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Introduction

1.1. Context

In 2022 the increasing oil price, driven by embargoes and inflation, showed the importance of reducing the
reliance on fossil fuels for Europe’s energy security and the population’s prosperity [92]. Together with
an increasing number of climate-related natural disasters over the past 50 years [95], this highlighted the
significance of investing in clean and abundant renewable energy sources. In 2023 alone, the worldwide
renewable power capacity was increased by 473 GW, with wind power accounting for 24% of the expansion
[46]. The expansion in wind power generation is projected to continue. For instance, nine European
countries have pledged to boost the offshore wind farm capacity in the North Sea [40]. To generate more
and more energy, wind turbines are getting bigger and more powerful. While the average rotor diameter
was 60 m in 1999, this number has grown to 130 m in 2022 [39]. Larger wind turbines produce more
power but also create more significant wake effects. Wake effects are responsible for reducing energy
production in downstream wind turbines [10]. Moreover, wind farm size is increasing [88]. As more wind
turbines are placed closer together, wake-induced power losses increase. Wake losses are one of the
major challenges in making wind farms profitable [96]. Therefore, the mitigation and quantification of wake
losses is important for maximizing power in wind farms. A wake loss mitigation method that has been
gaining increased attention is wind farm flow control [41].

Axial induction control was the first wind farm flow control technique proposed for power maximization
in wind farms [62]. However, the results of numerous field experiments with this wind farm flow control
method showed inconclusive power gain benefits [1, 11, 57, 100]. Dynamic wind farm flow control methods
such as dynamic induction control [66] and the helix [32] were proposed. However, to this date no field
experiments took place to test the benefit of these wind farm control methods. Yaw-based wake steering
is the only wind farm control method to date that has been implemented commercially [106]. This is as a
result of successful wake steering field experiments that showed significant AEP gains [20, 41]. Therefore,
the focus of this study is on the practical application of wake steering for power maximization in wind farms.

1.2. Problem Statement

Wake steering has shown promising results in increasing power production in wind farms in various field
experiments in literature. In one particular field experiment, AEP gains ranging from 7-13% at average
wind speeds and up to 28-47% at low wind speeds were achieved. However, these gains were highly
dependent on wind direction and speed and the modelling of the power curve, and overall annual energy
production (AEP) gains remain insignificant [44]. In [28], uncertainties arise from the controller’s inability to
adapt to changing wind directions and unstable atmospheric conditions, resulting in under-performance.
Considering the power losses in the upstream WTs led to the net AEP uplift of 4% over the same wind
direction and wind speed range for the five WT test case. At the time of the field experiment, the FLORIS
model used for yaw optimization was not able to model terrain effects or near-wake effects accurately.
Incorporating an improved FLORIS model and some wind direction uncertainty in the yaw optimization
phase predicted wake steering-induced wake loss reduction values that approached field experiment
results [29]. [21] demonstrated wake steering in a 43-turbine wind farm, achieving up to 16% power gains
for specific wind directions, but noted significant uncertainties due to terrain modeling limitations and
mismatches between real and modeled yaw-power curves in FLORIS. To conclude, uncertain conditions
cannot be fully captured by the yaw controller.
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In the current market, offshore wind farm developers compete for sea bed leases that are auctioned
by country governments years prior to the actual construction of the wind farm [82]. The winning party
will receive a permit for constructing and operating a wind farm, typically for a period of 25 years. The
auction winner is often decided as the bidding party that offers the most financially interesting offer to
the government, for example, by paying a large sum for the sea bed lease and/or offering a very low
power purchase agreement (PPA) price. This pushes strong financial burdens on developers, and puts
developers in a race to design the most profitable farms. Most profitable in this scenario boils down to
wind farms with the highest electricity production at minimal construction, operation and decommissioning
costs. To maximize electricity production, technological innovations such as wind farm control are often
included in the early-phase design of wind farms. In order to come up with a bankable bid, developers use
extensive economic and technical models to estimate the costs and energy yield of a future wind farm,
which allows them to determine the financial feasibility of their offer, and allows them to decide whether it’s
worth investing in. In this thesis, we focus on the estimation of the benefit of the wake steering technology
on a future farm’s energy yield. This technology affects the predicted annual energy yield in the order of 1%,
and thereby has substantial impact on the financial feasibility of an early-phase wind farm design. Accurate
energy yield estimation is important for managing risks and for performing financial analysis of wind farm
projects. With increasing financial pressure on wind energy viability, both improvement in wind energy
innovation and how the innovations are assessed are of vital importance. The AEP uplift estimated due to
wake steering during yield estimations is inherently uncertain due to stochastic atmospheric conditions
and a lack of knowledge in certain parameters. This could raise doubts on the benefit of wake steering
estimated for future wind farm projects. For example, a recent field experiment has shown that the
uncertainty in wind direction could lead to estimating a wide range of AEP uplift values which do not lead to
a concrete conclusion on the benefit of wake steering [42]. Hence, the question of how much benefit can
be obtained from wake steering in real-life applications that are inherently uncertain remain unanswered.
By understanding the uncertainties in AEP gain predictions for wake steering, the estimations of AEP
gains during the early phases of wind farm project development become more reliable. As a result, the
knowledge obtained from such an uncertainty quantification study can contribute to increasing confidence
in wake steering as a potential wake mitigation technique in future wind farms.

There were several uncertainty quantification studies dealing with the optimization under uncertainty
problem [42, 51, 75, 78, 83, 97]. In all cases, this involved obtaining new yaw offsets following the inclusion
of uncertainties in, amongst others, model parameters [42, 97], wind direction [42, 51, 76, 78, 83, 97], yaw
position [42, 51, 75, 76, 83, 97], wind speed [42, 51, 76], wind shear [42, 76] and/or turbulence intensity
[42, 51, 76]. Understanding the change in optimized yaw offset angles with uncertainties and the effect of
the new yaw angles on the AEP uplift is valuable. However, wake steering controllers used in industry
remain deterministic, as the wake steering controllers that perform optimization under uncertainty have
not been tested in field experiments yet. Therefore, the accuracy of AEP uplift obtained with deterministic
wake steering controllers, specifically FLORIS, remains unknown. Moreover, there are uncertainties
associated with the early-design phase due to time gap between the bidding period and the operating
period of the wind farm. Assumptions are made regarding wind farm properties, such as the wind turbine
specifications and wind rose, due to the inability to predict the state of these properties in the future.
Understanding the accuracy of AEP uplift involves propagating forward the uncertainties arising during
a typical wake steering assessment using FLORIS. [51] tackled this problem in the first part of his study
by propagating forward a number of uncertain input parameters and quantifying their effect on the power
gain. However, this was done for the dynamic FarmFlow wake model and it was limited to the test case of
five wind turbines. The importance of different input parameters on the AEP uplift of a wind farm [97] and
on WT output [19] was determined. However, both cases this was limited to model parameters since the
goal was to calibrate the FLORIS model for the wake steering application [97] or the FLORIDyn model -
FLORIS considering the time-dependent influence of wake model parameters - without considering the
wake steering application. Therefore, there is no study focused on understanding the significance and
effect of uncertain input parameters on the AEP uplift of a wind farm using deterministic yaw optimization
with FLORIS.

1.3. Research Formulation

This thesis addresses this scientific gap by performing an uncertainty quantification of wake steering with
the goal of determining the statistical uncertainty of the AEP uplift estimated in wake steering assessments.



The research objective of the thesis can be formalized as:

Research Objective |

Understanding uncertainties in annual energy production gain predictions for wake steering in
wind farms through uncertainty propagation.

This leads to the following research question:

Research Question 1 |

How do uncertainties affect the predicted annual energy production gains for wake steering?

With this research question, the goal is to understand both the global impact of uncertainties on the AEP
uplift and the significance of each uncertainty on the AEP uplift. Next, it is important to rank the significance
of the uncertainties considered on the estimated AEP uplift and to understand how they may correlate to
each other. This is addressed by formalizing the following research question:

Research Question 2 |

How significant is the impact of input uncertainties on the predicted AEP gain from wake steer-
ing?

By addressing these goals, the thesis aims to quantify the statistical uncertainty in AEP uplift due to wake
steering for the early design phase of wind farms.

The purpose of this report is to understand the effect of uncertainties on AEP uplift predictions for
wake steering in wind farms. The focus is on energy yield - and more particularly on wake steering uplift -
assessments. This is achieved by (1) creating a framework for uncertainty propagation while keeping the
wake steering assessment tool as a black box and (2) performing a sensitivity analysis on the AEP uplift
obtained. Therefore, the main contribution of the thesis is the framework to assess the accuracy of the AEP
uplift obtained following deterministic wake steering uplift assessments. In addition to this, the interactions
between the uncertain atmospheric parameters is observed and the significance of the parameters on the
AEP uplift of a wind farm is evaluated for the first time. Finally, this uncertainty quantification is performed
for two wind farm flow models, allowing for a deeper understanding of each model’s limitations.

1.4. Structure of the Report

The structure of the report is as follows. First, Chapter 2 presents a summary of this thesis in the form of a
scientific article, in Part I. Second, Part |l presents a literature study on wind farms, wind farm flow modeling
and wind farm control. This starts with a general introduction of wind farm technology including controller
architecture and wind farm flow control strategies in Chapter 3. Next, this is followed by an overview of
wind farm flow modelling in Chapter 4 and a review of the state-of-the-art wake steering technology in
Chapter 5. The literature study ends with the thesis contribution in Chapter 6. It should be noted that the
thesis contribution has in fact changed as research has progressed. Therefore, this research is in fact
conducted for the thesis contribution - including the research gap and research questions - presented in
Chapter 1. Having noted this, Part Il contains the main body of the thesis. This starts with performing the
deterministic wake steering analysis in Chapter 7. Then, the uncertainty quantification framework and the
input data for the uncertain parameters are described in Chapter 8. Next, the uncertainty quantification
framework is applied to the OWEZ wind farm using the uncertain input parameters previously defined. The
results are shown in Chapter 9. This is followed by the verification and validation of the framework and the
results in Chapter 10. The report is finalized in Chapter 11 with the conclusions and recommendations, in
Part IV.
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Abstract: Accurate yield estimations are necessary to prove the financial viability of wind
farms in early-phase design. Due to the long time period between sea bed lease auctions
and the decommissioning of wind farms, uncertainties in wind farm properties and at-
mospheric conditions arise. Wake steering is a wind farm flow control technology that
was shown to have a substantial impact on annual energy production (AEP) in many
field experiments;however, the accuracy of the AEP uplift estimated during the uncertain,
early design phase is unknown. The present article addresses this concern by propagating
uncertainties in atmospheric conditions, - namely turbulence intensity, wind shear and air
density - wind rose and thrust curve forward to quantify the statistical uncertainty in AEP
uplift estimations and by performing a sensitivity analysis to rank the significance of these
uncertainties. For the Offshore Windpark Egmond aan Zee (OWEZ), the 95% confidence
interval for the GCH is between 0.88% and 0.93%, while for the CC model this is between
1.08% and 1.14%. When compared with the deterministic AEP uplift of 0.97% for the GCH
and 1.16% for the CC respectively, it is concluded that there is benefit from wake steering
under input uncertainty for the OWEZ wind farm. Finally, for this case study the main
driver of the variation in AEP uplift is the wind rose, with the other parameters having
negligible effects.

Keywords: wake steering; uncertainty quantification; FLORIS; annual energy production;
sensitivity analysis; early-phase assessments

1. Introduction

In the past five years, the increasing oil price, driven by embargoes and inflation, [1] and
the surge in climate-related natural disasters highlighted the importance of investing in
clean and abundant renewable energy sources. From these, wind power generation is
projected to continue with nine European countries having pledged in 2023 to boost the
offshore wind farm capacity in the North Sea [2]. To generate more and more energy, wind
farm size is increasing [3]. As more wind turbines are placed closer together, wake-induced
power losses increase. Wake losses are one of the major challenges in making wind farms
profitable [4]. Therefore, the mitigation and quantification of wake losses is important for
maximizing power in wind farms. A wake loss mitigation method that has been gaining
increased attention is wind farm flow control [5]. The only wind farm control method to
date that has been implemented commercially [6] - as a result of successful field experiments
that showed significant annual energy production (AEP) gains [5,7] - is yaw-based wake
steering.

In the current market, offshore wind farm developers compete for seabed leases that
are auctioned by country governments years prior to the actual construction of the wind
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farm [8]. The winning tender is often the one that makes the most financially interesting
offer to the government and receives a permit for constructing and operating a wind farm,
typically for a period of 25 years. This pushes strong financial burdens on developers and
puts developers in a race to design wind farms that maximize electricity production while
minimizing construction, operation and decommissioning costs. Technological innovations,
such as wake steering, may play an important role in the early-phase design of wind farms
by improving the financial feasibility of an auctioned future wind farm. With increasing
pressure on wind energy viability, accurate yield estimation is important to prove the
investment viability of the wind farm project. One example of a wind farm yield estimation
tool used in wake steering applications is FLOw Redirection and Induction in Steady-
state (FLORIS) [9]. FLORIS has been widely used in field experiments for wake steering
controller design, more specifically for finding the optimal yaw angles of wind turbines
(eg. [10-12]). In this thesis, we focus on the estimation of the benefit of the wake steering
technology on a future wind farm’s energy yield using FLORIS. This technology affects the
predicted annual energy production in the order of 1%, and thereby has substantial impact
on the financial feasibility of an early-phase wind farm design.

There is extensive literature on (yaw) optimization under uncertainty, for example in
wind direction, wind speed and turbulence intensity (eg. [13-17]). However, because this
concept has not been validated through field experiments, yaw optimizations for early-
phase wake steering assessments in industry remain deterministic. Instead the accuracy of
AEP uplift estimations are improved by quantifying the uncertainties through uncertainty
propagation. During the early design phase, assumptions about the future wind turbine
specifications, atmospheric conditions and wind rose are made. These include - amongst
others - assumptions on the characteristics of the thrust curves, the value of the turbulence
intensity and the frequency of occurence of certain wind directions and wind speeds.

[17] performed a sensitivity analysis of the input parameters on the yaw optimization
and on the power gain due to yaw optimization under uncertainty using the dynamic
FarmFlow wake model; however, the test case was limited to five wind turbines and the
significance of the input parameters in terms of power gain with deterministic yaw op-
timization was not analyzed. The importance of different input parameters on the AEP
uplift of a wind farm [18] and on WT output [19] was determined. However, in both
cases this was limited to model uncertainty since the goal of the studies was to calibrate
the FLORIS model for the wake steering application [18] or the FLORIDyn model - an
adaptation of FLORIS considering the time-dependent influence of wake model parameters
- without considering the wake steering application. Therefore, there is no study focused
on understanding the significance and effect of uncertainties in input parameters on the
AEP uplift for a wind farm using deterministic yaw optimization with FLORIS.

This paper addresses this scientific gap by propagating the uncertainties in atmo-
spheric conditions and wind farm properties forward to determine the statistical uncertainty
of the AEP uplift estimated in wake steering assessments. This is done by (1) quantifying
the effect of the uncertainties in the input parameters with a Monte Carlo simulation and
(2) ranking the significance of the same input parameters on the estimated AEP uplift due
to wake steering through a sensitivity analysis. The by-product of the sensitivity analysis
is quantifying the correlations between the significant input parameters. The scientific
article describes the data set of the case study, the quantification of the uncertainty sources,
FLORIS and the uncertainty quantification (UQ) framework in Section 2; discusses the
results of the deterministic assessment, the convergence study on the smaller test case, the
Monte Carlo (MC) simulation and the Sobol’ method in Section 3; and, finally, presents the
conclusions in Section 4.
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2. Materials and Methods &
2.1. Data Set 86

The case study is conducted on Offshore Windpark Egmond aan Zee (OWEZ) which is &
located in the North Sea at approximately 10 km off the Dutch shore. This WF has 36 Vestas
V90 WTs with a nameplate capacity of 3 MW each. To its south-west, it is neighbored &
by the Prinses Amalia (PA) Wind Farm. This WF consists of 60 Vestas V80 WTs witha
nameplate capacity of 2 MW each. The neighboring PA wind farm is considered in order
to quantify the effect of the wakes of this neighboring wind farm on the AEP uplift of the o
OWEZ WE. The wind rose input for the case study is based on wind direction and wind o
speed data from the North Sea collected for the time interval between December 2006 and o
December 2010. The turbulence intensity for this time interval is kept constant at 0.06 for o
the deterministic wake steering assessment. The characteristics of the two wind turbine s
(WT) types, the wind rose and the exact locations of the WTs are shown in Table 1 and in o
Figure 1 respectively. %

Table 1. Characteristics of wind turbines in OWEZ and PA.

Feature Vestas V90 Vestas V80
Nameplate capacity [MW] 3 2
Hub height [m] 70.0 60.0
Rotor diameter [m] 90.0 80.0
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Figure 1. Description of case study: (a) Layout of wind farms in NoordZeeWind. (b) Wind rose.

The uncertainty quantification framework is developed by initially introducing uncertain-
ties in (1) air density, (2) turbulence intensity and (3) wind shear. These parameters are chosen 10
for the development of the framework due to their ease of implementation and due to 1
AEP output results found in existing uncertainty quantification literature (eg. [15,17]). The 10
data set used to model the uncertainties in the atmospheric conditions is taken from the 10
measurements at the meteorological mast between July 2005 and December 2010 and is 104
fitted into PDFs using the Kolmogorov-Smirnov distance criterion, resulting in the marginal 10
PDFs depicted in Figure 2. 106
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@) (b) (0

Figure 2. Probability distribution functions of input variables: (a) Air density. (b) Turbulence intensity.
(c) Wind shear.

