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1
Introduction

1.1. Context
In 2022 the increasing oil price, driven by embargoes and inflation, showed the importance of reducing the

reliance on fossil fuels for Europe’s energy security and the population’s prosperity [92]. Together with

an increasing number of climate-related natural disasters over the past 50 years [95], this highlighted the

significance of investing in clean and abundant renewable energy sources. In 2023 alone, the worldwide

renewable power capacity was increased by 473 GW, with wind power accounting for 24% of the expansion

[46]. The expansion in wind power generation is projected to continue. For instance, nine European

countries have pledged to boost the offshore wind farm capacity in the North Sea [40]. To generate more

and more energy, wind turbines are getting bigger and more powerful. While the average rotor diameter

was 60 m in 1999, this number has grown to 130 m in 2022 [39]. Larger wind turbines produce more

power but also create more significant wake effects. Wake effects are responsible for reducing energy

production in downstream wind turbines [10]. Moreover, wind farm size is increasing [88]. As more wind

turbines are placed closer together, wake-induced power losses increase. Wake losses are one of the

major challenges in making wind farms profitable [96]. Therefore, the mitigation and quantification of wake

losses is important for maximizing power in wind farms. A wake loss mitigation method that has been

gaining increased attention is wind farm flow control [41].

Axial induction control was the first wind farm flow control technique proposed for power maximization

in wind farms [62]. However, the results of numerous field experiments with this wind farm flow control

method showed inconclusive power gain benefits [1, 11, 57, 100]. Dynamic wind farm flow control methods

such as dynamic induction control [66] and the helix [32] were proposed. However, to this date no field

experiments took place to test the benefit of these wind farm control methods. Yaw-based wake steering

is the only wind farm control method to date that has been implemented commercially [106]. This is as a

result of successful wake steering field experiments that showed significant AEP gains [20, 41]. Therefore,

the focus of this study is on the practical application of wake steering for power maximization in wind farms.

1.2. Problem Statement
Wake steering has shown promising results in increasing power production in wind farms in various field

experiments in literature. In one particular field experiment, AEP gains ranging from 7-13% at average

wind speeds and up to 28-47% at low wind speeds were achieved. However, these gains were highly

dependent on wind direction and speed and the modelling of the power curve, and overall annual energy

production (AEP) gains remain insignificant [44]. In [28], uncertainties arise from the controller’s inability to

adapt to changing wind directions and unstable atmospheric conditions, resulting in under-performance.

Considering the power losses in the upstream WTs led to the net AEP uplift of 4% over the same wind

direction and wind speed range for the five WT test case. At the time of the field experiment, the FLORIS

model used for yaw optimization was not able to model terrain effects or near-wake effects accurately.

Incorporating an improved FLORIS model and some wind direction uncertainty in the yaw optimization

phase predicted wake steering-induced wake loss reduction values that approached field experiment

results [29]. [21] demonstrated wake steering in a 43-turbine wind farm, achieving up to 16% power gains

for specific wind directions, but noted significant uncertainties due to terrain modeling limitations and

mismatches between real and modeled yaw-power curves in FLORIS. To conclude, uncertain conditions

cannot be fully captured by the yaw controller.

1



1.3. Research Formulation 2

In the current market, offshore wind farm developers compete for sea bed leases that are auctioned

by country governments years prior to the actual construction of the wind farm [82]. The winning party

will receive a permit for constructing and operating a wind farm, typically for a period of 25 years. The

auction winner is often decided as the bidding party that offers the most financially interesting offer to

the government, for example, by paying a large sum for the sea bed lease and/or offering a very low

power purchase agreement (PPA) price. This pushes strong financial burdens on developers, and puts

developers in a race to design the most profitable farms. Most profitable in this scenario boils down to

wind farms with the highest electricity production at minimal construction, operation and decommissioning

costs. To maximize electricity production, technological innovations such as wind farm control are often

included in the early-phase design of wind farms. In order to come up with a bankable bid, developers use

extensive economic and technical models to estimate the costs and energy yield of a future wind farm,

which allows them to determine the financial feasibility of their offer, and allows them to decide whether it’s

worth investing in. In this thesis, we focus on the estimation of the benefit of the wake steering technology

on a future farm’s energy yield. This technology affects the predicted annual energy yield in the order of 1%,

and thereby has substantial impact on the financial feasibility of an early-phase wind farm design. Accurate

energy yield estimation is important for managing risks and for performing financial analysis of wind farm

projects. With increasing financial pressure on wind energy viability, both improvement in wind energy

innovation and how the innovations are assessed are of vital importance. The AEP uplift estimated due to

wake steering during yield estimations is inherently uncertain due to stochastic atmospheric conditions

and a lack of knowledge in certain parameters. This could raise doubts on the benefit of wake steering

estimated for future wind farm projects. For example, a recent field experiment has shown that the

uncertainty in wind direction could lead to estimating a wide range of AEP uplift values which do not lead to

a concrete conclusion on the benefit of wake steering [42]. Hence, the question of how much benefit can

be obtained from wake steering in real-life applications that are inherently uncertain remain unanswered.

By understanding the uncertainties in AEP gain predictions for wake steering, the estimations of AEP

gains during the early phases of wind farm project development become more reliable. As a result, the

knowledge obtained from such an uncertainty quantification study can contribute to increasing confidence

in wake steering as a potential wake mitigation technique in future wind farms.

There were several uncertainty quantification studies dealing with the optimization under uncertainty

problem [42, 51, 75, 78, 83, 97]. In all cases, this involved obtaining new yaw offsets following the inclusion

of uncertainties in, amongst others, model parameters [42, 97], wind direction [42, 51, 76, 78, 83, 97], yaw

position [42, 51, 75, 76, 83, 97], wind speed [42, 51, 76], wind shear [42, 76] and/or turbulence intensity

[42, 51, 76]. Understanding the change in optimized yaw offset angles with uncertainties and the effect of

the new yaw angles on the AEP uplift is valuable. However, wake steering controllers used in industry

remain deterministic, as the wake steering controllers that perform optimization under uncertainty have

not been tested in field experiments yet. Therefore, the accuracy of AEP uplift obtained with deterministic

wake steering controllers, specifically FLORIS, remains unknown. Moreover, there are uncertainties

associated with the early-design phase due to time gap between the bidding period and the operating

period of the wind farm. Assumptions are made regarding wind farm properties, such as the wind turbine

specifications and wind rose, due to the inability to predict the state of these properties in the future.

Understanding the accuracy of AEP uplift involves propagating forward the uncertainties arising during

a typical wake steering assessment using FLORIS. [51] tackled this problem in the first part of his study

by propagating forward a number of uncertain input parameters and quantifying their effect on the power

gain. However, this was done for the dynamic FarmFlow wake model and it was limited to the test case of

five wind turbines. The importance of different input parameters on the AEP uplift of a wind farm [97] and

on WT output [19] was determined. However, both cases this was limited to model parameters since the

goal was to calibrate the FLORIS model for the wake steering application [97] or the FLORIDyn model -

FLORIS considering the time-dependent influence of wake model parameters - without considering the

wake steering application. Therefore, there is no study focused on understanding the significance and

effect of uncertain input parameters on the AEP uplift of a wind farm using deterministic yaw optimization

with FLORIS.

1.3. Research Formulation
This thesis addresses this scientific gap by performing an uncertainty quantification of wake steering with

the goal of determining the statistical uncertainty of the AEP uplift estimated in wake steering assessments.



The research objective of the thesis can be formalized as:

Understanding uncertainties in annual energy production gain predictions for wake steering in

wind farms through uncertainty propagation.

Research Objective

This leads to the following research question:

How do uncertainties affect the predicted annual energy production gains for wake steering?

Research Question 1

With this research question, the goal is to understand both the global impact of uncertainties on the AEP

uplift and the significance of each uncertainty on the AEP uplift. Next, it is important to rank the significance

of the uncertainties considered on the estimated AEP uplift and to understand how they may correlate to

each other. This is addressed by formalizing the following research question:

How significant is the impact of input uncertainties on the predicted AEP gain from wake steer-

ing?

Research Question 2

By addressing these goals, the thesis aims to quantify the statistical uncertainty in AEP uplift due to wake

steering for the early design phase of wind farms.

The purpose of this report is to understand the effect of uncertainties on AEP uplift predictions for

wake steering in wind farms. The focus is on energy yield - and more particularly on wake steering uplift -

assessments. This is achieved by (1) creating a framework for uncertainty propagation while keeping the

wake steering assessment tool as a black box and (2) performing a sensitivity analysis on the AEP uplift

obtained. Therefore, the main contribution of the thesis is the framework to assess the accuracy of the AEP

uplift obtained following deterministic wake steering uplift assessments. In addition to this, the interactions

between the uncertain atmospheric parameters is observed and the significance of the parameters on the

AEP uplift of a wind farm is evaluated for the first time. Finally, this uncertainty quantification is performed

for two wind farm flow models, allowing for a deeper understanding of each model’s limitations.

1.4. Structure of the Report
The structure of the report is as follows. First, Chapter 2 presents a summary of this thesis in the form of a

scientific article, in Part I. Second, Part II presents a literature study on wind farms, wind farm flow modeling

and wind farm control. This starts with a general introduction of wind farm technology including controller

architecture and wind farm flow control strategies in Chapter 3. Next, this is followed by an overview of

wind farm flow modelling in Chapter 4 and a review of the state-of-the-art wake steering technology in

Chapter 5. The literature study ends with the thesis contribution in Chapter 6. It should be noted that the

thesis contribution has in fact changed as research has progressed. Therefore, this research is in fact

conducted for the thesis contribution - including the research gap and research questions - presented in

Chapter 1. Having noted this, Part III contains the main body of the thesis. This starts with performing the

deterministic wake steering analysis in Chapter 7. Then, the uncertainty quantification framework and the

input data for the uncertain parameters are described in Chapter 8. Next, the uncertainty quantification

framework is applied to the OWEZ wind farm using the uncertain input parameters previously defined. The

results are shown in Chapter 9. This is followed by the verification and validation of the framework and the

results in Chapter 10. The report is finalized in Chapter 11 with the conclusions and recommendations, in

Part IV.

3
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Abstract: Accurate yield estimations are necessary to prove the financial viability of wind 
farms in early-phase design. Due to the long time period between sea bed lease auctions 
and the decommissioning of wind farms, uncertainties in wind farm properties and at-
mospheric conditions arise. Wake steering is a wind farm flow control technology that 
was shown to have a substantial impact on annual energy production (AEP) in many 
field experiments;however, the accuracy of the AEP uplift estimated during the uncertain, 
early design phase is unknown. The present article addresses this concern by propagating 
uncertainties in atmospheric conditions, - namely turbulence intensity, wind shear and air 
density - wind rose and thrust curve forward to quantify the statistical uncertainty in AEP 
uplift estimations and by performing a sensitivity analysis to rank the significance of these 
uncertainties. For the Offshore Windpark Egmond aan Zee (OWEZ), the 95% confidence 
interval for the GCH is between 0.88% and 0.93%, while for the CC model this is between 
1.08% and 1.14%. When compared with the deterministic AEP uplift of 0.97% for the GCH 
and 1.16% for the CC respectively, it is concluded that there is benefit from wake steering 
under input uncertainty for the OWEZ wind farm. Finally, for this case study the main 
driver of the variation in AEP uplift is the wind rose, with the other parameters having 
negligible effects.

Keywords: wake steering; uncertainty quantification; FLORIS; annual energy production; 
sensitivity analysis; early-phase assessments 19

1. Introduction 20

In the past five years, the increasing oil price, driven by embargoes and inflation, [1] and 21

the surge in climate-related natural disasters highlighted the importance of investing in 22

clean and abundant renewable energy sources. From these, wind power generation is 23

projected to continue with nine European countries having pledged in 2023 to boost the 24

offshore wind farm capacity in the North Sea [2]. To generate more and more energy, wind 25

farm size is increasing [3]. As more wind turbines are placed closer together, wake-induced 26

power losses increase. Wake losses are one of the major challenges in making wind farms 27

profitable [4]. Therefore, the mitigation and quantification of wake losses is important for 28

maximizing power in wind farms. A wake loss mitigation method that has been gaining 29

increased attention is wind farm flow control [5]. The only wind farm control method to 30

date that has been implemented commercially [6] - as a result of successful field experiments 31

that showed significant annual energy production (AEP) gains [5,7] - is yaw-based wake 32

steering. 33

In the current market, offshore wind farm developers compete for seabed leases that 34

are auctioned by country governments years prior to the actual construction of the wind 35
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farm [8]. The winning tender is often the one that makes the most financially interesting 36

offer to the government and receives a permit for constructing and operating a wind farm, 37

typically for a period of 25 years. This pushes strong financial burdens on developers and 38

puts developers in a race to design wind farms that maximize electricity production while 39

minimizing construction, operation and decommissioning costs. Technological innovations, 40

such as wake steering, may play an important role in the early-phase design of wind farms 41

by improving the financial feasibility of an auctioned future wind farm. With increasing 42

pressure on wind energy viability, accurate yield estimation is important to prove the 43

investment viability of the wind farm project. One example of a wind farm yield estimation 44

tool used in wake steering applications is FLOw Redirection and Induction in Steady- 45

state (FLORIS) [9]. FLORIS has been widely used in field experiments for wake steering 46

controller design, more specifically for finding the optimal yaw angles of wind turbines 47

(eg. [10–12]). In this thesis, we focus on the estimation of the benefit of the wake steering 48

technology on a future wind farm’s energy yield using FLORIS. This technology affects the 49

predicted annual energy production in the order of 1%, and thereby has substantial impact 50

on the financial feasibility of an early-phase wind farm design. 51

There is extensive literature on (yaw) optimization under uncertainty, for example in 52

wind direction, wind speed and turbulence intensity (eg. [13–17]). However, because this 53

concept has not been validated through field experiments, yaw optimizations for early- 54

phase wake steering assessments in industry remain deterministic. Instead the accuracy of 55

AEP uplift estimations are improved by quantifying the uncertainties through uncertainty 56

propagation. During the early design phase, assumptions about the future wind turbine 57

specifications, atmospheric conditions and wind rose are made. These include - amongst 58

others - assumptions on the characteristics of the thrust curves, the value of the turbulence 59

intensity and the frequency of occurence of certain wind directions and wind speeds. 60

[17] performed a sensitivity analysis of the input parameters on the yaw optimization 61

and on the power gain due to yaw optimization under uncertainty using the dynamic 62

FarmFlow wake model; however, the test case was limited to five wind turbines and the 63

significance of the input parameters in terms of power gain with deterministic yaw op- 64

timization was not analyzed. The importance of different input parameters on the AEP 65

uplift of a wind farm [18] and on WT output [19] was determined. However, in both 66

cases this was limited to model uncertainty since the goal of the studies was to calibrate 67

the FLORIS model for the wake steering application [18] or the FLORIDyn model - an 68

adaptation of FLORIS considering the time-dependent influence of wake model parameters 69

- without considering the wake steering application. Therefore, there is no study focused 70

on understanding the significance and effect of uncertainties in input parameters on the 71

AEP uplift for a wind farm using deterministic yaw optimization with FLORIS. 72

This paper addresses this scientific gap by propagating the uncertainties in atmo- 73

spheric conditions and wind farm properties forward to determine the statistical uncertainty 74

of the AEP uplift estimated in wake steering assessments. This is done by (1) quantifying 75

the effect of the uncertainties in the input parameters with a Monte Carlo simulation and 76

(2) ranking the significance of the same input parameters on the estimated AEP uplift due 77

to wake steering through a sensitivity analysis. The by-product of the sensitivity analysis 78

is quantifying the correlations between the significant input parameters. The scientific 79

article describes the data set of the case study, the quantification of the uncertainty sources, 80

FLORIS and the uncertainty quantification (UQ) framework in Section 2; discusses the 81

results of the deterministic assessment, the convergence study on the smaller test case, the 82

Monte Carlo (MC) simulation and the Sobol’ method in Section 3; and, finally, presents the 83

conclusions in Section 4. 84
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2. Materials and Methods 85

2.1. Data Set 86

The case study is conducted on Offshore Windpark Egmond aan Zee (OWEZ) which is 87

located in the North Sea at approximately 10 km off the Dutch shore. This WF has 36 Vestas 88

V90 WTs with a nameplate capacity of 3 MW each. To its south-west, it is neighbored 89

by the Prinses Amalia (PA) Wind Farm. This WF consists of 60 Vestas V80 WTs with a 90

nameplate capacity of 2 MW each. The neighboring PA wind farm is considered in order 91

to quantify the effect of the wakes of this neighboring wind farm on the AEP uplift of the 92

OWEZ WF. The wind rose input for the case study is based on wind direction and wind 93

speed data from the North Sea collected for the time interval between December 2006 and 94

December 2010. The turbulence intensity for this time interval is kept constant at 0.06 for 95

the deterministic wake steering assessment. The characteristics of the two wind turbine 96

(WT) types, the wind rose and the exact locations of the WTs are shown in Table 1 and in 97

Figure 1 respectively. 98

Table 1. Characteristics of wind turbines in OWEZ and PA.

Feature Vestas V90 Vestas V80

Nameplate capacity [MW] 3 2
Hub height [m] 70.0 60.0

Rotor diameter [m] 90.0 80.0

(a) (b)

Figure 1. Description of case study: (a) Layout of wind farms in NoordZeeWind. (b) Wind rose.

The uncertainty quantification framework is developed by initially introducing uncertain- 99

ties in (1) air density, (2) turbulence intensity and (3) wind shear. These parameters are chosen 100

for the development of the framework due to their ease of implementation and due to 101

AEP output results found in existing uncertainty quantification literature (eg. [15,17]). The 102

data set used to model the uncertainties in the atmospheric conditions is taken from the 103

measurements at the meteorological mast between July 2005 and December 2010 and is 104

fitted into PDFs using the Kolmogorov-Smirnov distance criterion, resulting in the marginal 105

PDFs depicted in Figure 2. 106
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(a) (b) (c)

Figure 2. Probability distribution functions of input variables: (a) Air density. (b) Turbulence intensity.
(c) Wind shear.

