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Conformal Invariance of the Ising Model in Three Dimensions
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We investigate a critical Ising-like model in the curved geometry S2 3 �1 obtained by a conformal
mapping of the infinite 3D space �3. The incompatibility of regular lattices with this geometry is avoided
by use of the anisotropic limit of the lattice Ising model, which renders one of the space coordinates
continuous. We determine magnetic and energylike correlation lengths of this model by means of a
cluster Monte Carlo algorithm. From these data, and the assumption of conformal invariance, we obtain
the magnetic and temperature scaling dimensions as Xh � 0.5178�12� and Xt � 1.423�19�, respectively.
These numbers are in a good agreement with the existing results for the 3D Ising universality class.

DOI: 10.1103/PhysRevLett.88.190602 PACS numbers: 05.50. +q, 64.60.Cn, 64.60.Fr, 75.10.Hk
There exists a well-known relation between scaling
dimensions of critical systems in two dimensions, and
correlation lengths in a cylindrical geometry [1–5]. An
adequate explanation was given by Cardy [6,7] on the
basis of the assumption of conformal invariance, and a
mapping of the two-dimensional space �2 on a cylinder
S1 3 �1. This relation is very useful because it provides a
simple and powerful tool to determine scaling dimensions,
and thus critical exponents, in two-dimensional models.
For a model with scaling dimension X, the relation is [7]

jR � R�X , (1)

where jR is the correlation length of a cylinder with
radius R.

A similar relation exists in three dimensions [8]. In
spherical coordinates, the line element in a flat space is

ds2 � dr2 1 r2�du2 1 sin2udw2� . (2)

Under the coordinate transformation
-1 0031-9007�02�88(19)�190602(4)$20.00
�r, u, w� � �eu�R , u, w� . (3)

where 2` , u , `, the line element transforms as

ds2 � R22e2u�R�du2 1 R2�du2 1 sin2udw2�� , (4)

which can be recognized in terms of a scalar, position-
dependent prefactor multiplying the natural metric,

ds2 � du2 1 R2�du2 1 sin2udw2� , (5)

of the curved space S2 3 �1, i.e., a geometry which ex-
tends the surface S2 of a sphere with radius R into another
dimension �1. We shall refer to it as a “spherocylinder.”
The transformation (3) is thus conformal in combination
with the metric (5). It relates models defined on �3 and on
S2 3 �1 as shown by Cardy [8].

Under the transformation (3), correlations of a scaling
operator s in a conformally invariant model behave co-
variantly as
�s�u1, u, w�s�u2, u, w��S23�1 � R22XeX�u11u2��R�s�r1, u, w�s�r2, u, w���3 , (6)

or, since �s�r1, u, w�s�r2, u, w�� ~ jr1 2 r2j
22X ,

�s�u1, u, w�s�u2, u, w��S23�1 ~ R22Xe2X ju12u2j�R�1 2 e2ju12u2j�R�22X . (7)
For ju1 2 u2j ¿ 0, Eq. (7) decays exponentially,

�s�u1, u, w�s�u2, u, w�� ~ R22Xe2Xju12u2j�R, (8)

so that relationship (1) follows again. In three dimensions,
Eq. (8) was verified analytically for the special case of
the spherical model [8]. A serious obstacle for numerical
tests is that the curved space of Eq. (5) does not readily
accommodate a sequence of regular lattices. Janke and
Weigel [9] replaced the S2 sphere by the surface of a cube.
Their results for Ising models with finite size R satisfy
Eq. (1) up to some proportionality constant. Remarkably,
numerical investigations of systems in a flat, periodic S1 3

S1 3 �1 geometry with antiperiodic boundary conditions
lead to similar results [10]. An explanation has not been
given.
In this paper, we tackle the problem of simulations in
a S2 3 �1 geometry using the Hamiltonian limit of the
lattice Ising model, which renders one of the coordinates
continuous. We start from the Ising Hamiltonian in the 3D,
flat space �3

H �kBT � 2
X
x,y,z

�Kxysx,y,z�sx11,y,z 1 sx,y11,z�

1 Kzsx,y,zsx,y,z11� , (9)

and take the anisotropic limit e ! 0 in

Kxy � e�t, e22Kz � e . (10)

A Wolff-like cluster Monte Carlo method [11] is available
for the system in this limit, which is equivalent with the
© 2002 The American Physical Society 190602-1
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d � 2 quantum transverse Ising model. Since the corre-
lation length, which determines the physical length scale,
diverges as 1�e in the z direction, we choose the system
size proportional to 1�e in that direction. Although the
number of spins is thus divergent, it could be arranged
such that the computer time remains finite. Simulations of
the 3D model, combined with a finite-size-scaling analy-
sis, yielded the critical point as t � 3.0444�1� [11]. The
precision achieved by this algorithm is good in comparison
with other methods [12–14].

