con-
vert the two distributions of both years into a single number that expresses
how similar the two probability distributions are. This is synonymous to the
probability of a polygon having the same class in both years. This value turned
out to be an important factor for the change detection, even though the same
features are used for both multi-label classification and change detection. In-
spiration for using the Bhattacharyya distance and more information about
this feature can be found in Choi and Lee [2003].

• Canny edge
Canny edge detection describes an algorithm used to detect edges in images.
With this algorithm it is possible to get information about how homogeneous
an image is, as more edges imply more situations in the polygon in which
sharp changes in the brightness, surface material or depth (=height) are hap-
pening. It is successfully used for classification in both XGBoost [He et al.,
2017]) or other approaches [Huo et al., 2020]. In this thesis canny edge is
converted into a numeric value by counting the percentage of edge-pixels in a
polygon.

• nPix median height
A problem especially for change detection involving streets are the different
height levels caused by cars. A street without cars is completely flat, but with
cars there are different height levels. A solution to this problem is this feature.
The percentage of pixels that are in maximum 2m distance to the median of
the height is counted. This can tell if the polygon is consisting of more flat
areas or does have spikes in both directions up and down (these cancel each
other out and the median is still similar to flat areas). With the difference of
2m most cars are still counted as close to the median. Empty and crowded
streets therefore have a similar value for this score.

• Differences
After the unsuccessful attempt to use only the differences as input for the
model (see here), the differences were included as an additional feature. This
could improve the model strongly, especially in reducing the number of FP.
The differences allow a direct inclusion of the information how high the
change between two features is instead of deducing it from the two values
(As an example height in 2017 was 20m and height in 2018 was 10m: With
a tree-based model this information of the difference of -10m can only be
extracted if both values are in the tree).

bf:other_attempts
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However, three features were removed, as they influenced the results notable neg-
atively: height average, height minimum, height maximum. Due to errors in the
point cloud (see in § 6.5 the point ”Usage of percentiles”) these features contained
data that did not represent the real situation and would lead the algorithm astray.

Other attempts
More attempts with different constellations of features were examined. These at-
tempts were unsuccessful, as they could not improve the results of the model. How-
ever, for completeness these attempts should be shortly described in this section.
As these attempts were not part of the workflow the results are not displayed in
chapter § 6. However, for interested readers the results can be found instead in the
annex at § 8.2.

• No Colours
Many temporal changes in the images are caused by changes in the visual
appearance (especially changes in the vegetation due to the seasons or sur-
face changes like different concrete). It was checked if all features excluding
only RGB based features in the first attempt and excluding RGB and HSV based
features in the second attempt can still deliver good or even better results.

• Only difference
Instead of taking the features for 2017 and 2018 separately, the differences
between both values are taken where applicable (e.g. not for category). The
advantage of this approach is that only half the features are used for training,
testing and applying the model with less computation times.

5.4.3 Model training

For the splitting of the data in training- and test-set, the second described method
from § 4.4.1 was chosen. This guarantees that in both sets all different kinds of
changes can be found and a reasonable training and testing can be executed. The
ratio between training- and test-set is 80:20, with 129.142 entries in training and
32.285 entries in test.

The tuning of the hyper-parameters was initialized with the parameters displayed
in table 5.3.

Parameter Initial value

Objective binary:logistic
eval metric aucpr

learning rate 0.3
max depth 6

min child weight 1

gamma 0

colsample bytree 1

subsample 1

scale pos weight 10.78

n estimators 1000

Table 5.3: Overview of tuning parameters with initial values

The initial parameters are based on the default parameters of XGBoost. These pa-
rameters are designed by the creators of XGBoost to deliver good results for many
applications. They are a solid foundation to start the tuning. The only differences
are the objective, scale pos weight and the eval metric. Instead of using the default
metric ”error” (wrong cases/all cases with a threshold of 0.5), it was decided to
use a threshold-independent metric like AUC or pr auc. This metric is heavily influ-
enced by the expected high number of TN. Usually AUC is not used as a metric, as
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the expected value will be really high in the beginning already. aucpr, the area un-
der curve for precision/recall is only focussing on the number of correctly classified
positive entries and is used instead.

The tuning process itself was done accordingly to the description of Jain [2016].
Multiple rounds of tuning were performed with changing the parameters separately
per round.

The parameters were tuned in the following order with the intermediate results in
brackets. The number of estimators was tuned multiple times, as the correct number
also depends on the other hyper parameters.

1. n estimators (660)

2. max depth (7) and min child weight (3)

3. gamma (0.0)

4. n estimators (394)

5. subsample (0.9) and colsample bytree (0.8)

6. reg alpha (1e-5)

7. n estimators (394)

The tuning process was done with k-cross-folding, with k being five. In this way
more consistent results with a smaller variance are guaranteed. To prevent overfit-
ting, early stopping rounds was set to 10.

The actual training of the model is simple: An XGBoost model with the tuned
parameters is created as a python object. Afterwards the training data (both the
features and the target-values) are given to the model and the training can start.