These marginal PDFs are assembled into a random input vector with joint PDF denoted as 107

X ∼ fX(x) [20]. The input vector represents the quantification of the sources of uncertainty 108

(step B in Figure 5). Once the uncertainty quantification framework is verified with this 109

input vector, a new input vector is created using the significant atmospheric variables, 110

eleven wind roses available for Noordzeewind (shown in Figure 3) and thrust curves from 111

nine wind turbines. Uncertainty in the wind rose is introduced because wind direction and 112

wind speed were shown to be significant parameters [15–17,21]. Uncertainty in the thrust 113

curve is introduced because developers often assume the characteristics of the thrust curve 114

due to the lack of access to this information in the early stage design phase. Since the wind 115

roses and thrust curves are discrete, these variables are modeled as uniform distributions 116

with the ranges of [0,10] and [1,9] respectively. 117

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 3. Possible wind rose selections: (a) Fig.0 (b) Fig.1 (c) Fig.2 (d) Fig.3 (e) Fig.4 (f) Fig.5 (g) Fig.6
(h) Fig.7 (i) Fig.8 (j) Fig.9 (k) Fig.10

2.2. FLORIS 118

FLORIS is a low fidelity steady-state model-based open-loop simulation software [9]. It 119

is computationally efficient since, being low fidelity, the time-averaged flow field char- 120

acteristics of wind farms for a given wind direction are estimated [22] using simplified 121

analytical equations [14,23]. Open-loop controllers are the current practice in industry for 122

wake steering because their use has been demonstrated in many field experiments (eg. 123

[11,14,24,25]). However, open-loop control also means that all uncertainties are propagated 124
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forward (eg. [26,27]). Confidence in yield assessments increases with more accurate models 125

[11]. 126

The results of the FLORIS model are highly dependent on the accuracy of the wind 127

farm flow model used. This is because the wind farm flow model’s calculation of the wake 128

losses in the wind farm influences the AEP output. It is interesting to compare how differ- 129

ences in the wind farm flow model affect the input uncertainty since this can also reveal 130

possible limitations of the wind farm flow models. In this research, two wind farm flow 131

models are compared to understand their impact on the model response: (1) Gaussian-Curl 132

Hybrid (GCH) and (2) Cumulative Curl (CC). 133

GCH is the model that is the most frequently used in field experiments for wake 134

steering (eg. [12]). This model maintains the relatively lower computational cost of the 135

Gaussian wind farm flow model, while including ground effects, secondary steering effects 136

and an enhanced wake deflection model with vortex-induced effects [28]. More recent 137

studies show that deep array effects are underestimated with GCH, more specifically losses 138

are under-predicted in the rear part of large wind farms and turbine pairs at distances 139

larger than 25D [29,30]. The Cumulative Curl (CC) model [30] accounts for these effects. 140

Since deep array effects are considered, more accurate near-wake predictions are made. 141

Therefore, the power and wake estimations are more accurate while the same performance 142

is obtained for smaller wind farms. In contrast to GCH, CC has still not been validated 143

in field experiments with larger wind farms, having been used primarily in simulation 144

studies [30]. By performing the uncertainty quantification on the two models, 145

2.3. Wake Steering Yield Assessment with FLORIS 146

Within FLORIS, the wake steering assessment can be separated into two portions: the yaw 147

optimization and the annual energy production (AEP) output [31]. The two calculations are 148

performed separately and independently for the entirety of the uncertainty quantification 149

framework, as shown in Figure 4. The input variables - such as the wind rose, turbulence 150

intensity and wind farm layout - are shown by arrows pointing towards the schematic, 151

while the output variables - namely the deterministic AEP with no wake steering and 152

the deterministic AEP with wake steering - are emphasized with the red font and arrows 153

pointing out of the schematic. 154

Figure 4. Methodology for deterministic wake steering yield assessment in FLORIS.

Within FLORIS, the wake steering assessment can be separated into two parts: yaw op- 155

timization and annual energy production (AEP) output [31]. The yaw optimization process 156

is depicted in Figure 4 with pink boxes, while the flow chart to calculate the annual energy 157

production is depicted with blue boxes. The two calculations are performed separately and 158

independently for the entire uncertainty quantification framework. 159

The optimum yaw angles over the defined wind direction and wind speed combi- 160
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nations are obtained for a given wind turbine type and wind farm layout. In this case, 161

the Serial-Refine method is used to find the optimal yaw angles that minimize the wake 162

losses of the wind farm. This optimization method reduces computational cost compared 163

to other methods [32] and was used in recent field experiments to identify the optimal yaw 164

angles for wake steering [33]. The wake losses of the wind farm are quantified differently 165

according to the wind farm flow model selected. Therefore, the yaw angle optimization is 166

repeated for different wind farm flow models. Table 2 summarizes the specifications of the 167

yaw optimization used in the case study.

Table 2. Yaw optimization specifications

Feature Selection

Optimization method [-] Serial-Refine [32]
Wind direction array [◦] [0,360] with step size of 3◦

Wind speed array [m/s] [1,25] with step size of 1 [m/s]

168

In order to further reduce computational cost, the wind speed array is restricted to three 169

wind speeds. This can be done because optimal yaw angles have been shown to barely 170

change for different ambient wind speeds [17]. Then, the resulting yaw offset angles for the 171

three wind speeds and full wind direction array are linearly interpolated over the full wind 172

speed array. Thus, the optimal yaw offsets for all combinations of wind direction/wind 173

speed are determined. 174

The wind direction and wind speed arrays in Table 2 are used to create a grid rep- 175

resenting all possible combinations of wind direction/wind speed for the defined arrays. 176

Then, SCADA wind direction and wind speed time series data is used to create the wind 177

rose. The wind rose is a representation of the frequency of occurrence of each combination 178

of wind direction/wind speed. This process is illustrated with the green boxes in Figure 4. 179

Therefore, the probability of occurrence of each combination of wind direction/wind speed 180

is obtained along with its associated optimal yaw angle. 181

The deterministic annual energy production output without wake steering is com- 182

puted by taking the weighted sum of the power for a specific combination of wind direction 183

and speed and the probability of occurrence of that combination of wind direction and 184

wind speed. This weighted sum is multiplied by the number of hours in a year. To calculate 185

the deterministic AEP for wake steering, the power under the yaw offset angle is used for 186

the specific combination of wind direction and speed. For uncertainty quantification, the 187

input variables that were identified as sources of uncertainty are replaced by the random 188

input vector defined in ??. Next, the yaw offset angles are introduced, resulting in the 189

annual energy production with wake steering (optimized AEP). In this way, the effect of 190

the uncertainties in the input variables on the AEP is quantified. This is compared with the 191

AEP without the optimized yaw angles (baseline AEP) to evaluate the AEP uplift due to 192

wake steering. 193

2.4. Uncertainty Quantification Framework 194

The uncertainty in wake steering yield estimation, more specifically the AEP uplift estima- 195

tion, during the early-phase wind farm design is defined as an uncertainty propagation 196

problem. The uncertainty propagation problem means analyzing the effect of input uncer- 197

tainties on the system’s output [34]; or, in mathematical terms: 198

P(x|k) f→ P(y|k) (1)
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The uncertainty quantification framework that propagates uncertainties and performs the 199

sensitivity analysis for ranking the importance of the sources of uncertainty is depicted in 200

Figure 5. 201

Figure 5. Uncertainty quantification framework [35]

The steps shown in the uncertainty propagation framework are briefly described below 202

[35]. 203

• Step A relates to defining the model of the physical system and the criteria to assess 204

the physical system. The uncertainties are propagated from the input to the output 205

through the computational model, preferably without introducing additional biases. 206

In this case, the complex wake interactions of the wind farm are modeled with FLORIS 207

software which is a black-box model. 208

• Step B: the sources of uncertainty are quantified by identifying and modeling the 209

uncertain input parameters. In this way, a random vector of input parameters is 210

obtained. 211

• Step C: the uncertainty defined by the random input vector is propagated through the 212

computational model. In this analysis, a response probability distribution function is 213

obtained following the uncertainty propagation. 214

• Step C’: using the relationship between the output and input, the importance of the 215

uncertain input variables are ranked. This is the sensitivity analysis. 216

To perform the uncertainty propagation (step C in Figure 5), Monte Carlo method is used. 217

This is because this is a non-intrusive method that assumes the computational model is a 218

’black box’ [36]. Therefore, unlike surrogate models such as polynomial chaos expansion 219

and Kriging, the computational model is not approximated [34] and, thus, an approximation 220

error is not introduced [(34,37)]. Moreover, with the Monte Carlo method, it is possible to 221

use the same framework even when input parameters are changed [37]. In addition, MC 222

simulations do not suffer from the curse of dimensionality. The curse of dimensionality 223

means that the number of samples necessary increases exponentially with the number 224

of random variables [34]. The main drawback of the MC is that experiments with many 225

input parameters or requiring many iterations may be computationally expensive [36]. 226

This disadvantage may be dealt with by proving the convergence of output values as 227

demonstrated in subsection 3.2. 228

The final step of the uncertainty quantification framework (step C’ in Figure 5) is 229

performing a global sensitivity analysis using Sobol’ indices [35]. The goal is to understand 230

the importance of each input parameter in terms of its effect on the variation in AEP uplift. 231

Sobol’ indices decompose the total variance of the model response into the sum of the 232

variances of its summands. The variance decomposition assumes that the input variables 233

are independent [38], which fits this study since there is no data on the correlations between 234

the input variables. With Sobol’ indices, the significance of the input parameters and the 235

interaction effects of groups of input parameters can be identified [39]. The advantage of 236
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Sobol’ indices is that the model is not assumed to be monotonic or linear. In addition, with 237

Sobol’ indices the combined influence of the parameters on the uncertainty in the output 238

can be discovered [35]. 239

2.4.1. Monte Carlo Simulation 240

The Monte Carlo method involves generating random samples from the input vector de- 241

fined in subsection 2.1. With Monte Carlo sampling, the samples U =
{

u(1), . . . , u(N)
}

are 242

produced in the standard uniform space Z ∼ U ([0, 1]M). Then, these samples are trans- 243

formed back into the samples X =
{

x(1), . . . , x(N)
}
∼ FX for any multivariate distribution 244

FX with independent marginals FXi using the inverse probability integral transform (PIT): 245

x(i)j = F−1
Xj

(
u(i)

j

)
(2)

for all i = 1, ..., N and all j = 1, ..., M [20]. The vector of generated random samples X is 246

inserted into the black-box computational model, in this case FLORIS: 247

Y = M(X) (3)

to obtain the vector of model responses Y [40]. This is used to compute the expectation, 248

standard deviation and the confidence intervals [41] using the estimators in Equation 5. 249

2.4.2. Sobol Method 250

The variance of the model response is defined by the sensitivity measure, or Sobol’ index, 251

as [42]: 252

Si1,...,is =
Var(Y(Xi1,...,is))

Var(Y)
(4)

for a group of variables Xi1,...,is , where Var(Y(Xi1,...,is)) denotes the partial variances of the 253

summands and Var(Y) denotes the total variance of the model response Y. 254

The first-order Sobol’ index is the relative contribution of only one input variable Xi 255

on the total variance. The first-order Sobol’ indices must be positive. There are also indices 256

with multiple term called higher-order Sobol’ indices that account for the effects of the 257

interactions between the input variables that cannot be divided into separate variances. 258

The sum of all Sobol’ indices for an input variable Xi is denoted as the total Sobol index ST
i . 259

The variances described in Equation 4 are computed using the mean, variance and partial 260

variance estimators respectively that were derived from the Monte Carlo simulation [42]: 261

f̂0 =
1
N

N

∑
n=1

f
(

x(n)
)

V̂ar(Y) =
1
N

N

∑
n=1

f 2
(

x(n)
)
− f̂ 2

0

̂Var(Y(xi)) =
1
N

N

∑
n=1

f
(

x(n)i , x(n)∼i

)
f
(

x(n)i , x′(n)∼i

)
− f̂ 2

0

(5)

where x′ denotes a realization of X independent of x =
{

x(n)i , x(n)∼i

}⊤
, and the subscript 262

xj,∼i indicates the j-th realization of x which does not contain the input variable i. 263

The total computational cost of computing MC-based Sobol’ indices is (M + 2)× N, 264

where M is the input dimension and N is the sample size [42]. To improve the computational 265

efficiency of uncertainty quantification, a convergence study must be performed. 266
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3. Results and Discussion 267

3.1. Deterministic Wake Steering Assessment 268

For deterministic wake steering assessment, the yaw optimization is conducted for OWEZ. 269

With these yaw offset angles, two cases are evaluated: the one including the wake effects of 270

the neighboring wind farm and the one ignoring these wake effects. Including the wake 271

effects of the neighboring wind farm provides a more realistic assessment of the AEP but 272

increases the computational cost. The cases are evaluated for the GCH and CC models. The 273

results are given in Table 3. 274

Table 3. Results of deterministic wake steering yield assessment.

WFFM Baseline AEP [GWh] Optimized AEP [GWh] AEP uplift

GCH (with neighbor) 448.428 452.778 +0.97%
GCH (no neighbor) 448.635 452.998 +0.97%
CC (with neighbor) 441.434 446.547 +1.16%
CC (no neighbor) 443.204 448.345 +1.16%

The neighboring WF’s wake is shown to have no significant effect on the AEP uplift of 275

OWEZ. This can be explained by the fact that the WTs are placed 7.5 km apart, which 276

is a distance greater than 80D. At this distance from the WT, wake mixing has occurred 277

to a great extent. While there are some changes in the baseline and optimized AEP, it 278

is interesting to note that this does not change the AEP uplift. With this conclusion, the 279

uncertainty quantification is performed ignoring the neighboring wind farm in order 280

to reduce computational time. It is also observed that the AEP uplift increases when a 281

more accurate WFFM is selected in FLORIS. This shows that typical wake steering yield 282

assessments that are conducted using the GCH model under-estimate the AEP uplift in 283

OWEZ. 284

3.2. Convergence Study 285

The convergence study for the AEP uplift is conducted on a smaller test case of five equally 286

distanced Vestas V90-3 MW WTs using the GCH model to reduce the computational cost. 287

The convergence of the total Sobol’ index for one of the input parameters, namely the 288

turbulence intensity, is also evaluated under the same conditions. It is assumed that the 289

total Sobol’ indices for the other parameters converge similarly because the total Sobol’ 290

indices form fractions of a whole. Figure 6 depicts the results of the convergence studies. 291

(a) (b)

Figure 6. Convergence study for five wind turbines using GCH as a function of sample size: (a)
Convergence of mean AEP uplift. (b) Convergence of the total Sobol’ index of turbulence intensity.

Starting from N = 100, the maximum and minimum mean AEP uplift fluctuate within a 292

relatively small range of 0.65%. As the sample size increases, the range of fluctuation in 293
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mean AEP uplift decreases further, indicating convergence. Therefore, N = 100 is chosen as 294

the minimum sample size required to estimate the mean AEP uplift. The computational 295

cost of this sample size is small enough to not necessitate the use of surrogate models. 296

Starting from N = 225, the total Sobol’ index for turbulence intensity fluctuates by 25%. 297

At N = 1228, the rate of fluctuation in the total Sobol’ index decreases to 12% which implies 298

that at higher sample sizes convergence occurs. Thus, the Sobol’ index has a moderate level 299

of sensitivity to sample size. Despite this, the fluctuation rate is not significant enough to 300

change conclusions regarding the importance of input parameters on the AEP uplift. Since 301

computing Sobol’ indices is more resource-intensive than MC-sampling for uncertainty 302

propagation, there is further motivation to select the lowest sample size that leads to the 303

appropriate conclusions instead of the sample size that has the same fluctuation rate as the 304

convergence study for the mean AEP uplift. Repeating the calculation of the total Sobol’ 305

index for N = 10000 - which is a significantly higher sample size - shows that the ranking of 306

the Sobol’ indices remain the same as the N = 225 but the computational cost is significantly 307

higher. This justifies the selection of N = 225 as the minimum sample size required. Since 308

uncertainty propagation and sensitivity analysis is inherently connected, the same sample 309

size is chosen for both. The most conservative estimate (N = 225) is selected. 310

In order to verify that the sample size selected for the smaller test case can be used for 311

the full OWEZ wind farm, the convergence rate of first order Sobol’ indices are evaluated 312

as as a function of the number of wind turbines for N = 225 and N = 400 in Figure 7. 313

Figure 7. Convergence study for first order Sobol’ indices using GCH as a function of the number of
wind turbines: (a) Turbulence intensity. (b) Wind shear. (b) Air density.

The convergence rate for the first order Sobol’ index of turbulence intensity is almost the 314

same for both sample sizes, while the ones for the air density and wind shear are constant 315

for both sample sizes due to the AEP uplift being almost entirely driven by the turbulence 316

intensity. Hence, it is shown that while there are small differences in the first order Sobol’ 317

indices as the number of samples increases, the difference is negligible enough to not 318

change the conclusions obtained from the study. Additionally, the first order Sobol’ indices 319

converge at 20 wind turbines. It is theorized that this is due to the aerodynamic flow 320

becoming fully developed as one goes deeper into the wind farm; therefore, once a specific 321

limit is reached, no variation in the estimated AEP uplift as a function of the variations 322

in input variables would take place [43]. This brings forth the possibility of reducing the 323

computational cost further in future research by running the wake steering assessment on 324

fewer wind turbines from the OWEZ wind farm. 325

3.3. Sobol’ Method 326

The sensitivity analysis is performed on the full OWEZ wind farm at N = 225 for both GCH 327

and CC using Sobol’ indices in order to rank the importance of each input variable on the 328
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estimated mean AEP uplift. The total Sobol’ indices for the input vector with the air density, 329

wind shear and turbulence intensity are shown in Figure 8. 330

(a) (b)

Figure 8. Sobol’ indices resulting from sensitivity analysis on OWEZ at N = 225: (a) Total Sobol’
indices for GCH. (b) Total Sobol’ indices for CC.

