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Abstract

In this thesis we study stochastic duality under hydrodynamic scaling in the context of
interacting particles on a grid. The approach is inspired and motivated by the relation
between duality and local equilibria. We identify duality relations in terms of the expec-
tation of the density field for which the hydrodynamic limit is recovered. This is initially
done both for symmetric inclusion and exclusion processes as well as for independent ran-
dom walkers. We continue with the independent case and generalize to particles which
also posses a, possibly scale dependent, internal energy state. The results in this context
assume generator convergence under scaling and are illustrated using run-and-tumble
systems. This work also includes examples concerning instances of run-and-tumble pro-
cesses which do not have convergence on a generator level. Apart from run-and-tumble
processes, we examine the effect of reservoirs on the relevant duality relations and macro-
scopic profiles. The reservoirs are found to correspond with boundary conditions for the
macroscopic profile.
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1 Introduction

Simple systems of particles on a grid have received considerable attention by mathematicians
and physicists alike as they provide a convenient ground-zero for testing the properties of sys-
tems far from their equilibrium state, for which no general theory is available [6]. Regardless of
this lack of theory, non-equilibrium states spark particular interest as they display peculiar be-
haviour like long-distance correlations. A first step in developing a rigorous and general theory
is to understand systems which are in a so-called local equilibrium. In the macroscopic context,
i.e. for systems which are scaled versions of particles on a grid, the concept of local equilibrium
encompasses that, locally around a microscopic point, the measure describing the system is
a product measure. However, this is parameterized by the macroscopic profile at the corre-
sponding macroscopic point. Since product measures are believed to correspond to equilibrium
states, one might interpret this as the equilibrium being established locally. Duality has proven
to be a gateway into understanding this concept, as it offers exact methods of calculation to
describe the propagation of the local equilibrium. That is, one can typically reformulate the
canonical definition of local equilibrium in terms of a finite number of dual particles initialized
around a macroscopic point. Through this reformulation one can understand propagation of
the local equilibrium through the fact that at macroscopic times, the finite number of dual
particles are typically at large distances. Ultimately this leads to macroscopic profiles given by
the heat equation [1].

In this thesis we explore the scaling of the duality relations in the setting described above.
That is, we study particles moving on a grid. Motivated by applications concerning non-
equilibrium states, we mainly focus on the case where the dual system consists of a finite
number of particles. We start from systems where the relevant dynamics purely depend on the
spatial positions of the particles. We do this both in the case where the particles don’t have
interactions and in the case where they do. The interactions in question are either of the ex-
clusion or inclusion type. We argue that, using a suited coupling, one can pass to independent
particles. The next step is to generalize our findings to systems on a (possibly scale dependent)
state space which is larger than just the integer grid. To illustrate this more general theory,
we study the so-called run-and-tumble systems, where the particles possess an internal state
which describes a drift dynamic. In the case where the internal state of these particles changes
freely, our theory is sufficient to describe macroscopic behaviour. However, in the case where
the internal state changes occur depending on position, we identify systems where our theory
proves inadequate. Nonetheless we still managed to show results concerning the macroscopic
profile, through the use of ergodic theory. Finally we also examine systems in a scenario where
non-equilibrium steady states naturally occur, namely systems with the presence of reservoirs
with different parameters.

Both scaling and duality techniques are common in the field of interactive particle systems.
Before we get to the actual story, we informally introduce duality and hydrodynamic scaling
to better contextualize our work.

Scaling limits

Behind the use of stochastics lies often the wish to gain a qualitative understanding of a sys-
tem which is too complicated to describe using standard deterministic methods. In statistical
physics, this strategy is particularly popular to understand the behaviour of physical systems
consisting of a large number of small particles. The exact behaviour of each of these particles
is a complex process highly dependent on presence of other particles in its direct environment.
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On a macroscopic level this yields a system which has an unreasonable amount of degrees of
freedom. However, in many cases it turns out that at a macroscopic level these systems behave
in a predictable manner, described by a system of partial differential equations. Moreover, this
predictable behaviour arises even from systems where the particles at microscale are hugely
simplified. One might for example think of particles which live on a grid and jump and hop
from one site to another, whereas the physical particles move along continuous paths in con-
tinuous space. In many cases, the resulting differential equations remain the same. Even the
interactions between the particles can often be ignored or simplified. Through the study of
simplified microscopic systems one may infer the type of micro scale dynamics responsible for
the macroscopic behaviour of the system in question.

To meaningfully discuss these systems it is necessary to have a rigorous method to trans-
late a microscopic system to the macroscopic world. This requires scaling of both space, time
and often even the parameters describing the probability distributions at a microscopic level.
usually, scaling results in the a particle density rather then the individual position of particles.
One particularly popular method of scaling is so-called hydrodynamic scaling, where the space
is scaled by ϵ and the time by ϵ−2 as ϵ tends to zero. This is inspired by the fact that a random
walk on Z is typically distance of order

√
t removed from its initial position at time t. Hence,

one needs quadratic scaling of the time to allow the random walker to move away from its
origin, without it escaping to infinity. In many physical systems the particles perform seem-
ingly a Brownian motion when singled out, validating this choice of scaling in a physical context.

Stochastic duality

Duality is a recurrent theme throughout numerous branches of mathematics. Nonetheless, the
precise meaning of the term is highly dependent on the area where it occurs. Generally it
refers to some type of one-to-one correspondence, oftentimes between two problems which are
in a sense equivalent. In such a scenario, one can translate an original problem to its dual
problem, which is hopefully more approachable. The dual is then solved instead to obtain
useful information about the original problem. In the context of stochastic processes, the
duality between two Markov processes X and Y is understood in terms of a duality function D,
mapping the Cartesian product of the state spaces to a real number. We consider the duality
function acting on the processes evolving in time. More precise, we observe the mean of the
duality function as we keep one process fixed and let the other evolve. If the mean is indifferent
to which process, X or Y , is evolving, the processes are dual. Without getting formal about
the notation, one can interpret duality as the following relation,

ED(Xt, Y0) = ED(X0, Yt). (1)

A more mathematically precise definition is given in subsection 2.6. Depending on the exact
situation, duality provides the equivalence between the evolution of the two processes, poten-
tially allowing to find quantities of interest about the original system via its dual. In practice
this turns out to be an immensely powerful technique. In the literature there is an abundance
of instances where stochastic processes are analysed via their dual. In most cases, the crux is
that the dual is more comfortable to work with then the original system. We name a few ways
the dual might be more desirable.

Nature of the state space:

The dual is in some cases a pure jump process on a countable state space, whereas the the
original process has a continuous state space such as Rd [2]. In most cases a discrete state
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space is more convenient to work with, however there are also instances known where a discrete
system is dual to a continuous process which is deterministic [1].

Number of particles:

In the context of interacting particle systems, one can often reduce the number of particles via a
duality relation. This type is one of the most used simplifications one can derive from a duality
result. This is also the major use of duality in this thesis. Technically, it works as follows.
One considers a dual system which contains only a single particle. The duality function will be
such that it returns the number of particles in the original system at the location of the dual
particle. Hence one can recover the expected number of particles at any location by studying
the dynamics of the single dual particle. Evidently this yields significant simplification as the
single particle doesn’t have interactions with other particles. Even when there are more dual
particles, the interactions can often be ignored on a macroscopic scale.

Absorbing boundary sites

In statistical physics it is common to model transport using interacting particle systems. That
is, one considers a finite grid where particles are brought in and removed with constant rates at
the boundary sites. This models the contact with boundary reservoirs. Suppose the boundary
parameters are not the same over the boundary, then the system will reach a steady state
over the course of time, but it won’t be in equilibrium. This is not contradictory as the terms
steady state and equilibrium have different meaning in this context. We say the system is
steady state because the distribution of the particles in the systems is stationary in time. It is
non-equilibrium since there is a flow of particles moving from one reservoir to another. This
corresponds to the microscopic model not being described by equilibrium measures. In the
study of these systems duality has been a successful technique since it allows to replace the
reservoirs by absorbing sites. That is, instead of placing and absorbing particles at a constant
rate, the site will hold every particle which touches it. Hence, over time, the system will be
drained, as all particles end up at the boundary sites. This gives the k-th order moments of
the non-equilibrium steady state in terms of the absorption probabilities of k dual particles.

Duality under scaling

The hydrodynamic scaling is examined in the context of so-called macroscopic fields. More
specifically, we focus on the density field. For a configuration η on Zd, the associated density
field maps a test function φ : Zd → R to a real number. The density field is then of the form

χϵ(η, φ) = ϵd
∑
x∈Zd

φ(ϵx)ηx. (2)

One could regard this expression as some sort of inner product between η and a scaled
version of φ. In this expression, scaling φ is effectively the same as scaling the positions of
the particles in configuration η to a finer grid (ϵZ)d. Hence we could regard the system to be
spatially scaled by a factor ϵ. Hydrodynamic scaling requires the time to be scaled by factor
ϵ−2, which yields

χϵ(η(ϵ
−2t), φ) = ϵd

∑
x∈Zd

φ(ϵx)ηx(ϵ
−2t). (3)

Typically η will scale hydrodynamically to a dynamic profile ρ(t, x). That is,
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lim
ϵ→0

χϵ(η(ϵ
−2t), φ) =

∫
φ(x)ρ(t, x)dx. (4)

We are interested in the remains of the duality relation after scaling. In the case where η con-
sists of independent random walkers there is a duality function Dmicro such that Dmicro(δx, η) =
ηx. That is, for a single dual particle, the duality function yields the number of particles at the
position of the dual particle. Macroscopically we have a similar result. Due to the connection
between the heat equation and Brownian motion, which is the hydrodynamic limit of the ran-
dom walk, we have

Eρ(o,·)[ρ(t, x)] = ρ(t, x) = E[ρ(0, Bx(t))]. (5)

Here, {Bx(t) : t ≥ 0} denotes the Brownian motion departing from x. What this statement
says is that the evolution of the density at a fixed point x is the same as the evolution of
(the function ρ(0, ·) applied to) the dual particle. This is analogous to how Dmicro(δx, η) = ηx.
Indeed, consider the duality function Dmacro(δx, g) = g(x) , which evaluates a density g in point
x. We observe that equation 5 again has the form of a duality relation, but the expectation is
redundant as η becomes deterministic on a macroscopic scale.

Eρ(o,·)[Dmacro(ρ(t, ·), x)] = Ex[Dmacro(ρ(0, ·), Bx(t))] (6)

Notice that we can equivalently state that for each test function φ,∫
ρ(t, x)φ(x)dx =

∫
ρ(0, x)Sdual

t φ(x)dx (7)

Here, {Sdual
t , t ≥ 0} is the semigroup corresponding to the dual particle. A statement of this

form is what we consider to be a duality relation on macroscopic scale. In this thesis we further
generalize this concept of macroscopic duality to duality functions working on k dual particles.
We do this for more general particle systems, rather then only for independent walkers. As is
already apparent from the expression above, the macroscopic duality will appear directly from
scaling the density field. Moreover, it will be equivalent with the k-th order hydrodynamic
limit of the system in question. That is, the hydrodynamic limit of a density field involving k
dual particles.

Structure of this thesis

In chapter 2 we review the basic theory relevant for interacting particle systems. This
chapter does not contain any new work and is only included to avoid ambiguity in notation
and terminology. In chapter 3 we explore the scaling of duality in an increasingly general
setting. We start of with the case where the particles are independent in section 3.1. Once
we have established macroscopic higher order duality in this setting we use coupling to derive
similar results for interacting systems like SEP and SIP. This is done in section 3.2. Finally
we formulate this result for general systems with state space containing Zd and a sufficiently
strong sense of convergence of the generator under the hydrodynamic limit. In chapter 4 we use
our findings to analyse so-called run-and-tumble systems. These are introduced in subsection
4.1 and their microscopic self-duality is shown in subsection 4.2. We conclude this chapter by
calculating the hydrodynamic limit in subsection 4.3. In this subsection we also treat run-and-
tumble systems where the generator can not be scaled hydrodynamically. Chapter 5 deals with
the higher-order hydrodynamics of systems with reservoirs. These are formally introduced in
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subsection 5.1, where also the relevant duality result is proved. The macroscopic profiles are
recovered in 5.2.
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2 Interacting Particle Systems

Before we address topics such as duality and scaling limits, we first sketch the larger picture we
are working in, the world of so called interacting particle systems. Interacting particle systems
were first introduced by Frank Spitzer in his 1970 seminal paper Interaction of Markov processes
[16] and could be informally described as large systems of interacting Markov processes. These
have far reaching applicability in statistical physics and also play an import role in modelling,
for example, evolutionary biology [12], the spread of opinions [11] and the distribution of wealth
[2]. We first provide the necessary background on Markov processes in subsections 2.1 and 2.2,
after which we cover some relevant examples of interactive particle systems in 2.3. Next we
introduce the Birkhoff ergodic theorem and the Dynkin martingale in subsections 2.4 and 2.5
respectively. These are some more advanced tools which are helpful in chapter 4. Finally we
discuss the notion of stochastic duality in subsection 2.6.

2.1 Markov Processes

Since Markov theory lays at the core of interacting particle systems, it is important that we
provide some basic elements of the theory first. The reader is referred to [11] for more back-
ground on Markov process theory. The majority of the theory presented here is adopted from
[14, 17].

Intuitively one can think of a Markov processes on a state space Ω as a stochastic process
{Xt, t ≥ 0} taking values in a measurable space (Ω,A ) such that {Xt, t ≥ 0} is memoryless.
This entails the following. Suppose we are provided with the state of the process up to some
specific time s ≥ 0, then the distribution of Xt at a future time t ≥ s only depends on the
state Xs. In particular, the distribution of Xt does not depend on any of the states before time
s. More precise we can say that ∀t > 0, n ∈ N, 0 < t1 < ... < t2 < ... < tn < t and for all
f : Ω → R bounded and measurable:

E(f(Xt)|Xt1,Xt2
, ..., Xtn) = E(f(Xt)|Xtn). (8)

It is common to define the Markov property in terms of measure theoretic notations. This
is done in the definition below.

Definition 2.1. Let Ft = σ(Xr : r ≤ t) denote the σ-algebra generated by the random variables
Xr, r ≤ t, then the Markov property means that for all 0 < s ≤ t

E(f(Xt)|Fs) = E(f(Xt)|Xs). (9)

Furthermore, we say the Markov process is homogeneous if for each s > 0 the process
{Xt+s, t ≥ 0} starting from Xs = x has the same distribution as {Xt, t ≥ 0} starting from
X0 = x.

Remark 2.2. So far we only defined Markov processes in the continuous time setting. However,
one can easily give a similar definition for discrete processes. This definition would be of the
same form as (8), but with the times t1, ..., tn elements of N0 = N ∪ {0} = {0, 1, 2, ...}.

To illustrate the concept of a Markov process, we introduce the so called (finite state space)
Markov chains, the simple symmetric random walk and Brownian motion. The latter two play
a relevant role in the interactive particle systems we are ultimately interested in.

8



2.1.1 Finite state space Markov Chain

Let Ω be a finite state space. The idea of a Markov chain is that the system jumps from one
state to a (random) other one. Let x, y ∈ Ω. In the discrete time setting the system is described
via a transition probability function p : Ω× Ω → [0, 1] satisfying∑

y∈Ω

p(x, y) = 1 for all x ∈ Ω. (10)

Suppose the system is in state x ∈ Ω, then, after one unit of time elapses, the system jumps
to state y ∈ Ω with probability p(x, y). Since the transition probabilities are at any time only
dependent on the current state of the system, the process is indeed Markov.

In this thesis we are in the first place interested in continuous time Markov chains. These
Markov chains jump at random times and hence we define the system using rates rather than
transition probabilities. This entails that we associate to each x, y ∈ Ω a rate c(x, y) with the
following properties

c(x, y) ≥ 0 & cx :=
∑
z∈Ω

c(x, z) > 0. (11)

These rates can be intuitively understood as the probability that the system in state x
jumps to state y per unit of time. Mathematically, a jump from x to y occurs at times which
are exponentially distributed with parameter c(x, y). One might wonder what would happen if
we were to choose any other distribution with parameter c(x, y) for the jumping time. In that
case the process loses the Markov property. This stems from the memoryless property of the
exponential distribution. Let Tx denote the time at which the state x is left for the first time.
We assume the Markov property and verify that Tx has to be exponentially distributed.

P(Tx > t+ s|Tx > s) = P(Xr = x,∀s ≤ r ≤ t+ s|Xu = x,∀0 ≤ u ≤ s) (12)

= P(Xr = x,∀s ≤ r ≤ t+ s|Xs = x)

= P(Tx > t).

(13)

This is in fact equivalent to

P(Tx > t+ s) = P(Tx > t)P(Tx > s). (14)

A decreasing function ϕ : R+ → [0, 1] has the property that ϕ(t + s) = ϕ(t)ϕ(s) has to be
exponential, given that ϕ is measurable [5]. Hence we can conclude that P(Tx > t) has to be of
the form e−cxt.

2.1.2 Simple symmetric random walk and Brownian motion

In the previous example we discussed Markov chains on a finite state space. Here we look at
a continuous time system which is defined on a countable state space, namely the integers.
We denote the continuous time simple symmetric random walk by {Xt : t ≥ 0}. Suppose the
random walk is at x ∈ Z. It then jumps to another state y ∈ Z exponentially according to the
following rate

c(x, y) = 1(|x− y| = 1). (15)
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One can imagine this process as the position of a particle jumping one unit left or right at
exponentially distributed times. If we assume the system starts of at zero, it turns out that,
by applying the appropriate (i.e. hydrodynamic) scaling, we can obtain the so called Brownian
motion processes. That is, ∀t ≥ 0,

ϵXϵ−2t → Wt as ϵ → 0 (16)

The one dimensional Brownian motion {Wt : t ≥ 0} is a stochastic process taking values in
the real numbers. It is defined by via the following properties,

• Starting from the origin: W0 = 0.

• The increments independent and normally distributed: ∀0 < t1 < t2 < ... < tn,

Wti −Wti−1
(17)

are independent normally distributed with mean zero and variance ti − ti−1.

• Continuity of paths: the map t 7→ W (t) is continuous.

One can extend this definition to a d−dimensional Brownian motion by joining d indepen-
dent, one dimensional, Brownian motions: Wt = (W1(t), ...,Wd(t)). For x ∈ Rd we refer to
the stochastic process W x

t = {x +Wt, t ≥ 0} as the Brownian motion departing form x. The
Markov property follows from the independence of the increments.

2.2 Markov semigroups and generators

2.2.1 Markov semigroups

There is an intimate connection between Markov processes and strongly continuous contrac-
tion semigroups. One can use this connection to describe the macroscopic evolution of scaled
interactive particle systems via (stochastic) partial differential equations. We first define the
notion of a Markov semigroup on a complete, real-valued function space,

Definition 2.3. Let (F, || · ||∞) be a Banach space of real-valued functions. A family {St, t ≥ 0}
of bounded linear operators St : F → F is called a Markov semigroup if for all f ∈ F and
s, t ≥ 0,

(S1) S0f = f

(S2) Semigroup property: St+sf = St(Ssf)

(S3) Strong continuity: limt↓0 ||Stf − f ||∞ = 0

(S4) St1 = 1

(S5) Positivity: if f ≥ 0 then Stf ≥ 0

(S6) Contraction: ||Stf ||∞ ≤ ||f ||∞

10



The strong continuity essentially says that the semigroup acting on a function is right-
continuous at zero with respect to the infinity norm. Combining this with the semigroup
property yields the continuity in t of {Stf, t ≥ 0} for each f . Given a fixed right-continuous
homogeneous Markov process, it turns out that the following family of operators indeed defines
a Markov semigroup.

Definition 2.4. Let X = {Xt, t ≥ 0} be a homogeneous Markov process that is right-continuous.
We define the following family of operators indexed by t ≥ 0 acting on f : Ω → R,

Stf(x) = Ex[f(Xt)]. (18)

Here Ex denotes the expectation with respect to the path space measure of {Xt, t ≥ 0}
conditioned on X0 = x.

