Physics-informed neural

networks for the
| reconstruction of
high-Reynolds 3D flows over

the Gaussian Boeing bump
geometry.

Master Thesis

by

Noah van Santen

Student Name Student Number
Noah van Santen 4838750

Thesis Committee Function

Dr. W. Baars Supervisor
J. Melkert Chair
Dr. N.A.K Doan External Examiner

External Supervisors Affiliation

Dr. J. Humml California Institute of Technology
Dr. M. Gharib California Institute of Technology
Dr. V. Lee Boeing Commercial Airplanes

A. Khodadoust Boeing Research & Technology

Project Duration:  March, 2024 - December, 2024
Faculty: Faculty of Aerospace Engineering, Delft

5
7 moEING TUDelft



Preface

This thesis summarizes the work performed during my 9-month period at Caltech, and concludes the
pursuit of my MSc. in Aerospace Engineering from TU Delft. | would like to dedicate this page to those
who have supported me during this journey, and the appreciation that | have for them.

First and foremost, | would like to acknowledge my family, who have always encouraged my educational
Journey and extended me the freedom to pursue the life | wanted for myself. A big thank you to them
for supporting this chapter of my life, and especially for allowing me to conclude the last two years in
the United States.

I also would not be where | am today without the great friends who | have met at various instances of
this journey, who have joined me in California, kept me company in Delft or cheered me on from afar. A
special token of appreciation to my girlfriend without whom | would not have had the courage to move
to Caltech in an effort to be "closer” together. The people | have met are by no exception the greatest
takeaway this MSc. has provided me with.

Finally, I would like to extend my gratitude to my supervisors, and thesis committee members from Delft,
as well as my colleagues at Caltech; | feel exceedingly grateful for the many experiences and lessons
| have learned.

Noah van Santen
Delft, February 2025



summary

This thesis investigates the potential for Physics-Informed Neural Networks (PINNs) to reconstruct
spatially dense, steady-state, 3D flow fields from spatially sparse experimental wind tunnel data over
the Gaussian Boeing bump geometry. The difficulty in experimentally obtaining flow field data that is
simultaneously accurate, 3-dimensional and offering a wide field of view makes PINNs an intriguing
tool for flow enhancement due to their ease and simplicity regarding data-acquisition.

This work attempts to reconstruct 3D separated, mean velocity fields from 2D, two-component PIV and
static pressure data at Reynolds numbers up to 3 million. Training and validation data is used from pre-
vious experimental collaborations investigating the Gaussian Boeing Bump geometry while additional
training data is collected in the Lucas Wind Tunnel at Caltech. The choice of the Gaussian Boeing Bump
geometry stems from its propensity to generate complex 3D, separated flow fields through the combina-
tion of adverse and favorable pressure gradients at modest incoming flow velocities. The documented
inability for low-cost CFD methods to accurately model the unique flow features over the geometry
and the abundance of publicly available data for the purposes of training and validation proposes an
excellent opportunity for the investigation of Physics-Informed Neural Networks to demonstrate their
capacity as a novel data-acquisition and enhancement method.

The PINN method is first verified over a 2D, two-component domain against OpenFOAM data produced
over the geometry as a result of previous works. This sets the baseline for the eventual expansion to a
3D PINN model with a verified implementation of the Reynolds-Averaged Navier Stokes equations, to
be trained on multiple planes of 2D, two-component PIV data. The 3D predicted flow field is validated
against 2D, three-component PIV data along an untrained axis, assessing the reconstruction accuracy
of all velocity components. The mean velocity and static pressure data used in training the PINN are
used in an ablation study to be individually assessed for their contributions to a successful reconstruc-
tion of the flow field. The PINN method’s inherent approximation of velocity gradients over the domain
further allows for a global prediction of surface shear stresses and skin friction coefficients. Results
obtained in previous collaborations using Oil Flow Visualization and CFD offer opportunities to qualita-
tively validate the reconstruction of surface-shear stresses and skin friction coefficient magnitudes over
the surface of the geometry.

The PINN'’s capacity for reconstructing 3D flow features is ultimately curtailed by the accuracy of its
predictions, which remain costly and data-driven. The ablation study on training data highlights the im-
portance of relevant input data, limiting the network’s capacity to predict the magnitudes of parameters
over which it has no innate information. Despite this, qualitative approximation of flow features was
shown with considerable promise, lending the possibility to further gains in accuracy from increased
computational investment. Furthermore, the contribution of additional training data and its potential
for increased reconstruction accuracy cannot be ignored. The relative youth of the PINN methodology
compared to contemporary computational methods, and their aptitude for data acquisition encourage
additional investigation for their application as flow enhancement tools.
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Introduction

In recent years, Physics-Informed Neural Networks (PINNs) have emerged in a variety of fields for their
ability to model partial differential equation solutions, where the ease of implementation and simple
architecture have made PINNs prominent candidates to compete with contemporary numerical solvers.
Nevertheless, machine learning (ML) techniques remain data-driven methods, and in large part, the
success of a PINN is dependent on the quantity and quality of the data it is trained on.