The most significant parameters are not the same for the optimized AEP and the AEP uplift. 331

While air density is the only driving parameter for the optimized AEP, it has no influence on 332

the estimation of the AEP uplift. Instead, for both wind farm flow models, the AEP uplift is 333

estimated with the turbulence intensity and wind shear. The contribution of turbulence 334

intensity is significant, while the contribution of wind shear is relatively insignificant at 335

0.1 for GCH and 0.2 for CC. This is consistent with findings in literature demonstrating 336

that significant changes in yaw misalignment angles occur for turbulence intensity, but 337

not for wind shear and air density, following an uncertainty quantification study [17]. The 338

difference in the Sobol’ indices between the two models is insignificant. Therefore, the UQ 339

framework’s efficacy is demonstrated, and turbulence intensity is the only variable added 340

to the new input vector. Because the new input vector has the same number of variables as 341

the initial input vector, the convergence study is not repeated. This results in Figure 9. 342

(a) (b)

Figure 9. Sobol’ indices resulting from sensitivity analysis on OWEZ at N = 225: (a) Total Sobol’
indices for GCH. (b) Total Sobol’ indices for CC.

The difference in total Sobol’ indices between the two models is insignificant. However, in 343

this case, the ranking of the input variables is the same for the optimized AEP and for the 344

AEP uplift. While the optimized AEP is fully determined by the wind rose, the AEP uplift 345

is also influenced by smaller, relatively insignificant turbulence intensity and thrust curve 346

contributions. The large contribution of the wind rose to the total variance of the AEP uplift 347

is attributed to the significant variations in the wind directions of the input wind roses. 348

This is a limitation of the input data available and shows the sensitivity of the output to 349

the selected input range. With the Monte Carlo method, a more in-depth analysis of the 350

influence of these variables on the estimated AEP uplift is performed. 351



Version March 18, 2025 submitted to Journal Not Specified 12 of 16

3.4. Monte Carlo Simulation 352

The Monte Carlo simulation is performed for the full OWEZ wind farm with the input 353

vector that includes the turbulence intensity, the thrust curves and the wind roses. Figure 10 354

shows the AEP uplift distributions for the two WFFMs. 355

(a) (b)

Figure 10. AEP Uplift Distributions for OWEZ at N = 225 for: (a) GCH. (b) CC.

The mean AEP uplift for the GCH model is 0.91% with a standard deviation of 0.19, while 356

the mean AEP uplift for the CC model is 1.11% with a standard deviation of 0.23. In both 357

cases, there is benefit from wake steering within one standard deviation of the mean. The 358

95% C.I. for the GCH model is between 0.88% and 0.93% with a range of 0.050, while the 359

95% C.I. for the CC model is between 1.08% and 1.14% with a range of 0.060. This means 360

that there is a wider spread in the distribution and a more pronounced difference between 361

the two WFFMs. 362

In the GCH model, the smallest AEP uplift is between 0.45% and 0.64%. Fig. 2 and Fig. 363

4 are the most frequently occurring wind roses with the dominant wind direction coming 364

from the south and south-west and a heavy skew towards the western direction, and 365

wind speeds of 15-20 m/s concentrated on the dominant wind directions. The turbulence 366

intensities are between 6.6% and 7.0%, and - while this AEP uplift range has a mix of 367

different thrust curves - thrust curve 6 appears the most frequently. On the other end 368

of the spectrum, the largest AEP uplift values are between 1.16% and 1.33%. Fig. 8 is 369

the most frequently occurring wind rose with the dominant wind direction coming from 370

the north-east direction. Fig.0 - that has a wider spread across different wind directions - 371

and Fig.3 - whose wind directions are concentrated in the south-west direction - are also 372

frequently observed at this AEP uplift range. Wind speeds in the range 5-10 m/s and 15-20 373

m/s and turbulence intensities between 6.2% and 6.45% occur the most. Thrust curve 374

1 is the most frequently used. From this analysis, it is concluded that the thrust curve 375

has a more modest influence on the estimated AEP uplift than the wind speed and wind 376

direction combination. At the 95% C.I., there is no dominant thrust curve, which confirms 377

the previous conclusion. The dominant wind direction is from the south-west direction 378

and the dominant wind speed is between 10-15 m/s with significant 15-20 m/s wind speed 379

components in the same direction. The turbulence intensity varies between 6.4% and 6.8%. 380

This shows the importance of the wind speed contribution and, to a lesser extent of the 381

wind direction, in determining the estimated AEP uplift. 382

The CC model has slightly smaller turbulence intensities than the GCH, but the 383

range of turbulence intensities is the same for the different AEP uplift levels. Therefore, 384

the influence of the turbulence intensity on the estimated AEP uplift does not show a 385

significant change. At the largest AEP uplift values, which are between 1.16% and 1.33%, 386
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fig. 5 replaces fig. 0 as one of the most frequently occurring wind roses. Therefore, the wind 387

roses that result in the highest AEP uplift either have the combination of the dominant 388

wind direction in the north-east and wind speed of 5-10 m/s or the combination of the 389

dominant wind direction in the south-west and the higher wind speeds of 10-15 m/s or 390

15-20 m/s. At the 95% C.I., the GCH model had one dominant wind rose. The 95% C.I. for 391

the CC model has more than one dominant wind rose. Besides the wind direction/wind 392

speed combination that occurs in the GCH, wind roses with the dominant south-west wind 393

direction and a heavier skew towards the western direction combined with wind speeds of 394

10-15 m/s and some 5-10 m/s components. 395

4. Conclusions 396

The uncertainty quantification framework developed effectively determined the statistical 397

uncertainty in the AEP uplift estimated in wake steering assessments. The 95% confidence 398

interval for both GCH and CC consistently showed positive AEP uplift estimates. For the 399

GCH model, this was between 0.88% and 0.93%, while for the CC model this was between 400

1.08% and 1.14%. The mean AEP uplift for GCH was 0.91% with a standard deviation of 401

0.19, while the mean AEP uplift for CC was 1.11% with a standard deviation of 0.23. Based 402

on these findings, it was concluded that wake steering had significant benefit for the OWEZ 403

wind farm for the defined input variables. For future research, it would be interesting to 404

compare the statistical uncertainties for the two wind farm flow models given a larger wind 405

farm size, as it is known that, unlike GCH, CC models deep array effects which are more 406

relevant for larger wind farms [30]. 407

The framework was verified by performing uncertainty quantification on the input 408

vector consisting of wind shear, air density, and turbulence intensity. With this, the turbu- 409

lence intensity was identified as the most significant driver for estimating the AEP uplift. 410

This was consistent with findings related to the effect of the input parameters on the yaw 411

offset angles [17], leading to the recommendation that in further wake steering assessments 412

that are significantly limited by computational cost air density and wind shear uncertainty 413

should not be considered. Afterwards, the main uncertainty quantification study was 414

performed on the input vector consisting of turbulence intensity, wind rose and thrust 415

curve. The wind rose was shown to have the most significant influence on the estimated 416

AEP uplift which was anticipated by previous studies on the estimation of the yaw angle 417

effect and optimized AEP (eg. [17,18]). Moreover, the wind roses that resulted in the highest 418

AEP uplift either had the combination of the dominant wind direction in the north-east 419

and wind speed of 5-10 m/s or the combination of the dominant wind direction in the 420

south-west and the higher wind speeds of 10-15 m/s or 15-20 m/s. It was concluded that 421

with these wind roses the greatest benefit from wake steering was obtained. 422

Overall, future researchers must expand the input variables considered and validate 423

the uncertainty quantification framework further on (1) different input data and (2) differ- 424

ent wind farms. When different input variables are considered and the study is repeated 425

on different wind farms, the convergence study that determines the maximum WT number 426

and the minimum sample size required must be repeated. This is because for different wind 427

farm layouts and wind turbine configurations different conclusions regarding convergence 428

may be obtained. Repetition of the study on different input data sets yields more reliable 429

estimates of statistical uncertainties. Once a larger database of AEP uplift estimations and 430

input variable rankings is obtained for a wider variety of wind farms and input data, the 431

database can be grouped and classified into different categories. In this way, behavioral 432

patterns are obtained that can be used to create rules of thumb for AEP uplift estimations 433

and even to train algorithms that estimate AEP uplift. 434
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3
Wind Farm Technology

In Chapter 1, wake-induced energy losses were posed as a significant challenge in making wind farms viable.

To better understand how wind farms function, Chapter 3 introduces the reader to wind farm technology

and the concept of wind farm flow control. This chapter focuses solely on the physical mechanism used in

wind farms and on wind farm flow physics. Section 3.1 explains the main working principle of a wind turbine,

of wind farms and the effect of turbine interactions in wind farms. Section 3.2 describes the concept of

wind farm control, the different existing wind farm control strategies and the main working principle of wake

steering.

3.1. Wind turbines, wind farms and wakes
In order to comprehend energy generation using wind technology, it is crucial to understand the working

principle of wind farms and physical effects affecting energy production. This section starts by introducing

the working mechanism of wind turbines in Section 3.1.1. This is then followed by introducing the concept

of wind farms in Section 3.1.2. The wake interactions that arise when wind turbines are arranged together

are explained in Section 3.1.3. Finally, methods to reduce the negative effect of wake interactions are

presented in Section 3.1.4.

3.1.1. Main working principle of a wind turbine
With increasing demand for wind energy, new wind turbine installations are getting bigger and more

powerful. Vestas is planning to install an offshore wind turbine of 15 MW by 2024, while Siemens Gamesa

launched a wind turbine with an energy production capacity of 14 MW [3]. Wind turbines produce energy

by saving kinetic energy from the mass of air passing through the area swept by the rotors [13]. In

horizontal-axis wind turbines (HAWTs) - which are the most commonly used wind turbine type [50] and

thus the focus of this study - the rotor blades are used to convert the flow of the incoming wind into an

aerodynamic torque. This is transferred from the rotors to the generator which converts the rotational

kinetic energy into electrical power. Hence, the wind turbine generator uses the work done by both the

tangential and axial velocity components to produce energy. The power production and the forces on the

turbines can be influenced using three control variables: generator torque τg, rotor blade pitch angle θ and
WT yaw angle γ. The blade pitch angle is the angle between the chord of the blade and the WT’s rotational

plane (commonly referred to as the disk plane), while the yaw angle is the angle between the incoming

wind and the rotor shaft of the WT [10, 13]. The wind turbine’s mechanism and degrees of freedom are

depicted in Figure 3.1.

3.1.2. Wind farms
Many areas around the world with sufficient wind resource lack the necessary infrastructure, such as road

accessibility and electricity grid availability, for wind turbine installations. Other areas have a high density

of settlements or are protected natural areas. These factors limit the available wind turbine installation

area, motivating governments and businesses to group large numbers of wind turbines together and form

wind farms [49]. In the Netherlands, the government aims for an offshore wind capacity of 21 GW by

2030/2031. When both average supply of energy and average natural gas consumption are considered,

this has the potential to meet the energy needs of 1.4 million Dutch households [14]. This is a significant

number since in the Netherlands the use of renewable sources in the residential sector is more than three
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Figure 3.1: Horizontal-axis wind turbine [10]

times less than the EU average, with natural gas being the dominant energy source in the residential

sector at 71.2% [24]. One of the measures taken for increasing energy production capacity is building wind

farms in the North Sea [64]. Clustering wind turbines in farms has unintended consequences on individual

turbine performance. The aerodynamic interactions between WTs in wind farms affect individual turbines

by decreasing their possible power capture and by shortening their lifetime as a result of fatigue loads and

increased structural degradation. These aerodynamic interactions are the wake effects [10].

3.1.3. Wake interactions
Wake effects can lead to losses in wind farm power output. In large offshore wind farms average power

losses due to wake effects can reach 10% to 20% of the total output [4]. Wakes in wind farms are shown in

Figure 3.2. Wind turbine wakes are complex, stochastic aerodynamic phenomena. The most rudimentary

Figure 3.2: Photograph of the Horns Rev 2 offshore wind farm - courtesy of Vatenfall

definition of a wake is a region of reduced mean wind velocity and increased turbulence downstream of

the turbine [10]. As the wind turbine extracts kinetic energy from the incoming wind, the static pressure of

the downstream flow decreases and the mean wind velocity is reduced. Turbine blade rotation creates

blade tip vortices and disrupts the flow at the blades contributing to an increase in turbulence [10]. Due to
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the incompressibility of the flow and the principle of conservation of mass, the velocity deficit in the flow

translates to an increase in the surface area of the wake. This is the concept of wake expansion, and it

impacts the wind speed at wind turbines downstream. Moreover, as turbine blades rotate, they exert an

equal and opposite reaction torque on the downstream air causing the air to rotate. This tangential velocity

component results in wake rotation [13]. For more information on the aerodynamics of HAWTs including

the forces acting on the blades and elements of blade design, see Chapter 3 of [13] and [91]. Wake is a

time-dependent phenomenon. Wake meandering which describes large-scale wake fluctuations in the

lateral and vertical directions occurs. This effect increases the turbulence of the wake [12]. The downstream

turbines experience the wake of the upstream turbines with a time delay rather than instantaneously [35].

Further downstream, turbulent mixing of the flow occurs and the wake deficit dissipates. At a certain

distance downstream of the turbine - depending on the surface area of the wake - the flow eventually

returns to its undisturbed state. The return to the undisturbed flow’s atmospheric pressure levels and the

mean wind velocity is called wake recovery [101].

On the wind farm level, wakes from different WTs interact as multiple turbines are placed together.

Therefore, the downstream turbine’s performance is affected by every upstream turbine whose wake

crosses with the area swept by the downstream turbine [35]. The number and intensity of wake interactions

increases as the aggregated wakes expand downstream. Higher wake-induced power losses occur at

the back of wind farms than at the front. This is the deep array effect, and it is the most prevalent in large

wind farms [71]. When an upstream turbine is misaligned with the wind direction, its wake is deflected.

Counter-rotating vortices are generated in the upstream turbine’s wake. These propagate throughout

multiple rows of downstream turbines and deflect the wake of a downstream turbine that is aligned with

the wind. This is called the secondary steering effect [25]. On the wind farm scale, large numbers of

accumulated wakes alter the atmosphere, creating additional aerodynamic effects. A comprehensive

overview of these effects is beyond the scope of this thesis. An introduction to the topic may be found in

[107].

3.1.4. Mitigation of wake losses
Through the mitigation of wake effects, the total power production and lifetime of wind farms is increased

[10]. The current industry standard for addressing wake-induced power losses in wind farms is placing

wind turbines at sufficiently large distances from each other (7D to 10D). Although large inter-turbine
distances allow for wake recovery, annual revenue losses of up to 20% to 30% are still observed [53].

There is growing interest by researchers and developers in other wake loss mitigation strategies that further

decrease revenue losses, namely wind farm layout optimization and wind farm flow control [2, 41]. Wind

farm layout optimization involves using optimization algorithms to determine the ideal wind turbine positions

that maximize power production and minimize costs while adhering to project-specific boundary constraints

[16]. Wind farm flow control or active wake control refers to achieving a wind farm level objective such as

power maximization or load reduction through the use of a wind farm controller that influences the control

variables of individual wind turbines. Wind farm layout optimization is used during the design phase to

position wind turbines such that there are minimal wake losses. On the other hand, wind farm flow control

is implemented on existing wind farms in order to minimize the remaining wake losses [53]. This means

that wind farm flow control can be used to mitigate wake losses in atmospheric conditions that are less

likely to occur and thus the wind farm layout was not optimized for [41]. In this study, only the mitigation of

wake losses with wind farm flow control are included.

The main objective of wind farm flow control is minimizing the levelized cost of energy (LCoE). This

represents the total costs of the wind farm (including construction, maintenance and operation) divided by

the total energy produced by the wind farm, leading to the average cost per energy unit over the wind farm’s

lifetime [62]. This objective can be achieved through a number of sub-objectives, with the most relevant

ones being power maximization, load minimization and active power control. Power maximization refers to

increasing the wind farm’s annual energy production which directly translates to an increase in revenues at

a specific electricity price. In wind farm flow control applications, this is done by minimizing wake-induced

energy losses. Load minimization is important because increased turbulence and asymmetry in wind flows

increases the turbine’s structural loading, leading to shorter turbine lifespan and increased maintenance

costs. Active power control, amongst other applications, relates to supplying power levels to the electricity

grid that meet technical standards and are optimized according to electricity prices. Multi-objective wind

farm flow control can be done; however, this study solely focuses on maximizing power [10, 62].
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3.2. Wind farm flow control strategies
The performance of wind turbines within a wind farm may be optimized with wind farm flow control strategies.

These seek to enhance power production, reduce structural degradation and improve the efficiency with

the overall electricity grid network. Since large investments and agreements with many stakeholders are

required for the development new farms, the possibility to enhance the performance of existing wind farms

remains attractive. Researchers have explored various control techniques.

The first wind farm flow control method proposed is axial induction control or power de-rating [62]. This

is based on adjusting the blade pitch angles and/or the generator torque of the upstream turbines in order

to run them on less than their maximum capability (i.e. de-rating). This decreases the power output and

thus the momentum deficit of the wake shed by the upstream turbine. As a result, the downstream turbines

are exposed to higher incoming velocities and generate a higher power output [53]. This mechanism is

shown in Figure 3.3.