As is already suggested by the notation, the operators {St, t ≥ 0} form a Markov semigroup.
Notice that in this definition we are not specific about the domain of the operators. In fact we
will choose the domain, denoted F (Ω), based on structure of the state space Ω. Some common
choices are listed below.

Definition 2.5. Let Ω be the state space of a right-continuous, homogeneous Markov process
X = {Xt, t ≥ 0}. We define the domain F (Ω) of the associated operators {St, t ≥ 0} as follows.

• Ω is a compact metric space: F (Ω) = C(Ω), the continuous functions on Ω

• Ω is a locally compact space: either F (Ω) = C0(Ω) or Cb(Ω), depending on the sit-
uation. Here C0(Ω) are the continuous functions which vanish at infinity and Cb(Ω) the
continuous functions which are bounded.

• Ω is a general measurable space: F (Ω) = B(Ω), the space of bounded measurable
functions.

We take a brief moment to discuss which type of systems correspond with these state spaces.
A typical example for a compact metric space is Ω = ES, where E is a finite set and S is count-
able. S might for example correspond to a grid of particles and E to the spin state of each
particle. This set is compact with respect to the with respect to the product topology and is
metrizable via d(η, ξ) =

∑
n∈N 2

−n1(ηxn ̸= ξ(xn)) with xn is an enumeration of S. For processes
like Brownian motion, with locally compact state space Ω = Rd, we take F (Ω) = C0(Ω). One
can verify that for each choice, F (Ω) is a Banach space equipped with the infinity norm || · ||∞.

Theorem 2.6. The operators {St, t ≥ 0} form a Markov semigroup on (F (Ω, || · ||∞)).

Proof. Linearity of the operators, as well as properties S1, S4, S5 and S6 follow immediately
from the definition of St. Hence we will focus on the semigroup property and the strong con-
tinuity. The latter is in fact rather difficult to prove, therefore we only show pointwise right
continuity here and refer to the book “Functional Analysis” by Yoshida for the extension to
strong continuity.

Semigroup property

We exploit the tower property of conditional expectation as well as the Markov property of
X to derive the following equality,

St+sf(x) = Ex[f(Xt+s)] = Ex[E[f(Xt+s)|Ft]] = Ex[E[f(Xt+s)|Xt]]. (19)
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The homogeneity of X yields

E[f(Xt+s)|Xt] = EXt [f(Xs)] = Ssf(Xt). (20)

Substituting this into the first expression gives that

St+sf(x) = Ex[Ssf(Xt)] = St(Ssf(Xt)). (21)

Strong continuity

We notice that f ∈ F (Ω) is continuous for each possible function space in definition 2.5.
Since X0 = x and X is right-continuous, we have that limt↓0Xt = x. This gives

lim
t↓0

Stf(x) = lim
t↓0

Ex[f(Xt)] = f(x). (22)

Here we first use dominated convergence to bring the limit into the expectation and then
use the continuity of f to obtain f(x). This shows pointwise right-continuity. For the full
argument showing uniform right-continuity we refer to section 1 of chapter IX [18].

Remark 2.7. We remark that the theorem also works the other way around. That is, for a
given a Markov semigroup there is a unique Markov process corresponding with that specific
semigroup. Hence one may show existence of a Markov process by showing the existence of its
semigroup generator. The latter will be introduced in the next subsection. More about this can
be found in theorem 1.5 of the book of Liggett [10]. This semigroup is in turn constructed from
a generator. We treat generators of Markov processes in the next subsection.

2.2.2 Markov generators

In the case where St and L are matrices such that St = exp(tL), it is easy to check that St

indeed satisfies the semigroup property. More over, for f ∈ F (Ω) we have

d

dt
Stf =

d

dt
etLf = LetLf = LStf. (23)

Hence we have that, for each f ∈ F (Ω), the function Stf solves the differential equation{
d
dt
g(t, ω) = Lg(t, ω)

g0(ω) = f(ω).
(24)

This provides us with an intuition for how the semigroup is acting on the on the function f ,
hence we would like to generalize this relation “Stf = exp(tL)” to a more general setting where
the semigroup operator is not necessarily a matrix. That is, we want to generalize the role of
the matrix L, which we call the generator of the Markov process associated to {St, t ≥ 0}. This
is done in the following way.

Definition 2.8. Let {St, t ≥ 0} be a Markov semigroup acting on F (Ω). We define the Markov
generator as the operator L defined by

Lf = lim
t↓0

Stf − f

t
(25)

acting on the domain D(L) := {f ∈ F (Ω) : limt↓0
Stf−f

t
exists}.
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Example 2.9 (Continuous time Markov chain). We calculate the generator for the continuous
time Markov chain introduced in subsection 2.1.1. Let Kt denote the number of jumps made in
the time interval [0, t]. We use the following two facts.

P(Kt > 1) = O(t2) & P(X0 = x,Xt = y|Kt = 1) =
c(x, y)

cx
. (26)

We use the law of total expectation to derive,

Stf(x)− f(x) =
∞∑
k=0

Ex[f(Xt)|Kt = k]P(Kt = k)− f(x) (27)

= Ex[f(Xt)|Kt = 1]P(Kt = 1) + Ex[f(Xt)|Kt = 0]P(Kt = 0)− f(x) +O(t2)

= (1− e−cxt)
∑
y∈Ω

[c(x, y)
cx

f(y)
]
+ ecxtf(x)− f(x) +O(t2)

=
1− e−cxt

cx

[∑
y∈Ω

c(x, y)(f(y)− f(x))
]
+O(t2). (28)

Since limx↓0
1−e−x

x
= 1,

Lf(x) = lim
t↓0

Stf(x)− f(x)

t
=

∑
y∈Ω

c(x, y)(f(y)− f(x)) (29)

Example 2.10 (Brownian motion). We calculate the generator of Brownian motion. We use
the notation introduced in subsection 2.1.2. Let N(0, t) denote a normal random variable. Then

Exf(W
x
t ) = Ef(x+N(0, t)) = f(x) + f ′(x)E(N(0, t)) +

1

2
f ′′(x)E(N(0, t)2) +O(t) (30)

with O(t)/t → 0 as t → 0. As a consequence

Lf(x) = lim
t→0

Exf(W
x
t )− f(x)

t
=

1

2
f ′′(x). (31)

For the d-dimensional Brownian motion this generalizes to

Lf =
1

2
∆f. (32)

So far we have defined a semigroup operators corresponding to Markov processes and we have
defined what their generators are. However, so far we don’t know what generators correspond
to a Markov semigroup. Using an application of the Hille-Yoshida theorem one can show that
the following generators correspond uniquely to a Markov semigroup.

Definition 2.11. Let D(L) ⊂ F (Ω), then the operator L : D(L) → F (Ω) is called a Markov
generator if the following properties hold:

(G1) 1 ∈ D(L) and L1 = 0

(G2) D(L) is dense in F (Ω)

(G3) L is a closed operator, i.e., {(f, Lf) : f ∈ D(L)} is closed

13



(G4) The range of (I − λL) is F (Ω) for all λ ≥ 0

(G5) If f ∈ D(L), λ ≥ 0 and (I − λL)f = g, then

min
x∈Ω

f(x) = min
x∈Ω

g(x) (33)

The following theorem states the connection to differential equations we derived in the case
where the semigroup was the exponential of a matrix. It also provides a way to retrieve the
semigroup from a given generator.

Theorem 2.12. Let {St, t ≥ 0} and (L,D(L)) be a Markov semigroup and a Markov generator.
We have the following two results.

1. For all t ≥ 0,

Lf = lim
t↓0

Stf − f

t
⇐⇒ St = lim

n→∞

(
I − t

n
L
)−n

. (34)

i.e. when L is the generator corresponding to {St, t ≥ 0}, one can retrieve {St, t ≥ 0} via
the formula on the right hand side.

2. Assume L is in correspondence with {St, t ≥ 0}. For f ∈ D(L), we have that Stf ∈ D(L)
and

d

dt
Stf = StLf = LStf. (35)

Moreover, Stf is the unique solution to this equation.

It is not always feasible to characterize the whole domain of the generator explicitly. How-
ever, oftentimes we can also study the generator on a smaller subspace D ⊂ D(L) which we
will call a core. The precise definition is given below.

Definition 2.13. A set D ⊂ D(L) is a core of the generator L if the closure of the restriction
L|D is again the generator L. That is, the graph {(f, Lf) : f ∈ D} is dense in the closed graph
{(f, Lf) : f ∈ L(D)}

Example 2.14. Let K be a finite set. We consider the continuous-time Markov chain on
Ω = KZ. The Generator L is then given by

Lf(x) =
∑
y∈Ω

c(x, y)
(
f(y)− f(x)

)
, (36)

with domain D(L) = {f ∈ B(Ω) : ||Lf ||∞ < ∞}. In this case we could take local functions
as a core D . That is, the functions which only depend on a finite number of coordinates in Z.
It is clear that D ⊂ D(L). Using the Stone-Weierstrass theorem one can show that the local
functions are dense in C(Ω), hence they provide a valid core for L.

The true power of working with a core lies in the fact that convergence of a Markov generator
on a core implies the convergence of the corresponding semigroup and process. This is exactly
the content of the so called Trotter-Kurtz theorem, which is stated below. The proof can be
found in [8].

Theorem 2.15 (Trotter-Kurtz). Let ({Xn
t , t ≥ 0})n∈N, {Xt, t ≥ 0} be Markov processes on a

compact space Ω, with corresponding semigroups ({Sn
t , t ≥ 0})n∈N, {St, t ≥ 0} and generators

(Ln)n∈N, L repsectively. Assume D is a core for L. The following are equivalent,

14



• for all f ∈ D there exists a sequence (fn)n∈N with fn ∈ D(Ln) such that fn → f and
Lnfn → Lf .

• Sn
t f → Stf for every f ∈ F (Ω), uniformly for t ∈ [0, T ].

• if Xn
0 → X0 in distribution, then Xn → X in distribution in the path space.

2.3 Interacting Particle Systems: IRW, SIP & SEP

In the previous subsections we studied several Markov systems on their own. The next step
is to consider systems which are defined as a collection of these Markov processes. Moreover,
we are interested in case where there is an interactive dynamic between these processes, i.e.
the evolution of one of the Markov processes depends on the state of the others. In this sub-
section we outline three interactive particle systems which are closely related to one another.
To visualize these processes one can think of particles with position described by the simple
symmetric random walk. That is, the particles jump left and right on the integer line with
equal probabilities and exponential waiting times with parameter α. The process consisting of
independent random walkers (IRW) without any interaction between them is the first of the
three. The other two processes are known as the symmetric inclusion process (SIP) and the
symmetric exclusion process (SEP) and have an attractive and a repulsive dynamic respectively.
Here, “inclusion” refers to the fact that, in the SIP setting, the particles are inclusive towards
each other in the sense that they prefer to heap together. Similarly,“exclusion” refers to the
fact that the particles prefer to exclude each other from their site.

Consider a particle at an arbitrary position x ∈ Z. In the SIP case, the particle jumps
to a neighboring site y ∈ Z with rate (α + ηy), where ηy denotes the number of particles at
site y. Clearly the probability to jump to neighboring site y increases with the number of
particles at y. Hence we could intuitively understand this process as random walkers which
attract each other. Similarly one could consider the system where the particle at x jumps to
neighboring site y with rate (α−ηy). In this case the rate decreases with the number of particles
at site y. We could interpret this as the particles repelling each other. This gives the other
interactive system, SEP. Notice that for SEP the total number of particles can not rise above α.

We now formalize the processes introduced above on a grid of arbitrary dimension d ∈ N.
To each of the three systems we associate a value of parameter σ. That is, σ = 0, 1,−1 for IRW,
SIP and SEP respectively. Consider the state space Ω = (Zd)N and let α > 0. We associate to
the pair (σ, α) a process η on Ω generated by the generator in definition 2.16.

Definition 2.16. Let D(L) = C0(Ω). We define IRW, SIP and SEP as the process on Ω
generated by L. The Markov generator is L is given by,

Lf(η) =
∑

x,y∈𭟋d

ηx(α + σηy)[f((η)
x,y)− f(η)]. (37)

Here, (η)x,y denotes the the configuration where one particle moved from site x to site y,
i.e. (η)x,y = η + δy − δx.

2.4 Ergodic measures

In chapter 4.3.2 we encounter a system for which the generator does not converge under hy-
drodynamic scaling. Nonetheless, the particles in this system still have limiting distribution,
resulting in a macroscopic field. To recover this limiting distribution, we mainly use two tools,

15



namely the Birkhoff egodic theorem and the Dynkin martingale. We briefly introduce the nec-
essary background here and in the next subsection. The material for this subsection is derived
from [3].

In the upcoming definitions, {Xt, t ≥ 0} is a Markov process defined on the measure space
(Ω,F ). We write {St, t ≥ 0}, L for the associated semigroup, generator and µt for the distri-
bution of Xt at time t ≥ 0.

Definition 2.17. We say that µ := µ0 is invariant with respect to {St, t ≥ 0} if∫
fdµt =

∫
fdµ (38)

for all t ≥ 0 and f ∈ F (Ω). We denote the set of invariant measures by I .

Definition 2.18. Given an invariant measure µ, we call a measurable a set A ∈ F invariant
with respect to {St, t ≥ 0} if for all t ≥ t we have that St1A = 1A almost surely. In the same
fashion, we call a function f ∈ Lp(Ω, µ) invariant if it remains unchanged under the semigroup
operator: ∀t ≥ 0, Stf = f .

Definition 2.19. We say that a probability measure µ ∈ I is ergodic with respect to {St, t ≥ 0}
if for all invariant sets A ∈ F either µ(A) = 0 or µ(A) = 1.

Given these definitions we can state the Birkhoff ergodic theorem. This theorem essentially
says that the time average of a process is equal to the spatial average of the process, provided
that the relevant measures are ergodic.

Theorem 2.20. Let µ ∈ I be ergodic, then, for every f ∈ L1(Ω, µ) we have that

lim
T→∞

1

T

∫ T

0

f(Xt)dt =

∫
fdµ, (39)

where the convergence is µ-a.s.

Proof. The proof can be found in [3].

To characterize the invariant and ergodic measures, we use the following results.

Proposition 2.21. µ ∈ I if and only if for all f ∈ D ,∫
Lfdµ = 0. (40)

Here, D is a core for L.

Proposition 2.22. µ ∈ I is ergodic if and only if for any p ≥ 1, all invariant functions
f ∈ Lp(Ω, µ) are µ-a.s. constant.

2.5 Dynkin martingale

The following theorem and proof are adopted from [17].

Theorem 2.23. Let {Xt, t ≥ 0} be an Ft-adapted Markov process on (Ω,F ,P), generated by
L. For any f ∈ D(L), the process {Mt, t ≥ 0} defined by

Mt := f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds (41)

is a real-valued martingale on (Ω,F ,P) with respect to the filtration {F, t ≥ 0}.
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Proof. The fact that this process is adapted follows from the adaptiveness of {Xt, t ≥ 0}. To
see that Mt is in L1(Ω,F ,P), we use that

E[|Mt|] ≤ 2||f ||∞ + t||Lf ||∞ ≤ ∞. (42)

Now we only have to show the Markov property. Let 0 ≤ s ≤ t, then

E[Mt −Ms|Fs] = E
[
f(Xt)− f(Xs)−

∫ t

0

Lf(Xr)dr|Fs

]
(43)

= E[f(Xt)|Fs]− E[f(Xs)|Fs]−
∫ t−s

0

E[Lf(Xr+s)|Fs]dr,

where the last inequality follows from Fubini. Since {Xt, t ≥ 0} is a Markov process with
respect to the filtration {F, t ≥ 0}, the expectation given on the whole past Fs is equal to the
expectation given Xs, i.e.,

E[Mt −Ms|Fs] = E[f(Xt)|Fs]− E[f(Xs)|Fs]−
∫ t−s

0

E[Lf(Xr+s)|Fs]dr (44)

= St−sf(Xs)− f(Xs)−
∫ t−s

0

SrLf(Xs)dr. (45)

By the Hille-Yoshida theorem, we then that∫ t−s

0

SrLf(Xs)dr =

∫ t−s

0

∂

∂r
Srf(Xs)dr = St−sf(Xs)− f(Xs), (46)

Hence we indeed find that

E[Mt −Ms|Fs] = 0, (47)

therefore {Mt, t ≥ 0} is a martingale with respect to {Ft, t ≥ 0}.

The martingale introduced above is known as the Dynkin martingale. The following theorem
provides an easy way to calculate its quadratic variation.

Theorem 2.24. Suppose that both f, f 2 are in the domain of generator L. Then

Vt = M2
t −

∫ t

0

[L(f 2)(Xs)− 2f(Xs)Lf(Xs)]ds (48)

is a martingale with respect to the filtration {Ft, t ≥ 0}.

Proof. The proof can be found in [15].

Remark 2.25. For a locally square integrable martingale M , the quadratic variation {[M,M ]t, t ≥
0} is given by the unique right-continuous and increasing process starting at zero such that

Vt = M2
t − [M,M ]t (49)

is martingale[9]. Hence the theorem above indeed provides a way to calculate the quadratic
variation of the Dynkin martingale.
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2.6 Duality

In this chapter we state the same notion of duality we introduced in the introduction in a more
formal setting. Throughout this thesis we will use this notion to translate systems with a large
(or infinite) number of particles to a system containing only a few. The material presented here
is adopted from [7].

We begin with the formal definition of duality.

Definition 2.26. Suppose X and Y are Markov processes with state spaces E and F respec-
tively. We write Ex and Ey for the expectations with respect to the path spaces of X and Y
under the condition that the initial conditions of X and Y are given by x ∈ E and y ∈ F . Let
D : E × F → R be a measurable function. Then X and Y are dual with respect to D if and
only if for all x ∈ E, y ∈ F and t > 0

ExD(Xt, y) = EyD(x, Yt). (50)

If X and Y are instances of the same Markov process, we say that they that X is self-dual
with respect to D.

Note that one can write this definition in terms of the semigroup operators of X and Y as
well. We denote these {St, t ≥ 0} and {Ŝt, t ≥ 0} respectively, then we have the alternative
relation

[StD(·, y)](x) = [ŜtD(x, ·)](y). (51)

Remark 2.27. In the remainder of this thesis we will typically use η and ξ to denote the
processes X and Y which exhibit a duality relation.

Remark 2.28. The stochastic duality which we introduced above can, in the majority of cases,
be characterized with so-called generator duality. This entails that the action of the generators
of two processes on the duality function is the same. Throughout this text, we will often prove
generator duality instead of verifying the original definition 2.26. To be precise, we use the
proposition below, which is adopted from [7]. However, it turns out that this proposition is
false and one can find (pathological) examples for which it doesn’t hold. Nonetheless, we still
use the theorem as it is stated here, because in our setting it can be applied and it provides
a powerful tool to show duality. In [1] one can find a complete theorem about the connection
between generator and semigroup duality.

Proposition 2.29. Let X and Y be Markov processes with generators LX and LY . Let D : E×
F → R be continuous. If D(x, ·), ŜtD(x, ·) ∈ D(LY ) for all x ∈ E, t ≥ 0 and D(·, y), StD(·, y) ∈
D(LX) for all y ∈ F, t ≥ 0 and if

[LXD(·, y)](x) = [LYD(x, ·)](y) ∀x ∈ E, y ∈ F, (52)

then X and Y are dual with respect to D.
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3 k-th order hydrodynamic equation

When interacting systems are properly rescaled, one can often obtain a macroscopic profile. In
this chapter we focus on one such scaling, namely the so-called hydrodynamic scaling, which
essential turns a simple symmetric random walk into a Brownian motion. Due to the relation
between Brownian motion and the heat equation, this eventually leads to macroscopic profiles
which evolve according to the heat equation. The theory which we present here is largely based
on chapter XI in [1], a book in progress by Gioia Carinci, Cristian Giardinà and Frank Redig.
However, the book is mainly concerned with first order fields. The major addition to the work
done there is the generalization to k-th order fields. These fields can be used in order to prove
a stronger version of the emergence of local equilibrium on a macroscopic scale.