These marginal PDFs are assembled into a random input vector with joint PDF denoted as 107
X ~ fx(x) [20]. The input vector represents the quantification of the sources of uncertainty 10
(step B in Figure 5). Once the uncertainty quantification framework is verified with this 10
input vector, a new input vector is created using the significant atmospheric variables, 1o
eleven wind roses available for Noordzeewind (shown in Figure 3) and thrust curves from 1
nine wind turbines. Uncertainty in the wind rose is introduced because wind direction and 1w
wind speed were shown to be significant parameters [15-17,21]. Uncertainty in the thrust s
curve is introduced because developers often assume the characteristics of the thrust curve 14
due to the lack of access to this information in the early stage design phase. Since the wind s
roses and thrust curves are discrete, these variables are modeled as uniform distributions 16
with the ranges of [0,10] and [1,9] respectively. 17

(i) () (k)

Figure 3. Possible wind rose selections: (a) Fig.0 (b) Fig.1 (c) Fig.2 (d) Fig.3 (e) Fig.4 (f) Fig.5 (g) Fig.6
(h) Fig.7 (i) Fig.8 (j) Fig.9 (k) Fig.10

2.2. FLORIS 118

FLORIS is a low fidelity steady-state model-based open-loop simulation software [9]. It w0
is computationally efficient since, being low fidelity, the time-averaged flow field char- 1
acteristics of wind farms for a given wind direction are estimated [22] using simplified 1z
analytical equations [14,23]. Open-loop controllers are the current practice in industry for 1
wake steering because their use has been demonstrated in many field experiments (eg. s
[11,14,24,25]). However, open-loop control also means that all uncertainties are propagated 12
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forward (eg. [26,27]). Confidence in yield assessments increases with more accurate models s
[1 1 ] . 126

The results of the FLORIS model are highly dependent on the accuracy of the wind  1r
farm flow model used. This is because the wind farm flow model’s calculation of the wake 12
losses in the wind farm influences the AEP output. It is interesting to compare how differ- 12
ences in the wind farm flow model affect the input uncertainty since this can also reveal 1.0
possible limitations of the wind farm flow models. In this research, two wind farm flow
models are compared to understand their impact on the model response: (1) Gaussian-Curl 1z
Hybrid (GCH) and (2) Cumulative Curl (CC). 133

GCH is the model that is the most frequently used in field experiments for wake 1.
steering (eg. [12]). This model maintains the relatively lower computational cost of the 13
Gaussian wind farm flow model, while including ground effects, secondary steering effects 13
and an enhanced wake deflection model with vortex-induced effects [28]. More recent 1
studies show that deep array effects are underestimated with GCH, more specifically losses 13
are under-predicted in the rear part of large wind farms and turbine pairs at distances 13
larger than 25D [29,30]. The Cumulative Curl (CC) model [30] accounts for these effects. 10
Since deep array effects are considered, more accurate near-wake predictions are made. 1
Therefore, the power and wake estimations are more accurate while the same performance 1
is obtained for smaller wind farms. In contrast to GCH, CC has still not been validated s
in field experiments with larger wind farms, having been used primarily in simulation 1
studies [30]. By performing the uncertainty quantification on the two models, 145

2.3. Wake Steering Yield Assessment with FLORIS 146

Within FLORIS, the wake steering assessment can be separated into two portions: the yaw 1
optimization and the annual energy production (AEP) output [31]. The two calculations are 1
performed separately and independently for the entirety of the uncertainty quantification 1o
framework, as shown in Figure 4. The input variables - such as the wind rose, turbulence 15
intensity and wind farm layout - are shown by arrows pointing towards the schematic, 1
while the output variables - namely the deterministic AEP with no wake steering and s
the deterministic AEP with wake steering - are emphasized with the red font and arrows 15
pointing out of the schematic. 154

wind rose

Create grid that has
cells for all

Map the frequency of
occurrence for each wind
direction/wind speed
combination onto matrix

Define wind direction and
wind speed arrays combinations of wind
directions and speeds
Wind direction  Wind speed
array array

Wind directions and
wind speeds defined
by wind rose

1 l freq_windrose

fi_AEP.get_farm_AEP(freq)
fi_AEP.get_farm_AEP(freq,
yaw_angles)

fi_AEP.copy() yaw angles for
full wind rose

fi_opt Yaw angles for 3WS [ Linear interpolant for
[ —*| optimize_yaw_angles |on 4,1 WD array full grid

Figure 4. Methodology for deterministic wake steering yield assessment in FLORIS.

Turbulence intensity (
—_—
Reference wind height]
e
Deterministic AEP
with no wake steering

Wind shear

FLORIS

WF layout

-

, Deterministic AEP
with wake steering

wr

Wind speed range [ - Limit FLORIS object to the
foroptimization | optimization wind speeds

Within FLORIS, the wake steering assessment can be separated into two parts: yaw op- s
timization and annual energy production (AEP) output [31]. The yaw optimization process  1s
is depicted in Figure 4 with pink boxes, while the flow chart to calculate the annual energy s
production is depicted with blue boxes. The two calculations are performed separately and  1ss
independently for the entire uncertainty quantification framework. 159

The optimum yaw angles over the defined wind direction and wind speed combi- 10
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nations are obtained for a given wind turbine type and wind farm layout. In this case,
the Serial-Refine method is used to find the optimal yaw angles that minimize the wake
losses of the wind farm. This optimization method reduces computational cost compared
to other methods [32] and was used in recent field experiments to identify the optimal yaw
angles for wake steering [33]. The wake losses of the wind farm are quantified differently
according to the wind farm flow model selected. Therefore, the yaw angle optimization is
repeated for different wind farm flow models. Table 2 summarizes the specifications of the
yaw optimization used in the case study.

Table 2. Yaw optimization specifications

Feature Selection

Optimization method [-] Serial-Refine [32]
Wind direction array [°] [0,360] with step size of 3°
Wind speed array [m/s] | [1,25] with step size of 1 [m/s]

In order to further reduce computational cost, the wind speed array is restricted to three
wind speeds. This can be done because optimal yaw angles have been shown to barely
change for different ambient wind speeds [17]. Then, the resulting yaw offset angles for the
three wind speeds and full wind direction array are linearly interpolated over the full wind
speed array. Thus, the optimal yaw offsets for all combinations of wind direction/wind
speed are determined.

The wind direction and wind speed arrays in Table 2 are used to create a grid rep-
resenting all possible combinations of wind direction/wind speed for the defined arrays.
Then, SCADA wind direction and wind speed time series data is used to create the wind
rose. The wind rose is a representation of the frequency of occurrence of each combination
of wind direction/wind speed. This process is illustrated with the green boxes in Figure 4.
Therefore, the probability of occurrence of each combination of wind direction/wind speed
is obtained along with its associated optimal yaw angle.

The deterministic annual energy production output without wake steering is com-
puted by taking the weighted sum of the power for a specific combination of wind direction
and speed and the probability of occurrence of that combination of wind direction and
wind speed. This weighted sum is multiplied by the number of hours in a year. To calculate
the deterministic AEP for wake steering, the power under the yaw offset angle is used for
the specific combination of wind direction and speed. For uncertainty quantification, the
input variables that were identified as sources of uncertainty are replaced by the random
input vector defined in ??. Next, the yaw offset angles are introduced, resulting in the
annual energy production with wake steering (optimized AEP). In this way, the effect of
the uncertainties in the input variables on the AEP is quantified. This is compared with the
AEP without the optimized yaw angles (baseline AEP) to evaluate the AEP uplift due to
wake steering.

2.4. Uncertainty Quantification Framework

The uncertainty in wake steering yield estimation, more specifically the AEP uplift estima-
tion, during the early-phase wind farm design is defined as an uncertainty propagation
problem. The uncertainty propagation problem means analyzing the effect of input uncer-
tainties on the system’s output [34]; or, in mathematical terms:

P(xlk) & P(y[k) (1)
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The uncertainty quantification framework that propagates uncertainties and performs the 1
sensitivity analysis for ranking the importance of the sources of uncertainty is depicted in 200

Figure 5. 201
Step B Step A Step C
Quantification of Model(s) of the system Uncertainty propagation
sources of uncertainty Assessment criteria
Random variables Computational model Moments
{iz) Probability of failure
e
(,X Response PDF
Step C’

Sensitivity analysis
Figure 5. Uncertainty quantification framework [35]

The steps shown in the uncertainty propagation framework are briefly described below 2
[35]. 203

*  Step Arelates to defining the model of the physical system and the criteria to assess 2
the physical system. The uncertainties are propagated from the input to the output 25
through the computational model, preferably without introducing additional biases. 20
In this case, the complex wake interactions of the wind farm are modeled with FLORIS 2
software which is a black-box model. 208

*  Step B: the sources of uncertainty are quantified by identifying and modeling the 20
uncertain input parameters. In this way, a random vector of input parameters is 2w
obtained. a1

e Step C: the uncertainty defined by the random input vector is propagated through the 2.
computational model. In this analysis, a response probability distribution function is a3
obtained following the uncertainty propagation. 214

*  Step C": using the relationship between the output and input, the importance of the s
uncertain input variables are ranked. This is the sensitivity analysis. 216

To perform the uncertainty propagation (step C in Figure 5), Monte Carlo method is used. 2w
This is because this is a non-intrusive method that assumes the computational model isa 2
‘black box” [36]. Therefore, unlike surrogate models such as polynomial chaos expansion
and Kriging, the computational model is not approximated [34] and, thus, an approximation 2
error is not introduced [(34,37)]. Moreover, with the Monte Carlo method, it is possible to 2z
use the same framework even when input parameters are changed [37]. In addition, MC 2
simulations do not suffer from the curse of dimensionality. The curse of dimensionality 2
means that the number of samples necessary increases exponentially with the number 2
of random variables [34]. The main drawback of the MC is that experiments with many 2
input parameters or requiring many iterations may be computationally expensive [36]. 2
This disadvantage may be dealt with by proving the convergence of output values as 2
demonstrated in subsection 3.2. 228

The final step of the uncertainty quantification framework (step C” in Figure 5) is 2
performing a global sensitivity analysis using Sobol” indices [35]. The goal is to understand  2x0
the importance of each input parameter in terms of its effect on the variation in AEP uplift. 2u
Sobol” indices decompose the total variance of the model response into the sum of the 2
variances of its summands. The variance decomposition assumes that the input variables 2
are independent [38], which fits this study since there is no data on the correlations between 2
the input variables. With Sobol” indices, the significance of the input parameters and the 2
interaction effects of groups of input parameters can be identified [39]. The advantage of s
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Sobol’ indices is that the model is not assumed to be monotonic or linear. In addition, with 2
Sobol” indices the combined influence of the parameters on the uncertainty in the output 2
can be discovered [35]. 230

2.4.1. Monte Carlo Simulation 240
The Monte Carlo method involves generating random samples from the input vector de- 2u
fined in subsection 2.1. With Monte Carlo sampling, the samples i/ = {u(l), o, u) } are o

produced in the standard uniform space Z ~ ¢([0,1]M). Then, these samples are trans- 2

(N)

formed back into the samples X' = {x(l), . 4 } ~ Fx for any multivariate distribution 2.

Fx with independent marginals Fx, using the inverse probability integral transform (PIT): 24

(@) _ p-1(,0)

X; _FXj (u]. ) )
foralli =1,..,Nandallj =1,.., M [20]. The vector of generated random samples X is 2
inserted into the black-box computational model, in this case FLORIS: 247

Y = M(X) €)
to obtain the vector of model responses Y [40]. This is used to compute the expectation, 2
standard deviation and the confidence intervals [41] using the estimators in Equation 5. 29
2.4.2. Sobol Method 250
The variance of the model response is defined by the sensitivity measure, or Sobol” index, 2
as [42] 252

Var(Y(Xi,...i.))
. R reeerts 4
St = Y @

for a group of variables X where Var(Y(Xj,,. ;,)) denotes the partial variances of the 2

11,0eefds7
summands and Var(Y) delnotes the total variance of the model response Y. 254

The first-order Sobol” index is the relative contribution of only one input variable X; s
on the total variance. The first-order Sobol” indices must be positive. There are also indices 2
with multiple term called higher-order Sobol” indices that account for the effects of the 2
interactions between the input variables that cannot be divided into separate variances. 2s
The sum of all Sobol’ indices for an input variable X; is denoted as the total Sobol index S}. s
The variances described in Equation 4 are computed using the mean, variance and partial 20

variance estimators respectively that were derived from the Monte Carlo simulation [42]:  2a

N 1 N
- — (n)
fo=x Z f (x )
n=1
Varn) = 5 3 2 (x) - 7 Q
N n=1 °
—— 1 N
Var(Y(x) = L (" )1 (57 20) - B
n=
/ o . ) T .
where x’ denotes a realization of X independent of x = {x DX } , and the subscript a2
x; i indicates the j-th realization of x which does not contain the input variable i. 263

The total computational cost of computing MC-based Sobol’ indices is (M +2) x N, 2
where M is the input dimension and N is the sample size [42]. To improve the computational s
efficiency of uncertainty quantification, a convergence study must be performed. 266
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3. Results and Discussion
3.1. Deterministic Wake Steering Assessment

For deterministic wake steering assessment, the yaw optimization is conducted for OWEZ.
With these yaw offset angles, two cases are evaluated: the one including the wake effects of
the neighboring wind farm and the one ignoring these wake effects. Including the wake
effects of the neighboring wind farm provides a more realistic assessment of the AEP but
increases the computational cost. The cases are evaluated for the GCH and CC models. The
results are given in Table 3.

Table 3. Results of deterministic wake steering yield assessment.

WFFM Baseline AEP [GWh] Optimized AEP [GWh] AEP uplift
GCH (with neighbor) 448.428 452.778 +0.97%
GCH (no neighbor) 448.635 452.998 +0.97%
CC (with neighbor) 441.434 446.547 +1.16%
CC (no neighbor) 443.204 448.345 +1.16%

The neighboring WF’s wake is shown to have no significant effect on the AEP uplift of
OWEZ. This can be explained by the fact that the WTs are placed 7.5 km apart, which
is a distance greater than 80D. At this distance from the WT, wake mixing has occurred
to a great extent. While there are some changes in the baseline and optimized AEP, it
is interesting to note that this does not change the AEP uplift. With this conclusion, the
uncertainty quantification is performed ignoring the neighboring wind farm in order
to reduce computational time. It is also observed that the AEP uplift increases when a
more accurate WFFM is selected in FLORIS. This shows that typical wake steering yield
assessments that are conducted using the GCH model under-estimate the AEP uplift in
OWEZ.

3.2. Convergence Study

The convergence study for the AEP uplift is conducted on a smaller test case of five equally
distanced Vestas V90-3 MW WTs using the GCH model to reduce the computational cost.
The convergence of the total Sobol” index for one of the input parameters, namely the
turbulence intensity, is also evaluated under the same conditions. It is assumed that the
total Sobol” indices for the other parameters converge similarly because the total Sobol’
indices form fractions of a whole. Figure 6 depicts the results of the convergence studies.

|/ A

(STTRRSITTIONT T S A T A L T

| \i“'m\li} il MI‘IH\II\ Ln,xfur‘xm lﬂ’\—i_ﬂ‘ul_n_‘rku _WMK'_P
i

@) (b)

Figure 6. Convergence study for five wind turbines using GCH as a function of sample size: (a)
Convergence of mean AEP uplift. (b) Convergence of the total Sobol” index of turbulence intensity.

Starting from N = 100, the maximum and minimum mean AEP uplift fluctuate within a
relatively small range of 0.65%. As the sample size increases, the range of fluctuation in
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mean AEP uplift decreases further, indicating convergence. Therefore, N = 100 is chosen as
the minimum sample size required to estimate the mean AEP uplift. The computational
cost of this sample size is small enough to not necessitate the use of surrogate models.

Starting from N = 225, the total Sobol” index for turbulence intensity fluctuates by 25%.
At N = 1228, the rate of fluctuation in the total Sobol” index decreases to 12% which implies
that at higher sample sizes convergence occurs. Thus, the Sobol” index has a moderate level
of sensitivity to sample size. Despite this, the fluctuation rate is not significant enough to
change conclusions regarding the importance of input parameters on the AEP uplift. Since
computing Sobol” indices is more resource-intensive than MC-sampling for uncertainty
propagation, there is further motivation to select the lowest sample size that leads to the
appropriate conclusions instead of the sample size that has the same fluctuation rate as the
convergence study for the mean AEP uplift. Repeating the calculation of the total Sobol’
index for N = 10000 - which is a significantly higher sample size - shows that the ranking of
the Sobol” indices remain the same as the N = 225 but the computational cost is significantly
higher. This justifies the selection of N = 225 as the minimum sample size required. Since
uncertainty propagation and sensitivity analysis is inherently connected, the same sample
size is chosen for both. The most conservative estimate (N = 225) is selected.

In order to verify that the sample size selected for the smaller test case can be used for
the full OWEZ wind farm, the convergence rate of first order Sobol” indices are evaluated
as as a function of the number of wind turbines for N = 225 and N =400 in Figure 7.

Turbulence Intensity

N=225
—— N=400

First Order Si
o &
& o
& o
[ =1

T i T T T T T
5 10 15 20 25 30 35
Number of Turbines
Wind Shear

0.0 N=225
— N=400

First Order Si

5 10 15 20 25 30 35
Number of Turbines

Air Density

0.0 N=225
— N=400

First Order Si

5I lID ll5 Zb 25 Sb 35

Number of Turbines
Figure 7. Convergence study for first order Sobol” indices using GCH as a function of the number of
wind turbines: (a) Turbulence intensity. (b) Wind shear. (b) Air density.

The convergence rate for the first order Sobol” index of turbulence intensity is almost the
same for both sample sizes, while the ones for the air density and wind shear are constant
for both sample sizes due to the AEP uplift being almost entirely driven by the turbulence
intensity. Hence, it is shown that while there are small differences in the first order Sobol’
indices as the number of samples increases, the difference is negligible enough to not
change the conclusions obtained from the study. Additionally, the first order Sobol” indices
converge at 20 wind turbines. It is theorized that this is due to the aerodynamic flow
becoming fully developed as one goes deeper into the wind farm; therefore, once a specific
limit is reached, no variation in the estimated AEP uplift as a function of the variations
in input variables would take place [43]. This brings forth the possibility of reducing the
computational cost further in future research by running the wake steering assessment on
fewer wind turbines from the OWEZ wind farm.