Figure 3.3: Working principle of axial induction control [53]

The number of field experiments for axial induction control remains small with the bulk of research

output consisting of low-fidelity simulations and analytical studies [41]. The results of field experiments is

inconclusive since many report marginal power gains or power gains that fall within the bounds of statistical

uncertainty [1, 11, 57, 100].

On the other hand, wake steering - that is also known as wake redirection - for power maximization

has proven its potential in high-fidelity simulations, wind tunnel tests and field experiments (20, 41). Wake

steering is the redirection of the wake shed by the upstream turbines to expose the downstream turbines to a

higher incoming flow velocity than the baseline scenario. The goal is to achieve net energy gains compared

to the baseline due the downstream turbine’s higher energy yield overcompensating for the upstream

turbine’s reduced energy yield. The wake of the upstream turbine is redirected through the deliberate

misalignment of the yaw angle with the wind direction (yaw-based wake steering) or through individual blade

pitch control (IPC-based wake steering). In contrast to yaw-based wake steering, interest in IPC-based

wake redirection decreased with time. This is because IPC-based wake steering is conventionally used to

achieve turbine-level objectives, so IPC-based wind farm controllers would have to meet objectives at both

the wind farm level and turbine level [53]. Hence, IPC-based wake steering is not considered in this study.

When wake steering is mentioned in the rest of the literature review, it is in reference to yaw-based wake

steering only.

When the upstream yaw angle is purposefully misaligned with the incoming wind, a lateral force that

deflects the downstream wake is created. This exposes the downstream turbine to a higher incoming flow

velocity than the baseline scenario [103]. The secondary steering effect further influences the displacement

of the downstream wake. The main working principle of wake steering is shown in Figure 3.4.
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Figure 3.4: Working principle of wake steering [53]

High-fidelity tests mostly show efficiency gains of 5-15% [53]. In addition, studies calculating annual

energy production (AEP) gains using realistic wind data show gains of up to 1% which is a significant

increase for wind farms [20]. Due to these promising results and significant research output in the past five

years [41], Siemens Gamesa released the first commercial wake steering product in 2019 [81]. This was

followed by the first full scale commercial implementation of wake steering in 2023 at the Milford I&II wind

farms in Utah [106].

Axial induction control and wake steering are wind farm flow control methods categorized according to

their physical turbine actuation mechanisms. These control methods may be further divided into static and

dynamic control methods. In static control, the turbine set-points are adapted to meteorological variations

such as wind direction and wind speed on the scale of a day. This control method is not responsive

to physical effects that occur at time scales faster than the overall wind farm flow, such as wind gusts,

turbulence bursts and terrain effects. Dynamic control methods are responsive to the disturbances in flow

physics occurring on a smaller time scale, with some even directly influencing wake mixing and turbulence

[62]. The previously referenced studies for wake steering and axial induction control were exclusively for

the static control methods. With dynamic control concepts the control variables that influence the thrust

force on the upstream turbine are changed dynamically in order to accelerate turbulent mixing which in

turn leads to faster wake recovery [32, 62]. In an example of a dynamic induction control concept, the

thrust force was varied sinusoidally with the goal of increasing turbulent mixing and thus reducing wake

losses. However, the variations in thrust force led to power fluctuations that reduces the consistency

with which the standard power level was achieved [66]. Although dynamic induction control has been

investigated in wind tunnel tests and simulations (eg. [33, 99]), no field experiments on this control method

were found. This means that dynamic induction control is at a lower technological readiness level than

both static axial induction control and static wake steering. To reduce the power fluctuations, dynamic

individual pitch control also known as the helix approach was proposed. This control strategy involves

changing the individual blade pitch angles to slowly vary the thrust force and thus the direction of the

wake. Hence, turbulent mixing is increased with smaller power fluctuations [32]. LESs showed that the

helix approach resulted in higher energy extraction than dynamic induction control and static induction

control while decreasing power fluctuations. However, no comparison was made to wake steering, and the

approach is still at the proof-of-concept phase [32].

3.3. Controller architecture
In Section 3.2 different wind farm flow control methods were presented. Following a review of the research

conducted on these control methods, it was concluded that wake steering has the highest technological

readiness level. Wake steering and other wind farm flow control methods are implemented by designing

control algorithms on the wind farm level that aim to maximize a specific objective. There are different

properties that wind farm controllers can have. As it was explained in Section 3.2, the most widely used

controllers for wind farm control are static. In addition to this, the current practice is to use open-loop control

for wind farms as it was shown in many field experiments (eg. [11, 21, 27, 83]). Due to the fact that in

open loop controllers all uncertainties are propagated forward towards the output, closed-loop control has

gained more attention in recent years (eg. [43, 58]). Currently, no practical implementation of closed-loop

control has been done [62]. Finally, controllers are model-based or model-free. Model-based controllers
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are based on analytical wind farm flow models. This means that they are subject to modelling errors and

uncertainties, as the controller is only as good as the accuracy with which it models the flow. The fact that

they are simplified models of complex flow physics means that they are straightforward to implement and

can handle multi-objective functions. Model-based controllers are often used in wake steering due to their

computational efficiency [28, 83]. On the other hand, model-free control aims to handle the limitations

of model-based control by treating wind farm flow physics as a ”black box” and optimizing for the ideal

control action based on measurement data. Although model-free control aims to eliminate the limitations

of model-based control, many optimization algorithms used in model-free control rely on steady-state data

for learning. This also means that difficulties with handling time-varying flow conditions occur [22].

The current industry standard for wake steering applications is using steady-state wind farm flow models

to generate look-up tables (LUT) for an objective function such as power maximization. The LUTs contain

optimal turbine yaw offset angles for all possible wind directions and wind speeds given certain atmospheric

conditions and turbine characteristics. These yaw offsets are then fed into each turbine’s yaw controller.

An example of a standard wake steering controller is depicted in Figure 3.5.

Figure 3.5: Standard wake steering controller whose output vane signal is fed as input to the turbine’s

yaw controller. [84]

Since static open-loop model-based controllers have the most practical implementation, the focus of

this thesis is on understanding the uncertainties involved in estimating AEP uplift using these wake steering

controllers. In order to understand the uncertainties due to the models used in these controllers, the next

chapter focuses on wind farm flow models.



4
Wind Farm Flow Modelling

Chapter 3 explained the physics behind wind turbines, wind farms and wind farm control methods. In

Chapter 4 the focus is on how to approximate the physics previously explained using simplified mathematical

models. Section 4.1 gives the relevant background on wind farm flow models. Then, Section 4.2 presents

different types of low-fidelity wind farm flow models and their operating principles. Section 4.3 continues

with describing the FLORIS software that implements low-fidelity wake models.

4.1. Overview of wind farm flow models
In order to assess the financial viability of wind farm projects, wind farm developers conduct (energy) yield

assessments. This allows developers to predict the annual energy production of a proposed wind farm

and to make the optimal design decisions that maximize power [18]. To conduct such an assessment,

wake-induced power losses must be quantified. This typically involves the use of wind farm flow models

which are simplified mathematical descriptions of the flow. With these mathematical descriptions, it is

possible to quantify wake effects with varying degrees of accuracy. Besides energy production estimations,

wind farm flow modelling can be used to analyze aerodynamic load variations on turbine blades and power

output fluctuations. Hence, wind farm flow models can play an important role in assessing the extent to

which wind farm-level objectives are met. Moreover, wind farm flow models are used in the implementation

of wake loss mitigation strategies, for example, in the design of model-based wind farm controllers. The

main emphasis of this study lies in wind farm flow modelling for wake steering controller design and yield

assessment applications.

As the fidelity of a model increases, the accuracy with which it describes flow dynamics increases.

However, a high fidelity model also has increased computational complexity. Wind farm flow models

can be classified, according to their fidelity, into low fidelity models, medium fidelity models and high

fidelity models. Low fidelity models estimate the time-averaged flow field characteristics of wind farms

for a given wind direction and are usually steady-state [10, 22]. These models have a low computational

complexity, although it should be noted that the computational effort increases with the number of wind

turbines. Moreover, low fidelity models provide little information on temporal dynamics such as wake

meandering effects. Thus, they are less accurate and may have degraded control performance [22]. At

the opposite end of the spectrum, high fidelity models provide high modelling accuracy as they apply

large-eddy simulations to solve three-dimensional Navier-Stokes equations. This means that they are

more computationally expensive. An example of a high fidelity model is Simulator for Offshore Wind Farm

Applications (SOWFA) developed using computational fluid dynamics tools. Medium fidelity models are a

compromise between the two extremes. They usually consider more details of flow field dynamics while

reducing computational complexity by simplifying Navier-Stokes equations with assumptions that may

neglect, amongst other properties, wake asymmetry [22].

With the current trend of building wind farms with an increasing number of wind turbines [88], the

computational cost of performing yaw optimizations increases. Due to the high computational cost of yaw

optimizations, particularly in large wind farms, wake steering benefit assessments are currently only done

with low-fidelity models. A study to higher fidelity models is out of the scope of this thesis.
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4.2. Low-fidelity wind farm flow models
Low-fidelity wind farm flow models are simple analytical models that are preferred in wind farm layout

optimization and control applications. This is because they have a low computational cost while still

capturing the fundamental flow physics unlike empirical models [73]. Sub-models that describe different

aspects of wake behaviour are combined in an attempt to give a complete description of flow physics

without significantly increasing the computational cost. The complexity of wake aerodynamics and wind

farm flow model uncertainties due to factors such as model assumptions still makes validation a challenge.

For yield assessment applications specifically, wind farm flow model uncertainties can contribute to power

output predictions falling outside of the bounds of statistical uncertainty [70]. This section focuses on some

low-fidelity wind farm flow models that are commonly used for yield assessment applications. First, the

sub-models that make up wind farm flow models are presented. Then, the combination of sub-models in

order to make up the wind farm flow models is explained. The sub-models to be handled in this section

are given in Figure 4.1.

Figure 4.1: An overview of wind farm flow models

Wake velocity deficit models
Wake velocity deficit models describe an individual turbine’s wake. In this report the wake velocity deficit

models that are most commonly used for yield assessments with the FLORIS tool [69] are explored. Other

yield assessment tools such as PyWake may have a different database of wake velocity deficit models

available [23]. The oldest wake velocity deficit model is the Jensen model, and it is based on the principle

of conservation of mass. It is a so-called top-hat model with a velocity deficit factor that is a function of

the downstream distance [47]. This means that the velocity function is uniform inside a cross-section of

the wake, with the waked region having a lower velocity than the unwaked region. Wind tunnel tests and

high-fidelity simulations show that the Jensen wake model underestimates the velocity deficit at the center

of the wake while overestimating it near the edge of the wake [5]. This is attributed to the fact that when

observed from a far enough distance downstream the velocity deficit is close to being axisymmetrical

having a shape similar to the Gaussian distribution perpendicular to the turbine axis [15]. By applying the

principle of mass and momentum conservation and assuming the Gaussian shape for the velocity deficit,

better results than the top-hat model were obtained in partial and full wake conditions [5]. However, the

Bastankhah model is not accurate in the near wake conditions which is where most wake losses occur.

When inter-turbine spacing is small, turbines will generally be in near wake conditions. The super-Gaussian

wake model has an approximately top-hat shape in the near wake and a Gaussian shape in the far wake.

This shape is more similar to observations from wind tunnel tests. Compared to the Gaussian model,

the super-Gaussian model matches better with measurements from wind tunnel tests, particularly in the

near wake [9]. Besides the documentations of yield assessment tools, more types of wake velocity deficit

models may be found in papers such as [37] and [74].
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Wake superposition models
The wake of each turbine is modelled individually, yet in wind farms wakes from multiple wind turbines

interact. Thus, the combination of wake velocity deficit models when wakes from multiple turbines overlap

is not straightforward. Wake superposition models address the interaction between multiple turbines [80].

One of the most commonly used methods is the sum of squares superposition model. This assumes that

the deficit in kinetic energy of the mixed wake is obtained by adding the deficit in kinetic energy of each

downstream turbine’s wake. The kinetic energy deficit is then used to calculate the velocity of the flow field

[52].

Wake-added turbulence models
Turbulence characteristics of wakes influence wake recovery through turbulent mixing. [17] proposed an

empirical formula based on results from CFD simulations for the calculation of added turbulence due to

turbine operations and ambient turbulent conditions. Thus, when more turbulence is generated due to

higher rotor thrust, wake recovery is improved. This added turbulence model has been widely adopted in

wind farm flow models [7, 54].

Wake deflection models
Wake deflection models describe the changes in flow due to - amongst other factors - changes in inflow

angles. Since this study is focused on wake steering, somemodels that show the effect of yawmisalignment

are specifically studied. One of the earliest adopted models is [48]. This model assumes that the wake

has a top-hat shape, and it uses the principle of conservation of momentum. The wake is considered to

deflect with a skew angle α that is larger than the turbine’s yaw misalignment with the incoming wind. The

expression for α is valid for the far wake region which is dominated by ambient turbulent conditions [48].

In high-fidelity simulations it was observed that the wake is not simply deflected using simple geometry.

Instead the wake’s shape is curled due to counter-rotating vortices being shed simultaneously at the top

and bottom of the rotor. These vortices were shown to affect wake steering performance which motivated

the creation of the [61] wake deflection model. The wake deflection model developed by [61] solves a

simplified version of the Reynolds-averaged Navier-Stokes (RANS) momentum equation and considers

the streamwise velocity profile as well as the wake rotation effect and the aforementioned vortices caused

by yawing. Ground effects are also accounted for. It does not assume a shape for the wake, and the wake

velocity and wake deflection models are derived using the RANS momentum equation.

Wind farm flow models
When the four sub-models are combined, wake steering in wind farms can be characterized. As more

wake features are considered, the accuracy with which the wind farm flow is modelled is improved. First,

the Jensen wake model is extended with the sum of squares method [52]. This is called the Park wake

model. This is the standard model used in many commercial software. However, it does not account for the

influence of the yaw angle on the downstream turbine’s wake or power production [72]. For wake steering

applications, the Park wake model is typically used in conjunction with the Jimenez wake deflection model.

As it is a better description of the flow field, in later wake steering applications [28, 83] the Gaussian

velocity deficit model for one wake was further extended to the wind farm level through the use of the sum

of squares superposition principle. Since turbulence - amongst other effects - enhances wake recovery,

added turbulence is included using the Crespo-Hernandez model [17]. Finally, the Jimenez wake deflection

model is included in the Gaussian wind farm flow model [68]. When used to design a wake steering

controller in a two-turbine field experiment, an increase in energy gain of 14% has been shown in the

downstream turbine [28].

Despite its improvements compared to the Park wake model, the Gaussian wind farm flow model

under-predicts the power gains due to wake steering in large wind farms compared to field test and high

fidelity analysis [54]. This is because secondary steering effects and the asymmetric nature of wake

steering is not fully captured by the Gaussian model. In order to maintain the relatively lower computational

cost of the Gaussian wind farm flow model, the Gaussian model is modified by using approximations

of the [61] curled wake model. This creates the Gaussian Curl Hybrid (GCH) model [54]. In this model,

yaw-added recovery - which is the fact that wake recovers more when the turbine is misaligned with the

incoming flow due to turbulence caused by vortices - is included. Moreover, secondary steering effects are

included in GCH. With the curl and secondary steering effects included in the model, the predicted power
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gain for smaller yaw misalignment angles are substantially higher compared to the former wake model.

Annual energy production gains for GCH are shown to be twice as high as the AEP gains for the Gaussian

model for large wind farms in high and low turbulence intensity conditions [54].

More recent studies shows that deep array effects are underestimated with GCH, more specifically

losses are under-predicted in the rear part of large wind farms and turbine pairs at distances larger than

25D [7, 71]. The Cumulative Curl (CC) model [7] and TurbOPark model [71] have been developed to

account for these effects. The TurbOPark model has not been validated yet for wake steering applications,

so it is out of the scope of the literature survey. On the other hand, CC has been validated in simulations

for yawed and non-yawed wind turbine conditions. CC uses the same wake deflection model as GCH, but

it enhances the accuracy of its near-wake model by replacing the Gaussian velocity deficit model with the

super-Gaussian velocity deficit model in the near wake region [9]. In addition, the velocity deficit model and

wake superposition model from GCH is replaced by [6]. This calculates the downstream turbine wake by

directly solving an approximation of the equations of conservation of mass and momentum [6]. In this way,

deep array effects are considered and more accurate near-wake predictions are made. Therefore, the

power and wake estimations are more accurate while the same performance is obtained for smaller wind

farms. CC has still not been validated in field experiments with larger wind farms, having been primarily

used in simulation studies [7]. The wind farm flow models that were presented can be used in wind farm

simulation software in order to understand wake behavior and its effects.

4.3. Modelling the annual energy production uplift fromwake steering

using FLORIS
Wind farm simulation software uses wind farm flow models in order to perform yield assessments, wind

farm and wind turbine siting and structural load analysis amongst other applications. This allows data-

backed design decisions to be made during the early wind farm design phase. In addition, novel control

technologies such as wake steering can be tested through simulations on different wind farms before

full-scale deployment. This has the potential to motivate wind farm developers and OEMs to invest more

resources on innovations that may improve energy yield or the lifetime of wind turbine components.

The goal of wake steering yield assessments is to estimate the AEP uplift that can be achieved by

wake steering. Confidence in the yield assessment increases as the conditions in the wind farm are

modelled accurately since this increases the likelihood of obtaining similar results to field experiments

[21]. An example of a wind farm simulation software that can be used for wake steering applications is

FLOw Redirection and Induction in Steady-state (FLORIS) [34]. FLORIS has been widely used in field

experiments for wake steering controller design, more specifically for finding the optimal yaw angles of wind

turbines (eg. [21, 29, 84]). A user-centered visualization of FLORIS for wake steering yield assessments

is given in Figure 4.2.