3.1 Independent random walks

3.1.1 First order field

Before looking a the k-th order field it is insightful to first study the first order field. We
consider a system of continuous-time independent random walkers on Zd which we we denote
η. We write ηx(t) to denote the number of walkers at site x ∈ Zd at time t. Given the necessary
initial conditions, one can scale this system in space and time such that a deterministic, time-
dependent, profile appears. This result is encapsulated in what we call the hydrodynamic
equation. A weaker version, only claiming the first moment to converge, is stated below in
terms of the density field associated to η. Apart from the density field, we also need the
concept of consistent measures.

Definition 3.1. The first order hydrodynamic field χϵ(η, .) associated with η is defined as the
distribution which maps φ ∈ C∞

c (Rd) to the random variable

χϵ(η, φ) = ϵd
∑
x

φ(ϵx)ηx = ϵd
∑
x

φ(ϵx)D(δx; η). (53)

Here, D denotes the duality function

D(η, ξ) =
∏
x

ηx!

(ηx − ξx)!
. (54)

for which a system of independent random walkers is self-dual.

Definition 3.2. Let ρ : Rd → [0,∞) be a bounded smooth function. We say that the family
of probability measures µϵ, ϵ > 0 has expected density consistent with ρ if for all ϵ > 0, and
x ∈ Zd, ∫

ηxdµϵ(η) =

∫
D(x; η)dµϵ(η) = ρ(ϵx). (55)

Theorem 3.3. Let {µϵ, ϵ > 0} denote a family of probability measures on the configuration
space consistent with a smooth and bounded profile ρ0 : Rd → R. Then, for all t > 0, the
expectation of the time evolved first order field converges as∫

χϵ(η(ϵ
−2t), φ)dµϵ(η)

ϵ→0−−→
∫

ρ(t;x)φ(x)dx (56)

ρ(t;x) is the solution of the heat equation in Rd,{
∂ρ
∂t

= 1
2
∆ρ

ρ(0, x) = ρ0(x).
(57)
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Proof. We compute, using the duality and the fact that D(δx, η) = ηx,

∫
ηx(ϵ

−2t)dµϵ =

∫
Eη[ηx(ϵ

−2t)]dµϵ (58)

=

∫
Eη[D(δx, η(ϵ

−2t))]dµϵ

=

∫
EIRW

x [D(δX(ϵ−2t), η)]dµϵ

= ERW
0 [ρ(ϵx+ ϵX(ϵ−2t))]dµϵ.

Here, ERW
x denotes the expectation with respect to the random walk {X(t), t ≥ 0} start-

ing from x at time t = 0. In the last step we used the translation invariance of the random walk.

Define now, for x ∈ Rd, t > 0,

ρ(t, x) := EBM [ρ(W (t) + x)] =

∫
Rd

e−
(x−y)2

2t

(2πt)d/2
ρ(y)dy, (59)

where EBM refers to the expectation with respect to the standard Brownian motion W (t),
then, ρ(t, x) is the solution to the heat equation with initial condition ρ(0, x) = ρ(x).

We have, due to the fact that Brownian motion is the scaling limit of a random walk,

lim
ϵ→0

Eµϵ [χϵ(φ, η(ϵ
−2t))] = lim

ϵ→0
ϵd
∑
x

φ(ϵx)ERW
0 ρ(ϵx+ ϵX(ϵ−2t)) (60)

= lim
ϵ→0

ϵd
∑
x

φ(ϵx)EBM
0 ρ(ϵx+W (t))

= lim
ϵ→0

ϵd
∑
x

φ(ϵx)ρ(t, ϵx) =

∫
φ(x)ρ(t, x)dx (61)

This concludes the proof.

3.1.2 k-th order field

We now generalize what we did above, using a dual system with k particles instead of just one.

Definition 3.4. The k-th order hydrodynamic field χk
ϵ (η, .) associated with η is defined as the

distribution which maps φ ∈ C∞
c (Rkd) to the random variable

χk
ϵ (η, φ) = ϵkd

∑
x1,...,xk

φ(ϵx1, ..., ϵxk)D(δx1 + ...+ δxk
; η). (62)

Here, D denotes the duality function

D(η, ξ) =
∏
x

ηx!

(ηx − ξx)!
. (63)

To simplify notation we write D(δx1+...+δxk
; η) as D(x1, ...xk; η), which is then a symmetric

function of x1, ..., xk.
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Definition 3.5. Let ρ : Rkd → [0,∞) be a bounded smooth function. We say that the family
of probability measures µϵ, ϵ > 0 has expected density consistent with ρ if for all ϵ > 0, and
x = (x1, ..., xk) ∈ Zkd ∫

D(x1, ..., xk; η)dµϵ(η) = ρ(ϵx). (64)

Remark 3.6. For our purposes this notion can be slightly weakened. In fact we could also have
defined consistency as follows,

lim
ϵ→0

∫
χk
ϵ (η, φ)dµϵ =

∫
Rkd

ρ(x1, ..., xk)φ(x1, ..., xk)dx1...dxk. (65)

However, this definition involves a limit which will yield more complicated calculations later
on. Hence, for the sake of clarity and convenience we will stick to definition using equality.

Theorem 3.7 (higher order hydrodynamic equation). Let {µϵ, ϵ > 0} denote a family of
probability measures on the configuration space consistent with a smooth and bounded profile
ρ0 : Rkd → R. Then, for all t > 0, the time evolved k-th order field converges in the L2-sense
as ∫

χk
ϵ (η(ϵ

−2t), φ)dµϵ
ϵ→0−−→

∫
ρ(t;x1, ..., xk)φ(x1, ..., xk)dx1...dxk. (66)

ρ(t;x1, ..., xk) is the solution of the heat equation in Rkd,{
∂ρ
∂t

= 1
2
∆kρ

ρ(0, x) = ρ0(x).
(67)

We go through the proof, which is similar to the proof for the first order field, attempting
to interpret the macroscopic profile as the scaling limit of the duality relation. The solution to
the heat equation is known to be ρ(t, x) = Ex[B(t)], where B(t) is a kd-dimensional Brownian
motion. One could in fact regard this expression for ρ as a duality result with respect to
function D̄ : C∞

b (Rkd)× Rkd → R, (f, x) 7→ f(x),

Eρ0 [D̄(ρ(t, .), x)] = ρ(t, x) = Ex[B(t)] = Ex[D̄(ρ0, B(t))]. (68)

Moreover, we can interpret this relation as the limit of the duality associated with D in
the case where we consider a single dual particle. Indeed, we can regard ρ as being the scaling
limit of η. Then D(η, δx) = ηx gives the evaluation of η at site x, similar to how D̄(ρ, x) gives
the evaluation of ρ in x. Our aim is to retrieve the higher order hydrodynamic equation from
a microscopic duality relation. The precise form of the scaled relation is the following,

Eη(0)[Q(η(t), φ)] = Eφ[Q(η(0), Sk,ϵ
t φ)], (69)

where Q(η, φ) = χk
ϵ (η, φ). Let Sk

t be the Markov semi-group operator associated to k ran-
dom walks in Zd i.e. (Sk

t φ)(x1, .., xk) = EIRW
x1,..,xk

[φ(X1(t), ..., Xk(t))] with X1, ..., Xk independent
random walkers. We define scaling-operator Zk

ϵ and its inverse (Zk
ϵ )

−1 as [Zk
ϵ φ](x1, ..., xk) :=

φ(ϵx1, ..., ϵxk) and [(Zk
ϵ )

−1φ](x1, ..., xk) := φ(x1/ϵ, ..., xk/ϵ) respectively. Sk,ϵ
t can now be con-

structed as Sk,ϵ
t := (Zk

ϵ )
−1Sk

t Z
k
ϵ .
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Eη(0)[Q(η(t), φ)] = ϵkd
∑

x1,...,xk

φ(ϵx1, ..., ϵxk)Eη(0)[D(x1, ..., xk; η(t))] (70)

= ϵkd
∑

x1,...,xk

φ(ϵx1, ..., ϵxk)EIRW
x1,...,xk

[D(X1(t), ..., Xk(t); η(0))]

= ϵkd
∑

x1,...,xk

[Zk
ϵ φ](x1, ..., xk)[S

k
t D(.; η(0))](x1, ..., xk)

= ϵkd
∑

x1,...,xk

[Sk
t Z

k
ϵ φ](x1, ..., xk)D(x1, ..., xk; η(0))

= ϵkd
∑

x1,...,xk

[(Zk
ϵ )

−1Sk
t Z

k
ϵ φ](ϵx1, ..., ϵxk)D(x1, ..., xk; η(0))

= Eφ[Q(η(0), Sk,ϵ
t φ)]

For the second equality we use the duality with respect to D. Next we identify operators
Zk

ϵ and Sk
t and exploit the self-adjointness of the latter. Finally, we perform an extra scaling

using (Zk
ϵ )

−1 to fit the definition of the hydrodynamic field. Notice that the expectation Eφ in
the last line has no purpose other than achieving the typical form of a duality relation.

A quick calculation shows that [Sk,ϵ
t φ](ϵx1, ..., ϵxk) = EIRW

x1,...,xk
[φ(ϵX1, ..., ϵXk)]. Hence, taking

the mean with respect to µϵ and rescaling the time yields:

lim
ϵ↓0

∫
Eφ[Q(η(0), Sk,ϵ

ϵ−2tφ)]dµϵ(η) (71)

= lim
ϵ↓0

ϵkd
∑

x1,...,xk

EIRW
x1,...,xk

[φ(ϵX1(ϵ
−2t), ..., ϵXk(ϵ

−2t))]ρ(ϵx1, ..., ϵxk)

=

∫
EBM

x1,...,xk
[φ(X1(t), ..., Xk(t))]ρ(x1, ..., xk)dx1...dxk

=

∫
[Qk

tφ](x1, ..., xk)ρ(x1, ..., xk)dx1...dxk,

where EBM
x1,...,xk

and Qk
t denote expectation and Markov semi-group associated with kd-

dimensional Brownian motion. On the other hand,∫
Eη[Q(η(ϵ−2t), φ)]dµϵ(η) = Eµϵ [χ

k
ϵ (η(ϵ

−2t), φ)]. (72)

This shows the expectational part of the hydrodynamic equation. In fact one can also
control the variance of the field, which shows that the profile is deterministic [1].

Remark 3.8. Notice that in the construction of (69) we put the semigroup operator on the
test function, only to bring it back to the other leg of the inner product when we have taken
the limit. At first sight this step might seem redundant in the derivation of the hydrodynamic
equation. However, having the semigroup on φ tends to be convenient due to the properties of
test functions. In the next subsection we consider systems with interaction. Again, we will be
able to derive the expectational part of the hydrodynamic equation, assuming the existence of
a coupling. To effectively use the coupling the properties of φ are essential.

3.2 Interacting systems

A similar result can be derived for the symmetric exclusion (SEP) and symmetric inclusion (SIP)
process, provided that one has a suitable coupling between the dual particles and independent
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particles. This entails that, in the scaling limit, the dual particles behave as if they perform
independent random walks. The existence of such a coupling is natural requirement because
the interaction between the particles is local, and most of the time, in the scaling limit, particles
will be at large distances from one another. Moreover, one can find explicit couplings for the
SEP and SIP case are provided in [4] and [13] respectively. The precise definition of a coupling
is given below.

Definition 3.9 (coupling). We say that {(X1(t), ..., Xn(t);Y1(t), ..., Yn(t)) : t ≥ 0} is a suitable
coupling of n particles with n independent particles if

1. {(X1(t), ..., Xn(t)) : t ≥ 0} equals in distribution the n particle process started from
(X1(0), ..., Xn(0)), and {(Y1(t), ..., Yn(t)) : t ≥ 0} equals in distribution n independent particles
starting from (Y1(0), ..., Yn(0)).

2. (ϵX1(ϵ
−2t), ..., ϵXn(ϵ

−2t))− (ϵY1(ϵ
−2t), ..., ϵYn(ϵ

−2t)) → 0 in probability as ϵ → 0.

3. At time t = 0 the coupled particles have the same position: X1(0) = Y1(0), ..., Xk(0) = Yk(0)

4. The convergence in probability occurs uniformly in x1, ..., xk ∈ Zd. That is, for all δ > 0,

sup
x1,...,xk∈Zd

PC
x1,...,xk

[(ϵX1(ϵ
−2t), ..., ϵXn(ϵ

−2t))− (ϵY1(ϵ
−2t), ..., ϵYn(ϵ

−2t)) ≥ δ] → 0, (73)

as ϵ → 0. Here, PC
x1,...,xk

is the coupling path space measure.

Given a coupling, the relation in (69) can be generalized in the following sense. Define

Dσ,α(x1, ..., xk; η) = Dσ,α(x1, ..., xk; η)πσ,α(x1, ..., xk). (74)

The parameter σ determines the precise system. For SIP with parameter α, we have σ = 1.
Similarly we have σ = 0 and σ = −1 for the independent random walkers and SEP(α) respec-
tively. Here, Dσ,α and πσ,α are the self-duality polynomial and the reversible finite measure of
the process associated with σ. We replace D by Dσ,α in the definition of the hydrodynamic
field,

Qσ,α(η, φ) = χk
ϵ (η, φ) = ϵkd

∑
x1,...,xk

φ(ϵx1, ..., ϵxk)Dσ,α(x1, ..., xk; η). (75)

Notice that for σ = 0 we have the same definition as in the independent case. The appear-
ance of Dσ,α should not be a surprise, since self-duality is central in the derivation of the relation
in (69). Apart from self-duality, also the self-adjointness of the semi-group operator plays an
important role. This is exactly the purpose of πσ,α. Indeed, the fact that πσ,α is reversible
immediately implies the required self adjointness in l2((Zd)k). This measure is unique up to a
multiplicative constant, hence we can choose its weight to be one whenever the k dual particles
are located at different sites i.e. πσ,α(x1, ..., xk) = 1 whenever ∀i, j ∈ {1, ..., k}, i ̸= j : xi ̸= xj.
We have [1]

π1,α(x1, ..., xk) =
1

αk

∏
x∈Zd

Γ(α + ξx)

Γ(α)
and π−1,α(x1, ..., xk) =

∏
x∈Zd

(
α

ξx

)
. (76)
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Theorem 3.10. Assume that there exists a suitable coupling of k dual particles with k indepen-
dent particles in the sense of Definition 3.9. Let Qσ,α be as defined above and let φ ∈ C∞

c (Rkd).
Then we have

Eη(0)[Qσ,α(η(t), φ)] = Eφ[Qσ,α(η(0), S
ϵ
tφ)], (77)

where η = {η(t), t ≥ 0} denotes the process describing k labeled particles with positions
X1(t), ..., Xk(t) interacting according to σ. That is η(t) =

∑
i=1 δXi(t). We define St as the

Markov semi-group associated to process η, i.e. (Stφ)(x1, .., xk) = Ex1,..,xk
[φ(X1(t), ..., Xk(t))].

Sϵ
t is given by Sϵ

t := (Zk
ϵ )

−1Sσ,α,k
t Zk

ϵ .

Proof.

Eη(0)[Q(η(t), φ)] = ϵkd
∑

x1,...,xk

φ(ϵx1, ..., ϵxk)Eη(0)[Dσ,α(x1, ..., xk; η(t))]πσ,α(x1, ..., xk) (78)

= ϵkd
∑

x1,...,xk

φ(ϵx1, ..., ϵxk)Eσ,α
x1,...,xk

[Dσ,α(X1(t), ..., Xk(t); η(0))]πσ,α(x1, ..., xk)

= ϵkd
∑

x1,...,xk

[Zk
ϵ φ](x1, ..., xk)[StDσ,α(.; η(0))](x1, ..., xk)πσ,α(x1, ..., xk)

= ϵkd
∑

x1,...,xk

[StZ
k
ϵ φ](x1, ..., xk)Dσ,α(x1, ..., xk; η(0))πσ,α(x1, ..., xk)

= ϵkd
∑

x1,...,xk

[(Zk
ϵ )

−1StZ
k
ϵ φ](ϵx1, ..., ϵxk)Dσ,α(x1, ..., xk; η(0))πσ,α(x1, ..., xk)

= Eφ[Q(η(0), Sϵ
tφ)]

As in the independent case, we use duality for the second equation after which we identify
operators Zk

ϵ and St. Then we use the self-adjointness of the semi-group operator and rescale
via (Zk

ϵ )
−1.

Now that we have generalized (69) we will take the limit ϵ → 0 to recover the hydrodynamic
equation, which also holds for SEP and SIP. Indeed, it is easy to check that [Sϵ

tφ](ϵx1, ..., ϵxk) =
Ex1,...,xk

[φ(ϵX1, ..., ϵXk)]. Taking the mean with respect to µϵ and rescaling the time yields

lim
ϵ↓0

∫
Eφ[Q(η(0),Sk,ϵ

ϵ−2tφ)]dµϵ(η) (79)

= lim
ϵ↓0

ϵkd
∑

x1,...,xk

Ex1,...,xk
[φ(ϵX1(ϵ

−2t), ..., ϵXk(ϵ
−2t))]ρ(ϵx1, ..., ϵxk)

= lim
ϵ↓0

ϵkd
∑

x1,...,xk

EIRW
x1,...,xk

[φ(ϵX1(ϵ
−2t), ..., ϵXk(ϵ

−2t))]ρ(ϵx1, ..., ϵxk) +O(1)

=

∫
EBM

x1,...,xk
[φ(X1(t), ..., Xk(t))]ρ(x1, ..., xk)dx1...dxk

=

∫
[Qk

tφ](x1, ..., xk)ρ(x1, ..., xk)dx1...dxk.

The coupling is used to obtain the second equality, where O(1) indicates a term going to
zero as ϵ goes to zero. This again yields the expectational part of the hydrodynamic equation,

Eµϵ [χ
k
ϵ (η(ϵ

−2t), φ)] =

∫
Eη[Q(η(ϵ−2t), φ)]dµϵ(η) →

∫
φ(x1, ..., xk)ρ(t;x1, ..., xk)dx1...dxk.

(80)
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Now let us take a moment to discuss the use of the coupling in more technical detail. Let
PC
x1,...,xk

, EC
x1,...,xk

be the coupling path space measure and the corresponding expectation. We
use Xσ1,α(t), ..., Xσ1,α

k (t) and XIRW (t), ..., XIRW
k (t) to denote the interacting and independent

particles respectively. For notational convenience we write vσ,α = (ϵXσ,α
1 (ϵ−2t), ..., ϵXσ,α

k (ϵ−2t))
and vIRW = (ϵXIRW

1 (ϵ−2t), ..., ϵXIRW
k (ϵ−2t)). Since φ is a test function, its support is a compact

set K ⊂ Rkd. We will write ϵ−1K to denote the set ϵ−1K := {x ∈ Zkd : ϵx ∈ K}. For each
δ > 0,

ϵkd
∑

x1,...,xk∈ϵ−1K

EC
x1,...,xk

[φ(vσ,α)− φ(vIRW )] ≤ (81)

ϵkd
∑

x1,...,xk∈ϵ−1K

PC
x1,...,xk

(||vσ,α − vIRW ||l2 ≥ δ) · ||φ||∞ + PC
x1,...,xk

(||vσ,α − vIRW ||l2 < δ) · δ||φ′||∞.

Since the coupling is assumed to converge uniformly in x1, ..., xk, we can bound the first
probability by a constant depending on ϵ, which we call Cϵ, which vanishes as ϵ tends to zero.

