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ABSTRACT
Because of the competing demands for scarce resources (funds, manpower, etc) national road owners 
are required to monitor the condition and performance of infrastructure elements through an effective 
inspection and assessment regime as part of an overall asset management strategy, the primary aim 
being to keep the asset in service at minimum cost. A considerable amount of information is then already 
available through existing databases and other information sources. Various analyses have been carried 
out to identify the different forms of deterioration affecting infrastructures, to investigate the parameters 
controlling their susceptibility to, and rate of, deterioration. This paper proposes such an approach by 
building a transition matrix directly from the condition scores. The Markov assumption is used stating that 
the condition of a facility at one inspection only depends on the condition at the previous inspection. With 
this assumption, the present score is the only one which is taken into account to determine the future 
of the facility. The objective is then to combine nested sampling with a Markov-based estimation of the 
condition rating of infrastructure elements to put some confidence bounds on Markov transition matrices, 
and ultimately on corresponding maintenance costs.

Introduction

Infrastructure owners and managers throughout the world are 
facing increasing demands to ensure that the asset for which they 
are responsible are safe for the users and economic in terms of 
maintenance and repair requirements. This is particularly true 
for old structures (bridges, steep embankments, slopes, etc) that 
may have been designed using outdated design methods, loading 
and detailing standards. For example, because of the ever-in-
creasing volume and weight of traffic, the live loading specified 
by national standards for bridges have increased many times over 
the last few decades in Europe.

In addition, durability issues are given a prominent place and 
the goal is to make decisions that balance the increasing demands 
for better performance with restrained financial resources and 
budget allocation (Gervásio, Simões da Silva, Perdigão, Orcesi, & 
Andersen, 2015). Being able to address these issues requires the 
development of management tools, which can be used as a basis 
for discussion on sustainability between technicians/engineers 
and managers/decision-makers. Such management tools need 
to take into account the multi-scale, multi-actor, multi-criteria 
aspects with different time horizons (infinite or finite with the 
concept of short-term, medium-term or long-term planning), 
uncertainties, hazards (environmental, exposure to risk) and 
economic, social and politic aspects.

One of the objectives of sustainable management of infra-
structures is the minimisation of consequences, should they 
be societal, environmental or economic, caused by inadequate 
functioning or by unexpected structural failure, of a component, 
a system or equipment (BRIME, 2001). The implementation of 
a suitable maintenance management strategy should help reach 
this objective by managing the lack and heterogeneity of available 
information and the reliability of data sources (Fwa & Farhan, 
2012; NCHRP, 2007; Shepard & Johnson, 2001; Thompson, 
2000).

The proposed methodology should have the ability to include 
not only engineering aspects but also concepts from humanities 
and social sciences (economics, management sciences, …) and 
computer science as well (PIARC, 2003). Sustainable indicators, 
economic and social based, should be able to capture, based on 
the technical performance of a structure, additional aspects that 
may influence the decision process and typically represent the 
discounted (accumulated) direct or indirect costs associated with 
construction and maintenance. Summed up over the full lifetime, 
they represent part of or the full life-cycle impacts.

For highway infrastructures, the objective is to provide 
owners with tools predicting in a quantitative way the future 
degradation of elements as well as the associated uncertain-
ties, depending on the available information and on the means 
devoted to appraisal campaigns (Sánchez-Silva & Klutke, 2016). 
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Markov chains an attractive model for condition development 
(Mašović, Stošić, & Hajdin, 2015). Moreover, nested sampling 
enables the evaluation of the integrals of multivariate functions, 
particularly interesting when considering the probability of 
some data D conditional on the value of parameter θ and some 
likelihood model. Combining both approaches should enable 
efficient condition and cost predictions while considering inher-
ent uncertainties. The proposed concepts are illustrated by con-
sidering some transitions observed on a virtual road highway 
infrastructure asset.

The method to determine the degradation process is formu-
lated so that any infrastructure managers can determine their 
own deterioration processes based on the inventory and con-
dition assessment of their stock. This approach is developed in 
the project RE-GEN (Risk assEssment of aGEing iNfrastruc-
ture) funded through the CEDR Transnational Road Research 
Programme Call 2013 ‘Ageing Infrastructure’.

