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Prediction of oedometer terminal densities
through a memory-enhanced plasticity model for sand

H. Y. LIU∗, F. PISANÒ∗

Predicting the cyclic response of soils is still challenging in many geotechnical fields, and motivates
massive research to shed light on lesser-known aspects of the problem. In this area, the continual
efforts on the constitutive modelling of cyclic sand behaviour demand new and reliable dataset
for model validation – especially for loading conditions involving many loading cycles (‘high-cyclic’
loading). In this letter, the recent memory-enhanced bounding surface formulation by Liu et al.
(2018a) is considered as a suitable platform to reproduce the high-cyclic response of sands, and
its transition into either ‘ratcheting’ or ‘shakedown’ behaviour. New evidence of its suitability is found
against the latest dataset presented in Park & Santamarina (2018), comprising the results of high-
cyclic oedometer tests at varying initial/loading conditions. Model-simulations prove in satisfactory
agreement with most experimental findings, especially regarding the prediction of so-called ‘terminal
densities’.
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INTRODUCTION
Cyclically-loaded foundations may suffer from permanent
displacements/rotations depending on the cyclic soil response
turning into either ‘ratcheting’ (gradual/steady plastic strain
accumulation) or ‘shakedown’ (no net strain accumulation
over a full cycle) (Houlsby et al., 2017). Presently, this issue
is attracting special attention in relation to monopiles for
offshore wind turbines, that must be designed to ensure proper
operational performance under up to 108-109 loading cycles
(LeBlanc et al., 2010; DNV, 2016; Byrne et al., 2017) – ‘high-
cyclic’ loading.

Cyclic strain accumulation in soils is often described through
empirical formulas based on laboratory test results (Lekarp &
Dawson, 1998; Wichtmann, 2005), with clear limitations set
by the costs/timing of high-cyclic testing. Alternatively, strain
accumulation may also be predicted via advanced constitutive
models, that can contribute to the cyclic analysis of foundations
in at least two ways:

(i) in so-called ‘explicit’ methods, by providing model-
based strain accumulation relationships for calculations
driven by increasing number of cycles – rather than
physical time-stepping (Pasten et al., 2013; Jostad et al.,
2014; Triantafyllidis et al., 2016);

(ii) in traditional ‘implicit’ approaches, by reproducing
the cyclic stress-strain response in step-by-step, time-
domain simulations of ‘affordable’ duration (Corciulo
et al., 2017; Kementzetzidis et al., 2018a,b).

In either case the need for robust cyclic models validated
against wide experimental evidence is self-apparent. At the
same time, the dearth of high-cyclic dataset should also be
recognised as a serious hurdle against the final goal.

This letter takes a step forward about the application of
soil plasticity models to high-cyclic geotechnical problems,
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particularly of the new memory-enhanced bounding surface
formulation for sand by Liu et al. (Liu et al., 2018a,b).
The model belongs in the well-known family of critical-
state SANISAND models (Dafalias & Manzari, 2004), and
relies on the use of an additional locus (‘memory surface’)
to capture fabric-related ratcheting/shakedown phenomena
(Corti et al., 2016). An opportunity for building further trust
about the model has been very recently offered by Park &
Santamarina (2018), who published novel data concerning dry
sand compaction in high-cyclic oedometer tests (i.e. under
‘zero-lateral-strain’ loading). Although seldom considered in
experiments (Wichtmann, 2005; Wichtmann & Triantafyllidis,
2016), high-cyclic oedometer compaction is most relevant to
the performance of offshore foundations and not only – for
instance regarding the analysis of ‘push-pull’ mechanisms
under multi-legged structures (Bienen et al., 2018; Pisanò et al.,
2019), or vibratory pile driving (Galavi et al., 2017).

This work aims to bring new evidence about the capabilities
of Liu et al.’s model, with emphasis on the prediction
of ‘terminal densities’ (Narsilio & Santamarina, 2008) and
associated stiffness evolution.