Figure 4.2: Visualization of wake steering yield assessments with FLORIS

In order to start up the software, some input parameters must be selected. Turbine properties are

defined by selecting the turbine type and specifying the wind farm layout. Wind farm model parameters

are chosen by selecting the four sub-models making up the wind farm flow model. With the wind rose

loaded in FLORIS, the yaw angles can be optimized for every wind direction and wind speed possible.

However, to decrease the computational cost, the optimization can be done for given wind speed, wind

direction and/or turbulence intensity values. Finally, the yaw optimizer method is selected [69]. In most
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recent field experiments [65] the serial-refine method has been used for yaw optimization due its reduced

computational time [31]. As the focus of the thesis is understanding the impact of the input parameters

on the AEP output when wake steering is implemented, further description of the FLORIS algorithm is

omitted. For a more detailed view of FLORIS and the model parameters included, please consult the most

recent FLORIS documentation [69].

Since FLORIS is a model-based software, the results obtained using it are highly dependent on the

accuracy of the wind farm flow model used. Therefore, the choice of the wind farm flow model has a

significant impact on the level of model uncertainty introduced to the output. Besides the choice of the

model, other sources of uncertainty due to FLORIS have been found in field experiments and uncertainty

studies. One source of uncertainty is that FLORIS does not account for differences in power gains during

nighttime and daytime conditions that occur due to changes in atmospheric stability and turbulence [29].

This is because FLORIS models the average of the two conditions. Another source of uncertainty is due to

the fact that the power curve model in FLORIS is independent of the wind farm flow model. In non-yawed

conditions, the Cp is a function of the velocity deficit only. This does not change when more complex wind

farm flow models that, for example, include vortex effects are used. In yawed conditions, the power is

calculated by multiplying the non-yawed power curve with a correction factor of cosPρ(γ), where Pρ is
an empirical parameter value found from wind tunnel tests of yawing turbines. This adjustment to the

non-yawed power equation is based on the Jiménez deflection model and is independent of the wind farm

flow model selected in FLORIS [34]. Hence, the wind farm flow model and the power curve model can

influence the accuracy of the energy production estimation, affecting the validity of the results obtained

from wake steering yield assessments.
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Practical Applications of Wake Steering

Chapter 4 explained the models used to describe the physical properties of wind farms. These models

are used in practical wake steering applications. Chapter 5 describes the current state of wake steering

technology, highlighting challenges that must be addressed in the future in order to achieve wide-scale

adoption of the technology by the industry.

5.1. Wake steering in industry
In Section 3.2 wake steering was presented to be the only wind farm flow control method to date with a

commercial application, and it was expected to increase the gains in AEP by up to 1%. In an offshore

wind farm with 407 MW capacity - which is the capacity of the Horns Rev 3 wind farm in the North Sea

[102] - this translates to an additional annual profit of approximately €500,000 [105]. In addition, the ability

to optimize the energy production of the wind farm with wake steering ensures that the targeted energy

output is consistently achieved, leading to more stable revenue streams. Projects with lower financial

risks are more attractive to investors. These potential financial benefits have led to the creation of Task

44 within the International Energy Agency (IEA) Wind Technology Collaboration Program which is an

international cooperation between 24 countries with the goal of advancing wind energy research and

development. More specifically, IEA Wind Task 44 - which conducts internationally collaborative research

and development projects between academia and industry - has shown significant effort in validating

wake steering [45]. Moreover, DNV partnered with National Offshore Wind Research and Development

Consortium (NOWRDC), which focuses on the advancement of wind energy technology in the United

States, to perform an economic analysis on the effects of wake steering methods on floating offshore wind

farms [85]. In 2024 DNV kicked off a joint industry project with offshore wind and transmission developers

in order to work on the integration of wind energy into the existing electrical grid network [77].

Industry is continuously exploring wake steering technology because it has shown consistent success

in field experiment validations. Results from field campaigns are needed for wind farm flow concepts to

achieve a high technology readiness level (TRL) such that commercially viable wake steering products

can be produced [62].

5.2. Validation through field experiments
Typically, wind farms are high value assets with multiple stakeholders sharing in the costs, revenues and

risks. The potential benefits of new wind farm flow control concepts must be demonstrated alongside

the associated risks for the concept to be adopted by industry. These demonstrations first start with

a proof-of-concept study using high-fidelity simulations then are followed by validations in wind tunnel

experiments. Positive results from these simulations and experiments open the doors to further research.

First, field campaigns on a limited number of wind turbines are conducted; these are followed by full-scale

field campaigns [62]. Since the focus of this thesis is on practical applications of wake steering using

existing controllers, the results of wind tunnel tests and high-fidelity simulations will not be discussed.

Instead, the focus is on field experiments with the goal of understanding the current state of wake steering

technology.

One of the first field experiments was conducted on one utility-scale wind turbine operating at a fixed

misalignment angle with the incoming wind direction to investigate the resulting wake deflection [26]. This
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was followed by a two-turbine field test in a commercial offshore wind farm that had 25 Envision turbines

that validated the predictions of low-fidelity and high-fidelity simulations - namely FLORIS and SOWFA -

with the highest relative increase in power production from wake steering occurring at 7D and 8.5D turbine

spacing [27].

These successful results motivated the scaling up of field tests. An experiment in an operational

Canadian wind farm with six utility-scale turbines showed that wake steering increased power production

by 7-13% for wind speeds close to the wind farm’s average wind speed values and for wind directions that

were seen in less than 10% of nocturnal operations and by 28-47% for low wind speeds. Although overall

gains in AEP were insignificant, this experiment hints at the dependence of accurate wake steering benefit

assessments on wind direction and wind speed as well as the modelling of the power curve [44]. In [28]

uncertainties due to the controller’s inability to capture changing wind directions persist. As more than 60%

of the data is collected in unstable atmospheric conditions, the wake steering controller under-performs. In

this case, five closely spaced turbines are tested with the objective of evaluating the effect of two controlled

turbines - with one of them placed on a complex terrain and the other on a flat terrain - on one downstream

turbine. The wind turbine placed on the flat terrain is at a distance of 5D from the downstream turbine,

while the one placed on the complex terrain is at a distance of 3D from the downstream turbine. Hence,

both turbines are influenced by near-wake effects to some extent. Results show an increase of 14% in the

downstream turbine’s power production for specific range of wind directions and wind speeds. When the

upstream turbine’s power losses are considered, this power increase reduces to a net gain of 4% over

the same wind direction and wind speed range. Additionally, the wake steering controller was designed

through the optimization of a FLORIS model which, when the experiment was conducted, did not have

the ability to model terrain effects or accurately represent near-wake effects. The same experiment was

continued at a later date, incorporating some wind direction uncertainty in the optimization algorithm used

to generate the static LUTs. Another important change was using the improved GCH model - that includes

complex wake effects due to yaw misalignment - to generate the optimal yaw offset angles [29]. Wake

steering reduced wake losses by 6.6%, which was half of the wake loss values predicted by the GCH

model used in FLORIS. While for the wind direction regions with the highest gains nearly optimal results

were achieved, under-performance was observed in the wind direction regions with lower gains (that are

also less studied in high-fidelity simulations). This under-performance may be attributed to losses caused

by ’wrong-way steering’ (i.e. steering the wake towards the downstream turbine). However, it should be

noted that such losses may be better predicted with an improved near-wake model, perhaps leading up

to more effective yawing activity. In addition, the FLORIS model uses the average of the daytime and

nighttime conditions. Higher energy gains are achieved at nighttime since the atmospheric conditions

are more stable and have low turbulence intensity which is more favorable to wake steering [29]. The

aforementioned field experiments validated wake steering for a small number of wind turbines. The next

step was to demonstrate wake steering on a full-scale wind farm [62]. [21] took this step by demonstrating

wake steering in an array of three turbines placed in three consecutive rows in a 43-turbine commercial

onshore wind farm. In this experiment, power gains of up to 16% were found for a specific wind direction

when the first two turbine rows operated under yaw misalignment. Wake losses at certain wind directions

were underestimated by FLORIS and some predicted positive gains were found to have large uncertainty

bounds. This was attributed to not only the lack of terrain modelling in FLORIS and to not using GCH,

but also to a mismatch between the yaw-power curve of the real turbines and FLORIS. This is because

FLORIS assumes a symmetrical yaw-power curve with peak power at γ = 0 which does not reflect the
asymmetrical, flat shape of real yaw-power curves [21].

It can be concluded that power gains calculated by simulation tools are not always accurate. One

of the most researched reasons for this is the highly variable nature of wind which the yaw controller

cannot immediately react to [78, 84]. This combined with the uncertainty in wind speed creates errors

in the calculation of the optimal yaw offset angle [75]. Factors such as measurement inaccuracies and

uncertainties in wake model parameters also contribute to power production results with high uncertainty

bounds [42, 51]. Therefore, more recent field experiments focus on designing more robust wake steering

controllers by including these uncertainties.

5.3. Wake steering under uncertainty
Early wake steering field experiments show the effect of wind speed, wind direction and ambient atmospheric

conditions on the success of wake steering. They also reveal insights into the power gain predictions done
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by tools such as FLORIS. This is important because energy yield estimation is used for risk management

and financial analysis of wind farm projects. Accurate energy yield estimation provides more realistic results,

reducing financial risks. Hence, the field of uncertainty quantification is attracting more attention from

industry and academia [30]. A common method for uncertainty quantification in wind energy applications

involves identifying the sources of uncertainty, modelling them with probabilistic methods, propagating

these uncertainties onto the output through simulations and evaluating the impact of the uncertainties on

the output (eg. [51, 63, 76]).

In Figure 3.5, it was shown that LUTs are generated as a direct result of the wind direction (which is

the sum of the nacelle vane position and yaw position) and the nacelle wind speed. Since wind direction

is a direct input parameter, the ideal yaw offset angle is highly sensitive to the wind direction. However,

the wind direction is hard to measure and varies over time and in space (in this case, in different places

in the wind farm). The wind’s unpredictable, time-dependent behaviour is not captured by the static,

steady-state yaw controllers used in field experiments. Often, the optimal yaw offset that the wind turbine

achieves lags behind the current wind direction. Uncertainty quantification studies consistently show that

wind direction variability is one of the most significant uncertain inputs [42, 51, 76]. [84] - using the same

experimental design and controller as [28] - showed that, by including probabilistic wind direction and yaw

position corrections to the power production estimate, results that matched field experiments more closely

were obtained. Additionally, though maximum power gains with uncertain wind direction were lower, the

power losses obtained when the turbine deviated from the expected wind direction were also reduced

in a simulation study [78]. Variable wind directions were later implemented in a field experiment via yaw

controllers that used preview wind direction information. This resulted in increased power gains for perfect

preview wind direction information compared to controllers that used static wind direction information for

yaw optimization [83, 84]. High-fidelity simulations for wake steering control using preview wind direction

information followed, showing that there was academic interest in the subject. For wind direction changes,

these simulations predicted increases in average wake steering power gains [79].

Other significant uncertain inputs are yaw misalignment errors and variability in wind speed and

turbulence. By taking into account these factors, smaller yaw offset angles and larger power gains

compared to the deterministic case were achieved [51, 75, 76]. Smaller yaw offsets decrease the loads on

the yaw drives; however, this also means that there is less benefit to performing wake steering. Another

important finding was that including variable wind direction and wake model parameters in an open-loop

wake steering model (similar to FLORIS) results in a statistically significant higher energy gain only in

wind turbines with moderate spacing and operating under low turbulence conditions [42]. This raises the

question of whether it is even beneficial to implement wake steering under all atmospheric conditions.

Currently, there is an ongoing field campaign that aims to understand physical phenomena that could

produce significant sources of uncertainty, including the influence of turbulence on potential energy gains

[65]. It should be noted that besides this ongoing field campaign there are no other field experiments that

investigate the influence of the other parameters on energy gains. Therefore, additional research on this

topic is required.



6
Thesis Contribution

Reflecting on the information presented in the previous chapters, it can be concluded that wake steering

is a promising technology but that there is still a long way to industry-wide adoption. One of the main

challenges is ensuring that wind farm developers can accurately assess the benefit from wake steering

in the early phases of wind farm development. Predicting the energy uplift from wake steering while

considering all uncertainties increases confidence in wake steering technology for the early stages of wind

farm projects. This scientific gap is explained in Section 6.1. The thesis addresses the scientific gap in

Section 6.2. Based on the research questions and the literature review, a tentative research outline is

proposed in Section 6.3.

6.1. Research gap
With increasing financial pressure on wind energy viability, both improvement in wind energy innovation

and how the innovations are assessed are of vital importance. One such innovation that is quickly maturing

to becoming a commercial product is wake steering. However, accounting for the influence of uncertain

conditions and models is still a major challenge in the practical application of wake steering. Recent field

experiments that considered uncertain wind direction [42] resulted in AEP gain calculations that are within

higher uncertainty bounds. When other factors such as yaw misalignment errors are considered, the

optimal yaw offset angles are smaller [51]. The question of how much benefit can be obtained from wake

steering in real-life applications that are inherently uncertain remain unanswered. By understanding the

uncertainties in AEP gain predictions for wake steering, the estimations of AEP gains during the early

phases of wind farm project development become more reliable. As a result, the knowledge obtained

from such a study can contribute to increasing confidence in wake steering as a potential wake mitigation

technique in future wind farms.

6.2. Research questions
This thesis addresses this scientific gap by performing an uncertainty quantification of wake steering in the

spirit of [42] and [51]. The research objective of the thesis can be formalized as:

Understanding uncertainties in annual energy production gain predictions for wake steering in wind farms

through uncertainty propagation

This leads to the following main research question:

How do uncertainties affect the predicted annual energy production gains for wake steering?

The wider research question is answered through the research sub-questions. Understanding the effect

of uncertainties on the predicted AEP gains starts with identifying the possible sources of uncertainty. Since

the computational cost increases with the number of turbines and the number of uncertainties considered,

focusing on the uncertainties that have the greatest impact on the predicted AEP uplift is the most efficient

[76]. This leads to the following research sub-question:

Which input uncertainties have the most significant impact on the predicted annual energy production

gains for wake steering?
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Recent uncertainty quantification studies modelled uncertainties as stochastic values; however, it is

predicted that for some variables deterministic representation may be more suitable [51]. Therefore, the

appropriate modelling of uncertainties must still be researched leading to the research sub-question:

How can the uncertainties in input parameters be modelled?

Next, it is important to understand the input parameters that have the most significant impact on wake

steering power production since the computational cost increases as the number of uncertainties considered

and the wind farm size increase [76]. This problem can be formalized as:

How significant is the impact of input uncertainties on the predicted AEP gain from wake steering?

Both [42] and [51] considered the stochastic input variables as independent. Yet, in reality these variables

may depend on each other. At the present moment, there is no research that accounts for the dependency

between different input variables which results in the following research sub-question:

How significant is the impact of inter-dependent input uncertainties on the predicted AEP gain from wake

steering?

Finally, the benefit gained from wake steering when uncertainties are included must be assessed. This

leads to the formalization of the research sub-question:

To what extent is the implementation of wake steering in wind farms beneficial when uncertainties are

considered?

By addressing these goals, the thesis aims to validate wake steering technology further for practical

engineering applications.

6.3. Research plan
Based on the research questions posed and the literature studied, a high-level plan for the next steps of

the research can be made. Note that most likely this plan will change as the research progresses and new

information is encountered. The plan may also change if the researcher finds the scope too large for the

given resources or finds insignificant results for certain test cases. The research starts with identifying

possible sources of input uncertainty in the estimation of AEP uplift for wake steering. These are likely to

be chosen based on literature. A sensitivity analysis is performed on a small number of wind turbines with

a large number of possible uncertainties. However, instead of modelling all uncertainties as stochastic

variables, the researcher expects to also model some uncertainties using a deterministic approach. This is

expected to yield the best performance in the most uncertain scenario [51]. With the sensitivity analysis,

the most significant uncertainties are identified. Next, uncertainty quantification for the most significant

uncertainties is performed on the wind farm level. By reducing the number of uncertainties considered, the

computational cost can be kept at manageable levels [76]. The uncertainty quantification can be performed

for independent input variable case and the dependent input variable case. By performing the uncertainty

quantification for both cases, the impact of inter-dependent input uncertainties on the predicted AEP gain

can be determined. The expectation of the researcher based on literature is that wake steering will be

beneficial in some operating conditions. Moreover, the researcher expects to obtain smaller yaw offset

angles that have larger power gains compared to the deterministic wake steering case [51, 76]. In future

works, the uncertainty quantification can be expanded to multiple wind farms, and attempts to create

a predictive framework that estimates AEP uplift from wake steering that includes the most significant

uncertainties can be made.
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7
Deterministic Analysis

Chapter 6 formalized the research objective as understanding uncertainties in annual energy production

gain predictions for wake steering in wind farms through uncertainty propagation. In order to evaluate the

uncertainty in the prediction of a wind farm’s AEP gain, there must be a baseline AEP gain prediction in

which no uncertainties are assumed. This is the deterministic case study representing the conventional

wake steering yield assessment as done by wind farm developers. With this deterministic case study, the

effect of wake steering on the AEP is quantified. Section 7.1 describes how FLORIS is used to perform the

wake steering yield assessment. Next, the wind farms used for the case study are described in Section 7.2.

The results from the deterministic wind farm case study are discussed in Section 7.3.

7.1. Methodology
This section offers a detailed description of the method used to predict AEP gains with FLORIS. With this,

the user can understand how FLORIS is used to perform wake steering yield assessments. Building this

knowledge is important for understanding where input uncertainties occur and how they will be propagated

later in the study. The schematic for calculating the deterministic AEP in FLORIS is shown in Figure 7.1.

The input variables - such as the wind rose, turbulence intensity and wind farm layout - are shown by

arrows pointing towards the schematic, while the output variables - namely the deterministic AEP with no

wake steering and the deterministic AEP with wake steering - are emphasized with the red font and arrows

pointing out of the schematic.

