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Preface

This thesis marks the final step in obtaining a Master of Science degree in mechanical engineering at
the University of Technology Delft. It also marks the end as my time as a student, after studying at the
university for six years. Early on during my time as a Bachelor student, | discovered that | liked CAD
modeling in particular and found that | have a certain affinity for it. | still fondly remember how | was
responsible for the modelling and the fluid simulation of a centrifugal pump during my first year and how
we were able to fabricate it as well. | think it is then fitting to finish my formal education with modelling
project as well.

The project was initially an idea by Richard Norte, who had the idea to use these nanomechanical
resonators that have a very high Qf product and try to embed a microfluidic channel inside them. This
with the express purpose to enable quantum mechanical experiments on biological samples. During
the project it also became clear that these new suspended microchannel resonators could potentially
also offer increased mass sensitivity. As such, the project has changed slightly to incorporate this as
well. Although this thesis is only FEM based, | do sincerely hope that someday these designs can be
realized as well. | think it would be amazing if they could be used for the purpose they were initially
intended for. This preface would not be complete without thanking my two supervisors, Richard Norte
and Miguel Bessa and my daily supervisor, Dongil Shin. | would like to take this opportunity to thank
them for their help and invaluable advise throughout this project and for guiding it in the right direction.

Daniél Sebastiaan van Dam
Delft, July 2021
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Abstract

This thesis, as part of the final step to obtain a Master of Science degree in mechanical engineering,
details the Master thesis project. it introduces a new kind of suspended microchannel resonator with
a very high Qf product compared to conventional designs and an order of magnitude improvement in
mass sensitivity. Suspended microchannel resonators are a kind of mechanical resonator with an em-
bedded microchannel inside. This is done as for some samples it is convenient or even necessary to
put the sample into a fluid. The sample can then travel through the channel and its mass can be de-
termined. The channel also simplifies placement of the samples compared to regular nanomechanical
resonators. By having this channel embedded within the resonator, it is then possible to place the res-
onator as a whole in a vacuum and so eliminate medium losses. The main purpose of these suspended
microchannel resonators is mass spectrometry which has already been performed on viruses and bio-
logical cells and so could potentially be very useful for the medical field as well. Especially if suspended
microchannel resonators can be used to measure individual proteins which has not been done before
with these resonators. It would also be interesting to use these kinds of resonators in quantum me-
chanical experiments. This means that the performance of these suspended microchannel resonators
needs to be improved.

In order to accomplish this, a new kind of suspended microchannel resonator is introduced. The de-
signs, and so also the master thesis project as a whole, is strictly FEM based. The new resonator
design, which is a doubly clamped beam, is made from pre-stressed silicon nitride which enables high
Q-factors caused by an effect known as dissipation dilution. Dissipation dilution means diluting the
energy losses of the system by increasing the stored energy which is increased by the initial stress in
the silicon nitride. This gives rise to the dissipation dilution factor, which is the stored energy of the
system over the energy losses to the system. To increase this effect, the resonator is tapered towards
the center. This is called strain engineering. Silicon nitride has been used in suspended microchannel
resonators before but it did not result in higher Q-factors. This was possibly due to clamping losses.
The designs presented in this thesis offer a solution to that in the form of soft-clamping. Soft-clamping
consists of phononic crystals which prevent elastic waves from moving through the resonator when
excited in the phononic band-gap. Vibration is therefore only possible near the center defect which is a
break in the periodic structure of the phononic crystals. This reduces the curvature near the boundaries
to a minimum which means that the clamping losses are also reduced or eliminated. The combined
effect of these features results in very high Q-factors as has already been reported for nanomechanical
resonators.

Before the designs can be simulated, the geometry of the unit cells, which are single phononic crystals,
need to be determined first. This is done with the help of phononic band-gap diagrams which provide an
indication as to how the model will perform. In contrast to earlier pre-stressed silicon nitride resonators,
the channel also needs to be accounted for when the mechanical Q-factor is calculated. This is means
that the full three dimensional stress-strain relationship will be considered whereas before one dimen-
sional Euler-Bernoulli beam theory or two dimensional plate theory sufficed. The intrinsic Q-factor is
also discussed at length which is the Q-factor inherent to the material. Multiplying this is Q-factor with
the dissipation dilution factor is the definition of the mechanical Q-factor. The Qg race, Which is part
of the intrinsic Q-factor is especially of concern as a new equation needs to be used to account for
the channel of the resonator as under the commonly used definition the Qg fqce is dependent on the
thickness of the resonator which is not the same throughout due to the channel. Finally, the fluidic
loss Q-factor or Q4 is also discussed as in suspended microchannel resonators the fluid inside the
channel can also cause losses to the system. An equation is found in the literature to calculate this
energy loss with the help of COMSOL.

Vi
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Finally, the new designs are optimized through machine learning by Bayesian optimization. There are
two main models, the tapered beam model and the multi design variable model or MDV model for short.
Both the tapered beam model and the MDV model have been optimized for the Qf product and the MDV
model has also been optimized for the mass sensitivity. The result is that for both models the minimum
Qf product necessary to perform quantum mechanical experiments at room temperature, 6 - 102 Hz
is reached. When optimized for mass sensitivity, the MDV model also offers more than one order of
magnitude improvement in mass sensitivity compared to the best performing suspended microchannel
resonator to date. The downside is however that for the optimized models both can’t be achieved at
the same time. The answer to that issue could present itself in the smaller 200 nm thickness variant of
the MDV model as opposed to the 1 um thickness variant considered before. The 200 nm thickness
variant of the MDV model optimized for mass sensitivity then provides almost three orders of magnitude
improvement in Qf product and more than 20 times improvement in mass sensitivity. The improvement
in mass sensitivity means that measuring of individual proteins could possibly be achieved with these
resonator designs.



Introduction

Suspended microchannel resonators (SMRs) have found great application as mass spectrometers on
the micro and nanoscale. Before their introduction, nanomechanical resonators were placed in a fluid
to measure a sample for which it was necessary to put them inside a fluid. This caused a lot of losses
due to the fluid. Suspended microchannel resonators don’t have this problem as a fluidic microchannel
is embedded within the resonator which has allowed for greatly increased Q-factors and improved mass
sensitivity by virtually eliminating medium losses as the resonator can now be placed in a vacuum. [44]
An example of one such suspended microchannel resonator is shown in figure 1, which is the cantilever
design by Manalis et al. who designed the first SMR. The channel is indicated in blue and the figure also
shows how these resonators measure the mass of a sample by the frequency shift that occurs when
the sample is moving through the resonator due to the mass. Suspended microchannel resonators
have been used to measure nanoparticles such as exosomes with a SMR that has a mass sensitivity
of less than a attogram. [37] This is the current best performing suspended microchannel resonator.
They’'ve also been used to measure bacteria, viruses and fluid density directly with the possibility of
measuring quantum dots and protein strands with improved technology.[4][27] Some forms of mass
spectrometry, which have already been performed with regular nanomechanical resonators, highlight
the potential use of the microchannel as placement of the particle onto the resonator is difficult. This can
be seen in a study which measured single proteins where the placement of the proteins is described as
random in place and time as the samples are essentially dropped onto the resonator. [32] For SMRs,
this problem doesn’t exist as particles simply travel through the channel and particle throughput will
also be a lot higher as a result.
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Figure 1: A figure showing the microchannel within a cantilever beam. It also shows how the frequency shifts as the sample
moves through the liquid. Obtained from [44]

The potential of these devices could also have interesting applications in the medical field. They could
for example perform cell counts of CD4 cells which is done to determine the progression of AIDS in
a patient.[44] Another potential application is the detection of cancer cells in a patient based on the
stiffness of these cells as the stiffness has shown to be considerably lower for cancer cells than for
healthy cells. This has already been done with the use of atomic force microscopy.[36] Proteins are
also used as biomarkers to diagnose diseases like cancer by sensing them through mass spectrometry.
[40] The use of these proteins as biomarkers could allow for noninvasive detection of the disease by
for example sensing the proteins in blood. SMRs could potentially simplify these processes due to the
channel and make it cheaper to perform, //if// these proteins can be detected directly and individually.
Furthermore, SMRs might also allow quantum mechanical experiments to be performed on biological
samples at room temperature by providing a convenient container while the sample is for example
placed in superposition. All of these potential applications hinge on the need to improve the perfor-
mance of suspended microchannel resonators, specifically the Qf product and the mass sensitivity, far
beyond what current designs allow for.
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Suspended microchannel resonator comparison
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Figure 2: A figure which compares conventional SMR designs with the new designs from this thesis, optimized for the Qf product.
The x-axis displays the Q-factor and the y-axis the resonance frequency. The diagonal lines indicate the Qf product with the Qf
product necessary to perform quantum mechanical experiments at room temperature indicated in red. The different materials of
the resonators are indicated by color. The values of the models were obtained from [4]

To enable quantum mechanics at room temperature, the Qf product, which is a measure of perfor-
mance, needs to be higher than 6 - 1012 Hz to decouple the resonator from the surrounding noise. [29]
To date, no suspended microchannel resonator has been able to achieve this. The best performing de-
sign currently has a Qf product of about 4.3 - 101° Hz which misses the goal of reaching 6 - 1012 Hz by
more than two orders of magnitude. The suspended microchannel resonator designs proposed in this
thesis, which are purely based on FEM analysis, aim to address that. This is best shown through figure
2 which maps the resonance frequency and the Q-factor of some current SMR designs. The diagonal
lines indicate the Qf product with the Qf product required to be able to perform quantum mechanical ex-
periments at room temperature indicated in red. As can be seen, even though conventional suspended
microchannel resonators can have a wide range of frequencies, none of these resonators come close
to reaching 6 - 10'? Hz due to a low Q-factor which ultimately limits the Qf product. According to the
literature, no suspended microchannel resonator design has been able to achieve a Q-factor of ex-
ceeding 10° with most designs having a Q-factor of about 10000. The designs shown in this thesis are
also indicated in this graph on the right and do exceed the quantum mechanical limit. These designs
have a Qf product and Q-factor of more than two orders of magnitude higher than current designs. In
concrete terms, the Q-factor has been increased from about 15000 to about 4 million for both of the
models shown.

In the study that measured single human Immunoglobulin M (IgM) proteins, a mass sensitivity of about
100 kDa, or 0.166 attograms (1.66-10~1° grams), was required to properly detect the different isoforms,
or variants of the protein. [32] For comparison, the mass sensitivity of the best current SMR is about
0.3 attograms (3:1071% gram) at a bandwidth of 1000 Hz. [37] In other words, an increase in mass
sensitivity of about two times would already allow for these proteins to be measured individually by
suspended microchannel resonators. The designs presented here go even further and provide a mass
sensitivity increase of more than an order of magnitude compared to this current best performing de-
sign. This could put the mass sensitivity in the range to also measure bovine serum albumin (BSA)
with a mass of about 66 KDa, or about 0.11 attograms (1.1-:10~1° grams), as has been measured by
nanomechanical resonators in a different study. [6] Another example would be that Manalis et al. per-
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Mass sensitivity overview
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Figure 3: An overview of the current mass sensitivity limitation and the area of interest. In red, the mass sensitivity of the highest
performing SMR by Manalis et al. (2014) [37]. The virus shown is called Indiana vesiculovirus and has previously been measured
by [27]. In green, the mass sensitivity of the resonators presented in this thesis. As can be seen, more than an order of magnitude
improvement in mass sensitivity is obtained, putting these resonators in the range to measure proteins. For the proteins shown,
the assumption has been made that the mass sensitivity required is an order of magnitude lower than their actual mass. The
figures of the antibodies shown are obtained from [11], the figure of hemoglobin is obtained from [14] and the figure of the viruses
is obtained from [15].

formed Immunoglobulin G (IgG) mass detection by accumulation of these proteins to the surface of the
microchannel. [44] This accumulation of the proteins could then be measured and so also indirectly
measure the proteins themselves. The designs in this thesis could potentially do away with the surface
treatments that are necessary for this detection entirely and instead measure them directly as these
proteins have a mass of about 150 kDa, or about 0.249 attograms (2.49-1071° grams). This is about
an order of magnitude larger than the mass sensitivity of the larger micrometer thickness model which
is about 25 zeptograms (2.5-1072° grams) whose mass sensitivity would then be sufficient if assumed
that an order of magnitude difference in mass is required to properly detect these proteins. All of this
is visualized in figure 3 which provides an overview of the mass sensitivity problem. In red, the cur-
rent best performing suspended microchannel resonator by Manalis et al. [37]. As can be seen, this
resonator just falls short of being able to measure individual proteins while the resonators from this
thesis in green do have this mass sensitivity. Likewise better mass sensitivity also means that these
suspended microchannel resonators are able to measure even smaller nanoparticles. For comparison,
the resonator by Manalis et al. (2014) was able to accurately measure golden nanoparticles of 10 nm.
[37] With the improved mass sensitivity from the designs of this thesis, it might be possible to accurately
measure single golden nanoparticles of 2.5 nm as has been done before with regular nanomechanical
resonators. [6]

So how is this high performance attained? A paper by Ghadimi et al. showed nanomechanical res-
onator designs with a very high Q-factor and Qf product by using mechanisms called dissipation dilution,
strain engineering and soft-clamping. [5] This thesis will show suspended microchannel resonators with
these same mechanisms and will show how this will also lead to Q-factors on the order of a million.
An example of what these SMRs look like can be seen in figure 4, with the channel indicated in blue.
The length of the resonator is scaled down as in reality the resonator would be about 4 mm long with a
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Figure 4: An example of the suspended microchannel resonator design presented in this thesis with the microchannel in blue
within the doubly clamped beam. The length has been scaled down to present the resonator clearly.

maximum width of about 3.5 um in this case. Important to note is also the fact that the resonators from
this thesis are made from silicon nitride instead of the more commonly used silicon or silicon dioxide
as also indicated in figure 2. The silicon nitride designs are indicated in orange with the silicon and
silicon dioxide designs indicated in blue and green respectively. For the designs presented here, the
silicon nitride is pre-stressed which increases the stored energy of the system. This stored energy
gives rise to dissipation dilution. In a word, dissipation dilution "dilutes” the energy losses of the system
by comparitively increasing the stored energy which is increased due to the internal stress of the res-
onator. As indicated in figure 2, other silicon nitride suspended microchannel resonators do exist, but
only one is also made from high stress silicon nitride which is the design by Craighead et al. [3] The
other design indicated in orange is made from low stress silicon nitride. As can be seen, the resonator
by Craighead et al. has a very low Q-factor, possibly due to clamping losses in the system. For the
resonator designs presented here that will not be a problem however, as these designs make use of
soft-clamping which aims to minimize clamping losses. Soft-clamping is the use of phononic crystals
to localize the eigenmode at the center to reduce the curvature at the boundaries which eliminates
clamping losses. The phononic crystals can be seen in figure 4 as the periodic corrugated rectangles.
Strain engineering is the tapering of the resonator in such a way to increase the stress at the center.
The tapering is also clearly shown in figure 4. These mechanisms will be discussed later at length. It's
also important to note that the models shown in this thesis are optimized with machine learning through
Bayesian optimization.

Before the resonator designs can be adequately calculated and optimized, there are a couple of points
that need to be addressed first. First of all, the equation for the mechanical Q-factor needs to be
derived for the three dimensional strain which hasn’t been done explicitly before in the literature. This
is necessary as the embedded channel means the z-axis can’t be ignored since the thickness isn’t
the same throughout the resonator and it might introduce additional effects such as non-negligible
shear stress in the z direction. second, the intrinsic Q-factor or more specifically, the Qg fqce Which is
necessary to calculate the mechanical Q-factor. The Qgyrf4ce in the form as it is used for silicon nitride
nanomechanical resonators is dependent on the thickness of the resonator, which once again hasn’t
one single value due to the channel. In order to calculate it, a paper by Yasumura et al. was used which
explains the fundamental definition of the Qgyrfqce- Third and finally, the fluid inside the channel can
also cause energy dissipation which needs to be accounted for. Sader et al. investigated this Q4 in
depth and their equations were used to numerically calculate it with the help of COMSOL. [19]

The core concepts that are relevant to the suspended microchannel resonators and the presented
designs in particular will be discussed first in chapter one. Especially the mechanisms behind the high
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Qf and Q-factor will be explained in depth. Chapter two will explain how the mechanical Q-factor and
the Qf.uiq are calculated and derived. An attempt will also be made to validate these equations either
by way of existing experimental data or analytically, as experiments were not performed for this thesis
project. Chapter three will explain how the COMSOL model works and how it works in conjunction with
Matlab. It will also detail the optimization results of both the Qf product and the mass sensitivity. Finally,
the thesis will be closed off with the conclusion and a reflection on the thesis project.