ϵkd
∑

x1,...,xk∈ϵ−1K

PC
x1,...,xk

(||vσ,α − vIRW ||l2 ≥ δ) · ||φ||∞ ≤ ϵkd
∑

x1,...,xk∈ϵ−1K

Cϵ||φ||∞ (82)

≈ ϵkd
vol(K)

ϵkd
Cϵ||φ||∞ → 0

We use that the number of elements in ϵ−1K is approximately equal to the volume of the
kernel divided by ϵkd. Here, the volume is defined as vol(k) :=

∫
Rkd 1{K}(x)dx. For the second

term we can simply bound PC
x1,...,xk

(||vσ,α − vIRW ||l2 < δ) ≤ 1, which implies also the second
term can be made arbitrarily small through the choice of δ,

ϵkd
∑

x1,...,xk∈ϵ−1K

PC
x1,...,xk

(||vσ,α − vIRW ||l2 < δ) · δ||φ′||∞ ≤ ϵkd
vol(K)

ϵkd
δ||φ′||∞ (83)

3.3 General independent particles

Our next step is to generalize the procedure we applied for independent random walkers. We
assume a general particle system on Zd where the particles don’t have interaction. We will also
assume the existence of a duality relation, where the dual system also lives on Zd. However,
we won’t explicitly assume the state space, only that it is the same for the original process and
the dual. We only require the particles to have a well-defined position on Zd. The state spaces
remain as general as possible. As it turns out, the independence of the particles will allow us to
write the corresponding semigroup operator as a k-fold tensor product of semigroup operators
describing a single particle. Using standard semigroup theory it will be easy to find the PDE
describing the evolution of the initial density profile ρ(0, x).

3.3.1 Notation

Before we state the duality result and the hydrodynamic equation, we introduce the necessary
notation. Let ϵ > 0 denote the scaling parameter. For some well known examples of particle
systems, like the run and tumble systems in the next subsection, it is uncircumventable to scale
the system parameters to obtain a hydrodynamic limit. Hence it is convenient to assume our
system itself to be ϵ-dependent. We write ηϵ for the particle system. That is, for x ∈ Zd, ηϵx(t)
denotes the number of particles on site x at time t ≥ 0. Once again, we aim to keep the state
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space as general as possible. Let (S,A ) be a measurable space, we only assume the state space
to be of the form

Ωϵ = Zkd × Sϵ, (84)

where Sϵ ⊆ S is a set which may depend on ϵ. The measures λϵ have support supp(λϵ) ⊆ Sϵ.
Moreover, we assume there is a measure λ such that

λϵ → λ in total variation as ϵ → 0. (85)

All notation for the dual process will be the same as for the original process, but with the
addition of a hat. Hence we have that η̂ϵx(t) denotes the number of dual particles on site x at
time t ≥ 0. To define the field it is important that the dual state space is the same as the state
space of the original process, Ω̂ϵ = Zkd × Sϵ. The duality function is called Dϵ : Ωϵ × Ωϵ → R.
For completeness we explicitly state the duality relation.

Eηϵ(0)[D
ϵ(η̂ϵ(0), ηϵ(t))] = Êη̂ϵ(0)[D

ϵ(η̂ϵ(t), ηϵ(0))]. (86)

The duality function gives rise to a k-th order density field, which is defined analogously to
definition 3.4,

χk
ϵ (η, φ) = ϵkd

∫
(S)k

∑
x1,...,xk

φ(ϵx1, ..., ϵxk)D
ϵ(δ(x1,s1) + ...+ δ(xk,sk); η)dλ

ϵ(s1)...dλ
ϵ(sk).

We call the associated Markov semigroup operators for systems with k particles Sk,ϵ
t and

Ŝk,ϵ
t for ηϵ and η̂ϵ respectively. That is, for f, g ∈ F (Ωϵ),

[Sk,ϵ
t f ](x1, ..., xk; s1, ..., sk) = Ex1,...,xk;s1,...,sk [f(X1(t), ..., Xk(t);S1(t), ..., Sk(t))] (87)

and
[Ŝk,ϵ

t g](x1, ..., xk; s1, ..., sk) = Êx1,...,xk;s1,...,sk [g(X̂1(t), ..., X̂k(t); Ŝ1(t), ..., Ŝk(t))]. (88)

Here, X1(t), ..., Xk(t) and X̂1(t), ..., X̂k(t) are k instances of particles in the original and the
dual system respectively, which have initial state (x1, s1), ..., (xk, sk) at time zero. For notional

convenience we also introduce S ϵ
t and Ŝ ϵ

t , the scaled versions of Sk,ϵ
t and Ŝk,ϵ

t ,

S k,ϵ
t = (Zk

ϵ )
−1Sk,ϵ

ϵ−2tZ
k
ϵ & Ŝ k,ϵ

t = (Zk
ϵ )

−1Ŝk,ϵ
ϵ−2tZ

k
ϵ . (89)

Due to the scaling, we can not define these scaled operators on F (Ωϵ). Instead we define
them on the functions in F (Ω) with

Ω = Rk,d × S. (90)

We use similar notation for the (scaled) generators as we did for the semigroup operators,

Lk,ϵf = lim
t→0

Sk,ϵ
t f − f

t
& L̂k,ϵf = lim

t→0

Ŝk,ϵ
t f − f

t
(91)

and

L k,ϵ = lim
t→0

S k,ϵ
t f − f

t
& L̂ k,ϵ = lim

t→0

Ŝ k,ϵ
t f − f

t
. (92)

on the functions f ∈ F (Ω) for which the above limits exist.
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We work here under the assumption that the hydrodynamic limit exists for this general
process. We denote the limiting semigroup operator S k

t and the limiting generator L k, i.e.
lim
ϵ→0

L k,ϵ = L k and lim
ϵ→0

S k,ϵ
t = S k

t , where L k generates S k
t . The limits here are in the

following sense. For family of functions {fϵ : fϵ ∈ D(L k,ϵ)}ϵ>0 and f ∈ D(L k) such that
limϵ→0 fϵ = f , we have that L k,ϵfϵ → L kf . In case of the semigroup operator we have for each
g ∈ F (Ω), Ŝk,ϵ

t g → Ŝk
t g. In fact, the Trotter-Kurtz theorem provides the convergence of the

semigroup operators whenever we have convergence of the generators, and the other way around.

A usual (unscaled) adjoint, with respect to the innerproduct on L2(Zkd × (Sϵ)k) or the
innerproduct on L2(Rkd × Sk), is indicated using a ∗. We also need the scaled adjoint of Sk,ϵ

t

and Lk,ϵ, which we will equip with a ⋆.

(S k,ϵ
t )⋆ = (Zk

ϵ )
−1(Sk,ϵ

ϵ−2t)
∗Zϵ & (L k,ϵ)⋆ = (Zk

ϵ )
−1(Lk,ϵ)∗Zϵ (93)

Finally we introduce a notation for a tensor product of operators where each operator is the
identity, except operator number l, which is some operator A:

(A)l = I⊗l−1 ⊗ A⊗ I⊗k−l (94)

3.3.2 Statement

Theorem 3.11. In the setting described above we have

Eηϵ(0)[Q(ηϵ(t), φ)] = Eφ[Q(ηϵ(0), (Zk
ϵ )

−1(Ŝk,ϵ
t )∗Zk

ϵ φ)], (95)

where Q(η, φ) = χk
ϵ (η

ϵ, φ) and φ ∈ C∞
c (Ω). It is understood that the scaling operator Zϵ

only works on the spatial part of φ: Zk
ϵ φ(x, s) = φ(ϵx, s). Moreover, for {µϵ, ϵ > 0} a family of

probability measures consistent with a profile ρ0 ∈ F (Ω),

∫
Q(ηϵ(t), φ)dµϵ(η

ϵ(0))
ϵ→0−−→

∫
Rkd

∫
(S)k

ρ(t, x1, ..., xk, s1, ..., sk)φ(x1, ..., xk, s1, ..., sk)dλ(s)dx.

(96)
ρ(t, x1, ..., xk) is the solution of the following differential equation,∂ρ

∂t
=

k∑
l=1

(L̂ 1)lρ

ρ(0, x) = ρ0(x).

(97)

Proof. The theorem consists of three parts: the macroscopic duality, the hydrodynamic limit
and the characterization in terms of a PDE. These correspond to equations 95, 96 and 158
respectively.

Macroscopic duality

The proof of the first part carries over verbatim from the proof of (69) in the case of
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independent random walkers,

Eηϵ(0)[Q(ηϵ(t), φ)] = ϵkd
∑
x∈Zkd

∫
(Sϵ)k

φ(ϵx, s)Eηϵ(0)[D
ϵ(x, s; ηϵ(t))]dλ(s) (98)

= ϵkd
∑
x∈Zkd

∫
(Sϵ)k

φ(ϵx, s)Êx,s[D
ϵ(X1(t), ..., Xk(t), S1(t), ..., Sk(t); η

ϵ(0))]dλ(s)

= ϵkd
∑
x∈Zkd

∫
(Sϵ)k

[Zk
ϵ φ](x, s)[Ŝ

k,ϵ
t Dϵ(.; ηϵ(0))](x, s)dλ(s)

= ϵkd
∑
x∈Zkd

∫
(Sϵ)k

[(Ŝk,ϵ
t )∗Zk

ϵ φ](x, s)D
ϵ(x, s; ηϵ(0))dλ(s)

= ϵkd
∑
x∈Zkd

∫
(Sϵ)k

[(Zk
ϵ )

−1(Ŝk,ϵ
t )∗Zk

ϵ φ](ϵx)D
ϵ(x, s; η(0))dλ(s)

= Eφ[Q(ηϵ(0), (Zk
ϵ )

−1(Ŝk,ϵ
t )∗Zϵφ)].

For the second equality we use the duality. After that we identify the scaling and semigroup
operator. Next, we interpret the sum over x and integral over (Sϵ)k as an inner product and
put the semigroup operator on the scaled test function.

Hydrodynamic limit

To show the second part, we take the limit of the mean with respect to µϵ.

lim
ϵ↓0

∫
Eφ[Q(ηϵ(0), (Zk

ϵ )
−1(Ŝk,ϵ

ϵ−2t)
∗Zϵφ)]dµϵ(η) (99)

= lim
ϵ↓0

ϵkd
∑
x∈Zkd

∫
(Sϵ)k

[(Ŝ k,ϵ
t )⋆φ](ϵx, s)ρ(0; ϵx, s)dλϵ(s)

= lim
ϵ↓0

ϵkd
∑
x∈Zkd

∫
(S)k

[(Ŝ k
t )

∗φ](ϵx, s)ρ(0; ϵx)dλ(s) + o(1)

=

∫ ∫
(S)k

[(Ŝ k
t )

∗φ](x, s)ρ(0;x, s)dλ(s)dx

=

∫ ∫
(S)k

φ(x, s)[Ŝ k
t ρ(0, ·)](x, s)dλ(s)dλ(s)dx

In second step we use both that (Ŝ k,ϵ
t )⋆ converges to (Ŝ k

t )
∗, which is easily deduced from

the convergence of Ŝ k,ϵ
t , and that λϵ → λ. We make this step rigorous. By the convergence of

λϵ in total variation we can replace dλϵ(s) by dλ(s),

∫
Sk

ϵkd
∑
x∈Zkd

[(Ŝ k,ϵ1
t )∗φ(ϵx, s)ρ(0; ϵx, s)dλϵ(s) = (100)∫

(S)k

∑
x∈Zkd

[(Ŝ k,ϵ1
t )∗φ(ϵx, s)ρ(0; ϵx1, ..., ϵxk)dλ(s)

∣∣∣+O(1).

Due to the Trotter-Kurtz theorem, the convergence L k,ϵ → L k implies that
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||(Ŝ k
t )

∗ρ− (Ŝ k,ϵ
t )⋆ρ||∞ → 0 as ϵ → 0. (101)

and hence

|ϵkd
∑

x1,...,xk

∫
(S)k

[(Ŝ k
t )

∗φ−(Ŝ k,ϵ
t )⋆φ](ϵx1, ..., ϵxk)ρ(0; ϵx1, ..., ϵxk)| (102)

≤ϵkd
∑

x1,...,xk

∫
(S)k

|φ(ϵx1, ..., ϵxk)| · |[(Ŝ k
t )

∗ρ− (Ŝ k,ϵ
t )⋆ρ](0; ϵx1, ..., ϵxk)|dλ(s)

≤ϵkd
∑

x1,...,xk

∫
(S)k

|φ(ϵx1, ..., ϵxk)| · ||(Ŝ k
t )

∗ρ− (Ŝ k,ϵ
t )⋆ρ||∞dλ(s) = O(1)

The limiting PDE

We can now characterize [Ŝ k
t ρ](0;x1, ..., xk) as the solution of ∂ρ

∂t
= L kρ. moreover,

due to the independence we can rewrite this in terms of one-particle generators. The ar-
gument is as follows. It is a well known fact that for measure spaces (Σ1, µ1), ..., (ΣN , µN),
L2(Σ1, ...,ΣN , µ1, ..., µN) = L2(Σ1, µ1) ⊗ ... ⊗ L2(ΣN , µN). Hence in our case L2(Ωk, λk) =
L2(Ω, λ)⊗k. Furthermore, the basis of this tensor space consists of functions of the form
f(x1, ..., xk; s1, ..., sk) = f1(x1, s1)⊗ f2(x2, s2)⊗ ...⊗ fk(xk, sk) = f1(x1, s1)f2(x2, s2)...fk(xk, sk)
with f1, ..., fk basis functions for L2(Ω, λ). We observe that

[Ŝ k
t f1...fk](x1, ..., xk; s1, ..., sk) = Êx1,...,xk

[f1(X̂1(t), Ŝ1(t))...fk(X̂k(t), Ŝk(t))] (103)

= Ex1 [f(X̂1(t), Ŝ1(t))]...Exk
[f(X̂k(t), Ŝk(t))]

= [(Ŝ 1
t )

⊗kf1...fk](x1, ..., xk). (104)

Hence, due to the independence of the particles we can interpret Ŝ k
t as a tensor product

when acting on a basis of L2(Rkd). Since φ is a test function it is in L2(Rkd). This yields

lim
ϵ↓0

∫
Eφ[Q(ηϵ(0),(Zk

ϵ )
−1(Ŝk,ϵ

ϵ−2t)
∗Zϵφ)]dµϵ(η) (105)

=

∫ ∫
(S)k

[(Ŝ k
t )

∗φ](x, s)ρ(0;x, s)dλ(s)dx

=

∫ ∫
(S)k

[(Ŝ 1∗
t )⊗kφ](x, s)ρ(0;x, s)dλ(s)dx

=

∫ ∫
(S)k

φ(x, s)[(Ŝ 1
t )

⊗kρ(0, ·)](x, s)dλ(s)dx.

Now we can use the chain rule to see that

∂

∂t
[(Ŝ 1

t )
⊗kf1...fk] = (

∂

∂t
Ŝ 1

t f1)(Ŝ
1
t f2)...(Ŝ

1
t fk) (106)

+ (Ŝ 1
t f1)(

∂

∂t
Ŝ 1

t f2)...(Ŝ
1
t fk)

+ (Ŝ 1
t f1)(Ŝ

1
t f2)...(

∂

∂t
Ŝ 1

t fk)

=
k∑

l=1

(L 1)l(Ŝ
1
t f1)(Ŝ

1
t f2)...(Ŝ

1
t fk).

This concludes the proof.
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3.3.3 Alternative combinatorial approach

Due to a combinatorial property of the self-duality function associated with the independent
random walkers,

DIRW (η, ξ) =
∏
x

ηx!

(ηx − ξx)!
, (107)

we can construct a similar kind of hydrodynamic limit as we did in the previous subsection.
The property in question is the following.

Lemma 3.12. Suppose that the number of particles, which we call l, in process η is conserved
and finite. We label all these particles using numbers 1, ..., l and for i ∈ {1, ..., l} we denote the
position of particle i at time t as Xi(t). Then

∑
x1,...,xk

φ(x1, ..., xk)D
IRW (x1, ..., xk; η(t)) =

̸=∑
1≤i1,...,ik≤l

φ(Xi1(t), ..., Xik(t)), (108)

where ̸= indicates that ∀m,n ∈ {1, ..., k},m ̸= n : im ̸= in.

Proof. To show this we can use induction.

Notice that for x ∈ Rd and t > 0,

ηx(t) =
∑
1≤i≤l

1{Xi(t) = x}. (109)

The case k = 1 indeed holds,

∑
x

φ(x)DIRW (x, η(t)) =
∑
x

φ(x)ηx(t) (110)

=
∑
x

φ(x)
∑
1≤i≤l

1{Xi(t) = x}

=
∑
1≤i≤l

∑
x

φ(x)1{Xi(t) = x}

=
∑
1≤i≤l

φ(Xi(t)).

We proceed to the induction step. Assume the statement holds for some k, then
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∑
x1,...,xk,xk+1

φ(x1, ..., xk, xk+1)D
IRW (x1, ..., xk, xk+1; η(t)) (111)

=
∑
xk+1

∑
x1,...,xk,xk+1

φ(x1, ..., xk, xk+1)D
IRW (x1, ..., xk; η(t))(ηxk+1

(t)−
k∑

j=1

δ(xk+1, xj))

=
∑
xk+1

̸=∑
1≤i1,...,ik≤l

φ(Xi1(t), ..., Xik(t), xk+1)(ηxk+1
(t)−

k∑
j=1

δ(xk+1, Xij(t)))

=
∑
xk+1

̸=∑
1≤i1,...,ik≤l

φ(Xi1(t), ..., Xik(t), xk+1)
[ ∑
1≤ik+1≤l

1{Xik+1
(t) = xk+1} −

k∑
j=1

δ(xk+1, Xij(t)
]

=

̸=∑
1≤i1,...,ik+1≤l

φ(Xi1(t), ..., Xik+1
(t))

.
Hence we can conclude the statement holds for all k.

Using this fact, it is not difficult to show the following duality result.

Theorem 3.13. Let the notation be as described in the previous subsection. For

Q(η, φ) = ϵkd
∑

x1,...,xk

φ(ϵx1, ..., ϵxk)D
IRW (x1, ..., xk; η), (112)

we have
Eηϵ(0)[Q(ηϵ(t), φ)] = Eφ[Q(ηϵ(0), (Zk

ϵ )
−1(Sk,ϵ

t )Zk
ϵ φ)], (113)

Proof.

Eηϵ(0)[Q(ηϵ(t), φ)] = Eηϵ(0)

[
ϵkd

∑
x1,...,xk

φ(ϵx1, ..., ϵxk)D
IRW (x1, ..., xk; η)

]
(114)

= Eηϵ(0)

[
ϵkd

̸=∑
1≤i1,...,ik+1≤l

φ(ϵXi1(t), ..., ϵXik+1
(t))

]

= ϵkd
̸=∑

1≤i1,...,ik+1≤l

[
(Zk

ϵ )
−1Sk,ϵ

t Zk
ϵ φ

]
(ϵxi1 , ..., ϵxik)

= ϵkd
∑

x1,...,xk

[
(Zk

ϵ )
−1Sk,ϵ

t Zk
ϵ φ

]
(ϵx1, ..., ϵxk)D(x1, ..., xk; η(0))
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4 Run-and-tumble processes

In this chapter we apply the generalized procedure from the previous chapter to so called run-
and-tumble processes. Run-and-tumble particles are particles whose motion is a combination
of a random walk and a directed motion according to an internal state. We illustrate this using
an example.

Imagine a particle moving on the set of integers. That is, it jumps from one site to another
at random times. The particle has two possible internal states. In state one the particle hops
three units to the left and in state two it hops one unit to right. The particle also occasionally
changes its internal state. This occurs again at randomly distributed times. One can visualize
this process space using two copies of the integer line.