5.4.4 Model evaluation

For evaluations four different thresholds were compared: 0.9, 0.5, 0.1, 0.01. Whereas
0.9 and 0.5 are commonly used as thresholds for binary classifications, the latter
were introduced to decrease the number of FN. The calculated best threshold for
the model was 0.00094, so that a threshold of 0.001 was additionally tested.

To get more insights, it was decided to apply predict proba on the test-set. The
returned probabilities allow a better insight in the data and it is possible to define
an own threshold separating change and non-change. It was decided to apply all
evaluation methods presented in § 4.5 on the model in order to compare them. Note
that the prediction is only working if exactly the input features used for the training
are used as an input. However, these columns must not necessarily contain data,
they can also be filled with NaN-values.

5.4.5 Locating changes

For the splitting of the polygons the geometric approach was chosen. In contrary to
the image segmentation it is independent from the quality of the aerial images and
good results with mostly squared polygons are very quickly available. For splitting
a QGIS-plugin named PolygonSplitter7 was used. All polygons with an area bigger
than 10.000m2 were split in smaller polygons of roughly equal size of 1.000m2. 711

polygons are split in 11.396 new polygons.

Similar to the original polygons, the same change workflow with extracting features
was applied to the split polygons. However, no new model was trained, instead the
already existing model could be re-used with good results.

7 for more information see PolygonSplitter.

https://plugins.qgis.org/plugins/polygonsplitter/
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5.5 computation times
When describing the computation times it must be differentiated between tasks that
need to be executed only once for the creation of the model and the tasks that must
be executed again for every change detection. The reported times are derived on
an Acer Laptop with a i5 2.3GHz Dual core. For many tasks parallel calculating is
possible, so that multiple cores would speed up the complete process.

Two tasks take most of the calculation time, however they must only be executed
once:

• Calculating the features
The computation times for calculating the features is correlating mostly with
the number of entries. A single feature is calculated very quickly and only
makes a small difference. However, the area of a polygon has a big influence.
Whereas it took around 50 minutes for the biggest polygon to calculate all fea-
tures, for the smallest one it took only 20 milliseconds. Based on the average
size of a polygon a duration of 1.2 seconds for each entry can be assumed.
Having 155.149 polygons, the complete calculation time is around 50 hours,
which is also congruent to the experience. Note that this time must be dou-
bled for the entire process, as features must be calculated separately for both
years.

• Tuning of the hyper-parameters
The computation time for the tuning depend on three factors. First, the size
of the training-set and the number of splits. Second, the number of hyper-
parameters with the number of different possible values. Lastly, especially
max depth and n estimators can influence the computation times. The tuning
described in this chapter took around 20 hours.

All other required tasks for the creation of the model do not have noteworthy com-
putation times and are finished in a range from almost instantly up to maximum 10

minutes.

Getting the results for the test-set when applying the model takes around one
minute.
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In this chapter the results of the change detection algorithm will be presented. Note
that only the raw numbers can be found here. A discussion and explanation of the
results can be found in § 7.

Figure 6.1 displays how the results could be submitted to a potential customer. He
would receive the polygons of the digital map each having a prediction score. The
more blue the polygon is, the higher its score. White polygons have a low prediction
score. Note that there are many gaps in the data, as only the polygons of the test-set
are displayed.

Figure 6.1: Example result of the change detection

Some more example images for successful change detection can be found in the
annex at § 8.3.

§ 6.1 presents the results for the test-set that was created during the training of the
hyper-parameters. § 6.4 shows the comparison to direct BGT changes and baseline
predictions.

6.1 model results
For the XGBoost classification 80% of the data was used for training and 20% of the
data was used for testing. Changes can be found in both sets with the same ratio.
All results in this section are based on this test-set. All features from § 5.4.2 are used
in the model.
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6.1.1 Confusion matrices

This section describes the CM for the described test-set that includes 20% of all
polygons and changes. To visualize the effect of changing the threshold, the results
of other matrices with different thresholds can be found in table 6.1.

Threshold TN FP FN TP

0.9 32.006 3 160 116

0.5 31.996 13 128 148

0.1 31.931 78 89 187

0.01 31.600 409 63 213

0.001 30.248 1.761 22 254

Table 6.1: Results for confusion matrix based on different thresholds

For some object-types, change can be detected more easily than for other. To high-
light this, table 6.2 shows the CM for different BGT-groups. As the highest number
of TP were found with the threshold of 0.001, the threshold for these matrices is
likewise set to this value.

bgt-group TN FP FN TP

building 16.478 215 5 90

street 6.932 585 8 80

surface 5.846 585 8 83

water 992 17 1 1

Table 6.2: Results for confusion matrix based on different groups

As described in § 1.3 the objective of this thesis is to support change detection and
set focus to areas where many polygons are changing. The matrices in table 6.3
show the results of change detection with each a different processing of FN. The
entry in the first columns shows the maximum distance a FN must be next to a TP

that it will also be classified as a TP. Again the thresholds is set to 0.001.

position TN FP FN TP

without 30.248 1.761 22 254

adjacent 30.248 1.761 16 260

10m 30.248 1.761 15 261

25m 30.248 1.761 13 263

Table 6.3: Results for confusion matrix based on different adjacency levels

6.1.2 Scores

This paragraph shows the scores for the model. As the first four scores depend
on the threshold, their values are displayed for different thresholds. The last two
scores are independent and therefore are only a singe value.