Nested sampling

Nested sampling theory

Bayesian statistics has four fundamental constructs, namely, the 
prior, the likelihood, the posterior, and the evidence. These con-
structs are related in the following manner:
 

The concepts of a prior, likelihood, and posterior are gener-
ally well known, which is not the case for that related to evi-
dence. A possible explanation for this is that one often comes to 
Bayesianity by way of the more compact relationship:
 

which does not make any explicit mention of the evidence con-
struct (Zellner, 1971).

In this paper, the goal is to focus the analysis on the cor-
rect, though notationally more cumbersome, Equation (1), and 
forego of the more compact, but incomplete, Bayesian short-
hand (Equation (2)). This allows providing some feeling for the 
evidence construct, and how this construct relates to the other 
three Bayesian constructs of prior, likelihood, and posterior. In 
particular, the nested sampling theory, introduced by Skilling 
(2004, 2012) aims to provide a Monte Carlo framework in link 
with Bayesian theory. Let p(�,D) be the product of some prior 
p(�) of some unknown set of parameters θ and the likelihood 
function L(�,D) of a data-set D:

 

Then, the integral:
 

is the evidence measure which may be used to differentiate 
between competing models, by way of Bayesian model selection. 
Furthermore, the posterior of the parameters θ, given the data 
D, that is, p(�,D), is given as:
 

(1)posterior =
prior × likelihood

evidence

(2)posterior ∝ prior × likelihood

(3)p(�,D) = p(�)L(�,D)

(4)Z = ∫ p(�,D)d�

(5)p(�|D ) =
p(�,D)

Z

Several previous research projects contributed to the develop-
ment of degradation models for structures (corrosion of rein-
forced concrete, and steel structures, alkali silica reaction and 
delayed ettringite formation in concrete, fatigue of welded 
details, fatigue performance of asphalt concrete pavements, 
durability of treated soils, etc). Nevertheless, such models are 
sometimes hardly applicable to structures in a global way and 
even less at the level of the overall stock (Orcesi & Cremona, 
2010). This difficulty remains a significant scientific obstacle for 
the implementation of a relevant management strategy. In this 
context, the objective is to strengthen the existing knowledge by 
extrapolating prediction at a macroscopic scale and by including 
not only the degradation kinetics but also the decrease of func-
tionality over time. More precisely, one main goal is to build a 
prediction model based on a discrete scoring system such as a 
visual inspection condition rating where information is easily 
available for road owners.

Several methods have been recently considered, based on 
Markov assumption stating that the condition of a facility at 
one inspection only depends on the condition at the previous 
inspection. With such an assumption, the present score is the 
only one which is taken into account to determine the future 
condition of the facility. Those methods include Markov deci-
sion process (MDP) for which the distribution of a waiting time 
until a certain event does not depend on how much time has 
elapsed already (memorylessness), semi-Markov decision pro-
cess (semi-MDP) that includes the concept of the time spent 
in a given state, namely sojourn time, to define the transition 
among states, and partially observable MDP (POMDP) when 
inspection techniques and observations do not reveal the true 
state of the system with certainty (Memarzadeh & Pozzi, 2016; 
Papakonstantinou & Shinozuka, 2014a, 2014b; Schöbi & Chatzi, 
2016). One should also mention the hidden Markov models that 
allow the unobserved condition state to be captured, eliminating 
the noise and bias associated with inspection/monitoring data 
(Kobayashi, Kaito, & Lethanh, 2012a).

Nested sampling, first introduced by John Skilling in 2004 
for general Bayesian computation, and directly estimates how 
the likelihood function relates to prior mass. This method relies 
on sampling within a hard constraint on likelihood value, as 
opposed to the softened likelihood of annealing methods. The 
corresponding algorithm has caught a lot of attention because 
of its robustness, broad applicability, power on dealing with dif-
ficult posterior distributions, and little requirement for manual 
tuning. The key technical requirement of nested sampling is an 
ability to draw samples uniformly from prior distribution with 
restriction that the likelihoods of samples need to be larger than 
certain value.