Simultaneously, the field of experimental aerodynamics suffers from its inherent difficulty in obtaining
flow field data that is simultaneously accurate, time-resolved and 3-dimensional. Additionally, for all
of these parameters, typically only a restricted field of view (FOV) is available, limiting the ability to
capture a global flow field. Complex and turbulent flow fields only amplify this problem, introducing flow
separation, out-of-plane motion and in the case of sufficiently high velocities, shock-wave phenomena.
Spatially dense, time-resolved data is therefore also necessary to adequately represent the turbulence
spectra and observe the dissipation of eddy cascades. For the limited number of wind tunnels that are
capable of obtaining representative flow information, the heavy demand for utilization accompanies
long waiting lists and expensive costs.

Jointly combining these two disciplines, this thesis will investigate to what extent PINNs can be applied
to spatially-sparse experimental wind-tunnel results to reconstruct spatially dense flow information. Ad-
ditional mean velocity measurement data, beyond the existing benchmark data for the PINN to use in
training will be obtained over the Gaussian Boeing speed bump geometry installed at Caltech’s Lucas
Wind Tunnel. Despite being a simple geometry, the Boeing bump produces a great variety of 3D flow
features and separation phenomena that current CFD models struggle to accurately resolve. Thus,
their inability to model mean velocities of complex flows continues to limit their capacity to act as iter-
ative and cost-effective design tools. The Boeing bump geometry has been previously studied both
experimentally and numerically at the University of Washington, the University of Notre Dame, NASA
Langley Research center, offering a variety of opportunities for verification, and validation. In addition
to the abundance of data, Boeing’s inherent interest and support of this project motivate the geometry
selection.

The current experimental setup in the Lucas Wind Tunnel allows for PIV and smoke-based imaging in
2D, and the PINN will be assessed in its ability to reconstruct the 3D, steady-state velocity and pressure
fields from spatially-sparse experimental data. Eventually, the PINN will be assessed for whether it
can accurately interpret mean velocity and pressure gradients within the boundary layer by predicting
the surface shear stresses over the bump surface. A successful campaign will consist of the PINN
resolving the complex flow phenomena from coarse experimental measurements and extrapolating 3D
flow fields from 2D input data. The ability to adequately model a 3D separated flow field will establish
PINNs as a competitive alternative to state of the art numerical methods, and an intuitive supplement to
experimentation. Furthermore, an ability to model surface shear stress topologies at Reynolds numbers
of Re ~ 10° will break new ground in the domain of PINNs being applied to fluid mechanics where high-
Reynolds flows of this magnitude have not before been successfully modeled.
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1.1. Research Proposal
The proposal for this research, and the questions it accompanies are outlined as follows:

To what extent can Physics-Informed Machine Learning methods enhance 2D wind tunnel data
for turbulent, 3D flow modeling and aerospace design?

To assist in answering this high-level research question, several sub-questions are proposed, divided
in the following categories:

Low-fidelity experimental data enhancement:

» To what extent can the Physics-Informed Machine Learning methods reconstruct 3D flows from
2D experimental flow information?

* In pursuit of the previous research question, what is the error obtained in reconstruction of 3D
mean velocity and static pressure?

Flow field characterization and prediction of turbulent phenomena:

» What degree of data-resolution is necessary for Physics-Informed Machine Learning methods
to predict the locations of flow separation and reattachment over the Boeing-bump geometry at
Mach 0.2?

» To what extent do mean velocity and static pressure data contribute to the reconstruction of 3D
separated flow?

 To what extent can reconstructed flow fields support the prediction of surface shear stress topolo-
gies over the Boeing-bump geometry?

» To what Reynolds number can Physics-Informed Machine Learning Methods accurately model
flow separation, reattachment and surface shear topology over the Boeing-bump geometry?

These sub-questions stem naturally from the pursuit of the greater research question. The first two
sub-questions will be answered by validating the predicted flow field with unseen experimental data.
The additional two sub-questions can be answered through an ablation study of various levels of data-
resolution. Sub-question 5 directs itself to practical applications of this research, where the ultimate
goal is to come closer to accurately modeling surface shear stresses for the purposes of aerospace
design. In pursuit of the previous sub-questions, a discussion will follow on the maximum Reynolds
number at which these results are capable of being produced, answering the final sub-question.

The following report will be structured as follows, divided into 3 parts. Part 1 discusses the background
of the investigation, beginning with the characteristics of the Gaussian Boeing bump (chapter 2), and
Physics-Informed Neural Networks (chapter 3). Subsequently, the second part dives into the method-
ology (chapter 4) of this study, beginning with the experimental methodology, and followed by the
machine learning methodology and results (chapter 5). Finally, part 3 discusses the closure of the
study and contains the conclusion (chapter 6) and recommendations for future work (chapter 7).
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Background



Characteristics of the Gaussian
Boeing Bump

This chapter will serve to outline the recent advancements made on the Gaussian Boeing bump across
various research institutions. An understanding of the experimental studies performed previously will
allow this work to contribute to the wealth of experimental data with its in-house measurements, and aim
to develop novel flow enhancement techniques. Additionally, understanding where previous computa-
tional campaigns have failed to model the separated flow phenomena over the geometry will highlight
the candidacy for the PINN methodology.