II

−1−2−3−4−5−6−7−8 0 1 2 3 4 5 6 7

I

−1−2−3−4−5−6−7−8 0 1 2 3 4 5 6 7

In this instance, the particle starts of at 0 with internal state two, and jumps five times
before switching to state one, where it makes three jumps before switching back two state two.
Due to this representation, the internal states are also commonly referred to as layers. Since
physical particles are often subject to noise from the environment, we also add a random walk
type of motion. This models random jumps due to environmental fluctuations. In this setting
that would entail the particle also hopping symmetrically to the left and to the right. In order
to have the Markov property, all jumping times are assumed to be exponentially distributed.

4.1 Definition

We adopt our terminology and notation from [17]. Let η denote a system of run-and-tumble

particles which live on Zd, d ∈ N. The associated state space is Ω = NZd×S
0 . Here, S ⊂ Nd

0

contains the “velocities” of the particles associated to their internal state (in the introductory
example the set S is {−3, 1}). Every σ ∈ S corresponds to a layer where a particle at x will
jump to x + σ due to its internal state. One could in principle define the particles on any
countable set G instead of Zd. However, we will for the most part focus on scaling limits, hence
Zd is the most natural choice. Unless stated otherwise, S is assumed to be a finite set. We
write ηx,σ(t) for the number of particles at site x, with internal state σ at time t ≥ 0.

The generator of the process is given by L acting on the local functions 1 on Ω,

Lf = λLaf + γLif + κLf (115)

Here λ, γ, κ ∈ R≥0 are constants while La, Li and L are the Markov generators associated
to the three types of state changes the particles can experience.

1In this setting, the local functions are functions depending on a finite number of coordinates in Zd × S.
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La is the active part of the generator. It corresponds to the jumps from initial position
(x, σ) to (x + σ, σ) on the same layer, i.e. the jumps according to the internal state. These
jumps make a particle move in a single direction, which one could interpret it as a “run”. The
generator is defined as

Laf(η) =
∑
x,σ

ηx,σ[f(η − δ(x,σ) + δ(x+σ,σ))− f(η)]. (116)

Li is the internal part of the generator. It provides the change of the internal state. Due to
Li, a particle at (x, σ) may change its internal state from σ to σ′ and ends up at (x, σ′). The
change of internal state can be likened to the particle “tumbling” from one layer to another.

Lif(η) =
∑

x,σ ̸=σ′

ηx,σcx(σ, σ
′)[f(η − δ(x,σ) + δ(x,σ′))− f(η)] (117)

The rates cx(σ, σ
′) determine how often a particle on the σ layer jumps to the σ′ layer. In

the upcoming analysis we will use a duality result. It turns out that the result in question is
only valid for rates which are symmetric, i.e. cx(σ, σ

′) = cx(σ
′, σ). Therefore, symmetry will be

assumed from now on. For generality we allow these rates to be x-dependent. However, this
will significantly complicate the scaling procedure, as we will later discuss in more depth.

L is the random walk part of the generator.

Lf(η) =
∑
x ̸=y,σ

ηx,σc(x, y)[f(η − δ(x,σ) + δ(y,σ))− f(η)] (118)

We have rates c(x, y) to restrict or encourage a jump from site x to site y. Again we have
to assume symmetry in order to have a duality result later on. Furthermore, we require that
supx

∑
y c(x, y) < ∞ and c(x, y) = 0 whenever |x − y| > R for some real number R. Unless

stated otherwise we will assume a d-dimensional simple random walk. More precise, for two
different sites x and y, we assume c(x, y) = (2d)−1 whenever ||x − y|| = 1 and c(x, y) = 0
otherwise.

4.2 Duality

As mentioned before, there is a duality result [17] for the process defined above. We first in-
troduce the dual operator and the duality function.

Let L̂, acting on the local functions on Ω, be the following Markov generator,

L̂f = λL̂af + γLif + κLf. (119)

Here, L̂a denotes generator which sends particles in the opposite direction as La, that is,

L̂af(η) =
∑
x,σ

ηx,σ[f(η − δ(x,σ) + δ(x−σ,σ))− f(η)]. (120)

The duality function will, analogous to the self-duality function for the independent random
walkers, be defined as a product of functions on N× N of the form

d(k, n) :=

{
n!

(n−k)!
for n ≥ k

0 for n < k.
(121)
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More precise, we have D : Ω× Ω → R,

D(ξ, η) =
∏

(x,σ)∈Z×S

d(ξx,σ, ηx,σ), (122)

as a duality function. The following theorem states the duality of L and L̂ with respect to D .
This result, as well as the subsequent lemma are directly adopted from [17].

Theorem 4.1. Let L, L̂ and D be as described above. L and L̂ are dual with respect to D ,
i.e., for η and ξ processes generated by L and L̂ respectively,

[LD(ξ(0), .)](η(t)) = [L̂D(., η(0))](ξ(t)). (123)

Moreover, for the sub-generators we have the following duality results with respect to D ,

1. La is dual to L̂a

2. Li and L are self-dual.

We show the duality results for each part of the generator separately. The proofs are mainly
computational and rely heavily on the identity below.

Lemma 4.2. Let k, l,m, n ∈ N. The following identity holds,

k
d(k − 1,m)d(l + 1, n)

d(k,m)d(l, n)
− n

d(k,m+ 1)d(l, n− 1)

d(k,m)d(l, n)
= l − n, (124)

where d denotes the function defined above in (121).

Proof.

k
d(k − 1,m)d(l + 1, n)

d(k,m)d(l, n)
−n

d(k,m+ 1)d(l, n− 1)

d(k,m)d(l, n)
(125)

=
k m!·n!
(m−k+1)!(n−l−1)!

− n (m+1)!(n−1)!
(m−k+1)!(n−l−1)!

m!·n!
(m−k)!(n−l)!

= (k −m− 1) · n− l

m− k + 1

= l − n

4.2.1 Duality for the active generator

We prove the duality for the active part of the generator first. That is, we show,

[LaD(ξ, ·)](η) = [L̂aD(·, η)](η). (126)

Since La is defined on the local functions, we can restrict ourselves to finite configurations
ξ ∈ Ω. The active part only works on a single layer, hence for each σ ∈ S we show

∑
x

η(x, σ)[D(ξ, η(x,σ),(x+σ,σ))− D(ξ, η)] =
∑
x

ξ(x, σ)[D(ξ(x,σ),(x−σ,σ), η)− D(ξ, η)]. (127)

We consider two cases, namely D(ξ, η) > 0 and D(ξ, η) = 0.
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When D(ξ, η) > 0, we can alternatively show,

∑
x

η(x, σ)
D(ξ, η(x,σ)(x+σ,σ))

D(ξ, η)
− ξ(x+ σ, σ)

D(ξ(x+σ,σ)(x,σ)), η

D(ξ, η)
+ ξ(x+ σ, σ)− η(x, σ) = 0. (128)

Here, we shift the terms in the sum on the right-hand side of (127) by σ. We also divide
by D(ξ, η), which is strictly larger then zero, and bring everything to the left side. It is easy
to see that for all x ∈ Zd we have D(ξ, η(x,σ)(x+σ,σ)) = 0 if and only if D(ξ(x+σ,σ)(x,σ), η) = 0. In
case we indeed have D(ξ, η(y,σ)(y+σ,σ)) = D(ξ(y+σ,σ)(y,σ), η) = 0 for some y ∈ Zd, we can derive
ξ(y, σ) = η(y, σ). Indeed, the assumption D > 0 gives ξ(x, σ) ≤ η(x, σ) for all x ∈ Zd and
σ ∈ S. on the contrary, D(ξ(y+σ,σ)(y,σ), η) = 0 yields ξ(y, σ) + 1 > η(y, σ). Combining these
gives the equality. As a consequence,

η(y, σ)
D(ξ, η(y,σ)(y+σ,σ))

D(ξ, η)
− ξ(y + σ, σ)

D(ξ(y+σ,σ)(y,σ), η)

D(ξ, η)
+ ξ(y + σ, σ)− η(y, σ) (129)

= ξ(y + σ, σ)− ξ(y, σ).

Similarly, it is also true that D(ξ, η(z,σ)(z+σ,σ)) > 0 implies D(ξ(z+σ,σ)(z,σ), η) > 0. For
notational convenience we write

ξ(z, σ) = k, η(z, σ) = m (130)

ξ(z + σ, σ) = l, η(z + σ, σ) = n

Lemma 4.2 gives us a similar equation as in the case where D(ξ, η(z,σ)(z+σ,σ)) = 0,

η(y, σ)
D(ξ, η(y,σ)(y+σ,σ))

D(ξ, η)
−ξ(y + σ, σ)

D(ξ(y+σ,σ)(y,σ), η)

D(ξ, η)
(131)

= m
d(k,m− 1)d(l, n+ 1)

d(k,m)d(l, n)
− l

d(k + 1,m)d(l − 1, n)

d(k,m)d(l, n)

= m− k

= η(z, σ)− ξ(z, σ) (132)

which implies

η(y, σ)
D(ξ, η(y,σ)(y+σ,σ))

D(ξ, η)
−ξ(y + σ, σ)

D(ξ(y+σ,σ)(y,σ), η)

D(ξ, η)
+ ξ(z + σ, σ)− η(z, σ)

= η(z, σ)− ξ(z, σ) + ξ(z + σ, σ)− η(z, σ)

= ξ(z + σ, σ)− ξ(z, σ)

This gives the duality we are after

∑
x

η(x, σ)
D(ξ, η(x,σ)(x+σ,σ))

D(ξ, η)
−ξ(x+ σ, σ)

D(ξ(x+σ,σ)(x,σ), η)

D(ξ, η)
+ ξ(x+ σ, σ)− η(x, σ)

=
∑
x

ξ(x+ σ, σ)− ξ(x, σ)

= 0. (133)
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Notice that for the last equality, we use that ξ is a finite configuration.

Next we look at the case where D(ξ, η) = 0. We show that, regardless of x ∈ Zd, the
following two terms cancel.

η(x, σ)D(ξ, η(x,σ),(x+σ,σ))− ξ(x+ σ, σ)D(ξ(x+σ,σ),(x,σ), η) = 0 (134)

This immediately implies (127). Again, D(ξ, η(x,σ)(x+σ,σ)) = 0 if and only if D(ξ(x+σ,σ)(x,σ), η) =
0. In case both terms are zero the equation trivially holds. Assume that D(ξ(x+σ,σ),(x,σ), η) > 0.
Once more, we use k, l,m, n to facilitate notation,

ξ(x, σ) = k, η(x, σ) = m (135)

ξ(x+ σ, σ) = l, η(x+ σ, σ) = n.

In terms of k, l,m, n, we to show

m · d(k,m− 1)d(l, n+ 1)− l · d(k + 1,m)d(l − 1, n) = 0. (136)

From D(ξ(x+σ,σ),(x,σ), η) > 0 we have ξ(x + σ, σ) − 1 ≤ η(x, σ). Furthermore, we also
have ξ(x + σ, σ) > η(x, σ). Indeed this follows from D(ξ, η) = 0. Combining these two gives
ξ(x+ σ, σ) = η(x+ σ, σ) + 1 or, using the notation introduced above, l = n+ 1. Therefore

m · d(k,m− 1)d(l, n+ 1)− l · d(k + 1,m)d(l − 1, n) (137)

= m · d(k,m− 1)d(l, l)− l · d(K + 1,m)d(l − 1, l − 1)

= m · (m− 1)!

(m− k − 1)!
· l!− l

m!

(m− k − 1)!
· (l − 1)!

= 0.

This concludes the proof of the duality relation between La and L̂a.

4.2.2 Self-duality for the internal generator

For the internal part of the generator there is self-duality, i.e.,

[LiD(ξ, ·)](η) = [LiD(·, η)](ξ) (138)

Our strategy is to show that for all x ∈ Zd and σ, σ′ ∈ S,

ξ(x, σ)cx(σ, σ
′)
[
D(ξ(x,σ),(x,σ

′), η)− D(ξ, η)
]
+ ξ(x, σ′)cx(σ

′, σ)
[
D(ξ(x,σ

′),(x,σ), η)− D(ξ, η)
]
(139)

= η(x, σ)cx(σ, σ
′)
[
D(ξ, η(x,σ),(x,σ

′))− D(ξ, η)
]
+ η(x, σ′)cx(σ

′, σ)
[
D(ξ, η(x,σ

′),(x,σ))− D(ξ, η)
]
.

The cases where either D(ξ, η) = 0, D(ξ(x,σ)(x,σ
′), η) = 0 or D(ξ, η(x,σ)(x,σ

′)) = 0 can be
approached similarly as we did for the active part of the generator. Hence we only show the
case where D(ξ, η) > 0, D(ξ(x,σ)(x,σ

′), η) > 0 and D(ξ, η(x,σ)(x,σ
′)) > 0. Once again we switch to

a more convenient notation:

ξ(x, σ) = k, η(x, σ) = m (140)

ξ(x, σ′) = l, η(x, σ′) = n.
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Due to our symmetry assumption concerning the rates, cx(σ, σ
′) = cx(σ

′, σ), we can rewrite
(139),

k[d(k − 1,m)d(l + 1, n)− d(k,m)d(l, n)] + l[d(k + 1,m)d(l − 1, n)− d(k,m)d(l, n)] (141)

= m[d(k,m− 1)d(l, n+ 1)− d(k,m)d(l, n)] + n[d(k,m+ 1)d(l, n− 1)− d(k,m)d(l, n)]

We divide both sides of the equation by d(k,m)d(l, n). This yields, after reordering the
terms,

k
d(k − 1,m)d(l + 1, n)

d(k,m)d(l, n)
− n

d(k,m+ 1)d(l, n− 1)

d(k,m)d(l, n)
+ n− k (142)

= m
d(k,m− 1)d(l, n+ 1)

d(k,m)d(l, n)
− l

d(k + 1,m)d(l − 1, n)

d(k,m)d(l, n)
+ l −m.

Now we are in a position to use Lemma 4.2. We obtain

k
d(k − 1,m)d(l + 1, n)

d(k,m)d(l, n)
− n

d(k,m+ 1)d(l, n− 1)

d(k,m)d(l, n)
= l − n (143)

and

m
d(k,m− 1)d(l, n+ 1)

d(k,m)d(l, n)
− l

d(k + 1,m)d(l − 1, n)

d(k,m)d(l, n)
= m− k (144)

for the terms on the left and right-hand side respectively. Substitution back in the original
equation yields the required identity.

4.2.3 Self-duality for the random walk generator

Notice that the internal operator is essentially the same as the random walk operator. Both
describe a random walk, the first on the set S and the latter on Zd. Hence the proof for the
self-duality of L is essentially the same as the proof for Li. It again relies heavily on the fact
that the transition rates are symmetric.

4.3 Hydrodynamic Limit

In chapter 3.3 we generalized a procedure to obtain the hydrodynamic limit of a general pro-
cess describing independent particles on a d−dimensional integer grid. In this subsection we
determine the limiting dual generator such that we can directly apply theorem 3.11.

Before we proceed we notice that for generator L̂, as it is defined above, one can not
construct an operator according to the hydrodynamic limit such that one has convergence with
respect to the strong operator topology. This is because the hydrodynamic limit is defined such
that independent random walkers become independent Brownian motions. A simple symmetric
random walker is typically a distance of order

√
t away from its starting point at time t ≥ 0.

Meanwhile, a particle moving according to the active part of the generator moves only in one
direction, which means it will be a distance of order t removed from its starting point. Therefore,
the particle would move towards infinity too fast for a hydrodynamic scaling. We solve this
by scaling the corresponding parameter λ by ϵ. The hydrodynamic scaling also doesn’t work
for the internal part. Indeed, Li describes the jumps between layers, which are not spatially
scaled in any way. Hence the time speedup would make the particles move infinitely fast, which
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again entails that the scaled operator doesn’t converge. We can circumvent this by scaling the
parameter γ by a factor ϵ2. This gives

L̂ = λL̂a + γLi + κL −→ L̂ϵ = ϵλL̂a + ϵ2γLi + κL (145)

To derive the k-th order equation, we switch to the generator and semigroup operator
associated to the dual process with k particles. Taking the rescaling of the parameters into
account, we end up with the following general expression of L̂ k,ϵ,

L̂ k,ϵf = lim
t→0

Ŝ k,ϵ
t f − f

t
= lim

t→0
(Zk

ϵ )
−1 Ŝ

k,ϵ
ϵ−2t − I

t
Zk

ϵ f (146)

= (Zk
ϵ )

−1ϵ−2L̂k,ϵZk
ϵ f

= (Zk
ϵ )

−1(ϵ−1λL̂k
a + γLk

i + ϵ−2κLk)Zk
ϵ f.

4.3.1 Location independent tumble rates

We first examine the scenario where the rates cx in the internal part of the generator are x-
independent, i.e. ∀x, y ∈ Zd and ∀σ, σ′ ∈ S : cx(σ, σ

′) = cy(σ, σ
′) =: c(σ, σ′). The following

proposition states the limiting operator L̂ k.

Proposition 4.3. Let L̂ k,ϵ = ϵ−1λL̂k
a + γLk

i + ϵ−2κLk, with domain {f ∈ L2(Rkd⊗S; dx⊗µ) :

f(., s) ∈ C2(Rkd),∀σ ∈ S}. Then limϵ→0 L̂ k,ϵ exists with respect to the strong operator topology.
Moreover, the limit is given by:

L̂ kf(x, σ) =
κ

2
∆f(x, σ)− λσ · ∇f(x, σ) +

k∑
i=1

∑
σ′∈S

c(σi, σ
′)[f(x, σ − σi(e⃗i)

⊺ + σ′(e⃗i)
⊺)− f(x, σ)],

(147)
where x = (x1, ..., xk) ∈ Rd×k and σ = (σ1, ..., σk) ∈ Sk are matrices. The vector e⃗i ∈ Rk is

zero everywhere except in the i-th entry, where it is one.

Similarly, there is strong convergence for the operator L k,ϵ = ϵ−1λLk
a + γLk

i + ϵ−2κLk and
the limit L k is given by

L kf(x, σ) =
κ

2
∆f(x, σ) + λσ · ∇f(x, σ) +

k∑
i=1

∑
σ′∈S

c(σi, σ
′)[f(x, σ − σ(e⃗i)

⊺ + σ′(e⃗i)
⊺)− f(x, σ)],

(148)

In fact we have that L̂ is the adjoint of L with respect to the inner product on L2(Rkd ⊗
S; dx⊗ µ), with µ the counting measure.

Proof. We first show the convergence of L̂ k,ϵ by considering the active, internal and random
walk part separately.
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The active part gives:

(Zk
ϵ )

−1(ϵ−1L̂k
a)Z

k
ϵ f(x, σ) = ϵ−1L̂k

aZ
k
ϵ f(ϵ

−1x, σ) (149)

=
k∑

i=1

ϵ−1[Zk
ϵ f(ϵ

−1x− σi(e⃗i)
⊺, σ)− Zk

ϵ f(ϵ
−1x, σ)]

=
k∑

i=1

ϵ−1[f(x− ϵσi(e⃗i)
⊺, σ)− f(x, σ)]

= −
k∑

i=1

mati(σi) · ∇f(x, σ) +O(ϵ)

= −σ · ∇f(x, σ) +O(ϵ)

Here we write, for v ∈ Rd, mati(v) to denote the d × k matrix which is empty, except for
the i-th column, which is equal to v.

The random walk part gives:

(Zk
ϵ )

−1(ϵ−2L̂k)Zk
ϵ f(x, σ) (150)

= ϵ−2L̂kZk
ϵ f(ϵ

−1x, σ)

=
k∑

i=1

∑
y∈Rd

ϵ−2c(ϵ−1xi, y)[Z
k
ϵ f(ϵ

−1x−mati(xi) + mati(y), σ)− Zk
ϵ f(ϵ

−1x, σ)]

=
k∑

i=1

d∑
j=1

ϵ−2 1

2d
[f(x− ϵ−1mati(ej), σ)− 2f(x, σ) + f(x + ϵ ·mati(ej), σ)]

=
k∑

i=1

d∑
j=1

∂2f

∂x2
ij

(x, σ) +O(ϵ)

Since we assume the jump rates between the layers to be independent from x, the internal
part is not scaled at all and thus remains the same.

