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1
Introduction

1.1. Background
Rail transportation is pivotal in the logistics and passenger transport sectors in many countries globally.
In 2018, approximately 4% of the total freight mass in the Netherlands was transported by rail. Addi-
tionally, trains accounted for 13% of the total distance travelled by individuals during the same period,
making it the second most commonly used mode of transportation by distance. (ProRail, 2021)

The railway offers many benefits that make it a highly preferred transportation option today. One of the
most important benefits is its high energy efficiency. Railway transportation consumes significantly less
energy than its main competitor, road transportation. Recent technological innovations, such as regen-
erating braking energy and driver advisory systems, have enhanced rail’s energy efficiency (Forward,
n.d.). In addition, rail transport can efficiently move large numbers of people and goods compared to
road-based transportation.

From the perspective of passenger services, the fixed train schedules and the predictability of travel
timesmake rail transport a favoured option for medium- to long-distance journeys. However, the punctu-
ality of railway transportation, a significant concern for passengers, frequently faces threats. This prob-
lem becomes more pronounced when various potential disturbances occur, such as extreme weather,
mechanical failures, or other unforeseen events, leading to propagated delays. The largest railway op-
erator in the Netherlands, Nederlandse Spoorwegen (NS), transported about 1 million passengers daily
in 2023. During the same period, approximately 5,500 disturbances and disruptions occurred, equiva-
lent to an average of 15 per day1. Some organisations and individuals are also actively campaigning
to set punctuality standards and strengthen regulations to urge railway operators to focus more on
punctuality(Banverket, 2005), but these efforts have yielded little success.

In the academic field, the punctuality problem in the railway system is interpreted more thoroughly.
Palmqvist and Kristoffersson, 2022 points out the frequency and the severity of running time and
dwelling time delays are directly related to punctuality. On the one hand, railway operation compa-
nies and staff need to apply a punctuality improvement method system to reduce the delay of trains
(Aquilani et al., 2017, Veiseth et al., 2011). From the planning perspective, the railway system’s robust-
ness directly impacts its ability to handle delays, affecting train operations’ punctuality. For passenger
transportation, robustness is defined by Dewilde, Sels, Cattrysse, and Vansteenwegen, 2011 as A rail-
way system that is robust against the daily occurring small disturbances minimises the real weighted
travel time of the passengers. In this regard, Magnanti and Wong, 1984, García-Archilla et al., 2013,
and Friesen et al., 2023 approach the problem from a strategic level, investigating the problems of
robust network design for railway infrastructure under capacity constraints and uncertain timetabling.
At the tactical level, Fioole et al., 2006, Hoogervorst et al., 2020, and Grafe et al., 2022 consider the
problems of robustness and passenger delay management from the perspective of rescheduling rolling
stock. Many researchers have focused their studies on robust timetabling in railways. This may be at-

1https://www.rijdendetreinen.nl/statistieken/2023
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tributed to timetabling being positioned at an appropriate planning stage, which is neither as remote
from actual operations as network design nor as constrained in scope for changes like rolling stock and
crew scheduling, where the potential for adjustments is quite limited. (Lusby et al., 2018)

Generally, robust railway timetabling research can be categorised into two main types: operator-centric
timetabling and passenger-centric timetabling. Kroon et al., 2008 and Högdahl and Bohlin, 2023a con-
sider the problem from a macroscopic level and design a robust timetable to minimise the impact of
weighted train delay during exceptional events. Solinen et al., 2017a and Solinen et al., 2017b evaluate
the robustness in the micro way. Further on, Bešinović et al., 2016 describes an integrated iterative
micro-macro approach to computing a conflict-free, stable, and robust railway timetable. However,
research on the problem of passenger-centric robust timetabling is quite scarce. Sels et al., 2016
considers robustness one of the evaluation criteria in designing railway timetables with minimised pas-
senger travel time. Still, robustness has not been the point of attention in the research. As Cacchiani
and Toth, 2012 has noted, transport efficiency is the primary concern of both operators and passengers;
however, the robustness cannot be overlooked. Especially for the served passengers, the delays they
experience are more intuitive compared to operational delays. Therefore, this study will focus on the
problem of passenger-centric robust railway timetable design, aiming to fill the current research gap.

Inserting appropriate time supplements and buffer times into the original timetable to reduce delays
and their propagation can improve punctuality. However, appropriately distributing the available sup-
plement and buffer time is a challenging task, especially in real-world situations, because a very robust
timetable may not necessarily be a good choice, as ideal punctuality might come at the cost of large
time slacks.(Lee et al., 2017) The trade-off between the robustness and efficiency of the timetable can-
not be ignored. Therefore, this research will analyse the efficiency of the newly designed timetable in
a case study.

1.2. Problem statement
The research aims to design a periodic robust timetable in railway networks and encourage operators
to give greater consideration to passenger delays when disturbances occur and propagated delays
appear. This can be achieved by answering the following main research question:

How to design a high-quality passenger-centric robust periodic timetable for railways?

This research question can be decomposed into the following sub-questions:

1. How to define the robustness of a timetable in a passenger-centric way?
2. How to incorporate passenger behaviour into a robust timetabling method?
3. How to evaluate the quality of the new-designed timetable?

The research overview in Figure 1.1 is designed to address the aforementioned research question and
sub-questions. The research plan can be divided into 4 phases and begins with the literature review. In
terms of models, laying the foundation for subsequent modelling of trains and passengers is essential.

In the second phase, some data preparation will be done. Firstly, the original timetable and passenger
demand data need to be structured into an event-activity and network format, which helps to represent
the network in modelling. Furthermore, the structured data can be closely linked to passenger path
set generation. It is defined with all possible paths between target origin-destination(OD) pair without
foolish transfer (defined in subsection 4.2.2), ensuring the model’s applicability and the results’ quality
in robust timetabling. This preprocessing undertakes various critical roles throughout the research.

The core modelling phase is structured as follows: the train timetabling model lays the foundation of
the whole process, ensuring the final result can meet the basic requirements of safe railway operation.
In the real world, passengers with different destinations and arrive-at-origin times may choose different
travel paths. The passenger model helps to determine their choices and assign different passenger
groups to the network based on the characteristics of each path. The robust optimizationmodel consists
of train and passenger simulation models. The former gives the realisation of train delay propagation
under disturbance scenarios. At the same time, the passenger simulation contributed to evaluating the
performance of the newly designed timetable in these delay scenarios and determining the best result
under the setting objective.
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Figure 1.1: Research Overview

Finally, a case study will be conducted focusing on the Eindhoven-Den Bosch-Tilburg network in the
Dutch railway system. This study will incorporate network data, scheduled timetable information, and
passenger travel demand data into the model. In section 6.3, the designed passenger-centric robust
timetable (PRT) generated by this model will then be thoroughly evaluated and compared with the eval-
uation results of the original timetable (OT) and operator-centric robust timetable(ORT). Another study
(section 6.4) discusses the model’s performance under disturbance scenarios with different intensities.

1.3. Definition of robust timetable
Timetable robustness is the ability of a timetable to withstand design errors, parameter variations, and
changing operational conditions (Bešinović et al., 2016). According to Lusby et al., 2018, robustness, in
general, is the capacity of some systems to absorb or resist changes. In this research, the robustness
of a railway timetable can be defined as the ability of a timetable to handle small disturbances in the
railway system. In addition, in railway robust timetabling, the word ’disturbance’ is formally defined
as human mistakes, malfunctions, or deviating conditions in the railway system or abnormal operating
environments that may influence railway traffic. (Shafia et al., 2012) In this section, the evaluation
indicator of timetable robustness, especially in the passenger-centric way mentioned in section 1.2,
will be discussed. This is crucial as it will determine the objective function of the final robust timetabling
model.

In the operator-centric robust timetabling problem, Kroon et al., 2008 tells that the robustness improves
by reallocating the slack in the timetable to minimise the average delay of trains. In this definition,
the minimal delay of a train is associated with robustness. Shafia et al., 2012 uses minimising the
impact of uncertainties in train occupation times for the block sections as the objective function for
robust optimisation at the microscopic level. All these cases, considering an operator-centric objective
function, admit that an empty train that reaches its terminus with a 7-minute delay is worse than the
situation where a crowded train that only has three 3-minute delays causes half of its passengers tomiss
a connection. But in fact, from the perspective of transportation services, the passenger is the ’king’.
Passenger delay should be heavily considered as the evaluation standard for timetable robustness
when disturbances occur.

When considering robustness from a passenger’s point of view, it is better to think about the aver-
age delays of the passengers instead of trains.(Dewilde, Sels, Cattrysse, and Vansteenwegen, 2011)
Furthermore, passengers waiting for trains at the station or sitting inside the carriages do not clearly
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know the reason for delays. Therefore, a better approach is to focus on the total delay experienced
by passengers during the completion of their journey. Dewilde, Sels, Cattrysse, and Vansteenwegen,
2011 proposes an indicator called Perceived Extra Waiting Cost (PEWC) to more accurately depict pas-
sengers’ varying perceptions of time in scenarios of waiting for transfers, waiting at stops, and failed
transfers, and assigns different weights accordingly. Dewilde et al., 2014 considers a railway system
that is robust against the daily occurring small disturbances, which minimises the real generalised travel
time of the passengers. Sels et al., 2016 uses passenger generalised travel time as the main goal in
the automated construction of a robust railway timetable. This provides a reference for the definition of
passenger-centric robustness and the final optimisation objective in this paper.

In summary, in this research, a railway timetable is robust when it can help mitigate the additional
generalised travel time experienced by passengers when small disturbances occur.

1.4. Model structure
This thesis aims to design a PRT, and the mathematical model will be based on a simulation model. In
chapter 2, the relevant literature will be listed and discussed. The structure of the model can be divided
into three core parts (chapter 3-chapter 5), Train timetabling model, Passenger model, and Simulation
model, as shown in Figure 1.2.

Figure 1.2: Model structure

The train timetabling model utilises a train Periodic Event Scheduling Problem (PESP) scheme to en-
sure train timetable feasibility, such as restricting the upper and lower bounds of train activity. It will be
discussed in chapter 3. Besides, constraints on the time supplements budget and adjustment window
compared to the original timetable will be introduced in section 3.3. Another model, shown in chapter 4,
is about generalised travel time defining and calculation and passenger assignment, and it is more com-
plex than the PESP model. The simulation model described in chapter 5 consists of two sub-models.
One sub-model is used for the train, and the other is used for the passengers. These sub-models help
to evaluate the robustness of the newly designed timetable under different disturbance scenarios. The
input and possible output are given in Figure 1.2.

Although the different components of this model operate relatively independently, they are clearly de-
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fined and interconnected in order to achieve the goal of optimisation. The train timetabling model contin-
uously proposes new feasible timetables. The passenger model calculates the generalised travel time
for passengers based on the new timetable and assigns passengers to the railway network. Within
the simulation model, the train simulation component simulates train delays and delay propagation in
the new timetable under the disturbance scenarios. The delay information from train events is then
translated into realised generalised travel time through the passenger simulation component, combin-
ing the planned passenger assignment results and travel time to obtain the passenger delay. This final
average passenger delay serves as the indicator to evaluate the quality(passenger-centric robustness)
of the new timetable generated by the train timetabling model. It continuously feeds results back to the
model, encouraging the generation of timetables with smaller average passenger delays.

Table 1.1: Possible combination of sub-models

Input Model combination Output
Passenger event set F
Passenger activity set B
Original timetable OT
Weighted factor β
Disturbance scenario set Δ

Passenger model
Simulation model

Realised selected path under OT
Generalised passenger travel time under OT
Average passenger delay under OT
......

Train event set E
Train activity set A
Time supplements budget G
Original timetable OT
Disturbance scenario set Δ

Train timetabling model
Simulation model

Operator-centric robust timetable (ORT)
Realised selected path under ORT
Generalised passenger travel time under ORT
Average passenger delay under ORT
Average train arrival delay under ORT
......

In Table 1.1, the sub-model combinations required for evaluating the original timetable and generating
ORT and eachmodel’s potential inputs and outputs are displayed. These two processes are designated
as validation cases and will be discussed in detail in section 6.3. The original timetable already exists
in reality; thus, it meets all the constraints of the PESP, and all train and passenger event times are
fixed. Consequently, real-world information is fed into the passenger-centric model to generate path
sets, define passenger generalised travel times, etc. These results are then utilised as new inputs in
the simulation model to determine the actual chosen path for each group of passengers, generalised
travel times, and average passenger delays in the event of disruptions. According to Kroon et al., 2008,
the train PESPmodel and the train-related components of the simulation model will be used to generate
ORT. The simulation part aims to minimise the average train arrival delay. The train arrival delay is the
difference in delay between the realised and scheduled train arrival events within the railway network
across all scenarios. The generated ORT will be analysed using the same process as the original
timetable, which can yield corresponding analytical results. Detailed applications of the models will be
further elaborated in chapter 6.



2
Literature study

Based on the research questions outlined in section 1.2 and the subsequent overview, the primary
challenges revolve around the PESP Model, Passenger Assignment Model, and Robust Optimization
Model. These are crucial components in creating a resilient timetable focused on passengers. Many
researchers have extensively studied these topics from different angles. This chapter will introduce the
study’s contributions and summarize the methods and insights that can be used. Section 2.2 introduces
the development of the PESP model and its applications. Section 2.2 discusses various approaches
to assigning passengers to transport networks. Section 2.3 compares the robust optimization model.

2.1. Periodic Event Scheduling Problem Model
Serafini and Ukovich, 1989 first proposes a general framework for solving PESP and applies this con-
cept to address issues in traffic light scheduling. The objective of the PESPmodel is to identify a feasible
event timetable within a given cycle T and a series of events E, under the constraints A. Inspired by
this model, since the 1990s, transportation scholars (Schrijver and Steenbeek, 1993, Nachtigall, 1994,
Odijk, 1996) have started to preliminarily apply it to the formulation of periodic railway timetables and
explore viable solution approaches.

Subsequent research in the railway sector refines and expands the model further, attempting to apply
it to various scenarios. L. G. Kroon and Peeters, 2003 introduces an extension for variable travel times,
significantly enlarging the solution space of the model because small deviations from the fixed trip times
are allowed. Liebchen and Möhring, 2007 elaborates on the PESP model by more precisely defining
primary safety requirements and more complex constraint settings, such as fixed events, bundling of
lines, and train coupling. The capacity and limitations of the model are also detailed in his article. L. G.
Kroon et al., 2014 introduces a dynamic passenger activity extension to the PESP model, allowing the
model to choose which trains should connect in terms of rolling stock or passenger connections.

The PESP model has found applications beyond optimizing railway travel services in recent years.
Wang et al., 2022 improves regenerative energy and passenger satisfaction on the basis of solving
PESP. Masing et al., 2023 expands the PESP model’s headway constraints to separate activities in-
stead of events to study track choice under rail construction scenarios. Besides, Huang et al., 2023
establishes a generalised cyclic railway timetabling and rolling stock circulation planning model consid-
ering passenger demand for a Chinese suburban railway line.

2.2. Passenger Assignment Model
Initially, grounded in utility theory, Ben-Akiva, 1985 introduces the Random Utility Model (RUM), which
has been extensively applied to transportation models for infrastructure investment and operational
planning to quantitatively forecast passengers’ mode choices and assign the passenger to the trans-
portation network.

Passenger route selection is typically determined by the least generalised cost, incorporating factors

6
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such as in-vehicle time, waiting time, walking duration, the number of transfers, and ticket price. Based
on this reality and assuming that the common lines problem (Chriqui and Robillard, 1975) is not taken
into account, Spiess and Florian, 1989 develops a label-setting algorithm to solve the passenger assign-
ment problem where passengers’ waiting times at stations depend solely on the frequency of transit
service combinations within polynomial time, and Tong and Wong, 1999 employs a Monte Carlo ap-
proach to address the issue of heterogeneous passenger dynamic assignment.

As modern transportation network structures and passenger compositions become increasingly com-
plex, scholars attempt to integrate additional constraints and real-world scenarios into existing passen-
ger assignment models while refining solution methods. Nguyen et al., 2001 introduce the concept of
available capacity and consider the implicit first-in-first-out(FIFO) mechanism of utilizing transit lines.
This approach incorporates the flow on each route when addressing the passenger assignment prob-
lem. Hamdouch et al., 2004 recommend employing strategies to characterize user behaviour, whereby
at each boarding node, passengers rank transit lines by their preference in descending order and board
the first line on this list with available capacity. In this case, Hamdouch and Lawphongpanich, 2008
introduces a methodology that utilizes successive averages for its iterations, and during each iteration,
it formulates strategies by solving a dynamic program.

The evolution of the foundational model has enabled its integration with other pertinent issues, with
Gentile and Nökel, 2016 categorizing passenger assignment models for transit systems into schedule-
based and frequency-based models. The distinction lies in whether passengers rely on timetables for
path selection. Frequency-basedmodels are more commonly applied to urban transit networks like sub-
ways and buses with fixed frequencies, whereas schedule-based models align more closely with the
focus of this study. Zhu and Goverde, 2017 summarizes and analyzes the scheduled-based passenger
assignment model during railway system disruptions and, based on this, examines the effects of infor-
mation interventions on the passenger distribution process (Zhu and Goverde, 2019). Furthermore,
Wang et al., 2022 considers the passenger assignment problem under the strategy of incorporating
regenerative energy.

2.3. Robust Optimization Model
In the field of transportation, methods used for studying the robustness of timetables include the Max-
plus Model (De Kort, 2000, Goverde, 2010) and analytical models (Higgins and Kozan, 1998, Huisman
and Boucherie, 2001), which are known for their efficiency and interpretability respectively. However,
their essence lies in being evaluation models, meaning that optimization of timetable robustness can
only be achieved through trial and error. L. G. Kroon et al., 2007 describes a stochastic optimization
model capable of modifying a given periodic timetable and evaluating the modified timetable by sim-
ulating many realizations of the trains in the timetable. Furthermore, Kroon et al., 2008 introduces a
method for achieving robust optimization. On this basis, Khan and Zhou, 2010 develops a stochastic
optimization formulation for incorporating segment travel-time uncertainty and dispatching policies into
a medium-term train-timetabling process.

As research into railway robust optimization models has progressed, models such as Light Robustness
(LR) (Fischetti et al., 2009), Delay Resistant Timetabling (DRT) (Liebchen et al., 2010), Event Flexibility
(EF) (Caimi et al., 2011) have been successively proposed. Compared to the Stochastic Optimization
Model, these models struggle to simultaneously address Stochasticity and deal with an increase in
complexity (Caimi et al., 2017). Consequently, the Stochastic Optimization Model has naturally become
the core model of this study.

Högdahl and Bohlin, 2023b proposes a combined simulation-optimization approach for double-track
lines, which generalizes previous work to allow full flexibility in the order of trains by including a new
and more generic model to predict delays. From the energy-saving perspective, Xie et al., 2021 and Ji
et al., 2024 consider the variated passenger demand and maintenance window as different scenarios
accordingly and apply the stochastic optimization model to design and adjust the timetable. Gemander
et al., 2023 considers and extends the model under uncertain dwell and running times. Despite these
studies not considering robust timetabling research, they can provide a reference for multi-objective
optimization modelling based on the Stochastic Optimization Model.
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2.4. Conclusion
Through the review of the literature, it can be understood that the PESP model is a crucial scheme for
railway timetabling, especially within the context of the Dutch periodic railway system. This model has
undergone several generations of transformation from its proposal to improvement and subsequent
practical application. It supports linking train events and activities with those of passengers and facili-
tates the modelling of passenger-related parameters and properties. Notably, the connection between
passenger and train activities has been achieved in L. G. Kroon et al., 2014. In terms of the passenger
assignment model, the passenger path choice model often relies on the Random Utility Model (RUM)
based on Ben-Akiva, 1985, with the utility’s influencing factors typically including in-vehicle time, waiting
time, walking duration and the number of transfers. This model can determine the probabilities of pas-
sengers choosing various path combinations during their travels. This project will use the minimization
of generalised travel time to simplify the passenger path selection process. It is assumed that the path
choice of a homogeneous group of passengers is unique and fixed, opting for the path combination
with the minimum generalised travel time. Compared with the frequency-based model, the schedule-
based model is more suitable for the timetable formulation of Dutch railway transportation services,
where departure frequencies are variable. In studies related to multi-objective timetable optimization
for passenger allocation, researchers tend to adopt such methods to preliminarily determine a set of
passenger paths and assign passengers based on the variation of the factors in the optimization model.
The Robust Optimization Model is proposed by Kroon et al., 2008 and applied to the design of robust
railway timetables. This approach has been esteemed in subsequent research due to its generality in
modelling, especially in studies of timetable performance reactions to specific indicators under various
scenarios.

According to current research findings, studies focusing on designing robust railway timetables from
the passengers’ perspective are relatively scarce. Most existing studies approach the concept of a PRT
in an evaluative way. In summary, integrating the three models is feasible to address the central issue
of this study, but this research requires adjustments and improvements to the existing models.