The objective in this paper is to combine nested sampling 
with a Markov-based estimation of the condition rating of 
infrastructure elements to put some confidence bounds on 
Markov transition matrices, and ultimately on corresponding 
maintenance costs. The paper is organised as follows: first, the 
Nested sampling theory is introduced and its basic philosophy is 
exemplified with a simple numerical example. Second, the com-
bination of the nested sampling approach with a homogeneous 
Markovian process is detailed. Factors unique to highway infra-
structures such as relatively small number of discrete condition 
states and long service life make discrete time-homogenous 



STRUCTURE AND INFRASTRUCTURE ENGINEERING﻿    1027

The nested sampling algorithm is specifically designed to eval-
uate the integral in Equation (4), giving us an estimate of the 
evidence Z. Furthermore, it also provides us with a set of rep-
resentative samples from the posterior (Equation (5)), which 
may function as a proxy for that posterior. For those cases where 
the integral (Equation (4)) may be evaluated analytically, one 
will have no need for the nested sampling algorithm. However, 
for those problems where the integral (Equation (4)) is both 
intractable and highly dimensional, there one will have to take 
his recourse to Nested Sampling, in order to be able to evaluate 
the evidence (Equation (4)) and obtain a set of representative 
samples from the desired posterior (Equation (5)). The follow-
ing section illustrates the nested sampling framework with a 
basic numerical example.

Univariate representation of multivariate pdfs

By reducing any k-variate function f to a corresponding mono-
tonic descending univariate function g, and by using order sta-
tistics, the integral of any k-variate function f may be evaluated 
using a Monte Carlo sampling scheme called Nested Sampling. 
In the special case where the function f is either a likelihood 
function or a probability distribution, a representative probability 
weighted set of random samples may be determined to represent 
f (Skilling, 2004).

For illustration purposes, the following bivariate probability 
distribution f

(
x, y

)
 is examined numerically:

 

where –5 ≤ x ≤ 5, –5 < y < 5 (Figure 1). The total volume under the 
curve f

(
x, y

)
 on this restricted domain is given by the integral:

 

This integral can be evaluated through brute force by considering 
a partition of the x, y-plane in little squares with area dxj dyk,  
j = 1, …, 20, k = 1, …, 20, then define the centre of these areas as (
x̃j, ỹk

)
, and compute the strips of volume Vjk as:

(6)f
�
x, y

�
=

√
0.51

2�
exp

�
−
1

2

�
x2 + 1.4xy + y2

� �

(7)

5

∫
−5

5

∫
−5

f
(
x, y

)
dx dy = 0.9993

 

In Figure 2 the volume elements Vjk are all given together. The 
total volume under the curve f

(
x, y

)
 may be approximated as: 

Then, these 3-dimensional volume elements Vjk are mapped 
to corresponding 2-dimensional area elements Ai. This is easily 
done by introducing the following notation:

 

where index i is a function of the indices j and k:
 

and i  =  1,  …,  400. Using Equation (10), Equation (8) can be 
rewritten as:
 

In Figure 3 the 400 elements Ai are given together. Since 
Equation (12) is equivalent to Equation (8), the mapping of 
the 3-dimensional volume elements Vjk to their corresponding 
2-dimensional area elements Ai has not led to any loss of infor-
mation; that is:
 

The elements Ai in Figure 3 are now rearranged in descending 
order. It is noted that the horizontal axis of Figure 4 is non-di-
mensional since the collection of rectangular area elements is 
ordered in one of many possible configurations. All these rec-
tangular elements have a base of dw = dx dy = 0.25, being that 
there are 400 area elements, Figure 4 might be considered as a 
representation of some monotonic descending function g(w), 
where 0 ≤ w ≤ 100.