The calculation for L k is analogous, the only difference is the minus sign in front of the
active part. This is due to the fact that L̂a sends particles in the opposite direction as La and
can easily be verified.

Next we argue that L̂ k is the adjoint of L k. Let us first state the relevant inner product,

⟨f, g⟩L2(Rkd⊗S) =
∑
σ∈S

∫
f(x, σ)g(x, σ)dx. (151)

The active part in L̂ k, −λσ · ∇ , is essentially a sum of differential operators in the directions
given by σ. Since differential operators are known to be anti-symmetric as operators on L2(Rkd),

we can conclude that the active part in L̂ k is indeed adjoint to the active part in L k, since
they only differ by a minus sign. Now we consider the random walk part. It is well known that
the Laplacian is self-adjoint on L2(Rkd), which immediately provides the self-adjointness of the
random walk part. The internal part,

∑k
i=1

∑
σ′∈S c(σi, σ

′)(f(x, σ − σ(e⃗i)
⊺ + σ′(e⃗i)

⊺)− f(x, σ),
is self-adjoint as well, but only under the assumption the symmetry assumption for the rates,
i.e. ∀σ, σ′ ∈ S,∀x, y ∈ Rkd : cx(σ, σ

′) = cy(σ, σ
′). This is what we will show next. Due to the

assumption that the hopping rates between the layers are x-independent, the internal part is
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an operator acting purely on L2(S, µ), therefore we only have to check its self-adjointess with
respect to the counting measure. It is straightforward to verify that for g, f ∈ L2(S, µ),∑

σ∈S

g(σ)Kf(σ) =
∑
σ∈S

K∗g(σ)f(σ), (152)

where

Kf(σ) =
∑
σ′∈S

c(σ, σ′)(f(x, σ − σ(e⃗i)
⊺ + σ′(e⃗i)

⊺)− f(x, σ)) (153)

and

K∗g(σ) =
∑
σ′∈S

c(σ, σ′)g(x, σ − σ(e⃗i)
⊺ + σ′(e⃗i)

⊺)− c(σ′, σ)g(x, σ). (154)

The symmetry of the rates immediately yields self-adjointness of the internal part.

Theorem 4.4. Let ρ0 ∈ C0

(
(R× S)k

)
be such that ∀σ ∈ S, ρ0(·, σ) is twice differentiable and

let {µϵ} a family of probability measures consistent with ρ0. For η ∈ Ω and φ a test function
we define

Q(η, φ) = ϵkd
∑

σ1,...,σk∈S

∑
x1,...,xk∈Zd

φ(ϵx1, ..., ϵxk)D(x1, ..., xk, σ1, .., σk; η). (155)

We have that

Eη(0)[Q(η(t), ϕ)] = Eφ[Q(η(0), (Zk
ϵ )

−1(Ŝk
t ))

∗Zk
ϵ )] (156)

Where Ŝk is defined as in 88. Moreover,

∫
Q(η, φ)dµϵ →

∑
σ1,...,σk∈S

∫
...

∫
φ(x1, ..., xk)ρ(t;x1, ..., xk, σ1, ..., σk)dx1...dxk. (157)

as ϵ → 0. Here ρ(t;x1, ..., xk, σ1, ..., σk) is the solution to

∂ρ
∂t

= κ
2
∆f(x, σ)− λσ · ∇f(x, σ) +

k∑
i=1

∑
σ′∈S

c(σi, σ
′)[f(x, σ − σi(e⃗i)

⊺ + σ′(e⃗i)
⊺)− f(x, σ)]

ρ(0;x1, ..., xk, σ1, ..., σk) = ρ0(x1, ..., xk, σ1, ..., σk).

(158)

Proof. This is a direct consequence of theorem 3.11. Notice that, in fact, we did too much work

in the proof of proposition 4.3. We could have calculated just L̂ 1,ϵ since L̂ k =
k∑

l=1

(L̂ 1)l.

4.3.2 Location dependent tumble rates

In this subsection we consider what happens if the tumble rates cx are x-dependent. For
mathematical convenience, we explore this scenario in the context of a system with two one
dimensional layers, i.e. d = 1 and S = {σ(1), σ(2)} where σ(1), σ(2) ∈ Z. It turns out that in

this case we don’t have convergence of the generator L̂ k,ϵ in the sense of the strong operator
topology. Indeed, the internal part of the generator does not converge,
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(Zk
ϵ )

−1(Lk
a)Z

k
ϵ f(x, σ) = Lk

aZ
k
ϵ f(ϵ

−1x, σ) (159)

=
k∑

i=1

∑
σ′∈S

cϵ−1x[Z
k
ϵ f(ϵ

−1x, σ − σ(e⃗i)
⊺ + σ′(e⃗i)

⊺)− Zk
ϵ f(ϵ

−1x, σ)]

=
k∑

i=1

∑
σ′∈S

cϵ−1x[f(x, σ − σ(e⃗i)
⊺ + σ′(e⃗i)

⊺)− f(x, σ)].

Indeed, the rates cϵ−1x don’t converge as ϵ → ∞. However, when we assume the tumble
rates to be sampled from bounded i.i.d. random variables (see definition 4.5), the dual process

itself still converges in distribution to a process with the a generator L̂ k,ϵ of the same form as
for the location independent rates. The only difference being that the internal state changes
with the location-average rate. That is,

L̂ kf(x, σ) =
κ

2
∆f(x, σ)− λσ · ∇f(x, σ) +

k∑
i=1

∑
σ′∈S

< cx > [f(x, σ− σi(e⃗i)
⊺ + σ′(e⃗i)

⊺)− f(x, σ)],

(160)
where,

< cx >= lim
N→∞

N∑
x=−N

cx
2N + 1

. (161)

This can intuitively be understood through the fact that cϵ−1xi
changes increasingly fast as

ϵ → ∞, and hence “sees” the tumble rate at an increasing amount of locations. This eventually
leads to the average appearing in the generator of the limiting process. We call this phenomenon
homogenization.

Definition 4.5. The numbers {cx, x ∈ Z} are sampled from the family of independent iden-
tically distributed random variables {Cx, x ∈ Z} with joint distribution µ. We assume the
marginals are bounded distributions: ∃B > 0 such that ∀x ∈ Z,

µ{Cx < |B|} = 1. (162)

First, we consider the case where there is only drift and no diffusion, i.e. λ ̸= 0 and κ = 0.
We treat this case separately to gain an intuition for how the homogenization appears. The
next step is then to generalize to the case where κ+ γ > 0. Here there is either diffusion, drift
or both. Finally we also briefly discuss what happens in the case that both the diffusion and
the drift are zero. It turns out that in this case the Markov property of the system is lost upon
scaling. The reason is that the homogenization fails due to the fact that the particle only sees
a single tumble rate.

Case 1: λ ̸= 0, κ = 0

The argument presented here assumes the tumble rates to only take two values, a and b,
with probabilities pa and pb respectively. One could generalize the method to tumble rates with
a distribution as in definition 4.5, however, we opt to not do this since this argument is meant
as a prelude for the case where there is also diffusion. There we will use the Birkhoff ergodic
theorem to obtain the homogenization for more general µ.
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Since we don’t have interactions in our model we can simply examine the behaviour of
a single particle and then, later on, generalize to the k-particle case. Consider the process
{(Xϵ

t , σ
ϵ
t)}t≥0 on ϵZ× {σ(1), σ(2)} given by the generator

Lϵf(x, σ) = ϵ−1
[
f(x+ ϵσ, σ)− f(x, σ)

]
+ cϵ−1·x[f(x,Θσ)− f(x, σ)]. (163)

Here, flip operator Θ : S → S is an operator which maps each element of S to the other
element, i.e. σ(1) → σ(2) and σ(2) → σ(1). We show that in the limit ϵ → 0 the process converges
in distribution to {(Xt, σt)}t≥0 generated by

Lf(x, σ) = σ
df

dx
(x, σ)+ < cϵ−1·x > [f(x,Θσ)− f(x, σ)]. (164)

First we prove that Xt = X0+
∫ t

0
σsds, i.e. Xt moves with velocity σt. This can be obtained

by considering the Dynkin martingale associated to g(x, σ) = x and the process {(Xϵ
t , σ

ϵ
t)}t≥0,

M g
t = Xϵ

t −Xϵ
0 −

∫ t

0

[Lϵg](Xϵ
s, σ

ϵ
s)ds. (165)

A quick calculation shows that

[Lϵg](x, σ) = σ & [Lϵg2](x, σ) = 2xσ + ϵσ2. (166)

Hence,

M g
t = Xϵ

t −Xϵ
0 −

∫ t

0

σϵ
sds (167)

with quadratic variation

[M g
t ,M

g
t ] =

∫ t

0

[Lϵg2](Xϵ
s, σ

ϵ
s)− 2g(Xϵ

s, σ
ϵ
s)[L

ϵg](Xϵ
s, σ

ϵ
s)ds =

∫ t

0

ϵ(σϵ
s)

2ds ≤ ϵmax(σ(1), σ(2))t.

(168)
Taking the limit ϵ → 0, we find that

mg
t = Xt −X0 −

∫ t

0

σsds (169)

is a martingale with quadratic variation zero. Clearly, the paths of {Xϵ
t , t ≥ 0} become

continuous as we take the limit ϵ → 0. This implies that mg
t is a continuous martingale. Since

it has quadratic variation equal to zero it must be constant. Moreover, since mg
0 = 0, it must

be zero for all t ≥ 0. We then have,

Xt = X0 +

∫ t

0

σsds. (170)

The next step is to show that σt is an autonomous Markov process. To this end we calculate
the distribution of the time T between two jumps of σt, occurring on t0 and t1 > t0. It will turn
out that this time is exponentially distributed with parameter < cx > and hence independent of
the spatial process {Xt, t ≥ 0}. By what we have shown above, Xt moves at constant velocity
σt. Hence we can equivalently calculate the distribution of the distance covered by Xt between
the jumps instead of the elapsed time T . Let N denote the number steps Xt takes before σt

changes state. Without loss of generality we assume that Xϵ
t0
= 0. We have
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Pϵ(N ≥ k) =
k−1∏
x=0

ϵ−1

cσ·x + ϵ−1
. (171)

Here Pϵ denotes the probability measure associated to the process (Xϵ
t , σ

ϵ
t)t≥0. Equation

171 stems from the fact that the particle jumps with rate ϵ−1 in the direction of σ and with
rate cσ·x it changes internal state. Recall that in a Markov chain the probability of a transition
from state A to state B is given by the the rate between A and B divided by the sum of all
rates. Due to the Markov property we can simply multiply the probability that the particle
jumps in the direction of σ at each of the k jumps. Since Xϵ

t makes jumps of size ϵσ, with σ
the constant value of σϵ

t for t ∈ (t0, t1), we find that the distance covered by Xϵ
t is given by

D = N · ϵσ. We obtain the following distribution for D.

Pn(D ≥ d) = P
(
N ≥ d

ϵ · σ

)
=

d
ϵσ

−1∏
x=0

ϵ−1

cσ·x + ϵ−1
(172)

We can derive that the variance of this expression, with respect to µ, vanishes as ϵ → 0. To
this end, we take the expectation with respect to µ, which we denote Eµ, and we write pa and
pb for the probabilities associated with a and b respectively.

Eµ[Pϵ(D ≥ d)] =

d
ϵσ

−1∏
x=0

Eµ

[ 1

ϵ · cσ·x + 1

]
=

[
pa

1

ϵ · a+ 1
+ pb

1

ϵ · b+ 1

] d
ϵσ

−1 ϵ→0−−→ e−(paa+pbb)
d
σ (173)

In the last step we use the squeeze theorem and the fact that limn→∞(1− y
n
)n = e−y. That

is, for a ≤ b,

lim
ϵ→0

[
pa

1

ϵ · a+ 1
+pb

1

ϵ · b+ 1

]ϵ−1

= lim
n→∞

[
pa

n

a+ n
+pb

n

b+ n

]n
= lim

n→∞

[
1− paa

a+ n
− pbb

b+ n

]n
(174)

and

[
1− paa+ pbb

a+ n

]n
≤

[
1−

paa+ pbb
a+n
b+n

a+ n

]n

=

[
1− paa

a+ n
− pbb

b+ n

]n

=

[
1−

paa
b+n
a+n

+ pbb

b+ n

]n

≤
[
1− paa+ pbb

b+ n

]n
. (175)

We can interchanges the roles of a and b to show the same in the case that b < a. Next we
calculate the second moment of Pϵ(D ≥ d),

Eµ[Pϵ(D ≥ d)2] = (176)
d
ϵσ

−1∏
x=0

Eµ

[ 1

(ϵ · cσ·x + 1)2

]
=

[
pa

1

(ϵ · a+ 1)2
+ pb

1

(ϵ · b+ 1)2

] d
ϵσ

−1 ϵ→0−−→ e−2(paa+pbb)
d
σ .

The convergence follows from
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lim
ϵ→0

[
pa

1

(ϵ · a+ 1)2
+ pb

1

(ϵ · b+ 1)2

]ϵ−1

= lim
n→∞

[
pa

n2

a2 + 2an+ n2
+ pb

n2

b2 + 2bn+ n2

]n
(177)

= lim
n→∞

[
1− pa

a2 + 2an

a2 + 2an+ n2
− pb

b2 + 2bn

b2 + 2bn+ n2

]n
= lim

n→∞

[
1− pa

n−1a2 + 2a

n−1a2 + 2a+ n
− pb

n−1b2 + 2b

n−1b2 + 2b+ n

]n
= e−2(paa+pbb).

For the last equality one can again use the squeeze theorem in the same way as we used it
for the expectation. Since the second moment has the same limit as the expectation squared,
we have shown that the variance indeed becomes zero. We conclude that

Pϵ(D ≥ d) → e−(paa+pbb)
d
σ (178)

in the L2-sense as ϵ → 0. Now we can directly calculate the distribution of the hopping
times of σt,

P(T ≥ t) = lim
ϵ→0

Pϵ(D ≥ σt) = e−t(pa·a+pb·b) = e−t(<cx>). (179)

Case 2: κ+ λ > 0

Before we state and prove the homogenization for systems with drift and diffusion, we prove
a useful lemma which is essentially an application of the Birkoff ergodic theorem. It say that
we can treat the integral overtime-average of the tumble rates visited by a fast jumping particle
as the space-average < cx > of the tumble rates.

Lemma 4.6. Let µ and {cx, x ∈ Z} be as in definition 4.5. Let σ ∈ S. Consider the Markov
process {Xt, t ≥ 0} on the state space ω = Z. The process is generated by

Lf(x) =
[
f(x+ ϵ)− 2f(x) + f(x− ϵ)

]
+
[
f(x+ ϵσ)− f(x)

]
(180)

acting on the core of local functions on Ωϵ. Then

1

T

∫ T

0

cXsds →< cx > as T → ∞. (181)

Proof. We consider the so-called environment process {c(t), t ≥ 0}. Let c := {cx, x ∈ Z} denote
the sequence of tumble rates, then c(t) = τXt , where τa shift sequences over a ∈ Z. That is
(τac)x = cx+a. One could interpret this process as follows. Instead of following the walker, we
now observe the tumble rates as seen from the point of view of the walker. The environment
process is generated by

L f(c) = [f(τ1c)− 2f(c) + f(τ−1c)] + [f(τϵσc)− f(c)]. (182)

We show that the probability measure µ, is invariant and ergodic. These two properties
are required for the Birkhoff ergodic theorem which we will apply in the end to translate the
temporal averaging to spatial averaging.

To prove the invariance we compute

44



∫
Lf(c)dµ(c) =

∫
[(f(τ1c)− 2f(c) + f(τ−1c)) + (f(τϵσc)− f(c))]dµ = 0 (183)

Here we use that µ is translation invariant, which is a consequence of the assumption that
the tumble rates are i.i.d. To prove the ergodicity, we show that every function f which is
invariant with respect to L , i.e. L f = 0 is constant. This yields then the ergodicity. Let f
be invariant, then we have

0 =

∫
f(c)(−L f(c))dµ(c) (184)

=

∫
[f(c)− f(τ1c)]dµ+

∫
[f(c)− f(τ−1c)]dµ+

∫
[f(c)− f(τϵσc)]dµ(c)

=
1

2

∫
[2f(c)− 2f(τ1c)]dµ− 1

2

∫
[f 2(c)− f 2(τ1c)]dµ

+
1

2

∫
[2f(c)− 2f(τ−1c)]dµ− 1

2

∫
[f 2(c)− f 2(τ−1c)]dµ

+
1

2

∫
[2f(c)− 2f(τσc)]dµ− 1

2

∫
[f 2(c)− f 2(τσc)]dµ

=
1

2

∫
[f(c)− f(τ1c)]

2dµ+
1

2

∫
[f(c)− f(τ−1c)]

2dµ+
1

2

∫
[f(c)− f(τϵσc)]

2dµ(c)

Here we again used the translation invariance of µ. From the expression above we see im-
mediately that f is indeed µ-a.s. constant.

We can now use the Birkhoff ergodic theorem, which yields the following. For all f : Ω → R
which are µ integrable, we have, almost surely,

1

T

∫ T

0

f(c(s))ds →
∫

f(c)dµ(c) (185)

In particular, when we choose f(c) = c0 we find the almost sure convergence

1

T

∫ T

0

c(s)0 =
1

T

∫ T

0

cXsds →
∫

c0dµ(c) =< cx > (186)

For the last step we the law of large numbers.

Theorem 4.7. Let µ and {cx, x ∈ Z} be as in definition 4.5. Consider the family of Markov
processes {(Xϵ

t , σ
ϵ
t), t ≥ 0}ϵ>0 on the state spaces Ωϵ = ϵZ × S. For each ϵ > 0 the process is

generated by the corresponding generator,

Lϵf(x, σ) =ϵ−2
[
f(x+ ϵ, σ)− 2f(x, σ) + f(x− ϵ, σ)

]
(187)

+ϵ−1
[
f(x+ ϵσ, σ)− f(x, σ)

]
+ cϵ−1·x[f(x,Θσ)− f(x, σ)]

acting on the core of local functions on Ωϵ. Then these processes converge in distribution to
the process {(Xt,Ωt), t ≥ 0} on state space R× S, generated by

Lf(x, σ) =
∂2

∂x2
f(x, σ) +

∂

∂x
f(x, σ)+ < cx > [f(x,Θσ)− f(x, σ)]. (188)
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Proof. Like in the case where λ ̸= 0, κ = 0, we show that the internal state {σϵ
t , t ≥ 0} becomes

an autonomous Markov process as ϵ → 0 which switches between σ(1) and σ(2) with rate < cx >.
Then,using the Dynkin martingale, it is straightforward to show that {(Xϵ

t , σ
ϵ
t), t ≥ 0} converges

to {(Xt, σt), t ≥ 0}. To find the limiting distribution of {σϵ
t , t ≥ 0} we consider the Markov

processes {(X̄ϵ
t ,W

ϵ
t ), t ≥ 0}ϵ>0 on ϵZ× R with generators

L ϵf(x,w) =ϵ−2
[
f(x+ ϵ, w + wϵ−1x)− 2f(x,w) + f(x− ϵ, w + wϵ−1x)

]
(189)

+ϵ−1
[
f(x+ ϵσ, w + wϵ−1x)− f(x,w)

]
,

acting on the core of local functions on ϵZ× R. Here σ ∈ S is fixed and wx is given by

wx := log
( ϵ−1 + 2ϵ−2

cx + ϵ−1 + 2ϵ−2

)
. (190)

We assume the initial value of W ϵ
t to be zero, W0 = 0. Notice that {X̄ϵ

t , t ≥ 0} has exactly
the same distribution as {Xϵ

t , t ≥ 0} between two jumps of {σϵ
t , t ≥ 0}, provided that σϵ

t = σ
during the time in between the jumps. The process {W ϵ

t , t ≥ 0} tracks the probability that the
particle does not change internal state provided it takes the path described by X̄t up to time
t. More precise, for each t > 0,

eWt =
∏
x∈Vt

ϵ−1 + 2ϵ−2

cϵ−1·x + ϵ−1 + 2ϵ−2
. (191)

Here Vt := {Xϵ
s, s ≤ t} denotes the sites visited by X̄t. Indeed, at the point in time where

the particle jumps, exp(Wt) is multiplied by the probability that this jump occurs before the
internal state flip. We are interested in the limiting distribution of τ ϵ := inf{t ≥ 0 : σϵ

t ̸= σϵ
0},

the time when the internal state flips. The distribution of τ ϵ can be written as

Pϵ(τ ϵ > t) =

∫
Pϵ(τ ϵ > t|{Xϵ

s, s ≤ t} = πt)dPϵ({Xϵ
s, s ≤ t} = πt) (192)

=

∫
eνtdPϵ({Xϵ

s, s ≤ t} = πt).