3
Train timetabling model

From the perspective of railway operators, running, dwelling, and turnaround activities are the main
activities in daily railway operations. At a macroscopic level, the headway constraint between adjacent
trains with the same infrastructure elements is one of the essential safeguards for safe train running.
Modelling the railway network in an event-activity format to describe these activities provides an efficient
and convenient method for addressing timetabling and rescheduling problems.

In chapter 3, before starting modelling, section 3.1 gives some assumptions on the train timetabling
model. Section 3.2 introduces the train events and activities in this research. This section details
the specific actions of trains, such as departures, arrivals, and their associated operational activities.
Furthermore, section 3.3 discusses the corresponding variables and constraints in train operating fea-
sibility.

3.1. Model assumptions
This research aims to modify and improve the current timetable rather than creating an entirely new
timetable. This is because the design process needs to consider various real-world factors, such as
railway and station capacity, the size of the train fleet, crew scheduling issues, and time allowances
allocations. Given these considerations, certain assumptions have been incorporated into the design:

1. No train will be cancelled, even though a huge delay happens during its operation.
2. The train order remains consistent in a cycle, and no overtaking is allowed in the robust timetable.
3. Every train has enough capacity to accommodate all passengers without considering the issues

of train capacity and passenger priority.
4. The railway network is formulated at the macroscopic level. The model’s scope in this thesis does

not address micro-level aspects, such as constraints within block sections.

Due to the assumptions, subsequent trains will experience secondary delays propagated from the
preceding delayed train unless the supplement mitigates these delays. The delayed process will be
introduced in chapter 5 by the train simulation model. For the second assumption, in a robust timetable,
the sequence of train events within a cycle remains unchanged relative to the original timetable. This
means that events at the end of the cycle cannot have their scheduled times moved to the beginning
of the cycle by delaying their event times, and vice versa.

3.2. Train network representation
From the perspective of trains, the operational activities within a given railway network primarily occur
between stations and on existing railway lines. In the mathematical model, these activities connect
the events of a train arriving at and departing from a specific station. Indeed, dwelling and turnaround
activities are linked to the arrival and departure events within the station. In this section, 3.2.1 and 3.2.2
introduce the sets of train events and activities in the network representation, respectively.

9
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3.2.1. Train events
The event set for trains is denoted by E, and two adjacent connected events are denoted by i and j.
There are mainly two kinds of events: departure and arrival. In addition, besides the passenger stations,
there are junctions between certain stations where infrastructure constraints also exist. Therefore, to
better explain and illustrate the infrastructure constraints, these two types of events are further subdi-
vided into arrival and departure events at stations, which are contained in sets Ea and Ed. On the other
hand, entry and exit events at non-station junctions are contained in sets Ea′ and Ed′, respectively. So,
it has E = Ea+ Ed+ Ea′ + Ed′.

For each event i, oi is the original scheduled time, and xi is the new-designed event time. Other
characteristics of events, such as event ID, train ID, station, and direction, are also given in the event
set, which can be used to map the connection between events and activities. Additionally, the train set
is denoted as N , and the train serving a particular event can be identified by t(i). Each train with a
different itinerary is an individual element in the set, and two trains running on the same route but in
opposite directions are also considered different trains.

3.2.2. Train activities
Train activities are the bridges between 2 connected train events i, j ∈ E, denoted by (i, j) ∈ A. This
research considers four kinds of activities related to trains. They are running activityAr, dwelling activity
Ad, headway activity Ah and turnaround activity At.

Running and dwelling activities are derived from the existing operating plan. The former explains the
train running from one station to the next station, and dwelling activity represents the train staying in the
station and waiting for passengers to board and alight. Sometimes, not all trains stop at every station
along their route, like the Intercity (IC) train in the Netherlands. In these cases, there are no scheduled
events for this train at the non-stop stations. Also, some trains may pass through junctions where one
end of the running activity is connected to a non-station arrival or departure event within the junction.
When inside the junction, the train naturally does not make any stops, so no corresponding scheduled
activities are generated for them. Note that running and dwelling activities connect the events with the
same train ID.

Headway constraint ensures the adjacent trains have suitable headway and the system can operate
safely. The headway activity only connects events of the same type (departure or arrival) at the same
station but with different trains. Sometimes, trains travelling in different directions can create headway
conflicts, especially when conflicting trains use the same switches or tracks. This usually results in non-
overlapping time windows for trains in this junction section, with a few minutes of separation between
them. As a result, there may be headway constraints between events in the non-station junction event
set Ea′ and Ed′, which result from infrastructure conflicts involving these conflicting trains within the
conflict area.

The same train can be assigned to different routes and directions in the railway system. The turnaround
activity represents the process of preparing a set of trains and moving it in reverse direction after
completing one itinerary before starting the return journey on the same route. For simplicity, this thesis
does not discuss potential train couplings that may occur if the train is reassigned to other routes for
operational tasks.

For each activity, (i, j) ∈ A, their minimum and maximum duration should be set as parameters, de-
noted by lij and uij , and employed as constraints to ensure the designed timetable follows the basic
rule of train operation. Assume that all the activity durations are less than the cycle length, that is, lij
and uij should fall in the range [0, T ) within one cycle.

3.3. Train timetabling constraints
The most crucial variable is xi, which represents the event time of i ∈ E in the passenger-centric robust
timetable. As stated in subsection 3.2.2, the duration of each activity must fit within the interval defined
by its lower and upper bounds.

lij ≤ xj − xi + qij · T ≤ uij ∀(i, j) ∈ A (3.1)
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In Equation 3.1, a 0-1 parameter qij is introduced for all train activities to indicate whether the activity
(i, j) ∈ A will cross the cycle in the original timetable, where T represents the cycle length. In other
words, the value of qij can also indicate the order of events i and j within a cycle; when qij = 0, it
means that event i occurs before j, and when qij = 1, it means the reverse is true. According to
section 3.1, it is assumed that the new robust timetable does not change the order of events within a
cycle. So, the value of qij is maintained in the design of a robust timetable. lij and uij are the lower and
upper bounds of the duration of the train activity (i, j). Therefore, Equation 3.1 restricts the duration
of each train activity to fall within a reasonable range. Infrastructure constraints are also included in
Equation 3.1. Accordingly, there can be a minimum interval lij for two conflicting trains passing through
the same junction. If no maximum time is specified, then uij can take the value T .

0 ≤ xi < T ∀i ∈ E (3.2)

Equation 3.2 ensures that the designed event times xi are within the cycle. These two constraints
(Equation 3.1 and Equation 3.2) are crucial in solving traditional PESP.

−mi ≤ xi − oi ≤ mi ∀i ∈ E (3.3)

Equation 3.3 allows but restricts the adjustment window of event time based on the original timetable.
oi is the event time for event i in original timetable and mi is the maximum shifting step for event i.

To prevent potential delays from the scheduled times, extra time allowance is added to the activity
durations, e.g., running times, as time supplements and to the interval between successive trains, e.g.,
minimum headway, as buffer times. (Sahin, 2017, Zieger et al., 2018) In this robust timetabling problem,
we have constrained the time supplement for each train’s running and dwelling activities. However,
there is no such restriction on the turnaround activity at the terminal station, and the headway between
trains does not consider buffer budget constraints.

∑
(i,j)∈Ar∪Ad∧t(i),t(j)=n

(xj − xi + qij · T − lij) ≤ Zn ∀n ∈ N (3.4)

Equation 3.4 indicates that the total time supplement for running (Ar) and dwelling (Ad) activities should
not exceed the budget Zn for each train n ∈ N . As introduced in subsection 3.2.1, each train with a
different itinerary is an individual element n in setN . Therefore, each train over a line in one direction will
have its corresponding supplement budget. The time supplement budget of the timetable is determined
by factors such as operating routes, train types, and infrastructure capabilities. One method involves
calculating the time supplement budget for each train in the original timetable and then applying the
same budget to each train when creating the new timetable. In chapter 6, this approach will be used
to determine the time supplement. The function t(i) helps identify the train ID for event i and sorts out
all the running and dwelling activities for train n.

3.4. Conclusion
Chapter 3 introduces the assumptions related to train operations and provides a detailed explanation
of the types of train events and activities, along with their associated parameters and variables. This
chapter also takes into account infrastructure conflicts when considering train events and activities.
The sets Ed,Ea, and Ed′, Ea′ are used to distinguish between the station and the non-station events,
making it convenient to reference the events within these sets when writing constraints and setting
objectives.

The PESP model forms the basis of the modelling aspect of this research, ensuring that the new
timetable is feasible. Its structured approach enables the systematic integration of different opera-
tional constraints, such as maximum shifting step and time supplement budget, which in turn facilitates
the generation of optimised schedules.

The multi-part composition of the model in this research makes it challenging to implement and verify
after completing the big model. However, the flexible structure of the train timetabling model in this
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chapter allows it to be used as a base model. It can be combined with other sub-models to test their
feasibility, debug, and make necessary adjustments.



4
Passenger model

Modelling human behaviour is complex and challenging because humans possess subjective initiative;
they make decisions based on their judgment to choose the most beneficial actions for themselves in
different situations. This is also true for passengers selecting their modes of transportation. Passengers
make their choices based on factors such as distance, fare, travel time, and other considerations. Even
when they choose the train as their travel mode, passengers evaluate various paths based on their
perceptions of waiting-at-origin time, number of transfers, in-vehicle time, cost, and other attributes,
ultimately selecting the most ’cost-effective’ path.

This chapter will make reasonable assumptions about passenger behaviour (section 4.1) and construct
a passenger event-activity graph in conjunction with the train modelling described in section 3.2 (sec-
tion 4.2). Section 4.3 introduces the process for generating the set of passenger paths. Section 4.4
focuses on developing a generalised travel time based on four key attributes: waiting-at-origin time, in-
vehicle time, transfer time, and the number of transfers. This generalised travel time will be used as the
basis for passengers’ path choices, and passengers will be assigned within the network accordingly.

4.1. Model assumptions
Compared to the train modelling described in section 3.1, passenger modelling tends to exhibit more
complexity. In the real world, individuals show significant heterogeneity; factors such as age, gender,
educational level, etc., can influence their evaluations of specific matters, leading to different choices
in the same situations. Passenger behaviour research is a crucial area in transportation system stud-
ies, aiming to understand better passengers’ decision-making processes regarding transportation and
travel activities. Knowledge of passenger behaviour can help improve the quality and efficiency of
planning and timetabling in public transportation (Hafezi and Ismail, 2011).

However, the time and effort to complete this study are limited, so it is unrealistic to cover all possible
passenger behaviours in this thesis comprehensively. Therefore, some reasonable assumptions should
be made to simplify the model’s complexity. These assumptions will help us focus on studying the most
representative travel time and transfer-related factors and avoid encountering too many variables and
uncertainties during the result analysis and case study.

1. Passengers are aware of the realized timetable. That means the passengers can evaluate the
attributes of each path accurately.

2. The primary disturbances and passenger arrival time are assumed to be independent of the details
of the timetable, and passenger arrival time follows a uniform distribution over an hour, even
though passengers know the train they want to catch will experience a severe secondary delay.

3. Passengers will make a choice considering only waiting-at-origin time, in-vehicle time, transferring
time and number of transfers when choosing their paths. The path choice of a homogeneous
group of passengers is unique and fixed based on the generalised travel time.

13
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4.2. Passenger network representation
For the passenger side, passenger activities have a strong link with train activities because passengers
can interact with the trains only when the train comes into a dwelling. Besides, to more easily integrate
the train model and the passenger model, the nodes in the passenger network representation are the
passenger boarding and alighting events, which are assumed to be in line with the departure and arrival
events, respectively. Section 4.2.1 details the passenger event sets and corresponding parameters and
characteristics. Section 4.2.2 will explain the waiting-at-origin, in-vehicle and transfer activity. In the last
section (subsection 4.2.3), a railway network example is presented, which will help in understanding
the passenger event-activity graph and its relationship with train events and activities.

4.2.1. Passenger events
Passenger event set F is composed of passenger arrive-at-origin, boarding and alighting events. They
form three subsets of F : Fs, Fb and Fa.In the real world, the boarding and alighting times are varied
and follow the queuing theory in which the carriage doors are the service desks, and different groups
of passengers have different service times; thus also, for simplification, all the passengers in the same
passenger group share the same boarding event time, that is the departure time of that train. Alighting
events are recognized as arrival events at the transfer or destination station. Based on this assumption,
for all the passenger boarding or alighting events, there can be a mapped departure or arrival event in
the train event set E accordingly. In this way, i and j can also represent the passenger event-activity
graph.

There is one exception: the arrive-at-origin event. Firstly, the whole passenger set should be divided
into several small groups p ∈ P , and the passengers in the groups share the same OD k = (o, d) and
the arrive-at-origin event time s.

4.2.2. Passenger activities
Like the train activities, passenger activities are the links between 2 connected passenger events i, j ∈
F and the activity set is denoted by B and (i, j) ∈ B. This research discusses three types of activities,
including waiting-at-origin activity Bw, in-vehicle activity Bi and transfer activity Bt.

The waiting-at-origin activity starts when the passengers arrive at their original stations and ends when
they get aboard, which connects the arrive-at-origin event cp for passenger group p with the first board-
ing event in path π, e0π, i.e., (cp, e0π).

The in-vehicle activity describes the process where passengers aboard the train and are transported by
the train from a starting station to an end station. Corresponding to the train activities, the train running
and dwelling activities constitute this part. In real-life scenarios, passengers in the carriage perceive the
train’s running and dwelling times differently (Dewilde, Sels, Cattrysse, Vansteenwegen, et al., 2011).
This thesis does not delve deeper into these perceptions for simplicity in the computational process.

Transfer activity refers to the process in which passengers transfer from one train to another at an in-
terchange station. This activity includes the walking time for passengers to move from one platform to
another within the station, the waiting time on the platform for the next train to arrive, and potentially
the time spent using other facilities in the station. Therefore, a lower bound exists for transfer activity.
Suppose the interval between the arrival and departure event times of the two trains is less than the
minimum time required for passenger transfer activities. In that case, it is considered that passengers
cannot make the transfer, resulting in a missed transfer, and they have to wait for the train in the next
cycle if they insist on this path. The thesis defines certain transfer activities as foolish transfers, such
as when passengers transfer to a train going in the opposite direction or when passengers transfer
between trains going in the same direction but with the same stops. These types of transfers are con-
sidered invalid and are excluded when generating transfer activities. The final set of transfer activities
will include all possible transfers within train dwelling stations, except for foolish transfers. Some of
these transfer activities in the set may take a long time, but they are still included in the set because
they could be potentially chosen under the new timetable.
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4.2.3. Passenger event-activity graph
To better explain passenger events and activities and to illustrate their relationship with train events
and activities, this section provides a small example and constructs a passenger event-activity graph.

As shown in Figure 4.1, this is a small example railway network consisting of four trains: IC001, SP001,
SP002, and SP003. IC001 is an Intercity (IC) train, traveling from Station1 to Station5, with a stop
at Station3. Besides, SP001, SP002, and SP003 are three regional (SPR) trains, meaning they need to
dwell at all stations. Their directions are distinguished by the odd or even train ID: SP001 and SP003
travel from Station1 to Station5, while SP002 travels from Station5 to Station1. There is a group of
passengers with k = (Station1, Station4). The different coloured arrows in the figure represent the
passenger activities experienced on the possible paths chosen by the passengers. Noticeably, (4, 21)
and (4, 13) are examples of two types of foolish transfer behaviours mentioned in subsection 4.2.2. In
the transfer activity (4, 21), passengers will transfer from one SPR to another SPR running in the opposite
direction with the same stops. This indicates that the passengers have either missed their stop or are
going in circles. While (4, 13) refers to passengers transferring from one SPR to another SPR going in the
same direction with the same stops. However, in reality, they could continue on the original train without
needing to transfer to reach their destination station. These kinds of activities will not be included in
the transfer activities for passengers.

Figure 4.1: A small example rail network

A group of passengers plans to leave from Station1, board IC001 to Station3, transfer to SP001, and
finally reach Station4. They will arrive at Station1 at time s (arrive-at-origin event cp). Events and
activities of the trains and passengers along this path are illustrated in Figure 4.2. Please note that
infrastructure constraints of the trains, headway activities, and turnaround activities are not indicated in
the Figure 4.2.In passenger events, according to the definition of the start and end events of passenger
activities in subsection 4.2.1, each train event can give rise to corresponding potential passenger events.
However, to keep the graph clearer and simpler, not all possible passenger events and activities are
marked. The red arrows indicate the flow of passenger activities for this group of passengers along
the chosen path from the starting point to the destination. First, they arrive at Station1 at time s.
The departure event of train IC001 from Station1 marks the end of the passenger waiting-at-origin
activity and the start of their in-vehicle activity. The passenger transfer activity between different trains
starts with the arrival of the preceding train at the transfer station and ends with the departure of the
subsequent train from the station. Finally, after experiencing an in-vehicle activity on SP001, they arrive
at their destination, Station4.

Constructing the passenger event-activity graph is a critical step in creating the passenger path set.
The following section will explain how to generate all possible paths for each OD pair with a known
passenger event-activity graph.
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Figure 4.2: Passenger event-activity graph in the small example network

4.3. Passenger path set generation
Before conducting passenger assignment modelling, the set of possible passenger paths needs to be
defined. This section will detail how to find all possible paths for each OD pair with the railway network
graph and passenger activities.

4.3.1. Depth-First Search algorithm and Breadth-First Search algorithm
In this section, wewill explore two fundamental algorithms for graph traversal: Depth-First Search (DFS)
and Breadth-First Search (BFS). These algorithms are essential for various applications in pathfinding
and network analysis.

DFS algorithm
DFS, proposed by Tarjan, 1972, is a traversal algorithm that starts at a given node (often called the
”root” in tree structures) and explores as far as possible along each branch before backtracking. This
approach dives deep into the graph, reaching the leaf nodes before exploring sibling nodes.

The algorithm begins at the root or starting node and moves to an unvisited adjacent node, continuing
this process until it reaches a dead end. After that, the algorithm backtracks to the previous parent
node to explore other unvisited paths. This process repeats until all nodes have been visited or all
paths from the starting node to the destination node have been explored.

BFS algorithm
BFS is a traversal algorithm that starts at a given node and explores all its neighbours at the present
depth level before moving on to nodes at the next depth level. This approach explores the graph layer
by layer and is widely used in searching the shortest path (Banerjee et al., 2018).

First, the root node is placed into the Queue. The traversal of the algorithm continues as long as there
are elements in the Queue. During each iteration, the number of elements currently in the Queue is
calculated, representing the number of elements at the current level of the tree. This number is denoted
as Size. Next, in this Size, a number of elements are removed from the Queue, and operations specific
to the problem are performed on them. While removing each node, its child nodes are added to the
Queue. As long as elements remain in the Queue, indicating that there is another level to process,
Queue calculation and Size removing is repeated to handle the next level.

Comparison
DFS offers several advantages, including memory efficiency and implementation simplicity. It uses
less memory compared to BFS, as it only needs to store the current path in the stack. Therefore,
DFS is suitable for exhaustive search scenarios, such as puzzle solving and maze navigation, where
a comprehensive exploration of all possible paths is required.
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For BFS, it guarantees finding the shortest path in an unweighted graph, making it ideal for pathfinding
tasks. It processes nodes level by level, which can be beneficial for certain types of analyses, such as
social network studies. However, BFS requires more memory than DFS, as it needs to store all nodes
at the current level in the Queue. It can also be slower for graphs with many levels, as it explores
nodes layer by layer. BFS is particularly suitable for cases where the shortest path between nodes is
required.

In our case, the request is to input the OD pair and the network graph with passenger events and activi-
ties and find out all possible paths in the whole network. For this purpose, DFS is more suitable because
it explores each path from the origin to the destination exhaustively before backtracking, ensuring that
all possible paths are considered. DFS is particularly efficient for this task as it can be implemented
with recursion and uses less memory than BFS. It is beneficial for handling potentially large networks
with numerous paths.

4.3.2. Algorithm implementation
In this section, the DFS algorithm is introduced to find all the paths for the passengers with OD k. The
network graph is constructed with station nodes and passenger in-vehicle and transfer activities. The
station nodes connect to each other through a series of passenger activities, which are the edges of the
graph. As shown in Figure 4.3, we break down the passenger in-vehicle activity into in-vehicle running
activity and in-vehicle dwelling activity to provide a more detailed explanation of the DFS process in
this chapter. Additionally, we combine the passenger in-vehicle dwelling activity and transfer activity
with the passenger in-station activity.

Figure 4.3: The definition of passenger in-vehicle activity and in-station activity

The path-searching process consists of two parts: The first step involves searching for all possible
passenger in-vehicle running activities to connect the passing station between the origin and destination.
It is not necessary to consider whether these activities are from the same train or whether transfers can
be facilitated. The second part helps to complete the generated paths by adding connected in-station
activities between the previous to-events and the following from-events in adjacent in-vehicle running
activities. If it fails to find such an activity, the path will be marked as infeasible and removed from
the path set. Below, the same example railway network in Figure 4.1 is employed to explain the exact
process of finding all feasible paths.