Within FLORIS, the wake steering assessment can be separated into two parts: yaw optimization and

Figure 7.1: Methodology for assessing wake steering yield with FLORIS

annual energy production (AEP) output [69]. The yaw optimization process is depicted in Figure 7.1 with

pink boxes, while the flow chart to calculate the annual energy production is depicted with blue boxes.

The two calculations are performed separately and independently for the entire uncertainty quantification

framework.
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The optimum yaw angles over the defined wind direction and wind speed combinations are obtained

for a given wind turbine type and wind farm layout. In this case, the Serial-Refine method is used to find

the optimal yaw angles that minimize the wake losses of the wind farm. This optimization method reduces

computational cost compared to other methods [31] and was used in recent field experiments to identify

the optimal yaw angles for wake steering [65]. The wake losses of the wind farm are quantified differently

according to the wind farm flow model selected. Therefore, the yaw angle optimization is repeated for

different wind farm flow models. Table 7.1 summarizes the specifications of the yaw optimization used in

the case study.

Table 7.1: Yaw optimization specifications

Feature Selection

Optimization method [-] Serial-Refine [31]

Wind direction array [◦] [0,360] with step size of 3◦

Wind speed array [m/s] [1,25] with step size of 1 [m/s]

In order to further reduce computational cost, the wind speed array is restricted to three wind speeds.

Then, the resulting yaw offset angles for the three wind speeds and full wind direction array are linearly

interpolated over the full wind speed array. Thus, the optimal yaw offsets for all combinations of wind

direction/wind speed are determined.

The wind direction and wind speed arrays in Table 7.1 are used to create a grid representing all possible

combinations of wind direction/wind speed for the defined arrays. Then, SCADA wind direction and wind

speed time series data is used to create the wind rose. The wind rose is a representation of the frequency

of occurrence of each combination of wind direction/wind speed. This process is illustrated with the green

boxes in Figure 7.1. Therefore, the probability of occurrence of each combination of wind direction/wind

speed is obtained along with its associated optimal yaw angle.

The deterministic annual energy production output without wake steering is computed by taking the

weighted sum of the power for a specific combination of wind direction and speed and the probability of

occurrence of that combination of wind direction and wind speed. This weighted sum is multiplied by

the number of hours in a year. To calculate the deterministic AEP for wake steering, the power under

the yaw offset angle is used for the specific combination of wind direction and speed. For uncertainty

quantification, the input variables that were identified as sources of uncertainty are replaced by the random

input vector defined in Section 8.2.1. Next, the yaw offset angles are introduced, resulting in the annual

energy production with wake steering (optimized AEP). In this way, the effect of the uncertainties in the

input variables on the AEP is quantified. This is compared with the AEP without the optimized yaw angles

(baseline AEP) to evaluate the AEP uplift due to wake steering. The methodology described in this section

is applied to the wind farms described in Section 7.2.

7.2. Case Study Description
This section describes the characteristics of the wind farms used in the case study. With this case study,

the effect of wake steering on NoordZeeWind is determined. By the end of the research paper, the

accuracy of this deterministic AEP uplift due to wake steering will be quantified. The goal is to develop a

method that can potentially be used to quantify the uncertainty in the AEP uplift due to wake steering in

different wind farms, thus understanding the extent of the benefit of wake steering.

The case study is conducted on Offshore Windpark Egmond aan Zee (OWEZ) which is located in the

North Sea at approximately 10 km off the Dutch shore. This WF has 36 Vestas V90 WTs with a nameplate

capacity of 3 MW each. To its south-west, it is neighbored by the Prinses Amalia (PA) Wind Farm. This

WF consists of 60 Vestas V80 WTs with a nameplate capacity of 2 MW each. The characteristics of the

two turbine types are found in Table 7.2, and the exact locations of the WTs are shown in Figure 7.2.

In Chapter 4 the Gaussian-Curl Hybrid wind farm flow model was identified as the most accurate wind

farm flow model that was also validated for wake steering in field experiments. Wind farm flow modeling

accuracy was shown to directly impact the AEP uplift estimated by FLORIS. The cumulative curl (CC)



7.3. Results and Discussion 41

Figure 7.2: Layout of OWEZ and Prinses Amalia Wind Farms

Table 7.2: Characteristics of wind turbines

Feature Vestas V90 Vestas V80

Nameplate capacity [MW ] 3 2

Hub height [m] 70.0 60.0

Rotor diameter [m] 90.0 80.0

Ref. density Cp/Ct [kg/m3] 1.228 1.225

model was described to be a more accurate WFFM that had not yet been validated in wake steering field

experiments. In order to understand the extent to which the wind farm flow model limits the quantification

of the AEP uplift due to wake steering, wake steering assessment is performed for both the GCH and CC

models.

For the deterministic wake steering assessment, wind direction and wind speed data from the North Sea

is collected for the time interval between December 2006 and December 2010. The turbulence intensity in

the time series data is constant at 0.06. With this time series data, the wind rose shown in Figure 7.3 is

created.

7.3. Results and Discussion
The characteristics described in the previous section are the input parameters for the wake steering

assessment in FLORIS. Throughout the case study, the yaw optimization for wake steering is done on

OWEZ and the AEP uplift is evaluated for this wind farm. In addition to this, the wake effects of the

neighboring wind farm are included in order to provide a more realistic assessment of the WF’s annual

power output. The same evaluation is repeated for the CC WFFM which models the wind farm’s wake

more accurately than the GCH WFFM. The results of these evaluations are shown in Table 7.3. In this

table, the baseline AEP is equivalent to the deterministic AEP with no wake steering while the optimized

AEP is equivalent to the deterministic AEP with wake steering as described in Figure 7.1.

The results for the AEP uplift are verified by calculating the power uplift of the wind farm for one wind

speed and a range of wind directions. Due to the orientation of the wind turbines in OWEZ and the wind

mostly coming from the south-west direction, it is expected that the greatest power uplift is close to 150◦.

The break-down of the power uplift per wind direction in Figure 7.4 verifies this.

The comparison between the cases including and excluding the neighboring WF’s wake effects shows

that the neighboring WF’s wake has no significant effect on the AEP uplift. This can be explained by the

fact that the WTs are placed 7.5 km apart, which is a distance greater than 80D. At this distance from
the WT, wake mixing has fully occurred. Therefore, the wakes of the WTs from the neighboring WF do

not affect the wakes of the WTs from OWEZ. Since the wake effects from the neighbor do not affect the
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Figure 7.3: Wind Rose for the Deterministic Analysis

Table 7.3: Results of deterministic wake steering yield assessment

WFFM Baseline AEP [GWh] Optimized AEP [GWh] AEP uplift

GCH (with neighbor) 448.428 452.778 +0.97%

GCH (no neighbor) 448.635 452.998 +0.97%

CC (with neighbor) 441.434 446.547 +1.16%

CC (no neighbor) 443.204 448.345 +1.16%

AEP uplift, the uncertainty quantification analysis will only be done on the case studies that ignore the

neighboring wind farm. Another interesting conclusion is that the AEP uplift obtained increases when a

more accurate WFFM is selected in FLORIS. This shows that in fact the AEP uplift is under-estimated by

typical wake steering yield assessments that are conducted using the GCH model. In subsequent chapters,

the accuracy of this hypothesis will be tested as uncertainties that mirror the real conditions in a wind farm

will be introduced.
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Figure 7.4: Wind Farm Power Uplift at 8 m/s



8
Uncertainty Quantification Methodology

This chapter provides background information on the field of uncertainty quantification and describes

the methodology to be followed throughout the research. Section 8.1 gives an overview on the different

uncertainty quantification problems in literature and the methods used for conducting the uncertainty

quantification analysis. These findings are related to the research objective in order to select the most

appropriate uncertainty quantification methods for this study. The application of the methods selected to

the research problem is shown in Section 8.2.

8.1. Background on Uncertainty Quantification
Uncertainty quantification involves identifying all sources of uncertainty and error and quantifying their

effect on the system in order to, for example, improve the accuracy and dependability of simulations

[90, 109]. Due to factors such as the increasing complexity of contemporary systems and advancements

in computational power, UQ has been gaining increasing attention across different fields [86]. UQ methods

have already been extensively applied in fields such as computational flow dynamics (eg. [67, 104]).

Since the wind resource itself is stochastic and heavily dependent on atmospheric conditions, UQ is highly

applicable to the wind energy field. For wind farm yield assessments specifically, the following uncertainty

quantification problems have been considered [98]:

1. Forward propagation that involves analyzing the effect of input uncertainties on the system’s output

2. Model calibration which deals with adjusting the model parameters in order to obtain more accurate

estimations

3. Optimization and control under uncertainty that is concerned with obtaining solutions to an optimization

problem that are resilient to uncertain conditions while performing well at specific conditions

For this study, the research objective is to understand the uncertainties in annual energy production uplift

estimates for wake steering in wind farms via uncertainty propagation. Therefore, this is a pure uncertainty

propagation problem. The uncertainty propagation is described in mathematical terms in Equation 8.1

P (x|k) f→ P (y|k) (8.1)

The uncertainty propagation is performed on the input parameters that are related to atmospheric stability

such as wind shear and turbulence intensity. While in FLORIS these parameters have a single, constant

value, in reality these parameters vary in time and are difficult to predict. This means that there is range of

possible AEP uplift values that are closer to the real-life AEP uplift due to wake steering. The uncertainty

quantification framework involved in performing uncertainty propagation and sensitivity analysis is best

illustrated in Figure 8.1.
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Figure 8.1: Uncertainty quantification framework [89]

The steps shown in the uncertainty propagation framework are briefly described below [89].

• Step A relates to defining the model of the physical system and the criteria to assess the physical

system. The uncertainties are propagated from the input to the output through the computational

model, preferably without introducing additional biases. In this case, the complex wake interactions

of the wind farm are modeled with FLORIS software which is a black-box model.

• Step B: the sources of uncertainty are quantified by identifying and modeling the uncertain input

parameters. In this way, a random vector of input parameters is obtained.

• Step C: the uncertainty defined by the random input vector is propagated through the computational

model. In this analysis, a response probability distribution function is obtained following the uncertainty

propagation.

• Step C’: using the relationship between the output and input, the importance of the uncertain input

variables are ranked. This is the sensitivity analysis.

The modeling of the sources of uncertainty chosen for creating the uncertainty propagation framework of

this study are described in Section 8.2.

There are a wide range of uncertainty propagation techniques available for propagating the uncertainty

sources forward. The uncertainty propagation methods most often encountered in wind energy applications

at the wind farm level can be listed as [98]:

• Monte Carlo techniques

• Surrogate models

Other uncertainty propagation methods such as First Order Reliability Method (FORM)/Second Order

Reliability Method (SORM) are considered to be out of the scope of this study since they are most

commonly used for structural reliability studies [98]. For more information on these UQ methods, the

interested reader is referred to [89]. Another uncertainty quantification method widely used in wind energy

literature is the Bayesian method. This is a probabilistic framework that uses measurement data or

high-fidelity data in order to estimate the computational model’s parameter uncertainties [98]. Since this a

technique used for model calibration, it is out of the scope of an uncertainty propagation study. The reader

interested in learning more about Bayesian calibration is referred to [98].

Monte Carlo methods involve generating (quasi-)random samples and running the model for each

sample such that the model response to input variables are obtained [89]. With Monte Carlo simulations,

the computational model can be assumed to be a ’black box’, allowing for the easy implementation of large

models and model changes. Therefore, output distributions are produced without imposing another model

on top of the computational model [8]. In addition, they do not suffer from the curse of dimensionality.

The curse of dimensionality means that the number of samples needed increases exponentially with

the number of random variables [98]. The main drawback of the Monte Carlo method is that it may be

computationally expensive in experiments with many input parameters or that require many iterations [8].
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Surrogate models such as polynomial chaos expansion (PCE) and Kriging decrease the computational

cost by approximating the computational model using techniques such as polynomial approximation or

the construction of Gaussian processes [98]. Moreover, for example, PCE is sensitive to probability

distributions in input parameters and can be efficiently used for uncertainty propagation. However, creating

a model approximation introduces a new uncertainty. Although with Kriging an error estimate is obtained,

PCE does not provide an estimate for the approximation error [94, 98]. In addition, surrogate models

are constructed based on the model response to certain input parameters. Therefore, a change in input

parameters would require the construction of a new surrogate model [94].

In this study, the goal is to quantify the uncertainties on the AEP uplift obtained in wake steering assessments

on FLORIS. It is preferable that the framework developed can propagate the uncertainties directly and

without adding new uncertainties. Moreover, the framework should be adaptable to different wind farms

and different distributions of the input parameters. Therefore, the Monte Carlo simulations are the best

option for this uncertainty propagation problem unless it is shown that this method is too computationally

expensive. Therefore, a convergence study - whose results are in Chapter 9 - is done in order to quantify the

number of samples needed for an accurate result with the Monte Carlo technique. If the AEP uplift results

converge at a relatively low sample size, then surrogate models are not needed to keep the computational

cost manageable.

Another goal of the study is to understand how much each input parameter affects the uncertainty

in AEP uplift. This can be achieved with a global sensitivity analysis using Sobol’ indices [89]. Sobol’

indices decompose the variance of the output into variance contributions of the different input parameters.

With Sobol’ indices, the significance of the input parameters and the interaction effects of groups of input

parameters can be identified [109]. The advantage is that Sobol’ indices do not assume that the model

is monotonic or linear. In addition, with Sobol’ indices the combined influence of the parameters on the

uncertainty in the output can be discovered [89]. The total computational cost with MC-based Sobol’

indices is (M + 2)×N , where M is the input dimension and N is the sample size [59]. This underlines the

importance of conducting a convergence study in order to minimize the computational cost.

8.2. Uncertainty Quantification Method
The uncertainty quantification framework applied to the full wind farm is created with UQLab [60]. UQLab

is a framework based in MATLAB that contains a large spectrum of UQ tools, allowing for the easy

implementation and creation of algorithms and techniques that solve multidisciplinary UQ problems [60].

This combined with a significant user community makes it the perfect choice for solving the uncertainty

propagation problem posed by the research project. In addition, showing that UQLab and FLORIS can

be merged paves the way for the possibility of adding extra modules to the uncertainty quantification

framework. This gives future researchers a ready-made tool that they can add onto for their uncertainty

quantification analysis. For the sake of brevity, the UQ tools used for the thesis and the integration of UQ

with FLORIS is described in this section. For more information on the full spectrum of UQLab tools, the

reader is referred to the UQLab website [55, 56, 59].

8.2.1. Uncertainty modelling
The input data used to obtain the AEP for the deterministic wake steering yield assessment was described

in Chapter 7, while the methodology for wake steering yield assessments in FLORIS was depicted in

Figure 7.1. The possible sources of uncertainty in these wake steering assessments are identified as

follows:

• Turbulence intensity

• Air density

• Wind shear

• Wind direction

• Wind speed

• Thrust coefficient

• Power coefficient

• Reference wind height



8.2. Uncertainty Quantification Method 47

• Hub height

• Rotor diameter

• Wind farm layout

Wind direction and wind speed are related to the chosen wind rose, while the thrust coefficient and power

coefficient are related to the wind turbine’s thrust curve and power curve. The hub height and the diameter

of the rotor are additional parameters related to the characteristics of the wind turbine. The reference

wind height is related to the location of the wind farm. Finally, the layout of the wind farm depends on the

selected wind farm case study.

The purpose of this study is to simulate the uncertainties encountered in wake steering assessments

during early-stage wind farm design. Chapter 1 explained that there were significant uncertainties in the

assumed wind rose - due to the difficulty of predicting the wind direction and wind speed - and the thrust

coefficient since this is often not given by the wind turbine manufacturer and has to be assumed. The type

of wind turbine and the layout of the wind farm are assumed to be already known during the early stage

wind farm design phase. Therefore, in this study, possible uncertainties in the reference wind height, hub

height, rotor diameter and wind farm layout are not considered. Usually the power curve of the chosen wind

turbine is known or readily given by the manufacturer, hence possible uncertainties in the power coefficient

are also neglected. Uncertainties are first introduced into the three constant atmospheric input parameters:

(1) air density, (2) turbulence intensity and (3) wind shear. These are chosen to verify that the uncertainty

quantification framework works properly since they are the easiest to implement within the framework.

Additionally, there are numerous studies that quantified the uncertainties in these parameters [51, 76].

Therefore, it is easier to check whether the results obtained following the propagation of uncertainty in

these input parameters are accurate. Once the integration of the uncertainty quantification framework is

verified with these atmospheric input variables, the uncertainties in wind rose matrix and thrust curve are

introduced together with the significant parameters from the initial uncertainty quantification study.

The sources of uncertainty in input variables are modeled as continuous probability density functions

in UQLab and are propagated by taking random samples from the PDFs that are the input values for

the computational model. The data set used to model the uncertainties in the atmospheric conditions is

taken from the measurements at the meteorological mast between July 2005 and December 2010. The

turbulence intensity, wind shear and air density variables used in FLORIS represent the annual average

ambient atmospheric conditions at OWEZ. With the available data set, the annual average values obtained

would be limited to three. This is not sufficient for fitting the data set into a PDF. Therefore, the data

set is divided into 12-month intervals starting from July 2005 to December 2009. The annual average

turbulence intensity, wind shear and air density (estimated from temperature and pressure measurements)

is computed for each 12-month interval. The raw data are shown in histogram form in Figure 8.2.