REFERENCE HIGH-CYCLIC OEDOMETER TESTS
Following Chong & Santamarina (2016), Park & Santamarina
(2018) performed an extensive experimental programme to
investigate the response of dry sand in high-cyclic oedometer
tests. Vertical stress-strain loops and variations in void ratio
were obtained for each test, along with bender element
measurements of the shear wave velocity. Park & Santamarina’s
work revolves around the concept of ‘terminal density’,
referring to cyclically loaded sands eventually approaching an
asymptotic (terminal) void ratio (density). In reflection of initial
fabric, sands evolve towards terminal densities depending
mechanical properties, loading programme and boundary
conditions (Dappolonia & Dappolonia, 1967; Lackenby et al.,
2007; Narsilio & Santamarina, 2008).

The following features of Park & Santamarina’s tests are
relevant to remainder of this work:

Prepared using GeoLettAuth.cls [Version: 2013/06/11 v1.00] 1



2 Prediction of oedometer terminal densities
Table 1. Test conditions in Park & Santamarina (2018) –
Dr0: initial relative density, e0: initial void ratio, σ0: pre-cyclic
vertical stress, ∆σ: cyclic stress amplitude, ∆σ/σ0: cyclic stress
amplitude ratio.

Test #
Dr0 e0 σ0 ∆σ ∆σ/σ0

[%] [–] [kPa] [kPa] [–]

1 30 0.6700 67 100 1.5
2 40 0.6460 174 138 0.8
3 40 0.6460 105 138 1.3
4 40 0.6460 105 276 2.7
5 40 0.6460 105 414 4
6 50 0.6220 67 100 1.5
7 70 0.5740 174 138 0.8
8 70 0.5740 105 138 1.3
9 70 0.5740 67 100 1.5
10 70 0.5740 105 276 2.7
11 70 0.5740 105 414 4

– tests performed on Ottawa 20/30 sand with D50 = 0.72
mm, emax = 0.742, emin = 0.502, Gs = 2.65;

– four-stage loading sequence: (i) static compression up
to σ0, (ii) cyclic loading of amplitude ∆σ between σ0
and σ0 + ∆σ, (iii) static compression to the maximum
vertical stress σmax > σ0 + ∆σ, (iv) unloading;

– 33 tests in total (including repetitions), with 11 different
combinations of initial/loading conditions and number of
cycles N = 104.

Relevant test settings considered are all summarised in Table
1∗.

A SANISAND MODEL WITH RATCHETING CONTROL
This section recalls the main features of the sand model by
Liu et al. (2018a), whilst formulation and link to literature are
detailed in the original publication. The calibration of model
parameters for Ottawa 20/30 sand is also covered.

Formulation and governing parameters
Liu et al.’s model is built upon the parent SANISAND04
model by Dafalias & Manzari (2004), and enhanced according
to the notion of memory surface (Corti et al., 2016). The
memory locus is introduced to track fabric effects, and hence
simulate realistic sand behaviour under high-cyclic loading.
Compared to SANISAND04, Liu et al. (2018a) introduced
in the normalised π-plane a third circular locus, the memory
surface (Figure 1a), which evolves during soil straining so as
to (i) modify its size/position in reflection of fabric changes,
(ii) always enclose the yield surface, (iii) influence changes
in sand stiffness and dilatancy. Most other ingredients of
SANISAND04 were instead kept unaltered.

The memory surface governs the evolution of sand stiffness
through the plastic modulus Kp (Dafalias & Manzari, 2004):

Kp =
2

3
ph(rb − r) : n (1)

Kp depends not only on the distance between current stress
ratio (r) and its image point on the bounding surface (rb), but

∗In Park & Santamarina (2018) and in this work, e0 denotes the initial void ratio
at the start of cyclic loading (‘pre-cyclic’ void ratio).

also on the distance between r and its projection on the memory
surface rM (along the normal to the yield surface at current r).
The latter feature stems from a re-definition of the hardening
coefficient h in Equation (1):

h =
b0

(r− rin) : n exp

[
µ0

(
p

patm

)0.5(
bM

bref

)2
]

(2)

The memory-related parameter µ0 links fabric effects to
soil stiffness, with major influence on drained cyclic strain
accumulation, or equivalently on the rate of pore pressure build-
up under undrained conditions (Liu et al., 2018b). Relevant
to predictive capability is also the presence of the pressure-
dependent term (p/patm)0.5 term in Equation (2) (Corti et al.,
2017; Liu et al., 2018a).

