
Benchmarking Geo-distributed Databases
Evaluating Performance using the Product-Parts-Supplier Workload

Eduard-Alex Mihai1

Supervisors: Asterios Katsifodimos1, Oto Mráz1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Eduard-Alex Mihai
Final project course: CSE3000 Research Project
Thesis committee: Asterios Katsifodimos, Oto Mráz, Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Existing evaluations of geo-distributed databases
still rely almost exclusively on standard limited
workloads such as TPC-C and YCSB+T, which re-
veal little information about the true cost of wide-
area coordination. In this paper, we present a con-
figurable benchmarking framework built around the
Product-Parts-Supplier (PPS) workload, and use it
to evaluate four representative systems that sup-
port geo-distributed transactions: Calvin, SLOG,
Detock, and Janus. The experiments run across six
realistic and insightful scenarios that vary the trans-
actional load, contention, client count, regional
bias, network latency, and packet loss.
The results uncover clear design trade-offs between
the systems and demonstrate that our new frame-
work is capable of filling several evaluation holes
left by the standard workloads. Our framework
introduces important features such as dependent
transactions that may abort and retry, longer and
tunable read/write sets, and fine-grained control
over which regions will participate in the commit.
However, the PPS workload comes with some limi-
tations, and thus, the framework does not cover ev-
ery case. As a consequence, for now, it should com-
plement TPC-C and YCSB+T, not replace them.

1 Introduction
In the modern era of cloud computing and real-time global
services, geo-distributed databases have become essential to
many critical large-scale applications [1, 2]. These systems
replicate and partition data across multiple geographical re-
gions to provide high durability and significantly improve the
latency by storing the data closer to the users. However, this
distributed infrastructure comes with several tradeoffs. Given
the high communication delays between different servers, it
becomes increasingly challenging to synchronize transactions
that access data scattered across multiple regions [3].

Researchers have proposed several database systems, in-
cluding Calvin [4], SLOG [5], Detock [6], and Janus [7], to
improve the transaction throughput and reduce the latency
in geo-distributed environments. For instance, Detock uses
a novel graph-based deterministic deadlock resolution proto-
col that allows the system to efficiently process multi-region
transactions. Despite these innovations, public performance
evaluations of these systems are still limited, especially un-
der complex workloads and diverse deployment conditions.
Most studies, including those presented in the original system
papers, rely only on standard workloads such as TPC-C [8]
and YCSB+T [9], which are known to have a limited scope
when it comes to distributed transactional databases [10].
TPC-C is highly partitionable, with most transactions access-
ing only a single partition, which limits the ability to stress
the inter-region communication and coordination overhead.
YCSB+T, while extending the original YCSB workload to
include multi-key transactions, keeps a simplistic key-value
data model and lacks important features such as foreign keys,
join operations, and relational constraints.

To address these limitations, researchers now complement
TPC-C and YCSB+T with more complex workloads such
as Product-Parts-Supplier (PPS). Harding et al. [11] demon-
strated that PPS can uncover performance bottlenecks and
communication inefficiencies that simpler benchmarks miss.
However, most studies typically use PPS under a narrow set
of configurations, making it difficult to fully understand the
system behavior under different conditions.

This paper aims to address the lack of comprehensive eval-
uations by investigating how modern database systems per-
form under the PPS workload in geo-distributed settings, and
how workload characteristics and environmental factors in-
fluence throughput, latency, abort rates, network utilization,
and operational cost.

The main contribution of this work is a configurable bench-
marking framework based on the PPS workload and designed
to evaluate geo-distributed databases under a variety of real-
istic scenarios. In addition, we provide a comparative evalu-
ation of several representative systems. The findings aim to
inform about the practical performance limits and the poten-
tial bottlenecks of these systems and motivate the need for
more comprehensive benchmarks.

The remainder of this paper proceeds as follows. Section 2
provides the necessary background for this work, including
the important characteristics of the evaluated databases and a
formal description of the PPS workload. Then, Section 3 de-
scribes the implementation of the benchmarking framework,
and Section 4 presents the experimental setup and analyzes
the results across various scenarios. In Section 5 we discuss
the steps taken to ensure the reproducibility of our experi-
ments, and in Section 6 we reflect on the advantages and lim-
itations of using PPS as a benchmark. Finally, Section 7 con-
cludes with the key findings, summarizes the contributions,
and outlines potential directions for future research.