3.3. Sobol” Method

The sensitivity analysis is performed on the full OWEZ wind farm at N = 225 for both GCH
and CC using Sobol’ indices in order to rank the importance of each input variable on the
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estimated mean AEP uplift. The total Sobol” indices for the input vector with the air density,
wind shear and turbulence intensity are shown in Figure 8.

Total Sobol Indices for Optimized AEP and AEP Uplift Total Sobol Indices for Optimized AEP and AEP Uplift

mm Optimized AEP . Optimized AEP
- AEP Uplift | 10 mWmm AEP Uplift

Sensitivity
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3

°
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=
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Figure 8. Sobol” indices resulting from sensitivity analysis on OWEZ at N = 225: (a) Total Sobol’
indices for GCH. (b) Total Sobol” indices for CC.

The most significant parameters are not the same for the optimized AEP and the AEP uplift.
While air density is the only driving parameter for the optimized AEDP, it has no influence on
the estimation of the AEP uplift. Instead, for both wind farm flow models, the AEP uplift is
estimated with the turbulence intensity and wind shear. The contribution of turbulence
intensity is significant, while the contribution of wind shear is relatively insignificant at
0.1 for GCH and 0.2 for CC. This is consistent with findings in literature demonstrating
that significant changes in yaw misalignment angles occur for turbulence intensity, but
not for wind shear and air density, following an uncertainty quantification study [17]. The
difference in the Sobol” indices between the two models is insignificant. Therefore, the UQ
framework’s efficacy is demonstrated, and turbulence intensity is the only variable added
to the new input vector. Because the new input vector has the same number of variables as
the initial input vector, the convergence study is not repeated. This results in Figure 9.

Total Sobol Indices for Optimized AEP and AEP Uplift Total Sobol Indices for Optimized AEP and AEP Uplift

- AEP Uplift

e Optimized AEP
I - A Upit
) ..
) .. )
02 02
Variable Name Variable Name

(a) (b)

Figure 9. Sobol” indices resulting from sensitivity analysis on OWEZ at N = 225: (a) Total Sobol’
indices for GCH. (b) Total Sobol” indices for CC.

Sensitivity
S

The difference in total Sobol” indices between the two models is insignificant. However, in
this case, the ranking of the input variables is the same for the optimized AEP and for the
AEP uplift. While the optimized AEP is fully determined by the wind rose, the AEP uplift
is also influenced by smaller, relatively insignificant turbulence intensity and thrust curve
contributions. The large contribution of the wind rose to the total variance of the AEP uplift
is attributed to the significant variations in the wind directions of the input wind roses.
This is a limitation of the input data available and shows the sensitivity of the output to
the selected input range. With the Monte Carlo method, a more in-depth analysis of the
influence of these variables on the estimated AEP uplift is performed.
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3.4. Monte Carlo Simulation 352

The Monte Carlo simulation is performed for the full OWEZ wind farm with the input s
vector that includes the turbulence intensity, the thrust curves and the wind roses. Figure 10 s
shows the AEP uplift distributions for the two WFFMs. 355

Uncertain AEP for Wind Farm Uncertain AEP for Wind Farm

Frequency
Frequency

0.6 0.8 1 1.2 0.6 0.8 1 l.‘2 1.4
AEP Uplift [%] AEP Uplift [%]

(a) (b)
Figure 10. AEP Uplift Distributions for OWEZ at N = 225 for: (a) GCH. (b) CC.

The mean AEP uplift for the GCH model is 0.91% with a standard deviation of 0.19, while s
the mean AEP uplift for the CC model is 1.11% with a standard deviation of 0.23. In both s
cases, there is benefit from wake steering within one standard deviation of the mean. The s
95% C.I. for the GCH model is between 0.88% and 0.93% with a range of 0.050, while the s
95% C.L for the CC model is between 1.08% and 1.14% with a range of 0.060. This means s
that there is a wider spread in the distribution and a more pronounced difference between &
the two WFFMs. 362

In the GCH model, the smallest AEP uplift is between 0.45% and 0.64%. Fig. 2 and Fig. s
4 are the most frequently occurring wind roses with the dominant wind direction coming s
from the south and south-west and a heavy skew towards the western direction, and e
wind speeds of 15-20 m/s concentrated on the dominant wind directions. The turbulence s
intensities are between 6.6% and 7.0%, and - while this AEP uplift range has a mix of s
different thrust curves - thrust curve 6 appears the most frequently. On the other end s
of the spectrum, the largest AEP uplift values are between 1.16% and 1.33%. Fig. 8is s
the most frequently occurring wind rose with the dominant wind direction coming from s
the north-east direction. Fig.0 - that has a wider spread across different wind directions -
and Fig.3 - whose wind directions are concentrated in the south-west direction - are also s
frequently observed at this AEP uplift range. Wind speeds in the range 5-10 m/s and 15-20 sz
m/s and turbulence intensities between 6.2% and 6.45% occur the most. Thrust curve s
1 is the most frequently used. From this analysis, it is concluded that the thrust curve s
has a more modest influence on the estimated AEP uplift than the wind speed and wind s
direction combination. At the 95% C.I., there is no dominant thrust curve, which confirms s~
the previous conclusion. The dominant wind direction is from the south-west direction s
and the dominant wind speed is between 10-15 m/s with significant 15-20 m/s wind speed s
components in the same direction. The turbulence intensity varies between 6.4% and 6.8%. s
This shows the importance of the wind speed contribution and, to a lesser extent of the s
wind direction, in determining the estimated AEP uplift. 382

The CC model has slightly smaller turbulence intensities than the GCH, but the s
range of turbulence intensities is the same for the different AEP uplift levels. Therefore, se
the influence of the turbulence intensity on the estimated AEP uplift does not show a s
significant change. At the largest AEP uplift values, which are between 1.16% and 1.33%, ss
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fig. 5 replaces fig. 0 as one of the most frequently occurring wind roses. Therefore, the wind
roses that result in the highest AEP uplift either have the combination of the dominant
wind direction in the north-east and wind speed of 5-10 m/s or the combination of the
dominant wind direction in the south-west and the higher wind speeds of 10-15 m/s or
15-20 m/s. At the 95% C.I., the GCH model had one dominant wind rose. The 95% C.I. for
the CC model has more than one dominant wind rose. Besides the wind direction/wind
speed combination that occurs in the GCH, wind roses with the dominant south-west wind
direction and a heavier skew towards the western direction combined with wind speeds of
10-15 m/s and some 5-10 m/s components.

4. Conclusions

The uncertainty quantification framework developed effectively determined the statistical
uncertainty in the AEP uplift estimated in wake steering assessments. The 95% confidence
interval for both GCH and CC consistently showed positive AEP uplift estimates. For the
GCH model, this was between 0.88% and 0.93%, while for the CC model this was between
1.08% and 1.14%. The mean AEP uplift for GCH was 0.91% with a standard deviation of
0.19, while the mean AEP uplift for CC was 1.11% with a standard deviation of 0.23. Based
on these findings, it was concluded that wake steering had significant benefit for the OWEZ
wind farm for the defined input variables. For future research, it would be interesting to
compare the statistical uncertainties for the two wind farm flow models given a larger wind
farm size, as it is known that, unlike GCH, CC models deep array effects which are more
relevant for larger wind farms [30].

The framework was verified by performing uncertainty quantification on the input
vector consisting of wind shear, air density, and turbulence intensity. With this, the turbu-
lence intensity was identified as the most significant driver for estimating the AEP uplift.
This was consistent with findings related to the effect of the input parameters on the yaw
offset angles [17], leading to the recommendation that in further wake steering assessments
that are significantly limited by computational cost air density and wind shear uncertainty
should not be considered. Afterwards, the main uncertainty quantification study was
performed on the input vector consisting of turbulence intensity, wind rose and thrust
curve. The wind rose was shown to have the most significant influence on the estimated
AEP uplift which was anticipated by previous studies on the estimation of the yaw angle
effect and optimized AEP (eg. [17,18]). Moreover, the wind roses that resulted in the highest
AEP uplift either had the combination of the dominant wind direction in the north-east
and wind speed of 5-10 m/s or the combination of the dominant wind direction in the
south-west and the higher wind speeds of 10-15 m/s or 15-20 m/s. It was concluded that
with these wind roses the greatest benefit from wake steering was obtained.

Overall, future researchers must expand the input variables considered and validate
the uncertainty quantification framework further on (1) different input data and (2) differ-
ent wind farms. When different input variables are considered and the study is repeated
on different wind farms, the convergence study that determines the maximum WT number
and the minimum sample size required must be repeated. This is because for different wind
farm layouts and wind turbine configurations different conclusions regarding convergence
may be obtained. Repetition of the study on different input data sets yields more reliable
estimates of statistical uncertainties. Once a larger database of AEP uplift estimations and
input variable rankings is obtained for a wider variety of wind farms and input data, the
database can be grouped and classified into different categories. In this way, behavioral
patterns are obtained that can be used to create rules of thumb for AEP uplift estimations
and even to train algorithms that estimate AEP uplift.
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Wind Farm Technology

In Chapter 1, wake-induced energy losses were posed as a significant challenge in making wind farms viable.
To better understand how wind farms function, Chapter 3 introduces the reader to wind farm technology
and the concept of wind farm flow control. This chapter focuses solely on the physical mechanism used in
wind farms and on wind farm flow physics. Section 3.1 explains the main working principle of a wind turbine,
of wind farms and the effect of turbine interactions in wind farms. Section 3.2 describes the concept of
wind farm control, the different existing wind farm control strategies and the main working principle of wake
steering.

3.1. Wind turbines, wind farms and wakes

In order to comprehend energy generation using wind technology, it is crucial to understand the working
principle of wind farms and physical effects affecting energy production. This section starts by introducing
the working mechanism of wind turbines in Section 3.1.1. This is then followed by introducing the concept
of wind farms in Section 3.1.2. The wake interactions that arise when wind turbines are arranged together
are explained in Section 3.1.3. Finally, methods to reduce the negative effect of wake interactions are
presented in Section 3.1.4.

3.1.1. Main working principle of a wind turbine

With increasing demand for wind energy, new wind turbine installations are getting bigger and more
powerful. Vestas is planning to install an offshore wind turbine of 15 MW by 2024, while Siemens Gamesa
launched a wind turbine with an energy production capacity of 14 MW [3]. Wind turbines produce energy
by saving kinetic energy from the mass of air passing through the area swept by the rotors [13]. In
horizontal-axis wind turbines (HAWTSs) - which are the most commonly used wind turbine type [50] and
thus the focus of this study - the rotor blades are used to convert the flow of the incoming wind into an
aerodynamic torque. This is transferred from the rotors to the generator which converts the rotational
kinetic energy into electrical power. Hence, the wind turbine generator uses the work done by both the
tangential and axial velocity components to produce energy. The power production and the forces on the
turbines can be influenced using three control variables: generator torque 7, rotor blade pitch angle ¢ and
WT yaw angle ~. The blade pitch angle is the angle between the chord of the blade and the WT’s rotational
plane (commonly referred to as the disk plane), while the yaw angle is the angle between the incoming
wind and the rotor shaft of the WT [10, 13]. The wind turbine’s mechanism and degrees of freedom are
depicted in Figure 3.1.

3.1.2. Wind farms

Many areas around the world with sufficient wind resource lack the necessary infrastructure, such as road
accessibility and electricity grid availability, for wind turbine installations. Other areas have a high density
of settlements or are protected natural areas. These factors limit the available wind turbine installation
area, motivating governments and businesses to group large numbers of wind turbines together and form
wind farms [49]. In the Netherlands, the government aims for an offshore wind capacity of 21 GW by
2030/2031. When both average supply of energy and average natural gas consumption are considered,
this has the potential to meet the energy needs of 1.4 million Dutch households [14]. This is a significant
number since in the Netherlands the use of renewable sources in the residential sector is more than three
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Figure 3.1: Horizontal-axis wind turbine [10]

times less than the EU average, with natural gas being the dominant energy source in the residential
sector at 71.2% [24]. One of the measures taken for increasing energy production capacity is building wind
farms in the North Sea [64]. Clustering wind turbines in farms has unintended consequences on individual
turbine performance. The aerodynamic interactions between WTs in wind farms affect individual turbines
by decreasing their possible power capture and by shortening their lifetime as a result of fatigue loads and
increased structural degradation. These aerodynamic interactions are the wake effects [10].

3.1.3. Wake interactions

Wake effects can lead to losses in wind farm power output. In large offshore wind farms average power
losses due to wake effects can reach 10% to 20% of the total output [4]. Wakes in wind farms are shown in
Figure 3.2. Wind turbine wakes are complex, stochastic aerodynamic phenomena. The most rudimentary

Figure 3.2: Photograph of the Horns Rev 2 offshore wind farm - courtesy of Vatenfall

definition of a wake is a region of reduced mean wind velocity and increased turbulence downstream of
the turbine [10]. As the wind turbine extracts kinetic energy from the incoming wind, the static pressure of
the downstream flow decreases and the mean wind velocity is reduced. Turbine blade rotation creates
blade tip vortices and disrupts the flow at the blades contributing to an increase in turbulence [10]. Due to
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the incompressibility of the flow and the principle of conservation of mass, the velocity deficit in the flow
translates to an increase in the surface area of the wake. This is the concept of wake expansion, and it
impacts the wind speed at wind turbines downstream. Moreover, as turbine blades rotate, they exert an
equal and opposite reaction torque on the downstream air causing the air to rotate. This tangential velocity
component results in wake rotation [13]. For more information on the aerodynamics of HAWTs including
the forces acting on the blades and elements of blade design, see Chapter 3 of [13] and [91]. Wake is a
time-dependent phenomenon. Wake meandering which describes large-scale wake fluctuations in the
lateral and vertical directions occurs. This effect increases the turbulence of the wake [12]. The downstream
turbines experience the wake of the upstream turbines with a time delay rather than instantaneously [35].
Further downstream, turbulent mixing of the flow occurs and the wake deficit dissipates. At a certain
distance downstream of the turbine - depending on the surface area of the wake - the flow eventually
returns to its undisturbed state. The return to the undisturbed flow’s atmospheric pressure levels and the
mean wind velocity is called wake recovery [101].

On the wind farm level, wakes from different WTs interact as multiple turbines are placed together.
Therefore, the downstream turbine’s performance is affected by every upstream turbine whose wake
crosses with the area swept by the downstream turbine [35]. The number and intensity of wake interactions
increases as the aggregated wakes expand downstream. Higher wake-induced power losses occur at
the back of wind farms than at the front. This is the deep array effect, and it is the most prevalent in large
wind farms [71]. When an upstream turbine is misaligned with the wind direction, its wake is deflected.
Counter-rotating vortices are generated in the upstream turbine’s wake. These propagate throughout
multiple rows of downstream turbines and deflect the wake of a downstream turbine that is aligned with
the wind. This is called the secondary steering effect [25]. On the wind farm scale, large numbers of
accumulated wakes alter the atmosphere, creating additional aerodynamic effects. A comprehensive
overview of these effects is beyond the scope of this thesis. An introduction to the topic may be found in
[107].

3.1.4. Mitigation of wake losses

Through the mitigation of wake effects, the total power production and lifetime of wind farms is increased
[10]. The current industry standard for addressing wake-induced power losses in wind farms is placing
wind turbines at sufficiently large distances from each other (7D to 10D). Although large inter-turbine
distances allow for wake recovery, annual revenue losses of up to 20% to 30% are still observed [53].
There is growing interest by researchers and developers in other wake loss mitigation strategies that further
decrease revenue losses, namely wind farm layout optimization and wind farm flow control [2, 41]. Wind
farm layout optimization involves using optimization algorithms to determine the ideal wind turbine positions
that maximize power production and minimize costs while adhering to project-specific boundary constraints
[16]. Wind farm flow control or active wake control refers to achieving a wind farm level objective such as
power maximization or load reduction through the use of a wind farm controller that influences the control
variables of individual wind turbines. Wind farm layout optimization is used during the design phase to
position wind turbines such that there are minimal wake losses. On the other hand, wind farm flow control
is implemented on existing wind farms in order to minimize the remaining wake losses [53]. This means
that wind farm flow control can be used to mitigate wake losses in atmospheric conditions that are less
likely to occur and thus the wind farm layout was not optimized for [41]. In this study, only the mitigation of
wake losses with wind farm flow control are included.

The main objective of wind farm flow control is minimizing the levelized cost of energy (LCoE). This
represents the total costs of the wind farm (including construction, maintenance and operation) divided by
the total energy produced by the wind farm, leading to the average cost per energy unit over the wind farm’s
lifetime [62]. This objective can be achieved through a number of sub-objectives, with the most relevant
ones being power maximization, load minimization and active power control. Power maximization refers to
increasing the wind farm’s annual energy production which directly translates to an increase in revenues at
a specific electricity price. In wind farm flow control applications, this is done by minimizing wake-induced
energy losses. Load minimization is important because increased turbulence and asymmetry in wind flows
increases the turbine’s structural loading, leading to shorter turbine lifespan and increased maintenance
costs. Active power control, amongst other applications, relates to supplying power levels to the electricity
grid that meet technical standards and are optimized according to electricity prices. Multi-objective wind
farm flow control can be done; however, this study solely focuses on maximizing power [10, 62].
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3.2. Wind farm flow control strategies

The performance of wind turbines within a wind farm may be optimized with wind farm flow control strategies.
These seek to enhance power production, reduce structural degradation and improve the efficiency with
the overall electricity grid network. Since large investments and agreements with many stakeholders are
required for the development new farms, the possibility to enhance the performance of existing wind farms
remains attractive. Researchers have explored various control techniques.