Theoretical Background

1.1. Nanomechanical Resonators

The Q-factor or quality factor in relation to nanomechanical resonators is a measure of energy loss in
the system due to for example clamping, medium losses or in the case of suspended microchannel
resonators, the fluid inside the channel can also induce losses in the system. [38][43] The Q-factor
determines how accurately the resonance frequency of the system can be measured. A higher Q-factor
leads to a higher resonance amplitude and a smaller width of the peak which enables the resonance
frequency to be determined more accurately.[38]

The Q-factor and the resonator itself is best visualized in figure 1.1. Figure A displays a mass-spring-
damper system. For example, if this system is provided with a force input, it will start to vibrate. The
amount of damping then determines for the amplitude of vibration and for how long it will keep vibrating.
Figure B shows the magnitude plot with the magnitude on the y-axis and the frequency on the x-axis.
As can be seen, the plot with ¢ = 0.01 has a very amplitude and so also a clearly defined peak.
This indicates a high Q-factor with low damping. The other two plots have more damping and also a
smaller, less defined resonance peak. The resonance frequency and the shift due to the mass of a
sample can be more accurately determined when this peak is clearly defined. Generally, the Q-factor
can be expressed in the form of equation 1.1 where W is the energy stored in the system and AW is
the energy lost per cycle of vibration. [38] The Qf product, which is the product of the Q-factor and
the resonance frequency is a measure of performance. For example, as has been mentioned in the
introduction, it is understood that for quantum optomechanics at room temperature, a Qf product of Qf
> 6-1012 Hz is required.[29] As one potential application of the SMR designs shown here is performing
quantum mechanical experiments, this is definitely a value to keep in mind.

w
0= (1.1)
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Figure 1.1: A figure which visualizes the resonator as a single mass-spring-damper system. Figure B displays various resonance
peaks under the influence of different amounts of damping. This figure has been obtained from [41]

First, let's discuss how nanomechanical resonators perform mass sensing. Generally, a small mass
can be measured by the degree of the displacement of the resonance frequency of the resonator which
is caused by this mass. The resonance frequency of a resonator is simply a function of its mass and its
stiffness. Equation 1.2 is a modification of the well-known equation obtained from [42]. Am is the mass
of the sample and « is a constant that depends on the location of the sample on the resonator. For
example, in the case of microcantilevers, this value would be approximately equal to 1 if the sample is
placed at the tip of the resonator. However, placement of samples can be quite difficult in the case of
nanomechanical resonators. [32] This equation also implies that ideally, the mass of the resonator itself
needs to be as small as possible to make sure that this frequency shift can be measured accurately. A
smaller mass and in particular a smaller effective mass of the resonator would enable smaller sample

masses to be detected.[4]
_ 2 k 1.2
f= 2w | m+ aAm (1.2)

Equation 1.3 is the mass sensitivity or the mass resolution of the system which is another measure to
determine how small the mass of a sample can be. This equation was obtained from [24] The mass
sensitivity will also be used to determine the performance of the designs considered in this thesis.
The first fraction shown is the signal to noise ratio of the system measured in thermal noise. k; is
Boltzmann’s constant with T as the temperature of the surroundings. The "signal” here is the maximum
drive energy with w, as the resonance frequency in rad/s and x. as the RMS displacement at the center
of the doubly clamped beam. Ekinci et al. determined this value to be 0.53t with t as the thickness of
the resonator. [24] This is the value used for the designs of chapter 3. Af is the chosen bandwidth of
the system. If this is taken as 1, as is done in the remainder of this thesis, the mass sensitivity has the
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units \/%. Equation 1.4 is the effective mass, obtained from [8]. Here, p is the density of the material

which multiplied by the total displacement of the resonator squared, x? and integrated over the entire
volume of the resonator. Lastly, x,,,, is the maximum displacement of the resonator.

S kT 05 Af 05 .
M= sy MefrwEXE Qg '
px2)dV
Merr = —f((xmaj)z (1.4)

In a subset of nanomechanical resonators, high mechanical Q-factors can be achieved by inducing a
high internal stress, on the order of 1 GPa, into the resonator. These resonators are usually made from
silicon nitride (SiN), as silicon nitride has a yield strength of about 6 GPa. [5] This concept was first
reported by Verbridge et al. They managed to create a nanomechanical resonator with a Q-factor of
207000, the highest at that time on a nanoscale. [12] The paper also beat the notion that the Q-factor
decreases with smaller dimensions. The concept of inducing a high internal stress has come to be
known as “dissipation dilution”. As the high internal stress significantly increases the stored energy
of the system, thereby comparatively "diluting” the loss factors which increases the Q-factor per the
definition given by equation 1.1. [45][38] Equation 1.1 can be rewritten as equation 1.5. Here, Q, is the
intrinsic Q-factor which is the inherent material-dependent Q-factor of a resonator and the energy ratio
% is also known as the dissipation dilution factor. It should be noted that the mechanical Q-factor is
equal to the intrinsic Q-factor in the case when the resonator is not pre-stressed. [38] In this case, the
stored energy is roughly equal to the energy losses and the dissipation dilution factor is unity.

w
Qmechanical = 27TQOW (1.5)

As mentioned in the introduction, the main inspiration for the designs discussed in this thesis is the
paper by Ghadimi et al. [5] The most notable result from this paper specifically is the discovery that
the combination of soft-clamping and strain engineering results in a dramatically increased Q-factor
and Qf product.[5] This in combination with the already established dissipation dilution. One of the
goals of Ghadimi et al. was to exploit dissipation dilution with the use of strain engineering to get the
internal stress close to the yield stress of the material to obtain as high a Q-factor as possible. [5]
Strain engineering here implies tapering the beam toward the center to locally increase the internal
stress which increases the dissipation dilution effect. Soft clamping in the case of Ghadimi et al.,
consists of using phononic crystals which consists of a periodic structure with a defect at the center of
the beam. The phononic crystals here take the shape corrugating beams. In other words, the resonator
has a periodic varying width. This periodicity is a central concept of phononic crystals, which will be
discussed at length later. Figure 1.2.A shows a schematic drawing of the resonator by Ghadimi et al.
In it, the phononic crystals can be seen clearly as well as the tapering of the resonator. It also shows
the localization of the mode shape at the center and the localization of stress as a result of the tapering.
This is only one way of using phononic crystals in nanomechanical resonators. For example, Tsuturyan
et al. have used phononic crystals in their design to create a lattice structure.[45] A picture of this can be
seen in figure 1.2.B. It also shows the localization of the mode shape of the resonator which is indicated
in yellow. For the darker parts of the resonator indicate a damped out modeshape. Phononic crystals
are used in nanomechanical resonators with the intent to decrease or eliminate clamping losses.
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Figure 1.2: In figure A, the doubly clamped beam resonator design by Ghadimi et al. As obtained from [5]. In figure B, a resonator
by Tsaturyan et al. with the lattice design. As obtained from [45].

Earlier papers reported that clamping losses caused by strain are a significant factor which is limiting
the Q-factor in those cases.[39][34] Tsaturyan et al. were the first to combine dissipation dilution and
soft clamping. Doing so resulted in Q-factors in excess of 102 and the highest Qf product at that time,
more than 10'* Hz.[45] The phononic crystals used in the devices designed by Tsaturyan et al. and
Ghadimi et al. cause the mode shape at resonance frequency to be localized at the center. In both
instances there is a defect or error in the periodic structure of the phononic crystals. By constraining
the modeshape at the center away from the boundaries reduces the curvature at the clamps that would
otherwise be significant.[45][5] This reduced curvature means that clamping losses are reduced or even
eliminated entirely as well, enabling the possibility to reach higher Q-factors. An example of what a
localized eigenmode inside the phononic band-gap could look like is shown in figure 1.3. As can be
seen in the figure, the mode shape is localized at the center and gradually damps out until it disappears
near the boundaries where the resonator is connected to the substrate. This means that the curvature
near the boundaries is likewise also very small or even negligible which results in the elimination or
minimalization of the clamping losses. This is soft-clamping.

The use of strain engineering by Ghadimi et al. in their designs meant that the internal stress at the
center of the resonator was about 3.8 GPa compared to the uniform internal stress of 1.27 GPa present
in the device by Tsaturyan et al.[5][45] Figure 1.2.A shows the increased stress at the center compared
to the lower stress near the boundaries of the device. The use of strain engineering meant Ghadimi et
al. were able to achieve Q-factors of 800 - 10° and Qf products exceeding 10'°. Figure 1.4 shows how
dissipation dilution, soft-clamping and strain engineering impact the Q-factor of the resonator designs
by Ghadimi et al. At the bottom in gray is the intrinsic Q-factor of the resonator. Dissipation dilution,
here indicated in green has the strongest effect on the Q-factor. Soft-clamping in blue, eliminates the
clamping losses, pushing the Q-factor even higher. Finally, in red, the resonator is tapered towards
the center, known as strain engineering which increases the stress at the center and thereby also
increasing the effect of dissipation dilution.



1.2. Suspended Microchannel Resonators 11

Figure 1.3: An example of what the eigenmode in the phononic bandgap can look like. This specific example is of the tapered
beam design. The length is scaled down to provide this view. As can be seen, the modeshape is constrained at the center of
the resonator and completely damped out near the boundaries.
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Figure 1.4: A figure showing what the combined effect of dissipation dilution, soft-clamping and strain engineering has on the
Q-factor of the resonator designs by Ghadimi et al. This figure was obtained from [5]

1.2. Suspended Microchannel Resonators

One of the primary uses of nanomechanical resonators is mass detection.[5][45] However, for the use
in the life sciences the sample often needs to be suspended in a liquid. Of course, this can also be
done for nanoparticles of non-biological origin.[37] Before the invention of suspended microchannel
resonators, one way of doing this is to simply put the entire device in a liquid. This causes very high
damping losses due to the liquid as energy from the resonator is lost to the surrounding medium due to
viscous losses.[38] It should be noted that generally nanomechanical resonators operate in a vacuum
to ensure that medium losses are negligible. A review of cantilever sensors showed that the Q-factor
of these devices in liquid is generally on the order 10! with limited exceptions regardless of size.[10]
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Another study tested their four nanocantilevers in both vacuum and atmospheric pressures and noted a
considerable degradation of the Q-factor.[30] For example, one device has a Q-factor of 500 in vacuum
but only 15 at atmospheric pressure. A second, much smaller device degrades from 900 in vacuum to
500 at atmospheric pressure. As is stated in the study, size plays a significant role for air damping of
these devices.[30] Naturally, this would also be the case for liquids but to an even larger extend due to
the higher viscosity of liquids compared to air.
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Figure 1.5: A figure showing the microchannel within a cantilever beam. It also shows how the frequency shifts as the sample
moves through the liquid. Obtained from [44]

The problem of having a low Q-factor is solved by suspended microchannel resonators which embed a
fluidic channel into the resonator and places the device itself in a vacuum. This completely eliminates
medium losses as is the case with other nanomechanical resonators placed in a vacuum. First pio-
neered by the Manalis research group in 2003 and later improved upon in 2007, this device enabled
mass detection of nanoparticles and bacteria which was impossible for liquid-suspended cantilevers
due to the limitation of the Q-factor.[44] For mass sensing, SMRs function generally in the same way
as regular nanomechanical resonators, which means that the sample mass can be derived from the
displacement in resonance frequency according to equation 1.2. Figure 1.5 shows how this works
in suspended microchannel resonators. The samples travel through the channel, slowly lowering the
resonance frequency of the device as a result of the additional mass. When it reaches the tip, the
displacement will be at its largest. Afterwards the resonance frequency returns to normal again as the
sample leaves the cantilever. This is the main method of mass detection in suspended microchannel
resonators. This same method of mass detection can also be used to determine the stiffness of the
sample. Another application of SMRs is protein and concentration detection. Protein detection can’t
be performed directly with conventional suspended microchannel resonators however, which means
that this can be done by coating the inside of the channel with a particular antibody to which the an-
alyte will bind.[4] As a result of the analyte, the mass of the device will increase and once again the
resonance frequency will also shift. Manalis et al. (2007) displayed exactly this by binding goat anti-
mouse immunoglobulin-y molecules to anti-goat immunoglobulin-y antibodies.[44] The result was that
the mass of the layers could be determined based on the shift in resonance frequency. As has been im-
plied, this method of detection requires extensive chemical treatments to clean and prepare the device
for the detection of the samples.[44][4] This is not necessary for mass detection of particles, as they
travel in and out of the channel on their own. Improved mass sensitivity could also solve the problem
of extensive cleaning procedures by being able to measure said samples directly.

SMRs offer multiple benefits and potential benefits compared to regular nanoresonators and other
devices that are currently used for the same applications. Flow-through mass detection has the benefit
that the SMR doesn’t need to be cleaned between uses, which is not the case for competing devices.
Mass resolution and mass per area resolution are also superior.[44] Generally speaking, to be able
to detect certain cells, they might need to be "amplified”, which means that more material needs to
be generated, and they might need to be labeled as well.[23] As was the case for example during the
research performed by Cross et al.[36] This requires a lot of time and needs costly materials. SMRs
can potentially approve upon this with the kind of label-free testing performed by Zhang et al.[23]
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Group Geometry Material Dimensions  Frequency Q-factor Mass sens.
(Ixwxt)[um]  [MHz] [] [7]
Manalis (2007) [44]  Cantilever Si 200x33x7 0.22 15000 9500
Manalis (2010) [21]  Cantilever Si 50x10x1.3 0.76 10000 850
Manalis (2014) [37] Cantilever Si 27x7.5x1 1.99 15000 27
Lee (2016) [20] CC-beam Sio2 68x6.8x2 2.94 3130 286
Craighead (2010) [3] CC-beam  Si3Ni4 20x2.5x0.8 25 800 4000

Table 1.1: Atable with an overview of some relevant SMRs. The first three are created by the Manalis group and are all cantilever
designs. The increase in mass sensitivity can be seen clearly with each new iteration. The last two are clamped-clamped beam
designs with the resonator by Craighead et al. being the only known exiting design made from pre-stressed silicon nitride.

Table 1.1 notes the most prominent and highest performing SMRs to date. It only contains a small
number of designs and a more complete overview can be found in the SMR review paper by De Pastina
et al.[4] The general cantilever design first used by the Manalis research group in 2007 is by far the
dominant design among SMR designs but a small number of clamped-clamped beam designs also
exist. The best performing one is by Lee et al.[20] The paper by Lee et al. notes multiple CC-beam and
cantilever designs of varying dimensions but the CC-beam in table 1.1 is both the smallest CC-beam
design and the best performing one. It should also be noted all of their CC-beam designs are trumped
by their cantilever designs which boast Q-factors of approximately 8000 depending on the design. [20]
Another resonator of interest is the design by Craighead et al. This design is one of the few ones made
from silicon nitride but more importantly it is also the only pre-stressed silicon nitride resonator found
in the literature with a stress of ¢=1.3 MPa [3] This could imply that the Q-factor could also be higher
due to dissipation dilution but this can’t be seen from the experiments. The Q-factor noted in table 1.1
is that of when the channel is filled with water. The Q-factor of the resonator is about 4000 when it’s
empty, so there is a definite decline in Q-factor between a filled resonator and when it's empty that’s
not generally seen in the designs by Manalis et al. [43][21][37] The low Q-factor could also imply that
it's limited by a different loss factor than the intrinsic Q-factor, for example by clamping losses. The
pre-stressed nature of the resonator has increased the resonance frequency as it is about an order of
magnitude higher than comparable designs of similar dimensions.

The cantilever designs by Manalis et al. remain the highest performing ones to date with the design from
2014 having single attogram precision when measuring gold nanoparticles of 10 nm in diameter.[37]
This same design also boasts a throughput of 18000 particles per hour, a record at that time. Another
more recent study looked into increasing particle throughput by using deconvolution and by using SMRs
in parallel. Deconvolution in this case meant using an algorithm to extract distorted resonance peak
shapes and fit them to a library of theoretical peak shapes to obtain usable data.[28] Deconvolution
increased throughput 16 times which means the device has a throughput of 2000 particles per minute.
Using parallel SMRs meant a 55x improvement over just using a single SMR to 6800 particles per
minute.[28] The authors also note that it should be possible to use deconvolution together with using
SMRs in parallel. They estimate that this could cause a 197x improvement to 24000 particles per
minute. Comparing this to the study performed by Manalis et al. (2014) which already achieved a
record for SMRs with 18000 particles per hour, makes it clear that the throughput concerns raised in the
SMR review paper by De Pastina et al. have for all intents and purposes been negated. [4][37] These
concerns were based on the limited residence time of the particles inside the channel, but deconvolution
was able to decrease the minimum residence time from 49 ms to 3 ms for the device tested.[28] The
authors also note that the methods that were used are equally useful regardless the size of the SMRs
involved.