Figure 4.4: Graph representation of the example rail network

There is also a group of passengers who want to travel from Station1 to Station4. They want to
know all possible paths so that they can make a comparison among them and pick the shortest path.
To find all the paths from Station1 to Station4 in the small example railway network, as structured
in Figure 4.4, stations are the nodes in the graph because passengers can only change their activity
state at train stops. The in-vehicle running activity links the stations, while the in-station activity (not
shown in the graph) is responsible for connecting the passenger events within the station. However,
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the edges representing the in-vehicle running activities completed by different trains are not the same,
even for activities between the same two stations in the same direction with similar routes. For instance,
in Figure 4.1, (1, 2) for SP001 and (9, 10) for SP003 represent different activities when passengers travel
to Station2 on these two trains. These activities must be distinguished because they connect different
events in the event-activity graph, and these events correspond to different event times when modelling.
To facilitate their differentiation, we will define the edges as connections between station1 and station2
via activities (1, 2) and (9, 10) respectively.

The inputs of DFS are the passenger OD k = (o, d) and the railway network graph with event set F
and in-vehicle running activity (Figure 4.4). The goal is to find all potential passenger in-vehicle running
paths between station nodes for each k.

Firstly, for each k = (o, d), we will initialize a list Π∗
k to store the paths. Then, a DFS recursion function

will take in the current searching node, the set of visited nodes, and the set of passenger in-vehicle
running activities in the current path as inputs. Next, the algorithm will first check if the current searching
node is the destination d that the passenger wants to reach. If it is, this indicates that a path has been
found, and the current path will be added to Π∗

k, signifying that a path has been identified.

Of course, if the current node is not d, the algorithm will find all unvisited neighbouring nodes that can
be accessed via edges in the network graph and record the connecting edges. Then, the algorithm
will loop again, taking one of these neighbouring nodes and its connecting edge as new inputs for the
recursion function. Note that when a path is found, that is, when the current node is the destination d,
the function will exit because the destination d has already been visited and if we continue to traverse
its neighbouring nodes, it will not be possible to visit the destination d again. Consequently, after
breaking this iteration, the process will naturally return to the step of traversing neighbouring nodes in
the previous recursion function.

Figure 4.5: Path generation process for the first branch starting with (1, 2), (3, 4) in a small example network

This recursion process is very complex and difficult to describe, thus, Figure 4.5 provides example steps
of the algorithm applied to the small network shown in Figure 4.1, where o is Station1 and d is Station4.
In Iteration 1, the input is the starting point Station1, with the sets of visited nodes and activities both
being empty. Then, it searches for its neighbour nodes and the corresponding edges, finding three
pairs: Station2(1, 2), Station2(9, 10), and Station3(25, 26) (Station2(1, 2) means connecting to the
neighbour node Station2 with edge (1, 2)). Each pair of neighbour nodes will be traversed, and each
traversal will end either upon reaching the destination or after all child nodes have been explored.
For example, if we choose the pair Station2(1, 2) and start Iteration 2. Obviously, Station2 is not the
desired destination d, the process will be repeated. Starting from Station2(1, 2), we continue to search
for child nodes of Station2, resulting in two possibilities: Station3(3, 4) and Station3(11, 12). Note
that the pair Station1(23, 24) is not considered, as Station1 is already in the set of visited nodes. This
loop will only unwind after all neighbour nodes of the next child node have been searched. Therefore,
this looping process is not a horizontal search, but a vertical search algorithm that explores one branch
of parent nodes completely before returning to a previous level for further search.

When considering the first branch (starting with activity (1, 2), (3, 4)), it finds one of the neighbour nodes
for Station3 that is Station4 with edge (5, 6) (Sub-figure 3) and luckily it reaches the destination
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d. Therefore, the first potential path from Station1 to Station4 is found and saved in the path set
Π∗

k. Subsequently, the algorithm backtracks to the closest parent node (Station3(5, 6)) and requests
another connecting edge, referred to as (13, 14). Similarly, starting from the parent node Station3, the
last available path that can be found is (27, 28), (17, 18) (Sub-figure 5,6).

The branch starting from activity (1, 2), (3, 4) has three paths:

1. (1, 2), (3, 4), (5, 6)

2. (1, 2), (3, 4), (13, 14)

3. (1, 2), (3, 4), (27, 28), (17, 18)

After completing the search on this branch, the algorithm will continue to backtrack to the higher-level
parent nodes. From these parent nodes, the search will proceed again with similar steps, continuing
until all possibilities have been traversed.

The first step involves identifying the edges between stations in the network. This entails finding the
connections for passenger in-vehicle running activities between origin and destination stations. How-
ever, it’s important to note that not all of these paths will have in-station activity connections. This
is because, as mentioned in subsection 4.2.2, foolish transfer activities are not considered within the
scope of this thesis. Thus, we need the second step, which is to check the feasibility of the paths in
the finding path set. As previously explained, at intermediate stations for the paths (i.e., stations other
than the origin and destination), the to event of the preceding edge must be connected to the from
event of the subsequent edge via a passenger in-station activity (in-vehicle activity or transfer activity).
Therefore, after completing the initial pathfinding, it is necessary to identify in-station activity that links
the adjacent in-vehicle running activities. The path is deemed infeasible if such a connecting activity
cannot be found.

With the initial path setΠ∗
k obtained from the first step and all the in-station activity, the final output of the

second step will be the passenger path set Πk of OD k in the form of continuous passenger activities.

In the next step, we will revisit the previous example to analyse and refine the paths starting with
activities (1, 2) and (3, 4), as illustrated in Figure 4.5. In order to visualize the distribution of passenger
in-station activities more effectively, Figure 4.6 organizes all passenger activities based on the trains
responsible for the operation. The dashed boxes correspond to the same station and are equivalent
to the ellipses used to represent stations in Figure 4.5. The green lines indicate in-vehicle dwelling
activities, while the red lines represent feasible transfer activities between different trains at the same
station.

Figure 4.6: Path feasibility check for the first branch in a small example network

As shown in Figure 4.6, the in-vehicle running activity between Station1 and Station2, and between
Station2 and Station3 can be achieved through the in-vehicle dwelling activity (2, 3). Besides, in-
vehicle dwelling activity (4, 5) can fill the connection in Station3. Each of the above three paths is
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examined in turn. It is found that, in the second path, the connection of in-vehicle running activities
of different trains should be undertaken by the transfer activity at Station3, but there can’t find such
activity because SP001 and SP003 are trains having the same dwelling and running mode in the same
direction. This transfer activity is recognized as a foolish transfer. Thus, this path will be discarded.

Therefore, the updated set of paths is as follows:

1. (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)

2. (1, 2), (2, 3), (3, 4), (4, 27), (27, 28), (28, 17), (17, 18)

After getting all the possible paths for each passenger OD k, the number of transfer ϵπ for each single
path can be calculated by counting the number of transfer activities.

4.4. Passenger assignment constraints
In passenger assignment modelling, travel time and number of transfers determine a passenger’s path
choice in this thesis. For the travel time part, three types of time must be defined: waiting-at-origin
time, in-vehicle time, and transfer time, as shown in Equation 4.1-4.7. Here, P represents the set of
passenger groups, k and s are the OD, and the time this group of passengers p arrives at the original
station is in a periodic form, respectively.

Figure 4.7: Path set structure

As shown in Figure 4.7, Πk is a sub-set of the whole path set Π and represents the set of all paths
for k = (o, d), and π gives the path element in the path set. The first boarding event in each path π is
denoted by e0π.

ωp,π = xe0π
− s+ ap,π · T s ∈ p, ∀p ∈ P, ∀π ∈ Πk (4.1)

ωp,π ≥ 0 ∀p ∈ P, ∀π ∈ Πk (4.2)

ap,π ∈ {0, 1} ∀p ∈ P, ∀π ∈ Πk (4.3)

Equation 4.1 is used to decide the waiting time at the origin station for each passenger group p in path
π, in which a binary variable ap,π is introduced to determine the sequence of passenger arrive-at-origin
event cp and first boarding event e0π in one cycle. When ap,π = 0, arrive-at-origin event cp comes
earlier than the first event in path π within the cycle, otherwise, arrive-at-origin event cp comes later.
xe0π

represents the time of the first boarding event in the path π, and s represents the corresponding
event time for the arrive-at-origin event cp. Equation 4.2 tells that passengers cannot board a train that
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has already departed unless they are willing to wait for that train the next cycle. In this way, the binary
variable ap,π is restricted.

ϕp,π =
∑

(i,j)∈π∧(i,j)∈Bi

(xj − xi + qij · T ) ∀p ∈ P, ∀π ∈ Πk (4.4)

Passenger in-vehicle time for the path π is defined by Equation 4.4. It is the duration summation of all
the passenger in-vehicle activities Bi. The passenger activities share the same start and end times as
trains’ as assumed in section 4.1. Thus, qij is the same binary parameter discussed in train modelling
and has already been defined in Equation 3.1.

γp,π =
∑

(i,j)∈π∧(i,j)∈Bt

(xj − xi + bij · T ) ∀p ∈ P, ∀π ∈ Πk (4.5)

lij ≤ xj − xi + bij · T < T + lij ∀(i, j) ∈ Bt (4.6)

bij ∈ {0, 1} ∀(i, j) ∈ Bt (4.7)

Equation 4.5-4.7 illustrate the definition of transfer time for (i, j) in transfer activity set Bt, which has a
similar structure as that of in-vehicle time. Its lower and upper bound lij can be determined by factors
like station size, service infrastructure in the station, etc. bij is a binary variable to judge if the passenger
can transfer the connected train in the same cycle from event i to event j. If bij = 0, the order is that
event i comes first to the event j in one cycle, and passengers have enough time to transfer from
event i to j; otherwise, the passenger has to wait for the connected train with event j in the next cycle.
Although the activity sequence remains the same as the original timetable due to the assumption, bij
still needs to be a binary variable rather than parameter qij , because there is a minimum transfer time
lij given in Equation 4.6. If the transfer time after the schedule shifting is less than lij , bij will change
from 0 to 1.

ξp,π = ϕp,π + βw · ωp,π + βt · γp,π + βn · ϵπ ∀p ∈ P, ∀π ∈ Πk (4.8)

Equation 4.8 provides a representation of generalised travel time ξp,π for passenger group p travel on
path π, where βw, βt, and βn represent the weights of waiting-at-origin time, transfer time and number of
transfers relative to in-vehicle time, respectively. These values can be found in the literature (Robenek
et al., 2016, Binder et al., 2017). ϵπ is the parameter for the number of transfers in the path π, and it
can be directly calculated when the path is generated. Passengers will determine their final travel plan
based on each path’s generalised travel time ξp,π.

Equation 4.9-4.12 demonstrate the mathematical expression of how each group of passengers selects
the path with the minimum generalised travel time.

∑
∀π∈Πk

αp,π = 1 ∀p ∈ P (4.9)

αp,π ∈ {0, 1} ∀p ∈ P, ∀π ∈ Πk (4.10)

Equation 4.9 and Equation 4.10 define a binary variable αp,π. When αp,π = 1, it indicates that the
passenger group p with OD k and arrive-at-origin time s will choose path π as their final travel plan. At
the same time, any other path in Πk will marked as ’Not chosen’ to passenger p (αp,π = 0).

−M · (1− αp,π) ≤ ξp − ξp,π ≤ M · (1− αp,π) ∀p ∈ P, ∀π ∈ Πk (4.11)
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ξp − ξp,π ≤ M · αp,π ∀p ∈ P, ∀π ∈ Πk (4.12)

Equation 4.11 and Equation 4.12 are the constraints for selecting the shortest path. Here, the Big M
method is used, and M is introduced as a large enough number. ξp gives the minimum generalised
travel time passenger group p with OD k and arrive-at-origin time s. Only when αp,π = 1, which means
the path π is selected by this group of passengers, Equation 4.11 will restrict ξp = ξp,π. Besides, for
Equation 4.12, it is employed to ensure ξp should be less or equal to the generalised travel time of any
path in the set Πk.

4.5. Conclusion
The passenger-related problem is the most complex and variable part of the passenger-centric robust
timetabling problem discussed in this thesis. Therefore, at the beginning of this chapter, a series of
assumptions are made before the passenger assignment model is introduced. Additionally, passenger
events and activities are defined in detail, and they are closely related to the train’s event-activity graph.
Waiting-at-origin and transfer activities are introduced as additional passenger activities in construct-
ing the passenger event-activity graph. Furthermore, in section 4.3, the DFS algorithm demonstrates
more significant advantages in pathfinding problems compared to BFS, with all possible passenger
paths generated and refined through a two-step DFS. The final part focuses on passenger assignment
modelling, mainly defining various travel times, calculating generalised travel times, and finding the
path with the minimal generalised travel time for each passenger group. These selected paths are
affected by changes in the new timetable and are also a crucial part of optimising train event times.
This modelling approach will also be addressed in the subsequent passenger simulation section.



5
Simulation model

This chapter will introduce how to build models simulating train operations and passenger assignments
under disturbance scenarios. These results will be used to assess the passenger-centric robustness
of the current train timetable. The robust timetabling problem aims to create schedules that can with-
stand disturbances, ensuring reliable and efficient railway operations. This thesis will use the average
passenger delay as the primary evaluation factor for customising robust timetables. Therefore, the
simulation section needs to discuss the train and the passenger model. This chapter will be divided
into three main parts: in section 5.1, all relevant used parameters will be introduced. Section 5.2 and
section 5.3 will then respectively introduce the constraints related to the delay propagation through
trains and the evaluation process from the passenger perspective.

5.1. Scenario parameters
For the simulation model, the selection of scenarios will directly impact the final output results. The
method of designing scenarios is crucial for addressing specific problems. The considerations for
designing scenarios will be explained in more detail in the specific context of chapter 6. This section
will introduce the parameters that may included in each scenario, laying the basis for the subsequent
case study. ;

Number of cycle h ∈ H
The number of cycles indicates how long the scenario will last. A longer scenario will definitely increase
the complexity of the model and calculation time. A scenario with more cycles helps consider situations
where a specific activity always experiences disturbances, such as transfer stations, which often lead
to additional dwell time.

Initial delayed time δijrh
As an adjustable parameter, the initial delayed time is denoted as δijrh for disturbed activity (i, j) in
cycle h in each scenario h. In real-world situations, the initial delayed time of a specific activity may
follow a certain distribution, such as a normal distribution, over a given period. However, due to the
limitations of computational capabilities, this thesis only considers a fixed initial delayed time.

Disturbed activity ((i, j), r, h) ∈ ∆
Disturbed activity indicates which train activities in the scenario r have experienced disturbances, i.e.
they require longer activity duration. In each scenario, multiple disturbed activities can be defined
simultaneously. This refers to real-world scenarios where a small disturbance affects two-way train
traffic or when a set of highly correlated activities simultaneously encounters disturbances.

5.2. Train simulation constraints
In this section, a realised event time for train event i and j is denoted by virh or vjrh, in which r is the
scenario ID included in the scenario set R discussed in the case and h is the realised cycle that the
event i or j happens.

23
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The delay propagation process is simulated when the initial delay appears through Equation 5.1 and
Equation 5.2.

vjr(h+qij) − virh ≥ lij + δijrh ∀(i, j) ∈ A, ∀r ∈ R, ∀h ∈ H, ((i, j), r, h) ∈ ∆ (5.1)

vjr(h+qij) − virh ≥ lij ∀(i, j) ∈ A, ∀r ∈ R, ∀h ∈ H, ((i, j), r, h) /∈ ∆ (5.2)

Note that Equation 5.1 describes the duration bound of activities experienced initial disturbance. The
disturbance parameter for activity (i, j) in scenario r in cycle h is given by δijrh, which is added to
the lower (lij) bound of the duration of (i, j) and h should be a natural number N. This activity has to
process an extra δijrh upon the lower bound. The binary parameter qij illustrates whether activity (i, j)
crosses the cycle in the original timetable. Besides, in Equation 5.2, the constraint for other activities
not in disturbance set ∆ is presented. By these constraints, the delay will be propagated along the
activity chain influenced by the initial delay δijrh if there is no sufficient supplement to mitigate the
previous delay. Noticeably, v is a linear variable, so the realised time virh may not exactly fall in the
cycle h. Sometimes, virh will postpone to the next cycle h+ 1 due to the initial delay, but it still retains
the original index.

xi + h · T ≤ virh ∀i ∈ Ed, ∀r ∈ R, ∀h ∈ H (5.3)

In real-world operation, a train cannot depart earlier than the scheduled departure time under normal
cases, even if it has finished its dwell activity ahead of time. Early departure can cause passengers
who arrive at the station just in time to miss the train or result in failed transfers for transfer passengers.
Thus, we address this problem with a constraint in Equation 5.3. xi + h · T is the scheduled event time
for event i in cycle h and virh is the realized event time in linear form.

5.3. Passenger simulation constraints
This section will focus on how passengers choose their paths and how the generalised travel time is cal-
culated when delays occur under disturbance scenarios. Based on the first assumption in section 4.1,
passengers are aware of the realised timetable and can accurately know the travel time they will ex-
perience in each path. Therefore, passengers can be assigned to the rail network using the methods
outlined in section 4.4. In cycle h of scenario r, the realized waiting-at-origin time, in-vehicle time and
transfer time for each path π for each passenger group p are denoted by ω∗

p,π,r,h, ϕ∗
p,π,r,h and γ∗

p,π,r,h

respectively. Noticeably, variables with a superscript * indicate the corresponding passenger-related
variables under the realised timetable as described in chapter 4. The subsequent constraints will all
follow this notation.

ω∗
p,π,r,h = ve0πrh − (sp + h · T ) + a∗p,π,r,h · T ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.4)

ω∗
p,π,r,h ≥ 0 ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.5)

a∗p,π,r,h ∈ {0, 1} ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.6)

Equation 5.4-5.6 define the passenger waiting-at-origin time for the passenger group p with OD k and
arrive-at-origin time s in scenario r in cycle h. The binary variable a∗p,π,r,h is applied to determine the
chronological order of the passenger arrive-at-origin event and boarding event of the target train in the
cycle h. If the arrive-at-origin event occurs before the boarding event, then a∗p,π,r,h = 0; otherwise,
a∗p,π,r,h = 1. Besides, s+ h · T is the expression of the passenger arrive-at-origin time in a linear form.
Equation 5.5 tells that passengers cannot board a train that has already departed unless they are willing
to wait for that train the next cycle (a∗p,π,r,h = 1).
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ϕ∗
p,π,r,h =

∑
(i,j)∈π∧(i,j)∈Bi

(vjr(h+Qj,π) − vir(h+Qi,π)) ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.7)

Equation 5.7 specifies the in-vehicle time for the passenger group with p under the realized timetable.
Since virh is a linear variable, it is necessary to determine in which cycle the passenger activity (i, j) ∈ π
occurs during the journey on this path. Therefore, a new integer parameter Qi,π will be introduced, and
it helps to record the number of cycles experienced by this route up to event i.

As shown in Figure 5.1, we assume that {1, 2, 3, 4, 5} are passenger events in the event set B. The
position of the triangles in the Figure 5.1 represents the event times of these events in the newly
designed timetable. There is a given path π, π = {(1, 2), (2, 3), (3, 4), (4, 5)}, and to obtain Qî,π, we
should sum all the qij for passenger activities before the event î . For example, to calculate Q3,π, sum
the q values of passenger activities up to event 3 (q1,2, q2,3), resulting inQ3,π = 0. To calculateQ5,π, sum
the q values up to event 5 ( q1,2, q2,3, q3,4, q4,5), resulting in a sum of 1. Note that the model determines
the specific event times in the newly designed timetable, and all these event times are variables, but
the order of events within a cycle remains the same as in the original timetable. Therefore, the Qi,π

values are equal to that of the original timetable, making Qi,π a fixed value for each event i in each
path π.

Figure 5.1: The relationship between qîj and Qî,π in path π

γ∗
p,π,r,h =

∑
(i,j)∈π∧(i,j)∈Bt

(vjr(h+Qj,π) − vir(h+Qi,π) + b∗ijrh · T ) ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.8)

lij ≤ vjr(h+Qj,π) − vir(h+Qi,π) + b∗ijrh · T < lij + T ∀(i, j) ∈ Bt, ∀r ∈ R, ∀h ∈ H (5.9)

b∗ijrh ∈ {0, 1} ∀(i, j) ∈ Bt, ∀r ∈ R, ∀h ∈ H (5.10)

Equation 5.8-5.10 are combined to restrict the realized transfer time. b∗ijrh is a binary variable to
judge whether the previous train arrival event i and the following train departure event j in the re-
alised timetable is still in the same sequence as the designed robust timetable. Note that the sequence
of events in the new timetable is fixed because, in section 3.1, we assumed this sequence is the same
as the original timetable. However, in the realised timetable, this order can be changed due to the
disturbance in the previous train. If the departure event j goes first in the realised timetable in scenario
r in cycle h, b∗ijrh will be 1. Although these passengers can wait for the same train in the next cycle,
they must experience a much longer transfer time.
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Figure 5.2: Example path π with a transfer activity under newly designed timetable

Now, here is an example of a path involving a transfer activity under a newly designed timetable.
As shown in the Figure 5.2, this path in the example involves two trains. Train A’s activity order is
(1,2),(2,3),(3,4),(4,5),(5,6), where all q values are all 0 except for q3,4 which is 1. Activity order for Train
B is (7,8),(8,9),(9,10),(10,11),(11,12), where all q values are 0 except for q10,11. Additionally, Train A’s
Event 2 and Train B’s Event 9 are the arrival and departure events at Station 1, respectively. Passen-
gers have a path π of (1,2), (2,9), (9,10), (10,11), which includes a transfer activity (2,9). In the newly
designed timetable, this transfer is feasible within cycle 0 (as indicated by the dashed line in Figure 5.2).
Suppose this path does not experience disturbances and ignores the waiting activity at the origin. In
that case, the generalised travel time consists of three segments of in-vehicle time and one segment of
transfer time, with the transfer time being the difference between the realised event times: v9,r,0−v2,r,0.
At this point, b∗2,9,r,0 = 0.