The first wind farm flow control method proposed is axial induction control or power de-rating [62]. This
is based on adjusting the blade pitch angles and/or the generator torque of the upstream turbines in order
to run them on less than their maximum capability (i.e. de-rating). This decreases the power output and
thus the momentum deficit of the wake shed by the upstream turbine. As a result, the downstream turbines
are exposed to higher incoming velocities and generate a higher power output [53]. This mechanism is
shown in Figure 3.3.

De-rate Turbine 1 to reduce the thrust
force exerted on the wind Y D

Turbine 1 Turbine 2

h

Thrust force

Mean wake velocity is increased
at Turbine 2

Figure 3.3: Working principle of axial induction control [53]

The number of field experiments for axial induction control remains small with the bulk of research
output consisting of low-fidelity simulations and analytical studies [41]. The results of field experiments is
inconclusive since many report marginal power gains or power gains that fall within the bounds of statistical
uncertainty [1, 11, 57, 100].

On the other hand, wake steering - that is also known as wake redirection - for power maximization
has proven its potential in high-fidelity simulations, wind tunnel tests and field experiments (20, 41). Wake
steering is the redirection of the wake shed by the upstream turbines to expose the downstream turbines to a
higher incoming flow velocity than the baseline scenario. The goal is to achieve net energy gains compared
to the baseline due the downstream turbine’s higher energy yield overcompensating for the upstream
turbine’s reduced energy yield. The wake of the upstream turbine is redirected through the deliberate
misalignment of the yaw angle with the wind direction (yaw-based wake steering) or through individual blade
pitch control (IPC-based wake steering). In contrast to yaw-based wake steering, interest in IPC-based
wake redirection decreased with time. This is because IPC-based wake steering is conventionally used to
achieve turbine-level objectives, so IPC-based wind farm controllers would have to meet objectives at both
the wind farm level and turbine level [53]. Hence, IPC-based wake steering is not considered in this study.
When wake steering is mentioned in the rest of the literature review, it is in reference to yaw-based wake
steering only.

When the upstream yaw angle is purposefully misaligned with the incoming wind, a lateral force that
deflects the downstream wake is created. This exposes the downstream turbine to a higher incoming flow
velocity than the baseline scenario [103]. The secondary steering effect further influences the displacement
of the downstream wake. The main working principle of wake steering is shown in Figure 3.4.
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Wake is deflected and Turbine 2 is
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|
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Figure 3.4: Working principle of wake steering [53]

High-fidelity tests mostly show efficiency gains of 5-15% [53]. In addition, studies calculating annual
energy production (AEP) gains using realistic wind data show gains of up to 1% which is a significant
increase for wind farms [20]. Due to these promising results and significant research output in the past five
years [41], Siemens Gamesa released the first commercial wake steering product in 2019 [81]. This was
followed by the first full scale commercial implementation of wake steering in 2023 at the Milford 1&Il wind
farms in Utah [106].

Axial induction control and wake steering are wind farm flow control methods categorized according to
their physical turbine actuation mechanisms. These control methods may be further divided into static and
dynamic control methods. In static control, the turbine set-points are adapted to meteorological variations
such as wind direction and wind speed on the scale of a day. This control method is not responsive
to physical effects that occur at time scales faster than the overall wind farm flow, such as wind gusts,
turbulence bursts and terrain effects. Dynamic control methods are responsive to the disturbances in flow
physics occurring on a smaller time scale, with some even directly influencing wake mixing and turbulence
[62]. The previously referenced studies for wake steering and axial induction control were exclusively for
the static control methods. With dynamic control concepts the control variables that influence the thrust
force on the upstream turbine are changed dynamically in order to accelerate turbulent mixing which in
turn leads to faster wake recovery [32, 62]. In an example of a dynamic induction control concept, the
thrust force was varied sinusoidally with the goal of increasing turbulent mixing and thus reducing wake
losses. However, the variations in thrust force led to power fluctuations that reduces the consistency
with which the standard power level was achieved [66]. Although dynamic induction control has been
investigated in wind tunnel tests and simulations (eg. [33, 99]), no field experiments on this control method
were found. This means that dynamic induction control is at a lower technological readiness level than
both static axial induction control and static wake steering. To reduce the power fluctuations, dynamic
individual pitch control also known as the helix approach was proposed. This control strategy involves
changing the individual blade pitch angles to slowly vary the thrust force and thus the direction of the
wake. Hence, turbulent mixing is increased with smaller power fluctuations [32]. LESs showed that the
helix approach resulted in higher energy extraction than dynamic induction control and static induction
control while decreasing power fluctuations. However, no comparison was made to wake steering, and the
approach is still at the proof-of-concept phase [32].

3.3. Controller architecture

In Section 3.2 different wind farm flow control methods were presented. Following a review of the research
conducted on these control methods, it was concluded that wake steering has the highest technological
readiness level. Wake steering and other wind farm flow control methods are implemented by designing
control algorithms on the wind farm level that aim to maximize a specific objective. There are different
properties that wind farm controllers can have. As it was explained in Section 3.2, the most widely used
controllers for wind farm control are static. In addition to this, the current practice is to use open-loop control
for wind farms as it was shown in many field experiments (eg. [11, 21, 27, 83]). Due to the fact that in
open loop controllers all uncertainties are propagated forward towards the output, closed-loop control has
gained more attention in recent years (eg. [43, 58]). Currently, no practical implementation of closed-loop
control has been done [62]. Finally, controllers are model-based or model-free. Model-based controllers
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are based on analytical wind farm flow models. This means that they are subject to modelling errors and
uncertainties, as the controller is only as good as the accuracy with which it models the flow. The fact that
they are simplified models of complex flow physics means that they are straightforward to implement and
can handle multi-objective functions. Model-based controllers are often used in wake steering due to their
computational efficiency [28, 83]. On the other hand, model-free control aims to handle the limitations
of model-based control by treating wind farm flow physics as a "black box” and optimizing for the ideal
control action based on measurement data. Although model-free control aims to eliminate the limitations
of model-based control, many optimization algorithms used in model-free control rely on steady-state data
for learning. This also means that difficulties with handling time-varying flow conditions occur [22].

The current industry standard for wake steering applications is using steady-state wind farm flow models
to generate look-up tables (LUT) for an objective function such as power maximization. The LUTs contain
optimal turbine yaw offset angles for all possible wind directions and wind speeds given certain atmospheric
conditions and turbine characteristics. These yaw offsets are then fed into each turbine’s yaw controller.
An example of a standard wake steering controller is depicted in Figure 3.5.
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Figure 3.5: Standard wake steering controller whose output vane signal is fed as input to the turbine’s
yaw controller. [84]

Since static open-loop model-based controllers have the most practical implementation, the focus of
this thesis is on understanding the uncertainties involved in estimating AEP uplift using these wake steering
controllers. In order to understand the uncertainties due to the models used in these controllers, the next
chapter focuses on wind farm flow models.



Wind Farm Flow Modelling

Chapter 3 explained the physics behind wind turbines, wind farms and wind farm control methods. In
Chapter 4 the focus is on how to approximate the physics previously explained using simplified mathematical
models. Section 4.1 gives the relevant background on wind farm flow models. Then, Section 4.2 presents
different types of low-fidelity wind farm flow models and their operating principles. Section 4.3 continues
with describing the FLORIS software that implements low-fidelity wake models.

4.1. Overview of wind farm flow models

In order to assess the financial viability of wind farm projects, wind farm developers conduct (energy) yield
assessments. This allows developers to predict the annual energy production of a proposed wind farm
and to make the optimal design decisions that maximize power [18]. To conduct such an assessment,
wake-induced power losses must be quantified. This typically involves the use of wind farm flow models
which are simplified mathematical descriptions of the flow. With these mathematical descriptions, it is
possible to quantify wake effects with varying degrees of accuracy. Besides energy production estimations,
wind farm flow modelling can be used to analyze aerodynamic load variations on turbine blades and power
output fluctuations. Hence, wind farm flow models can play an important role in assessing the extent to
which wind farm-level objectives are met. Moreover, wind farm flow models are used in the implementation
of wake loss mitigation strategies, for example, in the design of model-based wind farm controllers. The
main emphasis of this study lies in wind farm flow modelling for wake steering controller design and yield
assessment applications.

As the fidelity of a model increases, the accuracy with which it describes flow dynamics increases.
However, a high fidelity model also has increased computational complexity. Wind farm flow models
can be classified, according to their fidelity, into low fidelity models, medium fidelity models and high
fidelity models. Low fidelity models estimate the time-averaged flow field characteristics of wind farms
for a given wind direction and are usually steady-state [10, 22]. These models have a low computational
complexity, although it should be noted that the computational effort increases with the number of wind
turbines. Moreover, low fidelity models provide little information on temporal dynamics such as wake
meandering effects. Thus, they are less accurate and may have degraded control performance [22]. At
the opposite end of the spectrum, high fidelity models provide high modelling accuracy as they apply
large-eddy simulations to solve three-dimensional Navier-Stokes equations. This means that they are
more computationally expensive. An example of a high fidelity model is Simulator for Offshore Wind Farm
Applications (SOWFA) developed using computational fluid dynamics tools. Medium fidelity models are a
compromise between the two extremes. They usually consider more details of flow field dynamics while
reducing computational complexity by simplifying Navier-Stokes equations with assumptions that may
neglect, amongst other properties, wake asymmetry [22].

With the current trend of building wind farms with an increasing number of wind turbines [88], the
computational cost of performing yaw optimizations increases. Due to the high computational cost of yaw
optimizations, particularly in large wind farms, wake steering benefit assessments are currently only done
with low-fidelity models. A study to higher fidelity models is out of the scope of this thesis.
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4.2. Low-fidelity wind farm flow models

Low-fidelity wind farm flow models are simple analytical models that are preferred in wind farm layout
optimization and control applications. This is because they have a low computational cost while still
capturing the fundamental flow physics unlike empirical models [73]. Sub-models that describe different
aspects of wake behaviour are combined in an attempt to give a complete description of flow physics
without significantly increasing the computational cost. The complexity of wake aerodynamics and wind
farm flow model uncertainties due to factors such as model assumptions still makes validation a challenge.
For yield assessment applications specifically, wind farm flow model uncertainties can contribute to power
output predictions falling outside of the bounds of statistical uncertainty [70]. This section focuses on some
low-fidelity wind farm flow models that are commonly used for yield assessment applications. First, the
sub-models that make up wind farm flow models are presented. Then, the combination of sub-models in
order to make up the wind farm flow models is explained. The sub-models to be handled in this section
are given in Figure 4.1.
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Figure 4.1: An overview of wind farm flow models

Wake velocity deficit models

Wake velocity deficit models describe an individual turbine’s wake. In this report the wake velocity deficit
models that are most commonly used for yield assessments with the FLORIS tool [69] are explored. Other
yield assessment tools such as PyWake may have a different database of wake velocity deficit models
available [23]. The oldest wake velocity deficit model is the Jensen model, and it is based on the principle
of conservation of mass. It is a so-called top-hat model with a velocity deficit factor that is a function of
the downstream distance [47]. This means that the velocity function is uniform inside a cross-section of
the wake, with the waked region having a lower velocity than the unwaked region. Wind tunnel tests and
high-fidelity simulations show that the Jensen wake model underestimates the velocity deficit at the center
of the wake while overestimating it near the edge of the wake [5]. This is attributed to the fact that when
observed from a far enough distance downstream the velocity deficit is close to being axisymmetrical
having a shape similar to the Gaussian distribution perpendicular to the turbine axis [15]. By applying the
principle of mass and momentum conservation and assuming the Gaussian shape for the velocity deficit,
better results than the top-hat model were obtained in partial and full wake conditions [5]. However, the
Bastankhah model is not accurate in the near wake conditions which is where most wake losses occur.
When inter-turbine spacing is small, turbines will generally be in near wake conditions. The super-Gaussian
wake model has an approximately top-hat shape in the near wake and a Gaussian shape in the far wake.
This shape is more similar to observations from wind tunnel tests. Compared to the Gaussian model,
the super-Gaussian model matches better with measurements from wind tunnel tests, particularly in the
near wake [9]. Besides the documentations of yield assessment tools, more types of wake velocity deficit
models may be found in papers such as [37] and [74].
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Wake superposition models

The wake of each turbine is modelled individually, yet in wind farms wakes from multiple wind turbines
interact. Thus, the combination of wake velocity deficit models when wakes from multiple turbines overlap
is not straightforward. Wake superposition models address the interaction between multiple turbines [80].
One of the most commonly used methods is the sum of squares superposition model. This assumes that
the deficit in kinetic energy of the mixed wake is obtained by adding the deficit in kinetic energy of each
downstream turbine’s wake. The kinetic energy deficit is then used to calculate the velocity of the flow field
[52].

Wake-added turbulence models

Turbulence characteristics of wakes influence wake recovery through turbulent mixing. [17] proposed an
empirical formula based on results from CFD simulations for the calculation of added turbulence due to
turbine operations and ambient turbulent conditions. Thus, when more turbulence is generated due to
higher rotor thrust, wake recovery is improved. This added turbulence model has been widely adopted in
wind farm flow models [7, 54].

Wake deflection models

Wake deflection models describe the changes in flow due to - amongst other factors - changes in inflow
angles. Since this study is focused on wake steering, some models that show the effect of yaw misalignment
are specifically studied. One of the earliest adopted models is [48]. This model assumes that the wake
has a top-hat shape, and it uses the principle of conservation of momentum. The wake is considered to
deflect with a skew angle « that is larger than the turbine’s yaw misalignment with the incoming wind. The
expression for « is valid for the far wake region which is dominated by ambient turbulent conditions [48].
In high-fidelity simulations it was observed that the wake is not simply deflected using simple geometry.
Instead the wake’s shape is curled due to counter-rotating vortices being shed simultaneously at the top
and bottom of the rotor. These vortices were shown to affect wake steering performance which motivated
the creation of the [61] wake deflection model. The wake deflection model developed by [61] solves a
simplified version of the Reynolds-averaged Navier-Stokes (RANS) momentum equation and considers
the streamwise velocity profile as well as the wake rotation effect and the aforementioned vortices caused
by yawing. Ground effects are also accounted for. It does not assume a shape for the wake, and the wake
velocity and wake deflection models are derived using the RANS momentum equation.

Wind farm flow models

When the four sub-models are combined, wake steering in wind farms can be characterized. As more
wake features are considered, the accuracy with which the wind farm flow is modelled is improved. First,
the Jensen wake model is extended with the sum of squares method [52]. This is called the Park wake
model. This is the standard model used in many commercial software. However, it does not account for the
influence of the yaw angle on the downstream turbine’s wake or power production [72]. For wake steering
applications, the Park wake model is typically used in conjunction with the Jimenez wake deflection model.

As it is a better description of the flow field, in later wake steering applications [28, 83] the Gaussian
velocity deficit model for one wake was further extended to the wind farm level through the use of the sum
of squares superposition principle. Since turbulence - amongst other effects - enhances wake recovery,
added turbulence is included using the Crespo-Hernandez model [17]. Finally, the Jimenez wake deflection
model is included in the Gaussian wind farm flow model [68]. When used to design a wake steering
controller in a two-turbine field experiment, an increase in energy gain of 14% has been shown in the
downstream turbine [28].

Despite its improvements compared to the Park wake model, the Gaussian wind farm flow model
under-predicts the power gains due to wake steering in large wind farms compared to field test and high
fidelity analysis [54]. This is because secondary steering effects and the asymmetric nature of wake
steering is not fully captured by the Gaussian model. In order to maintain the relatively lower computational
cost of the Gaussian wind farm flow model, the Gaussian model is modified by using approximations
of the [61] curled wake model. This creates the Gaussian Curl Hybrid (GCH) model [54]. In this model,
yaw-added recovery - which is the fact that wake recovers more when the turbine is misaligned with the
incoming flow due to turbulence caused by vortices - is included. Moreover, secondary steering effects are
included in GCH. With the curl and secondary steering effects included in the model, the predicted power
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gain for smaller yaw misalignment angles are substantially higher compared to the former wake model.
Annual energy production gains for GCH are shown to be twice as high as the AEP gains for the Gaussian
model for large wind farms in high and low turbulence intensity conditions [54].

More recent studies shows that deep array effects are underestimated with GCH, more specifically
losses are under-predicted in the rear part of large wind farms and turbine pairs at distances larger than
25D [7, 71]. The Cumulative Curl (CC) model [7] and TurbOPark model [71] have been developed to
account for these effects. The TurbOPark model has not been validated yet for wake steering applications,
so it is out of the scope of the literature survey. On the other hand, CC has been validated in simulations
for yawed and non-yawed wind turbine conditions. CC uses the same wake deflection model as GCH, but
it enhances the accuracy of its near-wake model by replacing the Gaussian velocity deficit model with the
super-Gaussian velocity deficit model in the near wake region [9]. In addition, the velocity deficit model and
wake superposition model from GCH is replaced by [6]. This calculates the downstream turbine wake by
directly solving an approximation of the equations of conservation of mass and momentum [6]. In this way,
deep array effects are considered and more accurate near-wake predictions are made. Therefore, the
power and wake estimations are more accurate while the same performance is obtained for smaller wind
farms. CC has still not been validated in field experiments with larger wind farms, having been primarily
used in simulation studies [7]. The wind farm flow models that were presented can be used in wind farm
simulation software in order to understand wake behavior and its effects.

4.3. Modelling the annual energy production uplift from wake steering
using FLORIS

Wind farm simulation software uses wind farm flow models in order to perform yield assessments, wind
farm and wind turbine siting and structural load analysis amongst other applications. This allows data-
backed design decisions to be made during the early wind farm design phase. In addition, novel control
technologies such as wake steering can be tested through simulations on different wind farms before
full-scale deployment. This has the potential to motivate wind farm developers and OEMs to invest more
resources on innovations that may improve energy yield or the lifetime of wind turbine components.