• Accuracy

Threshold 0.9 0.5 0.1 0.01 0.001

Accuracy 0.9950 0.9956 0.9948 0.9854 0.9448

Table 6.4: Accuracy for different thresholds
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• Precision

Threshold 0.9 0.5 0.1 0.01 0.001

Precision 0.9748 0.9193 0.7057 0.3424 0.1261

Table 6.5: Precision for different thresholds

• Recall

Threshold 0.9 0.5 0.1 0.01 0.001

Recall 0.4203 0.5362 0.6775 0.7717 0.9203

Table 6.6: Recall for different thresholds

• F1-Score

Threshold 0.9 0.5 0.1 0.01 0.001

F1-Score 0.5873 0.6773 0.6913 0.4744 0.2217

Table 6.7: F1-Score for different thresholds

• ROC-AUC The ROC-AUC-score for the model is 0.9843 and is independent
from the threshold.

• PR-AUC The PR-AUC-score for the model is 0.7358 and is independent from
the threshold.

Figure 6.2 displays all evaluation scores together.

Figure 6.2: Evaluation scores for the model with different thresholds

6.1.3 Curves

The following curves display the results of the models independent from a thresh-
old. Three different curves are selected. The first and the last curve look similar,
however they are calculated differently and represent different success criteria.
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The first curve (figure 6.3) displays the classic ROC-Curve with the inverted FPR

(x-axis) and the TPR (y-axis) for different thresholds. The blue line represents the
condition where TPR = FPR.

Figure 6.3: ROC-Curve for the model with division (blue line) in good (upper left) and bad
(bottom right) classifications

Going right on the y-axis means to lower the threshold and find more FP. Following
annotations can be seen for this curve:

• At an FPR around 0, the line rises quickly to a TPR of 0.7, that means 70% of
the changes can be identified with very few FP.

• Until an FPR of 0.05 the curve is very steep, so with a small increase in the
number of FP many TP can be found.

• From an FPR of 0.05 to 0.4 the curve is rising less, so small increases in the
number of FP only give small increases in the number of TP.

• Over an FPR of 0.4 the number of FP is rapidly increasing while the number TP

is almost not increasing.

The second curve (figure 6.4) displays the PR-curve with the precision and recall for
different thresholds in orange. The blue line shows the precision of a classifier with
no skill and is related to the percentage of changes in the dataset. In this model the
highest threshold is on the left and the lowest on the right.

• Up to a threshold of 60%, the precision is constant close to 1, meaning almost
no FP are detected but up to 40% of the TP.

• From a threshold of 60% to a threshold to 40% the precision sinks relatively
flat, that means while gaining a smaller amount of FN, the number of FP is
only rising slowly.

• From a threshold of 40% to 20%, the precision is falling more than the recall
is rising, hence the number of detected FP is rising more quickly than the
number of detected TP.

• From a treshold of 20% to 0% both the numbers of FP and TP are balanced.
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Figure 6.4: Precision-Recall Curve for the model with no-skill curve (blue)

The last curve (figure 6.5) is showing the economic curve of the model. The x-axis
is the percentage of all entries and the y-axis is the number of changes. The yellow
line represents the model, the blue line marks the point where 95% of the changes
are found.

Figure 6.5: Economic curve for the model with 95% bar (blue)

Following annotations can be done for this curve:

• Around 60% of the changes can be found immediately as they have the highest
probability scores.

• In order to find 95% (a common contract threshold) of the available changes
10% of all entries need to be checked.

• To find 100% of all changes 25% of the entries must be checked.
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6.2 feature importance
The feature importance is displayed from both SKlearn and SHAP. However, not
all features are displayed, as the corresponding graphs would contain too many
entries and are difficult to read. Instead every time the 20 most important features
are selected. To compare the relevance for all different models, a model was trained
just using the each 20 features of each graph and check their respective PR-AUC-
Scores.

Sklearn
In figure 6.6 the results for the five different importance options are displayed. An
enlarged image can be found in the annex. The option weight is the default op-
tion that is previewed when using the default feature-importance algorithm from
XGBoost.

Figure 6.6: Feature importance plots from SKlearn

Figure 6.7 displays the importance scores that were calculated using the SHAP-
library.
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SHAP

Figure 6.7: Feature importance from SHAP (height first perc 18 cut off due to space limita-
tions, original value is 0.95)

Score
The PR-AUC for different models can be seen in table 6.8. As only the most 20

values are used for training and testing, the scores are lower than for the final
model.

Cover Gain Weight Total Cover Total Gain SHAP

0.5459 0.6287 0.6110 0.6275 0.6559 0.5975

Table 6.8: PR-Scores for the different importance options

6.3 localizing changes
The test-set is relatively small and the number of polygons that are bigger than the
certain threshold are only a subset of this data. Therefore, evaluations are likely to
be inaccurate and need to be repeated with a larger set.