Figure 5.3: Example path π with a transfer activity in realised timetable under scenario 0

γ∗
p,π,r,h =

∑
(i,j)∈π∧(i,j)∈Bt

(vjr(h+Qj,π+b∗ijrh)
− vir(h+Qi,π)) ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.11)

Figure 5.3 illustrates a delay scenario, denoted as scenario 0. Unfortunately, Train A’s activity (1,2) is
delayed, making the transfer (2,9) in this path infeasible within cycle 0. That means this transfer is not
possible in the scheduled cycle. Train B also experiences delays in cycle 1. Nevertheless, this path π is
still feasible. As shown in the Figure 5.3, passengers need to wait for Train B’s Event 9 in the next cycle
to continue using this path. The transfer time is v9,0,1 − v2,0,0, and b∗2,9,0,0 = 1. To accurately express
this relationship, Equation 5.11 needs to be applied to replace Equation 5.8. However, the problem is
that the index of realised event time virh includes a variable b∗ijrh, which means this expression is not
linear. To simplify the constraint, the model proposed (Equation 5.8-5.10) in this thesis approximates
this issue by adding b∗ijrh ·T as an additional transfer time. The trade-off and limitation for this approach
is that if subsequent train activities on this path experience delays resulting in the realised event time
differing from the scheduled event time, this value will be inaccurate. As shown in Figure 5.3, the actual
transfer time from Event 2’ in cycle 0 to Event 9 in cycle 1 is v9,0,1 − v2,0,0, but using Equation 5.8, the
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transfer time is v9,0,0 − v2,0,0 + T . Since Event 9 in cycle 1 is delayed, these two values are obviously
unequal. Using the same method to check subsequent events, such as the in-vehicle time for (9,10) in
cycle 1, the time might also differ from that in cycle 0. This paper refers to this phenomenon as cycle
misalignment.

If a delay in the preceding train causes passengers to miss the transfer to the subsequent train in the
scheduled cycle (i.e. b∗ijrh = 1), it may result in a cycle misalignment. This can affect all passenger
activities after the cycle misalignment occurs. The duration of these passenger activities may vary
depending on the difference between values vjr(h+Qj,π+b∗ijrh)

−vir(h+Qi,π) and vjr(h+Qj,π)−vir(h+Qi,π)+

b∗ijrh · T .

As explained in this example, it must be admitted that if b∗ijrh takes the value 1, this may cause a cycle
misalignment in Qi,π corresponding to event i after missing the transfer in path π. This misalignment
may lead to a deviation in calculating the passenger travel time. However, because the missed transfer
significantly increases the transfer time and there are still many other paths to choose from, this path
with the missed transfer will certainly not be the shortest. Therefore, these errors may not affect the
final optimisation result in most cases. However, when there are few alternative paths available to
passengers and the disturbance is intense, this limitation will be magnified. The path that deviates
from the realised generalised travel time due to cycle misalignment will become the only option for
these passengers, inevitably affecting the accuracy of the model and the final results.

ξ
∗
p,π,r,h = ϕ∗

p,π,r,h + βw · ω∗
p,π,r,h + βt · γ∗

p,π,r,h + βn · ϵπ ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.12)

Equation 5.12 calculates the generalised realized travel time ξ
∗
p,π,r,h for each path for each group of

passengers in scenario r in cycle h. Note that ϵπ is the number of transfers in path π independent of
the event times and passenger groups.

∑
π∈Πk

α∗
p,π,r,h = 1 ∀p ∈ P, ∀r ∈ R, ∀h ∈ H (5.13)

α∗
p,π,r,h ∈ {0, 1} ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.14)

−M · (1− α∗
p,π,r,h) ≤ ξ∗p,r,h − ξ

∗
p,π,r,h ≤ M · (1− α∗

p,π,r,h) ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.15)

ξ∗p,r,h − ξ
∗
p,π,r,h ≤ M · α∗

p,π,r,h ∀p ∈ P, ∀π ∈ Πk, ∀r ∈ R, ∀h ∈ H (5.16)

Equation 5.13-5.16 compare the generalised travel time for each group of passengers in each cycle
under each scenario and assign the minimum generalised travel time to ξ∗p,r,h. This structure is similar
to the passenger assignment model under scheduled timetable in section 4.4.

5.4. Objective function
As discussed in section 1.3, the optimisation goal of robust timetabling in this study is to minimise the
additional average generalised travel time experienced by passengers under small disturbances, i.e.
average passenger travel delay.

ξ∗p,r,h − ξp ≤ dp,r,h ∀p ∈ P, ∀r ∈ R, ∀h ∈ H (5.17)

Therefore, Equation 5.17 tells the calculation formulation of the travel delay dp,r,h for each passenger
group p in scenario r in cycle h, where ξp and ξ∗p,r,h represent the scheduled travel time and realised
travel time under the new robust timetable respectively.
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Min
∑
p∈P

∑
r∈R

∑
h∈H

dp,r,h · gp,h/|G| (5.18)

In the last, the objective function, as shown in Equation 5.18, minimises the average passenger travel
delay for all passenger groups P in all scenariosR in all cycleH. The average passenger travel delay is
derived by taking the product of the additional delay dp,r,h for each passenger group p and the number
of passengers gp,h in the corresponding group, and then dividing by the total number of passengers
|G|.

5.5. Conclusion
This chapter has comprehensively discussed the application of models to simulate the passenger gen-
eralised travel time under disturbance scenarios so as to help the optimisation of railway passenger-
centric robust timetabling by focusing on the average passenger delay.

In section 5.1, the critical parameters forming the foundation of the simulation model are introduced.
Secondly, section 5.2 details the constraints related to train simulation. These constraints ensure that
delay propagation is accurately modelled and that trains adhere to realistic operational limits. They
also prevent trains from departing earlier than scheduled, thereby maintaining operational reliability.
In section 5.3, the constraints governing passenger behaviour and their impact on generalised travel
time are explored. The model reflects passengers’ responses to delays and their subsequent path
choices, allowing for the calculation of additional generalised travel time experienced by passengers
under various disturbance scenarios. However, the model has limitations in calculating the passenger
realised transfer time. If a delay in the preceding train causes passengers to miss the transfer to the
subsequent train in the scheduled cycle, it may result in a cycle misalignment. This will cause deviations
between the activity duration in subsequent journeys and the actual duration. Luckily, in real-world
networks, passengers have many paths to choose from, and paths with deviations, often due to long
transfer times, tend not to be the passengers’ final choice. Thus, this limitation may not affect the final
results. Seeking improvement measures for this limitation will also be one of the subsequent research
topics.

This chapter lays the groundwork for robust timetable optimisation by integrating detailed train and
passenger simulation models. The methodologies and constraints introduced are applied to evaluate
the average passenger delay on a timetable that provides feedback to the PESP model.



6
Case study

The Eindhoven-Den Bosch-Tilburg region, located in the southern Netherlands in the province of North
Brabant, is one of the most important economic and cultural centres. Eindhoven, the fifth largest city in
the Netherlands, is also the centre for innovation and technology. Besides, Den Bosch, the capital of
North Brabant, experiences significant daily traffic due to its administrative importance. Consequently,
the railway system in this region is one of the most heavily used in the province. This chapter will
apply the models mentioned in the previous chapters to this region to evaluate the performance of the
methodology.

6.1. Railway network
Figure 6.1 shows the layout of the railway network within the case study area. In this network, Eind-
hoven (Ehv), Den Bosch (Ht), and Tilburg (Tb) are the major interchange hubs, which are connected
by Intercity and Sprinter (regional) trains. Additionally, the network includes four secondary stations:
Vught (Vg), Boxtel (Btl), Best (Bet), and Eindhoven Strijp-S (Ehs), where only Sprinter trains dwell.
Overall, there are three pairs of Sprinter trains operating in this network: the Eindhoven-Den Bosch
route (SP9640, SP9641), the Den Bosch-Tilburg route (SP6640, SP6641), and the Tilburg-Eindhoven
route (SP6441, SP6444).

Figure 6.1: Case study region: Eindhoven-Den Bosch-Tilburg

29
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According to the latest infrastructure layout from sporenplan in the case area (Figure 6.2), trains from
Tilburg to Den Bosch (SP6640,IC3640) have to use the same infrastructure groups in the junction with the
train from Eindhoven to Tilburg (SP6444, IC1140), as well as trains from Tilburg to Den Bosch (SP6640,
IC3640) and from Tilburg to Eindhoven (SP6441, IC1141). This junction is named Tilburg aansl. (Tba).
Similarly, there is a junction Vga in the northern of Station Vg. Thus, besides the headway constraints
in the stations, junction infrastructure constraints should be added in Tba and Vga, in which the junction
arrival and departure events with the same event times are inserted, and the lower bound lij between
the conflicting passing train is 1 min and the upper bound uij is set as cycle length (30 min).

Figure 6.2: Infrastructure layout at Btl-Tba-Vga region

Figure 6.3: Case study timetable in 2019

In this thesis, we use the railway timetable in 2019 (Figure 6.3) from NS as the original timetable. This
timetable is a periodic timetable with a cycle of 30 minutes, where each train is sent from the departure
station once within the cycle. Besides, the minimum running time and headway for lij (∀(i, j) ∈ Ar∪Ah)
are provided, and the upper bound of the running time is set at 1.3 times the minimum running time. The
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dwell time at stations is assumed to be 0.5 min. The optimisation model allows 3 min shift in departure
or arrival event times, i.e. mi = 3 for all train events i ∈ E.(Wang et al., 2022)

6.2. Passenger groups and passenger parameters
6.2.1. Passenger groups
The passenger OD demand is calculated based on the average morning peak passenger flow in the
study region in 2019. To avoid excessively long computation times due to large data volumes, the case
study ultimately selects the passenger flow data for one hour, from 7:00 to 8:00 (covering two cycles),
as the passenger OD demand data in the case study. During this period, a total of 20,081.5 passengers
are included. The OD demand distribution is shown in Figure 6.4, and there is significant passenger
traffic between core interchange stations.

Figure 6.4: Passenger origin and destination distribution

With this passenger set, we need to create passenger groups according to the following assumptions:

1. The passenger flow distribution within one hour follows a uniform distribution.
2. Passengers are divided into five groups per OD with 6-minute intervals within one cycle.

Therefore, within the study period, 20,081.5 passengers are divided into 420 groups based on their OD
k and arrive-at-origin time s. An example of passenger groups is given in Table 6.1.

Table 6.1: Passenger group example

Group ID Origin Destination Arrive-at-origin time (min) Flow Cycle
0 Ht Ehv 0 137 0
1 Ht Ehv 6 137 0
2 Ht Ehv 12 137 0
3 Ht Ehv 18 137 0
4 Ht Ehv 24 137 0
5 Ht Vg 0 11 0
6 Ht Vg 6 11 0
7 Ht Vg 12 11 0
8 Ht Vg 18 11 0
9 Ht Vg 24 11 0

Noticeably, only the OD demand within this small area is considered in this case study. However, in
real-world operations, some of the lines in the network shown in Figure 6.1 extend to other cities, such
as Breda, Utrecht, and even The Hague. This means that when considering passenger delays, many
passengers whose journey starts or ends outside of this region are overlooked. Consequently, during
actual operations, the total delay experienced by passengers under disturbance scenarios would be
greater.
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6.2.2. Passenger path set
This section will use the DFS algorithmmentioned in section 4.3 to generate a set containing all possible
paths between OD pairs. By inputting the network information and passenger activities B, we obtain
the path set Πk for each OD pair k represented in the form of passenger activity sequences. The exact
path-finding process can be found in section 4.3.

Figure 6.5: Number of possible paths for each OD pair

Figure 6.5 illustrates the number of possible paths between each OD pair after the path generation pro-
cess. It can be observed that the path sets between OD pairs contain up to 10 paths. All feasible paths
are considered in the model because both the newly designed timetable and the realized timetable are
determined by variables within the model. This indicates that the paths chosen by passengers may
differ in various scenarios.

Table 6.2 shows some of the paths from Ht to Tb, which are composed of consecutive passenger
activities. The lists of passenger events and activities from the case study can be found in Appendix B
and Appendix C.

Table 6.2: Some possible paths from Ht to Tb

Origin Destination Paths

Ht Tb Path 1: (20, 21), (21, 152), (152, 153), (153, 154), (154, 155),
(155, 156), (156, 157), (157, 158), (158, 159)
Path 2: (20, 21), (21, 160), (160, 161)
Path 3: (26, 27), (27, 152), (152, 153), (153, 154), (154, 155),
(155, 156), (156, 157), (157, 158), (158, 159)
...
Path 9: ...

Additionally, the feasibility of transfer connections needs to be emphasized. Since the timetables stud-
ied in this thesis are periodic, all connections are guaranteed to be feasible during both modelling and
actual execution. Even if passengers miss a connecting train, they can still choose to take the same
train in the next period, albeit with a longer transfer time.
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6.2.3. Passenger generalised travel time
The weight factors in Equation 4.8 and Equation 4.9 are βw = 2.5, βt = 2.5, and βn = 10 (Robenek et al.,
2016, Binder et al., 2017). Specifically, βw represents the weight for waiting times at origin stations, βt

denotes the weight for transfer times, and βn signifies the penalty per transfer. For passenger transfer
activities, the minimum transfer time is 3 minutes, while the maximum transfer time is 33 minutes.
(Wang et al., 2022)

6.2.4. Train sets and passenger sets
Table 6.3 lists the sizes of the sets that are used in this case study. In subsection 4.2.1, the train arrival
time is assumed to be the alighting time for passengers arriving at the station, and the departure time
corresponds to the boarding time. Therefore, there is a clear correlation between the size of the sets of
passenger events and train events and the passenger in-vehicle running activity and in-vehicle dwelling
activity, which correspond one-to-one with train running and dwelling activities.

In Table 6.3, the train headway activity includes 72 headway activities for trains at stations, as well as
24 infrastructure headway activities for trains at junctions. In this small network, not all trains originate
or terminate at the stations within this region; only four turnaround activities occur at Ht and Ehv. From
the passenger’s perspective, the size of the arrive-at-origin event set and the waiting-at-station activity
set is equal to the size of the passenger group. Besides, the transfer activity set does not include the
foolish transfer defined in subsection 4.2.2.

Table 6.3: The size of sets in the case study

Train events
Set Arrival Departure Junction arrival Junction departure
Size 30 30 20 20

Train activities
Set Running Dwelling Headway Turnaround
Size 30 14 72+24 4

Passenger events
Set Arrive-at-origin Boarding Alighting
Size 420 30 30

Passenger activities
Set Waiting-at-station In-vehicle running In-vehicle dwelling Transfer
Size 420 30 14 40

6.3. Case A: model verification and validation case
To test if the passenger-centric robust timetabling model is constructed correctly and if it can perform
its primary functionality, model verification and validation will be conducted in this section. Two simple
scenarios will be randomly generated in section 6.3.1, and the train and passenger data will follow the
data set introduced in section 6.1 and 6.2. During this process, the integrated optimisation model will
be split and combined to verify each sub-model’s functionalities. And its performance can be validated
by its final objective value.

Section 6.3.2 describes using the passenger model and simulation model to generate the average
passenger delay of passenger groups and train delay after experiencing disturbances under the OT.
In section 6.3.3, the PESP model and train simulation are used to generate an operator-centric robust
timetabling model to minimise the average train arrival delay. The generated timetable is then applied
to the passenger model to calculate passenger-related indicators. The results produced by the final
integrated optimisation model in this verification and validation case will be reported in section 6.3.4.
This final model will be a PRT with the objective function of minimizing the average passenger delay.

6.3.1. Disturbance scenario generation
In the verification and validation case A, two random disturbance scenarios are generated, as shown
in Table 6.4. In Scenario 0, 4 activities departing from Tb are considered to have initial delays, with
delay values of either 3 or 5 (min). In Scenario 1, the activities with initial delays are all train running
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activities arriving at Tb. Generally, all initial delays occur in the first cycle (cycle 0).

Table 6.4: Disturbance scenario for verification and validation case

Scenario Train ID From_station & To_station Activity Type Initial Delay h

0

SP6441 (Tb, Btl) running 3 0
SP6640 (Tb, Ht) running 3 0
IC1141 (Tb, Ehv) running 5 0
IC3640 (Tb, Ht) running 5 0

1

IC3641 (Ht, Tb) running 3 0
SP6641 (Ht, Tb) running 5 0
IC1140 (Ehv, Tb) running 3 0
SP6444 (Btl, Tb) running 5 0

The above disturbance scenario might have practical significance in situations where the railway near
Tilburg station frequently undergoes brief maintenance or is subject to external disturbances. However,
this case study is primarily intended to verify the model’s functionality. Therefore, we will not explore
its meaning, and it may not be associated with any actual events or data.

6.3.2. Verification and validation of passenger-centric model
In this section, we will use the OT provided by train operator NS to verify the passenger modelling part,
which includes the passenger assignment model and the simulation model.

Input
The OT is shown in the event-activity graph with original event time oi ∈ O; passenger set p ∈ P ,
passenger path set Πk ∈ Π.

Model
In this case, since the timetable has been fixed as the OT, the PESP model is not used.

For the definition of passenger generalised travel time, the constraints structure can follow Equation 4.1-
4.12 in section 4.4.

Equation 5.1-5.17 (except Equation 5.11) are used to simulate the delay propagation and the passenger
path choice in the realized scenarios. The objective function of the model (Equation 5.18) is to get the
minimum average passenger generalised travel time so as to figure out the realized selected path in
the scenarios.

Additionally, if only the train simulation part (Equation 5.1-5.3) is considered in the model and the ob-
jective function (Equation 6.1) minimizes the average train arrival delay, we can calculate the average
train delay from the operator’s perspective. Di,r,h denotes the train arrival delay for an arrival event i
in scenario r in cycle h and is calculated by the difference between the realized arrival time virh and
scheduled arrival time xi. |N | is a parameter recording the total number of trains in the case study rail
network.

Min
∑
i∈Ea

∑
r∈R

∑
h∈H

Di,r,h/|N | (6.1)

Output
In the case where Equation 5.18 is used as the objective function, after solving the aforementioned
model, the optimal solution obtained is 2.98, which means that passengers will experience an average
delay of 2.98 minutes. Figure 6.6 shows the average delay calculated for different passenger groups
with the same OD. Since, in this case, all initial train delays are set within the period of 7:00-7:30,
all passenger delays occur within this period. This indicates that the initial delay starting in the first
cycle does not propagate to the next cycle, affecting passenger travel activities. Moreover, it is clear
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that passengers departing from station Tb in Scenario 0 and those arriving at Tb in Scenario 1 have
experienced relatively more severe delays. This phenomenon in Scenario 0 is due to the initial delays
of four trains departing from Tb, and all trains from Tb to Ht experienced initial delays within this cycle.
The reasons for the huge delay around Station Tb are similar in Scenario 1. Generally speaking, refer
to Figure 6.4 and Figure 6.6, it can be seen that the OD pairs with high delays have a large passenger
flow (Tb-Ht), which corresponds to a higher average passenger delay.

Figure 6.6: Average passenger delay in minutes for each OD pair in OT

Figure 6.7 shows the results generated by applying the train simulation model, which describes the
arrival delays of trains at their dwell stations for each cycle in each scenario. If there is no data for a
specific train at a particular station, it indicates that the train does not stop at that station. Overall, most
delays are not propagated. In Scenario 0, Ehv and Ht, which are directly connected to the delayed
running activity, experiences train delays of 3.9 minutes. In Scenario 1, the delays occur in the running
activities of trains arriving at Tb, resulting in particularly severe train delays at station Tb, which is
consistent with the analytical solutions. In summary, the total train arrival delay amounts to 10.20
minutes, and most of the disturbances can be mitigated by the robustness of OT.
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Figure 6.7: Train arrival delay in minutes in OT

Efficiency is also an essential element of train operations. Figure 6.8 presents the average passen-
ger generalised travel time for passengers completing their journeys between different ODs in normal
cases (without disturbance). Overall, journeys that require transfers, such as those between Tb and Vg,
tend to have a higher passenger generalised travel time. In the end, it is calculated that the average
generalised travel time for each OD pair is 46.13 minutes in the OT.

