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Abstract. Localization of focal vascular lesions on brain MRI is an
important component of research on the etiology of neurological disor-
ders. However, manual annotation of lesions can be challenging, time-
consuming and subject to observer bias. Automated detection methods
often need voxel-wise annotations for training. We propose a novel app-
roach for automated lesion detection that can be trained on scans only
annotated with a dot per lesion instead of a full segmentation. From
the dot annotations and their corresponding intensity images we com-
pute various distance maps (DMs), indicating the distance to a lesion
based on spatial distance, intensity distance, or both. We train a fully
convolutional neural network (FCN) to predict these DMs for unseen
intensity images. The local optima in the predicted DMs are expected to
correspond to lesion locations. We show the potential of this approach to
detect enlarged perivascular spaces in white matter on a large brain MRI
dataset with an independent test set of 1000 scans. Our method matches
the intra-rater performance of the expert rater that was computed on
an independent set. We compare the different types of distance maps,
showing that incorporating intensity information in the distance maps
used to train an FCN greatly improves performance.
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1 Introduction

Obtaining the location of focal vascular lesions on brain scans, such as white
matter hyperintensities, lacunes, enlarged perivascular spaces or microbleeds is
extremely useful for studying the association of these lesions with neurological
disorders. However the manual annotation of these lesions can be challenging,
time-consuming and subject to observer bias due to the difficulty of distinguish-
ing a specific type of lesion from other similarly appearing structures. An auto-
mated method for detecting lesions could improve reliability, generalization and
speed of lesion detection, which could greatly advance neuropathology research.

Various promising automated methods have been proposed to detect lesions.
Deep learning methods often provide the best accuracy, but depend on expensive
manual annotations for training like voxel-wise segmentations [5,11] or bounding
boxes [8] marking the lesions. This hinders applicability of these techniques in
practice.

Annotating by placing a single dot per lesion instead is considerably more
time-efficient, allowing to collect larger annotated datasets for training and eval-
uation. In this paper we therefore propose a novel method for lesion detection
that requires only dot annotations. Dot annotations have been effectively used to
train convolutional neural networks (CNNs) for other applications, such as cell
detection in histology images [18], lacune detection in placental ultrasound [15]
and landmark detection in retinal images [14]. An approach that has shown great
promise is regression of a distance map (DM) that is computed from these dot
annotations [14,15,18]. Contrary to many other deep learning detection meth-
ods that use a two-stage approach [8], this approach directly outputs predicted
detections and is optimized in an end-to-end fashion.

We use a similar approach for detecting lesions based on dot annotations. Pre-
vious distance regression approaches for detection [14,18] have used Euclidean
distance. This is especially suited for the detection of circular objects such as
cells. Brain lesions on the other hand often have a morphology that is complex
and discriminative [4].

In this paper we investigate the effect of including intensity information in
DMs for lesion detection. Intensity distance incorporates local image context
enabling the DM to capture complicated morphologies. Voxels surrounding dot
annotations which have similar intensity values (inside the lesions) will have a
lower value in the DM than dissimilar voxels (outside the lesions). This could
encourage the CNN to learn the characteristic morphology of the lesions and
propose more accurate detections than when trained on a Euclidean distance
map (EDM) that does not make this distinction. We compare Euclidean dis-
tance, intensity distance, and geodesic distance that combines both Euclidean
and intensity distances. For geodesic distance the image is seen as a curved sur-
face defined by the spatial coordinates and one intensity coordinate, where the
shortest path on the surface is the geodesic distance [17].

In this paper we show that including image intensity information in the DM
improves optimization of a CNN for detecting lesions in brain MRI. We com-
pute DMs from the dot annotations and their corresponding intensity images.
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Subsequently we train a fully convolutional neural network (FCN) to predict
these DMs for unseen intensity images. The local minimal distances in the pre-
dicted DMs correspond to the proposed detection candidates.

We show the potential of regressing intensity-based DMs for the detection of
enlarged perivascular spaces (PVS). PVS burden has been associated with cere-
bral small vessel disease [6]. As PVS follow the course of the vessel they surround,
they appear as elongated structures on 3D brain MRI scans. Several methods
have been proposed to detect PVS. The majority of the proposed algorithms is
however evaluated on a relatively small sets (less than 30 images) due to the
need for voxel-wise annotations for testing (and training) [4,13]. We train and
validate on a set of 1202 MRI scans and test on a separate set of 1000 images.
As the centrum semiovale (CSO) is seen as the most difficult brain region for
PVS detection and most clinically relevant, we focused on this brain region [3].