2.1. Gausslian Boeing Bump Geometry
Despite the simplicity of the geometry, the Gaussian Boeing Bump remains an elusive problem for
its propensity to generate complex 3D flow phenomena. Defined by the product of the tapered error
function in the spanwise (z) direction, and the Gaussian function in the streamwise direction (), the
geometry takes the following form, shown in Equation 2.1:

o2y — pLEerd (/2 =220 — |2 /20) | <_ () ) 2.1)

2 i)

with ratios defined as: z¢/L = 0.195, yo/L = 0.060, and h/L = 0.085. A standardized width of L = 0.914
[m] has been chosen across the 3 experimental setups that have been commissioned, namely at the
California Institute of Technology, University of Notre Dame, and University of Washington, whose
previous results on investigation of the geometry encourage the work of this thesis [1, 2, 3]. The
adherence to a unified scale of the geometry is important due to the fact that bump width, length and
distance-to-ceiling all remain tune-able parameters that affect the outcome of the turbulent boundary
layer and onset of separation.

The geometry of the bump can be visualized in Figure 2.1, where it is shown from a frontal angle
pointing downstream, as well as a side view.

0.1 I U T il 0.1F T 7 T 3
= 0.05} - 1 sy _
\:_:'; Dﬂg )/ \¥ ‘5\: Oog e j'/ \‘H‘i—; £
-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
z/L x/L

Figure 2.1: Boeing Gaussian Speed Bump model shown from front, downstream-facing angle (left) and side-view, direction
(right); courtesy of NASA Turbulence Modelling Resource .
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The interest of this geometry originated from the desire to produce a highly separated flow while avoid-
ing interactions stemming from side-wall boundary layers. Previous campaigns studied geometries that
mimicked flow over aircraft wing-body junctions wherein a high likelihood of flow separation was found
to be present. Previously, the study of various 2D geometries conducive to flow separation were stud-
ied. These included the backward-facing step [4, 5], backwards-facing ramp [6, 7] and the proprietary
NASA hump model [8]. These 2D geometries were found to be influenced by sidewall-junction flow
physics which contributed significantly to separation behavior, and thus following the result of several
iterations of geometry design, the Boeing bump geometry was obtained. This was the motivation for
designing the bump with error-function shoulders, however the effect on generation of 3D flow phenom-
ena in this region must not be neglected. The decoupling of sidewall influences on the bump-induced
pressure gradients allowed for the independent analysis of the highly turbulent post-bump flow region,
without influence of corner-flow phenomena. Furthermore, since the geometry results in both a favor-
able and adverse pressure gradient, the result produces a region of separated flow aft of the bump
apex. With the aforementioned in mind, the geometry was designed with the intention of providing
repeatable flow-separation phenomena applicable to both experimental and numerical studies.

Due to the difficulty in predicting separation, as well as flow phenomena within the separated and
highly turbulent boundary layer, several academic institutions have taken an interest in its research
and understanding. This chapter will discuss the various experimental and numerical campaigns that
have been performed on the Gaussian Boeing-bump geometry by a variety of institutions. The goal of
this is to lay a foundation of what research has been done, what results may be expected, and where
the PINN methodology may provide utility.

2.2. Geometric Variation and Boundary Layer Development

Due to the need recreate the results of this experiment across multiple institutions, it is necessary to
observe a consistent experimental setup in regards to the effects on incoming boundary layer develop-
ment and eventual flow separation. This section will briefly comment on details related to the geometry
and setup as it pertains to the boundary layer development.

Relating to its effect on boundary layer growth, the length of the splitter plate preceding the Boeing
Gaussian bump geometry is maintained across the various experimental campaigns (discussed in sec-
tion 2.4). The placement of the bump geometry within the greater context of its splitter plate can be
visualized in Figure 2.2, where configurations A and B are depicted.

<« ; : : } — x /L
-2 -1.5 -1 -0.5 0 0.5

Figure 2.2: Variations of bump configuration in experimental campaigns [9], investigating the effect of boundary layer thickness
on post-bump separation.

The baseline investigation of the bump geometry corresponds to configuration A, where the splitter
plate precedes the bump apex by a full length unit L = 0.914 [m]. However, to investigate the effects
of continued boundary layer growth, configuration B was also devised during the campaign of the Uni-
versity of Notre Dame. Continued investigation under various experimental methods allows for the
comparison of incoming boundary layer growth and its effects on separation upon encountering the

"https://turbmodels.larc.nasa. gov/0ther_exp_Data/speedbump_sep_exp.html
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bump. One such comparison might investigate the importance of the ratio of boundary layer height §
to bump height h, (6/h), on separation. For the remainder of this study, unless mentioned otherwise,
splitter-plate configuration A will be assumed to be the configuration of interest, chosen for consistency
with past experimental and numerical works. Furthermore, the study is aligned to two inflow condi-
tions of M = 0.2 and M = 0.1, which aims to maintain uniformity with regards to the boundary layer
development for each case.