Here, νt is the value of W ϵ
t corresponding to the fixed instance πt of {Xϵ

s, s ≤ t}. We
argue that the process {W ϵ

t , t ≥ 0} converges in distribution to a constant process {Wt = − <
cx > t, t ≥ 0}, which then immediately yields that the internal state flips are exponentially
distributed with parameter < cx >. To this end we calculate the Dynkin martingale associated
to ϕ(x,w) = w,

M ϵ
t = W ϵ

t −
∫ t

0

L ϵϕ(X̄ϵ
s,W

ϵ
s )ds. (193)

A quick calculation shows that,

L ϵϕ(x,w) = (2ϵ−2 + ϵ−1)wϵ−1x (194)

and

L ϵϕ2(x,w) = (2ϵ−2 + ϵ−1)(2wwϵ−1x + w2
ϵ−1x). (195)

Hence we can explicitly write the Dynkin martingale and its quadratic variation as
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M ϵ
t = W ϵ

t −
∫ t

0

(2ϵ−2 + ϵ−1)wϵ−1Xϵ
s
ds (196)

and

[M ϵ
t ,M

ϵ
t ] =

∫ t

0

[
L ϵϕ2(X̄ϵ

s,W
ϵ
s )− 2ϕ(X̄ϵ

s,W
ϵ
s )L

ϵϕ(X̄ϵ
s,W

ϵ
s )
]
ds (197)

=

∫ t

0

(2ϵ−2 − ϵ−1)w2
ϵ−2X̄ϵ

s
ds.

We observe that the quadratic variance vanishes as ϵ → 0,

(2ϵ−2 − ϵ−1)w2
ϵ−1X̄ϵ

s
= (2ϵ−2 − ϵ−1)log2

( ϵ−1 + 2ϵ−2

cX̄ϵ
s
+ ϵ−1 + 2ϵ−2

)
→ 0 as ϵ → 0. (198)

Notice that one needs the boundedness of the tumble rates to calculate the limit. The fact
the quadratic variance vanishes shows that the limiting martingal becomes constant. Moreover,
since M ϵ

0 = 0 for all ϵ, we can say that it vanishes. This gives

W ϵ
t =

∫ t

0

(2ϵ−2 + ϵ−1)log
( ϵ−1 + 2ϵ−2

cX̄ϵ
s
+ ϵ−1 + 2ϵ−2

)
ds+ o(ϵ) (199)

= −
∫ t

0

cϵ−1X̄ϵ
s
ds+ o(ϵ)

= − t

ϵ2t

∫ ϵ−2t

0

cϵ−1X̄ϵ
ϵ2r
dr + o(ϵ)

∼ − t

ϵ2t

∫ ϵ−2t

0

cX̄1
r
dr + o(ϵ) → −t < cx > as ϵ → 0.

For the last step we use lemma 4.6.

Case 3: λ = 0, κ = 0

The case where λ = 0, κ = 0 is a rather strange one, as there are no particles actually
moving. In fact, the lack of movement makes that each particle only encounters the tumble
rate at its own location, making homogenization inapplicable. It turns out that in the end we
don’t have a macroscopic profile which moves according to a PDE, but rater a profile evolving
as a mixture of PDEs.

Before we calculate the field, we introduce a useful trick which allows us to homogenize
while dealing with sums over Z. This is done in proposition 4.8 We also need the powers of the
internal part of the generator, which is in fact the only relevant part. These are calculated in
proposition 4.9.

Proposition 4.8. Let ϕ : R → R be a test function, and let c : Z → R be bounded such that
< cx > exists. Then ∑

x∈Z

ϵ · cxϕ(ϵx) =
∑
x∈Z

ϵ· < cx > ϕ(x) (200)
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Proof.∣∣∣∑
x∈Z

ϵ · cxϕ(ϵx)−
∑

y:|x−y|≤(ϵN)−1

ϵ
cy

2(ϵN)−1 + 1
ϕ(ϵx)

∣∣∣ (201)

=
∣∣∣∑
x∈Z

ϵ · cxϕ(ϵx)−
∑

y:|x−y|≤(ϵN)−1

ϵ
cy

2(ϵN)−1 + 1
ϕ(ϵx)

∣∣∣
=

∣∣∣∑
x∈Z

ϵ · cx
(
ϕ(ϵx)−

∑
y:|x−y|≤(ϵN)−1

ϕ(ϵx)

2(ϵN)−1 + 1

)∣∣∣
=

∣∣∣∑
x∈Z

ϵ · cx
∑

y:|x−y|≤(ϵN)−1

ϕ(ϵx)− ϕ(ϵy)

2(ϵN)−1 + 1

∣∣∣
≤

∑
x∈Z

ϵ · cx
∑

y:|x−y|≤(ϵN)−1

|ϕ(ϵx)− ϕ(ϵy)|
2(ϵN)−1 + 1

≤
∑
x∈Z

ϵ · cx
∑

y:|x−y|≤(ϵN)−1

N−1 |max(ϕ′(ϵx), ϕ′(ϵy))|
2(ϵN)−1 + 1

= N−1
∑
x∈Z

ϵ · cx|max(ϕ′(ϵx), ϕ′(ϵy))| → 0 as N → ∞

Proposition 4.9. Let L : F (Ω) → F (Ω) be the following operator.

Lf = cϵ−1x[f(x,Θσ)− f(x, σ)]. (202)

Then, for all n ∈ N,

Lnf =
(−2cϵ−1x)

n

2
[f(x, σ)− f(x,Θσ)] (203)

Proof. We use induction. The case n = 1 is trivial. Assume the theorem holds for n = k, then
we claim that the theorem also holds for n = k + 1.

Lk+1f = cϵ−1x[L
kf(x,Θσ)− Lkf(x, σ)] (204)

= cϵ−1x

[
(−2cϵ−1x)

k

2
[f(x,Θσ)− f(x, σ)]− (−2cϵ−1x)

k

2
[f(x, σ)− f(x,Θσ)]

]

=
(−2cϵ−1x)

k+1

2
[f(x, σ)− f(x,Θσ)]

This proves the claim and hence the theorem holds for general n ∈ N.

Theorem 4.10. Let µ be as in definition 4.5, with support {a, b}Z for some a, b ∈ R≥0 and

define pa = µ{Cx = a}, pb = µ{Cx = b}. Let ρ0 ∈ C0

(
(R× S)k

)
. Then for each test function

φ : R → R,

ϵ−1
∑
x,σ

φ(ϵx)Stρ(ϵx, σ) →
∑
σ

∫
φ(x)ρ(t;x, σ)dx. (205)

Here, {St, t ≥ 0} is the semigroup associated to the generator L : F (Ω) → F (Ω) defined by

Lf = cϵ−1x[f(x,Θσ)− f(x, σ)] (206)
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and ρ(t;x, σ) = paρ
(a)(t;x, σ) + pbρ

(b)(t;x, σ) , with for c ∈ {a, b}, ρ(c) the solution to{
∂ρ
∂t

= c[f(x,Θσ)− f(x, σ)]

ρ(0;x, σ) = ρ0(x, σ).
(207)

Proof. Since L is a bounded operator, its semigroup has exponential representation St = eLt =∑∞
k=0

(tL)k

k!
. This gives, using proposition 4.9,

ϵ−1
∑
x,σ

φ(ϵx)Stρ(ϵx, σ) = ϵ−1
∑
x,σ

φ(ϵx)
∞∑
k=0

(tL)k

k!
ρ(ϵx, σ) (208)

=
∞∑
k=0

ϵ−1 t
k

k!

∑
x,σ

φ(ϵx)Lkρ(ϵx, σ)

=
∞∑
k=0

ϵ−1 tk

2k!

∑
x,σ

φ(ϵx)(−2cϵ−1x)
k[ρ(ϵx,Θσ)− ρ(ϵx, σ)]

=
∞∑
k=0

ϵ−1 tk

2k!

∑
x,σ

φ(ϵx)(−2a1(cϵ−1x = a))k[ρ(ϵx,Θσ)− ρ(ϵx, σ)]

+
∞∑
k=0

ϵ−1 tk

2k!

∑
x,σ

φ(ϵx)(−2b1(cϵ−1x = b))k[ρ(ϵx,Θσ)− ρ(ϵx, σ)].

It is clear that for c ∈ {a, b},
〈
(−2c)k1(cϵ−1x = c)

〉
= pc(−2c)k. Hence can use proposition

4.8 to say

∞∑
k=0

ϵ−1 tk

2k!

∑
x,σ

φ(ϵx)(−2c1(cϵ−1x = c))k[ρ(ϵx,Θσ)− ρ(ϵx, σ)] (209)

=
∞∑
k=0

ϵ−1 tk

2k!

∑
x,σ

φ(ϵx)pc(−2c)k[ρ(ϵx,Θσ)− ρ(ϵx, σ)]

= pc · ϵ−1
∑
x,σ

φ(ϵx)
∞∑
k=0

(−2ct)k

2k!
[ρ(ϵx,Θσ)− ρ(ϵx, σ)] → pcρ

(c)(t;x, σ) as ϵ → 0.

this concludes the proof.
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5 Systems with reservoirs

In this chapter we examine systems which are coupled to so called reservoirs. We consider
particles moving on a chain {1, ..., N} where 1 and N are assumed to be coupled to larger
systems which are not influenced by the process on the chain. This entails that at these
sites particles appear and disappear at very specific rates. We say that 1 and N are coupled
to a reservoir. It turns out that reservoirs can keep the system out of equilibrium in the
sense that the measure describing the particles does not become reversible over time, even
though, one a macroscopic level, steady state profiles appear. In other words, we reach a non-
equilibrium steady state. Due to the measure not being reversible, long distance correlations
will appear. This is where duality comes into play, the k-point correlation functions can be
exactly mapped onto a diffusion equation for k particles [6]. This motivates our interest in
k-th order hydrodynamic limits, as these quantify the k-th order correlation functions of the
underlying process.

5.1 Model and duality

Model

We consider particles on a linear chain V = {1, ..., N} where the first and the N -th site
are coupled to a reservoir. Particles can this only leave the system through the left boundary
site 1 and the right boundary site N . The particle densities on the boundary sites are ρL ≥ 0
and ρR ≥ 0 for 1 and N respectively. The interesting case, exhibiting non-equilibrium steady
states, appears when ρL ̸= ρR, hence we assume ρL < ρR. The generator, acting on the core of
C∞ functions with compact support, is defined as

L = L0,1 + LN,N+1 +
N−2∑
i=1

Li,i+1. (210)

Here

Li,i+1f(η) = ηi(α + σηi+1)[f(η
i,i+1)− f(η)] + ηi+1(α + σηi)[f(η

i+1,i)− f(η)] (211)

and

L0,1f(η) = η1(1 + σρL)[f(η − δ1)− f(η)] + ρL(α + ση1)[f(η + δ1)− f(η)], (212)

LN,N+1f(η) = ηN(1 + σρR)[f(η − δN)− f(η)] + ρR(α + σηN)[f(η + δN)− f(η)].

We remind the reader that σ ∈ {−1, 0, 1} fixes the type of interaction between the particles.
More precise, σ = −1 corresponds to exclusion, σ = 1 corresponds to inclusion and σ = 0
means that the walkers have no interaction whatsoever. The notation ηx,y has the usual mean-
ing, ηx,y = η+δy−δx. As we already briefly mentioned before, this generator can be interpreted
as putting particles on sites 1 and N as if the coupled reservoirs have constant particle densities
ρL and ρR. On the sites which are not in contact with the reservoirs, which we will collectively
call the bulk, the dynamics are akin to SIP, SEP or IRW, depending on σ.

Duality
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As we have seen before, each process for σ = −1, 0, 1 has self-duality on Zd without the
reservoirs. The dual processes presented here still have the same dynamics as the original
processes on the bulk sites. The reservoirs, however, will change into absorbing sites. Particles
in the dual process will stop moving once they jump out of the chain {1, ..., N} and hit either 0
or N+1. This makes it significantly easier to calculate the steady states and the corresponding
correlation functions since we can rewrite both the profile and the correlation functions in terms
of the probabilities that a particle ends up being absorbed at 0 or N + 1. Notice that the dual
process hence lives on {0, 1, ..., N,N + 1}. The dual generator is given by,

L̂ = Labs +
N−2∑
i=1

Li,i+1. (213)

Here,

Labsf(ξ) = ξ1[f(ξ
1,0)− f(ξ)] + ξN [f(ξ

N,N+1)− f(ξ)]. (214)

The duality result is stated and proved below. This result is adopted from [1].

Theorem 5.1. The process {ηt, t ≥ 0} with reservoirs, generated by L, is dual to the process
{ξy, t ≥ 0} with the absorbing boundary sites, generated by L̂. The duality function is given by

Dσ,α(ξ, η) = ρξ1L ρ
ξN
R ·Dbulk

σ,α (ξ, η), (215)

where Dbulk
σ,α denotes the self-duality function for the process associated with σ without the

reservoirs,

Dbulk
σ,α (ξ, η) =

N∏
i=1

dσ,α(ξi, ηi). (216)

The functions dσ,α are given by

dσ,α(k, n) =
n!

(n− k)!
πσ,α(k) :=

n!

(n− k)!
1k≤n ·



1
αk for σ = 0

Γ(α)
Γ(α+k)

for σ = +1.

Γ(α+1−k)
Γ(α+1)

for σ = −1.

(217)

Proof. We know that the process generated by Lbulk :=
∑N−1

i=1 Li,i+1 is self-dual with duality
function Dbulk

σ,α . This means that the action of Lbulk on Dbulk
σ,α (·, η) is the same as its action on

Dbulk
σ,α (ξ, ·). Thus, since Lbulk does not act on ξ1 and ξn, we have that

[LbulkDbulk
σ,α (·, η)](ξ) = [LbulkDbulk

σ,α (ξ, ·)](η). (218)

It remains to be checked that the actions on the duality function of the boundary components
of L and L̂ are the same. In other words, we have to verify that

(L0,1 + LN,N+1)Dσ,α(ξ, ·)(η) = LabsDσ,α(·, η)(ξ). (219)
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We have,

L0,1Dσ,α(ξ, ·)(η) (220)

= η1(α + σρL)[Dσ,α(ξ, η − δ1)−Dσ,α(ξ, η)] + ρL(α + ση1)[Dσ,α(ξ, η + δ1)−Dξ,σ,α(η)]

= Dσ,α(ξ, η)
(η1 − ξ1)!

η1!
·
{
ρL(α + ση1)

[ (η1 + 1)!

η1 − 1 + ξ1
− η1!

(η1 − ξ1)

]
+ η1(1 + σρL)

[ (η1 − 1)!

(η1 − 1− η1)
− η1!

(η1 − ξ1)!

]}
= Dσ,α(ξ, η)

ξ1
η1 + 1− ξ1

· {ρL(α + ση1)− (1 + σρL)(η1 + 1− ξ1)}

= Dσ,α(ξ, η)
ξ1

η1 + 1− ξ1
· {ρL(α + ση1 − σ)− (η1 + 1− ξ1)}

= ξ1

[
ρL

(α + σξ1 − σ)

η1 + 1− ξ1
Dσ,α(ξ, η)−Dσ,α(ξ, η) · πσ,α

]
= ξ1[Dσ,α(ξ

1,0, η)−Dσ,α(ξ, η)].

Similarly we can show

LN,N+1Dσ,α(ξ, ·)(η) = ξN [Dσ,α(ξ
N,N+1, η)−Dσ,α(ξ, η)]. (221)

Hence we have,

(L0,1+LN,N+1)Dσ,α(ξ, ·)(η) = (222)

ξ1[Dσ,α(ξ
1,0, η)−Dσ,α(ξ, η)] + ξN [Dσ,α(ξ

N,N+1, η)−Dσ,α(ξ, η)] = LabsDσ,α(·, η)(ξ).

This concludes the proof.

5.2 Hydrodynamic field

5.2.1 Stationary field

As mentioned before, the system will eventually converge to a steady state in the sense that
the macroscopic profile converges over time. Once again we study this profile as the spatial
limit of the hydrodynamic field. That is, we assume the system to reach its steady state and
then calculate the hydrodynamic limit of the k-th order field. The duality result allows us to
exactly calculate the expectation of the k-th order duality function. Indeed, since the dual
particles move on a finite chain, all of them must eventually end up being absorbed at one of
the reservoir sites. This means that

lim
t→∞

ξ(t) =: ξ(∞) ∈ {lδ0 +mδN+1|l,m > 0 and l +m = |ξ(0)|} (223)

with probability one. This yields

Êx1,...,xk
Dσ,α(X1(∞), ..., Xk(∞); η) =

∑
l,m>0
l+m=k

ρlLρ
m
R · P̂x1,...,xk

(ξ(∞) = lδ0 +mδN+1). (224)

Here Êx1,...,xk
and P̂x1,...,xk

denote the expectation and probability with respect to the dual
process conditioned on ξ(0) = δx1 + ...+ δxk

. In the case where σ = 0 thing become a lot easier
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since we have can write the probability above explicitly in terms of x1, ..., xk and N . This due
to the fact that for all i ∈ {1, ..., k}

P̂xi
(Xi(∞) = 0) = 1− xi

N + 1
& P̂xi

(Xi(∞) = N + 1) =
xi

N + 1
. (225)

In the cases where σ = ±1, we will use a coupling to ignore the interactions in the hydro-
dynamic limit.

Coupling

In chapter 3.2 we referred to the couplings provided in [13] and [4] for inclusion and exclusion
particles respectively. We can again use these couplings since they both have discrepancies
growing sufficiently slow in time. In other words, the distance between each interacting particle
and its independent counterpart is of order smaller than

√
t.

Proposition 5.2. Consider interacting particles {X1(t), ..., Xk(t) : t ≥ 0} on Z subject to ei-
ther inclusion or exclusion dynamics with parameter α. Then there is a coupling
{(X1(t), ..., Xk(t); X̃1(t), ..., X̃k(t)) : t ≥ 0} such that,

1. the coupled particles are independent: {X̃1(t), ..., X̃k(t) : t ≥ 0} are, in distribution, inde-
pendent particles.

2. The coupled particles have the same initial position: (X̃1(0), ..., X̃k(0)) = (X1(0), ..., Xk(0)).

3. The discrepancies between the independent and the original particles are of order less than√
t:

lim
t→∞

|Xi(t)− X̃i(t)|√
t

= 0 (226)

with probability one.

Proof. See chapter 3 in [13] for the SIP case and chapter 3 in [4] for the SEP case.

We can use the fact that the discrepancies grow slower then
√
t for the case without reservoirs

to ignore the interactions of the dual particles. More precise, we can show the following lemma.

Lemma 5.3. In the context described above,

sup
x1,...,xk

|P̂x1,...,xk
(ξ(∞) = lδ0 +mδN+1)− P̂IRW

x1,...,xk
(ξIRW(∞) = lδ0 +mδN+1)| → 0 as N → ∞.