2 Method

We train an FCN to regress a DM for a given intensity image. Our approach
requires MRI scans with dot annotations for training. The local optima in the
predicted DMs are expected to correspond to lesion locations. We compare
geodesic distance maps (GDMs), EDMs and intensity distance maps (IDMs).

2.1 Distance Transform

To compute DMs we use a distance transform, that requires a definition of the
foreground – in our case the set of dot annotations Φ – and a gray-scale image
G(x) in the case of intensity and geodesic distances, with x the position in the
image. The distance map DM(x) is defined by

DM(x) = min(Λ(γ), γ ∈ Ψ(x, Φ)) (1)

with Ψ(x, Φ) the set of possible paths γ between a position x in the image and
the set of dot annotations Φ. The length Λ(γ) of the path γ is

Λ(γ) =
n−1∑

i=1

d(xi, xi+1) (2)

with n the number of voxels in the path γ between a position x and a dot
annotation xdot ∈ Φ and d the distance measure. The geodesic distance dG in a
2D gray-scale image between voxel xi and the next voxel in the path xi+1, with
intensities G(xi) and G(xi+1) respectively, is defined by [17] as

dG(xi, xi+1) =
√

dI
(
xi, xi+1

)2 + dE
(
xi, xi+1

)2 (3)

with the intensity distance dI(xi, xi+1) = G(xi) − G(xi+1) and the Euclidean
distance dE(xi, xi+1) which is 1 for xi+1 ∈ N4(xi) (voxels connected horizontally
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and vertically) and
√

2 for xi+1 ∈ N8(xi)\N4(xi) (voxels connected diagonally).
EDMs are consequently computed by setting dI = 0 in Eq. 3, while IDMs are
computed by setting dE = 0. We approximate these DMs using the optimization
algorithm iterative raster scan described in [17]. This approach is for computing
DMs in 2D, though it can easily be extended to 3D.1

The resulting DM(x) is normalized by dividing by the maximum distance in
the DM(x) and inverted as this is convenient for implementation. Furthermore,
we add a parameter p to influence how steeply the distance decays. The final
map Mp(x) is calculated using

Mp(x) =
(
1 − DM(x)

max
(
DM(x)

)
)p

(4)

Fig. 1. Network architecture, on the left the input preprocessed brain scan is shown
and the output predicted distance map is shown on the right

2.2 Fully Convolutional Neural Network

We use an architecture similar to a shallow U-Net for our FCN shown in Fig. 1,
which was shown to work well for regressing the number of perivascular spaces in
the basal ganglia [9,16]. For optimization we use mean square error loss MSE =
1
N

∑
x

(
M̂p(x) − Mp(x)

)2

, with M̂(x) the predicted map and N the number of

voxels in Mp(x).
Non-maximum suppression is applied to the predicted distance map to detect

local optima. We use a 5×5 maximum filter with a connectivity of 8. By thresh-
olding the local optima the proposed detections are acquired.

1 Our code for computing 2D as well as 3D distance maps is available at https://
github.com/kimvwijnen/geodesic distance transform.

https://github.com/kimvwijnen/geodesic_distance_transform
https://github.com/kimvwijnen/geodesic_distance_transform
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3 Experiments

3.1 Data

Our data set consists of 2202 T2-weighted MRI scans from the Rotterdam Scan
Study. All scans were from different individuals and were acquired on a 1.5 T
MRI scanner. The images have a size of 512 × 512 × 192 with a voxel resolution
of 0.49 × 0.49 × 0.8 mm3. Further details on the image acquisition of this data
are discussed by Ikram et al. [12].

The number of PVS in the axial slice 1 cm above the lateral ventricles is highly
correlated with the total number of PVS in the CSO [2]. The rater selected this
specific slice and annotated it with dots indicating PVS between 1–3 mm in
diameter in line with the guidelines described by Adams et al. [1]. The intra-
rater performance was evaluated on a separate set of 40 MRI scans (see Table 1
and Fig. 3).

3.2 Preprocessing

Images are preprocessed as proposed by [10]. We segment the CSO with the
FreeSurfer multi-atlas segmentation algorithm [7] producing a binary mask that
we smooth with a Gaussian kernel. The image are multiplied with the smoothed
mask and cropped to a fixed size containing only the slices close to the annotated
slice. The resulting images are normalized to the range [0, 1] by dividing by the
maximum intensity in the image.

Annotated dots were not always inside the PVS. To solve this problem, we
shift the dots to the highest intensity value within the same connected component
and within 3 voxels distance. The shifted dots were only used to compute the
distance maps for the training and validation set. For evaluation of the detection
performance, the original annotated dots were used.