Evolution laws for the memory surface, namely for the
memory back-stress αααM and size mM , were inspired by
experimental evidence (Liu et al., 2018a). As contractive soil
behaviour promotes ‘fabric reinforcement’, stages of cyclic
contraction were linked to an expansion of the memory
surface (dmM > 0), and therefore to gradual stiffening through
Equations (1)–(2). In contrast, dilative deformation is known to
weaken the granular microstructure (‘fabric damage’), so that a
shrinkage of the memory surface (dmM < 0) was introduced to
capture stiffness losses due to (unconstrained) dilation. Overall,
the evolution of mM is determined by Equation (3):

dmM =

√
3

2
dαααM : nnn− mM

ζ
fshr

〈
−dεpv

〉
(3)

in which the last term on the right-hand side rules the mentioned
shrinking mechanism through the model parameter ζ.

Finally, the memory locus was also exploited to capture
the higher contractancy exhibited by the sand when unloaded
after dilative deformation – a phenomenon usually associated to
‘fabric re-orientation’ and modelled in SANISAND04 through
the concept of ‘fabric tensor’. Liu et al. (2018a) proposed
the following re-definition of SANISAND04’s dilatancy
coefficient (D):

D = Ad(rrrd − rrr) : nnn, Ad = A0 exp

β
〈
b̃Md

〉
bref

 (4)

With the visual support of Figure 1c, Equation (4) sets the
distance b̃Md = (r̃d − r̃M ) : n to establish whether the sand
is more or less prone to volume changes by modulating
the magnitude of D. The enhancement of post-dilation
contractancy depends on the material parameter β in Equation
(4), only effective when the soil has dilated before load
increment reversal.

The SANISAND04 model enhanced with the above
ingredients has already proven suitable to reproduce cyclic
ratcheting in drained laboratory tests (Liu et al., 2018b).
The case of cyclic oedometer compaction was preliminarily
considered in relation to the test results by Chong &
Santamarina (2016), though with no attempt to capture
the monotonic compression preceding cyclic loading. Since
SANISAND models with an uncapped yield locus cannot
predict such a monotonic response (Taiebat & Dafalias, 2008),
only cyclic quotas of oedometer compaction will be examined
in the following.

Parameter calibration for Ottawa 20/30 sand
Liu et al.’s model requires overall the calibration of sixteen
parameters: thirteen inherited from SANISAND04, three newly
introduced in Equations (2)–(4). All model parameters have
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Fig. 1. The memory-enhanced sand model by Liu et al. (2018a).

Table 2. Model parameters for the Ottawa 20/30 sand tested by Park & Santamarina (2018)

Elasticity Critical state Yield surface Plastic modulus Dilatancy Memory surface
G0 ν Mc c λc e0 ξ m h0 ch nb A0 nd µ0 ζ β
160 0.05 1.12 0.75 0.025 0.732 0.6 0.01 4.8 1.2 2.68 0.71 1.20 200 0.005 0.5

been identified following the procedure in Liu et al. (2018a),
and never modified for prediction purposes. Table 2 reports
the parameter set for Ottawa 20/30 sand, calibrated against
literature data from different sources. The test results from
Santamarina & Cho (2001) (‘simple critical state tests’) and
Lin et al. (2015) (drained monotonic triaxial tests) allowed to
determine the first thirteen parameters (from G0 to nd in the
table). Only two tests out of Park & Santamarina’s dataset were
employed to calibrate memory-related parameters – µ0, ζ and
β – in two steps:

1. high-cyclic loading (N = 104, σ0 = 105 kPa, ∆σ = 138
kPa) on a loose sample (e0 = 0.631) was first considered
to identify µ0 far from dilatancy effects (i.e. with
no influence of ζ and β). Setting µ0 = 200 allowed
to simulate the same cyclic reduction in void ratio e
measured experimentally – compare Figures 2a-2c;

2. keeping the same µ0 = 200 value, the (ζ, β) pair was
calibrated by matching the high-cyclic response of a
denser sample (e0 = 0.5342) subjected to the same
loading programme – compare Figures 2d-2f.