(8)Vjk = f
(
x̃j, ỹk

)
dxj dyk

(9)volume ≈

20∑

j=1

20∑

k=1

Vjk = 0.9994

(10)dwi = dxj dyk, f
[(
x̃, ỹ

)
i

]
= f

(
x̃j, ỹk

)

(11)i ≡ (
j − 1

)
20 + k

(12)Ai = f
[(
x̃, ỹ

)
i

]
dwi

(13)area =

400∑

i=1

Ai =

20∑

j=1

20∑

k=1

Vjk = volume

Figure 1. Plot of function f. Figure 2. Volume elements V of function f.
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region 0 ≤ w ≤ W, where W is the area for which the k-variate 
function is defined (see for example, the area for which (1) is 
defined and the w-axis of Figure 5). Hence, it is derived that w is 
univariate uniformly distributed, w ∼ U(0,W), with mean and 
standard deviation of:
 

It is then supposed to have sampled N values of g(w), which 
corresponds to having sampled g

(
w1

)
,… , g

(
wN

)
. Though 

the values of w1,  …,  wN are still unknown, the one thing 
which is known is that the smallest realisation of g(w) must 
correspond with the greatest value of w. This is because 
function g(w) is a monotonic descending function. It follows 

(14)E(w) =
W

2
, std(w) =

W

2
√
3

What has been accomplished is a mapping of 3-dimensional 
volume elements (Figure 2) to 2-dimensional area elements 
(Figure 3) then rearranged (Figure 4) so as to get a monotonic 
descending ‘function’ g(w) (Figure 5). The univariate function 
g(w) might now be integrated and, again, get the volume one 
is looking for. In this manner, any k-variate function may be 
reduced to a corresponding monotonic descending univariate 
function g(w). It will be shown in the following how the proce-
dure of nested sampling is based upon the equivalence between 
any k-variate function and its corresponding g(w).

Sampling abscissas

If a value of g(w) is considered, without knowing the value of w, 
the only knowledge about w is that it must lie somewhere in the 

Figure 3. Area elements A of function f.

Figure 4. Ordered area elements A of function f.
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Step 3: The realisation with the smallest value f (see Figure 1 
and Equation (18)):

 

corresponds with the evaluation on g (see Figure 5), that lies 
farthest to the right on the w-axis; as g is a monotonic descending 
function. For these N evaluations, the unknown abscissa w of the 
known ordinate g (1) = fmin is then set as in (11):

 

which gives us as a first approximate point of g the coordinate:
 

Step 4: Store the domain point xn which gave f
(
xn
)
= f (1)

min
 as:

 

The likelihood weight which is associated with this domain 
point of f is:

 

Step 5: Set W (2) equal to w(1):
 

All the proposal values g (2) are constrained to be greater than 
g (1) = fmin, thus respecting the monotonic descending character 
of g, as presented in Figure 5.

Step 6: One now sets the constraint that all the realisations 
N in Step 2 should have all have values greater than f (1)

min
. If 

one drops f (1)
min

 from S(1), (Equation (18)), and produces a new 

(19)f (1)
min

= min S(1)

(20)w(1) = E
(
wmax

)
=
(

N

N + 1

)
W (1)

(21)
(
w(1), g (1)

)
=
[(

N

N + 1

)
W (1), f (1)

min

]

(22)x(1) = xn, where 1 ≤ n ≤ N

(23)A(1) =
W (1)

N + 1
f (1)
min

(24)W (2) =
N

N + 1
W (1)

that one may use an order distribution for the unknown 
value wmax:
 

with mean and standard deviation of:
 

while:
 

and where both the values of N and W are known to us. It comes 
that the standard deviation, that is, our uncertainty regarding 
the unknown value of wmax, falls of with a factor N. Actually, 
Equations (16) and (17) form the backbone of the nested sam-
pling algorithm.

The naïve nested sampling algorithm

The steps of the nested sampling algorithm (which is naïve in 
that issues of under- and overflow are neglected) are provided 
in the sequence:

Step 1: Set W (1) to be the area/volume/hyper-volume of the 
domain of the function f (x).

Step 2: Sample N realisations of f uniformly over the domain 
of f, Figure 1:

 

which by construction is equivalent to sampling N realisations 
of g uniformly over the w-axis of the univariate representation 
g, Figure 5.