2 Background
In this section, we introduce the database systems used in our
evaluation (Section 2.1), and we present the key features of
the PPS workload that represent the foundation of our bench-
marking framework (Section 2.2).

2.1 Evaluated Systems
This study evaluates four database systems that support glob-
ally distributed transactions: Calvin, SLOG, Detock, and
Janus, using the benchmarking framework we implemented.
Each system has its unique deployment strategy and concur-
rency control approach for handling distributed transactions.

We selected these four systems because they all support
geo-distributed transactions and share comparable architec-
tural principles, such as deterministic execution and graph-
based serialization, which aim to reduce the runtime wide-
area communication. Despite these foundational similarities,
they have clear differences that make each system more suit-
able for particular workload characteristics or deployment
scenarios. Another important aspect is that the Detock code-
base1 provides a unified implementation of all four systems.
So, Calvin, SLOG, and Janus were re-implemented within

1https://github.com/umd-dslam/Detock
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the Detock framework to share a common storage engine,
communication layer, and local consensus protocol [6]. This
shared infrastructure ensures that the performance differences
from our evaluation come from each system’s core design
choices rather than unrelated implementation details.

Deterministic Scheduling. Calvin, SLOG, and Detock are
based on deterministic scheduling, an alternative to tradi-
tional protocols that use atomic commitment [12]. These de-
terministic database systems avoid the need for runtime coor-
dination between different servers by predefining the execu-
tion order of the transactions. This design reduces the com-
munication overhead during transaction execution, which of-
fers notable performance benefits, especially in the presence
of inter-region delays. However, this type of locking protocol
requires complete knowledge of each transaction’s read and
write sets in advance. As a result, these systems face chal-
lenges when handling dependent transactions, namely trans-
actions for which the accessed records are not known before-
hand, but must be discovered as the execution progresses.

Calvin [4] demonstrated the practical feasibility of deter-
ministic transaction processing with near-linear scalability.
The system is organized into three separate layers. First, the
sequencing layer receives the transactional requests from the
clients, batches them using short epochs, and ensures consis-
tent ordering among the replicas. Then, the scheduling layer
coordinates the transaction execution by acquiring the locks
deterministically according to the defined global order and by
passing the transactions to the pool of workers. Finally, the
storage layer handles the physical data access.

SLOG [5] is built on top of Calvin by optimizing for data
locality when used in geo-distributed settings. It introduced
the notion of single-home (SH) transactions that access data
in a single region, and thus can be processed with very low
latency without being passed to the sequencing layer. How-
ever, the multi-home (MH) transactions still follow Calvin’s
sequencing model and must adhere to a global order.

Detock [6] is also based on Calvin’s architecture, but it re-
moves the need for global ordering by using a deadlock reso-
lution protocol via a dependency graph. This approach allows
both single-home and multi-home transactions to be sched-
uled deterministically at each region. In this way, all par-
ticipating regions construct independently the same depen-
dency graph, and the transactions can be run locally without
the need for cross-region communication once all transaction
components have been received.

Unified Consensus and Concurrency Control. Janus [7]
integrates the concurrency control mechanism (used for trans-
action consistency) with the consensus protocol (used for
replication) into a single layer. The key idea is that both com-
ponents work by ensuring that the execution history of the
transactions is equivalent to a sequential order, which can be
verified by defining a serialization graph. Janus can com-
mit and replicate the transactions within a wide-area network
(WAN) round-trip under low contention, and requires at most
one additional round-trip in case of conflicts.

2.2 Product-Parts-Supplier Workload
The Product-Parts-Supplier (PPS) workload is a well-known
relational structure that simulates a realistic supply chain
management system. It captures the interactions between the
existing products, the parts that make up those products, and
the suppliers that provide those parts.

PPS has been used as a workload in several popular
database benchmarking studies, although typically in a lim-
ited capacity. For example, Harding et al. [11] utilized the
PPS workload primarily to evaluate the system scalability by
varying only the number of client machines, while keeping
the other settings fixed. Serafini et al. [13] applied the PPS
in their evaluation, but they included only read-only transac-
tions since their goal was to assess the effectiveness of their
dynamic partitioning scheme rather than to evaluate the full
concurrency behavior of the system.