Figure 6.8: Average passenger generalised travel time in minutes in OT
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6.3.3. Verification and validation of operator-centric model
This section will attempt to generate an operator-centric timetable based on the model proposed in
chapter 3. The results of the generated timetable are analysed, and their rationality is examined.

Input
The OT is shown in the event-activity graph with original event time oi ∈ O.

Model
In this case, an ORT will be generated. Therefore, the PESP model (Equation 3.1-3.4) has to be used
to ensure the feasibility of the generated timetable. Note that under the supplement budget constraints,
the method of allocating supplement budgets according to each train is adopted, which respects the
supplement budget allocated to each train in the OT. Thus, Equation 3.4 is used as the supplement bud-
get constraint. Additionally, the train simulation parts (Equation 5.1-5.3) need to be adopted to simulate
the delay propagation of the currently generated timetable under the two disturbance scenarios.

According to the definition of robustness mentioned in section 1.3, as shown in Equation 6.2, the op-
timisation objective in this verification and validation model is to minimize the total train arrival delay
within the experimental railway network.

Min
∑
i∈Ea

∑
r∈R

∑
h∈H

Di,r,h (6.2)

Output
Figure 6.9 shows the optimise operator-centric timetable. Each coloured line represents a train service
within a cycle, while the corresponding dotted lines indicate the train service in the original timetable. In
the new ORT, the operational service lines of the trains do not intersect with the dotted lines indicating
the original service. Therefore, there will be no cases where some events for the same train in the new
timetable are delayed while others are postponed compared to the original timetable.

The diagram clearly shows that there is at least a one-minute interval in the arrival and passing times
of the conflicting trains at the Vga and Tba junctions, which is a result of infrastructure constraints.
Additionally, in the left subfigure of Figure 6.9, the SP9641 (Ht-Ehv), represented by a purple line, has
been shifted approximately 2 minutes to the right. This means that, compared to the OT, this train is
required to operate about two minutes later. It is worth noting that its departure time is at the end of
the cycle (29.9 min), which is highly likely because, the model has fixed the sequence of train events
when designing the timetable in the cycle, preventing the departure event at Ht from being moved to
the beginning of the cycle.

Figure 6.9: Comparison of train service shifts between ORT and OT
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Figure 6.10 shows the average amount of time that event times for each train in the ORT have been
adjusted compared to the OT. The orange and green bars represent trains that experienced initial
delays of 3 and 5 minutes during their operation, while the light blue bars represent trains without any
initial disturbance. More than half of the trains have been adjusted earlier by approximately 3 minutes.
These adjustments have no obvious regularities and may be influenced by factors such as headway,
infrastructure constraints, and the predefined order of events in the timetable creation process. The
interaction between trains makes the timetable design process more complicated.

Figure 6.10: Average shifting step for each train in ORT

Figure 6.11: Train arrival delay in minutes in ORT
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The optimised objective function value is 9.60, representing the total train arrival delay at the stations
measured in minutes. Their distribution is shown in Figure 6.11. In comparison to Figure 6.7, it can
be observed that in Scenario 1, the delay for SP6444 arriving at Tb station has been reduced. This
improvement is likely the result of optimising the supplement allocation for each train.

Figure 6.12: Average passenger delay in minutes for each OD pair in ORT

Suppose passenger-related information is input, and the model described in the previous section is
applied. In that case, the average passenger delay in the ORT can be obtained as 2.33 min. This
shows a slight improvement compared to the OT. This indicates that the operator-centric model has
limited ability to reduce passenger delays in disturbance scenarios. From Figure 6.12, the delayed
passengers are often distributed at Tb station and nearby stations, which corresponds to the distribution
of train delays.
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Figure 6.13: Average passenger in minutes generalised travel time in ORT

Regarding the efficiency of the train timetable, the average generalised travel time between each OD
pair is even smaller, reaching 44.50 min, as shown in Figure 6.13. This is explainable because, in
this verification and validation case, only a very limited disturbance scenario has been considered. In
contrast, when designing the OT, it is possible that the designer did not consider the robustness of
the timetable and the passenger travel efficiency but rather randomly allocated supplements to train
activities.

6.3.4. Verification and validation of passenger-centric robust timetabling model
This section will verify the most important model proposed in this thesis, which is also the final contri-
bution. This requires using all previously mentioned train, passenger and simulation models, resulting
in a larger computational workload.

Input
TheOT is represented in the event-activity graph with original event time oi ∈ O, passenger set k, s ∈ P ,
and passenger path set Πk ∈ Π.

Model
The constraints introduced in chapter 3, chapter 4, and chapter 5 will be applied. Similarly to sec-
tion 6.3.3, the supplement budget is also allocated according to the trains. The optimisation objective
function is set as the same as Equation 5.18.

Output
Figure 6.14 illustrates the PRT, which results from slight adjustments based on the original train timetable.

The Figure 6.14 clearly demonstrates the application of infrastructure constraints. Like the ORT, the
trains’ operational trajectories do not intersect with the OT’s operational trajectories for the same train.
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Figure 6.14: Comparison of train service shifts between PRT and OT

As shown in Figure 6.15, the average shifting steps for trains from OT to PRT are much smaller than
those for ORT. Additionally, more train schedules have been delayed, likely to ensure that passengers
do not miss their departure times or transfer connections.

Figure 6.15: Average shifting step for each train in PRT

Under this timetable, the average passenger delay in the two scenarios reached 1.04 minutes (Fig-
ure 6.16). When referring to Figure 6.4, we notice that the passenger-centric robust model tries to
aggregate the delays to the OD with lower passenger demand, such as Ehs-Bet and Tb-Ehs. This in-
dicates that the PRT established using the model proposed in this thesis can reduce the passenger
generalised travel time in specific delay scenarios. From the operator’s perspective, the train arrival
delay is higher with this timetable (10.20 minutes), and its distribution is shown in Figure 6.17.

In the passenger-centric model, applying more delays to OD pairs with smaller passenger flows sig-
nificantly improves the optimisation objective, which may naturally sacrifice a certain amount of train
arrival delay. However, in this small verification and validation case, the disturbances are not so severe
that the average train arrival delay remains the same as that of OT.

The average passenger generalised travel time for each OD pair is 44.48min in this case (Figure 6.18),
which is similar to the results of the other two timetables.
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Figure 6.16: Average passenger delay in minutes for each OD pair in PRT

Figure 6.17: Train arrival delay in PRT
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Figure 6.18: Average passenger generalised travel time in minutes in PRT

6.3.5. Conclusion
Case A divides the model into four parts and then reintegrates them, achieving different functionalities.
These designed experiments are used to verify and validate each part of the model. Based on the
output results from the two combined models and the final model, the models are correctly constructed.
For example, in the PRT, ODs with lower passenger flows experience greater delays (Ehs-Bet). In
contrast, in the ORT, all train delays are treated equally, leading to amore even distribution of passenger
delays. This outcome is determined by the results of the passenger path allocation and the optimisation
objective.

Based on the outputs(Table 6.5), all the results are consistent with the analytical solutions and aligned
with the previous expectations. Among the three timetables, OT performs the worst in handling the two
disturbance scenarios in this case. Even in normal cases without disturbances, the average generalised
travel time for each OD pair is the longest. For the ORT, the total train arrival delay is the smallest,
as this is the primary optimisation objective. An unexpected benefit is the improvement in timetable
efficiency compared to OT. PRT, on the other hand, focuses on reducing average passenger delay
during disturbances, successfully reducing delays to about one-third of the original level. Therefore, it
is concluded that the passenger-centric robust timetabling model works as intended and can achieve
the functionality of the model.

Table 6.5: Comparison among OT, ORT and PRT in case study A

Timetable Average passenger
delay (min)

Total train
arrival delay (min)

Average generalised
travel time (min)

OT 2.98 10.20 46.13
ORT 2.33 9.60 44.50
PRT 1.04 10.20 44.48
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6.4. Case B: impact of disturbance intensity on optimisation results
Due to the passenger path allocation in each scenario, the number of constraints and variables involved
is enormous. Based on practical testing, it is known that when considering 30 scenarios, the model
will include over one million variables, making solving it extremely challenging. If we want to apply
this model to larger networks and longer operational periods in real-world applications, it will be very
costly. Additionally, more constraints need to be considered in practical scenarios. Therefore, we must
consider whether this model has significant practical application or discuss the improvement of robust
timetables derived from this model compared to the OT in different scenarios.

This chapter will explore the effectiveness of the passenger-centric robust timetabling model in con-
structing timetables under various disturbance scenarios. It will compare average passenger delay
and efficiency indicators with the initial timetable. Section 6.4.1 explains the generation and selection
of disturbance scenarios in this case. In contrast, sections 6.4.2 and 6.4.3 discuss the results generated
under scenarios with different disturbance frequencies and severities, respectively.

6.4.1. Disturbance scenarios generation
This section will introduce the scenario generation process, and the parameter settings for each sce-
nario vary according to the disturbance intensity, including the frequency and severity of disturbances
and the specific scenario generation process.

As previously mentioned, solving the passenger-centric robust timetabling model requires substantial
computational effort, so the number of scenarios selected must take into account the complexity of
solving the model. Even worse, in this case study, very little information is available regarding the
disturbance frequency or historical data of the trains within this network. Consequently, we have to
generate the scenarios by inserting some disturbance values into specific train activities following a
certain regulation or distribution. However, under these conditions, having too few scenarios will result
in model outcomes that are not representative and lack statistical significance, thereby affecting the
accuracy of the results analysis. Therefore, after multiple preliminary trials, we choose a set of 15
disturbance scenarios as the foundation for developing a PRT. The generation of these disturbance
scenarios follows the regulations outlined below:

1. Only the train running activities will be disturbed in this case, and it does not consider the delays
in dwelling, headway or turnaround activities.

2. The possibilities of primary delay in each running activity are the same with a mean of λ.
3. The amount of the primary delay lies in the range from 1 min to 5 min, and it keeps the same

amount of delay in one timetabling process.

Nine sets of scenarios (Table 6.6) are designed to test the performance of the passenger-centric robust
timetabling model under different frequencies and severity levels of scenarios, following the controlled
variable method. The controlled variable method involves keeping all variables constant except for one,
which is deliberately changed to observe its effect. Based on these scenarios, nine PRTs are developed
in total. The optimised results are compared with the average passenger delay when adhering to the
OT. Additionally, the efficiency of the robust timetable is also compared.

Table 6.6: Experiments design in case study B

Group Experiment ID Frequency(λ) Severity(min) Number of scenarios

A

1 0.10 5 15
2 0.15 5 15
3 0.20 5 15
4 0.25 5 15

A/B 5 0.30 5 15

B

6 0.30 4 15
7 0.30 3 15
8 0.30 2 15
9 0.30 1 15
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It should be noted that, in the Eindhoven-Den Bosch-Tilburg case discussed in this paper, the cycle of
the train schedule is 30 minutes.

After designing the disturbance frequency and severity for each scenario within each experiment, we
can assign a random number between 0 and 1 to each running activity that can be disturbed. This
number is then compared to the frequency value of that experiment. If the random number is less
than the frequency value, then there is an initial delay for that activity in this scenario. The value of
this delay corresponds to the severity designated for that experiment. After generating 15 scenarios
for an experiment using this method, these scenarios must be recorded and then used as disturbance
scenarios in the passenger assignment and simulation model that runs under OT.

Figure 6.19: Convergence of the solution bounds during the optimisation process in three experiments

Finally, in addition to generating experimental scenarios, the target gap between the upper and lower
bounds in the feasible region needs to be discussed. As the optimisation model approaches conver-
gence during its operation, spendingmore time results in a relatively small improvement in the optimised
result, as shown by the lower bound continuously approaching the upper bound. Therefore, a target
gap needs to be defined. After multiple tests and trials, as shown in Figure 6.19, the rate of change in
the gap (red line) decreases over time as it approaches 20%, and the upper bound (blue line) remains
almost unchanged after the gap drops below 30%. This indicates that spending more time does not
significantly improve the quality of the solution. Consequently, this gap is ultimately set at 20%. With
this gap, the results obtained will not differ significantly from the potential optimal results, nor will they
consume too much computation time.

6.4.2. Experiments on disturbance frequency
This section will conduct an experiment on Group A as shown in Table 6.6, analyzing the performance
of PRTs under different disturbance frequencies and their improvements compared to the OT.

These five experiments utilize 15 scenarios and set the target gap between the upper bound and lower
bound at 20%. Each disturbance lasts 5 minutes, but the frequency of disturbances varies. By applying
the passenger-centric robust timetabling model, new timetables and average passenger delays can be
obtained within a computation time ranging from 8 to 24 hours.
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Figure 6.20: Comparison on average passenger delay between OT and PRT in frequency experiment

Accordingly, the same disturbance scenarios will be put in the OT and output the average passenger
delays. Figure 6.20 tells the results of comparing the indicator of OT and PRT. As the probability of
disturbances increases, the average passenger delay shows a noticeable upward trend, which is more
pronounced under the OT. At a disturbance frequency of 0.30 interruptions per hour, the total sum of
average passenger delays across 15 scenarios reaches 142.34 min, meaning that each passenger
experiences an average delay of about 10 minutes per scenario. In contrast, under the five PRTs, the
average total delay per passenger in the corresponding experiments is reduced to less than 30 min,
indicating a significant improvement in the optimisation target.

The green line represents the ratio of the target indicator between PRT and OT. The smaller this ratio,
the greater the improvement in the target value after applying this model. Overall, this ratio shows
a decreasing trend. Particularly, when the disturbance frequency increases from 0.25 to 0.30, the
passenger delay under OT shows a significant increase. However, the PRT obtained through the
passenger-centric robust timetabling model can control this value to below 30 min.

In summary, it can be inferred that the model proposed in this paper significantly improves passenger
delay, especially when disturbances are frequent.

Figure 6.21: Comparison on maximum passenger delay between OT and PRT in frequency experiment
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Figure 6.21 gives the maximum passenger delay. For OT, the maximum delay for an OD pair is 54
minutes at frequencies between 0.10 and 0.20 and 61.5 min at frequencies of 0.25 and 0.30, with
starting and ending points respectively at Tb and Vg. This is related to additional waiting times caused by
missed transfer connections. The newly designed PRT, however, can effectively reduce the maximum
passenger delay, keeping it around 20 minutes. Even for the unluckiest passengers, this delay amount
is more manageable than that under OT.

Figure 6.22: Average passenger generalised travel time in frequency experiment

Figure 6.22 reflects the average passenger generalised travel time for all OD pairs under OT (46.13min)
and PRT, without any disturbances. Overall, the efficiencies of all PRTs are better compared to OT. This
may be due to differences between the disturbance scenarios considered in the design of OT and those
we considered in this case, or it may take into account other operator-related factors. Additionally, the
orange bars in Figure 6.22 indicate that the differences between all timetables are not significant. This
is likely because, as restricted in chapter 3, the adjustment window of the new PRT relative to the OT
is limited, and each train’s supplement budget is fixed.

6.4.3. Experiments on disturbance severity
This chapter uses the same methods and procedures as referenced in subsection 6.4.2 to analyze
several experiments in Group B. The experiments in Group B will utilize different amounts of delay
while keeping other parameters consistent to explore the performance of the model and the quality of
the corresponding PRT under various severity levels.

The experiment examines five levels of severity on different activities, ranging from 1 min to 5 min, and
Figure 6.23 compares the average passenger delays with OT and PRTs.
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Figure 6.23: Comparison on average passenger delay between OT and PRT in severity experiment

The blue bars represent the OT passenger delay in minutes for each severity level. As the severity of
the disturbance increases, the delay also increases significantly, particularly noticeable in the 5-minute
disturbance experiment, with an average delay of approximately 142 minutes through 15 scenarios.
However, when the trains run under PRTs the passenger delays go down. The green line represents
the ratio of PRT delay to OT delay. This ratio decreases as the severity increases, demonstrating that
the relative effectiveness of PRT increases with higher levels of disturbance.

Figure 6.24: Comparison on maximum passenger delay between OT and PRT in severity experiment

From the perspective of each group of passengers, whenever a disturbance occurs, the greater the
delay, the greater the maximum delay experienced by the passenger group (Figure 6.24). The imple-
mentation of PRT can significantly alleviate the worst-case passenger delay situations accordingly.
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Figure 6.25: Average passenger generalised travel time in severity experiment

The patterns shown in Figure 6.25 and Figure 6.22 are similar, with all PRTs generated through a PRT
exhibiting higher efficiency than OT, and all are very close in performance. Additionally, when dealing
with cases with higher levels of severity, the efficiency of PRT will decrease slightly. However, this
seems to be a negligible pattern.

6.4.4. Conclusion
This case study explores the effectiveness of the passenger-centric robust timetabling model proposed
in this thesis under scenarios with different levels of disturbance frequency and severity and evaluates
the performance of the corresponding generated PRTs. By comparing nine experiments divided into
two groups, we learn that all PRTs have an absolute advantage over OT, which is more pronounced
at higher frequencies and with more severe delays. Additionally, in Case B, the maximum passenger
delay and the average passenger generalised travel time among all OD pairs are discussed to exam-
ine the distribution of passenger delays and the efficiency of train timetables to some extent. These
indicators show significant advantages over those of OT. Based on the delay ratio of PRT to OT under
different experiments, it can be seen that as disturbances become more intense, the effectiveness of
PRT improves.

However, the limitations of Case B are also quite evident. Due to the large computational scale (50720
continuous variables, 210360 integer variables and 44920 binary variables), there are only 15 sce-
narios, but it takes nearly 20 hours to obtain PRT. Too few scenarios under the random disturbance
scenario generation method can lead to deviations from expected outcomes. This is also a limitation
of the model, as it struggles to consider more scenarios to ensure that the timetable possesses the
desired robustness.

6.5. Conclusion
This chapter introduces two case studies conducted using the passenger-centric robust timetabling
model proposed in this paper. Both studies are based on the railway network data and passenger flow
data of the Eindhoven-Den Bosch-Tilburg region in the Netherlands.

Section 6.1 primarily describes the study area, which includes seven train stations and 16 lines, and also
takes into consideration the headway constraint issue at Tilburg junction (Tba) and Vught junction(Vga).
For passengers (section 6.2), all passengers are divided into 420 passenger groups based on OD and
their arrival times at the origin, and parameters for passenger generalised travel time denoted as β are
defined.

Case A (section 6.3) serves as the verification and validation case for the model, dividing the model into
four parts and then reintegrating them to achieve different functionalities. These designed experiments
are used to verify each part of the model. It considers two simple disturbance scenarios and compares
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indicators such as average passenger delay, total train arrival delay, and average generalised travel
time under these scenarios. Ultimately, this model is deemed to be consistent with expectations.

The purpose of section 6.4 is to explore under which scenarios the model proposed in this paper shows
more improvements relative to OT, and to test the model under more random conditions. However, due
to limited computing power, this section only randomly generated 15 scenarios for each experiment and
conducted the experiments from both frequency and severity perspectives. The results indicate that,
based on the three indicators of average passenger delay, maximum passenger delay, and average
passenger generalised travel time, PRTs consistently performed better than OT.

Overall, the PRT proposed in this thesis is considered to have been correctly verified and can be used to
improve the train timetables of the Eindhoven-Den Bosch-Tilburg region for 2019 under the given nine
experimental scenarios groups. This will make the model potentially valuable for practical applications
in larger and more varied scenarios.



7
Conclusions

In this thesis, we have developed a robust timetabling model that focuses on the delay of passengers.
The model is based on stochastic optimization and aims to minimize the average generalised travel
delay for each group of passengers under specific disturbance scenarios. The conclusions can be
found in section 7.1, which addresses the research questions. In section 7.2, we discuss the limitations
of this model and the case study. Following that, we propose some recommendations and possible
future works.

7.1. Conclusion
Reviewing section 1.2, three sub-questions have been proposed for the main research question of this
paper. This section will address these three questions one by one.

How to define the robustness of a timetable in a passenger-centric way?
In this thesis, a railway timetable is considered robust if it can help mitigate the additional generalised
travel time experienced by passengers when small disturbances occur. From the passengers’ perspec-
tive, generalised travel time consists of four factors: waiting-at-station time, in-vehicle time, transfer
time, and the number of transfers. Generalised travel time is the weighted sum of these four factors,
and the passenger assignment process will follow the generalised travel time of each path in the gen-
erated path set.

How to incorporate the passenger behaviour into a robust timetabling scheme?
First, before themathematical modelling, a literature review reveals that operator-centric robust timetabling
already has a mature system and can be implemented. These modelling methods often use the ap-
proach of converting train timetables into an event-activity graph. Although passenger activities are
more complex than train activities, in fact, passenger activities are closely tied to the train’s dwelling
activity. First, we divide passengers into a series of groups based on OD and arrive-at-origin time. All
passengers in the same passenger group share the same boarding event time, which is the departure
time of that train. Alighting events are recognized as arrival events at the transfer or destination station.
Based on this assumption, a corresponding departure or arrival event can be found in the train event
set E for all the passenger boarding or alighting events. In this way, i and j can also be used to repre-
sent the passenger event-activity graph. Moreover, these events are strongly associated with the train
event-activity graph.