(15)p
(
wmax

)
= N

(
w

W

)N−1 1

W

(16)E
(
wmax

)
= W −

1

N + 1
W

(17)std
(
wmax

)
= W

√
N

(N + 1)2(N + 2)

(18)S(1) =
{
f1,… , fN

}

Figure 5. Plot of function g.
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[
N∕(N + 1)

]r−1 is compensated by the increase in the factor f (r)
min

 
(Equation (35)). Therefore, termination still remains a matter 
of user judgement (Skilling, 2006). Let T be the termination 
step. Then, the nested sampling output consists of a collection 
of domain points x(r), for r = 1, …, T, with corresponding prob-
ability weights:

 

In summary, if one can sample within the nested likelihood con-
straints (Equations (18), (25), (31)), then one may use the laws 
of probability theory, that is, the order statistic (Equation (16)), 
to construct the unknown univariate representation g, Figure 5,  
of f, Figure 1, by way of the approximate points (Equations 
(21), (28), and (33)). This provides a set of probability weighted 
domain points (Equations (34), (35) and (37)). These probability 
weighted domain points form a representative set of random 
samples from f (Skilling, 2004).

The sophisticated nested sampling algorithm

The original nested sampling algorithm is sophisticated in that it 
guards the user against the almost inevitable under- and overflow 
that will arise in non-trivial data analysis problems, by making in 
Figure 5 a change of variable from w to u = log w, and by taking 
the log of the ordinate, that is, by sampling log g’s rather than 
g’s (Skilling, 2004).

The reason why the naïve algorithm was discussed herein 
over the original one is because it is believed that such a naïve 
approach better demonstrates the elegance of the nested sam-
pling framework, as issues of optimal implementation may 
obfuscate the intimate link between the well-known order sta-
tistic (Equation (16)) and this relatively new Monte Carlo sam-
pling framework.

For non-trivial data analysis problems the reader is 
referred most emphatically to the original nested sampling 
algorithm (Skilling, 2004). For an explicit link between this 
original nested sampling algorithm and the here given naïve 
discussion, the interested reader can refer to (Van Erp & Van 
Gelder, 2009).

Generating nested sampling samples

Let f be a function defined on a highly multivariate parameter 
space x. Then nested sampling is a Monte Carlo framework by 
which this multivariate f may be evaluated. The nested sampling 
framework needs uniformly sampled realisations of f within the 
multivariate geometry of some constraint f ∗ in order for it to 
work. However, this framework does not tell us how to obtain 
these samples, that is, its optimal implementation is an open-
ended research question.

The nested sampling evaluations of the Dirichlet distributions 
(Equation (40)) have been implemented by way of the Inner 
nested sampling algorithm (Van Erp, Linger, & Van Gelder, 
2017), which obtains uniform samples within some constraint 
f ∗. The idea behind Inner nested sampling is to obtain a set of 
differentials of the multivariate geometry of the initial constraint 

(37)Pr =
A(r)

∑T

i=1 A
(i)

realisation f > f (1)
min

 which is added to S(1), then the new set of 
realisations is produced:

 

Step 7: Set:
 

and set the unknown abscissa of this known ordinate as 
(Equation (20)):

 

The second approximate point of g then is the coordinate:
 

Step 8: Store the domain point xn which gave f
(
xn
)
= f (2)

min
 as:

 

The likelihood weight which is associated with this domain 
point of f is:

 

Step 9: Set:
 

for n = 1, …, N, and
 

Then the rth approximate point is:
 

Step 10: Store the domain point xn which gave f
(
xn
)
= f (r)

min
 as:

 

The likelihood weight which is associated with this domain 
point of f is:

 

Step 11: Because of the factor 
[
N∕(N + 1)

]r−1 in Equation (35), 
A(r) will tend to 0 as r → ∞, even as f (r)

min
 increases. Consequently, 

the algorithm may be terminated if for instance (Equation (35)):
 

However, it should be noted that there has been no rigorous 
criterion developed so far to ensure the validity of the above ter-
minating condition; as there is always the probability that some 
high likelihood remains for which the dropping off of the factor 

(25)S(2) =
{
f1,… , fN

}
, where fn > f (1)

min
for n = 1,… ,N

(26)f (2)
min

= min S(2)

(27)w(2) =
(

N

N + 1

)
W (2) =

(
N

N + 1

)2

W (1)