Our benchmarking framework is built upon a set of tables
and transaction types drawn from these previous uses of the
PPS workload. Specifically, the schema includes three core
entities, Products, Parts, and Suppliers, along with two tables
that capture their many-to-many relationships. A product can
contain multiple parts, and a part can belong to multiple prod-
ucts. In the same way, a supplier can provide multiple parts,
and a part can be provided by multiple suppliers. Figure 1
shows the relational schema of the PPS workload.

Products

PK product_id int NOT NULL

extra fields

Parts

PK part_id int NOT NULL

part_amount int NOT NULL

extra fields

Suppliers

PK supplier_id int NOT NULL

extra fields

ProductParts

PK, FK1 product_id

PK, FK2 part_id

SupplierParts

PK, FK1 part_id

PK, FK2 supplier_id

Figure 1: Product-Parts-Supplier Entity Relationship Diagram.

The PPS workload has transactions with complex data de-
pendencies that can lead to contention challenges when multi-
ple transactions run concurrently. This complexity makes the
workload suitable for evaluating how database systems han-
dle the coordination and conflict resolution. The workload
includes several types of transactions, namely:

• OrderProduct. Given a product id, this transaction
will first collect the parts associated with the given prod-
uct and then decrement the inventory amount for those
parts. Importantly, this is a dependent transaction, since
we do not know which parts will be updated in advance.

• GetPartsByProduct. Given a product id, this transac-
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tion will retrieve the list of parts that are currently asso-
ciated with the given product.

• UpdateProductPart. Given product id, part from,
and part to, this transaction will update a part asso-
ciated with the given product by replacing the part iden-
tified with part from with the latter part part to.

• GetPart. Given a part id, this transaction will retrieve
the current inventory amount of the given part, along
with any existing extra information.

• GetProduct. Given a product id, this transaction will
retrieve any extra information about the given product.

3 Benchmark Implementation
This section presents the implementation of our benchmark-
ing framework, designed to evaluate the performance of geo-
distributed transactional systems based on the PPS work-
loads. We discuss here key design choices, such as the in-
tegration of the benchmarking framework with the evaluated
databases (Section 3.1), the support for dependent transac-
tions (Section 3.2), the custom partitioning and home as-
signment schemes that offer precise control over transaction
configurations (Section 3.3), and the transactional mix of the
workload (Section 3.4).

Database System Under Test
(Calvin, SLOG, Detock, or Janus)

Client Configuration
- multi-region

- skewed access Admin Configuration
- number of clients
- targeted regions

Transaction 
Request

Partition 1

Partition 2

Region A

Network Configuration
- packet loss

- network delay
Partition 1

Partition 2

Region B

Figure 2: Architecture of the Benchmarking Framework, together
with all the Tunable Parameters.

3.1 Integration with Different Databases
The databases we evaluate follow a common setup, where
data is partitioned across different servers, and each partition
is replicated in different geographically distributed regions to
ensure high availability and low latency by placing the data
closer to the users. Our benchmark spawns client processes in
different regions and can target specific partitions within any
region. The architecture of our benchmarking framework and
the way it interacts with the databases is shown in Figure 2.

As stated in Section 2.1, we implemented the benchmark
within the Detock codebase to offer a unified testing envi-
ronment for all the evaluated systems. This integration also
allows us to define key components such as table schemas,
table loaders, and stored procedures in a single place and use
them consistently across all databases.

3.2 Dependent Transactions
As mentioned in Section 2.1, all the evaluated databases need
to know the complete set of accessed records for each trans-
action to either deterministically order them or construct the
serialization graph. Among the transactions of the PPS work-
load, only OrderProduct is a dependent transaction since it
must first determine which parts are associated with the prod-
uct before any updates can take place.

In its original design, Calvin was implemented to support
dependent transactions by using a scheme called Optimistic
Lock Location Prediction (OLLP) that makes use of a recon-
naissance query to perform all the necessary reads to com-
pute the complete read/write set before the actual execution
begins. Unfortunately, this mechanism is not currently im-
plemented in the Detock framework. As a solution, we will
use a similar approach by splitting the OrderProduct transac-
tion into two client-side phases. In the first phase, the client
fetches the current list of parts associated with the given prod-
uct. Then, in the second phase, the client issues the update
request with the complete set of accessed records. It is impor-
tant to note that when the second phase detects any changes
in the reads done by the first phase, it will self-abort.