Table 2.1: Boundary layer properties of incoming flow for both inflow conditions studied over bump configuration A [10].

M. | (/L) | Rep o
0.1 | -0.469 | 1.07-10° | 3.10-10°
0.2 | -0.469 | 2.11.10% | 2.60-10°

An additional variable of relevance is the height difference from the splitter plate to the ceiling of the wind
tunnel. This parameter effectively dictates the "compression ratio” witnessed by the flow over the bump
and will contribute to the strength of the FPG and APG in front and behind the bump apex, respectively.
Consequently, this will affect the development, and particularly the separation and reattachment of the
boundary layer.

While this variable remains more difficult to control (due to inherent differences in wind tunnel size be-
tween the University of Notre Dame, Washington and Caltech), its potential contributions to the flow
behavior observed must be noted. As a result of the aforementioned factors, it can be expected to
observe varying flow phenomena despite the use of a replica geometry and consistent inlet/bound-
ary conditions. For this reason, the boundary layer properties as observed in previous works by [10]
have been outlined in Table 2.1, allowing differences in eventual flow phenomena to be attributed to
differences in boundary layer development.

2.3. NASA Langley Research Center

Before embarking on the individual contributions of each academic and industrial institution, the origin
and support of this initiative must be discussed. In 2014, NASA published their CFD Vision 2030
Study [11], wherein they outline recommendations and strategies for developing improvements to CFD
capabilities by the year 2023. Much of the report consists of the encouragement of interdisciplinary
collaboration between industrial stakeholders and research partners, which at the time of writing has
been largely realized through the joint efforts with parties that will be discussed in this chapter.

Additionally, the study establishes a set of 7 findings aimed at furthering the state-of-the-art in CFD and
providing advancements in the fields of aeronautics and aerospace. Among their findings, the research
performed on the Gaussian Boeing-bump can be linked to the following:

1. "The use of CFD in the aerospace design process is severely limited by the inability to accurately
and reliably predict turbulent flows with significant regions of separation.”

2. "HPC hardware is progressing rapidly and technologies that will prevail are difficult to predict.”

Exactly a decade since the publication of their study, these two findings remain ever-present, with the
latter motivating the current investigation of neural networks as candidates for flow modelling. Fur-
thermore, these findings have encouraged and supported the research performed over the previous
decade through the NASA Langley Research Center Turbulence Modelling Resource?. While the tur-
bulence modelling resource and NASA’s overarching goals primarily target the advancements of CFD,
they have necessitated novel campaigns in both numerical as well as experimental regimes, which will
be the topic of discussion for the remainder of this chapter.

2.4. The University of Notre Dame

While the Boeing-bump geometry was originally conceptualized in 2015, tests only began at the Uni-
versity of Notre Dame in 2020 and culminated in 2023 after a 3-year long campaign. Performed as a
collaborative effort between the University of Notre Dame’s experimental aerodynamics group and the

2https://turbmodels.larc.nasa.gov/index.html
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CFD group at Boeing Research & Technology, the former coordinated the experimental campaigns to
produce validation-capable benchmark data for future experimental and numerical studies. The latter,
in parallel, performed validation studies using their proprietary Boeing CFD (BCFD) flow solver [12],
whose methodology and results will be described in section 2.5.

The University of Notre Dame and Boeing Research & Technology’s continued experimentation was
performed at the Notre Dame Mach 0.6 closed circuit wind tunnel [13, 14, 10], where, flow measure-
ment methods included the aforementioned oil-film Interferometry (OFI), as well as static pressure taps,
dynamic pressure sensors and PIV (performed in both mono and stereo configuration) [9]. Through
these various methods of documentation, flow separation and wall-shear stress was recorded over a
range of velocities (Mach € [0.05,0.2]) and Reynolds numbers (1.0 - 10 < Rey < 4.0 - 10%). While
the bulk of the data was generated in the Mach 0.2 regime for the purpose of validating compressible
CFD solvers, the data obtained in this campaign will remain suitable for validation of the PINN model,
described in chapter 3.

2.4.1. Fluorescent Oil Flow Visualization

Beginning with the results obtained using oil flow visualization, the authors confirm the signature "ow/
face pattern” [15, 16, 15, 17] being generated in oil flow visualization methods, shown in Figure 2.3.
The flow phenomena outlined in the image obtained using oil flow visualization allowed the authors
to identify regions of interest for spanwise PIV measurement, the results of which are discussed in
subsection 2.4.2

Figure 2.3: Characteristic "ow/ face pattern” obtained at flow velocity M., = 0.2 using oil flow visualization of downstream flow.

9]

Visible in the figure, the "eyes of the owl” can be seen in locations F1 and F2, corresponding to the
foci responsible for lifting vortices that ascend from the surfaces [18]. These vortices are met with
the flow from S1 which indicates the bifurcation of flow (saddle point), downstream of which the flow
is separated. S2 then corresponds to the area of flow reattachment further downstream. The authors
attribute the results this flow behavior to the concavity of the bump, and the location of its inflection point
from convex surface curvature to concave. A qualitative reconstruction of the above plot would mark a
significant achievement in the PINN'’s capacity to model surface shear stresses over the geometry.