How to evaluate the quality of the new-designed timetable?
Regarding the problem of the quality of timetable creation, this thesis considers robustness and effi-
ciency essential indicators for evaluating timetables, even though they are often challenging to balance.
Therefore, the evaluation will primarily focus on these two aspects. The robustness evaluation follows
the definition of passenger-centric robustness, focusing on analyzing the average passenger delay in
disturbance scenarios. Additionally, in case study B, the distribution of passenger delays is briefly
considered, comparing the maximum passenger delay under disturbance scenarios. The efficiency
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evaluation indicator is the shortest generalised travel time for passengers to complete their travel be-
tween OD according to the timetable in the normal case.

Considering this, an answer to the main questionHow to design a high-quality passenger-centric robust
periodic timetable? can be formed by integrating the findings from the three sub-questions discussed
above. Based on the performance of the passenger-centric robust timetabling model in Case Study A, it
shows a significant improvement in the robustness evaluation indicator proposed in this thesis, average
passenger delay, compared to other timetables. Although passenger transport efficiency decreases
under the new timetable, it remains within an acceptable range.

7.2. Discussion
In this section, the thesis will be discussed. The discussion is split into two parts: subsection 7.2.1
introduces the limitations of the models and the limitations of the results found for the case study. In
contrast, subsection 7.2.2 proposes a group of potential recommendations and future research related
to this work.

7.2.1. Limitations
This thesis presents a passenger-centric robust timetabling model, which builds upon Kroon’s operator-
centric model (Kroon et al., 2008) by using average passenger delays under disturbance scenarios to
measure timetable robustness. Although this is a novel idea and is well-articulated in this thesis, it still
has many limitations due to constraints such as computational power and complexity.

Fixed order of train in PRT
In section 4.1, before establishing the train timetabling model, it is assumed that the trains follow the
same sequence as the OT in the newly designed PRT. This means there will be no overtaking or
changes in train departure order within the design of the timetable, significantly limiting the potential for
timetable optimization.

Homogeneous passenger travelling preferences
In section 4.1, during the passenger assignment step, we assume that passengers follow the same
preferences and rules to choose their paths, which may not fully align with real-world behaviour. Addi-
tionally, all passenger behaviours are simplified when calculating the generalised travel time, sharing
the same β. This could lead to discrepancies between the passenger delays predicted during timetable
design and the actual passenger delays, potentially failing to reflect passenger preferences accurately.

Fixed order of train in realizations
In chapter 5, it is mentioned that the simulation part of this model fixes the train running order and
does not account for train cancellations. This means subsequent trains cannot pass any node ahead
of preceding trains, even if the preceding train has experienced severe delays, inevitably leading to
the propagation of delays. However, we clearly recognize that altering the train running order or even
cancelling trains when they experience significant delays could mitigate the loss in objective value
caused by severe delays. These dispatching methods might be applied in practical operations but are
not considered in the model proposed in this thesis.

Cycle misalignment
In section 5.3, there is an issue with cycle misalignment in the calculation of realized transfer time in
the current model. This misalignment causes discrepancies between the values calculated by formulas
Equation 5.8 and Equation 5.11 when a delay in the preceding train causes passengers to miss the
transfer to the subsequent train in the scheduled cycle. These discrepancies may also propagate to
the subsequent calculation of passenger travel time. In this thesis, cycle misalignment does not affect
the final results because passengers who miss transfers would have to wait longer to maintain their
original travel path; if a shorter path is available, it would naturally be chosen instead. However, it
cannot be denied that the impact of cycle misalignment would be amplified in cases where there is only
one available path or very few alternative paths.
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Limited scenario size
In section 6.4, we only generated 15 scenarios for each experiment when studying the model’s perfor-
mance under different intensities. While these results can indicate the trend of changes in the aver-
age objective value of passenger delay compared to on-time results to some extent, they may not be
broadly applicable. Increasing the number of scenarios would make the model more complex to solve.
Therefore, in practical applications, historical disturbance data can be used to generate disturbance
scenarios selectively. However, we could not use this method in Case B due to data limitations.

7.2.2. Recommendations and future works
In this section, several recommendations are given for future research.

Flexible train order extension
The timetable design discussed in this thesis assumes a fixed train order and allows for slight adjust-
ments to event times based on the existing timetable. This means that the timetable design process
follows several restrictions. However, in actual practice, if we overlook the limitations of infrastructure
and rolling stock and prioritize improved passenger reliability, these assumptions could be loosened.
Nevertheless, it’s possible that relaxing these constraints could broaden the model’s range of solutions.

In the realized timetable under disturbance scenarios, the thesis also assumes that adjustments to the
running order of trains are not permitted. This assumption is based on the idea that any disturbances in
these cases are expected to be minor, not exceeding five minutes. However, in the event of significant
delays, especially when disruptions occur in specific areas, the optimization of results could be greatly
improved through train cancellations or overtakes. I also think implementing a passenger-centric ap-
proach to train dispatching could be an intriguing topic.

Passenger travel behaviour
This thesis assumes that passengers’ travel behaviour and path choice behaviour remain consistent
when facedwith normal and delayed timetables. However, passengers’ attitudes towards path selection
can change after seeing or experiencing train delays. For example, passengers might prefer a train
with a longer generalised travel time but no delays over a train that has already been delayed due to
concerns about further delays. I believe this would be an interesting topic for social science research.

Solving cycle misalignment
As mentioned in subsection 7.2.1, the realized passenger assignment model proposed in this thesis is
not entirely accurate, as it still faces the issue of cycle misalignment. This issue needs to be addressed
or reasonably avoided in the future.

Efficient solving methods
The main factor limiting the quality of the results in the case study discussed in this thesis is the slow
solving speed, particularly when dealing with many scenarios. Besides, the current solving speed
limits its potential application to larger railway networks. In future research, a vital issue will be using
heuristic algorithms to find locally optimal or high-quality solutions quickly. Additionally, improvements
can be made by identifying more concise and efficient modelling methods. Once the solving speed is
significantly improved, we can consider applying these methods to broader and more complex railway
networks, which will significantly enhance their practical value and effectiveness.
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A
Sets, variables and parameters in

model

Set

• A: The activity set of train, represented by (i, j). A = Ar,Ah,Ad,At. Ar: Running activity of
train. Ah: Headway activity of train. Ad: Dwell activity of train. At: Turnaround activity of train.

• B: The passenger activity set of passenger groups, represented by (i, j). B = {Bw,Bi,Bt}.
Bw: Waiting-at-origin activity of passengers. Bi: In-vehicle activity of passengers. Bt: Transfer
activity of passengers.

• ∆: The disturbance scenario set with disturbance elements δijrh.
• E: The event set of the train, represented by i. E = {Ed,Ea,Ed′, Ea′}. Ed: Departure event of
the train at the station. Ea: Arrival event of the train at the station. Ed′: Departure event of the
train at the junction. Ea′: Arrival event of the train at the junction.

• G: The passenger set in the research period H.
• H: The set for cycle h in ∆.
• N : The train set in the research network, with ti indicating the train ID of event i.
• P : The passenger group set with elements denoted by p.
• R: The set for scenario in ∆, with elements denoted by r.
• Π: The whole passenger path set with Πk ∈ Π.
• Πk: The passenger set for passenger group with OD k with elements π. The first node in π is
denoted by e0π.

Variables

• ap,π: The binary variable to determine whether the passenger waiting-at-origin activity of pas-
senger group p following path π crosses the cycle under the newly designed timetable. When
ap,π = 0, the waiting-at-origin activity falls in the same cycle as the passenger boarding activity,
and vice versa.

• a∗p,π,r,h: The binary variable to determine whether the passengers in group p have missed the
boarding event in the newly designed timetable under disturbance scenarios. When a∗p,π,r,h = 1,
it means that if passengers want to follow path π, they have to wait another cycle compared to
the designed timetable in scenario r in cycle h.

• αp,π: The binary variable to judge if passenger group p will choose the path π under newly de-
signed timetable.

• α∗
p,π,r,h: The binary variable to judge if passenger group p will choose the path π in scenario r in

cycle h under realized timetable.
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• bij : The binary variable to determine whether the passenger transfer activity (i, j) ∈ Bt crosses
the cycle. When bij = 0, the endpoint of the previous leg of the journey falls in the same cycle as
the following one, and vice versa.

• b∗ijrh: The binary variable to determine whether the passenger transfer activity (i, j) ∈ Bt is
moved to the next cycle in the realized timetable compared to the designed timetable in scenario
r in cycle h.

• dp,r,h: Passenger generalized travel delay for passenger group p in scenario r in cycle h under
realized timetable.

• Dirh: Delay for the arrival event in scenario r in cycle h under realized timetable. Note that i is
in the arrival event set as Ar.

• γp,π: Passenger transfer time for passenger group p ∈ P selecting path π under newly designed
timetable.

• γ∗
p,π,r,h: Passenger transfer time for passenger group p selecting path π in scenario r in cycle h
under realized timetable.

• ϕp,π: Passenger in-vehicle time for passenger group p selecting path π under newly designed
timetable.

• ϕ∗
p,π,r,h: Passenger in-vehicle time for passenger group p selecting path π in scenario r in cycle

h under realized timetable.
• ωp,π: Passenger waiting-at-origin time for passenger group p selecting path π under newly de-
signed timetable.

• ω∗
p,π,r,h: Passenger waiting-at-origin time for passenger group p selecting path π in scenario r in

cycle h under realized timetable.
• virh: The realized time in disturbance scenario scenario r in cycle h.
• xi: The newly designed robust timetable, where xi indicates the event time of i. Decision variable.
• ξp: The shortest passenger generalized travel time for passenger group p under newly designed
timetable.

• ξ∗p,r,h: The shortest passenger generalized travel time for passenger group p in scenario r in cycle
h under realized timetable.

• ξp,π: Passenger generalized travel time for p selecting path π under newly designed timetable.

• ξ
∗
p,π,r,h: Passenger generalized travel time for p selecting path π in scenario r in cycle h under
realized timetable.

Parameters

• δijrh: The disturbance (delay) of activity (i, j) in scenario r in cycle h.
• ϵπ: Number of transfers for path π.
• gp,h: The number of passengers in passenger group p in cycle h.
• lij & uij : The lower and upper bound of the duration of train activity (i, j) ∈ A.
• lij & uij : The lower and upper bound of the duration of passenger activity (i, j) ∈ B.
• mi: The adjustment window for each event i ∈ E.
• oi: The event time in the original timetable for event i.
• qij : The parameter to judge the sequence activity i, j in one cycle in the original timetable. When
qij = 0, it means the event i occurs before j, and vice versa.

• Qi,π: An integer parameter used to record the number of periods spanned by event i in path π
relative to its first boarding event e0π.

• T : The length of the cycle.
• Zn: The buffer budget for the train n ∈ N .



B
Passenger Events

Event id Event type Train id from station to station

20 boarding IC 3539 Ht Ehv
21 alighting IC 3539 Ht Ehv
26 boarding IC 841 Ht Ehv
27 alighting IC 841 Ht Ehv
48 boarding IC 3941 Ht Ehv
49 alighting IC 3941 Ht Ehv
54 boarding IC 3641 Ht Tb
55 alighting IC 3641 Ht Tb
56 boarding SP 6441 Tb Btl
57 alighting SP 6441 Tb Btl
58 boarding SP 6441 Btl Bet
59 alighting SP 6441 Btl Bet
60 boarding SP 6441 Bet Ehs
61 alighting SP 6441 Bet Ehs
62 boarding SP 6441 Ehs Ehv
63 alighting SP 6441 Ehs Ehv
64 boarding IC 1141 Tb Ehv
65 alighting IC 1141 Tb Ehv
66 boarding SP 9641 Ht Vg
67 alighting SP 9641 Ht Vg
68 boarding SP 9641 Vg Btl
69 alighting SP 9641 Vg Btl
70 boarding SP 9641 Btl Bet
71 alighting SP 9641 Btl Bet
72 boarding SP 9641 Bet Ehs
73 alighting SP 9641 Bet Ehs
74 boarding SP 9641 Ehs Ehv
75 alighting SP 9641 Ehs Ehv
94 boarding SP 6641 Ht Tb
95 alighting SP 6641 Ht Tb
128 boarding IC 840 Ehv Ht
129 alighting IC 840 Ehv Ht
134 boarding IC 3942 Ehv Ht
135 alighting IC 3942 Ehv Ht
140 boarding IC 3752 Ehv Ht

Continued on next page
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Event id Event type Train id from station to station

141 alighting IC 3752 Ehv Ht
146 boarding IC 3640 Tb Ht
147 alighting IC 3640 Tb Ht
152 boarding SP 6444 Ehv Ehs
153 alighting SP 6444 Ehv Ehs
154 boarding SP 6444 Ehs Bet
155 alighting SP 6444 Ehs Bet
156 boarding SP 6444 Bet Btl
157 alighting SP 6444 Bet Btl
158 boarding SP 6444 Btl Tb
159 alighting SP 6444 Btl Tb
160 boarding IC 1140 Ehv Tb
161 alighting IC 1140 Ehv Tb
162 boarding SP 9640 Ehv Ehs
163 alighting SP 9640 Ehv Ehs
164 boarding SP 9640 Ehs Bet
165 alighting SP 9640 Ehs Bet
166 boarding SP 9640 Bet Btl
167 alighting SP 9640 Bet Btl
168 boarding SP 9640 Btl Vg
169 alighting SP 9640 Btl Vg
170 boarding SP 9640 Vg Ht
171 alighting SP 9640 Vg Ht
172 boarding SP 6640 Tb Ht
173 alighting SP 6640 Tb Ht
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Abstract—Punctuality in railway transport is a critical 
concern for passengers, especially during unavoidable 
disturbances. Therefore, a sufficiently robust timetable is 
necessary. This thesis proposes a new timetabling method that 
minimizes passenger delay as the optimization objective, aiming 
to create a passenger-centric robust timetable. The model is 
implemented in the Dutch railway network in the Eindhoven-Den 
Bosch-Tilburg area to verify and validate its correctness and 
functionality. Experimental results demonstrate that the 
proposed model significantly reduces passenger delays when 
dealing with specific disturbances.  

Keywords—Railway timetabling, robustness, generalised 
passenger delay 

I. INTRODUCTION

Rail transportation is pivotal in the logistics and passenger 
transport sectors in many countries globally. In 2018, 
approximately 4% of the total freight mass in the Netherlands 
was transported by rail. Additionally, trains accounted for 13% 
of the total distance travelled by individuals during the same 
period, making it the second most commonly used mode of 
transportation by distance[1]. 

From the perspective of passenger services, the fixed train 
schedules and the predictability of travel times make rail 
transport a favoured option for medium- to long-distance 
journeys. However, the punctuality of railway transportation, a 
significant concern for passengers, frequently faces threats. 
This problem becomes more pronounced when various 
potential disturbances occur, such as extreme weather, 
mechanical failures, or other unforeseen events, leading to 
propagated delays. The largest railway operator in the 
Netherlands, Nederlandse Spoorwegen (NS), transported about 
1 million passengers daily in 2023. Approximately 5,500 
disturbances and disruptions occurred during the same period, 
equivalent to an average of 15 per day1.  

In the academic field, the punctuality problem in the 
railway system is interpreted thoroughly. Palmqvist and 
Kristoffersson[2] point out that the frequency and severity of 
running and dwelling time delays are directly related to 

1 Passenger Travel Statistics in 2023, NS 

punctuality. On the one hand, railway operation companies and 
staff need to apply a punctuality improvement method system 
to reduce the delay of trains[3][4]. From the planning 
perspective, the railway system's robustness directly impacts its 
ability to handle delays, affecting train operations' punctuality. 
For passenger transportation, robustness is defined by Dewilde 
et al.[5] as “A railway system that is robust against the daily 
occurring small disturbances and minimises the real weighted 
travel time of the passengers”. In this regard, García-Archilla 
et al.[6] and Friesen et al.[7] approach the problem from a 
strategic level, investigating the problems of robust network 
design for railway infrastructure under capacity constraints and 
uncertain timetabling. At the tactical level, Fioole et al.[8], 
Hoogervorst et al.[9], and Grafe et al.[10] consider the 
problems of robustness and passenger delay management from 
the perspective of rescheduling rolling stock. Many researchers 
have focused their studies on robust timetabling in railways. 
This may be attributed to timetabling being positioned at an 
appropriate planning stage, which is neither as remote from 
actual operations as network design nor as constrained in scope 
for changes like rolling stock and crew scheduling, where the 
potential for adjustments is quite limited.[11] 

Generally, robust railway timetabling research can be 
categorised into two main types: operator-centric timetabling 
and passenger-centric timetabling. Kroon et al.[12] and 
Högdahl and Bohlin[13] consider the problem from a 
macroscopic level and design a robust timetable to minimise 
the impact of weighted train delay during exceptional events. 
Solinen et al.[14] evaluates the robustness in the micro way. 
Further on, Bešinović et al.[15] describes an integrated iterative 
micro-macro approach to computing a conflict-free, stable, and 
robust railway timetable. However, research on the problem of 
passenger-centric robust timetabling is quite scarce. Sels et 
al.[16] considers robustness one of the evaluation criteria in 
designing railway timetables with minimised passenger travel 
time. Still, robustness has not been the point of attention in the 
research. As Cacchiani and Tothhas[17] noted, transport 
efficiency is the primary concern of both operators and 
passengers; however, the robustness cannot be overlooked. 
Especially for the served passengers, the delays they 
experience are more intuitive compared to operational delays. 
Therefore, this paper will focus on the problem of passenger-



centric robust railway timetable design, aiming to fill the 
current research gap, and it defines that a railway timetable is 
robust when it can help mitigate the additional generalised 
travel time experienced by passengers when small disturbances 
occur. 

II. ASSUMPTIONS AND NETWORK REPRESENTATION 

A. Model assumptions 
This paper aims to modify and improve the current 

timetable rather than creating an entirely new timetable. This is 
because the design process needs to consider various real-
world factors, such as railway and station capacity, the size of 
the train fleet, crew scheduling issues, and time allowances. 
Given these considerations, certain assumptions on the train 
timetabling model have been incorporated into the design: 

• No train will be cancelled, even though a huge delay 
happens during its operation. 

• The train order remains consistent in a cycle, and no 
overtaking is allowed in the robust timetable. 

• Every train has enough capacity to accommodate all 
passengers without considering the train capacity and 
passenger priority. 

• The railway network is formulated at the macroscopic 
level. The model’s scope in this thesis does not address 
micro-level aspects, such as constraints within block 
sections. 

For the passenger model, it tends to exhibit more 
complexity. In the real world, individuals show significant 
heterogeneity; factors such as age, gender, educational level, 
etc., can influence their evaluations of specific matters, leading 
to different choices in the same situations. However, the time 
and effort to complete this study are limited. Therefore, some 
reasonable assumptions should be made to simplify the model's 
complexity. 

• Passengers are aware of the realized timetable. That 
means the passengers can evaluate the attributes of each 
path accurately. 

• The primary disturbances and passenger arrival time are 
assumed to be independent of the details of the 
timetable, and passenger arrival time follows a uniform 
distribution over an hour, even though passengers know 
the train they want to catch will experience a severe 
secondary delay. 

• Passengers will make a choice based only on waiting-
at-origin time, in-vehicle time, transferring time, and 
number of transfers when choosing their paths. The 
path choice of a homogeneous group of passengers is 
unique and fixed. 

B. Network representation 
The event set for trains is denoted by E , and two adjacent 

connected events are denoted by i and j . There are mainly two 
kinds of events: departure and arrival. In addition, besides the 
passenger stations, there are junctions between certain stations 
where infrastructure constraints also exist. Therefore, to better 

explain and illustrate the infrastructure constraints, these two 
types of events are further subdivided into arrival and departure 
events at stations, which are contained in Ea and Ed . On the 
other hand, entry and exit events at non-station junctions are 
contained in sets 'Ea and 'Ed , respectively. So, it 
has ' 'E Ea Ed Ea Ed= + + + . 

Train activities are the bridges between 2 connected train 
events ,i j E∈ , denoted by ( , )i j A∈ . This paper considers four 
kinds of activities related to trains: running activity Ar , 
dwelling activity Ad , headway activity Ah and turnaround 
activity At . 

Running and dwelling activities are derived from the 
existing operating plan. The former explains the train running 
from one station to the next station, and dwelling activity 
represents the train staying in the station and waiting for 
passengers to board and alight. Headway constraint ensures the 
adjacent trains have suitable headway and the system can 
operate safely. Sometimes, trains travelling in different 
directions can create headway conflicts, especially when 
conflicting trains use the same switches or tracks. This usually 
results in non-overlapping time windows for trains in this 
junction section, with a few minutes of separation between 
them. The same train can be assigned to different routes and 
directions in the railway system. The turnaround activity 
represents the process of preparing a set of trains and moving it 
in reverse direction after completing one itinerary before 
starting the return journey on the same route. For simplicity, 
this thesis does not discuss potential train couplings that may 
occur if the train is reassigned to other routes for operational 
tasks. 