Suspended microchannel resonators possess yet another interesting feature. Intuitively one might
expect that the fluid inside of the channel might induce energy losses in the device but studies have
shown this is not necessarily the case.[43][21] In SMRs, the Q-factor of the resonator is equal to @~ =
Qffuia + Quntrinsic 9iven that there are no other significant loss factors.[43] Equation 1.6 shows this
Qfruia- It is dependent on equation 1.7 which is a function of g, the dimensionless frequency also
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known as the Reynolds’s number, given in equation 1.8. These equations are obtained from [43]. The
Manalis research group has shown that the relation governing energy losses due to the fluid in the
SMR is dependent on the viscosity of the fluid. The interesting part about this is that that relation is
non-monotonic, meaning that it will not strictly increase or strictly decrease, but instead fluctuates as
a function of the viscosity of the fluid. They showed this effect by slowly adding glycerol to a solution
that was initially pure water. As they added glycerol to the solution, the Q-factor initially decreased as
expected but shows a surprising higher Q-factor at about 80 mPa*s which appeared for both channel
heights of 3 um and 8 um that were used. The Q-factor of the fluid is mainly dependent on the dissipation
caused by the shearing of the fluid within the channel.[21] The amount of shear is in turn dependent
on the inertia of the fluid characterized by the Reynolds’s number g shown in equation 1.8. Here h, is
the height of the channel, u and pf,,;4 are the viscosity and the density of the fluid and w is the radial
frequency of oscillation.
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Simply put, the energy dissipation is lower when the fluid is able to follow along with the displacement
of the cantilever, which is according to the study at low levels of inertia.[43] At low inertia there are
no clear boundary layers at the top and bottom walls of the channel as they overlap as a result. The
energy dissipation slowly increases with increasing inertia. As expected, at high inertia, the fluid is no
longer able to move with the cantilever and instead moves completely out of phase. High inertia is
characterized as 8 >> B,in. The absolute minimum in energy dissipation is at intermediate values of
inertia characterized as S,,,;,, in the paper by Manalis et al. (2009).[43] This minimum occurs when the
boundary layers merge as a result of moving from high inertia to low inertia.[19] This is best visualized
in figure 1.6. In it, the minimum energy dissipation does appear to be in the middle and due to the
overlapping regimes, neither of the lowest points can be reached. The point where the regimes cross
is also when the Q-factor itself is the highest. Furthermore, this finding and equation 1.6, imply that
the Q-factor could increase when the device is miniaturized as 8 decreases with decreasing channel
height.[43][19] In reality this has meant that instead of the Q-factor decreasing upon miniaturization,
it would not decrease and remain consistent with the Q-factors of previous devices. The Q-factor
of nanomechanical resonators tends to decrease when a resonator is miniaturized.[12] The total Q-
factor of a suspended microchannel resonator then is limited by the Q;p¢yinsic as the Qryq is orders of
magnitude higher than the Q;,+rinsic, at least in the case for the Manalis resonator designs. What that
means for the designs presented in this thesis, is that increasing the Quecnanicar Which is the Qinirinsic
times the dissipation dilution factor, will increase the total Q-factor considerably. Table 1 also shows how
the Q-factor has remained remarkably consistent over the years and instead improved performance
relies on decreases in mass and an increase in resonance frequency as a result of miniaturization. As
can be seen, the mass sensitivity of the Manalis designs improve as well. Equation 1.3 has shown that,
as the mass sensitivity scales with Qf?, the mass sensitivity increases a lot with a constant Q-factor
and increasing resonance frequency.

What this finding means for fluid inside the channel is that the Q-factor of the SMRs are either similar
or show a small improvement when comparing the same device when it is empty or when it is filled
with water. This is also shown by Lee et al. [21] They filled their device with either water, ethanol
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Figure 1.6: Plot showing the dimensionless function vs. dimensionless frequency. The minimum indicates the point of lowest
energy dissipation. From [38]

or D,0 and while the device filled with water had a slightly higher Q-factor compared to the empty
channel, the ones filled with ethanol and D,0 had lower Q-factors. This despite the fact that ethanol
has a lower viscosity than water but D,0 has a higher viscosity. The resonance frequency does show
a more predictable result as they showed that it has a linear dependence on the density of the fluid and
so also its combined mass.[21] The combined implication of these findings are that miniaturization is
possible and that the Q-factor does not necessarily degrade based on the miniaturization itself. Instead,
performance is likely to increase as the resonance frequency increases and the mass of the SMR will
decrease which means a higher mass sensitivity. It also conveniently means that Q-factor calculations
of empty SMRs are highly indicative of what the actual Q-factor will be when the device is filled with
water as the total Q-factor of the resonator is ultimately limited by the Q;,.¢rinsic-

1.3. Phononic Crystals

As has been mentioned in section 1.1, phononic crystals have recently found their way into nanome-
chanical resonators with the express purpose of decreasing clamping losses of the resonator and to in-
crease the quality factor as a result.[5][45] Phononic crystals are structures with a certain periodicity.[31]
This periodicity can either be a repeating pattern as is the case with the resonator designs of Ghadimi et
al. with the rectangular corrugated beams or Tsaturyan et al. which display a repeating pattern of miss-
ing circular holes. Both of these resonators can be seen in figure 1.2.A and figure 1.2.B, respectively.
The phononic crystals can also be a periodic pattern of interchanging materials with different densities.
Even though phononic crystals in these cases are on a microscopic scale, they are not limited to it.
On a macroscopic scale, phononic crystals could for example improve acoustics and on nanoscopic
scales it is possible to control heat flow through a material.[31] Furthermore, phononic crystals exist as
1D, 2D and 3D variations. This is visualized in figure 1.7. For example, the resonator by Ghadimi et
al. uses 1D crystals and the resonator by Tsaturyan et al. uses 2D crystals. The logic behind it is as
simple as in that the structure of the device by Ghadimi et al. only varies in one axis, this being the
x-axis, and the structure of the device by Tsaturyan varies in two axes, both x and y. A 3D crystal would
then also need to vary in the z-axis.

Central to the idea of phononic crystals is the phononic band-gap. The phononic band-gap is a range of
frequencies at which waves can’t propagate through the material.[31] The phononic band-gap can be
visualized in a band-gap diagram in which the eigenfrequencies are mapped against the wavenumber
vector. An example of this is shown in figure 1.8. The phononic band-gap is indicated in gray. The band-
gap is enclosed by two pairs of eigenmodes as indicated. In order to facilitate vibration at resonance
frequency that is necessary for mass sensing and other applications, a central defect to the periodic
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1D 2D

A

Figure 1.7: A figure that visualizes the different phononic crystal variations. Obtained from [31]

phononic crystal structure has been employed. The central defect allows for a break in the periodic
structure and so allows vibrations locally at the defect. Both the resonator designs of Tsaturyan et al.
and Ghadimi et al. have such a defect. As has been mentioned before, the defect allows the resonator
to vibrate while actuated in the phononic band-gap near to defect as can be seen in figure 1.3. The
resonance frequency of the defect mode can be changed by modifying the length of the defect.[5][13]
For example, the study by Ghadimi et al. found that the defect mode with the highest Q-factor was
located in the middle of the band-gap which was found by experimentally varying the defect length.[5]
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Figure 1.8: A figure of a phononic band-gap diagram. Obtained from [5]

The band-gap width also plays a role here. A wider band-gap could make it easier to place the defect
mode within the band-gap without having the risk that when mass is added to the resonator due to a
sample, that that additional mass displaces the frequency such that it will no longer be located in the
band-gap.[13] The same study also found that the band-gap can be widened by increasing the mass
contrast of the phononic crystal. In context of the resonator by Ghadimi et al. this could for example
mean making the sides longer. The study also found that this would also increase localization of the
defect mode.[13] The drawback of doing this is that it might increase internal losses in the system.
They note that the trade-off might be worth it depending on the circumstances and whether or not the
device is used at cryogenic temperatures or not.[13] One last thing that might also be of interest is that
the high mass contrast devices that were tested also had a lower effective mass compared to their low
contrast counter parts. This could mean that these high contrast devices might have a better mass
sensitivity than the lower contrast ones according to equation 1.3.
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1.4. Bayesian Optimization

As has been mentioned before, for the optimization of the resonator designs Bayesian optimization is
used. Bayesian optimization is generally used to find either a global maximum or minimum of a specific
function. [18] Specifically, a variant called GpyOpt. [7] Bayesian optimization optimizes in the case of
the models presented in this thesis a desired variable by way of a Gaussian process. [9] The Gaussian
process forms a probability distribution which is used to estimate the desired output value which is
either the maximum or minimum of the objective function which is dependent on the design space. [9]
The design space consists of the variables of the objective function. This is shown in equation 1.9
where f is the unknown objective function, x are the design variables and x* are the optimized design
variables as a result of the optimization. Before the optimization itself starts, the algorithm needs a
number of data points to fill the design space and to create the so-called Gaussian prior distribution.
[35] Here, these initial points are picked randomly as the objective function is unknown. After the initial
points are determined, the algorithm can start with the data collection which is the determination of
new iterations. These new data points are used to update the prior distribution to form the posterior
probability distribution. [35] The difference between the prior and the posterior distribution is that the
posterior depends on new data obtained by the algorithm and is generally updated each iteration.
[9] With the obtained data and the posterior probability distribution, it can then create an acquisition
function which determines the specific values of the design variables for the next iteration. There are
a number of acquisition functions used for Bayesian optimization but the most commonly used one is
the expected improvement or El. [9] In the case of the El acquisition function, it estimates where the
biggest improvement over the current best result is located based on the known points acquired during
previous iterations and the posterior. [22]

X" = arg maxf (X) (1.9)

This is also visualized in figure 1.9. In it, three iterations of the Bayesian optimization are shown with
the posterior probability field indicated in blue and the acquisition function indicated in green. As can
be seen, the posterior decreases near newly assigned data points as the certainty is higher near these
points. After calculating the new iteration and acquiring the output, the algorithm will then update
both the posterior and the acquisition function with this new data point and repeat this process. The
way El works also implies that the acquisition algorithm prioritizes where it estimates where the biggest
improvement can be found. This means that it could prioritize global solutions instead of local solutions.
Bayesian optimization has also been shown to outperform other global optimization algorithms. [22]

The above explanation is how the Bayesian optimization is used in this paper, and it is also somewhat
simplified, but there are other ways of dealing with the algorithm. For example, after as the cost of up-
dating the GP scales cubically with the number of iterations, updating it becomes more computationally
expansive. [9] Although it has been reported that iterations on the order of a couple of thousands should
be attainable for desktop computers. [35] Computational complexity could for example be reduced by
simplifying the GP by using approximations of the exact GP. This can reduce the complexity and so
also the computation time considerably but it does introduce noise as a side effect of the approxima-
tion. [9] Alternatively, iterations could for example also be calculated in parallel instead of sequentially
which is how Bayesian optimization typically works. [9] This could reduce computation time even if the
number of iterations necessary does not change. In the case of FEM calculations this might be difficult
to realize as the computation time of a single simulation could change significantly based on the design
variables. It could create situations which require the Bayesian optimization to wait for long running
simulations before it can recalculate the posterior and determine new points of interest. It should also
be noted that using Bayesian optimization with a lot of parameters can be computationally expensive
as the number of iterations required to define the design space properly scales exponentially with these
parameters. [9] It has been reported that Bayesian optimization works well for problems with fewer than
20 parameters. [18]
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Figure 1.9: A figure that displays how the Bayesian optimization algorithm works. Obtained from [9]



Q-factor Calculations

Before the resonator designs themselves can be discussed, the mechanical Q-factor calculations need
to be explained first. In the paper by Ghadimi et al., on which the general design of the resonators is
based, they show the mechanical Q-factor calculations using 1D Euler-Bernoulli beam theory.[5] The
Euler-Bernoulli beam theory is used to simplify equations and give an intuitive understanding of what
components make up a certain equation. A second paper confirms that this equation has been used for
their resonator designs and notes that the equation agrees well with the full 3D case. [17] The equations
that they outline take the form of equations 2.1 and 2.2 with equation 2.1 as the mechanical Q-factor,
which is the intrinsic Q-factor multiplied by the dissipation dilution factor. The dissipation dilution factor
is the ratio of the stored energy over the energy losses to the system. Equation 2.2 is the intrinsic
Q-factor which depends on the material of the resonator and the thickness of the resonator, h. In this
chapter, both the dissipation dilution factor and the intrinsic Q-factor will be discussed with regard to
their application in the suspended microchannel resonator designs and how they are different compared
to Q-factors used elsewhere in the literature. Secondly, in contrast to most regular nanomechanical
resonators, the fluid within the resonator can also cause energy dissipation to the system and so could
also decrease the total Q-factor of the system. [19] This fluid-loss Q-factor, or Qf;y;q, Will also be
discussed in this chapter.

_ Weensite
Q B VVbending QO (21)

2.1. The Dissipation Dilution Factor

Calculating the mechanical Q-factor of the suspended microchannel resonator designs is a bit more
tricky than calculating the Q-factor of a regular resonator. This is because these types of resonators
contain a channel inside which gives these resonators a 3-dimensional geometry. It is because of this
channel that simple plate or beam theory no longer suffices because the resonator can no longer be
described by the 2-dimensional plate theory equation or Euler-Bernoulli beam theory as was used by
Ghadimi et al. For the sake of completeness, let’s discuss plate theory further and why it is insufficient
in this case. The main idea behind classical plate theory also known as Kirchhoff’s plate theory, is that
a plate can be described by the following points: [16]

19
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The plate has uniform thickness

The thickness of the plate is very small compared to its other dimensions.

» Shear strain in the z direction is small and can be neglected as a result. Normal strain in the z
direction may also be neglected.

Stress in the z direction is very small compared to stress in the other axes and can be neglected.
« Strain is small enough that it can be assumed that the mid-plane remains unstrained.

As has been mentioned, the suspended microchannel resonator violates the first statement, as the
thickness depends on location on the resonator due to the channel. It is also not immediately clear
whether or not the other points would be violated. In case of the micrometer-sized design variations,
which will be introduced later, the thickness is considerable when compared to the minimum width of
resonator; 1000 nm in thickness vs 1500 nm in width. Even in the smaller sized tapered design we are
dealing with a thickness of 200 nm and a width of 500 nm. To compare, the uniform unit cell resonator
by Ghadimi et al. has a minimum width of about 500 nm with a thickness of 20 nm. [5] When these
dimensions are of the same order, it could imply that shear strain might be a considerable factor as well.
The resonator design are however 4 mm in length. With these points it becomes clear that classical
plate theory does not suffice and that a full three-dimensional Q-factor calculation is needed.

A full three-dimensional Q-factor equation can’t be readily found in the literature and so it needs to be
derived. As a starting off point we take a look at the theoretical equations derived by Yu et al. who
have derived a mechanical Q-factor model based on classical plate theory for their square membrane
resonators. [33] This model is in turn based on the one-dimensional model developed by Unterreith-
meier et al. who used them for the one-dimensional string resonators. [34] The one-dimensional model
is the same one that's been mentioned earlier when referring to the paper by Ghadimi et al. [5] The
model developed by Yu et al. is used here because they discuss a very general case before they apply
classical plate theory.