The divergence of the physical length scale in the z
direction for e ! 0 suggests the use of a new coordinate
z̃ � ez�a in order to restore isotropy asymptotically. We
have determined a by Monte Carlo simulations [15] as a �
0.8881�2� from the requirement that the critical correlation
functions of systems with periodic boundaries and sizes
�x, y, z̃� � �L, L, L� approach isotropy. Since the strong-
coupling direction z̃ has become continuous, while x and y
remain discrete, the 3D lattice reduces to an L 3 L system
of lines. The weak couplings in the x and y directions
connect to neighboring lines, and have a strength of a�t
per unit of length as measured by z̃.

Because of its continuity in the z̃ direction, this model
can be simulated in the curved S2 3 S1 geometry as fol-
lows. L evenly spaced circles on the S2 sphere (see
Fig. 1) serve as the loci of the spins, and define the strong-
coupling direction z̃. Thus L � pR: The circumfer-
ence of the sphere is 2 times the finite-size parameter
L; that of S1 is nL. We take n large enough in or-
der to approximate the S2 3 �1 geometry. We parame-
trize S1 by u � x � 1, 2, . . . , nL, and S2 by u and w,
with u � p� y 2

1
2 ��L, where y � 1, 2, . . . , L, and w �

p z̃��L sinu�, where 0 # z̃ , 2L sinu.

2R

L=7=πR

ϕ

θ

2

L

1
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FIG. 1. Example of an S2 sphere with finite size L � 7. It is
a cross section of the S2 3 S1 geometry as used in the simu-
lations. The circles represent continuous lines of spins in the
strong-coupling direction. Weak couplings occur between adja-
cent circles within spheres as well as between those adjacent in
the third dimension (the u direction, not shown).
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At a given w, the variables x and y form what is essen-
tially a square lattice. The S2 curvature is accounted for by
the u dependence of the period of z̃. The definition of the
weak couplings between two points �u, w, u6 � p� y 6
1
2 ��L� still requires a length scale in the z̃ direction. To re-
duce discretization errors, we use the average length scale
of both circles, i.e., dz̃ � dwL�sinu1 1 sinu2��2p.

We have simulated the above model on some 30 personal
computers, for a total time of about 50 processor-months at
750 MHz. For system sizes L � 4, 6, 8, 10, 12, 14, 16 and
n � 4, 8, we sampled the magnetic correlation function
gm�r� in the u direction, defined as

gm�r� �
1
V

* X
u,u

Z 2p

0
dw

L
p

sinum�u, u, w�

3 m�u 1 r, u, w�

+
, (11)

where m�u, u, w� is the magnetization density at position
w, u on the uth sphere, and V �

P
u,u 2L sinu is the vol-

ume of the spherocylinder. We restrict r # nL�2 because
of the periodic boundary.

We also sampled the interaction energy between adja-
cent circles, and its correlations in the u direction. We
define enn as

enn �
1
V

* X
u,u

Z 2p

0
dw

L
p

sinum�u, u, w�

3 m�u 1 1, u, w�

+
, (12)

and the correlation function ge�r� as

ge�r� �
1
V

* X
u,u

Z 2p

0
dw

L

p
sinum�u, u, w�

3 m�u 1 1, u, w�m�u 1 r, u, w�

3 m�u 1 r 1 1, u, w�

+
2 e2

nn . (13)

For finite L, the critical singularities are rounded off,
even on an infinitely long spherocylinder, because of the
quasi-one-dimensional nature of the system. According
to finite-size scaling, the singular part of the free energy
density f behaves as

f�t, h, y, . . . ; L� � L23f�tLyt , hLyh , yLyi , . . . ; 1� , (14)

where t is the temperaturelike scaling field, h is the mag-
netic field, y is the irrelevant field, and yt, yh, and yi are
the corresponding exponents. The corrections to scaling
due to y are important only for small L because yi , 0.
The approximation of the sphere by L strips induces simi-
lar finite-size corrections. In analogy with errors due to
the trapezium rule, we expect an effect on the mean tem-
perature field of order L22, and corrections of order Lyc

with yc � yt 2 2. These are likely to dominate over those
190602-2
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FIG. 2. Exponential decay of the magnetic correlation function
gm�r, 1

L �, shown as loggm�r , 1
L � versus distance r . The system

sizes are L � 8 and nL � 64. Error bars show the statistical
uncertainty. A fit including corrections with amplitudes cm1 and
cm2 is shown as the dashed line.
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due to the irrelevant field, because yc 	 20.413 while
yi 	 20.815 [15–18]. The irrelevant field modifies the
correlation length jL as [6]

j21
L �

pX
L

�1 1 biL
yi 1 . . .� . (15)

Our aim is to determine the scaling dimensions X via
Eq. (1), i.e., from the exponential decay of g�r, 1�L�. Ex-
pansion of Eq. (7) for large r � ju1 2 u2j leads to

g

µ
r,

1
L

∂
~ L22Xe2pXr�L

*
1 1

X
j

cje2jpr�L

+
, (16)

where cj � G�2X 1 j��
G�2X 2 1�G� j 1 1��.
Because of the periodicity of u, correlations build up

over two distances r and nL 2 r. This effect, and correc-
tions with an exponent yc, lead to
gm