(28)
(
w(2), g (2)

)
=

[(
N

N + 1

)2

W (1), f (2)
min

]

(29)x(2) = xn, where 1 ≤ n ≤ N

(30)A(2) =
W (2)

N + 1
f (2)
min

=
(

N

N + 1

)
W (1)

N + 1
f (2)
min

(31)S(r) =
{
f1,… , fN

}
, where fn > f (r−1)

min

(32)f (r)
min

= min S(r)

(33)
(
w(r), g (r)

)
=
[(

N

N + 1

)r

W (1), f (r)
min

]

(34)x(r) = xn, where 1 ≤ n ≤ N

(35)A(r) =
(

N

N + 1

)r−1 W (1)

N + 1
f (r)
min

(36)A(r) <

∑r−1

i=1 A
(i)

N2



STRUCTURE AND INFRASTRUCTURE ENGINEERING﻿    1031

Combination of nested sampling with the Markov 
assumption

Once transition probabilities are determined, the performance 
of each bridge/retaining wall component through the use of an 
adequate lifetime indicator. This indicator is determined herein 
by the probability for a component to be scored in a certain 
condition with time. If (i) the probability of a component b to 
be quoted in any score is known at year i (for example, after a 
visual inspection of the bridge) and stored in a vector qib and (ii) 
the associated homogeneous Markov chain, associated with a 
transition matrix Pb, is determined, the probability at year i + 1 
is given by the following equation:

f ∗ at iteration step t = 0 of nested sampling proper. These differ-
entials are defined by a direction e and a radius R(e) and serve 
as a proxy for the actual geometry. This proxy geometry has the 
nice property that it is extremely amenable to uniform sampling. 
Furthermore as with each iteration step t the geometry defined 
by the f ∗ constraint will shrink, the radii R(e) may be updated 
so as to reflect this shrinkage. This then allows us to continue 
the uniform sampling of these differentials and, by proxy, the 
likelihood geometry of interest, with a minimum of rejections.

Prediction of maintenance costs considering 
inspection database

Use of inspection database

As mentioned in the introduction, the objective of the proposed 
framework is to deliver an asset management framework based 
on the inventory of an asset and condition assessment. The goal 
is to determine some degradation profiles for infrastructure 
components or infrastructures as a whole. Once the degrada-
tion profiles are determined, they can be used to characterise 
how the degradation of infrastructures evolves with time. For 
this purpose, a stochastic Markov chain approach is used for 
predicting the performance of infrastructure components and 
combined with the nested sampling framework presented in the 
previous section.

The following case study considers transition sequences 
in an inspection database observed during a certain period 
of time. For a five-stage scoring system (rates 1–5 modelling 
good to poor conditions), it is supposed to observe transi-
tions of Table 1 during the reference period. Such scenario is 
noted Sc1. Two alternative scenarios are then considered to 
model ageing and deterioration of these components exacer-
bated either by climate change or increasing traffic intensities 
and loads (scenarios Sc2 and Sc3 explicited in Tables 2 and 3,  
respectively). For scenarios Sc2 and Sc3 and compared to sce-
nario Sc1, it is assumed to see 10% more of infrastructures in i 
moving in i + 1 (scenario Sc2), or 10% more of infrastructures 
in i moving in i + 2 (scenario Sc3). The transitions observed 
in each case are illustrated in Figure 6 for each initial condi-
tion state.

Table 1. Number of transitions between condition states (CS) for Scenario Sc1.

1 2 3 4 5
1 117 31 8 0 0
2 14 315 22 2 0
3 2 18 325 6 1
4 0 4 3 86 1
5 1 1 1 0 27

Table 2. Number of transitions between condition states (CS) for Scenario Sc2.

1 2 3 4 5
1 106 42 8 0 0
2 14 284 53 2 0
3 2 18 293 38 1
4 0 4 3 78 9
5 1 1 1 0 27

Table 3. Number of transitions between condition states (CS) for Scenario Sc3.