The goal of wake steering yield assessments is to estimate the AEP uplift that can be achieved by
wake steering. Confidence in the yield assessment increases as the conditions in the wind farm are
modelled accurately since this increases the likelihood of obtaining similar results to field experiments
[21]. An example of a wind farm simulation software that can be used for wake steering applications is
FLOw Redirection and Induction in Steady-state (FLORIS) [34]. FLORIS has been widely used in field
experiments for wake steering controller design, more specifically for finding the optimal yaw angles of wind
turbines (eg. [21, 29, 84]). A user-centered visualization of FLORIS for wake steering yield assessments
is given in Figure 4.2.
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Figure 4.2: Visualization of wake steering yield assessments with FLORIS

In order to start up the software, some input parameters must be selected. Turbine properties are
defined by selecting the turbine type and specifying the wind farm layout. Wind farm model parameters
are chosen by selecting the four sub-models making up the wind farm flow model. With the wind rose
loaded in FLORIS, the yaw angles can be optimized for every wind direction and wind speed possible.
However, to decrease the computational cost, the optimization can be done for given wind speed, wind
direction and/or turbulence intensity values. Finally, the yaw optimizer method is selected [69]. In most



4.3. Modelling the annual energy production uplift from wake steering using FLORIS 32

recent field experiments [65] the serial-refine method has been used for yaw optimization due its reduced
computational time [31]. As the focus of the thesis is understanding the impact of the input parameters
on the AEP output when wake steering is implemented, further description of the FLORIS algorithm is
omitted. For a more detailed view of FLORIS and the model parameters included, please consult the most
recent FLORIS documentation [69].

Since FLORIS is a model-based software, the results obtained using it are highly dependent on the
accuracy of the wind farm flow model used. Therefore, the choice of the wind farm flow model has a
significant impact on the level of model uncertainty introduced to the output. Besides the choice of the
model, other sources of uncertainty due to FLORIS have been found in field experiments and uncertainty
studies. One source of uncertainty is that FLORIS does not account for differences in power gains during
nighttime and daytime conditions that occur due to changes in atmospheric stability and turbulence [29].
This is because FLORIS models the average of the two conditions. Another source of uncertainty is due to
the fact that the power curve model in FLORIS is independent of the wind farm flow model. In non-yawed
conditions, the C,, is a function of the velocity deficit only. This does not change when more complex wind
farm flow models that, for example, include vortex effects are used. In yawed conditions, the power is
calculated by multiplying the non-yawed power curve with a correction factor of cos””(y), where Pp is
an empirical parameter value found from wind tunnel tests of yawing turbines. This adjustment to the
non-yawed power equation is based on the Jiménez deflection model and is independent of the wind farm
flow model selected in FLORIS [34]. Hence, the wind farm flow model and the power curve model can
influence the accuracy of the energy production estimation, affecting the validity of the results obtained
from wake steering yield assessments.



Practical Applications of Wake Steering

Chapter 4 explained the models used to describe the physical properties of wind farms. These models
are used in practical wake steering applications. Chapter 5 describes the current state of wake steering
technology, highlighting challenges that must be addressed in the future in order to achieve wide-scale
adoption of the technology by the industry.

5.1. Wake steering in industry

In Section 3.2 wake steering was presented to be the only wind farm flow control method to date with a
commercial application, and it was expected to increase the gains in AEP by up to 1%. In an offshore
wind farm with 407 MW capacity - which is the capacity of the Horns Rev 3 wind farm in the North Sea
[102] - this translates to an additional annual profit of approximately €500,000 [105]. In addition, the ability
to optimize the energy production of the wind farm with wake steering ensures that the targeted energy
output is consistently achieved, leading to more stable revenue streams. Projects with lower financial
risks are more attractive to investors. These potential financial benefits have led to the creation of Task
44 within the International Energy Agency (IEA) Wind Technology Collaboration Program which is an
international cooperation between 24 countries with the goal of advancing wind energy research and
development. More specifically, IEA Wind Task 44 - which conducts internationally collaborative research
and development projects between academia and industry - has shown significant effort in validating
wake steering [45]. Moreover, DNV partnered with National Offshore Wind Research and Development
Consortium (NOWRDC), which focuses on the advancement of wind energy technology in the United
States, to perform an economic analysis on the effects of wake steering methods on floating offshore wind
farms [85]. In 2024 DNV kicked off a joint industry project with offshore wind and transmission developers
in order to work on the integration of wind energy into the existing electrical grid network [77].

Industry is continuously exploring wake steering technology because it has shown consistent success
in field experiment validations. Results from field campaigns are needed for wind farm flow concepts to
achieve a high technology readiness level (TRL) such that commercially viable wake steering products
can be produced [62].

5.2. Validation through field experiments

Typically, wind farms are high value assets with multiple stakeholders sharing in the costs, revenues and
risks. The potential benefits of new wind farm flow control concepts must be demonstrated alongside
the associated risks for the concept to be adopted by industry. These demonstrations first start with
a proof-of-concept study using high-fidelity simulations then are followed by validations in wind tunnel
experiments. Positive results from these simulations and experiments open the doors to further research.
First, field campaigns on a limited number of wind turbines are conducted; these are followed by full-scale
field campaigns [62]. Since the focus of this thesis is on practical applications of wake steering using
existing controllers, the results of wind tunnel tests and high-fidelity simulations will not be discussed.
Instead, the focus is on field experiments with the goal of understanding the current state of wake steering
technology.

One of the first field experiments was conducted on one utility-scale wind turbine operating at a fixed
misalignment angle with the incoming wind direction to investigate the resulting wake deflection [26]. This
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was followed by a two-turbine field test in a commercial offshore wind farm that had 25 Envision turbines
that validated the predictions of low-fidelity and high-fidelity simulations - namely FLORIS and SOWFA -
with the highest relative increase in power production from wake steering occurring at 7D and 8.5D turbine
spacing [27].

These successful results motivated the scaling up of field tests. An experiment in an operational
Canadian wind farm with six utility-scale turbines showed that wake steering increased power production
by 7-13% for wind speeds close to the wind farm’s average wind speed values and for wind directions that
were seen in less than 10% of nocturnal operations and by 28-47% for low wind speeds. Although overall
gains in AEP were insignificant, this experiment hints at the dependence of accurate wake steering benefit
assessments on wind direction and wind speed as well as the modelling of the power curve [44]. In [28]
uncertainties due to the controller’s inability to capture changing wind directions persist. As more than 60%
of the data is collected in unstable atmospheric conditions, the wake steering controller under-performs. In
this case, five closely spaced turbines are tested with the objective of evaluating the effect of two controlled
turbines - with one of them placed on a complex terrain and the other on a flat terrain - on one downstream
turbine. The wind turbine placed on the flat terrain is at a distance of 5D from the downstream turbine,
while the one placed on the complex terrain is at a distance of 3D from the downstream turbine. Hence,
both turbines are influenced by near-wake effects to some extent. Results show an increase of 14% in the
downstream turbine’s power production for specific range of wind directions and wind speeds. When the
upstream turbine’s power losses are considered, this power increase reduces to a net gain of 4% over
the same wind direction and wind speed range. Additionally, the wake steering controller was designed
through the optimization of a FLORIS model which, when the experiment was conducted, did not have
the ability to model terrain effects or accurately represent near-wake effects. The same experiment was
continued at a later date, incorporating some wind direction uncertainty in the optimization algorithm used
to generate the static LUTs. Another important change was using the improved GCH model - that includes
complex wake effects due to yaw misalignment - to generate the optimal yaw offset angles [29]. Wake
steering reduced wake losses by 6.6%, which was half of the wake loss values predicted by the GCH
model used in FLORIS. While for the wind direction regions with the highest gains nearly optimal results
were achieved, under-performance was observed in the wind direction regions with lower gains (that are
also less studied in high-fidelity simulations). This under-performance may be attributed to losses caused
by ‘'wrong-way steering’ (i.e. steering the wake towards the downstream turbine). However, it should be
noted that such losses may be better predicted with an improved near-wake model, perhaps leading up
to more effective yawing activity. In addition, the FLORIS model uses the average of the daytime and
nighttime conditions. Higher energy gains are achieved at nighttime since the atmospheric conditions
are more stable and have low turbulence intensity which is more favorable to wake steering [29]. The
aforementioned field experiments validated wake steering for a small number of wind turbines. The next
step was to demonstrate wake steering on a full-scale wind farm [62]. [21] took this step by demonstrating
wake steering in an array of three turbines placed in three consecutive rows in a 43-turbine commercial
onshore wind farm. In this experiment, power gains of up to 16% were found for a specific wind direction
when the first two turbine rows operated under yaw misalignment. Wake losses at certain wind directions
were underestimated by FLORIS and some predicted positive gains were found to have large uncertainty
bounds. This was attributed to not only the lack of terrain modelling in FLORIS and to not using GCH,
but also to a mismatch between the yaw-power curve of the real turbines and FLORIS. This is because
FLORIS assumes a symmetrical yaw-power curve with peak power at v = 0 which does not reflect the
asymmetrical, flat shape of real yaw-power curves [21].

It can be concluded that power gains calculated by simulation tools are not always accurate. One
of the most researched reasons for this is the highly variable nature of wind which the yaw controller
cannot immediately react to [78, 84]. This combined with the uncertainty in wind speed creates errors
in the calculation of the optimal yaw offset angle [75]. Factors such as measurement inaccuracies and
uncertainties in wake model parameters also contribute to power production results with high uncertainty
bounds [42, 51]. Therefore, more recent field experiments focus on designing more robust wake steering
controllers by including these uncertainties.

5.3. Wake steering under uncertainty

Early wake steering field experiments show the effect of wind speed, wind direction and ambient atmospheric
conditions on the success of wake steering. They also reveal insights into the power gain predictions done
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by tools such as FLORIS. This is important because energy yield estimation is used for risk management
and financial analysis of wind farm projects. Accurate energy yield estimation provides more realistic results,
reducing financial risks. Hence, the field of uncertainty quantification is attracting more attention from
industry and academia [30]. A common method for uncertainty quantification in wind energy applications
involves identifying the sources of uncertainty, modelling them with probabilistic methods, propagating
these uncertainties onto the output through simulations and evaluating the impact of the uncertainties on
the output (eg. [51, 63, 76]).

In Figure 3.5, it was shown that LUTs are generated as a direct result of the wind direction (which is
the sum of the nacelle vane position and yaw position) and the nacelle wind speed. Since wind direction
is a direct input parameter, the ideal yaw offset angle is highly sensitive to the wind direction. However,
the wind direction is hard to measure and varies over time and in space (in this case, in different places
in the wind farm). The wind’s unpredictable, time-dependent behaviour is not captured by the static,
steady-state yaw controllers used in field experiments. Often, the optimal yaw offset that the wind turbine
achieves lags behind the current wind direction. Uncertainty quantification studies consistently show that
wind direction variability is one of the most significant uncertain inputs [42, 51, 76]. [84] - using the same
experimental design and controller as [28] - showed that, by including probabilistic wind direction and yaw
position corrections to the power production estimate, results that matched field experiments more closely
were obtained. Additionally, though maximum power gains with uncertain wind direction were lower, the
power losses obtained when the turbine deviated from the expected wind direction were also reduced
in a simulation study [78]. Variable wind directions were later implemented in a field experiment via yaw
controllers that used preview wind direction information. This resulted in increased power gains for perfect
preview wind direction information compared to controllers that used static wind direction information for
yaw optimization [83, 84]. High-fidelity simulations for wake steering control using preview wind direction
information followed, showing that there was academic interest in the subject. For wind direction changes,
these simulations predicted increases in average wake steering power gains [79].

Other significant uncertain inputs are yaw misalignment errors and variability in wind speed and
turbulence. By taking into account these factors, smaller yaw offset angles and larger power gains
compared to the deterministic case were achieved [51, 75, 76]. Smaller yaw offsets decrease the loads on
the yaw drives; however, this also means that there is less benefit to performing wake steering. Another
important finding was that including variable wind direction and wake model parameters in an open-loop
wake steering model (similar to FLORIS) results in a statistically significant higher energy gain only in
wind turbines with moderate spacing and operating under low turbulence conditions [42]. This raises the
question of whether it is even beneficial to implement wake steering under all atmospheric conditions.
Currently, there is an ongoing field campaign that aims to understand physical phenomena that could
produce significant sources of uncertainty, including the influence of turbulence on potential energy gains
[65]. It should be noted that besides this ongoing field campaign there are no other field experiments that
investigate the influence of the other parameters on energy gains. Therefore, additional research on this
topic is required.



Thesis Contribution

Reflecting on the information presented in the previous chapters, it can be concluded that wake steering
is a promising technology but that there is still a long way to industry-wide adoption. One of the main
challenges is ensuring that wind farm developers can accurately assess the benefit from wake steering
in the early phases of wind farm development. Predicting the energy uplift from wake steering while
considering all uncertainties increases confidence in wake steering technology for the early stages of wind
farm projects. This scientific gap is explained in Section 6.1. The thesis addresses the scientific gap in
Section 6.2. Based on the research questions and the literature review, a tentative research outline is
proposed in Section 6.3.

6.1. Research gap

With increasing financial pressure on wind energy viability, both improvement in wind energy innovation
and how the innovations are assessed are of vital importance. One such innovation that is quickly maturing
to becoming a commercial product is wake steering. However, accounting for the influence of uncertain
conditions and models is still a major challenge in the practical application of wake steering. Recent field
experiments that considered uncertain wind direction [42] resulted in AEP gain calculations that are within
higher uncertainty bounds. When other factors such as yaw misalignment errors are considered, the
optimal yaw offset angles are smaller [51]. The question of how much benefit can be obtained from wake
steering in real-life applications that are inherently uncertain remain unanswered. By understanding the
uncertainties in AEP gain predictions for wake steering, the estimations of AEP gains during the early
phases of wind farm project development become more reliable. As a result, the knowledge obtained
from such a study can contribute to increasing confidence in wake steering as a potential wake mitigation
technique in future wind farms.

6.2. Research questions
This thesis addresses this scientific gap by performing an uncertainty quantification of wake steering in the
spirit of [42] and [51]. The research objective of the thesis can be formalized as:

Understanding uncertainties in annual energy production gain predictions for wake steering in wind farms
through uncertainty propagation

This leads to the following main research question:
How do uncertainties affect the predicted annual energy production gains for wake steering?

The wider research question is answered through the research sub-questions. Understanding the effect
of uncertainties on the predicted AEP gains starts with identifying the possible sources of uncertainty. Since
the computational cost increases with the number of turbines and the number of uncertainties considered,
focusing on the uncertainties that have the greatest impact on the predicted AEP uplift is the most efficient
[76]. This leads to the following research sub-question:

Which input uncertainties have the most significant impact on the predicted annual energy production
gains for wake steering?
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Recent uncertainty quantification studies modelled uncertainties as stochastic values; however, it is
predicted that for some variables deterministic representation may be more suitable [51]. Therefore, the
appropriate modelling of uncertainties must still be researched leading to the research sub-question:

How can the uncertainties in input parameters be modelled?

Next, it is important to understand the input parameters that have the most significant impact on wake
steering power production since the computational cost increases as the number of uncertainties considered
and the wind farm size increase [76]. This problem can be formalized as:

How significant is the impact of input uncertainties on the predicted AEP gain from wake steering?

Both [42] and [51] considered the stochastic input variables as independent. Yet, in reality these variables
may depend on each other. At the present moment, there is no research that accounts for the dependency
between different input variables which results in the following research sub-question:

How significant is the impact of inter-dependent input uncertainties on the predicted AEP gain from wake
steering?

Finally, the benefit gained from wake steering when uncertainties are included must be assessed. This
leads to the formalization of the research sub-question:

To what extent is the implementation of wake steering in wind farms beneficial when uncertainties are
considered?

By addressing these goals, the thesis aims to validate wake steering technology further for practical
engineering applications.

6.3. Research plan

Based on the research questions posed and the literature studied, a high-level plan for the next steps of
the research can be made. Note that most likely this plan will change as the research progresses and new
information is encountered. The plan may also change if the researcher finds the scope too large for the
given resources or finds insignificant results for certain test cases. The research starts with identifying
possible sources of input uncertainty in the estimation of AEP uplift for wake steering. These are likely to
be chosen based on literature. A sensitivity analysis is performed on a small number of wind turbines with
a large number of possible uncertainties. However, instead of modelling all uncertainties as stochastic
variables, the researcher expects to also model some uncertainties using a deterministic approach. This is
expected to yield the best performance in the most uncertain scenario [51]. With the sensitivity analysis,
the most significant uncertainties are identified. Next, uncertainty quantification for the most significant
uncertainties is performed on the wind farm level. By reducing the number of uncertainties considered, the
computational cost can be kept at manageable levels [76]. The uncertainty quantification can be performed
for independent input variable case and the dependent input variable case. By performing the uncertainty
quantification for both cases, the impact of inter-dependent input uncertainties on the predicted AEP gain
can be determined. The expectation of the researcher based on literature is that wake steering will be
beneficial in some operating conditions. Moreover, the researcher expects to obtain smaller yaw offset
angles that have larger power gains compared to the deterministic wake steering case [51, 76]. In future
works, the uncertainty quantification can be expanded to multiple wind farms, and attempts to create
a predictive framework that estimates AEP uplift from wake steering that includes the most significant
uncertainties can be made.
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Deterministic Analysis

Chapter 6 formalized the research objective as understanding uncertainties in annual energy production
gain predictions for wake steering in wind farms through uncertainty propagation. In order to evaluate the
uncertainty in the prediction of a wind farm’s AEP gain, there must be a baseline AEP gain prediction in
which no uncertainties are assumed. This is the deterministic case study representing the conventional
wake steering yield assessment as done by wind farm developers. With this deterministic case study, the
effect of wake steering on the AEP is quantified. Section 7.1 describes how FLORIS is used to perform the
wake steering yield assessment. Next, the wind farms used for the case study are described in Section 7.2.
The results from the deterministic wind farm case study are discussed in Section 7.3.