3.3 Partitioning and Home Assignment Schemes.
Our benchmark supports custom partitioning schemes. In our
setup, we partitioned the data across nodes in a round-robin
fashion based on the record identifier (product id, part id,
supplier id) for the core entities, and the product id for
the two additional relationship tables. We say that a transac-
tion is single-partition if it accesses data from only one parti-
tion, and multi-partition if it spans multiple partitions.

In addition to partitioning, SLOG and Detock use a cou-
ple of optimizations based on the concept of home regions.
In short, each record is assigned to exactly one geograph-
ical region, which is called the home region of this record
and is responsible for coordinating the access to that record.
Both systems assume that, theoretically, within each region,
data is partitioned locally regardless of which region owns
the data. This means that a single partition can hold records
whose home regions are different. Similar to partitioning,
we can classify the transactions into single-home and multi-
home. Our implementation supports custom home assign-
ment schemes. In our evaluation, we assign home regions
in a round-robin fashion within each partition.

In our workload, only the second phase of the OrderProd-
uct transaction can be configured to be either single-partition
or multi-partition, and independently, single-home or multi-
home, depending on which parts are involved. The other
transactions are simpler, since they either access only one
record or all the accessed records fall within a single parti-
tion and home region, according to the chosen partitioning
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and home assignment scheme. The main challenge in config-
uring the second phase of the OrderProduct transaction is that
we do not know which parts will be accessed in advance. To
overcome this, when creating the tables, we split the products
into four groups based on the distribution of their parts:

• Category I. All parts are located in the same partition
and have the same home region as the product itself.

• Category II. All parts are located in the same partition as
the product, but belong to different home regions.

• Category III. All parts have the same home region as the
product, but are located in different partitions.

• Category IV. The parts are located in different partitions
and also belong to different home regions.

By organizing the parts into these four categories, the
benchmarking framework can dynamically generate Order-
Product transactions with specific characteristics. For ex-
ample, if we want to generate a single-home multi-partition
transaction, we select a product from Category III.

3.4 Transactional Mix
Section 2.2 introduced the type of transactions that we con-
sider in our benchmarking framework. While all these trans-
actions reflect realistic business operations, such as updating
a product or retrieving a part, not all of these types are well-
suited for evaluating geo-distributed behavior. In particular,
as stated in the previous subsection, only the OrderProduct
transaction has an access pattern that can span multiple par-
titions and regions, making it the only meaningful operation
that can test the servers’ coordination.

As a consequence, we used a transactional mix that fa-
vors the OrderProduct type. In addition, we assigned greater
weights to the UpdateProductPart type, since it can interfere
with two-phase dependent transactions, and to the GetParts-
ByProduct type, since it accesses multiple records, making it
more relevant for evaluating concurrency behavior. In con-
trast, the simple read-only transactions GetPart and GetProd-
uct have lower priority. Table 1 summarizes the mix.

Transaction Type Ratio
OrderProduct 80%
GetPartsByProduct 8%
UpdateProductPart 8%
GetPart 2%
GetProduct 2%

Table 1: PPS Transactional Mix used in our Experiments.

4 Experimental Setup and Results
This section outlines our experimental methodology and key
findings. Section 4.1 describes our deployment setup and the
methodology used for performance measurement, and Sec-
tion 4.2 presents the results obtained under a range of differ-
ent experimental scenarios.

4.1 Deployment and Metrics Collection
We conducted all experiments on a dedicated 4-node high-
performance cluster located in our university. Each node is
equipped with dual AMD EPYC 7H12 processors, 256 hard-
ware threads, and 503 GiB of RAM. The nodes are intercon-
nected via 10 Gigabit Ethernet.

In our experiments, we simulated a two-region deploy-
ment by using all four physical nodes and injecting artifi-
cial network delay between them. Both clients and servers
are deployed as Docker containers to ensure a clean and re-
producible environment. Figure 2 illustrates the setup. The
data is divided into two partitions, and each logical region
consists of two server containers that hold a complete copy
of both partitions. The cluster delivers a natural intra-region
round-trip time (RTT) of roughly 0.15 ms, and we set the
inter-region RTT to 100 ms (Table 2).