2.5. Boeing Research & Technology 8

2.4.2. PIV Measurements

The quantitative representation, obtained through PI1V, can be visualized in Figures 2.4 and 2.5, where
multiple planes and angles demonstrate the mean velocity at the bump’s inflection point. The stream-
lines can be seen in the streamwise direction, and produce the strongest level of separation at the
center-line of the bump, corresponding to a z/L ratio of 0.0. Figure 2.4 confirms that the majority of
these trials were focused at the center-line of the bump, providing an avenue for novel experimental
campaigns to be performed at Caltech and to contribute to the turbulence resource for future validation.

z/L = -0.250 U/U.
0.2
1
Zoa 05
_—— .
0 —
0 01 02 03 04 05

z/L = -0.167 U/Usx

0

— e
] %t:_—_:: 1
-

0 01 02 03 04 05

0 01 02 03 04 05

0 01 02 03 04 05

Figure 2.4: PIV performed at M., = 0.2 showing mean velocity and streamlines displaying separation bubble growth over
multiple spanwise planes.

As can be seen, flow reversal weakens towards the shoulders (max-span) of the bump. Furthermore,
the z-plane velocity vector, W, shows the acceleration of flow from the edges towards the center in
the cross-plane. This represents the out-of-plane velocity that is expected nearing the 3D contours
(shoulders) of the bump. This will be a region of significant interest where numerical methods, and the
neural network in particular are likely to struggle. This will also mark input training data for the 3D PINN
network.

The next section will discuss the numerical counterpart of this investigation, carried out by Boeing
Research & Technology. Noteworthy takeaways from this comparison shall address the ability to model
separation, and reattachment as well as areas of peak turbulence following the bump apex.

2.5. Boeing Research & Technology

Of equal contribution to this turbulence resource is the numerical modelling aspect, much of which have
been performed in parallel to the experimental campaigns at the University of Notre Dame. Furthermore,
while the focus of this study is not to assess contemporary numerical modelling capabilities of turbulent
flow phenomena, it is necessary to discuss the current state of the art to ultimately determine where
contemporary solvers struggle, and identify where this study can contribute the most.
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Figure 2.5: Mean velocity and Reynolds stresses in cross-plane recorded downstream of bump using Stereo PIV (SPIV).

The results and takeaways of the computational investigations by the Boeing CFD research group are

compiled in the study by Lakebrink [19], wherein numerical comparisons against various experimental

techniques are delivered. Furthermore, on the numerical aspect, multiple methods of varying computa-
tional complexity are employed to better discern the limitations of modelling techniques (including PIV,
OFI, Hot-Wire Anemometry, Surface-Pressure and LDV). While these various data collection methods
are important to the validation of CFD, this current project limits its interest to the study and improve-
ment of PIV data. As such, this shall be the primary measurement technique discussed for use over

the Boeing bump.

2.5.1. Numerical Comparison with PIV Measurement
Beginning with PI1V, comparisons were performed against CFD using RANS (Reynolds Averaged Navier

Stokes) as well as DDES (Delayed Detached Eddy Simulation) simulations. The results are displayed

below comparing both u and v velocity vectors in Figures 2.6 and 2.7, respectively.
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Figure 2.6: Comparison of u-velocity at center-line, aft of bump-apex using RANS CFD, DDES CFD and PIV [19].
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Figure 2.7: Comparison of v-velocity at center-line, aft of bump-apex using RANS, DDES and PIV [19].

As one can see, the discrepancies found using RANS are larger than that obtained using DDES, show-
ing an inability to accurately describe the advent of separation after the bump. Conversely, DDES
performs well, though the authors comment a slight over-prediction of the shear layer and an under-
prediction of downwash, which they conclude to mark a pre-mature prediction of separation.

The authors of these works have critically shown where contemporary turbulence models fail when
compared to experimental results, citing the need for further research to be performed on this topic. This
continues to motivate an encouraging gap in the research, where a middle ground between numerical
and experimental methods could apply through machine learning. This marks the purpose of the work
performed at the California Institute of Technology, aiming at a solution which correctly predicts the
region of separation, without the computational effort of an LES scheme.

2.6. Additional Contributors

Before this chapter is concluded, some attention is directed to additional contributions in the field of
Boeing-bump research. While the majority of research has been conducted by the aforementioned
institutions in direct collaboration with Boeing, some independent works have been produced. They
provide a more recent overview of the results in Boeing-bump research and outline current gaps of
knowledge in the space. Consequently, their conclusions will assist to inform of potential research
directions that this literature review sets the baseline for. This study investigates the behavior of turbu-
lent boundary layer flow over a Gaussian-shaped bump using Direct Numerical Simulation (DNS). By
resolving all relevant turbulence scales, the authors provide a detailed dataset for studying pressure-
gradient-induced turbulence and for validating computational models of turbulent flows. Most relevant
to this investigation are the results on the friction coefficient over the bump surface, displayed in Fig-
ure 2.8.
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Figure 2.8: Skin friction coefficient observed over Boeing bump surface as modeled with DNS and RANS methodologies [20].