7.1. Methodology

This section offers a detailed description of the method used to predict AEP gains with FLORIS. With this,
the user can understand how FLORIS is used to perform wake steering yield assessments. Building this
knowledge is important for understanding where input uncertainties occur and how they will be propagated
later in the study. The schematic for calculating the deterministic AEP in FLORIS is shown in Figure 7.1.
The input variables - such as the wind rose, turbulence intensity and wind farm layout - are shown by
arrows pointing towards the schematic, while the output variables - namely the deterministic AEP with no
wake steering and the deterministic AEP with wake steering - are emphasized with the red font and arrows
pointing out of the schematic.

Within FLORIS, the wake steering assessment can be separated into two parts: yaw optimization and

wind rose
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Figure 7.1: Methodology for assessing wake steering yield with FLORIS

annual energy production (AEP) output [69]. The yaw optimization process is depicted in Figure 7.1 with
pink boxes, while the flow chart to calculate the annual energy production is depicted with blue boxes.
The two calculations are performed separately and independently for the entire uncertainty quantification
framework.
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The optimum yaw angles over the defined wind direction and wind speed combinations are obtained
for a given wind turbine type and wind farm layout. In this case, the Serial-Refine method is used to find
the optimal yaw angles that minimize the wake losses of the wind farm. This optimization method reduces
computational cost compared to other methods [31] and was used in recent field experiments to identify
the optimal yaw angles for wake steering [65]. The wake losses of the wind farm are quantified differently
according to the wind farm flow model selected. Therefore, the yaw angle optimization is repeated for
different wind farm flow models. Table 7.1 summarizes the specifications of the yaw optimization used in
the case study.

Table 7.1: Yaw optimization specifications

Feature Selection

Optimization method [-] Serial-Refine [31]
Wind direction array [°] [0,360] with step size of 3°
Wind speed array [m/s] | [1,25] with step size of 1 [m/s]

In order to further reduce computational cost, the wind speed array is restricted to three wind speeds.
Then, the resulting yaw offset angles for the three wind speeds and full wind direction array are linearly
interpolated over the full wind speed array. Thus, the optimal yaw offsets for all combinations of wind
direction/wind speed are determined.

The wind direction and wind speed arrays in Table 7.1 are used to create a grid representing all possible
combinations of wind direction/wind speed for the defined arrays. Then, SCADA wind direction and wind
speed time series data is used to create the wind rose. The wind rose is a representation of the frequency
of occurrence of each combination of wind direction/wind speed. This process is illustrated with the green
boxes in Figure 7.1. Therefore, the probability of occurrence of each combination of wind direction/wind
speed is obtained along with its associated optimal yaw angle.

The deterministic annual energy production output without wake steering is computed by taking the
weighted sum of the power for a specific combination of wind direction and speed and the probability of
occurrence of that combination of wind direction and wind speed. This weighted sum is multiplied by
the number of hours in a year. To calculate the deterministic AEP for wake steering, the power under
the yaw offset angle is used for the specific combination of wind direction and speed. For uncertainty
quantification, the input variables that were identified as sources of uncertainty are replaced by the random
input vector defined in Section 8.2.1. Next, the yaw offset angles are introduced, resulting in the annual
energy production with wake steering (optimized AEP). In this way, the effect of the uncertainties in the
input variables on the AEP is quantified. This is compared with the AEP without the optimized yaw angles
(baseline AEP) to evaluate the AEP uplift due to wake steering. The methodology described in this section
is applied to the wind farms described in Section 7.2.

7.2. Case Study Description

This section describes the characteristics of the wind farms used in the case study. With this case study,
the effect of wake steering on NoordZeeWind is determined. By the end of the research paper, the
accuracy of this deterministic AEP uplift due to wake steering will be quantified. The goal is to develop a
method that can potentially be used to quantify the uncertainty in the AEP uplift due to wake steering in
different wind farms, thus understanding the extent of the benefit of wake steering.

The case study is conducted on Offshore Windpark Egmond aan Zee (OWEZ) which is located in the
North Sea at approximately 10 km off the Dutch shore. This WF has 36 Vestas V90 WTs with a nameplate
capacity of 3 MW each. To its south-west, it is neighbored by the Prinses Amalia (PA) Wind Farm. This
WF consists of 60 Vestas V80 WTs with a nameplate capacity of 2 MW each. The characteristics of the
two turbine types are found in Table 7.2, and the exact locations of the WTs are shown in Figure 7.2.

In Chapter 4 the Gaussian-Curl Hybrid wind farm flow model was identified as the most accurate wind
farm flow model that was also validated for wake steering in field experiments. Wind farm flow modeling
accuracy was shown to directly impact the AEP uplift estimated by FLORIS. The cumulative curl (CC)
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Figure 7.2: Layout of OWEZ and Prinses Amalia Wind Farms

Table 7.2: Characteristics of wind turbines

Feature Vestas V90 | Vestas V80
Nameplate capacity [M V] 3 2
Hub height [m] 70.0 60.0
Rotor diameter [m] 90.0 80.0
Ref. density Cp/Ct [kg/m?] 1.228 1.225

model was described to be a more accurate WFFM that had not yet been validated in wake steering field
experiments. In order to understand the extent to which the wind farm flow model limits the quantification
of the AEP uplift due to wake steering, wake steering assessment is performed for both the GCH and CC
models.

For the deterministic wake steering assessment, wind direction and wind speed data from the North Sea
is collected for the time interval between December 2006 and December 2010. The turbulence intensity in
the time series data is constant at 0.06. With this time series data, the wind rose shown in Figure 7.3 is
created.

7.3. Results and Discussion

The characteristics described in the previous section are the input parameters for the wake steering
assessment in FLORIS. Throughout the case study, the yaw optimization for wake steering is done on
OWEZ and the AEP uplift is evaluated for this wind farm. In addition to this, the wake effects of the
neighboring wind farm are included in order to provide a more realistic assessment of the WF’s annual
power output. The same evaluation is repeated for the CC WFFM which models the wind farm’s wake
more accurately than the GCH WFFM. The results of these evaluations are shown in Table 7.3. In this
table, the baseline AEP is equivalent to the deterministic AEP with no wake steering while the optimized
AEP is equivalent to the deterministic AEP with wake steering as described in Figure 7.1.

The results for the AEP uplift are verified by calculating the power uplift of the wind farm for one wind
speed and a range of wind directions. Due to the orientation of the wind turbines in OWEZ and the wind
mostly coming from the south-west direction, it is expected that the greatest power uplift is close to 150°.
The break-down of the power uplift per wind direction in Figure 7.4 verifies this.

The comparison between the cases including and excluding the neighboring WF’s wake effects shows
that the neighboring WF’s wake has no significant effect on the AEP uplift. This can be explained by the
fact that the WTs are placed 7.5 km apart, which is a distance greater than 80D. At this distance from
the WT, wake mixing has fully occurred. Therefore, the wakes of the WTs from the neighboring WF do
not affect the wakes of the WTs from OWEZ. Since the wake effects from the neighbor do not affect the
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Figure 7.3: Wind Rose for the Deterministic Analysis

Table 7.3: Results of deterministic wake steering yield assessment

WFFM Baseline AEP [GWh] | Optimized AEP [GWh] | AEP uplift
GCH (with neighbor) 448.428 452.778 +0.97%
GCH (no neighbor) 448.635 452.998 +0.97%
CC (with neighbor) 441.434 446.547 +1.16%
CC (no neighbor) 443.204 448.345 +1.16%

AEP uplift, the uncertainty quantification analysis will only be done on the case studies that ignore the
neighboring wind farm. Another interesting conclusion is that the AEP uplift obtained increases when a
more accurate WFFM is selected in FLORIS. This shows that in fact the AEP uplift is under-estimated by
typical wake steering yield assessments that are conducted using the GCH model. In subsequent chapters,
the accuracy of this hypothesis will be tested as uncertainties that mirror the real conditions in a wind farm
will be introduced.
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Uncertainty Quantification Methodology

This chapter provides background information on the field of uncertainty quantification and describes
the methodology to be followed throughout the research. Section 8.1 gives an overview on the different
uncertainty quantification problems in literature and the methods used for conducting the uncertainty
quantification analysis. These findings are related to the research objective in order to select the most
appropriate uncertainty quantification methods for this study. The application of the methods selected to
the research problem is shown in Section 8.2.

8.1. Background on Uncertainty Quantification

Uncertainty quantification involves identifying all sources of uncertainty and error and quantifying their
effect on the system in order to, for example, improve the accuracy and dependability of simulations
[90, 109]. Due to factors such as the increasing complexity of contemporary systems and advancements
in computational power, UQ has been gaining increasing attention across different fields [86]. UQ methods
have already been extensively applied in fields such as computational flow dynamics (eg. [67, 104]).
Since the wind resource itself is stochastic and heavily dependent on atmospheric conditions, UQ is highly
applicable to the wind energy field. For wind farm yield assessments specifically, the following uncertainty
quantification problems have been considered [98]:

1. Forward propagation that involves analyzing the effect of input uncertainties on the system’s output

2. Model calibration which deals with adjusting the model parameters in order to obtain more accurate
estimations

3. Optimization and control under uncertainty thatis concerned with obtaining solutions to an optimization
problem that are resilient to uncertain conditions while performing well at specific conditions

For this study, the research objective is to understand the uncertainties in annual energy production uplift
estimates for wake steering in wind farms via uncertainty propagation. Therefore, this is a pure uncertainty
propagation problem. The uncertainty propagation is described in mathematical terms in Equation 8.1

P(zlk) & P(y|k) (8.1)

The uncertainty propagation is performed on the input parameters that are related to atmospheric stability
such as wind shear and turbulence intensity. While in FLORIS these parameters have a single, constant
value, in reality these parameters vary in time and are difficult to predict. This means that there is range of
possible AEP uplift values that are closer to the real-life AEP uplift due to wake steering. The uncertainty
quantification framework involved in performing uncertainty propagation and sensitivity analysis is best
illustrated in Figure 8.1.
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Figure 8.1: Uncertainty quantification framework [89]

The steps shown in the uncertainty propagation framework are briefly described below [89].

+ Step A relates to defining the model of the physical system and the criteria to assess the physical
system. The uncertainties are propagated from the input to the output through the computational
model, preferably without introducing additional biases. In this case, the complex wake interactions
of the wind farm are modeled with FLORIS software which is a black-box model.

 Step B: the sources of uncertainty are quantified by identifying and modeling the uncertain input
parameters. In this way, a random vector of input parameters is obtained.

« Step C: the uncertainty defined by the random input vector is propagated through the computational
model. In this analysis, a response probability distribution function is obtained following the uncertainty
propagation.

« Step C’: using the relationship between the output and input, the importance of the uncertain input
variables are ranked. This is the sensitivity analysis.

The modeling of the sources of uncertainty chosen for creating the uncertainty propagation framework of
this study are described in Section 8.2.

There are a wide range of uncertainty propagation techniques available for propagating the uncertainty
sources forward. The uncertainty propagation methods most often encountered in wind energy applications
at the wind farm level can be listed as [98]:

* Monte Carlo techniques
+ Surrogate models

Other uncertainty propagation methods such as First Order Reliability Method (FORM)/Second Order
Reliability Method (SORM) are considered to be out of the scope of this study since they are most
commonly used for structural reliability studies [98]. For more information on these UQ methods, the
interested reader is referred to [89]. Another uncertainty quantification method widely used in wind energy
literature is the Bayesian method. This is a probabilistic framework that uses measurement data or
high-fidelity data in order to estimate the computational model’'s parameter uncertainties [98]. Since this a
technique used for model calibration, it is out of the scope of an uncertainty propagation study. The reader
interested in learning more about Bayesian calibration is referred to [98].

Monte Carlo methods involve generating (quasi-)random samples and running the model for each
sample such that the model response to input variables are obtained [89]. With Monte Carlo simulations,
the computational model can be assumed to be a 'black box’, allowing for the easy implementation of large
models and model changes. Therefore, output distributions are produced without imposing another model
on top of the computational model [8]. In addition, they do not suffer from the curse of dimensionality.
The curse of dimensionality means that the number of samples needed increases exponentially with
the number of random variables [98]. The main drawback of the Monte Carlo method is that it may be
computationally expensive in experiments with many input parameters or that require many iterations [8].
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Surrogate models such as polynomial chaos expansion (PCE) and Kriging decrease the computational
cost by approximating the computational model using techniques such as polynomial approximation or
the construction of Gaussian processes [98]. Moreover, for example, PCE is sensitive to probability
distributions in input parameters and can be efficiently used for uncertainty propagation. However, creating
a model approximation introduces a new uncertainty. Although with Kriging an error estimate is obtained,
PCE does not provide an estimate for the approximation error [94, 98]. In addition, surrogate models
are constructed based on the model response to certain input parameters. Therefore, a change in input
parameters would require the construction of a new surrogate model [94].

In this study, the goal is to quantify the uncertainties on the AEP uplift obtained in wake steering assessments
on FLORIS. It is preferable that the framework developed can propagate the uncertainties directly and
without adding new uncertainties. Moreover, the framework should be adaptable to different wind farms
and different distributions of the input parameters. Therefore, the Monte Carlo simulations are the best
option for this uncertainty propagation problem unless it is shown that this method is too computationally
expensive. Therefore, a convergence study - whose results are in Chapter 9 - is done in order to quantify the
number of samples needed for an accurate result with the Monte Carlo technique. If the AEP uplift results
converge at a relatively low sample size, then surrogate models are not needed to keep the computational
cost manageable.

Another goal of the study is to understand how much each input parameter affects the uncertainty
in AEP uplift. This can be achieved with a global sensitivity analysis using Sobol’ indices [89]. Sobol’
indices decompose the variance of the output into variance contributions of the different input parameters.
With Sobol’ indices, the significance of the input parameters and the interaction effects of groups of input
parameters can be identified [109]. The advantage is that Sobol’ indices do not assume that the model
is monotonic or linear. In addition, with Sobol’ indices the combined influence of the parameters on the
uncertainty in the output can be discovered [89]. The total computational cost with MC-based Sobol’
indices is (M + 2) x N, where M is the input dimension and N is the sample size [59]. This underlines the
importance of conducting a convergence study in order to minimize the computational cost.

8.2. Uncertainty Quantification Method

The uncertainty quantification framework applied to the full wind farm is created with UQLab [60]. UQLab
is a framework based in MATLAB that contains a large spectrum of UQ tools, allowing for the easy
implementation and creation of algorithms and techniques that solve multidisciplinary UQ problems [60].
This combined with a significant user community makes it the perfect choice for solving the uncertainty
propagation problem posed by the research project. In addition, showing that UQLab and FLORIS can
be merged paves the way for the possibility of adding extra modules to the uncertainty quantification
framework. This gives future researchers a ready-made tool that they can add onto for their uncertainty
quantification analysis. For the sake of brevity, the UQ tools used for the thesis and the integration of UQ
with FLORIS is described in this section. For more information on the full spectrum of UQLab tools, the
reader is referred to the UQLab website [55, 56, 59].

8.2.1. Uncertainty modelling
The input data used to obtain the AEP for the deterministic wake steering yield assessment was described
in Chapter 7, while the methodology for wake steering yield assessments in FLORIS was depicted in
Figure 7.1. The possible sources of uncertainty in these wake steering assessments are identified as
follows:

» Turbulence intensity

+ Air density

* Wind shear

* Wind direction

* Wind speed
Thrust coefficient
» Power coefficient
+ Reference wind height
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* Hub height
* Rotor diameter
* Wind farm layout

Wind direction and wind speed are related to the chosen wind rose, while the thrust coefficient and power
coefficient are related to the wind turbine’s thrust curve and power curve. The hub height and the diameter
of the rotor are additional parameters related to the characteristics of the wind turbine. The reference
wind height is related to the location of the wind farm. Finally, the layout of the wind farm depends on the
selected wind farm case study.

The purpose of this study is to simulate the uncertainties encountered in wake steering assessments
during early-stage wind farm design. Chapter 1 explained that there were significant uncertainties in the
assumed wind rose - due to the difficulty of predicting the wind direction and wind speed - and the thrust
coefficient since this is often not given by the wind turbine manufacturer and has to be assumed. The type
of wind turbine and the layout of the wind farm are assumed to be already known during the early stage
wind farm design phase. Therefore, in this study, possible uncertainties in the reference wind height, hub
height, rotor diameter and wind farm layout are not considered. Usually the power curve of the chosen wind
turbine is known or readily given by the manufacturer, hence possible uncertainties in the power coefficient
are also neglected. Uncertainties are first introduced into the three constant atmospheric input parameters:
(1) air density, (2) turbulence intensity and (3) wind shear. These are chosen to verify that the uncertainty
quantification framework works properly since they are the easiest to implement within the framework.
Additionally, there are numerous studies that quantified the uncertainties in these parameters [51, 76].
Therefore, it is easier to check whether the results obtained following the propagation of uncertainty in
these input parameters are accurate. Once the integration of the uncertainty quantification framework is
verified with these atmospheric input variables, the uncertainties in wind rose matrix and thrust curve are
introduced together with the significant parameters from the initial uncertainty quantification study.

The sources of uncertainty in input variables are modeled as continuous probability density functions

in UQLab and are propagated by taking random samples from the PDFs that are the input values for
the computational model. The data set used to model the uncertainties in the atmospheric conditions is
taken from the measurements at the meteorological mast between July 2005 and December 2010. The
turbulence intensity, wind shear and air density variables used in FLORIS represent the annual average
ambient atmospheric conditions at OWEZ. With the available data set, the annual average values obtained
would be limited to three. This is not sufficient for fitting the data set into a PDF. Therefore, the data
set is divided into 12-month intervals starting from July 2005 to December 2009. The annual average
turbulence intensity, wind shear and air density (estimated from temperature and pressure measurements)
is computed for each 12-month interval. The raw data are shown in histogram form in Figure 8.2.
The probability distribution function that most closely follows the histogram is chosen with the Kolmogorov-
Smirnov distance (KS) criterion. According to the KS criterion, the selected PDF has a cumulative
distribution that has the lowest maximum distance from the empirical CDF of the data [93]. This is
concluded to be the most accurate statistical inference technique available on UQLab since it follows the
produced histogram most accurately, avoiding data overfitting and the artificial creation of a peak where
the majority of data points accumulate. This results in the Logistic distribution for the turbulence intensity
with © = 6.516e — 02 and s = 1.889e — 03, the Logistic distribution for the wind shear with y = 6.151e — 02
and s = 2.224e — 02, and the Gumbel distribution for the air density with ; = 1.240 and 8 = 5.251e — 03.
The PDFs are illustrated in Figure 8.3.