20 2mUginetic

Q=20 = v (2-3)

We start off with equation 2.3, the definition of the Q-factor, which is also the origin of equation 2.1
[38][33] Here we chose to use the kinetic energy, shown in equation 2.4, as the stored energy of the
resonator instead of the tensile energy used by Ghadimi et al. This is mainly done for the sake of
ease when the stored energy is determined in COMSOL but both methods are equally valid as these
types of energy convert into each other during vibration. The kinetic energy is used by Yu et al. as
the stored energy as well. The energy loss to the system is shown in equation 2.5 is obtained from Yu
et al. [33] The energy loss of the system is proportional to the bending energy of the system with the
crucial difference that the energy loss is caused by out-of-phase stresses described by E,, the complex
component of the total Young’s modulus E = E; + iE, with E; as the conventional Young’s modulus.
[33][34] E,, also known as the loss modulus or dissipative Young’s modulus, is just like the conventional
Young’s modulus material dependent and responsible for the phase delay which causes the stresses
in the system to partially be out of phase with the strain in the system. The out-of-phase stresses lead
to some of the stored bending energy to be irreversibly lost to heat which is the energy loss of equation
2.5. [33]

1 2
Ukinetic = 5 j (sz (xaisp) )dV (2.4)
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The energy loss can be rewritten to account for the loss modulus so that it is included in the intrinsic
Q-factor, Q,. Here, the intrinsic Q-factor is equal to Q, = E;/E, which is equal to the volumetric loss.
[25]However, as will be shown later, the intrinsic Q-factor is a little bit more complicated than that
for our system here as surface losses also play a significant role on the nanoscale. [38] As has been
mentioned before, our system takes into account the entire three-dimensional strain, shown in equation
2.6. As can be seen, only the linear strain is considered, a simplification also made by Yu et al. and
Unterreithmeier et al. [33][34]Using only the linear strain is in part necessary because it proves difficult
to calculate the nonlinear strain in COMSOL when the eigenfrequency analysis is considered, as is
done here. As a final remark on this equation, the placement of the Young’s modulus within the integral
is only done as a matter of notation and not strictly necessary as it does not depend on the volume.
Equation 2.7 presents the complete derived equation of the mechanical Q-factor in short form. With
the intrinsic Q-factor taken out of the denominator, the energy ratio that remains is also known as the
dissipation dilution factor. As has also been explained in chapter 1, this factor would be unity in case
when the resonator is not pre-stressed. In that case, the mechanical Q-factor is equal to the intrinsic
Q-factor. Finally, the solution of the energy loss equation is presented in equation 2.8 which can be
directly used in COMSOL.
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2.2. The Intrinsic Q-factor

Next, the intrinsic Q-factor will be discussed. As has been mentioned before, Ghadimi et al. used
equation 2.2 as the intrinsic Q-factor for their resonator design which is accurate for thicknesses smaller
than 100 nm.[5] For thicknesses of that order or smaller, the volume loss can be safely neglected. [26]
The resonator designs considered here can be considerably thicker than that which means a more
general description needs to be used which does include the volume losses as well. This general
description of the intrinsic Q-factor takes the form of equation 2.9 which also includes the Q,o;yme- This
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equation is obtained from Villanueva and Schmid. [26] There is also the complication of the channel,
which again means that the thickness isn’t the same throughout the resonator and that it might not be
accurate to use this formulation of the Qgyrface-
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Figure 2.1: A figure that visualizes the Intrinsic Q-factor of SiN resonators. Obtained from Villanueva and Schmid. [26]

= ! + 1 1 ! + . B 2.9
Qintrinsic - qurface Qvolume ~ 6E10h 28000 ( . )

First, volume loss needs to be discussed. Volume loss or bulk loss, is what limits the intrinsic Q-factor
when the surface to volume ratio is reduced.[26] In other words, when the volume of the resonator is
considerable compared to the surface. The relationship between the surface loss and volume loss is
shown in figure 2.1 and by way of equation 2.9. The two separate loss factors are inversely added to
each other which forms the complete intrinsic Q-factor as described by Villanueva and Schmid.[26] The
figure was created by fitting the intrinsic Q-factors of different SiN resonators obtained from the litera-
ture. As can be seen from figure 2.1, and what was earlier implied, is that the volume loss dominates for
larger values of the thickness of the resonator, while the surface loss dominates below thicknesses of
about 200 nm. The surface loss in this equation is essentially the same as the one used by Ghadimi et
al. shown in equation 2.2, but the inclusion of the volume loss allows for a more accurate calculation of
the intrinsic Q-factor for larger thicknesses. As has been mentioned before, the intrinsic Q-factor is ma-
terial dependent and so the values shown in equation 2.9 are only valid for silicon nitride structures.[26]

As the surface loss shown in equation 2.9 is thickness dependent, we are left with a similar issue as
was presented for the dissipation dilution factor: the thickness isn’t the same throughout the resonator
due to the channel. One way of solving this could be to cut up the energy loss and the accompanying
intrinsic Q-factor such that for each section the thickness is the same, which was what was done in
an earlier version of the mechanical Q-factor calculation, but a more generalized and elegant solution
is preferred. The solution presents itself through a paper by Yasumura et al. [25] They describe the
volume loss as Quoume = E1/E2, showing its material dependence in mathematical form, as the two
components of the Young’s modulus are material dependent, and the surface loss which they describe
as being caused by a thin layer of contaminates or impurities, similarly how it is described by Villanueva
and Schmid. [25] [26] Furthermore, they provide a more rigorous mathematical formulation described
in equation 2.10, which has been adapted to present itin a complete form. The volume loss is described
in a similar way, but with the energy losses taken over the volume instead. This leads to the case where
the strain can be taken out of the equation which leads to the equation Q,;yme = E1/E>-
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Equation 2.10 is what could lead to the more familiar description of the surface loss found in equation 2.9
which once again shows that the Qg f4c. is thickness dependent, with the assumption that the width
greatly exceeds the thickness of the resonator. [25] This isn’t necessarily the case for the designs
presented here due to the inclusion of the channel. Solving equation 2.10 is straightforward as the
groundwork already exists in the form of the Mechanical Q-factor presented in section 2.1. Once again,
the equation in Yasumura et al. was solved with the use of Euler-Bernoulli beam theory but here the
entire three-dimensional strain will be considered to account for the channel. Equation 2.10 introduces
a new E3 which, together with the integral of AWy, rq4c., is applicable to the surface only. This leads
equation 2.10 to be rewritten as equation 2.12, that introduces &, which is a variable that symbolizes
a thin layer on the surface of the resonator. As a consequence, the volume integral is replaced by a
surface integral, taken over the exposed boundaries of the resonator.
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Finally, equation 2.12 has two unknown variables that need to be solved in order to make the equation
usable in COMSOL. These variables are § and E5 which can be found with the help of the paper by
Villanueva and Schmid. As has been mentioned before, Villanueva and Schmid created an experimen-
tally retrieved equation for the Qgyyrace Which is Qgyrrece = 6E10t.[26] This equation can be equated

to equation 2.11 obtained from the paper by Yasumura et al. to get 6E10t = 6;25. Solving this equa-
2

tion leads to §E5 =~ 0.69444 which is substituted in equation 2.12 to result in equation 2.13. There
is some nuance to use equation 2.13 in COMSOL. Due to how COMSOL calculates displacement of
eigenmodes, it has proven to be necessary to select surfaces based on their orientation instead of just
simply selecting every surface in order to get accurate results. This means that, as most surfaces on the
resonator model are aligned to a specific axis, only strains applicable to that axis are calculated instead
of the complete three-dimensional strain. Realistically, strain that isn’t applicable to a certain surface
should be zero but this isn’t necessarily the case in COMSOL. This is why it proved to be necessary
to specify the surface and the applicable strain for that surface. Unfortunately, it has also proven to
be very cumbersome to do this automatically for each exposed surface due to how geometry changes
during the optimization. That's why it has been decided to only consider surfaces in the XY-plane which
according to limited tests should account for about 90-95% of all energy losses at the surface. These
surfaces, which are basically the top and bottom of the resonator and those of the channel itself, as
shown in figure 2.2, can be easily selected by using a box selection in COMSOL. Also, given that the
equation has a very general form, it should also be mentioned that it is possible for the channel to take
on any shape if so desired. How COMSOL reacts to for example a circular channel with regard to strain
isn’'t entirely clear however, but it seems likely that as long as the strains that are being calculated do
in fact also exist, there shouldn’t be a problem with regard to errors.
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.

Figure 2.2: This figure highlights in yellow the surfaces that are generally used to calculate Qs face Which are the top and bottom
surfaces of the resonator and that of the channel.

Another issue is that it is not immediately clear whether or not the walls of the channel itself should also
count towards the surface energy loss as these surfaces are technically not exposed during operation
of the resonator, as during operation the resonator is filled with a fluid. To look into the effect that the
channel walls have on the Qgyrrace, it is compared with the Qg rqce Without taking the channel walls
into account. The values can be found in table D.2 which is located in the appendix and are calculated
using equation 2.13. For the tapered beam design, one of the two main models discussed in chapter
3, these values are very comparable.

Finally, the validation of the mechanical Q-factor calculation is discussed. Validating the calculation
proved very difficult as performing experiments was not within the scope of this thesis. After having
considered a couple of resonators to be used as a way of validating the calculation, none of the models
created based on these resonators quite match their experimental values. The resonators that were
considered were the three main resonators from Manalis et al., [44],[21],[37] and the resonator by
Craighead et al. [3] The Q-factors of the Manalis et al. resonators match up the best, with at most
about a 50% difference. The biggest problem with these resonators is that they are made from silicon
instead of silicon nitride. This means that the values for Q,ume @Nd Qgyrrace are not the same as the
ones presented before as those values are calculated from silicon nitride resonators. Itis plausible that
these values aren’t that different for silicon than silicon nitride but that is pure speculation. The model
based on the resonator by Craighead et al. had a different problem. The material of this resonator is
silicon nitride but the Q-factor calculated from it was off by about an order of magnitude. One possible
explanation is that in contrast to the resonators considered here, the clamping losses for this resonator
aren’t negligible as Qciamping i [38] Here, | is the length of the resonator which is 20 um, and w is
the width of the resonator which varies between 0.65 um and 2.5 um. [3] This means that validating the
mechanical Q-factor equation isn’t possible through other suspended microchannel resonators which
only leaves validating the equation through other resonators that do contain phononic crystals. This is
done for the uniform unit cell design by Ghadimi et al. The Q-factor for this recreated model was about
1E8 which is within the expected values judging from graph 3G from the paper by Ghadimi et al. [5]

2.3. The Fluid-loss Q-factor

Lastly, the Q-factor attributed to fluid-loss or Qf;,;4 Should also be considered. As has been mentioned
before, Manalis et al. have studied this Q-factor extensively and confirmed that for their suspended
nanomechanical resonators, the total Q-factor is largely unchanged or even slightly increased for res-
onators filled with water. [21] As experiments are not an option for this work, the determination of
fluid-loss Q-factor will be based on the equations developed by the Manalis group. As equation 1.6
mentioned in chapter 1 is only accurate for cantilevers excited in their fundamental mode, a more gen-
eral equation will be considered.
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The equation used to calculate the fluid-loss Q-factor is equation 2.14 which is the rate of strain tensor
of the fluid channel based on the velocity field. [19] This equation needs to be substituted in equation
2.15 to calculate the dissipated energy due to the fluid. Beta, which is the Reynolds number, can be
calculated separately after which equation 2.15 can be used in COMSOL to calculate the dissipated
energy by integrating it over the channel volume. This way of calculating the dissipated energy can be
considered because the only relevant parameters the equation needs from COMSOL is the modeshape
and the deflection. These are automatically calculated during the eigenfrequency analysis as already
performed to calculate the mechanical Q-factor. Finally, the dissipated energy can be substituted in
equation 2.16 to calculate the Qf;,,;4 Of the system which uses the total kinetic energy of the resonator
as the stored energy of the system. All of these equations have been obtained from [19]. These
equations also form the basis of equation 1.6 as this equation is essentially a simplified form, accurate
only for cantilever resonator excited in the fundamental resonance frequency.

Equation 2.14 only considers the so-called "On-axis flow” which is the case when the channel is placed
on the neutral or symmetry axis of the resonator. [19] A more elaborate equation exists that takes
the energy dissipation into account when the channel is placed off-axis but this will be neglected here
and it will be assumed that the channel is indeed placed on the neutral axis. In a separate paper the
mode dependence is also investigated. [1] For the on-axis problem however, the mode dependence is
restricted to the deflection and Reynolds number only, something that is easily calculated by COMSOL.
There’s also something to be said about the defect eigenmode. As Sader et al. notes, one of the
reasons, and the only reason in the case of the on-axis problem, that the Q4 is lower for higher
order modes is that the deflection is also higher for these modes. [1] However, due to soft-clamping,
the curvature and so also the deflection of the defect eigenmode is severely reduced. [5] [45] It could
imply that the fluid-loss Q-factor could also be higher for the defect eigenmode compared to other
eigenmodes of similar frequency. However, looking into this matter is beyond the scope of this thesis.
Sader et al. also investigated the dependence of the Qf;,,;4 On the poisson’s ratio. [2] This dependency
is however only the case when the channel is placed off-axis, either by fabrication errors or on purpose,
but again, here the assumption is made that the channel is placed on-axis.

Lastly, there is also something to be said about the energy dissipation due to the fluid at the side walls
of the channel. This energy dissipation is neglected in equation 2.14, but the appendix of [19] also
contains the complete velocity field that takes it into account. This energy dissipation could potentially
be more significant than in the cantilever resonators by Manalis et al. as the channel width to channel
height ratio is less in the resonators that are considered here. Specifically, 700 nm to 400 nm in the
worst case scenario versus 1400 nm to 400 nm in the case of the resonator by Manalis et al developed
in [37]. For the sake of completeness, the complete velocity field was derived into a rate of strain tensor
and used on the resonators discussed in chapter 3. When compared with the results from equation
2.14, the difference in energy dissipation is less than one percent which means the dissipation at the
side walls can be safely neglected.

To validate the fluid-loss Q-factor, and the method with which they can be calculated, the resonator
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Figure 2.3: An image of the COMSOL model replicating the resonator from [44]. This model is used to calculate the numerical
Qfiuia- Its fundamental mode is shown.

Analytical Qfyia  Numerical Qfyiq

Manalis et al. (2007) [44] 1.313-10° 1.072-10°
Manalis et al. (2010) [21] 8.172:10° 7.100-108
Manalis et al. (2014) [37] 8.760-10° 6.838-10°

Table 2.1: This table compares the analytically calculated Q4 Using equation 1.6 with the numerically calculated Qfy,;4 based
on equation 2.16 and a corresponding COMSOL model. As can be seen, the values are very comparable.

designs by Manalis et al. have been replicated in COMSOL on which equation 2.15 have been used
and compared with the analytical result based on equation 1.6. The models work as follows: First,
the cantilevers are replicated using the dimensions provided in the corresponding papers. Second,
the channel is filled with a mesh and the channel domain, which is simulated as a solid, is given the
density of water. The purpose of this is to simulate the mass and eigenfrequency change only, just so
that these values can be used to calculate the Qf,;4. The result of these simulations is summarized in
table 2.1, with an image of one of the resonator models provided in figure 2.3. As can be seen from the
table, the results match each other quite well with the models from 2007 and 2014 having about 18 %
and 22 % difference between the analytical calculation and the numerical one respectively. The model
of the resonator from 2010 has a smaller difference of about 13 %. With these results it should be
reasonable to expect that the numerical Q-factor calculation will give a good result for the resonators
discussed in chapter 3 as well.



Resonator Design and Optimization

In this chapter, the designs and optimization of the resonators will be discussed. There are two types
of models that are considered here and whose design variables are optimized using machine learning
through Bayesian optimization. The optimization is performed in two parts. First, the Qf product will be
optimized to see if the threshold value of 6-101? Hz can be reached and to see how the individual design
variables depend on each other in the case of the tapered beam model. The Qf product optimization
is also performed on the so-called MDV model or simply, the multi design variable model which has
11 design variables. The optimization as considered here then, is performed on two different models.
Afterwards, the MDV model is also optimized for the mass sensitivity in two different variants, a 1 um
thickness variant and a 200 nm thickness variant. This for the sake of showing what is possible at a
smaller scale. The appendix also contains some alternative models like the uniform unit cell model and
smaller variants of the MDV and tapered beam models.

3.1. COMSOL Modelling

First, in this section the COMSOL models and optimization processing will be elaborated further. The
models discussed in this chapter consist of full 3d elements which use the solid mechanics module
in COMSOL. The resonators here also use both the stationary study step and the eigenfrequency
analysis, as is necessary to account for the pre-stressed nature of the designs. Only half of a resonator
is simulated which is valid as the resonators are supposed to be completely symmetric. This massively
cuts down on the number of degrees of freedom and so also computation time. For this purpose, a
symmetry condition is applied at the center defect boundary. On the other end which connects the
resonator to the substrate, a fixed constraint is applied. There is no distinction between the two study
steps as far as the applied conditions are concerned. The eigenfrequency analysis uses the region
option which means that the range of frequencies in which the solver searches for eigenfrequencies is
decided upon by manually selecting the lower and upper boundaries of this region. For the material
of the resonator the standard silicon nitride material was used with E = 250 MPa, p = 3100kg/m3
and v= 0.23. These are the Young’'s modulus, density and Poisson’s ratio respectively. The applied
initial stress is 1300 MPa and is applied on every part of the resonator. All optimized models also
simultaneously calculate the mechanical Q-factor and the Q4 to calculate the total Q-factor, so that
the Bayesian optimization uses the total Q-factor for the optimization which accounts for fluidic losses.
This is especially important as the MDV model also includes design variables that could directly impact
the Qfuiq, such as the tapering of the channel and its height. As has been mentioned in chapter 2, it
does this by filling the channel with a domain which has the density of water to simulate the frequency
shift due to the fluid inside the channel. This domain can then be used to calculate the energy dissipation
due to the fluid from equation 2.15 which uses the deflection and modeshape to perform this.