However, some information from the results of the change detection for the split
polygons can be extracted. The changes for the split polygons were not available
and had to be created by a manual change detection like described in § 4.2.3. The
same procedures as for the normal evaluations were applied.

Table 6.9 displays the scores for the split polygons again with a threshold of 0.01 for
the first four columns.

Accuracy Precison Recall F1-Score ROC-AUC PR-AUC

0.09272 0.1913 0.7919 0.3081 0.9351 0.5661

Table 6.9: Evaluation scores for the split polygons



6.4 comparisons 63

Furthermore, the CM for the same threshold of 0.01 can be found in table 6.10.

TN FP FN TP

9.829 740 46 175

Table 6.10: Confusion matrix for the split polygons with a threshold of 0.01

Figure 6.8 shows a good example of where the change detection is both helpful
in localizing changes and improving the general results (the whole polygon was
previously classified as a FN). The structure of this field is untouched, however in
the top and right edge a ditch was dug. The more red a polygon, the higher the
probability of a change.

Figure 6.8: Example for changes localized with split polygons

6.4 comparisons
Even though it is already clear that the algorithm can detect many changes and
therefore is able to support the manual change detection process, in this chapter it
will be compared to some basic methods to estimate the added value through this
method.

6.4.1 Comparison to BGT changes

As the digital maps for both years are available, it is possible to extract changes
between both files. Whenever polygons from different years are overlapping but
classified in a different way, there was a change. The changes directly derived from
the map however can only detect changes in which different classes are involved.

However, a comparison between the change detection from the ML algorithm and
the BGT changes can only give a rough estimate. The algorithm is detecting all
polygons that have changed fundamentally, for example in the visual appearance
or the height, even if the classes remain the same. The changes directly derived from
the map however can only detect changes in which different classes are involved.

There are 5586 overlapping polygons in the BGT with different categories in 2017

and 2018. However, this high number is caused by inaccurately drawn polygons.
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Some polygons were re-drawn in 2018 and do overlap in small parts with adja-
cent polygons from 2017. A visual check in QGIS also shows that many ostensibly
detected changes are no changes in reality.

6.4.2 Comparison to baseline predictions

A common approach in ML is to apply simple algorithms to the data in order to
have a point of comparison to the more advanced algorithms. These algorithms are
referred to as baseline predictions [Brownlee, 2016c].

One of the most basic models that is often used for binary classification is the logistic
regression as described by Pant [2019]. A logistic function (an S-shaped curve that
predicts probability and with values between 0 and 1, not to be confused with a
linear function) is fitted to predict changes of the input data. No logic in learning
relations between the features is implied, in its foundation it is just fitting a line to
minimize the distance to the residuals. Table 6.11 display the results for this method
while using a threshold of 0.4 (maximum F1-score) :

Score Accuracy Precision Recall F1-Score ROC-AUC PR-AUC

Value 0.651 0.0198 0.8225 0.0387 0.8199 0.0783

Table 6.11: Results for logistic regression

Another baseline prediction with more consideration of the small number of changes
is the outlier detection model. Changes happen so rarely considering the total
number of polygons that they can be considered as outliers. The outlier detection
model is specialized in finding outliers in a dataset. Isolationforest is a model from
SKlearn and designed for this kind of detection. Table 6.12 display the results for
this method while using a threshold of 0.4 (maximum F1-score) :

Score Accuracy Precision Recall F1-Score ROC-AUC PR-AUC

Value 0.8497 0.0252 0.3007 0.0466 0.0.6003 0.0146

Table 6.12: Results for Outlier detection

It can be seen that in both cases the algorithm developed in this thesis outperforms
the baseline predictions across all evaluation criteria.

6.5 recommendations
During the creation and execution of the code occasional obstacles emerged that
had to be overcome. These obstacles and their solutions as well as general rec-
ommendations for execution are described here, as they can help reproducing the
obtained results or when creating an own XGBoost-classification.

• Use seeds
Whenever data must be shuffled to get a random order or a random subset
must be selected from a dataset it is useful to include the seed-parameter.
This parameter, usually a number, allows to extract the identical same ran-
dom order/subset again from a function, provided the seed is the same. For
debugging and evaluation the exactly same situation can be restored.

• Copy data
A basic principle in programming but often disregarded is the usage of copy-
statements in python. If the data is copied with an equal sign, only a new
reference to the original data is made. Changing the data of this supposedly
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copied data will also alter the original data. This can lead to errors in the code.
Only a copy statement will really copy the data.

• Use percentiles
If the data is likely to have errors (for example spikes in the point cloud data)
it is better to use percentiles instead of absolute values as features. Figure 6.9
depicts an example, where on a football-field with no visible elevation (left
picture) the DSM detects spikes up to 12m (red dots on the right picture). So,
instead of using the min/max values for height, the 1% / 99% percentile will
be more accurate. Instead of describing the values of spikes, it is then more
likely to describe the real height of the data.