(a) (b) (c)

Figure 8.3: Statistical inference with the KS criterion: (a) PDF of air density. (b) PDF of turbulence
intensity. (¢) PDF of wind shear.
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Figure 8.2: Annual Average Turbulence Intensity, Wind Shear and Air Density Distributions

The defined marginal PDFs are assembled into a random input vector with joint PDF X ~ fx(x) [55]. This
input vector is used to propagate the uncertainties and perform the first sensitivity analysis. The significant
parameters from the random input vector are identified and transferred to the random input vector for the
second uncertainty quantification study. The uncertainties in the chosen wind rose matrix and the chosen
thrust curve are added to the input vector together with these significant parameters. The possible wind
rose plots are shown in Figure 8.4 and will be referred to by their number in the rest of the report.
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Figure 8.4: Possible wind rose selections: (a) Fig.0 (b) Fig.1 (¢) Fig.2 (d) Fig.3 (e) Fig.4 (f) Fig.5 (g) Fig.6
(h) Fig.7 (i) Fig.8 (j) Fig.9 (k) Fig.10

The uncertainty in the wind rose is propagated by randomly selecting a wind rose from the wind rose data
available for NoordzeeWind. This is modeled by creating a uniform distribution with the range [0,10], hence
each wind rose has an equal probability of selection. Similarly, nine thrust curves are taken from nine
different wind turbines. The thrust curves cannot be shown in this report due to confidentiality. Random
samples are generated by modeling the thrust curve selection as a uniform distribution with the range [1,9].

8.2.2. Monte Carlo method

The Monte Carlo method involves generating random samples from the input vector. With Monte Carlo
sampling, the samples ¢/ = {u), ..., u™} are produced in the standard uniform space Z ~ ¢/([0, 1]™).
Then, these samples are transformed back into the samples X' = {z), ..., 2N} ~ Fx for any multivariate
distribution Fx with independent marginals Fx, using the inverse probability integral transform (PIT)

2t = F;jl (ugl)) (8.2)

J

foralli=1,..,Nandall j =1,..., M [55]. The vector of generated random samples X is inserted into the
computational model, in this case FLORIS, which is treated as a black-box

Y= M(X) (8.3)

to obtain the vector of model responses Y [56]. This is used to compute the expectation, standard deviation
and the confidence intervals [108].

8.2.3. Monte Carlo-based Sobol’ indices
The final step is performing a global sensitivity analysis using Sobol’ indices. These decompose the total
variance of the model response into the sum of the variances of its summands. The variance decomposition
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assumes that the input variables are independent [87]. This leads to the definition of the sensitivity measure

as [59]:

Var(Y(Xi,,...i.))
Var(Y)

for a group of variables X, ;. , where Var(Y(X;, . ..)) denotes the partial variances of the summands
and Var(Y) denotes the total variance of the model response Y.

The first-order Sobol’ index is the relative contribution of only one input variable X; on the total variance.
The first-order Sobol’ indices must be positive. There are also indices with multiple term called higher-order
Sobol’ indices that account for the effects of the interactions between the input variables that cannot be
separated into separated variances. The sum of all Sobol’ indices for an input variable X; is denoted as
the total Sobol index S]. The variances described in Equation 8.4 are computed using the mean, variance
and partial variance estimators respectively that were derived from the Monte Carlo simulation [59]:

. 1 X
fo= N Z / (iﬂ(n))

n=1

Var(Y Z 2 ( ) 72 (8.5)

T = 3 (4.2 (4. 4)

n=1

Sil,...,is = (8'4)

.....

-
where ' denotes a realization of X independent of & = { 2™, ")

the j-th realization of = which does not contain the input variable i.
In the next chapter, the uncertainty quantification framework developed is applied on a smaller test
case and on the full wind farm.

, and the subscript x; ..; indicates



Uncertainty Quantification Results

In this chapter, the results of the uncertainty quantification framework described in Chapter 8 are presented.
First, the samples obtained from the input parameters are processed individually through the UQ framework
in FLORIS in order to understand the relationship between the input parameters and the AEP uplift in
Section 9.1. Next, in Section 9.2 a convergence study is performed on five wind turbines in order to get an
estimate of the sample size required for the case study and to understand the sensitivity of the parameters
to the number of wind turbines. Finally, the estimated sample size is used to run the UQ framework on the
full wind farm in Section 9.3.

9.1. Understanding FLORIS

First, a few samples taken from the probability distribution function of each input data set are individually
run through the uncertainty quantification framework. In this way, the effect of each individual parameter
on the AEP uplift during wake steering assessments is understood. This is called one-at-a-time (OAT)
variation. Both GCH and CC are selected as wind farm flow models on FLORIS in order to understand
how the model assumptions influence the output. For this analysis, 16 samples are obtained through
UQLab’s and Numpy’s Mersenne Twister random number generators. This is done in order to understand
the differences between UQLab and Numpy, as the code used in UQLab is verified against the one initially
built in Numpy.

Air density

In FLORIS air density has a linear relationship with AEP. This is shown in Figure 9.1 and Figure 9.2. As the
air density increases, the optimized AEP increases. In general, the AEP uplift increases with air density.
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Figure 9.1: Effect of air density for GCH Figure 9.2: Effect of air density for CC

Interestingly, for the GCH model the relationship with air density becomes almost constant between around
1.23 and 1.28 kg/m3. This is due to the baseline (no wake steering) AEP and optimized AEP (with wake
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steering) increasing at almost the same rates and having similar values. Since the typical deterministic air
density is 1.225 [kg/m?] (standard air density at sea level under standard atmospheric conditions) during
wake steering assessments, it can be concluded that the benefit from wake steering cannot be increased
further with higher air density. This occurs when, for example, the temperature is colder than standard
temperature at 15°. However, the benefit from wake steering can decrease significantly with lower air
density which can occur at temperatures higher than 15°and/or with more humid air (standard atmospheric
conditions assume 0% humidity).

Turbulence intensity

The effect of the turbulence on the velocity deficit is quantified with the wake expansion factor. As the
wake expands, the wake recovery is accelerated. At higher turbulence intensities, wake expansion is
higher. This means that the power output increases. Moreover, when the thrust coefficient of the WT
is higher the Tl increases which increases wake recovery and power. Therefore, it is no surprise that
the benefit from wake steering, as shown in Figure 9.3 and Figure 9.4, decreases at higher turbulence
intensities. As wake recovery occurs more rapidly, wake steering is less effective for improving the AEP.
Although the relationship between the turbulence intensity and AEP uplift remains the same for both the
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GCH and CC, differences are observed in the optimized AEP. In the GCH model, the optimized AEP is
a downward-facing parabola with a steeper gradient for the turbulence intensity values up to 0.04. This
means that the optimized AEP increases at a greater pace until Tl = 0.04, after which the rate of increase
in optimized AEP is smaller. GCH models the turbulence with the Crespo Hernandez model. This is based
on results from experiments and CFD simulations starting from Tl = 0.05 that are fitted onto a straight line
[17]. This could explain the change in the optimized AEP’s rate of increase. In contrast, the optimized
AEP calculated with the CC model decreases until Tl = 0.08, after which it increases at almost the same
rate. This is because CC models wake recovery in the medium to far-wake regions better, as it uses the
super-Gaussian wake model [7]. These differences are not observed with the AEP uplift because the
baseline AEP has the same relationship with the turbulence intensity as the optimized AEP.

Wind shear
The wind shear coefficient « is directly related to the velocity gradient with respect to the hub height as
shown in Equation 9.1.
a—1
w_ o, (Z) (9.1)
dz ZH ZH

The relationship is exponential with the exponent being the wind shear. This means that a higher wind
shear coefficient would result in an increased velocity deficit. The power output at the wind turbine is
obtained by tripling the velocity deficit at the wind turbine. As the wind shear exponent increases, the
velocity deficit and thus the power output decreases faster. The optimized AEP and AEP uplift of both the
GCH and CC models in Figure 9.5 and Figure 9.6 follow this shape for positive wind shear values, while
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for negative wind shear values the power output increases as « increases. While the relationship of «
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with optimized AEP and AEP uplift is the same for both WFFMs, the gradient of the graph is steeper for
the CC model which means that changing « produces a greater change in the AEP. Changes in the wind
shear could have a more significant effect on the AEP uplift with the CC model due to the vertical velocity
gradient being modelled as greater than in the GCH model.

Once the individual effects of the input parameters on the AEP uplift are understood, the convergence
study is run to determine the optimum sample size that minimizes computational cost.

9.2. Convergence Study

For the case study with the full wind farm, samples are taken from the input parameters simultaneously. As
this increases the computational cost, it is important to find the minimum sample size at which convergence
occurs. If the minimum sample size needed for convergence using the Monte Carlo method is low enough,
a surrogate model is not needed. In order to reduce the computational cost, the convergence study is
conducted on a small sample of equally distanced five Vestas V90-3 MW WTs using the GCH model. It
is assumed that the rate of convergence for five WTs is the same as the rate of convergence for the full
OWEZ WF with 36 WTs. This assumption is verified later in the section by performing a convergence
study for the AEP uplift for increasing numbers of wind turbines. The results of the convergence study
on the mean AEP uplift for the five WTs are shown in Figure 9.7. Starting from N = 100, the variation
between the maximum and minimum AEP uplift is within 0.65% which indicates a relatively small range of
fluctuation. As the sample size increases, the range of fluctuation in AEP uplift decreases further, indicating
convergence. Therefore, N = 100 is chosen to be the minimum sample size for calculating the AEP uplift
with the MC method. This sample size has a low enough computational cost to not necessitate the use of
surrogate models.

Next, the convergence study is repeated for the Sobol indices under the same conditions as the
convergence study for the Monte Carlo method. The total Sobol index for a chosen uncertain input
parameter - in this case turbulence intensity - is calculated for increasing sample sizes. Figure 9.8 shows
the results of the convergence study. Starting from N = 225, the total Sobol index for turbulence intensity
fluctuates by 25%. At N = 1228, the rate of fluctuation in the total Sobol index decreases to 12% which
indicates that at higher sample sizes convergence occurs. Thus, the Sobol index has a moderate level of
sensitivity to sample size. Despite this, the fluctuation rate is not significant enough to change conclusions
regarding the importance of input parameters on the AEP uplift. Since computing Sobol indices is more
resource-intensive than MC-sampling for uncertainty propagation, there is further motivation to select the
lowest sample size that leads to the appropriate conclusions. Therefore, N = 225 is selected to be the
minimum sample size required for the computation of Sobol indices.

Finally, the assumption that the minimum sample size for convergence obtained for the five WT can
be used for the full OWEZ wind farm is verified. For this, the convergence rate in AEP uplift and first
order Sobol indices as a function of the number of wind turbines is computed for N = 225 and N = 400 in
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Mean AEP Uplift Results for Sample Sizes from N=1 to N=1900

-0.5775

-0.5800

-0.5825

-0.5850

Mean AEP Uplift

-0.5875

-0.5900

-0.5925

[ 250 500 750 1000 1250 1500 1750
Sample Size (N)

Figure 9.7: Mean AEP Uplift for 5 WTs from N=1 to N=1900

Figure 9.9. The convergence rate for the first order Sobol index of turbulence intensity is almost the same
for both sample sizes, while ones for the air density and wind shear are constant for both sample sizes due
to the AEP uplift being almost entirely driven by the turbulence intensity. Hence, it is shown that while there
are small differences in the first order Sobol indices as the number of samples increases, the difference
is negligible enough to not change the conclusions obtained from the study. In addition, a serendipitous
finding emerged, revealing that the Sobol indices converge at 20 wind turbines. It is theorized that this is
due to the aerodynamic flow becoming fully developed as one goes deeper into the wind farm; therefore,
after once a specific limit is reached no changes would be observed in the resulting AEP uplift estimates
as parameters are varied [107]. This indicates the possibility of reducing the computational cost further by
running the wake steering assessment on fewer wind turbines from the OWEZ wind farm in future research.

To conclude, N = 225 is the sample size chosen for the application of the UQ framework on the case
study. To allow for correct analysis of the UQ results, the more conservative sample size is chosen for the
AEP uplift and Sobol index calculations.

9.3. Application on Nordzeewind Case Study

Following the conclusions of Chapter 7, Chapter 8 and Section 9.2, the uncertainty quantification framework
is applied to the OWEZ wind farm ignoring the neighboring wind farm. The purpose of this case study
is to demonstrate how the UQ framework can be used to provide more accurate estimates of AEP uplift
by considering uncertainties in the input parameters and by understanding the significance of these
uncertainties in the AEP uplift. First, uncertainties in air density, turbulence intensity and wind shear
are propagated forward for the GCH and CC WFFMs. The same thrust curve and wind rose as the
deterministic analysis is used for this uncertainty quantification study. The first UQ study is performed to
verify that the uncertainty quantification framework is implemented correctly. Moreover, the computational
cost is reduced further as only the significant parameter(s) found with the Sobol’ analysis are used in the
second uncertainty quantification study. The purpose of the second uncertainty quantification study is to
propagate the uncertainty sources most commonly encountered in yield estimations during early-phase
design, namely the wind rose and the thrust curve, as well as the significant parameter(s) found in the first
uncertainty quantification study.

First Uncertainty Quantification Study

The resulting AEP uplift distribution for the GCH is shown in Figure 9.10, while the one for the CC model
is shown in Figure 9.11. The AEP uplift responses to the PDFs of the input parameters are similar in
shape to the Gaussian distribution, with the response of the Gaussian-curl hybrid model having a mean of
0.865% and a standard deviation of 0.055 and the response of the cumulative curl model having a mean
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Figure 9.8: Total Sobol Index of Turbulence Intensity for 5 WTs from N=1 to N=1228

of 1.083% and a standard deviation of 0.049. For both models, there is still benefit from wake steering
within one standard deviation of the mean. An interesting observation for both models is that there are a
small number of outliers for the AEP uplift. These are the AEP uplift values greater than 1% for GCH and
greater than 1.2% for CC and the AEP uplift values smaller than 0.7% for GCH and smaller than 0.95% for
CC. The smaller AEP uplift values have larger positive wind shear coefficients and turbulence intensity
values. This can be explained by the fact that at higher turbulence intensities wake recovery occurs faster,
increasing the power output. Therefore, the AEP uplift due to wake steering decreases as the higher AEP
is obtained without wake steering. Higher positive wind shear coefficients, on the other hand, result in
smaller velocity deficits and power output at the wind turbine level. OAT shows that this translates to
smaller optimized AEP and AEP uplift. On the opposite end of the scale, the higher AEP uplift values
have smaller positive wind shear coefficients and smaller turbulence intensity values. To evaluate the AEP
uplift due to wake steering that most frequently occurs, we look at the 95% confidence interval (C.1.). For
the GCH, this is between 0.858% and 0.873% and has a small range of 0.015, while for the CC this is
between 1.076% and 1.089% and has the same range of 0.013. It is interesting to note that, although a
more accurate wind farm flow model is used, there is a very small change in C.I.. Additionally, for both
cases, the most frequently occurring AEP uplift values and the mean AEP uplift are more conservative
than the deterministic AEP uplift due to wake steering. It should be noted that the AEP uplift distribution
from uncertainty propagation is heavily dependent on the size of the input data chosen. This highlights the
importance of further research into the modeling of measurement data. Additionally, it is not possible to
draw conclusions about the true AEP uplift from the confidence interval or the probability distribution, as
this is not only heavily dependent on the correctness of the study’s assumptions but also on repeating the
simulations with a variety of input data and the size of the input data [36].

Next, a sensitivity analysis with the Sobol’ method is performed to rank the significance of the input
variables on the estimated AEP uplift. The first order Sobol indices are presented for the AEP uplift estimates
for both the GCH and CC models in Figure 9.12 and Figure 9.13. The first order Sobol indices show
the independent contribution of each input parameter’s variance to the AEP uplift's variance. Therefore,
they must be positive. For both WFFMs, there are negative first order Sobol indices. In Section 10.1 it
is proven that this is due to the Sobol indices not fully converging at the chosen sample size. However,
both Section 9.2 and Section 10.1 show that as the number of samples increases, there is no significant
change in the Sobol indices. As the computational cost increases with more samples, N = 225 remains the
optimal number of samples. In Figure 9.12 and Figure 9.13, the main driving parameters of the AEP uplift
and optimized AEP differ. Section 9.1 showed that the change in AEP uplift and in optimized AEP can be
quite different when parameters are varied one at a time. For both WFFMs the AEP uplift is almost entirely
driven by the turbulence intensity. While the wind shear has a greater contribution for the CC model, this is
not large enough to significantly influence the AEP uplift estimation.