27
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Figure 3.1: A figure displaying the boundary conditions of the COMSOL model. These boundary conditions are the same for
every model considered. The surfaces of these boundary conditions are selected with the help of box selections.

Most of the processing on these models is done in Matlab with simulation done in COMSOL. This is
necessary to perform the optimization as every iteration has to be handled completely automatically.
Matlab is then able to collect the variables of interest like the Q-factor, eigenfrequency and mass sen-
sitivity and put them in a separate Excel file to save the optimization history. This is very useful as the
Bayesian optimization only saves the optimized parameter and the normalized design variables. The
Excel worksheet can then be used later for analysis and be used for figures. Matlab is also responsible
for calculating the geometry of the tapered beam design and the MDV model. Matlab calculates every
point necessary for the polygon that COMSOL uses to determine the geometry of the resonator. It does
this in conjunction with the relevant design variables of that specific model.

Another important part of the processing in Matlab is that the code has to be able to select the eigen-
frequency of the defect mode reliably to be able to calculate the Q-factor of the correct eigenmode. To
do this, COMSOL calculates the deflection of the resonator at the center defect for every eigenmode
by selecting a point at that location and then determines the one that has the largest deflection. The
eigenmode with the largest deflection is the defect eigenmode. To ensure that the right point, surface
or domain is selected for their specific purpose, box selections are used. This is done because other-
wise COMSOL would rely on the number that is assigned to that specific point or surface which may
vary between optimizations. Box selections in COMSOL depend on the x, y and z coordinates that are
attributed to them. Box selections are also used to select the surfaces for the fixed constraint and the
symmetry condition and to select the surfaces necessary to calculate the dissipated energy due to the
exposed surfaces from equation 2.13 for the same reasons as mentioned above. In case of the latter,
the individual box selections are also summed into cumulative selection so that the complete surface
integral can be calculated at once.

Most of the COMSOL simulations are performed on one of the research clusters of the TU Delft. This
proved to be necessary as the models are very memory intensive because of the large number of
degrees of freedom necessary, namely on the order of several million, to model the designs properly.
The individual simulations generally required more than 100 GB of RAM and used four processors
on one node. As the optimizations also take a long amount of time, a couple of days for about 100
iterations, it was also a matter of convenience to be able to run the optimizations on the cluster. As
mentioned in chapter 1, the specific version of Bayesian optimization used in this thesis is GPyopt. [7]
GPyopt is python based, and as such the optimization algorithm itself runs in python. The python
script calls on the Matlab code used for each model. The python script also contains information
such as the design variables and whether they are either continuous variables or discrete. Before
the optimization can be performed, the convergence of the Q-factor needs to be discussed first to
ensure good simulation results. It is also important to strike a good balance between computation time
and accuracy of the result as the machine learning optimizations involve a lot of iterations required.
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The convergence will be checked of both the 1 um thickness variant and the 200 nm thickness variant
of the tapered beam model. To illustrate what these models look like, see figure 3.6 which provides
an overview of the relevant dimensions of the model and figure 3.15 to see the difference between the
two size variants. For the sake of brevity however, the convergence of the 200 nm thickness variant
can be found in the appendix. As these variants are shared with the MDV model, the assumption will
be made that the results are valid for those models as well.

There are two variables of interest for the converge checks. First is the minimum element size whose
value directly translates in the amount of elements allocated for a given geometry. The second is the
ratio of elements allocated in the length direction of the resonator. As the resonator is very long, the
idea behind this variable is to reduce the number of elements in this direction while still having small
elements in the width and height direction of the resonator. Because of the length of the resonator,
reducing this variable will cut into the number of degrees of freedom quite dramatically and thereby
also reducing computation time a lot as well. To illustrate the convergence checks for each variant, two
surface plots are presented for each. The surface plots have the two variables on the x and y axes and
the value of interest on the z-axis. The color indicates the number of degrees of freedom.
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Figure 3.2: The convergence check plot of the Q-factor. The model is the 1 um thickness variant of the tapered beam model.

For the 1 um thickness variant it can be said judging from figure 3.3, which displays the computation
time, that it won’t be much of an issue for this model as the longest computation time is about 700
seconds. Figure 3.2 shows the mechanical Q-factor of the convergence check across the two variables
and as can be seen the Q-factor stays remarkably consistent. The Q-factor only drops significantly
when the length-wise element ratio becomes really small, either 0.1 or 0.2 meaning only about 10%
and 20% of the number of elements are allocated in the length-wise direction compared to the other two
directions. Effectively, this means that the convergence of the Q-factor is very good. From this, it would
be quite easy to choose the two variables, which were chosen to be 0.5 um for the minimum element
size and 0.25 as the length-wise element ratio. The latter cuts the number of degrees of freedom by
about three quarters while the computation time is about 300 seconds. During optimization it is likely
that the computation time will change, especially in the case of the MDV model as it seems very likely
that computation time will scale with the number of unit cells. Another thing to mention is the case when
the channel is filled which would naturally also increase computation time and degrees of freedom as
elements would need to be allocated to this space as well. This is not done for the models used to
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Figure 3.3: The convergence check plot of the computation time. The model is the 1 um thickness variant of the tapered beam
model.

calculate the convergence checks. It should also be mentioned that for smaller values of the minimum
element size for both the 1 um thickness variant and the 200 nm thickness variant, the simulations fails
as COMSOL runs out of memory, even when running on a cluster node that has 256 GB of RAM.

There is however the case that when the element size is too big, COMSOL can’t model the resonator
properly anymore and will output warnings when this is the case as the minimum element size is bigger
than the size of a specific feature of the geometry COMSOL tries to mesh. These warnings do not affect
whether the simulation will run or not, so extra care to prevent this must be taken. One point of concern
is however what would happen if the wings have their width decreased as is possible in the case of the
MDV model. It could possibly mean that in that case the convergence wouldn’t be as good. For that
reason a ratio of 0.25 is chosen instead of going for even lower values of the length-wise element ratio
and using the smallest value of the minimum element size, 0.5 um, as this does not have a negative
impact on computation time to have a nice balance between convergence and computation time.

To illustrate what the mesh of these models look like, figures 3.4 and 3.5 show the mesh of the 1
um thickness variant of one unit cell and its connection to another. Both figures have the minimum
element size as 0.5 um which is also the value used for the optimizations of this variant. The difference
is the length-wise element ratio. Figure 3.4 has a ratio of one and 3.4 has a ratio of 0.25, the value
ultimately used for the optimizations. As can be seen, the effect of the length-wise element ratio is
that the elements are somewhat predictably stretched out in the length-wise direction although it also
appears that there is a slight reduction in the number of elements in the width direction in the widest
part of the unit cell.
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Figure 3.4: Animage of an unit cell of the 1 um thickness variant Figure 3.5: Animage of an unit cell of the 1 um thickness variant
which shows the mesh of the model. In this figure the length- which shows the mesh of the model. In this figure the length-
wise element ratio is set to one. wise element ratio is set to 0.25.

3.2. Optimizing the Qf Product

The Bayesian optimization of the Qf product of the tapered beam model consists of 100 iterations which
include 20 initial iterations whose design variables are placed randomly. The MDV model has 150 initial
iterations and 847 iterations in total. This uneven number is due to the algorithm being ran for as long
as possible until time ran out. As this model has more design variables, it also needs more initial
points to fill the design space. It should be mentioned that for the final optimized results of all models
shown in this section a complete resonator model was made and simulated. This is done in order
to check the correctness of the modeshape as calculated for one half of the resonator and to check
the values of the optimization result for those models as well. Both the values and the modeshape
given by the optimization algorithm appear to be correct and line up perfectly between the values and
modeshapes of the full resonator models. Additionally, these full resonator models were also used for
the corresponding figures. In this section, the two models optimized for the Qf product will be introduced
sequentially.

3.2.1. The Tapered Beam Model

The tapered beam model uses strain engineering to increase the stress of the resonator locally by
tapering the resonator towards the center. This should increase the dissipation dilution effect and so
also increase the Q-factor, as reported by Ghadimi et al. [5] It should be mentioned that both this model
and the uniform unit cell model are based on the resonators by Ghadimi et al. [5] An overview of the
tapered beam design can be seen in figure 3.6 which also shows the design variables of the model
and the microfluidic channel, indicated in blue. Figure A gives a top view of the resonator and figure
B provides a cross-sectional view with relevant dimensions indicated. The tapered beam model has
three design variables which are the length of the defect and two design variables that determine the
tapering of the beam: alpha and i,. The tapering is determined by the width of each unit cell as shown
in the equation in figure 3.6. Concretely, alpha determines the amount of tapering while i, determines
at which unit cell the tapering starts. The length of this model is fixed to 4 mm in total as are the number
of unit cells at 15. The tapered beam model as shown here and the MDV model as shown in section
3.2.2 have cross-sectional dimensions that try to aim to be reasonable with a view on manufacturability.
Moreover, the models also use some of the dimensions of the best performing resonator from [37] by
Manalis et al. like the channel height in the case of the tapered beam model, the channel width and the
thickness of the resonator for both models as a way of grounding this manufacturability to some basis
as it can’t be conclusively tested. The resonator width as indicated in figure 3.6 is the minimum fixed
width at the center defect. Moreover, the tapered beam model has a strictly straight channel with the
same dimensions as indicated.

The optimization results of the Qf product of the tapered beam model are presented together with the
best performing suspended microchannel resonator in table 3.1. It lists the total Q-factor, which is
the inverse summation of the Qechanicar @nd the Qyiq, the resonance frequency, the Qf product,
the effective mass and the mass sensitivity. As was said in the introduction, the resonator designs
presented here have a total Q-factor of about two orders of magnitude higher than that of the best
performing conventional design. The tapered beam model has a total Q-factor of 3.88:10° versus 15000
of the design by Manalis et al. Likewise, the Qf product is also two orders of magnitude higher compared
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Figure 3.6: An overview of the tapered beam design with its design variables indicated. The channel is also indicated in blue.
The formula in the figure is used to calculate the tapering.

to the highest performing conventional design. This puts the tapered beam model in the range where
performing quantum mechanical experiments at room temperature is possible, as the optimized result
reaches the threshold of 6- 1012 Hz. The resonance frequency of the tapered beam model is due to the
number of unit cells used located at 1.56 MHz and is about half of that of the resonator by Manalis et
al. The tapered beam model was also optimized for 25 unit cells to approximate the frequency range of
the Manalis design but this caused Qf product to decrease to 5.8:10%2 Hz which is below the threshold
for quantum mechanical experiments at room temperature.

Total Q-factor Freq. Qf product E.mass Mass sens.

[-] [MHz] [Hz] [pa] [%]
Tapered beam model 3.88-10° 1.56 6.1-1012 1519 10.83
Manalis (2014) [37] 15000 2.89 4.3-101° 92.3 9.49

Table 3.1: A table of the optimization results of the Qf product of the tapered beam design. It lists the total Q-factor, resonance
frequency, Qf product, effective mass and the mass sensitivity of the models that have been optimized.

The next parameter of interest is the effective mass. The effective mass is important for the determi-
nation of the mass sensitivity. As can be seen in table 3.2, the tapered beam model has an effective
mass of more than an order of magnitude higher than the design by Manalis et al. This can be easily
explained due to the length of these models, as they are 4 mm in length versus that of the Manalis’
design with a length of 22.5 um while the cross-sectional dimensions are relatively comparable. The
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effective mass for these models is comparatively lower due to the localization of the eigenshape as a
consequence of soft-clamping which also localizes the deflection as a whole. This results in an effec-
tive mass that’s approximately 5% of the total mass for these resonator models. For cantilever beams,
the effective mass is about 25% of the total mass according to the literature. [8] As the mass sensitivity
depends on the effective mass according to equation 1.3, this enables a high mass sensitivity for res-
onators that are technically much heavier. Lastly, the mass sensitivity itself. As this section is about the
models that are optimized for the Qf product, these values will be improved further in section 3.3 when
the mass sensitivity is optimized. For the tapered beam model the mass sensitivity is comparable that
of the design by Manalis et al. albeit slightly higher. As the mass sensitivity depends on Qf? and the
tapered beam model has a relatively low resonance frequency.

qurface Qmechanical Qfluid Total Q-factor
Tapered beam model 53306 4.21-10°  5.03-107 3.88:10°
Manalis (2014) [37] - - 6.8-10° 15000

Table 3.2: A table of the optimization results of the Qf product of the tapered beam design. It lists the different Q-factors of the
models that have been optimized.

Table 3.2 lists the Qsyrraces the Qmechanical» Qriuia and the total Q-factor. Important to note is that the
Qruia Causes a degradation in the total Q-factor for the tapered beam model. As far as the Qsyrfqce
is concerned, for the tapered beam model and the MDV model in this section, it plays a much smaller
role for the determination of the Q;pn¢rinsic, @s the Qsyrrace is Mmuch larger at about 55000 on average
than the Q,1ume Which is 28000 according to the literature. [26]
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Figure 3.7: The scatter plot of the tapered beam model which shows the design space. The optimum Qf product is indicated in
cyan.

Next, the optimization history will be discussed. Figure 3.7 displays a 3D scatter plot of the tapered
beam model with the three design variables mapped to the axes. Each dot is an individual iteration and
the color indicates the Qf product. Yellow indicates a high Qf product, red a low one. The final optimum
point is also indicated in cyan. The algorithm allocates a lot of points near the optimum point. It can
be seen that the algorithm intermittently allocates points away from the optimum point in an effort to
look for global optima instead of local optima which it is more likely to find. These points appear to be
sparse though, as the algorithm might have sectioned off values of alpha that are higher than 0.25 as Qf
products are low for this region. A lot of the points in this region are also randomly allocated as part of
the initial iterations. The code is instead more interested in varying alpha as little as possible and vary
the defect length and especially i, instead. Note that alpha indicates the degree of tapering, with 0.1
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Figure 3.8: The optimization history of the tapered beam model. It provides an overview of the optimization history of the Qf
product, with the optima indicated in red, the Qfyiq, the Qmechanicar, the resonance frequency and the distance between the
best optima per iteration.

as the highest amount of tapering possible for the algorithm. Higher degrees of tapering would likely
increase the stress at the center of the resonator and so contribute to a higher mechanical Q-factor.

Figure 3.8 contains the optimization history of the tapered beam model. The first graph maps the
Qf product to the iterations with the optima indicated in red. As can been seen, the algorithm finds
new optima very quickly after it has simulated the 20 initial points. The final optimum point is found
shortly afterwards. The graph next to it tracks the mechanical Q-factor and as can be seen, a high
mechanical Q-factor can be quite indicative of also being an optimized point. The second graph in the
second column is the resonance frequency of the defect mode. The frequency remains quite consistent
throughout the optimization. As has been said earlier, this is likely due to design space for this model
as it likely doesn’t allow for a lot of variance in the frequency. The second graph of the first column is
the Qfuiq- Here the dependence of the Qf product can be seen as well, as a high Q4 is necessary
so that it does not impact the total Q-factor. Finally, the third graph in the first column indicates the
distance of the design variables from the latest optimum point at that time. This graph makes it clear
that the new optima the algorithm finds at around iteration number 20 are local optima, as the distance
between the points is small. This is of course visually confirmed by figure 3.7. The final optima appears
to have same distance between its previous optima as judged from figure C, indicating that this could be
a more global optimum. Finally, the algorithm also appears to look for more global optima after it finds
the final optimum point as the distance between the points is much larger than before. It is however
unable to find any such global optima. The geometry and the defect eigenmode of the tapered beam
model is shown in figures 3.9 and 3.10, respectively. Figure 3.9 also shows the microfluidic channel in
blue. The modeshape clearly displays the soft-clamping effect as the vibration has completely damped
out near the boundaries. The deflection shown is arbitrary as COMSOL has normalized the deflection.
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Figure 3.9: A figure of the geometry of the tapered beam model optimized for the Qf product. The microfluidic channel is indicated
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Figure 3.10: A figure of the modeshape of the optimized tapered beam model.