Figure 6.9: Aerial Image from 2018 and the corresponding DSM

• Error handling
Especially for the feature extraction with its long computation time and work-
ing with the raw input data the implementation of error handling is necessary.
Raw input data can always have errors (for example a polygon with only
NaN-values). Without error handling the script is halted. Especially when the
algorithm is running on remote servers or during the night this can delay the
whole procedure. An algorithm with error handling on the other hand will
not crash if an error occurs, but instead save a log entry and continues with
the code execution.

• Importance of training
When creating the workflow for a project based on a ML-algorithm, the im-
portance of the training of the algorithm in the methodology should not be
underestimated. Even though default parameters will work, adapting these
always led to better results. Getting the optimal parameters, that can both de-
liver good results but are not overfitting is very time consuming, as the model
must applied multiple times.



7 D I S C U S S I O N

First of all, it can be concluded that the project is successful and the designed ML

algorithm is able to detect changes with the provided input data of aerial images,
point clouds and digital maps. Even though it does not find all changes, most
changes are labelled correctly with only small number of falsely labeled changes.
Considering the total number of polygons, the change detection is suitable to sup-
port the manual change detection in a substantial way by directing the focus to
certain areas.

In this chapter a final conclusion (§ 7.1) about the method with a particular consid-
eration of the common classification problems (§ 7.2) will be given. The research
questions will be answered separately in § 7.3.

7.1 final remarks
When evaluating the results of the model some general remarks can be made re-
garding feature importance (§ 7.1.1) and the model results (§ 7.1.2).

7.1.1 Feature importance

The first thing that can be noted when looking at the feature importance is that ev-
ery method for calculating feature importance has a different ranking of important
features. It can be explained by the different calculation methods. However, based
on own experiences regarding the importance of features and on studies executed
by other researchers one ranking method is recommenced above all others.

SHAP, even though it has not the highest score in the comparison (see table 6.8),
is the both most powerful and reliable tool to calculate the feature importance. It
offers multiple methods to evaluate the importance features, let it be bar scales for
a global importance of the features or dependency plots to evaluate the feature
importance related to another features. Furthermore, in comparison to all other
methods it is possible to extract the features’ importance just for a single entry with
additional information about the direction (higher or lower probability of change)
these features are pushing. This information is very valuable when the result for
a polygon is unclear. Checking these individual cases can improve the result as a
whole.

Even more important is the fact that the SHAP feature importance is the most re-
liable source for feature information. As described in the papers of Abu-Rmileh
[2019] and Lundberg [2019], many other feature importance scores can be mislead-
ing. An example for weight would be binary variables. They can consist of valuable
information, but have a much smaller number of possible values and therefore are
used only once in a decision tree for splitting the values. This is leading to a very
low importance for weight. Lundberg is describing the problem regarding the con-
sistency (whenever a different model is applied with more focus on a particular
feature, the importance of that feature should not decrease) and accuracy (sum of
all feature importances should sum up to the total importance of the model). Only
SHAP can satisfy both properties.
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However, one should remember that features not selected in the ranking can also be
important. The most important features will contribute the most to the results but
only together will less important features the change detection can be refined and
improved even further. Only in cases in which the feature importance of a feature is
zero, it is not contributing to the results. In this case this feature is not considered in
the decision tree and removing or keeping this feature will not influence the results.

7.1.2 Model results

The current model is able to detect most of the changes in the test-set while keep-
ing the number of FP under an acceptable limit. Regarding the evaluation results
following things can be discussed.

Currently the verification of the model is done with a small subset of the same
dataset. Even though many measurements are taken against overfitting and the
model works properly, a complete clarification if the model is working fine can
only be given with testing it on a different dataset. However, in the time frame of
this thesis it was not possible to acquire a different research area for verification, as
both current and historical data for aerial images as well as maps are required. This
combination of data is difficult to obtain for a particular area without customers
delivering this data. The final verification will be done as soon as more data is
available.

Confusion Matrices
When distinguishing between changes and non-changes for a majority of cases the
model is absolutely sure if a change has not happened. For 99% of the entries the
probability of it being a change is below 1%. On the other hand, when classifying
changes, the model is less clear as represented by a higher spread of probabilities
for changes. Approximately the same number of changes have a high probability of
being a change as changes having a low probability of being a change. An explana-
tion for this observation could be the different amount of training data available for
both classes. For non-changes much more training data is available and the model
can learn better which details matter. For changes on the other hand less training
data is available. It is sufficient to establish a detection, however not enough to
recognize the details for every kind of change.

When looking at the CM divided in different BGT-groups, changes regarding build-
ings can be distinguished better. Even though there are slightly more FN (caused by
not detecting changes in buildings in which only the surface changed, for example
solar panels) the number of FP is lower. That could be explained by the fact that in
this group the influence of height differences plays a big role. Streets and surfaces
on the other hand have a higher number of FP. Temporary changes can mostly be
found in this group leading to the high numbers. Change detection for water ways
tends to be the most difficult. However, considering the fact that changes of areas
of water are rare, this problem is less eminent.