9.3. Application on Nordzeewind Case Study 56

Turbulence Intensity
1.000

0.995 - N=225
— N=400

T T T
5 10 15 20 25 30 35

First Order Si

Number of Turbines
Wind Shear

7]
o i N=225
g cop v
5 — N=400
o
Z -0.1
(' T T T T T T T

5 10 15 20 25 30 35

Number of Turbines
Air Density

7]
o i N=225
Ll
5 — N=400
o
Z 0.1
(' T T T T T T T

5 10 15 20 25 30 35

Number of Turbines

Figure 9.9: Convergence Study of Sobol Indices for Increasing Number of Wind Turbines

The first order Sobol indices do not consider the combined effect that the parameters have on the output.
To quantify the combined effect, higher order Sobol indices are necessary. Total Sobol indices are the
sum of the first order Sobol indices and the higher order Sobol indices. These are illustrated for the GCH
and CC model in Figure 9.14 and Figure 9.15 respectively. The most significant parameter for estimating
the AEP uplift is turbulence intensity. The wind shear has a smaller contribution to the AEP uplift (around
10% for the GCH model and around 20% for the CC model), while the air density does not contribute to
the AEP uplift. This is consistent with findings in literature demonstrating that significant changes in yaw
misalignment angles occur for turbulence intensity, but not for wind shear and air density, following an
uncertainty quantification study [51]. On the other hand, the optimized AEP is fully determined by the air
density. For both models and both output results, there is nearly no difference between the first order
Sobol indices and total Sobol indices of the significant input variables. Therefore, there are no correlations
that significantly impact the estimated AEP uplift or optimized AEP. To minimize computational costs, the
turbulence intensity is the only parameter that is used in the second uncertainty quantification study.

Second Uncertainty Quantification Study

The uncertainty quantification is performed on the turbulence intensity, the thrust curves and the wind
roses. Figure 9.16 and Figure 9.17 show the results of the AEP uplift distributions for the GCH and CC
models respectively. The mean AEP uplift for the GCH model is 0.906% with a standard deviation of
0.190, while the mean AEP uplift for the CC model is 1.105% with a standard deviation of 0.228. In both
cases, there is benefit from wake steering within one standard deviation of the mean. Compared to the first
uncertainty quantification study, the AEP uplift distributions for both cases are less similar to a Gaussian
distribution and a wider spread is observed. This can also be inferred from the 95% C.I. for both models.
The 95% C.I. for the GCH model is between 0.881% and 0.931% with a range of 0.05, while the 95% C.I.
for the CC model is between 1.075% and 1.135% with a range of 0.06. Thus, the range in the 95% C.I. is
higher compared to the first UQ study, and the difference in the two WFFMs is more pronounced. In order
to understand the reason behind this, the extreme AEP uplift values for both WFFMs are analyzed.

In the GCH model, the smallest AEP uplift is between 0.45% and 0.64%. Fig. 2 and Fig. 4 are the most
frequently occurring wind roses with the dominant wind direction coming from the south and south-west and
a heavy skew towards the western direction, and wind speeds of 15-20 m/s concentrated on the dominant
wind directions. The turbulence intensities are between 6.6% and 7.0%, and - while this AEP uplift range
has a mix of different thrust curves - thrust curve 6 appears the most frequently. On the other end of
the spectrum, the largest AEP uplift values are between 1.16% and 1.33%. Fig. 8 is the most frequently
occurring wind rose with the dominant wind direction coming from the north-east direction. Fig.0 - that has
a wider spread across different wind directions - and Fig.3 - whose wind directions are concentrated in the
south-west direction - are also frequently observed at this AEP uplift range. Wind speeds in the range
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Figure 9.10: AEP Uplift Distribution for GCH Figure 9.11: AEP Uplift Distribution for CC

5-10 m/s and 15-20 m/s and turbulence intensities between 6.2% and 6.45% occur the most. Thrust curve
1 is also most frequently used. From this analysis, it is already concluded that the thrust curve has a more
modest influence on the estimated AEP uplift than the wind speed and wind direction combination. At
the 95% C.1., there is no dominant thrust curve, which confirms the previous conclusion. The dominant
wind direction is from the south-west direction and the dominant wind speed is between 10-15 m/s with
significant 15-20 m/s wind speed components in the same direction. The turbulence intensity varies
between 6.4% and 6.8%. This shows the importance of the wind speed contribution and, to a lesser extent
of the wind direction, in determining the estimated AEP uplift.

The CC model has slightly smaller turbulence intensities than the GCH, but the range of turbulence
intensities is the same for the different AEP uplift levels. Therefore, the influence of the turbulence intensity
on the estimated AEP uplift does not show a significant change. At the largest AEP uplift values, which
are between 1.16% and 1.33%, fig. 5 replaces fig. 0 as one of the most frequently occurring wind roses.
Therefore, the wind roses that result in the highest AEP uplift either have the combination of the dominant
wind direction in the north-east and wind speed of 5-10 m/s or the combination of the dominant wind
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direction in the south-west and the higher wind speeds of 10-15 m/s or 15-20 m/s. It is thus concluded
that these combinations benefit the most from wake steering. At the 95% C.I., the GCH model had one
dominant wind rose. The 95% C.I. for the CC model has more than one dominant wind rose. Besides the
wind direction/wind speed combination that occurs in the GCH, wind roses with the dominant south-west
wind direction and a heavier skew towards the western direction combined with wind speeds of 10-15 m/s
and some 5-10 m/s components.

To quantify the contribution of individual variances on the total variance, the Sobol’ analysis is performed.
The results of the Sobol’ analysis in terms of the first order Sobol’ indices are shown in Figure 9.18 and
Figure 9.19. As in the first uncertainty quantification study, the difference between the two models in
terms of the ranking of the first order Sobol’ indices is insignificant. However, unlike the first uncertainty
quantification study, in this case the ranking of the input variables is the same for the optimized AEP
and for the AEP uplift. Nevertheless, compared to the optimized AEP, the influence of the wind rose is
smaller on the AEP uplift. The thrust curve and turbulence intensity are slightly more prominent for the
AEP uplift instead. The first order Sobol’ indices only show the independent influence of the input variables
on the output. The interactions between variables also contribute to the variance of the output. In order to
understand the total influence of the input variables on the output, the interaction effects between the input
variables must also be considered. The total Sobol indices are thus shown in Figure 9.20 and Figure 9.21.
The total Sobol’ indices of the turbulence intensity and thrust curve for the optimized AEP are zero, and
the variance of the optimized AEP is fully defined by the wind rose. The total Sobol’ indices for the AEP
uplift decrease by the same amount for each of the input variables. This results in the wind rose being the
most significant input variable. The thrust curve and turbulence intensity have a relatively insignificant
influence on the AEP uplift. The fact that the wind rose has such a large contribution to the total variance
of the AEP uplift is attributed to the significant variations in the wind directions of the input wind roses. This
is a limitation of the input data available and shows the sensitivity of the output to the selected input range.

9.4. Final Words

This chapter presented the AEP uplift distributions for two wind farm flow models following two uncertainty
quantification studies and concluded that the wind rose has the greatest influence the AEP uplift for
both wind farm flow models while the selected thrust curve and turbulence intensity have less significant
influences. The optimized AEP and AEP uplift were shown not necessarily to have the same significant
input variables, with the wind rose being the only parameter that influenced the optimized AEP. Additionally,
it was shown that the output’s uncertainty bounds are heavily dependent on the uncertainty bounds chosen
for the input. This means that correctly choosing and modelling the input data is essential for accurate AEP
uplift estimations. Moreover, statistical analysis involving confidence intervals are only relevant if all the
assumption are correct. Thus, while the uncertainty quantification framework can be used to estimate the
uncertainties in the AEP uplift during early-stage yield assessments in FLORIS, high-fidelity simulations
and field experiments are still needed to quantify the extent to which the implementation of wake steering
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in wind farms is beneficial when uncertainties are considered. Lastly, it should be emphasized that it is not
possible to reach global conclusions about the AEP uplift distribution from the study conducted since the
AEP uplift distribution is bound by the input parameters of the study. Instead, this study proves that the
uncertainty quantification framework developed works and that it can be used in further studies involving
wake steering for any wind farm flow model available on FLORIS. A wider study that considers wind farms
with varying layouts in different locations and with different wind turbine configurations is necessary to start
making generalizations about the AEP uplift. Even under these conditions, the input data must be varied
and carefully selected, so that biases in input sampling do not lead to misleading conclusions.
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Verification

In Chapter 9 the independent input parameters were first processed through the UQ framework, then a
convergence study was conducted followed by the application of the framework to the OWEZ case study.
Chapter 10 is concerned with verifying this proposed framework.

10.1. Verification of Uncertainty Quantification Framework

The uncertainty quantification framework is verified by using the individual parameters sampled in Sec-
tion 9.1. The AEP uplift and optimized AEP resulting from the UQ framework are compared to the same
output values generated by a Monte Carlo simulation created using the Numpy library [38]. If the output
values obtained with the two methods match, the UQ framework has been successfully integrated with
FLORIS. Once the framework is verified, the convergence of the results are verified. If the conclusions
drawn from the results obtained with a much greater sample size, the conclusions stemming from the
results with the smaller sample size - that aims to minimize computational cost - are valid.

The uncertainty quantification framework on UQLab is built block by block to ensure that the method is
understood in depth and that it is verified at each step. In order to verify the FLORIS model implemented in
UQLab, the MC method is first implemented directly on the deterministic model. This is done by fitting each
input data into its respective probability distribution function, then taking samples using the Monte Carlo
method and plotting the histogram of the sampled values. To keep the output reproducible, a random seed
is used. The histogram is plotted in order to group the sampled probability values into bins. This is done
to increase the computational speed of the AEP calculation. In this case, one-at-a-time variation of the
input parameters is done. This leads to a range of AEP and AEP uplift values generated by the uncertain
parameter. These ranges are used to create box plots. The expected AEP is calculated by normalizing
the cumulative probability of each respective bin and multiplying it by the AEP value obtained for each bin.
The box plots obtained are verified in the following way:

« Verification 1: Plot a small number of the x-values generated by sampling the probability distribution
in order to verify if the effect of the parameter on the AEP within the software matches the expected
effect

« Verification 2: Create the histogram from the PDFs. Decrease the number of bins and generate the
x-values via MC-based sampling. Plot the effect of the input values on the AEP and generate the
box plots. The shape of the plots and graphs should match verification 1.

* Verification 3: Compare the individual box plots to the figure obtained when all three box plots
are plotted. The purpose of this verification is to check if performing the uncertainty quantification
individual input parameters creates a bias. The individual box plots should match the figure with all
three box plots for there to be no bias.

The results of verification 1 and verification 2 for N = 16 was shown in Section 9.1. Following the verification
steps for the GCH model at N = 10000 results in Figure 10.1 and Figure 10.2. The box plots resulting
from the Monte Carlo simulation done by varying the input variables one-at-a-time are similar for both
the FLORIS model implemented in UQLab and the simulation done using Numpy. There is only a small
difference in output values which is due to the slight difference in the input samples generated by the two
random number generators. This difference was also shown in the figures in Section 9.1.
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Conclusions and Recommendations

This chapter presents the main conclusions and recommendations of the master’s thesis. In this thesis
a novel uncertainty quantification framework for wake steering assessments for the early design phase
of offshore wind farms was introduced in order to answer the following research questions: How do
uncertainties affect the predicted annual energy production gains for wake steering? and How significant is
the impact of input uncertainties on the predicted AEP gain from wake steering?. The proposed framework
combined uncertainty propagation methods and historical atmospheric data within the wake steering
assessment tool FLORIS. From a practical perspective, FLORIS and the uncertainty quantification tool
were successfully integrated, creating a prototype that could be used in industrial applications and for
further research. With the framework developed, uncertainties on the AEP uplift due to wake steering were
quantified, allowing for the refinement of energy yield estimates and thus decreasing financial risks. The
framework’s effectiveness was demonstrated on the OWEZ wind farm for a given wind rose and two wind
farm flow models by quantifying the uncertainties in turbulence intensity, wind shear and air density. The
results were then verified and validated with a higher number of samples and on a different wind rose. The
knowledge gained was used to quantify the uncertainties in turbulence intensity, the thrust curve and the
wind rose for both wind farm flow models. These parameters were the most relevant for the application
in the early stage wind farm design phase. Following the case study, the conclusions enumerated in
Section 11.1 were made. These led to the recommendations in Section 11.2.

11.1. Conclusions

* The uncertainty quantification framework effectively propagated input uncertainties for differ-
ent wind farm flow models and wind rose data, leading to more accurate AEP uplift estimates
due to wake steering. The uncertainty quantification framework was verified against a Monte Carlo
simulation created with Python’s Numpy library. One-at-a-time variation of the input parameters
showed that FLORIS was integrated correctly for uncertainty quantification. Since the AEP uplift and
Sobol’ indices converged at a sample size with a manageable computational cost, the framework
developed was successfully used to propagate uncertainties in atmospheric conditions forward to
estimate AEP uplift of a full wind farm. The framework was validated for different wind roses and
thrust curves, indicating that it could be used under varying wind conditions and with different wind
turbine types. This contributed to the quantification of uncertainties in the estimation of AEP uplift
due to wake steering using FLORIS as the wake steering assessment tool of choice.

* There were significant uncertainties on the AEP uplift due to wake steering; yet, for all cases,
the implementation of wake steering was beneficial. The AEP uplift was estimated for the GCH
and CC models. The 95% confidence interval consistently showed positive AEP uplift that was
more conservative than the AEP uplift calculated in the deterministic analysis. For the GCH model,
this was between 0.86% and 0.87% for the uncertainty quantification of atmospheric conditions
and between 0.88% and 0.93% for the uncertainty quantification of the wind rose, thrust curve
and turbulence intensity. For the CC model, the AEP uplift was between 1.08% and 1.09% for
the uncertainty quantification of the atmospheric conditions and between 1.08% and 1.14% for the
uncertainty quantification of the wind rose, thrust curve and turbulence intensity. These AEP uplift
estimates were more conservative than the deterministic AEP uplift estimates of 0.97% and 1.16%
respectively. However, despite the introduction of input uncertainties, the AEP uplift estimates do not
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decrease significantly, showing that wake steering is beneficial. Moreover, the range in AEP uplift
estimates for the 95% confidence interval is relatively small. This means that the margin of error in
the estimated AEP uplift is most likely relatively low. To conclude, the framework was validated for
two wind farm flow models in FLORIS, showing that, even with uncertainties in input variables, wake
steering was beneficial.

* The convergence study showed that the Monte Carlo method could be used for the defined
uncertainty propagation problem and substantially reduce the computational cost for further
studies. For the Monte Carlo simulation, the AEP uplift converged to within 0.65% at N = 100;
while for the Sobol’ indices, the total Sobol’ indices converged enough at N = 225. Furthermore,
a convergence study was run on the Sobol’ indices, concluding that the first order Sobol’ indices
converged at 20 wind turbines. This was important for future studies, as it showed that sensitivity
analysis could be done on fewer WTs in the wind farm without changing the final results. This was
an important contribution because it could significantly reduce the computational cost for future wind
farm sensitivity analyses.

* Finally, the wind rose was shown to be the most important factor in determining the AEP
uplift. The thrust curve and turbulence intensity had almost negligible effects on the AEP
uplift. When only the atmospheric conditions were considered, the turbulence intensity was the only
significant variable while the wind shear had a smaller, relatively insignificant influence on the AEP
uplift and the air density did not influence the AEP uplift. In order to minimize computational costs,
the uncertainty in the turbulence intensity was propagated together with the uncertainties in wind rose
and thrust curve. The wind rose was the most significant parameter for estimating the AEP uplift. The
thrust curve had a smaller, almost insignificant influence while the turbulence intensity had almost
no influence. Moreover, for all UQ studies, the correlations between the input parameters were
insignificant and had little effect on the uncertainty in the AEP uplift. Therefore, for wake steering
assessments in FLORIS, it was concluded that to minimize computational costs the AEP uplift could
be estimated by only modelling the wind rose and, to a lesser extent, the thrust curve.

11.2. Recommendations

The functionality of the uncertainty quantification framework developed can be further expanded to broaden
its scope and make it usable for its application. In order to reliably use this framework in wake steering
assessments, while ensuring that a more refined AEP uplift than the current application is obtained, the
following recommendations are made.

* The UQ framework can be validated further on (1) different input data and (2) different wind
farms. The first involves creating PDFs with different data sets and running the framework through
the OWEZ wind farm in order to validate the conclusions of the study, while the second involves
repeating the case study on different wind farms in order to broaden the scope of the research. In
the latter case, different conclusions to the current study may be obtained due to differences in WF
layout and WT spacing. In addition, for the latter, the convergence study must be repeated, as the
minimum sample size required may differ for different WF configurations.

* The validation studies done on different wind farms can be classified and references for the
AEP uplift and the uncertainty associated with it can be derived. Wind farms can be selected
and clustered into different groups, for example based on geographic regions. The AEP uplift and
uncertainty associated with each cluster can later be used to develop a tool that predicts this output
based on certain wind farm characteristics, such as geography or layout.

Besides the further development of the existing UQ framework, further research can be conducted to
address certain gaps occurring due to the assumptions of the research.

* Improve input uncertainty modelling. The output of any uncertainty propagation study is heavily
dependent on the uncertainty bounds defined by the input. Therefore, in order to ensure that the
uncertainty in the AEP uplift is modelled accurately, refining the input PDFs is essential. Currently,
input modelling is based on processing existing measured data. Instead, focusing on the drivers of
these atmospheric conditions could lead to better understanding of the probability of occurrence of
certain uncertainties. Furthermore, the probability of occurrence of different atmospheric conditions
can be matched with the respective wind farms. A significant portion of this task falls into the purview
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of statisticians and climate scientists. This could involve taking a larger data set and modelling
the atmospheric conditions while considering any weather conditions that are out of the norm, as
well as creating dependent PDFs that consider the interactions and relationships between different
parameters of interest. In this way, AEP uplift predictions can be made for future wind farm projects.

« Account for WT’s structural reliability and fatigue life. The goal of this UQ framework was to
quantify the uncertainties in the AEP uplift when wake steering was performed with the sole objective
of power maximization. One of the greatest obstacles to adoption by industry of wind farm control
technology is the risk of decreasing wind turbine life due to structural stress. Considering the effect
of certain input uncertainties on the wind turbine’s structural life in conjunction with the AEP uplift
could build a better case for the adoption of wake steering technology in the wind farm project in
development.
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