3.2.2. The Multi Variable Model

The second and last model to be introduced is the multi design variable model, or MDV model. This
model tries to open up the design space by adding more design variables to potentially allow for an even
better Qf product and mass sensitivity. This could potentially also allow for better strain engineering
as the strain can be more precisely determined due to the increased design space which allows for
more variable geometry. As this model is the same for both the Qf product optimization and the mass
sensitivity optimization, the model tries to strike a balance to provide both optimizations with interesting
design variables. The MDV model is shown in figure 3.11 with the design variables indicated and the
channel colored blue. First, The MDV model does away with the equation to taper the resonator as
shown in figure 3.6 and replaces it with five design variables that determine the minimum width at that
specific location. The minimum width nodes are placed evenly away from each other. The example
as shown gives an idea of what kind of resonator shapes can be achieved using the MDV model. This
specific example is for visualization purposes only. The length of the defect is once again also a design
variable and now the width and the length of the wings are also design variables. Contrary to the
tapered beam model, the MDV model does allow for the number of unit cells to be varied, from 15 unit
cells to 50 unit cells. This design variable is mainly included for the fact that the resonance frequency
of the defect mode tends to increase with the number of unit cells. [5] As the mass sensitivity also
scales with Qf2, this could allow for a better mass sensitivity. As indicated in figure 3.11, this model
also allows for a tapered channel, one that approximately follows the shape of the resonator overall.
This model then also includes a design variable to scale the tapering of the channel all the way down
to it being completely straight. Finally, the MDV model also includes a design variable that allows for
varying the height of the channel from 150 nm to 700 nm in height as indicated in 3.11 B. The MDV
model as shown here shares the cross-sectional dimensions with the tapered beam model other than
the channel height.
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Figure 3.11: A figure showing an overview of the MDV model and its design variables. The channel is also indicated in blue.
The tapering shape of the channel and that of the resonator are done for visualization purposes only.

Total Q-factor Freq. Qf product E.mass Mass sens.

[ [MHz]  [HZ] [pal [7=]
MDYV model 4.55-10° 1.74  7.90-10%? 1563 3.91
Tapered beam model 3.88-10° 1.56 6.1-101? 1519 10.83
Manalis (2014) [37] 15000 2.89 4.3-1010 92.3 9.49

Table 3.3: A table of the optimization results of the Qf product with both the MDV model and the tapered beam design. It lists the
total Q-factor, resonance frequency, Qf product, effective mass and the mass sensitivity of the models that have been optimized.

The optimization results of the MDV model optimized for the Qf product are shown in table 3.3, together
with the tapered beam model and the best conventional design by Manalis et al. As can be seen, the
Q-factor and the resonance frequency of the MDV model are even higher than that of the tapered beam
model. This results in an even higher Qf product of 7.90-102 Hz which is an increase of about 30%. As
has been mentioned before, the MDV model contains design variables that also allow more variance
in the resonance frequency, which means that frequency can also be higher compared to the tapered
beam model which would directly result in a higher Qf product. The number of unit cells however, one
of the design variables directly responsible for a higher resonance frequency as noted by Ghadimi et
al., is only 15 for the optimized model. [5] The explanation of this higher total Q-factor is given in figure
3.4 by way of an increased Qmechanicar @nd @ much higher Qf;,,;4. The reason why the Q4 Of the
MDV model is so much higher than the tapered beam model can be explained by the fact that the
height of the channel for the tapered beam model is much bigger than that of the MDV model, 400 nm
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in height vs 150 nm in height for the optimized result of the MDV model. As the MDV model allows
for a smaller channel height, the Q4 is two orders of magnitude higher. This is the case as both
the Reynolds’ number and the energy dissipation of the fluid scale with the channel height. [43] This
causes the impact of the Qf,,,;4 on the total Q-factor to be negligible in the case of the MDV model.

qurface Qmechanical Qfluid Total Q-factor

MDV model 56223 4.55-10° 5.07-10° 4.55-10°
Tapered beam model 53306 4.21-10¢  5.03-107 3.88-10°
Manalis (2014) [37] - - 6.8-10° 15000

Table 3.4: A table of the optimization results of the Qf product with both the MDV model and the tapered beam design. It lists
the different Q-factors of the models that have been optimized.

Finally, the optimization history of the MDV model is shown in figure 3.12. As mentioned earlier, the
MDYV model has 847 iterations as it also has more design variables than the tapered beam model. As
can be seen in figure A, the algorithm needs substantially longer to find the final optima due to the
number of design variables. Contrary to the tapered beam design, the mechanical Q-factor of the initial
points is quite low, as during this period it never finds Q-factor higher than 2 million. There also appears
to be a substantial jump in mechanical Q-factor for the optimum point at around iteration 250. It also
seems that this jump in mechanical Q-factor is mirrored in the Qy;,,;4 as it also jumps to about two orders
of magnitude higher at the around the same iteration. As far as the resonance frequency is concerned,
shown in figure E, the range of frequencies is now a lot larger compared to the tapered beam model.
However, as was also shown in table 3.3, the frequency of the MDV model has a similar value than
that of the tapered beam model. As it is the Qf product that gets optimized the algorithm gives equal
importance to the Q-factor and the resonance frequency. It seems likely that for the iterations that have
a higher frequency, this comes at the cost of a lower Q-factor. Large enough that it also results in a
lower Qf product. Drawing conclusions from figure C is a bit harder, as the distance between optima
doesn’t become that small. However, this could indicate that the new optima the algorithm keeps finding
are in fact global optima as the distance between optima is substantial.
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Figure 3.12: The optimization history of the MDV model optimized for the Qf product.

The geometry and the modeshape of the optimized MDV model is shown in figures 3.13 and 3.14. The
geometry of the MDV model optimized for the Qf product is very similar to that of the tapered beam
mode in both the number of unit cells, 15, and the shape of the tapering as well. The MDV model then,
seems to achieve its increase in Qf product from the optimization of the unit cells and reducing the
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height of the channel to 150 nm which increased the Q4 to such an extend that it does not impact
the mechanical Q-factor negatively anymore. The appendix contains a scatter plot that displays the
relation between Qf;,,;4 and two "channel variables”, the ratio of the tapering of the channel and the
channel height. The modeshape as can be seen in figure 3.14, is virtually identical to that of the tapered
beam model shown in figure 3.10.
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Figure 3.13: A figure of the geometry of the MDV model optimized for the Qf product. The microfluidic channel is indicated in
blue. The length has been scaled down for presentation purposes to 1:20.
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Figure 3.14: A figure of the modeshape of the MDV model optimized for the Qf product. Note its similarity to the modeshape of
the tapered beam model.

3.3. Optimizing the Mass Sensitivity

Next, the mass sensitivity will be optimized. For this optimization only the MDV model shown in figure
3.11 will be considered. However, for this section the 200 nm thickness variant will also be considered
in addition to the 1 um thickness version as has been shown in the preceding section. The two variants
are shown in figure 3.15 and as can be seen, the 200 nm thickness variant does not have the design
variable to vary the height of the channel. This is because the height of the resonator is already as small
as it is, so it was decided to make it a constant value of 100 nm. This means that the 1 um thickness
variant has 11 design variables but the 200 nm thickness variant only has 10 design variables. To
avoid confusion, the 1 um thickness variant and the 200 nm thickness variant of the MDV model will
be referred as such from here on.

The optimization results of the mass sensitivity are shown in table 3.5. As can be seen, both variants
offers more than an order of magnitude increase in mass sensitivity compared to the resonator by
Manalis et al. As the mass sensitivity as defined by equation 1.3 scales with Qf?, the emphasis on the
Q-factor is subdued and as a result has dropped significantly compared to the results of the optimization
of the Qf product from table 3.3. With an increased importance the resonance frequency is now 8 times
as high as it was for the Qf optimization in the case of the 1 um thickness variant. Likewise the effective
mass of the MDV model is now a third compared to the MDV model when it was optimized for the Qf
product. This is likely due to the increased localization of the eigenmode as the model here has 50 unit
cells. This also shows the increased importance on resonance frequency. Consequently, as a result
of the significant drop in Q-factor, the 1 um thickness variant no longer has a Qf product higher than
6 - 1012 Hz which is the minimum Qf product necessary to perform quantum mechanical experiments
at room temperature. There do exist intermediate optimization iteration results that do provide both
the minimum Qf product of 6 - 1012 Hz and the order of magnitude improvement of mass sensitivity
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compared to Manalis et al. (2014). Alternatively, the 200 nm thickness variant could be considered,
which has a Qf product of almost three orders of magnitude higher compared to the Manalis design
which means that it is safely above the quantum mechanical limit. In addition, the mass sensitivity of
the 200 nm thickness variant is also twice as high as that of the 1 um thickness variant.

1 um thickness variant 200 nm thickness variant
250 nm
Ay 50 nm
Channel 1000 nm e
Z N A NE—
~ 1500 hm 7 500 nm

Figure 3.15: A figure displaying the cross-sectional view of both the 1 um thickness variant and the 200 nm thickness variant.
Both variants are tapered and the corresponding dimensions are included in the figure. The variants are not to scale. In the
case of the MDV model, the thickness of the top and bottom walls can vary as a result of the design variable which changes the
height of the channel.

Mass sens. Total Q-factor Freq. Qf product E. mass

(7] [ [MHzZ]  [HZ] [pgl
1 um thickness variant 0.74 1.83-10° 10.96  2.0-10'2 564
200 nm thickness variant 0.34 6.89-10° 6.03 4.2-1013 30.6
Manalis (2014) [37] 9.49 15000 2.89 43100 923

Table 3.5: A table of the optimization results of the mass sensitivity. It lists the mass sensitivity, the total Q-factor, resonance
frequency, Qf product and the effective mass. The two variants listed are of the MDV model.

Figure 3.16 shows the optimization history of the 1 um thickness variant of the MDV model. As the MDV
model here is the same as the one considered for the Qf optimization, there are once again 150 initial
iterations with a total number of 820 iterations. When looked at figure 3.16, figure D, the optimization
history of the mechanical Q-factor confirms that the algorithm does not consider the mechanical Q-factor
to be that important as the history shows that the mechanical Q-factor never seems to reach 1.50-10°
which is only about a third of the Q-factor of the MDV model optimized for the Qf product. For the
resonance frequency shown in figure E, there seems to be a clear mean value of about 6 MHz whereas
this was not the case for the model optimized for the Qf product. Additionally, the frequency of the final
optimum is also one of the highest values, which clearly shows the dependency on the resonance
frequency for the mass sensitivity. Finally, the geometry and the modeshape of the optimized 1 um
thickness variant is shown in figures 3.17 and 3.18, respectively. Again, the 1 um thickness variant
has 50 unit cells instead of 15 compared to the models optimized for the Qf product. Most notably, as
shown in figure 3.18, the modeshape is of higher order and more localized compared to the other two
models as a result of the large number of unit cells. It should be mentioned that Ghadimi et al. have also
shown the increased localization of the modeshape as a result of the increased number of unit cells. [5]
The increased localization can be explained as each unit cell can contribute the the destruction of the
elastic waves in the resonator. As there is a greater number of unit cells, they are also placed closer
together which means that the wave will be damped out faster.
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Figure 3.16: The optimization history of the 1 um thickness variant optimized for mass sensitivity.
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Figure 3.17: A figure of the geometry of the 1 um thickness variant optimized for the mass sensitivity. The microfluidic channel
is indicated in blue. The length has been scaled down for presentation purposes to 1:20.
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Figure 3.18: The modeshape of the 1 um thickness variant optimized for the mass sensitivity. As can be seen, the modeshape
is more localized and of higher order compared to the MDV model optimized for the Qf product.

The optimization history of the 200 nm thickness variant can be seen in figure 3.19. Figure B, which
contains the Qfyiq, Shows similar values as the 1 um thickness variant, even though the channel of
the 200 nm thickness variant is smaller. Likewise the resonance frequency shown in figure C is also
of similar values compared to the 1 um thickness variant. This is likely due to the identical maximum
amount of unit cells and the same resonator length. The mechanical Q-factor is however an order of
magnitude higher. One key difference is however that the 1 um thickness variant converged much
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faster than the 200 nm thickness variant. Even when it has one extra design variable.

The geometry and modeshape of the 200 nm thickness variant can be seen in figures 3.20 and 3.21,
respectively. The 200 nm thickness variant has also 50 unit cells just like the 1 um thickness variant.
Interestingly enough, 200 nm thickness variant has a totally different tapering shape and a straight
channel as well. The modeshape of the 200 nm thickness variant appears to be even more localized
than the 1 um thickness variant. This could a result from the tapering shape as it appears that the mode-
shape damps out quickly when the resonator gets wider. Again, as the unit cells cause the modeshape
to be damped out, it makes sense that when these unit cells are close together this would also happens
faster. This is the case near the center of the resonator, exactly when the modeshape dampens out.
For example, this is not the case for the optimized 1 um thickness variant which remains very narrow
until about a milimeter removed from the center. This could explain the difference in modeshape be-
tween the two variants, even when they share the same amount of unit cells. The modeshape of the
200 nm thickness variant also appears to be of lower order than that of the 1 um thickness variant.
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Figure 3.19: The optimization history of the 200 nm thickness variant optimized for mass sensitivity.
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Figure 3.20: A figure of the geometry of the 200 nm thickness variant optimized for the mass sensitivity. The microfluidic channel
is indicated in blue. The length has been scaled down for presentation purposes to 1:20.
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Figure 3.21: The modeshape of the 200 nm thickness variant optimized for the mass sensitivity. As can be seen, the modeshape
is more localized and of higher order compared to the MDV model optimized for the Qf product.

3.4. Discussion and Recommendations

The optimization results of the Qf product show that the tapered beam model has a high enough Qf
product to enable quantum mechanical experiments at room temperature which is 6 - 1012 Hz. This
is two orders of magnitude higher compared to the SMR design by Manalis et al. [37] As has been
mentioned, there are other models that were optimized for the Qf product that perform better but for
practical reasons, this is the model that could be chosen to be fabricated. Alternatively, the MDV model
could be chosen instead to account for any possible losses in Qf product that may or may not be
encountered when the resonator is fabricated as the MDV model offers an even higher Qf product at
the same dimensions.

For the mass sensitivity, the 1 um thickness variant of the MDV model optimized for the mass sensitiv-
ity offers more than an order of magnitude improvement compared to the same Manalis et al. design,
from about 9.5 % to only 0.74 %. This translates to a mass sensitivity of about 23.7 zeptograms at

a bandwidth of 1000 Hz. This is the same bandwidth used by Manalis et al. [44][21][37] As has been
mentioned in the introduction, this is sufficient to replicate the study performed on immunoglobin M,
which requires a mass sensitivity of 100 kDa or 0.166 attograms (1.66-1071° grams). [32] It could even
be sufficient to measure -amylase measured in a different study with a mass of about 200 kDa. [6] A
mass sensitivity of about an order of magnitude lower could then be sufficient to measure this protein
individually. Neither of these proteins can be measured by conventional suspended microchannel res-
onators as they lack the mass sensitivity to do so. It would also mean that the designs presented here
could measure even smaller nanoparticles. A recurring kind of nanoparticle is one made from gold.
[32][6][37] In the study performed by Naik et al., these golden nanoparticles only have a diameter of
about 2.5 nm with a minimum mass of 480 kDa. [6] This would imply a mass sensitivity is needed of
about 48 kDa or about 80 zeptograms (8-:1072° grams) to distinguish the individual particles properly.
The 1 um thickness variant of the MDV model has the mass sensitivity to do this. For the sake of
comparison, Manalis et al. were able to measure golden nanoparticles with diameters of 10 nm, 15 nm
and 20 nm with their suspended microchannel resonator which required a mass sensitivity of about 1
attogram (1-10~'8 gram).

The 1 um thickness variant of the MDV model optimized for mass sensitivity does not exceed the Qf
product of 6 - 1012 Hz, however. In order to get both an order of magnitude improvement in mass
sensitivity and the high Qf product for Quantum mechanical experiments at room temperature, the 200
nm thickness variant could be considered instead which does have the Qf product necessary and offers
even better mass sensitivity, to only about 10.8 zeptograms (1.08-1072° grams) at a bandwidth of 1000
Hz, but fabrication could prove to be more difficult as it is significantly smaller than the 1 um thickness
variant. Achieving both the order of magnitude improvement in mass sensitivity and the necessary Qf
product for quantum mechanical experiments at room temperature for the 1 um thickness variant might
not be impossible however, as intermediate optimization results did indicate that this is possible. The
optimization algorithm was not set up to account for this however, and such, none of these iterations
were acknowledged as optima by the algorithm. The recommendation is then for future work to try and
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fabricate the MDV model, either optimized for mass sensitivity in which case the 1 um thickness variant
should be considered, or optimized for the Qf product depending on the usage of the resonator.