The probability distribution function that most closely follows the histogram is chosen with the Kolmogorov-

Smirnov distance (KS) criterion. According to the KS criterion, the selected PDF has a cumulative

distribution that has the lowest maximum distance from the empirical CDF of the data [93]. This is

concluded to be the most accurate statistical inference technique available on UQLab since it follows the

produced histogram most accurately, avoiding data overfitting and the artificial creation of a peak where

the majority of data points accumulate. This results in the Logistic distribution for the turbulence intensity

with µ = 6.516e− 02 and s = 1.889e− 03, the Logistic distribution for the wind shear with µ = 6.151e− 02
and s = 2.224e− 02, and the Gumbel distribution for the air density with µ = 1.240 and β = 5.251e− 03.
The PDFs are illustrated in Figure 8.3.

(a) (b) (c)

Figure 8.3: Statistical inference with the KS criterion: (a) PDF of air density. (b) PDF of turbulence

intensity. (c) PDF of wind shear.
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Figure 8.2: Annual Average Turbulence Intensity, Wind Shear and Air Density Distributions

The defined marginal PDFs are assembled into a random input vector with joint PDF X ∼ fX(x) [55]. This
input vector is used to propagate the uncertainties and perform the first sensitivity analysis. The significant

parameters from the random input vector are identified and transferred to the random input vector for the

second uncertainty quantification study. The uncertainties in the chosen wind rose matrix and the chosen

thrust curve are added to the input vector together with these significant parameters. The possible wind

rose plots are shown in Figure 8.4 and will be referred to by their number in the rest of the report.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 8.4: Possible wind rose selections: (a) Fig.0 (b) Fig.1 (c) Fig.2 (d) Fig.3 (e) Fig.4 (f) Fig.5 (g) Fig.6

(h) Fig.7 (i) Fig.8 (j) Fig.9 (k) Fig.10

The uncertainty in the wind rose is propagated by randomly selecting a wind rose from the wind rose data

available for NoordzeeWind. This is modeled by creating a uniform distribution with the range [0,10], hence

each wind rose has an equal probability of selection. Similarly, nine thrust curves are taken from nine

different wind turbines. The thrust curves cannot be shown in this report due to confidentiality. Random

samples are generated by modeling the thrust curve selection as a uniform distribution with the range [1,9].

8.2.2. Monte Carlo method
The Monte Carlo method involves generating random samples from the input vector. With Monte Carlo

sampling, the samples U =
{
u(1), . . . ,u(N)

}
are produced in the standard uniform space Z ∼ U([0, 1]M ).

Then, these samples are transformed back into the samples X =
{
x(1), . . . ,x(N)

}
∼ FX for any multivariate

distribution FX with independent marginals FXi using the inverse probability integral transform (PIT)

x
(i)
j = F−1

Xj

(
u
(i)
j

)
(8.2)

for all i = 1, ..., N and all j = 1, ...,M [55]. The vector of generated random samples X is inserted into the

computational model, in this case FLORIS, which is treated as a black-box

Y = M(X) (8.3)

to obtain the vector of model responses Y [56]. This is used to compute the expectation, standard deviation

and the confidence intervals [108].

8.2.3. Monte Carlo-based Sobol’ indices
The final step is performing a global sensitivity analysis using Sobol’ indices. These decompose the total

variance of the model response into the sum of the variances of its summands. The variance decomposition
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assumes that the input variables are independent [87]. This leads to the definition of the sensitivity measure

as [59]:

Si1,...,is =
V ar(Y (Xi1,...,is))

V ar(Y )
(8.4)

for a group of variables Xi1,...,is , where V ar(Y (Xi1,...,is)) denotes the partial variances of the summands
and V ar(Y ) denotes the total variance of the model response Y .

The first-order Sobol’ index is the relative contribution of only one input variableXi on the total variance.

The first-order Sobol’ indices must be positive. There are also indices with multiple term called higher-order

Sobol’ indices that account for the effects of the interactions between the input variables that cannot be

separated into separated variances. The sum of all Sobol’ indices for an input variable Xi is denoted as

the total Sobol index ST
i . The variances described in Equation 8.4 are computed using the mean, variance

and partial variance estimators respectively that were derived from the Monte Carlo simulation [59]:
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(8.5)

where x′ denotes a realization of X independent of x =
{
x
(n)
i ,x

(n)
∼i

}>
, and the subscript xj,∼i indicates

the j-th realization of x which does not contain the input variable i.
In the next chapter, the uncertainty quantification framework developed is applied on a smaller test

case and on the full wind farm.
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Uncertainty Quantification Results

In this chapter, the results of the uncertainty quantification framework described in Chapter 8 are presented.

First, the samples obtained from the input parameters are processed individually through the UQ framework

in FLORIS in order to understand the relationship between the input parameters and the AEP uplift in

Section 9.1. Next, in Section 9.2 a convergence study is performed on five wind turbines in order to get an

estimate of the sample size required for the case study and to understand the sensitivity of the parameters

to the number of wind turbines. Finally, the estimated sample size is used to run the UQ framework on the

full wind farm in Section 9.3.

9.1. Understanding FLORIS
First, a few samples taken from the probability distribution function of each input data set are individually

run through the uncertainty quantification framework. In this way, the effect of each individual parameter

on the AEP uplift during wake steering assessments is understood. This is called one-at-a-time (OAT)

variation. Both GCH and CC are selected as wind farm flow models on FLORIS in order to understand

how the model assumptions influence the output. For this analysis, 16 samples are obtained through

UQLab’s and Numpy’s Mersenne Twister random number generators. This is done in order to understand

the differences between UQLab and Numpy, as the code used in UQLab is verified against the one initially

built in Numpy.

Air density
In FLORIS air density has a linear relationship with AEP. This is shown in Figure 9.1 and Figure 9.2. As the

air density increases, the optimized AEP increases. In general, the AEP uplift increases with air density.

Figure 9.1: Effect of air density for GCH Figure 9.2: Effect of air density for CC

Interestingly, for the GCH model the relationship with air density becomes almost constant between around

1.23 and 1.28 kg/m3. This is due to the baseline (no wake steering) AEP and optimized AEP (with wake

51
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steering) increasing at almost the same rates and having similar values. Since the typical deterministic air

density is 1.225 [kg/m3] (standard air density at sea level under standard atmospheric conditions) during

wake steering assessments, it can be concluded that the benefit from wake steering cannot be increased

further with higher air density. This occurs when, for example, the temperature is colder than standard

temperature at 15◦. However, the benefit from wake steering can decrease significantly with lower air

density which can occur at temperatures higher than 15◦and/or with more humid air (standard atmospheric

conditions assume 0% humidity).

Turbulence intensity
The effect of the turbulence on the velocity deficit is quantified with the wake expansion factor. As the

wake expands, the wake recovery is accelerated. At higher turbulence intensities, wake expansion is

higher. This means that the power output increases. Moreover, when the thrust coefficient of the WT

is higher the TI increases which increases wake recovery and power. Therefore, it is no surprise that

the benefit from wake steering, as shown in Figure 9.3 and Figure 9.4, decreases at higher turbulence

intensities. As wake recovery occurs more rapidly, wake steering is less effective for improving the AEP.

Although the relationship between the turbulence intensity and AEP uplift remains the same for both the

Figure 9.3: Effect of turbulence intensity for GCH Figure 9.4: Effect of turbulence intensity for CC

GCH and CC, differences are observed in the optimized AEP. In the GCH model, the optimized AEP is

a downward-facing parabola with a steeper gradient for the turbulence intensity values up to 0.04. This

means that the optimized AEP increases at a greater pace until TI = 0.04, after which the rate of increase

in optimized AEP is smaller. GCH models the turbulence with the Crespo Hernandez model. This is based

on results from experiments and CFD simulations starting from TI = 0.05 that are fitted onto a straight line

[17]. This could explain the change in the optimized AEP’s rate of increase. In contrast, the optimized

AEP calculated with the CC model decreases until TI = 0.08, after which it increases at almost the same

rate. This is because CC models wake recovery in the medium to far-wake regions better, as it uses the

super-Gaussian wake model [7]. These differences are not observed with the AEP uplift because the

baseline AEP has the same relationship with the turbulence intensity as the optimized AEP.

Wind shear
The wind shear coefficient α is directly related to the velocity gradient with respect to the hub height as

shown in Equation 9.1.

dU

dz
=

α

zH
·
(

z

zH

)α−1

(9.1)

The relationship is exponential with the exponent being the wind shear. This means that a higher wind

shear coefficient would result in an increased velocity deficit. The power output at the wind turbine is

obtained by tripling the velocity deficit at the wind turbine. As the wind shear exponent increases, the

velocity deficit and thus the power output decreases faster. The optimized AEP and AEP uplift of both the

GCH and CC models in Figure 9.5 and Figure 9.6 follow this shape for positive wind shear values, while
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for negative wind shear values the power output increases as α increases. While the relationship of α

Figure 9.5: Effect of wind shear for GCH Figure 9.6: Effect of wind shear for CC

with optimized AEP and AEP uplift is the same for both WFFMs, the gradient of the graph is steeper for

the CC model which means that changing α produces a greater change in the AEP. Changes in the wind

shear could have a more significant effect on the AEP uplift with the CC model due to the vertical velocity

gradient being modelled as greater than in the GCH model.

Once the individual effects of the input parameters on the AEP uplift are understood, the convergence

study is run to determine the optimum sample size that minimizes computational cost.

9.2. Convergence Study
For the case study with the full wind farm, samples are taken from the input parameters simultaneously. As

this increases the computational cost, it is important to find the minimum sample size at which convergence

occurs. If the minimum sample size needed for convergence using the Monte Carlo method is low enough,

a surrogate model is not needed. In order to reduce the computational cost, the convergence study is

conducted on a small sample of equally distanced five Vestas V90-3 MW WTs using the GCH model. It

is assumed that the rate of convergence for five WTs is the same as the rate of convergence for the full

OWEZ WF with 36 WTs. This assumption is verified later in the section by performing a convergence

study for the AEP uplift for increasing numbers of wind turbines. The results of the convergence study

on the mean AEP uplift for the five WTs are shown in Figure 9.7. Starting from N = 100, the variation

between the maximum and minimum AEP uplift is within 0.65% which indicates a relatively small range of

fluctuation. As the sample size increases, the range of fluctuation in AEP uplift decreases further, indicating

convergence. Therefore, N = 100 is chosen to be the minimum sample size for calculating the AEP uplift

with the MC method. This sample size has a low enough computational cost to not necessitate the use of

surrogate models.

Next, the convergence study is repeated for the Sobol indices under the same conditions as the

convergence study for the Monte Carlo method. The total Sobol index for a chosen uncertain input

parameter - in this case turbulence intensity - is calculated for increasing sample sizes. Figure 9.8 shows

the results of the convergence study. Starting from N = 225, the total Sobol index for turbulence intensity

fluctuates by 25%. At N = 1228, the rate of fluctuation in the total Sobol index decreases to 12% which

indicates that at higher sample sizes convergence occurs. Thus, the Sobol index has a moderate level of

sensitivity to sample size. Despite this, the fluctuation rate is not significant enough to change conclusions

regarding the importance of input parameters on the AEP uplift. Since computing Sobol indices is more

resource-intensive than MC-sampling for uncertainty propagation, there is further motivation to select the

lowest sample size that leads to the appropriate conclusions. Therefore, N = 225 is selected to be the

minimum sample size required for the computation of Sobol indices.

Finally, the assumption that the minimum sample size for convergence obtained for the five WT can

be used for the full OWEZ wind farm is verified. For this, the convergence rate in AEP uplift and first

order Sobol indices as a function of the number of wind turbines is computed for N = 225 and N = 400 in
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Figure 9.7: Mean AEP Uplift for 5 WTs from N=1 to N=1900

Figure 9.9. The convergence rate for the first order Sobol index of turbulence intensity is almost the same

for both sample sizes, while ones for the air density and wind shear are constant for both sample sizes due

to the AEP uplift being almost entirely driven by the turbulence intensity. Hence, it is shown that while there

are small differences in the first order Sobol indices as the number of samples increases, the difference

is negligible enough to not change the conclusions obtained from the study. In addition, a serendipitous

finding emerged, revealing that the Sobol indices converge at 20 wind turbines. It is theorized that this is

due to the aerodynamic flow becoming fully developed as one goes deeper into the wind farm; therefore,

after once a specific limit is reached no changes would be observed in the resulting AEP uplift estimates

as parameters are varied [107]. This indicates the possibility of reducing the computational cost further by

running the wake steering assessment on fewer wind turbines from the OWEZ wind farm in future research.

To conclude, N = 225 is the sample size chosen for the application of the UQ framework on the case

study. To allow for correct analysis of the UQ results, the more conservative sample size is chosen for the

AEP uplift and Sobol index calculations.

9.3. Application on Nordzeewind Case Study
Following the conclusions of Chapter 7, Chapter 8 and Section 9.2, the uncertainty quantification framework

is applied to the OWEZ wind farm ignoring the neighboring wind farm. The purpose of this case study

is to demonstrate how the UQ framework can be used to provide more accurate estimates of AEP uplift

by considering uncertainties in the input parameters and by understanding the significance of these

uncertainties in the AEP uplift. First, uncertainties in air density, turbulence intensity and wind shear

are propagated forward for the GCH and CC WFFMs. The same thrust curve and wind rose as the

deterministic analysis is used for this uncertainty quantification study. The first UQ study is performed to

verify that the uncertainty quantification framework is implemented correctly. Moreover, the computational

cost is reduced further as only the significant parameter(s) found with the Sobol’ analysis are used in the

second uncertainty quantification study. The purpose of the second uncertainty quantification study is to

propagate the uncertainty sources most commonly encountered in yield estimations during early-phase

design, namely the wind rose and the thrust curve, as well as the significant parameter(s) found in the first

uncertainty quantification study.

First Uncertainty Quantification Study
The resulting AEP uplift distribution for the GCH is shown in Figure 9.10, while the one for the CC model

is shown in Figure 9.11. The AEP uplift responses to the PDFs of the input parameters are similar in

shape to the Gaussian distribution, with the response of the Gaussian-curl hybrid model having a mean of

0.865% and a standard deviation of 0.055 and the response of the cumulative curl model having a mean
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Figure 9.8: Total Sobol Index of Turbulence Intensity for 5 WTs from N=1 to N=1228

of 1.083% and a standard deviation of 0.049. For both models, there is still benefit from wake steering

within one standard deviation of the mean. An interesting observation for both models is that there are a

small number of outliers for the AEP uplift. These are the AEP uplift values greater than 1% for GCH and

greater than 1.2% for CC and the AEP uplift values smaller than 0.7% for GCH and smaller than 0.95% for

CC. The smaller AEP uplift values have larger positive wind shear coefficients and turbulence intensity

values. This can be explained by the fact that at higher turbulence intensities wake recovery occurs faster,

increasing the power output. Therefore, the AEP uplift due to wake steering decreases as the higher AEP

is obtained without wake steering. Higher positive wind shear coefficients, on the other hand, result in

smaller velocity deficits and power output at the wind turbine level. OAT shows that this translates to

smaller optimized AEP and AEP uplift. On the opposite end of the scale, the higher AEP uplift values

have smaller positive wind shear coefficients and smaller turbulence intensity values. To evaluate the AEP

uplift due to wake steering that most frequently occurs, we look at the 95% confidence interval (C.I.). For

the GCH, this is between 0.858% and 0.873% and has a small range of 0.015, while for the CC this is

between 1.076% and 1.089% and has the same range of 0.013. It is interesting to note that, although a

more accurate wind farm flow model is used, there is a very small change in C.I.. Additionally, for both

cases, the most frequently occurring AEP uplift values and the mean AEP uplift are more conservative

than the deterministic AEP uplift due to wake steering. It should be noted that the AEP uplift distribution

from uncertainty propagation is heavily dependent on the size of the input data chosen. This highlights the

importance of further research into the modeling of measurement data. Additionally, it is not possible to

draw conclusions about the true AEP uplift from the confidence interval or the probability distribution, as

this is not only heavily dependent on the correctness of the study’s assumptions but also on repeating the

simulations with a variety of input data and the size of the input data [36].

Next, a sensitivity analysis with the Sobol’ method is performed to rank the significance of the input

variables on the estimated AEP uplift. The first order Sobol indices are presented for the AEP uplift estimates

for both the GCH and CC models in Figure 9.12 and Figure 9.13. The first order Sobol indices show

the independent contribution of each input parameter’s variance to the AEP uplift’s variance. Therefore,

they must be positive. For both WFFMs, there are negative first order Sobol indices. In Section 10.1 it

is proven that this is due to the Sobol indices not fully converging at the chosen sample size. However,

both Section 9.2 and Section 10.1 show that as the number of samples increases, there is no significant

change in the Sobol indices. As the computational cost increases with more samples, N = 225 remains the

optimal number of samples. In Figure 9.12 and Figure 9.13, the main driving parameters of the AEP uplift

and optimized AEP differ. Section 9.1 showed that the change in AEP uplift and in optimized AEP can be

quite different when parameters are varied one at a time. For both WFFMs the AEP uplift is almost entirely

driven by the turbulence intensity. While the wind shear has a greater contribution for the CC model, this is

not large enough to significantly influence the AEP uplift estimation.
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Figure 9.9: Convergence Study of Sobol Indices for Increasing Number of Wind Turbines

The first order Sobol indices do not consider the combined effect that the parameters have on the output.

To quantify the combined effect, higher order Sobol indices are necessary. Total Sobol indices are the

sum of the first order Sobol indices and the higher order Sobol indices. These are illustrated for the GCH

and CC model in Figure 9.14 and Figure 9.15 respectively. The most significant parameter for estimating

the AEP uplift is turbulence intensity. The wind shear has a smaller contribution to the AEP uplift (around

10% for the GCH model and around 20% for the CC model), while the air density does not contribute to

the AEP uplift. This is consistent with findings in literature demonstrating that significant changes in yaw

misalignment angles occur for turbulence intensity, but not for wind shear and air density, following an

uncertainty quantification study [51]. On the other hand, the optimized AEP is fully determined by the air

density. For both models and both output results, there is nearly no difference between the first order

Sobol indices and total Sobol indices of the significant input variables. Therefore, there are no correlations

that significantly impact the estimated AEP uplift or optimized AEP. To minimize computational costs, the

turbulence intensity is the only parameter that is used in the second uncertainty quantification study.