Since the model is inherently unsuitable for monotonic
oedometer loading, an iterative procedure was established to
transit from an assumed initial void ratio ein to the target
pre-cyclic value e0. This procedure enabled the pre-cyclic

initialisation of all hardening variables, and to finally obtain µ0-
ζ-β values in good agreement with those calibrated in Liu et al.
(2018a) for the quartz sand tested by Wichtmann (2005).

Empirical compaction trends
The same results in Figure 2 can be re-compared based on
the following empirical relationship by Park & Santamarina
(2018):

ei = eT + (e1 − eT )

[
1 +

(
i− 1

N∗

)m]−1

(5)

For oedometer high-cyclic conditions, Equation (5) estimates
the void ratio ei at the ith loading cycle as a function of:

(i) the terminal void ratio eT (ei → eT as i→∞);
(ii) the characteristic number of cycles N∗, informing about

the number of cycles 1 +N∗ needed for half of the total
compaction (e1 − eT )/2 to occur;

(iii) an empirical exponent m found in the order of
m = 0.45± 0.05 for oedometer conditions (Park &
Santamarina, 2018).

Park & Santamarina (2018) fitted experimental compaction
trends by identifying N∗ in Equation (5), so as to predict
eT when taking more than 104 cycles to be attained. For
comparison, the same has been done here for the simulated
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(b) Simulation results – e0 = 0.631 (c) Stress path – e0 = 0.631 (400 cycles)
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(d) Experimental results – e0 = 0.5342
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(e) Simulation results – e0 = 0.5342 (f) Stress path – e0 = 0.5342 (400 cycles)

Fig. 2. Comparison between Park & Santamarina’s experimental results and memory-surface-based simulations in terms of cyclic
compaction for a loose and a dense sand sample. Oedometer est conditions: σ0 = 105 kPa, ∆σ = 138 kPa, N = 104.

Table 3. Estimated terminal density eT and character number of
cycles N∗ based on Park & Santamarina’s experimental results
and memory-surface-based simulation presented in Figure 2.

bound Dr0 m N∗ eT

Exp
upper

44%

0.4

350 0.6213
86% 200 0.5288

lower
44% 200 0.6209
86% 200 0.5284

Sim
upper

44%

0.45

794 0.6227
86% 631 0.5303

lower
44% 1291 0.6208
86% 1111 0.5287

compaction trends, as shown in Figure 3 with respect to e−N
curves associated with the same tests in Figure 2. Specifically,
numerical cyclic responses (grey lines) are plotted along with
the associated upper/lower bounding curves obtained through
Equation (5) (red lines), as well as with the curves identified

by Park & Santamarina (2018) as experimental bounds (black
lines).

Although somewhat different in terms of identified (N∗,m)
pairs, experiment-based and simulation-based bounding curves
provide consistent estimates of the terminal void ratio eT –
see Figure 3 and Table 3. Therefore, Liu et al.’s model can be
used to reliably predict high-cyclic compaction, and extrapolate
credible eT values through Equation (5) for N →∞.

MODEL PREDICTION OF TERMINAL DENSITIES
The model performance as resulting from the parameter set
in Table 2 is now evaluated against Park & Santamarina’s
test results. Model simulations were performed for the the
eleven testing scenarios in Table 1, including different relative
densities (30% < Dr < 70%) and cyclic stress amplitude ratios
(0.8 < ∆σ/σ0 < 4). In all cases, the lower bounds of numerical
e−N compaction curves were identified by setting m = 0.45
in Equation (5) and looking for suitable N∗ values. The
obtained bounding curves were then used to infer eT for N →
∞ and compare to experimental results.

In Figure 4 experimental and numerical findings are
compared in terms of relation between terminal (eT ) and initial
void (e0) ratios at varying cyclic stress amplitude ratios ∆σ/σ0.