It is then important to confirm the findings made here experimentally as this was beyond the scope of
this work. Not only with regard to the total Q-factor and whether or not the defect eigenmode shows
up at the resonance frequency given by COMSOL but also with regard to the fluidics. For example, it
could be possible that the Q-factor could be higher when it is filled with a fluid, as shown by Manalis et
al. [43][21][37] The opposite could also be true however, as occurred with the resonator by Craighead
et al. whose design performed worse when it was filled with a fluid, even when the theoretical Q44
predicted was high enough that it shouldn’t impact the Q-factor but experiments proved otherwise. [3]
Also, while the fluidics of suspended microchannel resonators have been experimented on with higher
order modes, this hasn’t been done with the defect eigenmode. [1] The fabrication of these resonators
could be an issue regardless of the dimensions of the design, as a clear step by step plan to fabricate
the resonators was also beyond the scope of this project. Potentially, wafer fusion bonding could be
one way to do this but this has not been done with pre-stressed silicon nitride before. Alternatively, a
fabrication technique could be used like the one in Craighead et al. where they created a trench and
used a sacrificial layer of polysilicon to create a channel within pre-stressed silicon nitride. [3] However,
the geometry of the resonators from this thesis is more complicated than the simple rectangular beam
from Craighead et al. It should be mentioned however, that the design by Craighead et al. in terms of its
height is sub-micrometer with a channel of about 100 nm and has a comparable width. If this fabrication
method can be used for millimeter-length devices, this could potentially be one way of fabricating these
resonators.

The actual designs can of course also still be improved upon. Even without going to thicknesses of
the resonator smaller than 1 micron. An important constraint that was put in place, mostly to ensure
that the defect mode could be selected accurately, was fixing the width at the center defect. Fixing
it meant that the anti-symmetric mode doesn’t show up for example. This is of importance as only
one half of the resonator was modeled and COMSOL doesn’t allow for both the symmetry condition
and anti-symmetry condition to be selected at the same time. Accounting for this in the Matlab code
could be quite challenging but it would allow even more unique geometries. The total length could also
be increased for example, which could also increase the Q-factor albeit at the cost of the resonance
frequency. It would then be interesting to see if this also leads to improved performance overall. For
either the tapered beam model or 1 um thickness variant of the MDV model, it could prove useful to
perform multi-objective optimization with both the Qf product and the mass sensitivity. This to ensure
that the Qf product is sufficiently high while getting a high mass sensitivity at the same time as this
is not a given result from the optimization as shown before but it could be achieved. It should also
be mentioned that since the MDV model has so many design variables, it can’t be conclusively said
that there does not exist a combination of design variables with an even higher Qf product or mass
sensitivity. Finally, higher order defect modes could also be looked at. A small test on a single model
seemed to imply that, while the resonance frequency increases significantly, this doesn’t weigh up
against the decrease in Q-factor at the same time. Not even for the mass sensitivity which scales
with Qf? as for the model checked, the resonance frequency doubled while at the same the Q-factor
decreased by a factor of ten. It could be possible however that this does not hold up for all geometries
and so it also deserves a closer look.






Conclusion

This thesis introduced a novel suspended microchannel resonator design with two orders of magnitude
improvement in Qf product and one order of magnitude improvement in mass sensitivity compared to
earlier designs. Most notably, the resonator design by Manalis et al. which has the highest performance
to date.[37] The Qf product of the designs exceeds the value that allows for quantum mechanical
experiments at room temperature, 6 - 1012 with similar dimensions as the resonator design by Manalis
et al. (2014) [29] For the mass sensitivity, it means that the design could potentially directly measure
individual immunoglobulin proteins as the mass sensitivity of the 1 um thickness variant of the MDV
model is about 23.7 zeptograms at a bandwidth of 1000 Hz. [32] Both the Qf product and the possibility
of measuring single proteins has not been reported for suspended microchannel resonators in the
literature. The use of Bayesian optimization for both the Qf product optimization and mass sensitivity
optimization has resulted in different kinds of designs in the case of the MDV model. This enabled the
performance as discussed and resulted in designs tailored for each performance parameter. The 1 um
thickness variant of the MDV model does not provide both the high Qf product and the one order of
magnitude improvement in mass sensitivity however, at least according to the final optimization results.
The smaller, 200 nm thickness variant does offer both at the same time albeit at the cost of also being
more difficult to fabricate.

This is possible due to the use of pre-stressed silicon nitride which causes an effect called dissipa-
tion dilution. This dissipation dilution reduces the losses of the system comparatively by increasing
the stored energy in the system. This is also a rather new concept for suspended microchannel res-
onators as it has only been reported once in the literature in a paper by Craighead et al. [3] However,
contrary to the resonators in this thesis, it did not result in a higher Q-factor of the resonator. This is
likely due to clamping losses and so the solution to that problem is eliminating those losses with the
help of soft-clamping which constrains the modeshape to the center of the resonator. As has been
said, soft-clamping consists of phononic crystals which prevent elastic waves from moving through the
resonator in the phononic band-gap. The combination of dissipation dilution, soft-clamping and also
strain engineering, which is the tapering of the resonator to increase stress at the center, results in
very high Q-factors. This was first reported by Ghadimi et al. for regular nanomechanical resonators.
[5] This thesis is the first to combine these features for suspended microchannel resonators with the
before mentioned increases in Qf product and mass sensitivity as a result. Of course, it is important to
mention that this thesis is purely based on FEM results, and so it is necessary to confirm the findings
by fabricating the designs and testing them experimentally.
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Reflection

At the end of the project, it is also important to reflect on it. Personally, | found this project to be very
interesting, maybe even more so than initially thought. Before the start of this project, | believe | have
encountered suspended microchannel resonators before but I've never really delved into the subject
as was necessary for the project. The idea of these tiny nanoscale channels was really intriguing.
It proved to be necessary to learn a lot not just about suspended microchannel resonators but also
on nanomechanical resonators as a whole and phononic crystals in a short time which was really
challenging. For the thesis, the way the energy dissipation worked was especially difficult and also
time consuming. Luckily, | was already familiar with Comsol which has been a constant presence
throughout this project as it is completely FEM based.

Even though the results that have been obtained are really good and show great promise for these
kinds of new SMRs, | think one of the things that bothered me was the fact that performing experiments
wasn’t possible in the time frame allotted for a Master thesis. As the geometry of these resonators
for SMRs is quite novel, there is no straightforward way to manufacture them. This really needs to be
looked into in depth and so doing the preparation work necessary to fabricate them in the first place
and also performing experiments proved to be too much. It was decided early on to not fabricate them
and instead focus more on the optimization and having greater variance in the geometry of the designs.
| had personally hoped for quite some time that it would still be possible to at least include a kind of
blueprint to fabricate these resonators and present a clear, straightforward plan but as certain parts
took longer than initially expected, this too was abandoned. | think that especially that last part is the
greatest regret | have regarding this project.

Another point of interest was the discussion about what to do with the calculation of the Q4. Initially,
this was thought of actually trying to simulate the fluid flow inside the microchannel and so a lot of time
went into thinking up ways to do this accurately. Doing these kinds of fluid flow calculations in matlab
for vibrating devices can be quite tricky but in the end it was decided that it wasn’t necessary to perform
the fluid flow calculation as the solution was found in the rate of strain equations by Sader et al. The
Comsol simulations also required a lot of trial and error to get right. Sometimes it proved difficult to rid of
certain errors, especially with regard to meshing. Attimes | also could be too eager to get a new version
of the models up and running which could also result in errors and required me to go bug hunting within
the Matlab code. This was especially a concern halfway through the project as new versions of models
were created in a relatively short time span. Had | taken more time to check the code for bugs, this
process might have gone over quicker. Later on | did get better at this even though at the last stages
of the project, the models could still change quite a lot. The research cluster was very helpful in getting
the results, but there were times when certain errors were caused by the cluster. A persistent one was
when the Matlab code could not connect to Comsol. Even after introducing error handling to take care
of this, this could still occur. The result of this error is a faulty iteration in the machine learning algorithm
which is an especially annoying thing to happen. However, in the final simulations these errors did
disappear so it would seem that the error handling did work after all.

Finally, messaging and presenting the material was brought up by my supervisors as a point of im-
provement. | have had difficulty to cut down the amount of models to a minimum for the sake of clarity
and messaging. Most likely because I've worked with these models for as long as | did. Initially | es-
pecially regretted getting rid of the 200 nm thickness variants of the Qf optimization as they offered the
highest performance and moving the data to the appendix felt like getting rid of it entirely. Of course,
my supervisors were right and | had trouble explaining even four different models in one table. The
end result is that the message will be clearer and easier to understand as there are only two models
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for each optimization objective. | don’t think the worth of the research is necessarily less for it and it
will be easier to present this material during the defense as well.



Investigating Unit Cell Geometry

In order to model the suspended microchannel resonators properly, the phononic band-gap diagrams
were looked into first. As has been explained in paragraph 1.3, the phononic band-gap consists of a fre-
quency range in which no eigenmode is present. The band-gap is hecessary to achieve soft clamping
by localizing the modeshape to the center of the resonator and reduce/negate the energy losses as-
sociated with clamping. To our knowledge, the phononic band-gap hasn’t been explored in suspended
microchannel resonators prior to this work as phononic crystals also haven’t been used with SMRs
before. For this purpose, and for modeling the resonators later on, two designs have been chosen:
a model with the channel on top of a plate resonator and one where the channel is embedded within
the resonator. These are shown in figures A.1 and A.2. They will be referred to as the center height
model and equal height model respectively. The phononic band-gap diagrams have been created us-
ing COMSOL which uses the 3D solid mechanics physics to acquire the eigenfrequency of a single
phononic unit cell. The study also includes a parameter sweep of the wavenumber to calculate the
eigenfrequencies for that corresponding wavenumber. For the eigenfrequency analysis the phononic
unit cell has a periodic condition on each end to simulate a whole sequence of unit cells with just a single
one. The study also include a stationary step to calculate the stress of the unit cell. This is necessary
because the unit cell is pre-stressed. The stationary step has two fixed constraints on each end of the
unit cell instead of the periodic condition. The raw data with the eigenfrequencies and wavenumbers
is then extracted to Matlab which is used to draw the phononic band-gap diagrams.

) S— L 1|

Figure A.1: A cross-sectional view of the center height model. Figure A.2: A cross-sectional view of the equal height model.

The center height model, named such in reference to the increased height of the center beam compared
to the side wings, was considered first as it is the result of simply putting a channel on top of a conven-
tional nanomechanical resonator. As an introduction, the overall band-gap diagram will be discussed
first. This overview is displayed in figure A.3 and the six eigenmodes within this frequency range are
indicated as small pictures of the modes in question. The dimensions of this model are the same as
that of the straight beam design by Ghadimi et al. As explained in section 1.3 on Phononic Crystals,
the axes of a phononic band-gap diagram are the frequency on the y-axis and the wavenumber on
the x-axis. The first two eigenmodes are the in and out-of-plane nodal modes of the first eigenmode
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Figure A.3: The band-gap diagram of the 3D channel model with the eigenshapes indicated.
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Figure A.4: A band-gap diagram of a comparison between the Ghadimi model and the channel model.

and the two modes after that are the anti-node modes of the first eigenmode. The band-gap is located
between the node and anti-node mode of the first eigenmode with a frequency range of about 1.7 MHz
and 1.95 MHz. The two remaining eigenmodes are of higher order. The eigenmode that seems to
be traveling through the phononic band-gap is the fundamental eigenmode. The fact that this mode is
traveling through the band-gap doesn’t impede the function of the band-gap as the fundamental mode
won'’t appear in the resonator itself because the fundamental mode is translational and the resonator
is clamped at both sides.

It should be noted that the phononic band-gap of this model is quite small; it only has a bandwidth
of about 0.25 MHz compared to the band-gap of the resonator by Ghadimi et al. of about 0.6 MHz.
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This diagram can be seen in figure A.4 in blue together with the channel model indicated in black. The
Ghadimi model is based on the straight beam design by Ghadimi et al. and was recreated in COMSOL
in the same manner as the two channel models. The phononic band-gap of the Ghadimi model is
enclosed by the same eigenmodes as the channel model. The difference between the two band-gap
diagrams is mainly that the band-gap is bigger than that of the channel model and that the two other
eigenmodes in this frequency range are two torsional eigenmodes instead of two eigenmodes of higher
order. Due to the addition of the channel, the torsional modes have shifted to higher frequencies. This
can be explained by the increased moment of inertia due to increased mass in the height direction
because of the addition of the channel. This can be confirmed when looking at in-between values for
the channel height. A figure like figure A.3 of the Ghadimi model is included in the appendix. Another
important consideration is the difference in how the internal stress is applied. In the Ghadimi model, it
can be assumed that the internal stress is applied evenly throughout the unit cell as it simply consist of
a single layer of silicon nitride. In the channel model, this might be a bit more complex as it is unclear
how the internal stress would work at least as far as the channel part on top of the rest of the resonator
is concerned. For that reason the internal stress is only applied at the bottom of the resonator.

7 X 10% Band-gap diagram, 3D model channel overlap

channel model, filled center|
Channel model
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Figure A.5: A figure of the comparison between the channel model and the channel model with a filled center.

The small bandwidth of the phononic band-gap of the channel model can be a limiting factor when
trying to optimize the resonator. The next section will discuss how the band-gap changes with the
shape of the unit cell. First, a graph comparing the channel model with and without channel will be
discussed. This graph is displayed in figure A.5. To make a fairer comparison between the filled and
channel model, the internal stress has been applied throughout the unit cell in contrast to the graphs
shown before where the stress is only applied on the bottom part. This is done so because otherwise
the result would reflect negatively on the filled model due to the extra mass that doesn’t have internal
stress. This graph reflects purely the presence of the channel itself. The channel mainly causes a
decrease in frequency of all eigenmodes. As a side effect this can also be seen in the band-gap itself.
The band-gap is also smaller in the graph with the channel. This difference can mostly be explained by
the applied internal stress. The eigenfrequency generally goes down with increased mass but figure
A.5 shows the opposite; The model with the filled center has both higher eigenfrequencies and a wider
band-gap while also having a higher mass. Internal stress can give the opposite effect which means
higher eigenfrequency which explains the effect shown.

Next, the diagrams will be used to illustrate what happens to the band-gap when certain variables are
changed. These variables are indicated in figure A.6. First, the channel height will be varied. In this
model the top wall of the model will be kept 50 nm. This graph can be seen in figure A.7. It shows that
the band-gap gets smaller and the eigenfrequencies will be lower with increasing channel height. The
full parameter sweep for this variable continues up to 1 micron and this inclination does continue until
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Figure A.6: A figure that provides an overview of the different parameters that have been varied.
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Figure A.7: A phononic band-gap diagram where the height of the channel is varied.

the band-gap disappears at about 800 nm. The explanation for this phenomenon is slightly different
than that of figure A.5. Even though the volume over which the internal stress is applied does increase
with a higher channel height, this effect appears to be outweighed by the sheer increase in mass itself. It
should be noted however, that Reetz et al. concluded that an increase in mass contrast, like it happens
here, should increase the phononic band-gap bandwidth instead of decreasing it as we see here. [13]
The graph implies that only the increase in mass plays a significant role in how the band-gap is shaped
as far as varying the height of the channel is concerned.

The next parameter that will be looked into is the width of the wings. Increasing this parameter also
increases the mass contrast and from figure A.8, it can be seen that increasing the width also increases
the bandwidth of the band-gap as predicted by Reetz et al. [13] Once again, the bandwidth becomes
small enough that placing the defect mode within the band-gap could be cumbersome and that op-
timizing for these low values of the wing width can prove difficult. Finally the last parameter is the
length-wise width of the wings. This parameter is set on a scale with scale = 1 meaning that the wings
are exactly half as long as the entire unit cell. Once again, the band-gap diagram behaves according to
theory stipulated by Reetz et al., as the bandwidth of the band-gap is determined by the mass contrast
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Figure A.8: A phononic band-gap diagram that compares different values of the width of the wings of the center height model.

of the unit cell. This time though, the mass contrast has two minima, one when the wing encompasses
almost all of the unit cell and the other when the wing is very small. The biggest mass contrast lies in
the middle and it can also be said that for values of the scale that are around 1 the band-gap remains
mostly similar in bandwidth. This is illustrated in figure A.9. Values beyond the range displayed in the
figure will cause the band-gap to shrink and eventually to disappear again. The final thing to note is
that the frequency range of the band-gap is also mass dependent with the heavier model, the one with
scale = 1.3, having a lower frequency range than the two other models shown which are lower in mass
due to the wings being smaller.