1 2 3 4 5
1 106 31 19 0 0
2 14 284 22 33 0
3 2 18 293 6 33
4 0 4 3 78 9
5 1 1 1 0 27

Figure 6. Number of transitions observed in the database for each condition state 
(original state is associated with each subplot and destination state is associated 
with y-axis value) for scenarios Sc1, Sc2 and Sc3.
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for n = 25, where (Equation (38)):
 

where M is some vector-to-matrix reshaping function like 
MATLAB’s reshape to move from the vector of probabilities to a 
5 × 5 transition matrix. If one sets (Equation (38)):
 

then, the nested sampling framework gives us a collection of 
vectors of probabilities �(r), for r = 1, …, T, with corresponding 
probability weights Pr.

Figure 7 (respectively, Figure 8) illustrates a comparison of 
terms in M

(
�(r)

)
 between scenarios Sc1 and Sc2 (respectively 

between scenarios Sc1 and Sc3). It can be observed how the 
distribution of probabilities to move from state i to i + 1 (respec-
tively, from state i to i + 2) shifts to the right between scenarios 

(41)Pb = M(�) = reshape(�)

(42)f (�) = p(�|D)

 

Assuming a homogeneous Markovian process, the scoring prob-
ability can then be forecasted if the transition matrix and the ini-
tial probability vector are known. If the costs of each degradation 
state are put in the column cost vector c, then the total cost C at 
time step i + 1 of the state qi+1

b
 is given as the inner vector product:

 

In order to put confidence bounds around the Markovian esti-
mate (Equation (38)), the entries in Tables 1 through 3 are 
inputted into corresponding Dirichlet probability distributions 
of the unknown vector of probabilities �:
 

(38)qi+1
b

= qib Pb

(39)Ci+1 = qi+1
b

⋅ c =
⟨
qi+1
b
, c
⟩

(40)p(�|D) ∝ �
r1−1∕n

1
⋯ �

rn−1∕n
n
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Figure 7. Comparison of terms in matrix M
(
�
(r)
)
 between scenarios Sc1 and Sc2.
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The outputs (Equations (45) and (46)) are then used to com-
pute the confidence bounds of the total costs for the various 
time steps, as displayed in Figure 9. In this figure, it is supposed 
to have � =

(
0 5 10 40 50

)
× 103C and to consider an 

asset initially with 30 elements in state 1, 15 in state 2, 20 in state 
3, 5 in state 4 and 6 in state 5. This case study shows how the com-
bination of nested sampling theory with a Markov-based model 
enables to build lifetime indicators (herein some maintenance 
cost associated with the condition of the asset). One can clearly 
see the impact of changes in the number of transitions observed 
in scenarios Sc1, Sc2 and Sc3, on the profile of the degradation 
cost with time.

(46)�i+1
C =

√
E
[ (

Ci+1
)2]

−
(
E
[
Ci+1

])2
Sc1 and Sc2 (respectively, between scenarios Sc1 and Sc3). It 
comes that (Lindgren, 1993):

 

and:
 

The mean cost at time step i + 1 then is given as:
 

while the standard deviation at time step i + 1 then is given as:

(43)E
[
Ci+1

]
=

T∑

r=1

Pr

⟨
qib M

(
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)
, c
⟩

(44)E
[ (
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C = E
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Figure 8. Comparison of terms in matrix M
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 between scenarios Sc1 and Sc3.
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(3) � Investigate how the global prediction of the system 
condition (e.g., bridge) can relate to its individual 
components (deck, joints, piers, bearings), under 
uncertainty. Indeed, an infrastructure consists of sev-
eral components, and each component has its own fail-
ure probability; the interaction between components 
determining the overall failure probability of an infra-
structure. Elaborating a performance indicator at a 
system level requires considering interactions between 
infrastructure components.

(4) � Translate condition profiles in a risk analysis and 
determine optimal maintenance/repair actions 
(Memarzadeh & Pozzi, 2016) under uncertainty and 
limited funds. Optimal parameters are those that min-
imise the overall risk while minimising the mainte-
nance costs. The ultimate goal is to allow stakeholders 
to assess the necessary additional effort to satisfy per-
formance constraints under different scenarios (e.g. 
traffic growth or exacerbated degradation due to cli-
mate change effects).
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