µ
r,

1
L

∂
� L22Xh

"
Y

Xh�11bmLyc �
1

√
1 1

X
j

cmjY
j
1

!
1 Y

Xh�11bmLyc �
2

√
1 1

X
j

cmjY
j
2

!#
�Am 1 ymLyc � , (17)

and

ge

µ
r,

1
L

∂
� L22Xh

"
Y

Xh�11beLyc �
1

√
1 1

X
j

cejY
j
1

!
1 Y

Xh�11beLyc �
2

√
1 1

X
j

cejY
j
2

!#
�Ae 1 ye1Lyc � 1 ye2Ly1 , (18)
where Y1 � e2pr�L, Y2 � e2p�n2r�L�, and y1 � 4yt 2

2d 2 2 � 21.652�4�. The correction with amplitude ye2
is due to the inhomogeneity of the energy caused by the
approximation of the sphere [15].

The Monte Carlo data are well fitted by these formulas,
according to the x2 criterion. Examples are shown in
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FIG. 3. Exponential decay of the energy-energy correlation
function ge�r, 1

L �, shown as logge�r , 1
L � versus distance r (hori-

zontal). The system sizes are L � 8 and nL � 32. Error bars
show the statistical uncertainty. The dashed line shows a fit with
correction amplitudes ce1, ce2, ce3, ye1, and ye2.
Figs. 2 and 3. The upward trends on the right are due to
the periodic boundary.

The exponent 22Xh of L was fixed at 2yh 2 6 �
21.0370�6� [15–18], and yc � 20.413 as explained
above. The cmj are found by substituting 2Xh �
1.037�10� in Eq. (16). The fitted parameters are shown in
Table I. The quality of the fits indicates that the length
ratio n � 4 already yields a reasonable approximation of
infinitely long systems. The result Xh � 0.5195�24� is
already close to the expected value 3 2 yh � 0.5185�3�
[15,16]. An even better fit is obtained for systems whose
long size is 8L. Then, the x2 criterion allows a cutoff at

TABLE I. Results of three least-squares fits to gm�r , 1
L �, each

using a different combination of unknown parameters.

4 8 8
n Fit1 Fit2 Fit3

Lmin 10 8 8
Lmax 16 16 16

�r�L�min 1.2 1.0 1.0
�r�L�max 4.0 4.0 4.0

Xh 0.5195 (24) 0.5178 (12) 0.5178 (12)
Am 0.7562 (88) 0.7438 (10) 0.7440 (14)
bm 0.1056 (48) 0.1084 (30) 0.1086 (30)
ym · · · · · · 0.000 01 (8)
190602-3



VOLUME 88, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 13 MAY 2002
TABLE II. Simulation lengths in millions of samples of the
quantities gm�r, 1

L � and ge�r , 1
L �, respectively. Samples were

taken at intervals of five Wolff clusters.

gm�r , 1
L � ge�r , 1

L �
L�n 4 8 4

4 341 73 · · ·
6 511 73 24 838
8 682 243 73 064

10 1096 487 114 045
12 1023 1242 12 296
14 1278 937 · · ·
16 487 1656 · · ·

even smaller system sizes Lmin and distances �r�L�min, and
the result Xh � 0.5178�12� is again close to the expected
value.

Since the energy-energy correlation decays relatively
fast, it is more difficult to determine Xt . Thus much longer
simulations were needed for this purpose (see Table II).
We obtain Xt � 1.423�19� (see Table III), which agrees
well with the expected value Xt � 1.413�1� [15,16]. Al-
though the parameter ye2 is quite small, it is necessary to
obtain an acceptable residual x2. The rapid decay of the
correlation functions did not allow the resolution of a cor-
rection with amplitude be. Several modifications of the
fit formula were tried, for instance, including corrections
with an irrelevant exponent yi, but these did not lead to
significant reductions of the residual x2.

In conclusion, we have confirmed the covariant behavior
of the magnetic and energylike correlation functions un-
der a conformal transformation in three dimensions, and
shown that it is possible to determine the critical scaling
dimensions from the correlation lengths of finite systems
in an appropriate geometry.

We are indebted to W. Janke and J. R. Heringa for valu-
able discussions. This research is supported by the Dutch
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TABLE III. Least-squares fit of ge�r , 1
L �, for systems with size

ratio n � 4.

Lmin Lmax �r�L�min �r�L�max Xt

8 12 0.60 1.5 1.423(19)
Ae be ye2 ye1 · · ·

0.788(23) · · · 0.0160(55) 20.0053�14� · · ·

FOM foundation (“Stichting voor Fundamenteel Onder-
zoek der Materie”) which is financially supported by the
NWO (“Nederlandse Organisatie voor Wetenschappelijk
Onderzoek”).
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