Passenger event set F is composed of passenger arrive-at-
origin, boarding and alighting events. They form three subsets 
of F : Fs , Fb and Fa . In the real world, the boarding and 
alighting times are varied and follow the queuing theory in 
which the carriage doors are the service desks, and different 
groups of passengers have different service times; thus also, for 
simplification, all the passengers in the same passenger group 
share the same boarding event time, that is the departure time 
of that train. Alighting events are recognized as arrival events 
at the transfer or destination station. Based on this assumption, 
for all the passenger boarding or alighting events, there can be 
a mapped departure or arrival event in the train event 
set E accordingly. In this way, i and j can also represent the 
passenger event-activity graph. 

There is one exception: the arrive-at-origin event. Firstly, 
the whole passenger set should be divided into several small 
groups p P∈ , and the passengers in the groups share the same 
OD ( , )k o d= and the arrive-at-origin event time s . 

Like the train activities, passenger activities are the links 
between 2 connected passenger events ,i j F∈ and the activity 
set is denoted by B and ( , )i j B∈ . This research discusses three 
types of activities, including waiting-at-origin activity Bw , in-
vehicle activity Bi and transfer activity Bt . 

The waiting-at-origin activity starts when the passengers 
arrive at their original stations and ends when they get aboard, 



 

 

 

which connects the arrive-at-origin event pc for passenger 
group p with the first boarding event in path π , 0eπ .The in-
vehicle activity describes the process where passengers aboard 
the train and are transported by the train from a starting station 
to an end station. Transfer activity refers to the process in 
which passengers transfer from one train to another at an 
interchange station. Notice that this paper defines certain 
transfer activities as foolish transfers, such as when passengers 
transfer to a train going in the opposite direction or when 
passengers transfer between trains going in the same direction 
but with the same stops. These types of transfers are considered 
invalid and are excluded when generating transfer activities. 

This section provides a small example and constructs a 
passenger event-activity graph to better explain passenger 
events and activities and illustrate their relationship with train 
events and activities. 

Fig. 1. A small example rail network 

As shown in Fig. 1, this is a small example railway network 
consisting of four trains: IC001, SP001, SP002, and SP003. 
IC001 is an Intercity (IC) train, traveling from Station1 to 
Station5, with a stop at Station3. Besides, SP001, SP002 and 
SP003 are three regional (SPR) trains, meaning they need to 
dwell at all stations. 

There is a group of passengers with k = (Station1, Station4). 
The different coloured arrows in the figure represent the 
passenger activities experienced on the possible paths chosen 
by the passengers. Noticeably, (4, 21) and (4, 13) are examples 
of two types of foolish transfer behaviours mentioned above. 

Fig. 2. Passenger event-activity graph in the small example network 

This group of passengers plans to leave from Station1, 
board IC001 to Station3, transfer to SP001, and finally reach 
Station4. They will arrive at Station1 at time s . Events and 
activities of the trains and passengers along this path are 
illustrated in Fig. 2. Please note that infrastructure constraints 

of the trains, headway activities, and turnaround activities are 
not indicated in the Fig. 2. In passenger events, according to 
the definition of the start and end events of passenger activities, 
each train event can give rise to corresponding potential 
passenger events. However, to keep the graph clearer and 
simpler, not all possible passenger events and activities are 
marked. The red arrows indicate the flow of passenger 
activities for this group of passengers along the chosen path 
from the starting station to the destination. 

C. Passenger path set generation 
Before conducting passenger assignment modelling, the set 

of possible passenger paths needs to be defined. Depth-First 
Search algorithm (DFS) is a traversal algorithm that starts at a 
given node and explores as far as possible along each branch 
before backtracking[18]. This approach is widely used in path 
searching and so employed to find all the paths for the 
passengers with OD k . 

We define network graph with station nodes and passenger 
in-vehicle and transfer activities. The station nodes connect to 
each other through a series of passenger activities, which are 
the edges in the graph. Besides, the passenger in-vehicle 
activity is broken into in-vehicle running activity and in-
vehicle dwelling activity to provide a more detailed 
explanation of the DFS process. Additionally, we combine the 
passenger in-vehicle dwelling activity and transfer activity with 
the passenger in-station activity. 

The path-searching process consists of two parts: The first 
step involves searching for all possible passenger in-vehicle 
running activities to connect the passing station between the 
origin and destination. The second part helps to complete the 
generated paths by adding connected in-station activities 
between the previous to-events and the following from-events 
in adjacent in-vehicle running activities. If it fails to find such 
an activity, the path will be marked as infeasible and removed 
from the path set. Below, the same example railway network in 
Fig. 2. is employed to explain the exact process of finding all 
feasible paths. 

Fig. 3. Graph representation of the example rail network 

There is also a group of passengers who want to travel from 
Station1 to Station4. They want to know all possible paths so 
that they can make a comparison among them and pick the 
shortest path. To find all the paths from Station1 to Station4 in 
the small example railway network, as structured in Fig. 3., 
stations are the nodes in the graph because passengers can only 
change their activity state at train stops. The in-vehicle running 
activity links the stations, while the in-station activity (not 
shown in the graph) is responsible for connecting the passenger 
events within the station. However, the edges representing the 
in-vehicle running activities completed by different trains are 
not the same, even for activities between the same two stations 



 

 

 

in the same direction with similar routes, because they connect 
different events in the event-activity graph, and these events 
correspond to different event times when modelling. 

The inputs of DFS are the passenger OD ( , )k o d= and the 
railway network graph with event set F and in-vehicle running 
activity (Fig. 3.). The goal is to find all potential passenger in-
vehicle running paths between station nodes for each k . 

Firstly, for each ( , )k o d= , we will initialize a list *
kΠ to 

store the paths. Then, a DFS recursion function will take in the 
current searching node, the set of visited nodes, and the set of 
passenger in-vehicle running activities in the current path as 
inputs. Next, the algorithm will first check if the current 
searching node is the destination d that the passenger wants to 
reach. If it is, this indicates that a path has been found, and the 
current path will be added to *

kΠ , signifying that a path has 
been identified. 

Of course, if the current node is not d , the algorithm will 
find all unvisited neighbouring nodes that can be accessed via 
edges in the network graph and record the connecting edges. 
Then, the algorithm will loop again, taking one of these 
neighbouring nodes and its connecting edge as new inputs for 
the recursion function. Note that when a path is found, that is, 
when the current node is the destination d , the function will 
exit because the destination d has already been visited and if 
we continue to traverse its neighbouring nodes, it will not be 
possible to visit the destination d again. Consequently, after 
breaking this iteration, the process will naturally return to the 
step of traversing neighbouring nodes in the previous recursion 
function. 

Fig. 4. Passenger event-activity graph in the small example network 

This recursion process is very complex and difficult to 
describe, thus, Fig. 4. provides example steps of the algorithm 
applied to the small network shown in Fig. 1., where o is 
Station1 and d is Station4. In Iteration 1, the input is the 
starting point Station1, with the sets of visited nodes and 
activities both being empty. Then, it searches for its neighbour 
nodes and the corresponding edges, finding three pairs: 
Station2 (1,2), Station2 (9,10), and Station3 (25,26) (Station2 
(1,2) means connecting to the neighbour node Station2 with 
edge (1,2)). Each pair of neighbour nodes will be traversed, 
and each traversal will end either upon reaching the destination 
or after all child nodes have been explored. For example, if we 
choose the pair Station2 (1,2) and start Iteration 2. Obviously, 
Station2 is not the desired destination d , the process will be 
repeated. Starting from Station2(1,2), we continue to search for 

child nodes of Station2, resulting in two possibilities: Station3 
(3,4) and Station3 (11,12). Note that the pair Station1 (23,24) 
is not considered, as Station1 is already in the set of visited 
nodes. This loop will only unwind after all neighbour nodes of 
the next child node have been searched. Therefore, this looping 
process is not a horizontal search, but a vertical search 
algorithm that explores one branch of parent nodes completely 
before returning to a previous level for further search. 

When considering the first branch (starting with activity 
(1,2), (3,4)), it finds one of the neighbour nodes for Station3 
that is Station4 with edge (5,6) (Sub-figure 3) and luckily it 
reaches the destination d . Therefore, the first potential path 
from Station1 to Station4 is found and saved in the path set *

kΠ . 
Subsequently, the algorithm backtracks to the closest parent 
node (Station3 (5,6)) and requests another connecting edge, 
referred to as (13,14). Similarly, starting from the parent node 
Station3, the last available path that can be found is (27,28), 
(17,18) (Sub-figure 5, 6). 

The branch starting from activity (1,2), (3,4) has three paths: 

• (1, 2), (3, 4), (5, 6) 

• (1, 2), (3, 4), (13, 14) 

• (1, 2), (3, 4), (27, 28), (17, 18) 

After completing the search on this branch, the algorithm 
will continue to backtrack to the higher-level parent nodes. 
From these parent nodes, the search will proceed again with 
similar steps, continuing until all possibilities have been 
traversed. 

The first step involves identifying the edges between 
stations in the network. This entails finding the connections for 
passenger in-vehicle running activities between origin and 
destination stations. However, it's important to note that not all 
of these paths will have in-station activity connections. This is 
because foolish transfer activities are not considered within the 
scope of this paper. Thus, we need the second step, which is to 
check the feasibility of the paths in the finding path set. As 
previously explained, at intermediate stations for the paths, the 
“to event” of the preceding edge must be connected to the 
“from event” of the subsequent edge via a passenger in-station 
activity. 

Fig. 5. Passenger event-activity graph in the small example network 

With the initial path set *
kΠ obtained from the first step and 

all the in-station activity, the final output of the second step 
will be the passenger path set *

kΠ of OD k in the form of 
continuous passenger activities. 



In the next step, we will revisit the previous example to 
analyse and refine the paths starting with activities (1, 2) and (3, 
4), as illustrated in Fig. 4. In order to visualize the distribution 
of passenger in-station activities more effectively, Fig. 5. 
organizes all passenger activities based on the trains 
responsible for the operation. According to Fig. 5. the in-
vehicle running activity between Station1 and Station2, and 
between Station2 and Station3 can be achieved through the in-
vehicle dwelling activity (2, 3). Besides, in-vehicle dwelling 
activity (4, 5) can fill the connection in Station3.  Each of the 
above three paths is examined in turn. It is found that, in the 
second path, the connection of in-vehicle running activities of 
different trains should be undertaken by the transfer activity at 
Station3, but there can't find such activity because SP001 and 
SP003 are trains having the same dwelling and running mode 
in the same direction. This transfer activity is recognized as a 
foolish transfer. Thus, this path will be discarded. Therefore, 
the updated set of paths is as follows: 

• (1, 2), (2, 3), (3, 4), (4, 5), (5, 6) 

• (1, 2), (2, 3), (3, 4), (4, 27), (27, 28), (28, 17), (17, 18) 

III. TIMTABLING MODEL 

A. Train timetabling constraints 

ix represents the event time of i E∈ in the passenger-
centric robust timetable. The duration of each activity must fit 
within the interval defined by its lower and upper bounds 

ijl and iju . 

 ( , )ij j i ij ijl x x q T u i j A≤ − + ⋅ ≤ ∀ ∈  (1) 

 In Eq.(1), a 0-1 parameter ijq is introduced for all train 
activities to indicate whether the activity ( , )i j A∈ will cross 
the cycle in the original timetable, whereT represents the cycle 
length. In other words, the value of ijq can also indicate the 
order of events i and j within a cycle; when 0ijq = , it means 
that event i occurs before j , and when 1ijq = , it means the 
reverse is true. According to II.A, it is assumed that the new 
robust timetable does not change the order of events within a 
cycle. So, the value of ijq is maintained in the design of a 
robust timetable. Therefore, Eq.(1) restricts the duration of 
each train activity to fall within a reasonable range.  

 0 ix T i E≤ < ∀ ∈  (2) 

Eq.(2) ensures that the designed event times ix are within 
the cycle. 

 i i i im x o m i E− ≤ − ≤ ∀ ∈  (3) 

Eq.(3) allows but restricts the adjustment window of event 
time based on the original timetable. io is the event time for 
event i in original timetable and im is the maximum shifting 
step for event i .  

To prevent potential delays from the scheduled times, extra 
time allowance is added to the activity durations, e.g., running 
times, as time supplements and to the interval between 

successive trains, e.g., minimum headway, as buffer 
times[19][20]. In this robust timetabling problem, we have 
constrained the time supplement for each train's running and 
dwelling activities.  

 
( , ) ( ), ( )

( )j i ij ij n
i j Ar Ad t i t j n

x x q T l Z n N
∈ ∪ ∧ =

− + ⋅ − ≤ ∀ ∈∑  (4) 

Eq.(4) indicates that the total time supplement for running 
and dwelling activities should not exceed the budget nZ for 
each train n N∈ . Each train with a different itinerary is an 
individual element n in set N . Therefore, each train over a line 
in one direction will have its corresponding supplement budget. 
The time supplement budget of the timetable is determined by 
factors such as operating routes, train types, and infrastructure 
capabilities. One method involves calculating the time 
supplement budget for each train in the original timetable and 
then applying the same budget to each train when creating the 
new timetable. In IV, this approach will be used to determine 
the time supplement. The function ( )t i helps identify the train 
ID for event i and sorts out all the running and dwelling 
activities for train n . 

B. Passenger assignment constraints 
In passenger assignment modelling, travel time and number 

of transfers determine a passenger's path choice in this paper. 
For the travel time part, three types of time must be defined: 
waiting-at-origin time, in-vehicle time, and transfer time, as 
shown in Eq.(5)-Eq.(11). Here, P represents the set of 
passenger groups, k and s are the OD, and the time this group 
of passengers p arrives at the original station is in a periodic 
form, respectively. kΠ is a sub-set of the whole path set Π and 
represents the set of all paths for ( , )k o d= , and π gives the 
path element in the path set. The first boarding event in each 
path π  is denoted by 0eπ . 

 0, , , ,p p ke
x s a T s p p P

π
π πω π= − + ⋅ ∈ ∀ ∈ ∀ ∈Π  (5) 

 , 0 ,p kp Pπω π≥ ∀ ∈ ∀ ∈Π  (6) 

 , {0,1} ,p ka p Pπ π∈ ∀ ∈ ∀ ∈Π  (7) 

Eq.(5) is used to decide the waiting time at the origin 
station for each passenger group p in pathπ , in which a binary 
variable ,pa π is introduced to determine the sequence of 
passenger arrive-at-origin event pc and first boarding event 0eπ  
in one cycle. When , 0pa π = , arrive-at-origin event pc comes 
earlier than the first event in pathπ within the cycle, otherwise, 
arrive-at-origin event pc comes later. 0e

x
π

represents the time of 
the first boarding event in the path π , and s represents the 
corresponding event time for the arrive-at-origin event pc . 
Eq.(6) tells that passengers cannot board a train that has 
already departed unless they are willing to wait for that train 
the next cycle. In this way, the binary variable ,pa π is restricted. 



 ,
( , ) ( , )

( ) ,p j i ij k
i j i j Bi

x x q T p Pπ
π

φ π
∈ ∧ ∈

= − + ⋅ ∀ ∈ ∀ ∈Π∑  (8) 

Passenger in-vehicle time for the path π is defined by 
Eq.(8). It is the duration summation of all the passenger in-
vehicle activities Bi . The passenger activities share the same 
start and end times as trains' as assumed in II.A. Thus, ijq is the 
same binary parameter discussed in train modelling in Eq.(1). 

 ,
( , ) ( , )

( ) ,p j i ij k
i j i j Bt

x x b T p Pπ
π

γ π
∈ ∧ ∈

= − + ⋅ ∀ ∈ ∀ ∈Π∑  (9) 

 ( , )ij j i ij ijl x x b T T l i j Bt≤ − + ⋅ < + ∀ ∈  (10) 

 {0,1} ( , )ijb i j Bt∈ ∀ ∈  (11) 

Eq.(9)-Eq.(11) illustrate the definition of transfer time for 
( , )i j in transfer activity set Bt , which has a similar structure as 
that of in-vehicle time. Its lower and upper bound ijl can be 
determined by factors like station size, service infrastructure in 
the station, etc. ijb is a binary variable to judge if the passenger 
can transfer the connected train in the same cycle from event 
i to event j . If 0ijb = , the order is that event i comes first to 
the event j in one cycle, and passengers have enough time to 
transfer from event i to j ; otherwise, the passenger has to wait 
for the connected train with event j in the next cycle. Although 
the activity sequence remains the same as the original timetable 
due to the assumption, ijb still needs to be a binary variable 
rather than parameter ijq , because there is a minimum transfer 

time ijl given in Eq.(11). If the transfer time after the schedule 

shifting is less than ijl , ijb will change from 0 to 1. 

, , , , ,p p w p t p n kp Pπ π π π πξ φ β ω β γ β π= + ⋅ + ⋅ + ⋅ ∀ ∈ ∀ ∈Π (12) 

Eq.(12) provides a representation of generalised travel time 
,p πξ for passenger group p travel on pathπ , where wβ , tβ , and 

nβ represent the weights of waiting-at-origin time, transfer 
time and number of transfers relative to in-vehicle time, 
respectively. These values can be found in the 
literature[21][22]. π is the parameter for the number of 
transfers in the pathπ , and it can be directly calculated when 
the path is generated. Passengers will determine their final 
travel plan based on each path's generalised travel time ,p πξ . 

 , 1
k

p p Pπ
π

α
∀ ∈Π

= ∀ ∈∑  (13) 

 , {0,1} ,p kp Pπα π∈ ∀ ∈ ∀ ∈Π  (14) 

Eq.(13) and Eq.(14) define a binary variable ,p πα . When 

, 1p πα = , it indicates that the passenger group p with OD k and 
arrive-at-origin time s will choose path π as their final travel 
plan.  

 
, , ,(1 ) (1 ) ,p p p p kM M p Pπ π πα ξ ξ α π− ⋅ − ≤ − ≤ ⋅ − ∀ ∈ ∀ ∈Π (15) 

 , , ,p p p kM p Pπ πξ ξ α π− ≤ ⋅ ∀ ∈ ∀ ∈Π  (16) 

Eq.(15) and Eq.(16) are the constraints for selecting the 
shortest path. Here, the Big M method is used, and M is 
introduced as a large enough number. pξ gives the minimum 
generalised travel time passenger group p with OD k and 
arrive-at-origin time s . Only when , 1p πα = , which means the 
path π is selected by this group of passengers, Eq.(15) will 
restrict ,p p πξ ξ= . Besides, for Eq.(16), it is employed to ensure 

pξ should be less or equal to the generalised travel time of any 
path in the set kΠ . 

C. Train simulation constraints 
In this section, a realised event time for train event i and j is 

denoted by irhv or jrhv , in which r is the scenario ID included in 
the scenario set R discussed in the case and $h$ is the realised 
cycle that the event i or j happens. The delay propagation 
process is simulated when the initial delay appears through 
Eq.(17) and Eq.(18). 

 
( ) ( , ) , , , (( , ), , )

ijjr h q irh ij ijrhv v l i j A r R h H i j r hδ+ − ≥ + ∀ ∈ ∀ ∈ ∀ ∈ ∈∆ (17) 

 
( ) ( , ) , , , (( , ), , )

ijjr h q irh ijv v l i j A r R h H i j r h+ − ≥ ∀ ∈ ∀ ∈ ∀ ∈ ∉∆ (18) 

Note that Eq.(17) describes the duration bound of activities 
experienced initial disturbance. The disturbance parameter for 
activity ( , )i j in scenario r in cycle h is given by ijrhδ , which is 
added to the lower bound ijl  of the duration of ( , )i j and h  
should be a natural number . This activity has to process an 
extra ijrhδ upon the lower bound. The binary parameter 

ijq illustrates whether activity ( , )i j crosses the cycle in the 
original timetable. Besides, in Eq.(18), the constraint for other 
activities not in disturbance set ∆ is presented. By these 
constraints, the delay will be propagated along the activity 
chain influenced by the initial delay ijrhδ if there is no sufficient 
supplement to mitigate the previous delay. Noticeably, v is a 
linear variable, so the realised time irhv may not exactly fall in 
the cycle h . Sometimes, irhv will postpone to the next cycle 

1h + due to the initial delay, but it still retains the original 
index. 

 , ,i irhx h T v i Ed r R h H+ ⋅ ≤ ∀ ∈ ∀ ∈ ∀ ∈  (19) 

In real-world operation, a train cannot depart earlier than 
the scheduled departure time under normal cases, even if it has 
finished its dwell activity ahead of time. Early departure can 
cause passengers who arrive at the station just in time to miss 
the train or result in failed transfers for transfer passengers. 
Thus, we address this problem with a constraint in Eq.(19). 



 

 

ix h T+ ⋅ is the scheduled event time for event i in cycle h and 

irhv is the realized event time in linear form. 

D. Passenger simulation constraints 
This section will focus on how passengers choose their 

paths and how the generalised travel time is calculated when 
delays occur under disturbance scenarios. Based on the first 
assumption in II.A, passengers are aware of the realised 
timetable and can accurately know the travel time they will 
experience in each path. Therefore, passengers can be assigned 
to the rail network using the methods outlined in II.B.  
Noticeably, variables with a superscript “*” indicate the 
corresponding passenger-related variables under the realised 
timetable as described in II.B. The subsequent constraints will 
all follow this notation. 