3.3 Experimental Setup

Random sampling was used to split the 2202 scans into a set of 1202 for devel-
opment of the method (1000 for training and 202 for validation) and a separate
set of 1000 for testing. As only one slice per scan was annotated, DMs were
computed in 2D and the loss was only evaluated for this slice. Non-maximum
suppression and evaluation of detection performance was also only done on the
slice that was annotated.

Weights for the convolutional layers were initialized by random sampling
from a truncated normal distribution with zero mean and unit variance. For
optimization we use Adadelta and a batch of one due to memory limitations.
We use on-the-fly augmentation for the training set. For every image a random
rotation around the depth direction with a maximum of 20◦ in both directions
is applied combined with random flipping in horizontal and in vertical direction.
Methods were implemented in Python and Keras with Tensorflow as backend.
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3.4 Detection Performance

The candidate detections of each method are compared to the expert annotations
using the hungarian algorithm to find a one-to-one mapping between these sets.
Only detections within a 6 voxel radius of the annotations were counted as true
positive. We use 6 voxels as this is the maximum PVS diameter (corresponds to
3 mm [1]).

The detection performance is mainly evaluated with the Free-Response Oper-
ating Characteristic (FROC) curve and its area under the curve (FAUC) until
10 FPavg, which is approximately twice the FPavg of the rater. The FAUC is
calculated as the percentage of the highest possible area. We used bootstrapping
to quantify the uncertainty, resulting in a mean FAUC and confidence interval
based on 1000 sampled sets. Bootstrapping was performed by random sampling
with replacement from the test set.

3.5 Evaluation Approach

We ran experiments varying the decay parameter p (see Fig. 2). For higher values
of p the FCN did not train, we expect because of label imbalance. Based on the
FAUC on the validation set we set p to 5 for geodesic distance, to 6 for intensity
distance and 9 for euclidean distance. During training, the model parameters
were chosen as the ones minimizing the FAUC computed on the validation set.
Only the best model per distance type (GDM5(x), EDM9(x), IDM6(x)) was
tested on the test set of 1000 scans.

The operating point on the FROC was chosen per model as the threshold with
a sensitivity on the validation set closest to the average intra-rater sensitivity.
For GDM5(x) the threshold was chosen at 0.525, for EDM9(x) at 0.500 and for
IDM6(x)) at 0.495. This threshold was used as the detection threshold during
evaluation on the test set.

Fig. 2. Influence of decay parameter p on detection performance on the validation set
and the chosen distance maps
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Fig. 3. FROC curves and crops of the output of the FCNs and their proposed detections
(intra-rater performance indicated with red crosses, annotations with red arrows and
predictions with blue stars) (Color figure online)

3.6 Results

Figure 3 shows the FROC curves computed on the test set and examples of the
output of the FCNs. Table 1 shows the corresponding FAUCs, the sensitivity
and FPavg of the methods on the test set at the chosen thresholds (based on the
validation set) and the average intra-rater performance.

Table 1. PVS detection performance on the test set for the detection methods and
the average intra-rater performance on a smaller independent set

FAUC FPavg Sensitivity

EDM9(x) 45.761 (± 0.052) 7.49 53.63

GDM5(x) 50.575 (± 0.050) 5.10 55.26

IDM6(x) 53.078 (± 0.051) 4.35 55.35

Average intra-rater - 4.43 55.66

4 Discussion and Conclusion

Our experiments indicate that incorporating image intensity information in a
distance map used to train an FCN substantially improves performance of PVS
detection. Results show that using GDMs and IDMs both result in a similar
detection performance, with IDMs sometimes reaching higher performance than
GDMs. This indicates that intensity difference is the most discriminative infor-
mation, and that Euclidean distance could even be ignored. Using higher values
of the decay parameter also increases the PVS detection performance, and sta-
bilizes the optimization.



Automated Lesion Detection by Regressing Intensity-Based Distance 241

The FCN trained using IDMs reaches a sensitivity and FPavg similar to the
intra-rater performance computed on a smaller independent set (Fig. 3).

We expect our method could perform well for detecting other types of focal
vascular lesions in the brain. Using intensity information in the computation of
DMs could help the detection lesions that either have a complex morphology, or
can have substantial variation in their size, such as microbleeds, white matter
hyperintensities or lacunes. Additionally, in this work we evaluate the intensity-
based distance maps only for their performance in detecting PVS. However,
we observe that the PVS detections in the output maps of the FCNs trained on
intensity-based distance maps (Fig. 3) seem to approximate the PVS shape quite
well. We therefore expect our approach might also work well for segmentation.
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