A-P1 A-P2 B-P1 B-P2
A-P1 — 0.15 ms 100 ms 100 ms
A-P2 — — 100 ms 100 ms
B-P1 — — — 0.15 ms
B-P2 — — — —

Table 2: Round-trip times between all unordered pairs of machines.
We uniquely identify the machines with the label Region-Partition
(e.g., A-P1 is the partition 1 within the region A).

Unless stated otherwise, the clients are uniformly dis-
tributed across the two regions. To avoid overwhelming or
underdriving the systems, we first explore the effects of the
number of clients using the scalability test from Section 4.2.4.
We identify for each system the point where additional clients
would no longer increase the throughput, and use that client
count in all remaining scenarios.

For performance evaluation, each client container collects
local metrics during execution, which are then aggregated by
a centralized admin. The metrics we focus on are through-
put, latency, abort rates, and bytes transferred, and we also
estimate the operational cost. Throughput, latency, and abort
rates are measured directly by the application logic, while the
number of transferred bytes is collected using system-level
network monitoring tools. Additionally, we provide a sim-
plistic estimation of the operational cost by monitoring the
resource utilization within the server containers and tracking
the overall network usage. The formula we use for the hourly
cost is C = Nmachine∗Pmachine+Vtraffic∗Ptraffic, where Nmachine
is the number of server containers, Pmachine is the on-demand
hourly price for the each used machine, Vtraffic is the cross-
region traffic volume, and Ptraffic is the data transfer price.

4.2 Evaluation Scenarios and Results
We now describe the experimental scenarios used in our eval-
uation. We designed these scenarios to systematically ob-
serve the impact of different system configurations on the
transactional performance of the database systems. Each
scenario is strongly connected with the tunable parameters
shown in Figure 2, which control the network conditions, the
clients’ placement, and the transactional load.
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Figure 3: Results of the Baseline Scenario.
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Figure 4: Results of the Skew Access Scenario.

4.2.1 Baseline Scenario

In the baseline scenario, we aim to understand how each con-
currency control protocol performs under standard conditions
in the two-region deployment with no artificial skew, packet
loss, or extra delay besides the default link latencies shown
in Table 2. Specifically, we vary only the fraction of multi-
home transactions among the OrderProduct type while keep-
ing the proportion of multi-partition transactions constant at
50%. This scenario allows us to isolate the cost of coordi-
nation across different geographical regions. Figure 3 shows
the metrics collected for each protocol: the throughput, the
median latency (p50), along with the 90th-percentile latency
(p90), the bytes transferred, and the hourly operational cost.

Among all systems, Janus has the lowest throughput and
the highest latencies. This is primarily because Janus does
not have the notion of multi-home transactions, and routes
every commit through its integrated consensus path, which
requires cross-region coordination even for transactions that
could be executed locally. As a consequence, the throughput
stays constant, and even the single-region transactions need at
least one WAN round-trip, which is visible in the plot as the
p50 latency sits near the inter-region RTT (≈100 ms). In case
of conflicts, Janus needs an additional wide-area round-trip,
so p90 latency exceeds 200 ms, and even slightly increases
with larger MH fractions, since this inherently increases the
contention, as the regions will contend for the same products.

Calvin also does not have the notion of multi-home trans-
actions, and thus, the throughput stays almost constant. It
performs worse than SLOG and Detock when the proportion
of multi-home transactions is low, but it overtakes them as
the proportion exceeds roughly 60%. This is because Calvin
relies on a deterministic global sequencer that orders all trans-

actions. When most transactions are local, Calvin’s overhead
for global ordering becomes unnecessary and costly, but as
the proportion of multi-home transactions increases, Calvin’s
global sequencer can coordinate them efficiently and get a
better performance than SLOG and Detock, which incur a
significant cost of handling multi-home transactions.

4.2.2 Skewed Access Scenario
In the skewed access scenario, we study how each protocol
handles the contention caused by an uneven access pattern.
We fix the workload composition so that half of the Order-
Product transactions are multi-home, and similarly, half of
them are multi-partition. To introduce skew, we use the NU-
Rand distribution to define so-called hot records that will be
accessed more often depending on the skew factor [14].