As shown, the friction coefficient, C¢, exhibits significant variation due to the changing pressure gra-
dients along the surface. Upstream of the bump, within the region subjected to favorable pressure
gradients, C increases as the flow accelerates. This reflects the thinning of the boundary layer and
the enhancement of wall shear stress due to turbulence suppression in the presence of an FPG. As
the flow encounters the adverse pressure gradient downstream, C; decreases sharply. This reduction
is indicative of boundary layer thickening and the onset of flow separation. In the separation region,
wall shear stress diminishes to near-zero values, leading to minimal or negative C';. Beyond the sepa-
ration point, in the reattachment zone, C; experiences a rapid increase. This rise corresponds to the
recovery of wall shear stress as the flow reattaches and the boundary layer begins to redevelop. The
steep gradient of C in this region highlights the transition from separated to attached flow.

Overall, the distribution of C'; is highly asymmetric due to the non-equilibrium pressure gradients. The
adverse pressure gradient has a particularly strong influence, extending far downstream and signifi-
cantly altering the wall shear stress distribution. These results demonstrate the importance of C as
a diagnostic tool for identifying flow separation and reattachment, providing valuable insights for aero-
dynamic surface optimization. In pursuit of modeling surface shear stresses over the Boeing bump

geometry, the PINN will be assessed for its ability in recreating comparable friction trends as shown by
Ali et al.

In conclusion, this chapter has marked several recent development surrounding the Boeing Bump Ge-
ometry that provide strong indication for the inability of RANS-based numerical solvers to adequately
model the flow features in the aft-bump region. The existence of substantial experimental data sur-
rounding the geometry points to an opportunity to include machine learning based methodologies to
provide an improved reconstruction of the flow field. The subsequent chapters will outline recent works
where PINNs have been used in conjunction with experimental data, building upon its use-case as a
contemporary flow enhancement method.



Current State of Physics Informed
Neural Networks

Advancements in machine learning techniques have prompted novel approaches to numerical solutions
of partial differential equations (PDEs). In specific, Physics-Informed Neural Networks have shown sig-
nificant applications in a variety of fields including fluid mechanics for their ability to incorporate exper-
imental data with physical constraints. Figure 3.1 [21] displays the exponential growth experienced in
scholarly articles citing Physics-Informed Neural Networks following their original introduction by Raissi
etal. in 2019 [22].

NSE+HE
Veu=20
A + (usV)u =-Vp + (Re)1V<u + (Ri)9

- = g2
39 + (U=V)9 = (Pe) V3 I —

Veu=20
U + (UsT)u = -Up + (Re)1V3u

i + Bou=0

Sampled Problems

SE
iah + 0.53,,h + [h|?h = 0

30 paper

Figure 3.1: Exponential growth of literature citing PINNs applied to solution of: Schrodinger Equation (SE), Euler Equation
(EE), Navier-Stokes Equations (NSE), and Heat Equation (HE) [21].

Recent examples include reconstruction of flow over an Espresso cup using Schlieren imaging [23],
modelling two-phase flow and solutions to convective heat transfer problems [24], and enhancement
of dense velocity and pressure field reconstruction from PIV data [25]. The latter of these is of most
relevance to this project, and consists of the augmentation of the Physics-Informed Neural Networks
with Reynolds Averaged Navier-Stokes (RANS) equations to resolve highly turbulent flow fields. Of-
ten, these are supplemented with a turbulence model to ‘close’ the RANS equations, however recent
developments have also shown that PINNs can intuitively interpret the Reynolds stresses when not
provided with a turbulence model. Nevertheless, much of the current development of PINNs applied to

12
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experimental fluid mechanics is still in its infancy, and limited to 2D, inviscid, laminar or low-Reynolds
flow. In the context of real flows and more complex geometries, such as the Boeing bump, it is of inter-
est to accurately model turbulent 3D flow phenomena, including separation/re-attachment. In the case
of high velocity flows, shock wave perturbations are also of interest, and although out of the scope of
this project, it remains to be seen whether PINNs can successfully improve the reconstruction of such
intricate phenomena.

Due to the abundance of literature surrounding PINNs, the majority of this overview will retain this
focus, however where relevant, the discussion of competing neural network architectures will also be
included. The following section will give a summary of the PINN architecture, after which its applications
to a variety of problems in fluid mechanics will be discussed.

3.1. PINN Architecture

Initially introduced by Raissi and collagues [22], the PINN consists of a Deep Neural Network (DNN)
with an additional loss function based on the residuals of governing equations. This allows the enforcing
of the DNN to adhere to physical equations in addition to data and boundary conditions. Apart from this
contribution to the loss function, the general architecture of the PINN remains largely unchanged from
the underlying Multi-Layer Perceptron (MLP), which, applied to the Reynolds Averaged Navier-Stokes
equations takes the following form:

(U,p,7) = fnn(X;0) 3.1)

with U = (u, v, w) and p denoting the velocity and pressure fields respectively, 7 denoting a turbulence
parameter, and fyy denoting a deep neural network with X = (z, y, z) spatial input coordinates and ©
trainable network parameters.