 
0

* *
, , , , , ,( ) , , ,p r h p p r h ke rh

v s h T a T p P r R h H
π

π πω π= − + ⋅ + ⋅ ∀ ∈ ∀ ∈Π ∀ ∈ ∀ ∈

 (20) 

 *
, , , 0 , , ,p r h kp P r R h Hπω π≥ ∀ ∈ ∀ ∈Π ∀ ∈ ∀ ∈  (21) 

 *
, , , {0,1} , , ,p r h ka p P r R h Hπ π∈ ∀ ∈ ∀ ∈Π ∀ ∈ ∀ ∈  (22) 

Eq.(20)-Eq.(22) define the passenger waiting-at-origin time 
for the passenger group p with OD k and arrive-at-origin time 
s in scenario r in cycle h . The binary variable *

, , ,p r ha π is applied 
to determine the chronological order of the passenger arrive-at-
origin event and boarding event of the target train in the cycle 
h . If the arrive-at-origin event occurs before the boarding 
event, then *

, , , 0p r ha π = ; otherwise, *
, , , 1p r ha π = . Eq.(20) tells that 

passengers cannot board a train that has already departed 
unless they are willing to wait for that train the next cycle 
( *

, , , 1p r ha π = ). 

 

, ,

*
, , , ( ) ( )

( , ) ( , )
( ) , , ,

j ip r h jr h Q ir h Q k
i j i j Bi

v v p P r R h H
π ππ

π

φ π+ +
∈ ∧ ∈

= − ∀ ∈ ∀ ∈Π ∀ ∈ ∀ ∈∑
 (23) 

Eq.(23) specifies the in-vehicle time for the passenger 
group with p under the realized timetable. Since irhv is a linear 
variable, it is necessary to determine in which cycle the 
passenger activity ( , )i j π∈ occurs during the journey on this 
path. Therefore, a new integer parameter ,iQ π will be 
introduced, and it helps to record the number of cycles 
experienced by this route up to event i . 

Fig. 6. The relationship between îjq and ˆ,iQ π in path π  

As shown in Fig. 6., we assume that {1,2,3,4,5} are 
passenger events in the event set B . The position of the 
triangles in the Fig. 6. represents the event times of these 

events in the newly designed timetable. There is a given 
pathπ , {(1, 2), (2,3), (3, 4), (4,5)}π = , and to obtain ˆ,iQ π , we 

should sum all the ijq for passenger activities before the event î . 
For example, to calculate 3,Q π , sum the q values of passenger 
activities up to event 3 ( 1,2 2,3,  q q ), resulting in 3, 0Q π = . To 
calculate 5,Q π , sum the q values up to event 5 
( 1,2 2,3 3,4 4,5, , ,q q q q ), resulting in a sum of 1. Note that the model 
determines the specific event times in the newly designed 
timetable, and all these event times are variables, but the order 
of events within a cycle remains the same as in the original 
timetable. Therefore, the ,iQ π values are equal to that of the 
original timetable, making ,iQ π a fixed value for each event i in 
each pathπ . 

 

, ,

* *
, , , ( ) ( )

( , ) ( , )
( ) , , ,

j ip r h jr h Q ir h Q ijrh k
i j i j Bt

v v b T p P r R h H
π ππ

π

γ π+ +
∈ ∧ ∈

= − + ⋅ ∀ ∈ ∀ ∈Π ∀ ∈ ∀ ∈∑
 (24) 

 

, ,

*
( ) ( ) ( , ) , ,

j iij jr h Q ir h Q ijrh ijl v v b T l T i j Bt r R h H
π π+ +≤ − + ⋅ < + ∀ ∈ ∀ ∈ ∀ ∈

 (25) 

 * {0,1} ( , ) , ,ijrhb i j Bt r R h H∈ ∀ ∈ ∀ ∈ ∀ ∈  (26) 

Eq.(24)-Eq.(26) are combined to restrict the realized 
transfer time. *

ijrhb is a binary variable to judge whether the 
previous train arrival event i and the following train departure 
event j in the realised timetable is still in the same sequence as 
the designed robust timetable. Although we assumed this 
sequence is the same as the original timetable, in the realised 
timetable, this order can be changed due to the disturbance in 
the previous train. If the departure event j goes first in the 
realised timetable in scenario r in cycle h , *

ijrhb will be 1. 
Although these passengers can wait for the same train in the 
next cycle, they must experience a much longer transfer time. 

However, this method has defect. If a delay in the 
preceding train causes passengers to miss the transfer to the 
subsequent train in the scheduled cycle (i.e. * 1ijrhb = ), it may 
result in a cycle misalignment. This can affect all passenger 
activities after the cycle misalignment occurs. The duration of 
these passenger activities may vary depending on the 
difference between values * ,,

( )( ) ij ijrh
ir h Qjr h Q b

v v
ππ

++ +
−  

and
, ,

*
( ) ( )j ijr h Q ir h Q ijrhv v b T

π π+ +− + ⋅ . 

* * * *
, , , , , , , , , , , , , , ,p r h p r h w p r h t p r h n kp P r R h Hπ π π π πξ φ β ω β γ β π= + ⋅ + ⋅ + ⋅ ∀ ∈ ∀ ∈Π ∀ ∈ ∀ ∈

 (27) 

Eq.(27) calculates the generalised realized travel time 
*
, , ,p r hπξ for each path for each group of passengers in scenario 

r in cycle h . Note that π is the number of transfers in path 
π independent of the event times and passenger groups. 
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, , , 1 , ,

k

p r h p P r R h Hπ
π

α
∈Π

= ∀ ∈ ∀ ∈ ∀ ∈∑  (28) 

 *
, , , {0,1} , , ,p r h kp P r R h Hπα π∈ ∀ ∈ ∀ ∈Π ∀ ∈ ∀ ∈  (29) 

 
* * * *

, , , , , , , , , , ,(1 ) (1 ) , , ,p r h p r h p r h p r h kM M p P r R h Hπ π πα ξ ξ α π− ⋅ − ≤ − ≤ ⋅ − ∀ ∈ ∀ ∈Π ∀ ∈ ∀ ∈
 (30) 

 
* * *

, , , , , , , , , , ,p r h p r h p r h kM p P r R h Hπ πξ ξ α π− ≤ ⋅ ∀ ∈ ∀ ∈Π ∀ ∈ ∀ ∈
 (31) 

Eq.(28)-Eq.(31) compare the generalised travel time for 
each group of passengers in each cycle under each scenario and 
assign the minimum generalised travel time to *

, ,p r hξ . This 
structure is similar to the passenger assignment model under 
scheduled timetable in III.C. 

E. Objective function 
As discussed in I, the optimisation goal of robust 

timetabling in this study is to minimise the additional average 
generalised travel time experienced by passengers under small 
disturbances, i.e. average passenger travel delay. 

 *
, , , , , ,p r h p p r hd p P r R h Hξ ξ− ≤ ∀ ∈ ∀ ∈ ∀ ∈  (32) 

Therefore, Eq.(32) tells the calculation formulation of the 
travel delay , ,p r hd for each passenger group p in scenario r in 
cycle h , where pξ and *

, ,p r hξ represent the scheduled travel time 
and realised travel time under the new robust timetable 
respectively. 

 , , , / | |p r h p h
p P r R h H

Min d g G
∈ ∈ ∈

⋅∑∑∑  (33) 

In the last, the objective function, as shown in Eq.(33), 
minimises the average passenger travel delay for all passenger 
groups P in all scenarios R in all cycle H . The average 
passenger travel delay is derived by taking the product of the 
additional delay , ,p r hd for each passenger group p and the 
number of passengers ,p hg in the corresponding group, and then 
dividing by the total number of passengers | |G . 

IV. CASE STUDY 

A. Case area introduction 
The Eindhoven-Den Bosch-Tilburg region, located in the 

southern Netherlands in the province of North Brabant, is one 
of the most important economic and cultural centres. 
Eindhoven, the fifth largest city in the Netherlands, is also the 
centre for innovation and technology. This chapter will apply 
the models mentioned in the previous chapters to this region to 
evaluate the performance of the methodology. Fig. 7. shows 
the layout of the railway network within the case study area. 

In this thesis, we use the railway timetable in 2019 (Fug. 8) 
from NS as the original timetable. This timetable is a periodic 
timetable with a cycle of 30 minutes, where each train is sent 
from the departure station once within the cycle. Besides, the 

minimum running time and headway for ( ( , ) )ijl i j Ar Ah∀ ∈ ∪  
are provided, and the upper bound of the running time is set at 
1.3 times the minimum running time. The dwell time at 
stations is assumed to be 0.5 min. The optimization model 
allows 3 min shift in departure or arrival event times, i.e. 

3im = for all train events i E∈ .[23] 

 

 

 

 

 

 

 

 
Fig. 7.  Case study region: Eindhoven-Den Bosch-Tilburg 

Fig. 8. Case study timetable in 2019 

The passenger OD demand is calculated based on the 
average morning peak passenger flow in the study region in 
2019. To avoid excessively long computation times due to 
large data volumes, the case study ultimately selects the 
passenger flow data for one hour, from 7:00 to 8:00 (covering 
two cycles), as the passenger OD demand data in the case 
study. During this period, a total of 20,081.5 passengers are 
included. The OD demand distribution is shown in Fig. 9. and 
there is significant passenger traffic between core interchange 
stations. 

Fig. 9. Passenger origin and destination distribution 

With this passenger set, we need to create passenger groups 
according to the following assumptions: 

• The passenger flow distribution within one hour follows 
a uniform distribution. 



 

 

 

 

 

 

• Passengers are divided into five groups per OD with 6-
minute intervals within one cycle. 

Therefore, within the study period, 20,081.5 passengers are 
divided into 420 groups based on their OD k and arrive-at-
origin time s . The weight factors in Eq.(12) and Eq.(27) 
are 2.5wβ = , 2.5tβ = , and 10nβ = .[24][25] Specifically, 

wβ represents the weight for waiting times at origin stations, 

tβ denotes the weight for transfer times, and nβ signifies the 
penalty per transfer. For passenger transfer activities, the 
minimum transfer time is 3 minutes, while the maximum 
transfer time is 33 minutes.[23] 

B. Model verification and validation case 
In the verification and validation case A, two random 

disturbance scenarios are generated, as shown in TABLE I. In 
Scenario 0, 4 activities departing from Tb are considered to 
have initial delays, with delay values of either 3 or 5 (min). In 
Scenario 1, the activities with initial delays are all train running 
activities arriving at Tb. Generally, all initial delays occur in 
the first cycle (cycle 0). 

TABLE I.  DISTURBANCE SCENARIO FOR VERIFICATION AND 
VALIDATION CASE 

1) Verification and validation of passenger-centric model:  
In this section, we will use the original timetable (OT) 

provided by train operator NS to verify the passenger 
modelling part, which includes the passenger assignment 
model and the simulation model. The model input will be the 
OT shown in the event-activity graph with original event 
time io O∈ ; passenger set p P∈ , passenger path set kΠ ∈Π .  

Fig. 10. Average passenger delay for each OD pair in OT 

In the case where Eq.(33) is used as the objective function, 
after solving the aforementioned model, the optimal solution 

obtained is 2.98, which means that passengers will experience 
an average delay of 2.98 minutes. Fig. 10. shows the average 
delay calculated for different passenger groups with the same 
OD. Since, in this case, all initial train delays are set within the 
period of 7:00-7:30; all passenger delays occur within this 
period. This indicates that the initial delay starting in the first 
cycle does not propagate to the next cycle, affecting passenger 
travel activities. Moreover, passengers departing from station 
Tb in Scenario 0 and those arriving at Tb in Scenario 1 have 
experienced relatively more severe delays. This phenomenon 
in Scenario 0 is due to the initial delays of four trains departing 
from Tb, and all trains from Tb to Ht experienced initial delays 
within this cycle. The reasons for the huge delay around 
Station Tb are similar in Scenario 1. According to Fig. 9., the 
OD pairs with high delays have a large passenger flow (Tb-Ht), 
which corresponds to a higher average passenger delay. 

Fig. 11. Train arrival delay in OT 

Fig. 11. shows the results generated by applying the train 
simulation model, which describes the arrival delays of trains 
at their dwell stations for each cycle in each scenario. If there is 
no data for a specific train at a particular station, it indicates 
that the train does not stop at that station. Overall, most delays 
need to be propagated. In Scenario 0, Ehv and Ht, which are 
directly connected to the delayed running activity, experiences 
train delays of 3.9 minutes. In Scenario 1, the delays occur in 
the running activities of trains arriving at Tb, resulting in 
particularly severe train delays at station Tb, which is 
consistent with the analytical solutions. In summary, the total 
train arrival delay amounts to 10.20 minutes, and most of the 
disturbances can be mitigated by the robustness of OT. 

Efficiency is also an essential element of train operations. 
Fig. 12. presents the average passenger generalised travel time 
for passengers completing their journeys between different 
ODs in normal cases (without disturbance). Overall, journeys 
that require transfers, such as those between Tb and Vg, tend to 
have a higher passenger generalised travel time. In the end, it is 
calculated that the average generalised travel time for each OD 
pair is 46.13 minutes in the OT. 



 
Fig. 12. Average passenger delay for each OD pair in OT 

2) Verification and validation of operator-centric model:  
 This section will attempt to generate an operator-centric 
timetable based on the model proposed in III.A. The model 
input will be the OT shown in the event-activity graph with the 
original event time io O∈ . 

 According to the definition of robustness mentioned in I, as 
shown in Eq.(34), the optimisation objective in this verification 
and validation model is to minimise the total train arrival delay 
within the experimental railway network. 

 , ,i r h
i Ea r R h H

Min D
∈ ∈ ∈
∑∑∑  (34) 

 Fig. 13. shows the optimised operator-centric timetable. 
Each coloured line represents a train service within a cycle, 
while the corresponding dotted lines indicate the train service 
in the original timetable. In the new ORT, the operational 
service lines of the trains do not intersect with the dotted lines 
indicating the original service. Therefore, there will be no cases 
where some events for the same train in the new timetable are 
delayed while others are postponed compared to the original 
timetable. 

 
Fig. 13. Average passenger delay for each OD pair in OT 

Fig. 14. shows the average amount of time that event times 
for each train in the ORT have been adjusted compared to the 
OT. More than half of the trains have been adjusted earlier by 
approximately 3 minutes. These adjustments have no obvious 
regularities and may be influenced by factors such as headway, 
infrastructure constraints, and the predefined order of events in 

the timetable creation process. The interaction between trains 
makes the timetable design process more complicated. 

 
Fig. 14. Average shifting step for each train in ORT 

 
Fig. 15. Train arrival delay in ORT 

The optimised objective function value is 9.60, representing 
the total train arrival delay at the stations measured in minutes. 
Their distribution is shown in Fig. 15. In comparison to Fig. 12, 
it can be observed that in Scenario 1, the delay for SP6444 
arriving at Tb has been reduced. This improvement is likely the 
result of optimising the supplement allocation for each train. 

 
Fig. 16. Average passenger delay for each OD pair in ORT 



Suppose passenger-related information is input, and the 
model described in the previous section is applied. In that case, 
the average passenger delay in the ORT can be obtained as 
2.33 min. This shows a slight improvement compared to the 
OT. This indicates that the operator-centric model has limited 
ability to reduce passenger delays in disturbance scenarios. 
From Fig. 16., the delayed passengers are often distributed at 
Tb station and nearby stations, corresponding to the 
distribution of train delays. 

 
Fig. 17. Average passenger generalised travel time in ORT 

Regarding the efficiency of the train timetable, the average 
generalised travel time between each OD pair is even smaller, 
reaching 44.50 min, as shown in Fig. 17. This is explainable 
because, in this verification and validation case, only a very 
limited disturbance scenario has been considered. In contrast, 
when designing the OT, more supplement time is allocated to 
the train activities that significantly impact passenger travel 
efficiency due to the need to ensure timetable robustness. 

3) Verification and validation of passenger-centric robust 
timetabling model:  

This section will verify the most important model proposed 
in this paper, which is also the final contribution. This requires 
using all previously mentioned train, passenger and simulation 
models, resulting in a larger computational workload. The 
model input will be the OT with original event time io O∈ , 
passenger set p P∈ , passenger path set kΠ ∈Π . All the 
constraints introduced in III will be applied. The supplement 
budget is also allocated according to the trains.  

 
Fig. 18. Comparison of train service shifts between PRT and OT 

Fig.18. illustrates the PRT, which results from slight 
adjustments based on the original train timetable. The figure 
clearly demonstrates the application of infrastructure 
constraints. 

 
Fig. 19. Average shifting step for each train in PRT 

As shown in Fig. 19, the average shifting steps for trains 
from OT to PRT are much smaller than those for ORT. 
Additionally, more train schedules have been delayed, likely to 
ensure that passengers do not miss their departure times or 
transfer connections. 

 
Fig. 20. Average passenger delay for each OD pair in PRT 

Under this timetable, the average passenger delay in the 
two scenarios reached 1.04 minutes (Fig. 20.). When referring 
to Fig. 9, we notice that the passenger-centric robust model 
tries to aggregate the delays to the OD with lower passenger 
demand, such as Ehs-Bet and Tb-Ehs. This indicates that the 
PRT established using the model proposed in this thesis can 
reduce the passenger generalised travel time in specific delay 
scenarios. From the operator's perspective, the train arrival 
delay is higher with this timetable (10.20 minutes), and its 
distribution is shown in Fig. 21. 

In the passenger-centric model, applying more delays to 
OD pairs with smaller passenger flows significantly improves 
the optimisation objective, which may naturally sacrifice a 
certain amount of train arrival delay. However, in this small 
verification and validation case, the disturbances are not so 
severe that the average train arrival delay remains the same as 
that of OT. 



 
Fig. 21. Train arrival delay in PRT 

The average passenger generalised travel time for each OD 
pair is 44.48min in this case (Fig. 22.), which is similar to the 
results of the other two timetables. 

 
Fig. 22. Average passenger generalised travel time in PRT 

This case divides the model into four parts and then 
reintegrates them, achieving different functionalities. These 
designed experiments are used to verify and validate each part 
of the model. Based on the output results from the two 
combined models and the final model, the models are correctly 
constructed. For example, in the PRT, ODs with lower 
passenger flows experience greater delays (Ehs-Bet). In 
contrast, in the ORT, all train delays are treated equally, 
leading to a more even distribution of passenger delays. This 
outcome is determined by the results of the passenger path 
allocation and the optimisation objective. 

TABLE II.  COMPARISON AMONG OT, ORT AND PRT IN CASE STUDY 

 

Based on the outputs in TABLE II, all the results are 
consistent with the analytical solutions and aligned with the 
previous expectations. Among the three timetables, OT 
performs the worst in handling the two disturbance scenarios in 
this case. Even in normal cases without disturbances, the 
average generalised travel time for each OD pair is the longest. 
For the ORT, the total train arrival delay is the smallest, as this 
is the primary optimisation objective. An unexpected benefit is 
the improvement in timetable efficiency compared to OT. PRT, 
on the other hand, focuses on reducing average passenger delay 
during disturbances, successfully reducing delays to about one-
third of the original level. Therefore, it is concluded that the 
passenger-centric robust timetabling model works as intended 
and can achieve the functionality of the model. 

V. CONCLUSION 
This paper presents a passenger-centric timetabling model 

aimed at enhancing the robustness of current train timetable in 
mitigating the impact of disturbances on passengers. The study 
adopts the generalised passenger delay as the optimization 
objective of the model, seeking to minimize the additional 
delay experienced by passengers during disturbances compared 
to their travel time according to the normal scheduled time. 
The model is primarily divided into three components. The 
train timetabling model utilises a train PESP scheme to ensure 
train timetable feasibility, such as restricting the upper and 
lower bounds of train activity. Besides, constraints on the time 
supplements budget and adjustment window compared to the 
original timetable has been introduced. Another model is about 
generalised travel time defining and calculation and passenger 
assignment. The simulation model consists of two sub-models. 
One sub-model is used for the train, and the other is used for 
the passengers. These sub-models help to evaluate the 
robustness of the newly designed timetable under different 
disturbance scenarios.  

After establishing the model, we conduct a case study using 
data from the Eindhoven-Den Bosch-Tilburg region in the 
Dutch railway system. The primary aim is to verify and 
validate the proposed model. The analysis focuses on several 
key metrics, including average shifting step, average passenger 
delay for each OD pair, train arrival delay, and average 
passenger generalized travel time under normal conditions. The 
results suggest that the proposed model is effective in reducing 
passenger delays under specific disturbance scenarios, thereby 
affirming its validity. 

However, the model also has certain limitations. First, the 
train operation sequence is fixed during the timetable design 
process, and all passengers are treated as a homogeneous group 
with identical travel preferences. Second, when calculating 
passengers' realized travel time, cycle misalignment may occur, 
potentially leading to inaccuracies in subsequent calculations. 
Nevertheless, this issue does not significantly affect the results 
in scenarios where passengers have multiple route options. 
Finally, the model is computationally intensive, requiring 
approximately 20 hours to obtain a near-optimal solution for 15 
disturbance scenarios. 
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