As shown in Figure 4, the curves remain nearly flat for
all four systems across the entire range of skew factors. For
the deterministic designs (Calvin, SLOG, Detock), this is ex-
pected since each replica already knows the global order be-
fore the execution begins, so a hot key cannot block related
transactions. The skew also has little effect on Janus, showing
that the system’s bottleneck is given by the WAN round-trip.

Figure 6 reveals the hidden cost of the skew. The protocols
themselves don’t abort transactions, since Calvin, SLOG, and
Detock commit every transaction in the predetermined or-
der, and Janus commits according to the serialization graph.
Therefore, all aborts we observe come from the way we ex-
ecute the dependent transaction OrderProduct. We split it
into a read-only phase that retrieves the parts currently asso-
ciated with the given product, and a write phase that performs
the updates. If any of those parts change between those two
phases, the server aborts the second phase and signals the
client to retry the whole transaction starting from the first
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Figure 5: Results of the Scalability Scenario.

phase. The presence of hot records raises the chance that
the second phase’s validation fails, which explains why abort
rates increase with the skew for all systems. However, the in-
crease is small, peaking at only 2.5% among all systems, and
leaving throughput and latency practically unchanged.
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Figure 6: Abort Rates in the Skew Access Scenario.

4.2.3 Sunflower Topology Scenario
The sunflower experiment analyzes how the protocols react
when one region turns into a central hub. This is a common
occurrence in the real world, where deployments rarely re-
ceive perfectly balanced traffic. A viral event, a seasonal sale,
or an outage in a neighboring zone can redirect requests into
one data centre while the others stay idle. To reproduce this,
we perform a 100-second run, where we start with balanced
traffic, and then linearly increase the share of transactions
whose home region is Region A (or, for multi-home trans-
actions, include Region A in the home set) with 10% every
10 seconds, until it receives the entire load. Throughout the
experiment, we keep the workload mix fixed at 50% multi-
partition and 50% multi-home transactions, and leave the de-
fault RTTs unchanged, so any throughput change reflects only
the growing regional imbalance.

Figure 7 plots the resulting throughput. At the start, when
traffic is evenly split, all systems have their baseline through-
put. As the bias grows, SLOG and Detock are the only
ones that experience a decrease in throughput. Once more

requests land in the same region, the single-home fast path
overwhelms the replica while its counterpart in Region B sits
mostly idle, so the aggregate throughput drops.

In contrast, Calvin’s throughput stays approximately the
same. In the Detock codebase, Calvin’s global sequencer uses
a replication based on a primary replica by asynchronously
sending every transactional input (both the single-home and
multi-home transactions) to a dedicated region that broad-
casts the batches in order. Since the primary replica already
acts as a central point, increasing the bias doesn’t have an
effect on the overall throughput. Similar to the skew access
scenario (4.2.2), Janus once again shows the lowest absolute
throughput, but it is practically insensitive to the bias. Every
commit must gather a WAN approval, so moving clients from
Region A to Region B doesn’t affect the throughput.
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Figure 7: Throughput in the Sunflower Topology Scenario.

4.2.4 Scalability Scenario
The scalability scenario focuses on evaluating how each pro-
tocol performs as we increase the number of clients, while
keeping the workload composition fixed at its standard con-
figuration with 50% multi-home transactions, 50% multi-
partition transactions, and no added skew. Figure 5 shows
how SLOG, Detock, and Calvin all have similar improve-
ments in throughput as the load increases, which demon-
strates that these systems have good scalability given a bal-
anced transactional workload. Janus, on the other hand,
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Figure 8: Results of the Network Delays Scenario.
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Figure 9: Results of the Packet Loss Scenario.

scales to roughly 1000 clients, then its throughput collapses
to 0. The likely reason is that Janus’s unified consensus and
replication layer has to handle more and more dependency
checks in the serialization graph, which overwhelms its CPUs
and network links until it can no longer make progress.

4.2.5 Network Delays Scenario
This scenario explores how extra latency affects each sys-
tem. We inject an additional delay on every cross-region link
while keeping the packet loss at 0% and using the standard
workload mix from Section 4.2.4. Figure 8 plots the results.
The throughput decreases exponentially for all systems as the
round-trip time grows. We note that the median latencies in-
crease linearly with the injected delay, and Calvin’s latency
curve remains the lowest. This indicates that Calvin uses the
smallest number of messages per transaction. Indeed, the co-
ordinator only forwards the transactional input to the primary
replica, which then broadcasts the messages in order.