As with any MLP, the network size is defined by two parameters: Njayer and H which denote the number
of layers of the neural network, and the depth of each node, respectively. Propagation through the
network from input variable x; to output variable f; is performed via:

fi = o(w;; - z;+ b)) (3.2)

where w; ; and b; denote the weights and biases respectively. The hyperparameter o represents the
activation function, which is user-defined. An activation function of y = tanh(z) is recommended for
PINNs due to its continuous differentiability over the entire domain [26].

The primary difference between PINNs and a conventional MLP lies with the loss function, where in
PINNs it is augmented with a physical loss which encourages the network to optimize its parameters to
satisfy one or more formulae. In the case of a PINN applied to the solution of the Reynolds Averaged
Navier-Stokes equations, the following loss functions would be present for the network to minimize:

Ndata
Laata = Y, [Udata(X') = Uprea(X")|* (3.3)
=1
Npc ' _
Lpo =) [Upc(X') = Uppea(X)? (3.4)
=1
NppE _
Lppp= Y |Li(X)P (3.5)
=1

Here, Ugqt and U,,..q are the measured and predicted velocity fields, respectively. Additionally, £j4tq,
Lpc, and Lppp represent the losses to data, boundary conditions and supplied partial differential
equations, respectively. In a PINN, and contrary to a standard MLP, the PDE loss will be provided to
the data and boundary condition losses as in the following equation:
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L=(1-0a) (Laata + LBc) +a-LppE (3.6)

Where « represents a weighting factor that controls the influence of the PDE loss on the remaining loss
terms. The output of each of these loss parameters is determined through the mean-squared error
function, Lppe = ZI=7MSE(e;), where ¢; represents the residual error for the given PDE provided to
the PINN. In the context of RANS PINNSs, the following residuals are of importance:

V'Uzﬁl

, o (3.7)
p(U-VU) 4+ VP —uV°U -V (—p(u'n’)) = e
The first equation with residual ¢; denotes the continuity equation while the second equation with resid-
ual e denotes the Reynolds-averaged momentum equations, where p(u’v’) denotes the Reynolds
stress tensor. Notably, the time-dependent derivatives are omitted since the analysis in this work is
performed at steady-state. Differentiation across the spatial domain is performed through automatic
differentiation [27] with V¥ representing the differential operator and V2 representing the Laplacian.

A schematic of the PINN architecture is shown in Figure 3.2, which depicts the feed-forward network
from input values to output values. After obtaining predicted output values, automatic differentiation
is performed and the PDE residuals are determined. Finally, the data, boundary conditions and PDE
residual losses are backpropagated and the training loop continues.

A modification to the typical MLP architecture that has been shown to benefit PINNs is the inclusion of
Fourier features [26]. This extra step before feeding input parameters to the hidden layers can com-
pensate for the inherent spectral bias that PINNs suffer from, and allow the network to more accurately
represent high-frequency solutions [28, 29]. In such an implementation, the positional input data is
passed through the following encoding before inclusion into the MLP network:

cos(BX)] (3.8)

7(X) = {sin(BX)

With B representing a Gaussian sampling distribution: A/(0, o%) with o being a user-specified parame-
ter: o € [1, 10]
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Figure 3.2: Schematic diagram representing PINN architecture applied to 3D Reynolds Averaged Navier Stokes equations.
Diagram is produced specific to the work of this thesis and displays the PINN architecture used in the 3D analysis.
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Despite the simple architecture of PINNs, there have been significant efforts to further improve upon
the MLP architecture to support its functions for forward and inverse solutions within fluid mechanics.
This next section will discuss relevant instances where PINNs have been applied to fluid mechanics
problems, and discuss difficulties in achieving convergence to a globally physically compliant solution.

3.2. Applications to Fluid Mechanics

Since their original introduction, much of the interest of PINN application has been directed to the
solution of partial differential equations for fluid mechanics. Often, the successes of PINNs and their
variations are measured in benchmarks that assess the solution of the Burgers equation [30], or Navier
Stokes equations [22].

In an implementation with the Navier-Stokes equations, Lai et al. [31] have introduced a novel method-
ology, combining high-frequency pressure probe and sparse PlV-data in an attempt to produce high-
temporal and spatially resolved flow fields. This is of particular interest to the current project, since
both static-wall pressure and PIV measurement techniques are available at Caltech’s Lucas wind tun-
nel. While their work was produced using synthetic data, their conclusions with regards to non-periodic
flows suggest the complexity of turbulent flows may not be out of reach for PINNs to reconstruct to a suf-
ficient degree of accuracy. The authors do conclude that due to their methodology being conducted at
laminar flows (Re = 100), the need remains to further investigate the suitability of PINNs to reconstruct
turbulent flows.