Looking at the adapted CM it can be seen that around half of the changes are in
close relationship to other changes. Usually changes come in clusters, for example
a complete quarter is torn off and new buildings are built. The goal of this methods
is to set the focus for the people who manually draw the changes. When looking at
one change the focus will not only be on the polygons but also in a certain radius
around it. It is legit to assume that polygons in a certain radius around another
as a change detected polygon will also be seen in a manual detection, so that this
adapted matrix can help to show the real potential of this change detection.

Scores & Curves
While looking at the scores that depend on the threshold it can be seen that accuracy
is really stable and always around 0.99. It is caused by the high number of no



68 discussion

changes that are correctly classified. This evaluation score is therefore less suitable
when having such an imbalanced dataset, as false expectations are stoked. This
confirms findings of Brownlee [2019b] and Saito and Rehmsmeier [2015]. The other
scores (Precision, Recall, F1-Score) are all connected to each other, as they are related
only to the classification of positive values. At a lower threshold (more TP, but
also more FP) the precision is sinking and the recall is rising. This is expected, as
with a lower threshold more FP can be found within all positive labelled values
(lower precision), but in total more TP are found (higher recall). For this project the
recall is the more influencing factor, as it is more important to recognize a sufficient
proportion of real changes.

The threshold-independent scores and their respective curves can tell something
both about the general quality of the model and its results with varying thresholds.
Generally, like additionally mentioned in the paper of Branco et al. [2016] and Saito
and Rehmsmeier [2015], the PR-AUC is more meaningful for imbalanced datasets
than the AUC. The latter tends to overestimate the quality of the model with similar
to accuracy giving very high values due to the high number of negative target
values.

The curves show that the model is very sure about classifying of around 50% of
the changes, these have a very high probability of being a change (left part of PR-
Curve). The Precision is very high, but as only half of the changes are classified, the
recall is not very good. To get almost all changes (recall over 95%), the precision
is going down to 10%, that means 90% of all classified changes are FP. However, if
considering the small number of recognized changes (true and false) in comparison
to the total number of polygons, even the classification with a low precision can be
accepted as helpful.

7.2 common classification problems
There are many possible reasons why the results of the change detection are not
perfect. The most common problems with FN are shown in this paragraph. Figure
7.1 depicts these images.

Figure 7.1: Polygons from 2017 (top) and 2018 (bottom) with a positive change label but not
being a change

1. Changes too small (left images)
Sometimes the changes only cover a small part of the complete polygon. The
features are mostly influenced by the attributes of the non-changed parts of
the polygons and the attributes of the changes have too less influence to iden-
tify the change. The change in this polygon is only happening in the top left
part.
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2. Changes too insignificant (middle images)
For some changes the difference between different years is too small to be
recognized by the algorithm. The middle image shows a situation where a
patch of sand in 2017 was replaced by concrete with some sandy parts in
2018. This results in similar feature attributes and thus the change cannot be
recognized.

3. Polygons with various classes (right images)
Sometimes the polygons from the digital map are not drawn correctly. Even
though they should only describe a single type of surface, multiple classes
can be found within the polygon borders. The depicted polygons contain
gardens as well as small huts and part of the sideways. Due to this mixture of
classes the feature values have a high standard deviation and information in
the features containing changing is harder to find.

7.3 research questions
In this section the research question defined in § 1.2 are answered.

• To what extent can the change detection be automatized using machine learning algo-
rithms?

First it can be emphasized that change detection using XGBoost is possible
and can be automatized using ML. As described in § 6.1 depending on the
threshold a large number of changes can be found. With the recommended
threshold of 0.01 around 80% of the changes can be found with checking only
5% of all polygons manually.

Under the assumption that the change detection is still done manually in
a Geographic information system (GIS) by comparing aerial images and the
assumption that polygons in close distance to the TP are also in the range of
visual perception, the results look even more promising. Around 95% of all
changes are located in a maximum distance of 10m around polygons classified
as TP. However, the biggest challenges are isolated without a change in height.
These are difficult to recognize and cannot be found in close distance to other
changes. To detect these changes, manual checking is still required.

In conclusion, this algorithm is suitable for the pre-selection of polygons in
which a change is more likely and should be used for this. It is not recom-
mended to rely on it as the only change detection tool.

• Which features of the input data can be used in terms of costs and benefits?

This question cannot be answered with a simple list of specific features to
include and exclude. However, some features seem to have a major influence
in every successful change detection as they are appearing in almost every
feature importance graph. Furthermore, their calculation does not require
additional libraries or progressive algorithms. They are displayed in table 7.1.

Many changes are caused by buildings, which can best be expressed by changes
in the height and the slope (a roof usually has a particular angle), which ex-
plains the height and slope values of the table. Bhattacharyya is giving an
overall impression if a change has occurred and is therefore a good indicator.
The features canny edge is given an impression of the structure of a polygon.
Edges are caused by different surfaces. The value feature is included, as the
value of a colour indicates how much energy is included in this color and
allows to distinguish between shadow and no shadow. This value itself will
not give estimation for changes, but improves the results for the other colour
based parameters.
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Features Number of appearances

First percentile of height 6

First percentile of slope 6

Bhattacharyya 5

Canny Edge 5

Height median 5

Value last percentile 5

Table 7.1: Important features and their number of appearances across different importance
methods

However, based on personal experience the following features have a high
influence succeeding in change detection and are recommended to be used as
well:

– Haralick features: Used with success in many image classification algo-
rithms these features were always important.