4.2.6 Packet Loss Scenario
In this experiment, we inject random packet loss on the WAN
links, ranging from 0% to 10%, while leaving the RTTs at
their default values and the workload mix at its standard from
Section 4.2.4. Once again, the throughput falls exponentially
for all systems, and Calvin proves itself the most resilient in
terms of latency. This again proves Calvin’s lightweight com-
munication, which minimizes the number and size of WAN
messages that can be delayed or lost.

5 Responsible Research
This work does not involve personal data or any ethically sen-
sitive information. We conducted all the experiments using

synthetic data, which does not come from real users or real-
world systems. Because of this, there are no ethical concerns
related to privacy or security in our research.

We made efforts to ensure the reproducibility of our results.
Section 4.1 describes the environment used for the experi-
ments, along with the way we measured the performance and
collected the metrics. The deployment is fully automated us-
ing Docker containers. The source code for the server, client,
and experimental scripts will be available in a public reposi-
tory2, along with step-by-step instructions for setting up the
benchmarking framework, running the experiments, and col-
lecting the results. We understand that others who repeat our
experiments may get slightly different results. This is ex-
pected in distributed systems research due to several factors,
including the noise from background processes or the unpre-
dictability of network communication. To reduce this vari-
ability, we ran the experiments several times and reported the
average result. This helps in making our comparisons more
reliable. In addition, we used fixed random seeds in our trans-
action generator, so that experiments with identical parame-
ters follow the same behavior across different runs.

6 Discussion
Our experiments show that the PPS workload complements
the commonly used workloads TPC-C and YCSB+T by cov-
ering several gaps they leave open, but it doesn’t address ev-
ery evaluation need. In this section, we outline the main ad-
vantages of using the PPS workload (Section 6.1) and also
acknowledge its limitations (Section 6.2).

2https://github.com/delftdata/Detock
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6.1 Advantages of the PPS Workload
Dependent Transactions. PPS models many-to-many rela-
tionships between products, parts, and suppliers. Thus, trans-
actions need to work with foreign key dependencies when
joining different tables, which is not the case in the single-
table YCSB+T workload and the TPC-C warehouse hierar-
chy. In particular, the OrderProduct type needs to perform a
read phase to discover all the relevant parts before being able
to perform the actual updates. If another client changes the
retrieved list of parts in between, then the transaction aborts
and retries. Neither TPC-C nor YCSB+T ever forces the sys-
tems to abort, so PPS is the only one of these three workloads
that stresses this case. We captured how increasing the skew
factor impacts the resulting abort rates in Section 4.2.2.
Longer Transaction Footprint. PPS allows us to choose
the number of parts per product, and thus control the size
of the read/write sets of both GetPartsByProduct and Order-
Product transactions. In our experiments, we set this param-
eter to 10. The larger access sets in PPS particularly penalize
the protocols whose cross-region coordination grows in com-
plexity as the number of keys increases. Janus is an exam-
ple of such a design, where a larger access set would lead to
bigger messages and more potential conflicts, which pushes
the transaction on the slow path that needs a second WAN
round-trip. As a consequence, Janus’s throughput relative to
the other systems in our PPS baseline (Section 4.2.1) is far
lower than in Nguyen et al.’s study [6], which used YCSB+T.
Fine-grained Home Region Control. Besides the ability
to dynamically generate multi-home or single-home trans-
actions, which is a feature already available in the Detock
performance evaluation [6], our PPS-based benchmarking
framework allows us to redirect a configurable fraction of
transactions to a particular region. For a single-home trans-
action, we can select the exact region that will coordinate it,
and for a multi-home transaction, we can pick a specific re-
gion to appear in the home set. This flexibility was essential
for the sunflower experiment (Section 4.2.3), where we grad-
ually shifted the traffic to a region to create a realistic hotspot.