X 108 Band-gap diagram, Varying max width overlap, channel model
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Figure A.9: A phononic band-gap diagram that compares different values of the length-wise width of the wings of the center
height model.

At this point it has become clear that the center height channel model comes with some strings at-
tached. The band-gap size is highly sensitive to any changes in the model due to the fact that the
mass contrast can also change quickly when any adjustments are made. The baseline version of the
model already has a small band-gap which means placing the defect mode within the band-gap could
be tricky, especially when the resonator needs to be filled with a fluid before it can be used and when
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both the fluid and a sample will also cause the defect mode to shift to lower frequencies. So what about
the second design, the equal height model shown in figure A.2? At first the second design was thought
of as being impractical and too heavy to be used but the phononic band-gap diagrams that have been
created of this model have shown that this is not the case. A comparison between the center height
model, the model discussed first, and the second model, also called equal height model as the wings
are as thick as the center part, can be found in figure A.10. The figure contains three different mod-
els. The center model, the equal height model with a similar stress configuration as the center model,
which means that stress is only applied on one slice of the model, and the equal height model with
stress applied throughout the unit cell evenly. As can be seen for the figure, both versions of the equal
height model have a substantially increased band-gap bandwidth compared to the center height model.
Furthermore, the equal height model with stress applied throughout the model also has an increased
frequency range and is in this regard and the band-gap size very comparable to the phononic band-
gap from the Ghadimi et al. design shown in figure A.4. Seemingly, the addition of the channel doesn’t
appear to have a major impact on the phononic band-gap in the equal height model. However, that
is only the case when stress is evenly distributed in the resonator which could prove to be difficult to
fabricate.

6 X 108 Band-gap diagram, Channel model, Equal height vs. Center height
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Figure A.10: A figure that visualizes the difference of the center height model and the equal height model.

The benefits of the equal height model also extend to varying the individual parameters. For the sake
of simplicity, all figures discussed hereafter have the internal stress applied to the entire resonator in
the case of the equal height model. A good example of one of these benefits is when the height of the
unit cell is varied. A comparison between different heights of the equal heights model can be found
in figure A.11. In contrast to figure A.7, which shows the height variation of the center height channel
model, the equal height model has very similar band-gap bandwidths and frequency ranges between
the models shown in the figure. This would imply that it would be much easier to scale the model up
as the band-gap remains sufficiently large. Figure A.11 can be explained by way of the mass contrast
between the wings and the center beam of the resonator staying roughly the same as the resonator
increases in height. The frequency range of the phononic band-gap does decrease slightly over this
range of resonator heights but not nearly as much as was the case with the center height model. This is
because the increase in mass is counteracted by an increase in volume over which the internal stress
is applied.

These same kind of changes can also be seen with the width and max width length design variables.
These can be seen in figure A.13 and A.12 respectively. Most notably, the bandwidth of the phononic
band-gap stays bigger in the equal height model versus the band-gap of the center height model for
the same widths. This allows for a bigger range of values to be of practical use in the equal height
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Figure A.11: A phononic band-gap diagram that varies the height of the channel of the equal height model.
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Figure A.12: A phononic band-gap diagram that compares different values of the length-wise width of the wings of the equal
height model.

model. Another interesting thing to note is that with a smaller width the frequency range is higher in
the equal height model than that of the center height model. A plausible explanation for this is once
again the internal stress that's applied to the entire of the equal height model versus it only being
applied to the bottom plate of the center height model. The max width length comparison in figure A.12
shows similarities to figure A.11 when different heights of the equal height model were compared. The
phononic band-gap bandwidths and frequency ranges are more comparable in size and the band-gaps
are also wider in general. Another thing is that the equal height model doesn’t suffer from the effect
where the in-plane and out of plane modes of a single mode would grow apart and so decrease the
bandwidth of the band-gap. Instead, these modes stay more together which results in a wider band-
gap as can be seen for scale = 0.5 of the equal height model in figure A.12. Scale = 0.1 for the equal
height model is also still "coherent” and could potentially be used as a value when the resonator is
optimized. In the center height model, the separation of the modes continues to such a degree where
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Figure A.13: A phononic band-gap diagram that compares different values of the width of the wings of the equal height model.

the band-gap has completely disappeared.

In conclusion, in this section the phononic band-gap diagrams of the channel models were discussed.
Four parameters were chosen to be looked into by performing parameter sweeps on them. Out of the
two channel models presented, the equal height model, shown in figure A.2, has proven to be more
versatile and generally has a phononic band-gap that is wider than the competing design, the center
height model shown in figure A.1. This to such a degree that the bandwidth of the band-gap of the
equal height model is comparable in width and range to the uniform unit cell design by Ghadimi et al.
which doesn’t have a channel. The main reason for the better performance of the equal height model
is that the mass contrast between the center beam and the "wings” remains more consistent and is
generally bigger in this model. The effect of the mass contrast on the phononic band-gap has been

explored by Reetz et al. [13] As the equal height model has shown to be favorable to the center height
model, it will be used in the resonator design itself.



Convergence check of the 200 nm
thickness variant

For the 200 nm thickness variant, the situation is a bit different compared to the 1 um thickness vari-
ant. As the dimensions are more extreme compared to the 1 um thickness variant, the number of
degrees of freedom needed to accurately model these resonators and so also the computation time
are considerably higher for the 200 nm thickness variant. According to figure B.2, in the worst case,
the computation time is more than 4000 seconds which is about an hour, with about 11 million degrees
of freedom. For the sake of comparison, for the 1 um thickness variant the longest computation time is
about 700 seconds with about 2.5 million degrees of freedom. Ideally, the computation time should be
about 1000 seconds, or lower which is indicated by the transparent blue surface. Once again, figure
B.1 tracks the mechanical Q-factor on the z-axis and as was the case with the 1 um thickness variant,
the convergence of the Q-factor appears to be good for this variant as well, as the figure displays similar
values for the Q-factor across most of the surface except for low values of the length-wise element ratio
as was also the case for the 1 um thickness variant. The jump in computation time and number for
degrees of freedom near the top of the surface can be explained by the fact that for these small values
of the minimum element size COMSOL allocates additional elements in the z-direction. As this applies
to the entire model, this concerns a very large number of elements and so also increases the number
of degrees of freedom by a lot. A good balance between convergence and computation time for this
model is found to be at 0.25 for the length-wise element ratio and 0.225 um as the minimum element
size. Lower values of the element ratio are avoided for the reasons mentioned earlier and 0.225 um
offers an acceptable computation time.

Figures B.3 and B.4 display part of an unit cell of the 200 nm thickness variant. Here, the addition of
an element in the z-direction can be seen between figures B.3 and B.4 which was responsible for the
increase in computation time and number of degrees of freedom mentioned earlier. When the minimum
element size is set to 0.25 um, it also gets rid of another element in the z-direction. It does seem that
the number of elements in this direction does not have a noticeable impact on the convergence of the
Q-factor of the 200 nm thickness variant shown in figure B.1.
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Figure B.1: The convergence check plot of Q-factor. The model is the 200 nm thickness variant of the tapered beam model.
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Figure B.2: The convergence check plot of the computation time. The model is the 200 nm thickness variant of the tapered
beam model.
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Convergence check of the 200 nm thickness variant
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The Uniform Unit Cell Model

The so-called uniform unit cell model which, maybe a bit self-explanatory, has phononic unit cells of
equal length and equal width. The number of unit cells is fixed at 15 as is the length of the resonator
at 4 mm plus the length of the defect. The Uniform Unit cell model has three design variables which
are based on the variables that were varied upon in Appendix A: the width and length of the "wings”
of the unit cell and the length of the defect. The uniform unit cell model is shown in figure C.1. The
design variables of this model are also shown in the figure together with relevant parameters. These
parameters include the fixed thickness of the design at 200 nm, the minimum width fixed at 1 micron
and the thickness of the channel walls, fixed at 50 nm. This leaves the channel dimensions which are
900 nm in width and 100 nm in height.

The optimization history of the uniform unit cell model is shown in figures C.2 and C.3. The scatter plot
clearly shows a very strong correlation between defect length and Qf product as Qf products higher
than about 8 - 10'? Hz are limited to very small values of the defect length. Interestingly enough,
defect lengths larger than about 2e-5m instantly mean much lower values of the Qf product. This strict
localization can’t be observed in the tapered beam model. There does appear to be a localization of
iterations around the optimum point as has been observed before as well. Figure C.3 shows once again
that the algorithm is able to quickly find new localized optima after the 20 initialization points, even faster
than for the tapered models. This could possibly be because of the strong dependence on the defect
length of the model which could effectively reduce the design space. The distance between the optima
also shows the close clustering of new optima points. It does appear the case that the algorithm does
look for global optima afterwards, however. Another curious observation can be made which is that
there appears to be certain iterations with extremely low mechanical Q-factor which sometimes also
have much larger resonance frequencies. This still results in a low Qf product and so should not impact
the validity of the results however. It is possible that for some of these iterations the defect mode is
not selected or does not exist in that case. The correlation between resonance frequency and high Qf
product doesn’t appear as most iterations have a very comparable resonance frequency. The Qf;yiq
also appears to be around similar ranges when compared between iterations. Curiously, and in contrast
to the tapered models, there does seem to be some correlation between high mechanical Q-factor and
high Qsyurface @s a lot of the optima also have high Qg rqce Values. The Qgyurrqce is also occupies
a larger range of values compared to the tapered models. It could be possible that the Qs fqce is
dependent on the defect length as the optima have both a low value of the defect length and a high

qurface .

61



62 The Uniform Unit Cell Model

Top-down view Cross-sectional view
50 nm
>
200 nm
™~
rd
y N 1um
~ 7
Max width length
/
]
/m
— %
- Defect length
2mm
¢ >
—1 K v
Figure C.1: An overview of the uniform unit cell design.
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Figure C.2: A figure of the scatter plot of the uniform unit cell model with the three design variables as the axes. The color
indicates the Qf product.
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Assorted tables and figures

Q-factor Optimization

Interestingly enough, the tapered beam model has a lower Qf product when optimized for the Qf product
rather than when the Q-factor is optimized as was done in earlier models. The difference is 0.2e12 Hz.
The Q-factor optimization results are found in table ??. The reason for this is likely that the algorithm
tries to maximize both the Q-factor and the resonance frequency at the same time but the design space
doesn’t explicitly contain design variables that impact the frequency substantially, as the resonance
frequency of these optimized results is also highly similar. The end result is a Q-factor that is not as
high as it can be and a resonance frequency that’s similar between optimizing for Q-factor and Qf
product which translates to a lower Qf product when optimized for it.

Total Q-factor Frequency [MHz] Qf product Mass sensitivity [\/%]

TBM, 1 um thickness variant 4.06e6 1.55 6.3e12 4.62
TBM, 200 nm thickness variant 40.10e6 1.45 5.8e13 1.87
Uniform unit cell model 10.01e6 1.94 1.94e13 3.73
Manalis (2014) 15000 2.89 4.3e10 9.49

Table D.1: A table of the optimization results of the total Q-factor as performed in earlier versions of the thesis. Note how the
models offer a slightly higher Qf product. The tapered beam model has been abbreviated to TBM.

Surface Q-factor comparison

Table D.2 compares the Qg rqce Of the models with and without taking the channel walls into account.
The table contains the the tapered beam model which is discussed in chapter 3 and the uniform unit
cell model found in the appendix. It also contains a model that has the dimensions of the uniform unit
cell model but without the phononic crystals. All models are actuated in the defect mode except for the
straight beam model which is vibrating in the fundamental mode. Also, in contrast to other simulations
discussed in chapter 3, the Qg rqce Presented in table D.2 does include the ZY and ZX planes as well.
As a frame of reference, the Qsyrrace i 12000 when calculated using equation 2.9 and assuming the
resonator takes on the dimensions of the straight beam model but without the channel and 11250 when
calculated using equation 14 from Yasumura et al. which lets go of the simplification that the width far
exceeds the thickness of the resonator. [25] This last part emphasizes the need for a somewhat more
elaborate Qg rqce Calculation due to the geometry of the resonator, even without taken the channel
into account.

Generally, the Qgyrfqce that does not include the channel wallls is quite comparable to the other Qg rqce
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Qsurface With channel surfaces  Qgyrrqce Without channel surfaces

Straight beam model 8034 10050
Uniform unit cell model 9249 10701
Tapered beam model 10149 10207

Table D.2: This table compares the Qs fqce that include the channel walls and compares it with the Qgyrrace that doesn’t take
the channel walls into account. The values are calculated using equation 2.13.

that does not include the channel walls, with a mean value of about 10500. The tapered beam has the
lowest Qsyrrace @among the models that have phononic crystals. One possible explanation for this is that
the channel itself only accounts for a relatively small part of the resonator due to the tapered nature
of it. It also has the smallest difference with the Qg,rrqce that does include the channel walls. The
uniform unit cell model has the lowest Qg fqce that includes the channel walls among the phononic
crystal models. This can once again be explained because this model has the highest channel surface
area compared to the overall resonator. The straight beam model has the lowest Qg rqce Overall
with a possible explanation being that the strain of this model could be higher as it is actuated in the
fundamental eigenmode instead of the defect eigenmode.

Complete Qf product optimization results

Total Q-factor Freq. Qfproduct E.mass Mass sens.

[-] [MHZ] [Hz] [pa] [%1
Tapered beam model, 1 um thick 3.88e6 1.56 6.1e12 1519 10.83
Tapered beam model, 200 nm thick 35.87¢e6 1.50 5.4e13 88.2 2.05
MDV model, 1 um thick 4.55e6 1.74 7.90e12 1563 3.91
MDV model, 200 nm thick 32.96e6 2.02 6.67e13 76.8 1.28
Uniform unit cell model 6.34e6 1.94 1.2e13 283.1 5.97
Manalis (2014) [37] 15000 2.89 4.3e10 92.3 9.49

Table D.3: A table of the optimization results of the Qf product. It lists the total Q-factor, resonance frequency, Qf product,
effective mass and the mass sensitivity of the models that have been optimized.

qurface Qmechanical Qfluid Total Q-factor

Tapered beam model, 1 um thick 53306 4.21e6 5.03e7 3.88e6
Tapered beam model, 1 um thick w/o channel 57468 4.07e6 - 4.07e6
Tapered beam model, 200 nm thick 10067 36.02e6 8.48e9 35.87¢e6
Tapered beam model, 200 nm thick w/o channel 11317 47.42e6 - 47.42e6
MDV model, 1 um thick 56223 4.55e6 5.07e9 4.55e6
MDYV model, 200 nm thick 10269 33.20e6 5.74e9 32.96e6
Uniform unit cell model 7719 6.40e6 7.61e8 6.34e6
Manalis (2014) [37] - - 6.8e5 15000

Table D.4: A table of the optimization results of the Qf product. It lists the different Q-factors of the models that have been
optimized.
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Other tables and figures

Mech. Q-factor Qfluid Total Q-factor Frequency [MHz] Qf product
Channel scale =0 4.559¢e6 5.117e9 4.555e6 1.74 7.94e12
Channel scale = 0.25 4.555e6 5.114e9 4.551e6 1.74 7.93e12
Channel scale = 0.5 4.545e6 5.084e9 4.541e6 1.74 7.90e12
Channel scale = 0.75 4.532e6 5.020e9 4.528e6 1.73 7.85e12
Channel scale =1 4.510e6 4.918e9 4.506e6 1.73 7.78e12

Table D.5: In this table the optimized MDV model of the Qf product was taken and only the design variable that scales the
tapering of the channel was varied. The optimization result has scale = 0.44 for reference. It implies that the tapering of the
channel doesn’t change the Qf product by that much and that the selection of the specific value of the scaler by the optimization

algorithm seems arbitrary.

Qf product [Hz]

Qfuid

Frequency [Hz]

Qmechanical
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Figure D.1: A figure displaying the cross-sectional view of both the micrometer-sized model and the idealized model.
models are tapered and the corresponding dimensions are included in the figure.
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Figure D.6: A scatter plot of the design variables that impact the Qfluid the most. As can be seen there is a strong correlation
between channel height and Qfluid.
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