– Last percentile of height: Similar to the other height-related features it
can support the better recognition of building changes.

– Category: The original category influences a lot of what possible changes
will look like.

The features mentioned here can all be calculated quickly with no extra efforts
needed for extraction. However, category is the easiest feature to get, as it is
equivalent to the existing class of the polygon. Bhattacharyya on the other
hand needs a separate model for extraction but after the first time initialization
no further action is needed.

• Which information except height can be used from 3D point clouds?
Next to the standard statistical information from height the following features
are used in this model as well:

– Slope

– Aspect

– Homogeneity of height

Using these parameters already 95% of all changes in buildings could be dis-
covered with no need for further investigations in additional features. For this
reason and due to time constraints, this question was not further processed.
Furthermore, the point cloud used in this thesis is derived from a DSM with the
points equally distributed and having no extra information about the surface.

However, when using a point cloud derived from DSM, some features cannot
be extracted that could be extracted from LIDAR-point clouds. This includes
features like first and last return, point density or intensity. For more informa-
tion see Zhu et al. [2011].

• Which metric can be used to evaluate the results?
Many different evaluation metrics are available for evaluation of the results
with different levels of meaningfulness for different situations. In this case es-
pecially metrics that work with highly imbalanced datasets are suitable. How-
ever, there is not one evaluation metric that will work every time. Depending
on what should be explained to whom different metrics are useful.



7.4 contributions 71

Following metrics are considered to deliver the most valuable information
regarding change detection:

– PR-Curve & PR-AUC
Both the curve and the belonging AUC of this curve are especially im-
portant during the development of the model. Training a model while
monitoring how the PR-AUC is changing delivered the best results. In
comparison to the ROC-AUC it is not converging too fast to the max-
imum possible score, so that different parameters are still considered
(and are not stopped due to early stopping rounds). The PR-AUC is well
suited to compare different models, as different models will likely give
more diverging results (whereas the normal AUC will always give values
close to 1 for imbalanced datasets)

The PR-curve gives a more differentiated view regarding positive results
with ignoring the false results. However, this curve is not very suitable for
visualizing the outcome of the model for people outside of statistics/ML,
as technical terms like Precision and Recall are used. Furthermore, it is
not immediately understandable what this curve is telling.

– Economic curve
The economic curve is less important for training and evaluation of the
model as it is highly influenced by the number of negative values. How-
ever, it might be valuable in a business context.

– Confusion matrix
In comparison to the other two parameters the CM has two disadvantages:
its results depend on a threshold and different models cannot compared
easily. However, the main advantage of this metric is its easy accessibility
for people with less statistical experience. It is clear how many positive
and negative values are available in relation to the true numbers.

Furthermore, it is the foundation of many other parameters that can be
derived directly from the CM.

• Is it possible to locate the exact position in which the change has happened?

It is possible to localize the exact position of a change in a polygon. When di-
viding the polygons in smaller parts and apply the change detection for every
sub-polygon a more differentiated image of the polygons with probabilities of
change for every part emerges. Note that these polygons are not related to the
exact extent of the change, so a reconstruction of the shape of the change is
not possible.

7.4 contributions
The main contributions of this thesis are the following:

• Implementing a holistic change detection as support
Instead of identifying all changes manually it is now possible to get the prob-
ability of change for each polygon. The updating process for digital maps like
the BGT could be faster and more reliable as unidentified changes are moni-
tored as well. Furthermore, this change detection has a holistic approach, that
means it can recognize changes for different classes and is not limited to a
certain type.

• Using XGBoost for change detection
Many papers are focussing on deep learning for change detection, XGBoost
is used less for aerial images. This study could prove that gradient boosting
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techniques can also be used for change detection and give an indication of the
efficiency of these methods.

• Dealing with temporary changes
The algorithm is able to deal with changes that are not permanent but could
possibly be detected as changes, like cars or seasonal effects. They cause
only such a small increase in the probability, so that these polygons are not
classified as changes.

7.5 future work
This thesis could prove that ML, in particular XGBoost, can be a valuable support for
change detection. However, for future work there is still room for improvements.

7.5.1 More training data

The most important thing for ML algorithms is the data. Examples are needed to
derive rules and improve the results. More training data can therefore improve the
results. Having more data means that more different situations in which changes
are happening can be considered. An increased number of positive results (changes)
would be especially helpful, as most datasets are very imbalanced with only a frac-
tion of changes. There are two options to get more training data:

New areas
A simple option is to increase the number of areas used for training. However,
new input data must be available and is sometimes expensive. Furthermore, new
data also implies new manual change detection and new extraction of features and
therefore additional work.