6.2 Limitations of the PPS Workload
Limited Updates. Unfortunately, only two transactions in
the PPS workload mix perform writes, namely OrderProduct
and UpdateProductPart. Each of them modifies records from
a single table. On the other hand, TPC-C offers a broader
spectrum of write patterns, which can lead to more interesting
contention challenges that PPS cannot reproduce.
Multi-home and Multi-partition Limitations. Because
only the OrderProduct transaction can be configured to be
multi-home or multi-partition, the workload mix must be ad-
justed to consider this. Even though we can choose the per-
centages of OrderProduct transactions in the mix, it is still a
dependent transaction whose read-only first phase is always
single-home and single-partition, and thus we cannot achieve
an overall combination where 100% of the generated transac-
tions are multi-home and multi-partition. On the other hand,
even though YCSB+T is simpler, it allows arbitrary key dis-
tributions, so it can be used to reach any desired proportion
of multi-home and multi-partition transactions.

7 Conclusions and Future Work
This work introduced a configurable benchmarking frame-
work based on the PPS workload and demonstrated how
it can be used to augment the standard workloads TPC-C
and YCSB+T. Our benchmark adds dependent transactions,
larger read/write sets, and fine-grained control over single-
home and multi-home access patterns, which are key aspects
when evaluating any geo-distributed database system.

Using this benchmark, we compared four such systems,
Calvin, SLOG, Detock, and Janus, across six different sce-
narios. The results show clear tradeoffs. Calvin’s global
sequencer pays off once there’s a majority of transactions
that access multiple regions, whereas SLOG and Detock ex-
cel when most transactions can be executed locally. Janus’s
bottleneck is the required WAN round-trip approval, and the
larger PPS access set can potentially lead to another WAN
round-trip to solve the conflicts, which generally proved to
have low performance in our two-region deployment. The
skew experiment showed the hidden cost of having dependent
transactions through increasing abort rates, while the sun-
flower experiment exposed how systems that are optimized
based on locality can overload one replica.

Ultimately, the purpose of this paper is to raise aware-
ness of the need for benchmarks suited for geo-distributed
databases. Although PPS fills some gaps, it has its limita-
tions. Future extensions could introduce additional transac-
tions that are write-heavy or have the potential to span mul-
tiple regions. Moreover, it might be worth exploring how
the results would be affected by having server-side reconnais-
sance (OLLP) for dependent transactions.

References
[1] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild et al., “Spanner: Google’s globally dis-
tributed database,” ACM Transactions on Computer Sys-
tems (TOCS), vol. 31, no. 3, pp. 1–22, 2013.

[2] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li
et al., “{TAO}:{Facebook’s} distributed data store for
the social graph,” in 2013 USENIX Annual Technical
Conference (USENIX ATC 13), 2013, pp. 49–60.

[3] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica, “Highly available transac-
tions: virtues and limitations (extended version),” arXiv
preprint arXiv:1302.0309, 2013.

[4] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi, “Calvin: fast distributed transactions
for partitioned database systems,” in Proceedings of the
2012 ACM SIGMOD international conference on man-
agement of data, 2012, pp. 1–12.

[5] K. Ren, D. Li, and D. J. Abadi, “Slog: Serializable, low-
latency, geo-replicated transactions,” Proceedings of the
VLDB Endowment, vol. 12, no. 11, 2019.

[6] C. D. Nguyen, J. K. Miller, and D. J. Abadi, “Detock:
High performance multi-region transactions at scale,”

8



Proceedings of the ACM on Management of Data,
vol. 1, no. 2, pp. 1–27, 2023.

[7] S. Mu, L. Nelson, W. Lloyd, and J. Li, “Consolidating
concurrency control and consensus for commits under
conflicts,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016,
pp. 517–532.

[8] S. T. Leutenegger and D. Dias, “A modeling study of the
tpc-c benchmark,” ACM Sigmod Record, vol. 22, no. 2,
pp. 22–31, 1993.

[9] A. Dey, A. Fekete, R. Nambiar, and U. Röhm, “Ycsb+
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A Use of Large Language Models
In compliance with the Course Policy on the Use of Large
Language Models (LLMs), LLMs were used exclusively for
correcting the grammatical errors and improving the stylistic
clarity, and not for generating ideas or drafting new text pas-
sages. The used prompts had the patterns: ”Please provide
feedback on the readability of the following paragraph: ...”
and ”Please fix the grammar in the following paragraph: ...”.
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