Second Uncertainty Quantification Study
The uncertainty quantification is performed on the turbulence intensity, the thrust curves and the wind

roses. Figure 9.16 and Figure 9.17 show the results of the AEP uplift distributions for the GCH and CC

models respectively. The mean AEP uplift for the GCH model is 0.906% with a standard deviation of

0.190, while the mean AEP uplift for the CC model is 1.105% with a standard deviation of 0.228. In both

cases, there is benefit from wake steering within one standard deviation of the mean. Compared to the first

uncertainty quantification study, the AEP uplift distributions for both cases are less similar to a Gaussian

distribution and a wider spread is observed. This can also be inferred from the 95% C.I. for both models.

The 95% C.I. for the GCH model is between 0.881% and 0.931% with a range of 0.05, while the 95% C.I.

for the CC model is between 1.075% and 1.135% with a range of 0.06. Thus, the range in the 95% C.I. is

higher compared to the first UQ study, and the difference in the two WFFMs is more pronounced. In order

to understand the reason behind this, the extreme AEP uplift values for both WFFMs are analyzed.

In the GCH model, the smallest AEP uplift is between 0.45% and 0.64%. Fig. 2 and Fig. 4 are the most

frequently occurring wind roses with the dominant wind direction coming from the south and south-west and

a heavy skew towards the western direction, and wind speeds of 15-20 m/s concentrated on the dominant

wind directions. The turbulence intensities are between 6.6% and 7.0%, and - while this AEP uplift range

has a mix of different thrust curves - thrust curve 6 appears the most frequently. On the other end of

the spectrum, the largest AEP uplift values are between 1.16% and 1.33%. Fig. 8 is the most frequently

occurring wind rose with the dominant wind direction coming from the north-east direction. Fig.0 - that has

a wider spread across different wind directions - and Fig.3 - whose wind directions are concentrated in the

south-west direction - are also frequently observed at this AEP uplift range. Wind speeds in the range
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Figure 9.10: AEP Uplift Distribution for GCH Figure 9.11: AEP Uplift Distribution for CC

5-10 m/s and 15-20 m/s and turbulence intensities between 6.2% and 6.45% occur the most. Thrust curve

1 is also most frequently used. From this analysis, it is already concluded that the thrust curve has a more

modest influence on the estimated AEP uplift than the wind speed and wind direction combination. At

the 95% C.I., there is no dominant thrust curve, which confirms the previous conclusion. The dominant

wind direction is from the south-west direction and the dominant wind speed is between 10-15 m/s with

significant 15-20 m/s wind speed components in the same direction. The turbulence intensity varies

between 6.4% and 6.8%. This shows the importance of the wind speed contribution and, to a lesser extent

of the wind direction, in determining the estimated AEP uplift.

The CC model has slightly smaller turbulence intensities than the GCH, but the range of turbulence

intensities is the same for the different AEP uplift levels. Therefore, the influence of the turbulence intensity

on the estimated AEP uplift does not show a significant change. At the largest AEP uplift values, which

are between 1.16% and 1.33%, fig. 5 replaces fig. 0 as one of the most frequently occurring wind roses.

Therefore, the wind roses that result in the highest AEP uplift either have the combination of the dominant

wind direction in the north-east and wind speed of 5-10 m/s or the combination of the dominant wind

Figure 9.12: First Order Sobol Indices for GCH Figure 9.13: First Order Sobol Indices for CC
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Figure 9.14: Total Sobol Indices for GCH Figure 9.15: Total Sobol Indices for CC

direction in the south-west and the higher wind speeds of 10-15 m/s or 15-20 m/s. It is thus concluded

that these combinations benefit the most from wake steering. At the 95% C.I., the GCH model had one

dominant wind rose. The 95% C.I. for the CC model has more than one dominant wind rose. Besides the

wind direction/wind speed combination that occurs in the GCH, wind roses with the dominant south-west

wind direction and a heavier skew towards the western direction combined with wind speeds of 10-15 m/s

and some 5-10 m/s components.

To quantify the contribution of individual variances on the total variance, the Sobol’ analysis is performed.

The results of the Sobol’ analysis in terms of the first order Sobol’ indices are shown in Figure 9.18 and

Figure 9.19. As in the first uncertainty quantification study, the difference between the two models in

terms of the ranking of the first order Sobol’ indices is insignificant. However, unlike the first uncertainty

quantification study, in this case the ranking of the input variables is the same for the optimized AEP

and for the AEP uplift. Nevertheless, compared to the optimized AEP, the influence of the wind rose is

smaller on the AEP uplift. The thrust curve and turbulence intensity are slightly more prominent for the

AEP uplift instead. The first order Sobol’ indices only show the independent influence of the input variables

on the output. The interactions between variables also contribute to the variance of the output. In order to

understand the total influence of the input variables on the output, the interaction effects between the input

variables must also be considered. The total Sobol’ indices are thus shown in Figure 9.20 and Figure 9.21.

The total Sobol’ indices of the turbulence intensity and thrust curve for the optimized AEP are zero, and

the variance of the optimized AEP is fully defined by the wind rose. The total Sobol’ indices for the AEP

uplift decrease by the same amount for each of the input variables. This results in the wind rose being the

most significant input variable. The thrust curve and turbulence intensity have a relatively insignificant

influence on the AEP uplift. The fact that the wind rose has such a large contribution to the total variance

of the AEP uplift is attributed to the significant variations in the wind directions of the input wind roses. This

is a limitation of the input data available and shows the sensitivity of the output to the selected input range.

9.4. Final Words
This chapter presented the AEP uplift distributions for two wind farm flow models following two uncertainty

quantification studies and concluded that the wind rose has the greatest influence the AEP uplift for

both wind farm flow models while the selected thrust curve and turbulence intensity have less significant

influences. The optimized AEP and AEP uplift were shown not necessarily to have the same significant

input variables, with the wind rose being the only parameter that influenced the optimized AEP. Additionally,

it was shown that the output’s uncertainty bounds are heavily dependent on the uncertainty bounds chosen

for the input. This means that correctly choosing and modelling the input data is essential for accurate AEP

uplift estimations. Moreover, statistical analysis involving confidence intervals are only relevant if all the

assumption are correct. Thus, while the uncertainty quantification framework can be used to estimate the

uncertainties in the AEP uplift during early-stage yield assessments in FLORIS, high-fidelity simulations

and field experiments are still needed to quantify the extent to which the implementation of wake steering
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Figure 9.16: AEP Uplift Distribution for GCH Figure 9.17: AEP Uplift Distribution for CC

in wind farms is beneficial when uncertainties are considered. Lastly, it should be emphasized that it is not

possible to reach global conclusions about the AEP uplift distribution from the study conducted since the

AEP uplift distribution is bound by the input parameters of the study. Instead, this study proves that the

uncertainty quantification framework developed works and that it can be used in further studies involving

wake steering for any wind farm flow model available on FLORIS. A wider study that considers wind farms

with varying layouts in different locations and with different wind turbine configurations is necessary to start

making generalizations about the AEP uplift. Even under these conditions, the input data must be varied

and carefully selected, so that biases in input sampling do not lead to misleading conclusions.

Figure 9.18: First Order Sobol Indices for GCH Figure 9.19: First Order Sobol Indices for CC
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Figure 9.20: Total Sobol’ Indices for GCH Figure 9.21: Total Sobol’ Indices for CC



10
Verification

In Chapter 9 the independent input parameters were first processed through the UQ framework, then a

convergence study was conducted followed by the application of the framework to the OWEZ case study.

Chapter 10 is concerned with verifying this proposed framework.

10.1. Verification of Uncertainty Quantification Framework
The uncertainty quantification framework is verified by using the individual parameters sampled in Sec-

tion 9.1. The AEP uplift and optimized AEP resulting from the UQ framework are compared to the same

output values generated by a Monte Carlo simulation created using the Numpy library [38]. If the output

values obtained with the two methods match, the UQ framework has been successfully integrated with

FLORIS. Once the framework is verified, the convergence of the results are verified. If the conclusions

drawn from the results obtained with a much greater sample size, the conclusions stemming from the

results with the smaller sample size - that aims to minimize computational cost - are valid.

The uncertainty quantification framework on UQLab is built block by block to ensure that the method is

understood in depth and that it is verified at each step. In order to verify the FLORIS model implemented in

UQLab, the MC method is first implemented directly on the deterministic model. This is done by fitting each

input data into its respective probability distribution function, then taking samples using the Monte Carlo

method and plotting the histogram of the sampled values. To keep the output reproducible, a random seed

is used. The histogram is plotted in order to group the sampled probability values into bins. This is done

to increase the computational speed of the AEP calculation. In this case, one-at-a-time variation of the

input parameters is done. This leads to a range of AEP and AEP uplift values generated by the uncertain

parameter. These ranges are used to create box plots. The expected AEP is calculated by normalizing

the cumulative probability of each respective bin and multiplying it by the AEP value obtained for each bin.

The box plots obtained are verified in the following way:

• Verification 1: Plot a small number of the x-values generated by sampling the probability distribution

in order to verify if the effect of the parameter on the AEP within the software matches the expected

effect

• Verification 2: Create the histogram from the PDFs. Decrease the number of bins and generate the

x-values via MC-based sampling. Plot the effect of the input values on the AEP and generate the

box plots. The shape of the plots and graphs should match verification 1.

• Verification 3: Compare the individual box plots to the figure obtained when all three box plots

are plotted. The purpose of this verification is to check if performing the uncertainty quantification

individual input parameters creates a bias. The individual box plots should match the figure with all

three box plots for there to be no bias.

The results of verification 1 and verification 2 forN = 16 was shown in Section 9.1. Following the verification
steps for the GCH model at N = 10000 results in Figure 10.1 and Figure 10.2. The box plots resulting
from the Monte Carlo simulation done by varying the input variables one-at-a-time are similar for both

the FLORIS model implemented in UQLab and the simulation done using Numpy. There is only a small

difference in output values which is due to the slight difference in the input samples generated by the two

random number generators. This difference was also shown in the figures in Section 9.1.
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Figure 10.1: Optimized AEP for Numpy
Figure 10.2: Optimized AEP for UQLab
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11
Conclusions and Recommendations

This chapter presents the main conclusions and recommendations of the master’s thesis. In this thesis

a novel uncertainty quantification framework for wake steering assessments for the early design phase

of offshore wind farms was introduced in order to answer the following research questions: How do

uncertainties affect the predicted annual energy production gains for wake steering? and How significant is

the impact of input uncertainties on the predicted AEP gain from wake steering?. The proposed framework

combined uncertainty propagation methods and historical atmospheric data within the wake steering

assessment tool FLORIS. From a practical perspective, FLORIS and the uncertainty quantification tool

were successfully integrated, creating a prototype that could be used in industrial applications and for

further research. With the framework developed, uncertainties on the AEP uplift due to wake steering were

quantified, allowing for the refinement of energy yield estimates and thus decreasing financial risks. The

framework’s effectiveness was demonstrated on the OWEZ wind farm for a given wind rose and two wind

farm flow models by quantifying the uncertainties in turbulence intensity, wind shear and air density. The

results were then verified and validated with a higher number of samples and on a different wind rose. The

knowledge gained was used to quantify the uncertainties in turbulence intensity, the thrust curve and the

wind rose for both wind farm flow models. These parameters were the most relevant for the application

in the early stage wind farm design phase. Following the case study, the conclusions enumerated in

Section 11.1 were made. These led to the recommendations in Section 11.2.

11.1. Conclusions
• The uncertainty quantification framework effectively propagated input uncertainties for differ-

ent wind farm flow models and wind rose data, leading to more accurate AEP uplift estimates

due to wake steering. The uncertainty quantification framework was verified against a Monte Carlo

simulation created with Python’s Numpy library. One-at-a-time variation of the input parameters

showed that FLORIS was integrated correctly for uncertainty quantification. Since the AEP uplift and

Sobol’ indices converged at a sample size with a manageable computational cost, the framework

developed was successfully used to propagate uncertainties in atmospheric conditions forward to

estimate AEP uplift of a full wind farm. The framework was validated for different wind roses and

thrust curves, indicating that it could be used under varying wind conditions and with different wind

turbine types. This contributed to the quantification of uncertainties in the estimation of AEP uplift

due to wake steering using FLORIS as the wake steering assessment tool of choice.

• There were significant uncertainties on the AEP uplift due to wake steering; yet, for all cases,

the implementation of wake steering was beneficial. The AEP uplift was estimated for the GCH

and CC models. The 95% confidence interval consistently showed positive AEP uplift that was

more conservative than the AEP uplift calculated in the deterministic analysis. For the GCH model,

this was between 0.86% and 0.87% for the uncertainty quantification of atmospheric conditions

and between 0.88% and 0.93% for the uncertainty quantification of the wind rose, thrust curve

and turbulence intensity. For the CC model, the AEP uplift was between 1.08% and 1.09% for

the uncertainty quantification of the atmospheric conditions and between 1.08% and 1.14% for the

uncertainty quantification of the wind rose, thrust curve and turbulence intensity. These AEP uplift

estimates were more conservative than the deterministic AEP uplift estimates of 0.97% and 1.16%

respectively. However, despite the introduction of input uncertainties, the AEP uplift estimates do not
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decrease significantly, showing that wake steering is beneficial. Moreover, the range in AEP uplift

estimates for the 95% confidence interval is relatively small. This means that the margin of error in

the estimated AEP uplift is most likely relatively low. To conclude, the framework was validated for

two wind farm flow models in FLORIS, showing that, even with uncertainties in input variables, wake

steering was beneficial.

• The convergence study showed that the Monte Carlo method could be used for the defined

uncertainty propagation problem and substantially reduce the computational cost for further

studies. For the Monte Carlo simulation, the AEP uplift converged to within 0.65% at N = 100;
while for the Sobol’ indices, the total Sobol’ indices converged enough at N = 225. Furthermore,
a convergence study was run on the Sobol’ indices, concluding that the first order Sobol’ indices

converged at 20 wind turbines. This was important for future studies, as it showed that sensitivity

analysis could be done on fewer WTs in the wind farm without changing the final results. This was

an important contribution because it could significantly reduce the computational cost for future wind

farm sensitivity analyses.

• Finally, the wind rose was shown to be the most important factor in determining the AEP

uplift. The thrust curve and turbulence intensity had almost negligible effects on the AEP

uplift. When only the atmospheric conditions were considered, the turbulence intensity was the only

significant variable while the wind shear had a smaller, relatively insignificant influence on the AEP

uplift and the air density did not influence the AEP uplift. In order to minimize computational costs,

the uncertainty in the turbulence intensity was propagated together with the uncertainties in wind rose

and thrust curve. The wind rose was the most significant parameter for estimating the AEP uplift. The

thrust curve had a smaller, almost insignificant influence while the turbulence intensity had almost

no influence. Moreover, for all UQ studies, the correlations between the input parameters were

insignificant and had little effect on the uncertainty in the AEP uplift. Therefore, for wake steering

assessments in FLORIS, it was concluded that to minimize computational costs the AEP uplift could

be estimated by only modelling the wind rose and, to a lesser extent, the thrust curve.

11.2. Recommendations
The functionality of the uncertainty quantification framework developed can be further expanded to broaden

its scope and make it usable for its application. In order to reliably use this framework in wake steering

assessments, while ensuring that a more refined AEP uplift than the current application is obtained, the

following recommendations are made.

• The UQ framework can be validated further on (1) different input data and (2) different wind

farms. The first involves creating PDFs with different data sets and running the framework through

the OWEZ wind farm in order to validate the conclusions of the study, while the second involves

repeating the case study on different wind farms in order to broaden the scope of the research. In

the latter case, different conclusions to the current study may be obtained due to differences in WF

layout and WT spacing. In addition, for the latter, the convergence study must be repeated, as the

minimum sample size required may differ for different WF configurations.

• The validation studies done on different wind farms can be classified and references for the

AEP uplift and the uncertainty associated with it can be derived. Wind farms can be selected

and clustered into different groups, for example based on geographic regions. The AEP uplift and

uncertainty associated with each cluster can later be used to develop a tool that predicts this output

based on certain wind farm characteristics, such as geography or layout.

Besides the further development of the existing UQ framework, further research can be conducted to

address certain gaps occurring due to the assumptions of the research.

• Improve input uncertainty modelling. The output of any uncertainty propagation study is heavily

dependent on the uncertainty bounds defined by the input. Therefore, in order to ensure that the

uncertainty in the AEP uplift is modelled accurately, refining the input PDFs is essential. Currently,

input modelling is based on processing existing measured data. Instead, focusing on the drivers of

these atmospheric conditions could lead to better understanding of the probability of occurrence of

certain uncertainties. Furthermore, the probability of occurrence of different atmospheric conditions

can be matched with the respective wind farms. A significant portion of this task falls into the purview
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of statisticians and climate scientists. This could involve taking a larger data set and modelling

the atmospheric conditions while considering any weather conditions that are out of the norm, as

well as creating dependent PDFs that consider the interactions and relationships between different

parameters of interest. In this way, AEP uplift predictions can be made for future wind farm projects.

• Account for WT’s structural reliability and fatigue life. The goal of this UQ framework was to

quantify the uncertainties in the AEP uplift when wake steering was performed with the sole objective

of power maximization. One of the greatest obstacles to adoption by industry of wind farm control

technology is the risk of decreasing wind turbine life due to structural stress. Considering the effect

of certain input uncertainties on the wind turbine’s structural life in conjunction with the AEP uplift

could build a better case for the adoption of wake steering technology in the wind farm project in

development.
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