(227)
Here, P̂IRW

x1,...,xk
denotes the path space measure associated to the dual particles in the case that

σ = 0, i.e. random walkers which get absorbed at 0 and N + 1, with initial positions x1, ..., xk.
This process is denoted {ξIRW (t), t ≥ 0}.

Proof. Let x1, ..., xn ∈ {1, ..., N} be arbitrary. We consider particles {(X1(t), ..., Xk(t)), t ≥ 0}
which move on the integer line without reservoirs. Due to 5.2, we can construct a coupling
{(X1(t), ..., Xk(t); X̃1(t), ..., X̃k(t)), t ≥ 0} where {X̃1(t), ..., X̃k(t), t ≥ 0} are independent par-
ticles which move freely, i.e. without reservoirs, on Z.

To prove (227), it is enough to show that the dual particle gets absorbed at the same site as
the coupled independent particle with probability close to one for N large. The are two cases
we have to consider: the case where the dual particle gets absorbed first and the case where
the interacting particle is absorbed first. Without loss of generality we may assume that the
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absorption takes place at zero.

We begin with the case where the independent particle is absorbed first. Consider the couple
{(Xi(t), X̃i(t)), t ≥ 0}. We renew the process {(X1(t), ..., Xk(t); X̃1(t), ..., X̃k(t)), t ≥ 0} at the
time τ , which is the time when {X̃i(t), t ≥ 0} hits zero. That is, we construct again a coupling
starting from y1 = X1(τ), ..., yk = Xk(τ). Now {(Y1(t), ..., Yk(t); Ỹ1(t), ..., Ỹk(t)), t ≥ τ} denote
the positions of coupled dual particles and independent random walkers with initial positions
y1, ..., yk. We argue that {Yi(t), t ≥ τ} hits zero before it hits N + 1. To this end we let T > τ
be arbitrary and make two observations,

Observation 1

Py1,...,yk

(
∃τ ≤ t < T :

Yi(N
2t)

N
= 0

)
≥ Py1,...,yk

(
∃τ ≤ t < T :

Yi(N
2t)

N
< 0

)
(228)

= Py1,...,yk

(
∃τ ≤ t < T :

Ỹi(N
2t)

N
<

Ỹi(N
2t)− Yi(N

2t)

N

)
= PBM

yi
N

(
∃τ ≤ t < T : W (t) < 0

)
+ON−1(1)

= PBM
0

(
∃τ ≤ t < T : W (t) < 0

)
+ON−1(1).

= 1 +ON−1(1) (229)

Here Py1,...,yk denotes the path space measure corresponding to the coupling with initial
positions y1, ..., yk and PBM

y denotes the path space measure of Brownian motion {W (t), t ≥ 0}
starting from y. We write ON−1(1) for a term going to zero whenever N goes to infinity. In the
first step we use the fact that y1 > 0, this is true since we are looking at the case where the
independent particle from the initial coupling hits zero first. In the third step we use that the
discrepancies of the coupled particles vanish under hydrodynamic scaling:

Ỹi(N
2t)− Yi(N

2t)

N
=

√
t · Ỹi(N

2t)− Yi(N
2t)

N
√
t

→ 0 as N → ∞, (230)

with probability one. The fourth step is the most tricky one. We use that yi
N

goes to zero
as N → ∞. Recall that yi was the position of the interacting particle with index i when its
independent counterpart was absorbed. Since the discrepancies vanish with probability one
under hydrodynamic scaling, we see that with probability one yi/N goes to zero whenever N
goes to infinity. Finally we use that the minimum of the Brownian motion before time t > 0 is
distributed as minus the absolute value of the Brownian motion at time t. The latter is clearly
smaller then zero with probability one.

Observation 2

Py1,...,yk

(
∃τ ≤ t < T :

Yi(N
2t)

N + 1
= 1

)
= PBM

0

(
∃τ ≤ t < T : W (t) = 1

)
+ON−1(1) (231)

= OT (1) +ON−1(1).

For the first equality we use similar reasoning as for step two to four in observation one. For
the second equality we observe that the probability that Brownian motion travels from zero to
one in time T decays as T gets closer to zero. This can again be seen from the fact the maxi-
mum before time t ≥ 0 of the Brownian motion starting from zero has the same distribution as
the absolute value of Brownian motion starting from zero. We denote a term which vanishes
as T get large by OT (1).
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Since one can pick T > 0 arbitrarily close to zero, observations one and two yield that
{Xi(t), t ≥ 0} hits 0 before it hits N + 1 with probability one as N → ∞.

The case where the interacting particle hits zero first can be shown using essentially the
same method, only the first two steps of observation one won’t be necessary.

Remark 5.4. In the proof above we actually show slightly more then is strictly required for
lemma 5.3. The two observations not only show that each interacting dual particle gets absorbed
at the same site as its non-interacting counterpart, they also show that the macroscopic time
at which they get absorbed vanishes as well. That is, for the coupled particles with index i ∈
{1, ..., k}, {(Xi(t), X̃i(t)), t ≥ 0}, we have that the difference between the absorbing times

τNabs = inf
{
t ≥ 0,

Xi(N
2t)

N
∈ {0, N/(N + 1)}

}
(232)

and

τ̃Nabs = inf
{
t ≥ 0,

X̃i(N
2t)

N
∈ {0, N/(N + 1)}

}
(233)

vanishes under hydrodynamic scaling, ∀ϵ > 0,

Px1,...,xk
(|τNabs − τ̃Nabs| > ϵ) → 0 as N → ∞. (234)

As a consequence, we can ignore interactions when we compute the hydrodynamic field for
interacting particles with absorption. For ρ : [0, 1]k → ∞,

sup
x1,...,xk

|Êx1,...,xk
ρ(N−1X1(N

2t), ..., N−1Xk(N
2t))−ÊIRW

x1,...,xk
ρ(N−1X̃1(N

2t), ..., N−1X̃k(N
2t))| → 0

(235)
as N → ∞. Here, ÊIRW

x1,...,xk
denotes the expectation with respect to the path space associated

to k independent random walkers with initial positions x1, ..., xk. This fact will be used in the
proof of theorem 5.8, which concerns the time dependent hydrodynamic field for systems with
reservoirs.

Steady state macroscopic field

At this point we are ready to compute the limit t → ∞ of the k-th order macroscopic profile
for the system with reservoirs, regardless of σ. In chapter 3 we established that the macroscopic
profile for SIP, SEP and IRW, without reservoirs, evolves as described by the heat equation.
It turns out the macroscopic steady state ρ : [0, 1]k → R we find for the system with reservoirs
is the k-fold product of the solution to the 1-dimensional Poisson equation ρ̄ : [0, 1] → R with
boundary conditions. That is,

ρ(x1, ..., xk) = ρ̄(x1)...ρ̄(xk). (236)

Since the steady state solution of the heat equation is given by the Poisson equation, one
could interpret the addition of reservoirs on the microscale as equivalent to adding boundary
conditions on the macroscale. Moreover, this analogy is also true for the steady state profile
in almost the same way. As we will see in the next subsection, the macroscopic dynamic can
be constructed as a product of the solution to the one dimensional heat equation evaluated in
different points. However, we need that the initial condition is already in product form. Before
we do so, we show our claim for the steady state. We first first explicitly state the form of the
field.
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χk
N(φ, η) = N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
Dσ,α(x1, ..., xk; η). (237)

Theorem 5.5. Let σ ∈ {−1, 0, 1} and let {η(t), t ≥ 0} be the associated process with reservoirs,
as introduced in subsection 5.1. Then,

lim
N→∞

lim
t→∞

Eη(0)[χ
k
N(φ, η(N

2t)] =

∫ 1

0

...

∫ 1

0

φ(x1, ..., xk)ρ(x1, ..., xk)dx1...dxk, (238)

where ρ : [0, 1]k → R is given by ρ(x1, ..., xk) = ρ̄(x1)...ρ̄(xk), with ρ̄(x) = ρL − (ρL − ρR))x.
Notice that ρ̄ is in fact the solution to the one dimensional Poisson equation,

0 = ∂2ρ̄
dx2

ρ̄(0) = ρL

ρ̄(1) = ρR.

(239)

Proof. We begin by using duality to pass to the absorbed process and take the limit t → ∞,

lim
t→∞

Eη(0)[χ
k
N(φ,η(N

2t)] (240)

= lim
t→∞

N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
Eη(0)[Dσ,α(x1, ..., xk; η(N

2t))]

= lim
t→∞

N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
Êx1,...,xk

[Dσ,α(X1(N
2t), ..., Xk(N

2t); η)]

= N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
Êx1,...,xk

[Dσ,α(X1(∞), ..., Xk(∞); η)]

Next we make use what we stated in equation 224,

Êx1,...,xk
Dσ,α(X1(∞), ..., Xk(∞); η) =

∑
l,m>0
l+m=k

ρlLρ
m
R · P̂x1,...,xk

(ξ(∞) = lδ0 +mδN+1). (241)

Recall that this holds due to the fact that the time when the last dual particle gets absorbed
is finite with probability one. Due to lemma 5.3 we can ignore the interactions in the calculation
of the probability above,

lim
t→∞

Eη(0)[χ
k
N(φ, η(N

2t)] (242)

= N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

) ∑
l,m>0
l+m=k

ρlLρ
m
R · P̂x1,...,xk

(ξ(∞) = lδ0 +mδN+1)

= N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

) ∑
l,m>0
l+m=k

ρlLρ
m
R · P̂IRW

x1,...,xk
(ξIRW (∞) = lδ0 +mδN+1) +ON−1(1).
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We write (XIRW
1 (∞), ..., XIRW

k (∞)) for the absorbed independent particles in ξIRW . Then,
since there are no interactions,

P̂IRW
x1,...,xk

(ξIRW (∞) = lδ0 +mδN+1) (243)

=
∑

(S0,SN+1)∈Sl,m

∏
i∈S0

P̂IRW
xi

(XIRW
i (∞) = 0)

∏
j∈SN+1

P̂IRW
xj

(XIRW
j (∞) = N + 1)

Here, Sl,m :=
{
(S0, SN+1) : {S0, SN+1} partition {1, ...,m}), |S0| = l, |SN+1| = m

}
. We

essentially sum over all possible ways the dual particles could form ξIRW (∞) = lδ0 + mδN+1

here. We notice the following combinatorial fact,

∑
l,m>0
l+m=k

ρlLρ
m
R

[∑ ∑
(S0,SN+1)∈Sl,m

∏
i∈S0

P̂IRW
xi

(XIRW
i (∞) = 0)

∏
j∈SN+1

P̂IRW
xj

(XIRW
j (∞) = N + 1)

]

(244)

=
k∏

i=1

[
ρLP̂IRW

xi
(XIRW

i (∞) = 0) + ρRP̂IRW
xi

(XIRW
i (∞) = N + 1)

]
.

It is easy to check that the, when expanded into a sum, both sides of the equation have
exactly the same terms. The rest of the proof is just calculation, as we know explicit expressions
for P̂IRW

xi
(Xi(∞) = 0) and P̂IRW

xi
(Xi(∞) = N + 1). These are the following,

P̂IRW
xi

(XIRW
i (∞) = 0) = 1− xi

N + 1
& P̂IRW

xi
(XIRW

i (∞) = N + 1) =
xi

N + 1
. (245)

All together we have,

lim
N→∞

lim
t→∞

Eη(0)[χ
k
N(φ, η(N

2t)] = (246)

= lim
N→∞

N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

) ∑
l,m>0
l+m=k

ρlLρ
m
R · P̂IRW

x1,...,xk
(ξIRW (∞) = lδ0 +mδN+1)

= lim
N→∞

N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
·

k∏
i=1

[
ρLP̂IRW

xi
(XIRW

i (∞) = 0) + ρRP̂IRW
xi

(XIRW
i (∞) = N + 1)

]
= lim

N→∞
N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

) k∏
i=1

[
ρL

(
1− xi

N + 1

)
+ ρR

xi

N + 1

]
=

∫ 1

0

...

∫ 1

0

φ(x1, ..., xk)
k∏

i=1

[
ρL − (ρL − ρR)xi

]
dx1...dxk,

which is what we set out to prove.

Remark 5.6. Notice that the time scaling in (238) is in fact redundant. Indeed, we take the
limit t → ∞ first, which yields the final state of the dual process ξ(∞) in the proof above.
Clearly ξ(∞) is independent from N .
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5.2.2 Dynamic field

We established that the k-th order stationary field for the systems with reservoirs is in fact a k-
fold product of the first order stationary fields. Moreover, we saw that the first order stationary
fields are steady states of the heat equation, where the boundary conditions are given by the
reservoir parameters. One might suspect that, similarly to the stationary case, the field at each
time t > 0 is a k-fold product of first order fields at time t, where the first order fields are simply
the solution to the heat equation with boundary conditions given by the reservoir parameters.
This intuition turns out to be true, but one should notice that such a statement only makes
sense in the case where the initial macroscopic field ρ0 : [0,∞)× [0, 1]k → R is already a k-fold
product. This is made precise in the theorem below. Before we state the result, we reformulate
the definition of consistency in this setting,

Definition 5.7. (consistent measures) Let ρ : [0, 1]k → R be a smooth and bounded function.
We say that the family of probability measures µN , N ∈ N has expected density consistent with
ρ if for all N ∈ N, and x = (x1, ..., xk) ∈ [0, 1]k,∫

Dσ,α(x1, ..., xk; η)dµN(η) = ρ
(x1

N
, ...,

xk

N

)
. (247)

Theorem 5.8. Let {µN , N ∈ N} denote a family of probability measures on the state space
compatible with a smooth and bounded profile ρ0 : [0, 1]

k → R of the form

ρ0(x1, ..., xk) = ρ
(1)
0 (x1) · ρ(2)0 (x2) · ... · ρ(k)0 (xk) (248)

with ρ
(i)
0 : [0, 1] → R smooth and bounded, ∀i ∈ {1, ..., k}. Then, for all t ≥ 0, the time

evolved k-th order field converges as

∫
χk
N(η(N

2t), φ)dµN(η)
N→∞−−−→

∫ 1

0

...

∫ 1

0

ρ(t;x1, ..., xk)φ(x1, ..., xk)dx1...dxk. (249)

Here χk
N is as in (237) and ρ is given by,

ρ(t;x1, ..., xk) = ρ(1)(t;x1) · ρ(2)(t;x2) · ... · ρ(k)(t;xk). (250)

The functions ρ(i) : [0,∞)× [0, 1] → R are the solution to
∂ρ
∂t

= ∂2ρ
dx2

ρ(0, t) = ρL

ρ(1, t) = ρR

ρ(0, x) = ρ
(i)
0 (x).

(251)

Proof. As usually, we can exploit duality to obtain the field in terms of the dual process,

Eη(0)[χ
k
N(φ,η] = N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
Eη(0)[Dσ,α(x1, ..., xk; η)] (252)

= N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
Êx1,...,xk

[Dσ,α(X1, ..., Xk; η)]

The scaling time and integration against µN give
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∫
χk
N(η(N

2t), φ)dµN(η) (253)

= N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
Êx1,...,xk

ρ(N−1X1(N
2t), ..., N−1Xk(N

2t))

= N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
ÊIRW

x1,...,xk
ρ(N−1X1(N

2t), ..., N−1Xk(N
2t)) +ON−1(1)

= N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
ÊIRW

x1
ρ
(1)
0 (N−1X1(N

2t)) · ... · ÊIRW
xk

ρ
(k)
0 (N−1Xk(N

2t)) +ON−1(1).

Here, ÊIRW
x1,...,xk

denotes the expectation with respect to the path space associated to k in-
dependent random walkers with initial positions x1, ..., xk. In the second equality we use that
we can couple the absorbed interactive particles to absorbed independent random walkers (see
remark 5.4) and in the third equality we use the independence in combination with the assump-
tion that ρ0 is a k-fold product. From this point onwards we are concerned the time evolution
of ρ

(i)
0 for a fixed value of i. To make the notation simpler we will write ρ̄0 instead of ρ

(i)
0 .

It is clear that the absorbed random walk scales hydrodynamically to absorbed Brownian
motion. Hence we have that

ÊIRW
x [ρ̄0(N

−1X(N2t))] = ÊBM
x
N

[ρ̄0(W
abs(t))] + oN−1(1), (254)

where ÊBM denotes the expectation with respect to the path space measure of the absorbed
Brownian motion, W abs, with initial position x. All we have to do now is show that

ÊBM
y ρ̄0(W

abs(t)) = ρ̄0(t, x). (255)

This can easily be be seen from the following consideration. Let ρ̄ext0 be an extension of ρ̄0
on the real numbers such that ∀x ∈ R,

ρ̄ext0 (−x) = −ρ̄ext0 (x) & ρ̄ext0 (1− x) = −ρ̄ext0 (1 + x). (256)

In other words, ρ̄ext0 is an odd function around 0 and around 1. Notice that, under these two
constraints, the extension is unique. We claim another property from this extension, namely

ÊBM
y ρ̄0(W

abs(t)) = EBM
y ρ̄ext0 (W (t)). (257)

Here EBM
y denotes the expectation with respect to the path space measure associated to

Brownian motion without absorption, W (t), with initial position y. Indeed, by the symmetry
of ρ̄ext we have for all t ≥ 0

EBM
0 [ρ̄ext0 (W (t))] = ρL & EBM

1 [ρ̄ext0 (W0(t))] = ρR, (258)

so even though the free Brownian motionW (t) keeps moving after hitting {0, 1}, the relevant
expectation remains as if it were absorbed. As we have seen in subsection 3.1, the function
ρ̄ext(t, x) := EBM

x ρ̄ext(W (t)) is the solution to{
∂ρ̄ext

∂t
= ∂2ρ̄ext

dx2

ρ̄ext(0, x) = ρ̄ext0 (x).
(259)
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Because of the symmetry requirements and the fact that ρ̄0 is smooth on [0, 1], we must
have that ρ̄ext0 is smooth as well. Moreover,

∂2ρ̄ext0

dx2
(0) =

∂2ρ̄ext0

dx2
(1) = 0. (260)

Hence, the ρ̄ext is stationary in 0 and 1, showing that ∀x ∈ [0, 1] and ∀t ≥ 0

ρ̄ext(t, x) = ρ̄(t, x). (261)

Going back to our expression for the field, we obtain

∫
χk
N(η(N

2t), φ)dµN(η) (262)

= N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
ÊIRW

x1
ρ
(1)
0 (N−1X1(N

2t)) · ... · ÊIRW
xk

ρ
(k)
0 (N−1Xk(N

2t)) + oN−1(1).

= N−k

N∑
x1,...,xk=1

φ
(x1

N
, ...,

xk

N

)
ρ(1)

(
t,
x1

N

)
· ... · ρ(k)

(
t,
xk

N

)
+ oN−1(1).

→
∫ 1

0

φ(x1, ..., xk)ρ(x1, ..., xk; t)dx1...dxk as N → ∞. (263)

Remark 5.9. In case ρ0 : [0,∞)× [0, 1]k → R is not of the form

ρ0(x1, ..., xk) = ρ
(1)
0 (x1) · ρ(2)0 (x2) · ... · ρ(k)0 (xk), (264)

one can use that for measure spaces (Σ1, µ1), ..., (ΣN , µN), the L2 space on the product of
these measure spaces satisfies

L2(Σ1, ...,ΣN , µ1, ..., µN) = L2(Σ1, µ1)⊗ ...⊗ L2(ΣN , µN). (265)

Hence in our case L2([0, 1]k, dxk) = L2([0, 1], dx)⊗k. Furthermore, the basis of this ten-
sor space consists of functions of the form f(x1, ..., xk) = f1(x1) ⊗ f2(x2) ⊗ ... ⊗ fk(xk) =
f1(x1)f2(x2)...fk(xk) with f1, ..., fk basis functions for L2([0, 1], dx). Hence we can always ex-
press ρ0 as a linear combination of functions which are of the form in 264.
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