Synthetic examples
Another option to increase the number of positive results is to create synthetic ex-
amples. The easiest option is to just duplicate the positive results, however no new
information is added. With SMOTE, Synthetic Minority Oversampling Technique,
new examples can be created derived from already existing examples.

7.5.2 Deep learning

Deep learning is of increasing importance in the field of ML. For these methods
artificial neural networks (ANN) with many hidden layers are used. Input values
are processed to get a desired output. How this output is generated is unknown, as
the computer selects the important features and algorithms itself. Interest readers
are referred to de Jong and Bosman [2019] in which change detection is done using
neural networks.

Feature selection
Deep learning could be used to get many new features as an additional input for
this XGBoost-algorithm. A good example for this method is ResNet. It is an ANN
trained on special datasets containing thousands of classified images. It takes im-
ages as an input and returns a feature vector. Even though these images are trained
on photographs instead of aerial images, the created vectors could deliver valuable
information and improve the results of the XGBoost based change detection.

Deep learning approach
Another approach would be to replace the complete XGBoost change detection with
deep learning. The three different sources (map, aerial image and point cloud) are
given as input data in its entirety instead of derived features. The network should
then be able to learn itself which attributes of the input data are important and learn
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to classify changes. However, in comparison to XGBoost this approach needs strong
GPU-based machines, a lot more processing/debugging and it would be a complete
black box to the users (in the sense that neither the features or their importance is
known).

7.5.3 Creation of a public test-set

The evaluation of the model is a crucial part of the development but also one of the
most difficult parts to complete correctly. Not only must a test-set be chosen that has
both the right size (not too small or too large) and is representative for the complete
data. Furthermore, the evaluation is only valid for this data and a comparison with
other methods is difficult. The solution could be a publicly available test-set with
example input data and labeled target-data. Every method can be trained with its
own data, but for testing, this public set is used. This would allow both an easy-to-
do correct testing and comparisons between different methods. These test-sets are
already available for many other tasks such as face recognition 1.

7.6 reflection
This section relates the project to the main areas of Geomatics. According to ISO/TC
211, Geomatics is defined as a discipline concerned with (1) collection, (2) distribu-
tion, (3) storage, (4) analysis, (5) processing and (6) presentation of geographical
data. Except for distribution, all these steps can be found within this thesis:

1. Raw input data was collected by external sources, the collection of features for
XGBoost is described in § 4.3.

2. Distribution is not a goal of this project and therefore not a part of this thesis.

3. Data storage and management is mainly done in PostgreSQL as described in
§ 5.3.1.

4. Analysis of the data is identical with the evaluations of the model as described
in § 6.

5. Processing of the data can be seen as the tuning and training of the model as
described in § 4.4.

6. Presentation of the data is depicted partially in this thesis with converting the
results into polygons visible in GQIS (as for example seen in figure 6.8).

1 see here.

http://vis-www.cs.umass.edu/lfw/
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Scaioni, M., Höfle, B., Baungarten Kersting, A. P., Barazzetti, L., Previtali, M., and
Wujanz, D. (2018). Methods from information extraction from LIDAR intensity
data and multispectral LIDAR technology. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3:1503–1510.

Shi, J., Wang, J., and Xu, Y. (2012). Object-based change detection using georefer-
enced UAV images. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XXXVIII-1/C22:177–182.

Singh, A. (1989). Review Article Digital change detection techniques using remotely-
sensed data. International Journal of Remote Sensing, 10(6):989–1003.

Song, H.-G., Kim, G.-H., and Heo, J. (2005). Road Change Detection Algorithms in
Remote Sensing Environment. In Advances in Intelligent Computing, volume 3645,
pages 821–830. Springer Berlin Heidelberg, Berlin, Heidelberg.

Soni, D. (2019). Supervised vs. Unsupervised Learning. Available at https:

//towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d-ml.

Szeliski, R. (2011). Computer Vision: Algorithms and Applications. Texts in Computer
Science. Springer-Verlag, London.
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8 A N N E X

8.1 example for features
Feature values for the depicted polygon (marked with red) are displayed. Note that
not all features but an exemplaric selection was made.

81
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8.2 results for unsuccessful attempts
no RGB

TN FP FN TP

28.814 3.195 22 254

Score Accuracy Precision Recall F1-Score ROC-AUC PR-AUC

Value 0.9004 0.0736 0.9203 0.1364 0.9735 0.6891

no RGB and no HSV

TN FP FN TP

27.854 4.155 21 255

Score Accuracy Precision Recall F1-Score ROC-AUC PR-AUC

Value 0.8707 0.0578 0.9239 0.1088 0.9701 0.6538

only difference

TN FP FN TP

28.469 3.540 21 255

Score Accuracy Precision Recall F1-Score ROC-AUC PR-AUC

Value 0.8897 0.0672 0.9239 0.1253 0.9711 0.6427
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8.3 examples for successful change detection

Figure 8.1: Examples for successful change detection for polygons (in red) between 2017 (left)
and 2018 (right)



84 annex

8.4 results for the different feature importance
options

Figure 8.2: Feature importance plots from SKlearn
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