Prepared using GeoLettAuth.cls



H. Y. LIU & F. PISANÒ 5
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Fig. 3. Void ratio evolution over N = 104 loading cycles for loose and dense sand samples (Park & Santamarina, 2018) – pre-cyclic
vertical stress σ0 = 105 kPa, cyclic stress amplitude ∆σ = 138 kPa.

Beyond being in good agreement with experimental data, the
results of model simulations confirm that: (i) at given e0,
eT tends to decrease for higher ∆σ/σ0; (ii) lowest initial e0
values lead to lowest eT at given ∆σ/σ0. Although sands
evolve towards different fabric configurations depending on
properties and loading, the memory of the initial state will not
be erased (López-Querol & Coop, 2012; Chong & Santamarina,
2016; Park & Santamarina, 2018). Park & Santamarina (2018)
also post-processed their experimental results in terms of
dimensionless volume contraction λ:

λ =
eT − emin

e0 − emin
(6)

which was found to depend linearly on ∆σ/σ0. The same
empirical trend emerges fairly well also from the model
predictions in Figure 5 over the whole ∆σ/σ0 range considered
(0.8 < ∆σ/σ0 < 4).

Additionally, Park & Santamarina (2018) inspected experi-
mental compaction trends also in terms of maximum/terminal

variations in relative density (∆DT ):

∆DT =
e0 − eT

emax − emin
(7)

and recognised a dependence on the cyclic stress amplitude
ratio of the following kind (Di=0 represents in Equation (8)
the pre-cyclic relative density):

∆DT =
(∆σ/σ0)(1−Di=0)n

B
(8)

with estimated parametersB ≈ 20÷ 25 and n = 0.7 for Ottawa
20/30 sand. Model-based predictions of ∆DT for all eleven
scenarios (Table 1) are compared to experiment-based trend
lines in Figure 6, where different marker shapes/colours
correspond to different ∆σ/σ0 values. The memory-enhanced
model appears to predict with reasonable accuracy the non-
linear ∆DT −Di=0 relationship for all cyclic stress ratios.
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Evolution of constrained modulus
Park & Santamarina (2018) found experimentally a practical
correlation between the shear wave velocity Vs (obtained from
bender element measurements) and the following constrained
modulus Moed relevant to 1D compression problems:

Moed
i =

∆σ

∆εppi
(9)

In equation (9) ∆εipp denotes the peak-to-peak amplitude of the
ith vertical strain loop – derived as usual from variations in void
ratio, ∆εppi = −∆ei/(1 + ei).

As the secant/cyclic Moed evolves over cycles, model
simulation results can be similarly post-processed to obtain
numerical predictions of the varying sand stiffness. Figure 7
presents a comparison between experimental and numerical
results in terms of constrained modulus normalised with respect
to its first cycle value, i.e. Mi = Moed

i /Moed
1 – plots relate

to both dense and loose samples subjected to cyclic stress
amplitude ratios ∆σ/σ0 equal to 1.3 (Figure 7a), 2.7 (Figure
7b) and 4 (Figure 7c).

Experimental and numerical stiffness trends prove in very
good agreement over the whole range of loading cycles, and
confirm the expected increase in Moed due to high-cyclic
densification.

CONCLUDING REMARKS
The results from newly published experimental and modelling
works were compared with respect to the high-cyclic
response of sands under 1D oedometer compression. The
adopted constitutive modelling, based on memory-enhanced
bounding surface plasticity, proved capable of predicting cyclic
oedometer compaction over a wide range of loading cycles,
void ratios and cyclic stress amplitude ratios. In particular,
terminal void ratios (densities) were well captured in all cases,
with correct dependencies on relevant factors considered in the
parametric studies.

This study added evidence regarding the suitability of
the memory/bounding surface framework for high-cyclic
geotechnical problems. Building trust about these modelling
tools helps the transition towards constitutive models used in

support (or, eventually, replacement) of expensive experimental
programmes when empirical cyclic strain accumulation laws
are demanded – e.g. in offshore, railway and earthquake
geotechnics.
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