Furthermore, as the previous section has outlined, despite the implementation of PDEs as governing
equations, ML methods remain data-driven, and as such their success in being applied to problems in
fluid mechanics relies on the availability of data. While the source of this data can vary, e.g. computa-
tional vs experimental, Particle Image Velocimetry (PIV) results serve as excellent candidates for this for
their widespread availability in literature and spatial sparsity. This has been noted in the literature, with
a significant number of publications investigating the potential for this collaboration of approaches. The
next subsection will be dedicated to outlining the recent results obtained from integrating PIV results
into the PIML methodologies.

3.2.1. Applications to PIV Data

Despite narrowing the field of search to PIML methods applied to PIV data, the available literature
remains vast and diverse. For instance, much work is dedicated to the investigation of PIV on hydrody-
namics [25] and hemodynamics [32]. In many cases, the takeaways from these works are substantial,
where the former investigation used TOMO-PIV to assess the flow over a hemisphere submerged in
water and implemented a PINN to successfully identify vortices produced in the turbulent regime. Au-
thors noted a successful reconstruction of DNS simulations, albeit limited to larger scales. Furthermore,
in the latter study on hemodynamics, PINNs were successfully applied to the modelling of wall shear
stresses in near-wall blood flow. These results were produced despite the lack of boundary condition
information supplied to the PINN. The authors celebrate the potential for PINNs in improving hemody-
namic modelling for the purposes of cardiovascular disease diagnosis. Despite these apparent victo-
ries, the relative viscosities of water and blood remain far higher than that of air, and these successes
do not necessarily comment on the abilities for PIML methods to translate to air-based turbulent flow
phenomena. In the coming studies, this will be an important metric to distinguish, as the Reynolds
number remains highly conducive to the PINN’s successes and failures.

Applications for Reynolds numbers below 10,000

In a study on the applicability of PINNs to reconstruct sparse PIV data [33], researchers showed promis-
ing ability at recreating flow fields as well as pressure fields. Notably, despite no information being given
about pressure, the PINN remains capable of reconstructing the pressure field through the constitutive
relations of the Navier-Stokes equations. They extend this by establishing that the PINN can recon-
struct flow fields of obstructed frames and missing flow volumes. Their results are shown in Figure 3.3,
where varying quantities of experimental dataset are removed from training.
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Figure 3.3: Comparison of PINN prediction performance with varying levels of truncated data removed; (a) streamwise velocity
component; (b) spanwise velocity component; (c) pressure field [33].

As the figure shows, there lies significant capability in PINNs at reconstructing missing flow fields when
given sufficient data. Regrettably, however, the investigation was only performed under the regime of
incompressible flow at low Reynolds numbers in the order of Rey = 103, and work at higher Reynolds
numbers remains necessary to draw further conclusions.

In another work, researchers compared the ability of PINNs to reconstruct pressure fields compared to
contemporary pressure reconstruction methods [34] over a variety of cases. Their results showed that
when compared with traditional methods, PINNs exhibit the lowest overall pressure error, despite being
trained on noisy data. They note that PINNs can correct noisy velocity data through the imposition
of PDEs, and exploit this optimized velocity field for their pressure predictions. Another interesting
takeaway concluded by the authors is the reliance of the PINN method on Neci, Negns, and Ngata.
While increasing all of these parameters can positively affect the PINNs accuracy, the parameter of
greatest influence remains Ny,,. This reinforced the idea that PIML methods remain data-driven in
nature. This notion will be repeated in studies at higher turbulence levels in the subsequent section.

In a separate study, researchers refrained from using a PINN, and instead used an Artificial Neural
Network (ANN) to investigate the recovery of incomplete PIV data of flow over a cylinder [35]. Authors
credit the ANN in allowing the PIV window to be extended beyond experimentally obtained data. Addi-
tionally, while it is interesting that an alternative to PINNs was explored, the authors do not elaborate
on why this choice was made. Nevertheless, this investigation gives credence to the growing trend
of applying ML methods to the enhancement of fluid mechanics data. Although this simulation was
performed over a flow with a Reynolds number of Re = 8,000, the authors encourage the continued
implementation of machine learning methods, particularly for cases when only sparse data is available.

Applications for Reynolds numbers above 10,000

In a RANS-approach, the provision of a turbulence model was not incorporated in the PINN [36], and
the authors outline impressive agreement in the PINN’s prediction of Reynolds stresses. In this method,
the PINN interpolates its own turbulence model that best matches the flow, which for one experimental
case was stated to equal Re = 0.2 million [-]. The authors note excellent agreement between the results
and the reference data, which marks an encouraging milestone for PINN solutions to turbulent data.
The authors note several avenues of further research, including resolution of the near-wall boundary
layer region which is seldom captured in traditional PIV systems. Reconstructing the viscous sub-layer
and as a result predicting wall-shear stresses are stated by the authors to be further developments of
this work.

In line with this desire to model the viscous sub-layer, another study has incorporated data surrounding
the wall shear-stress over a backwards-facing ramp (diffuser) geometry into a PINN model [37]. This
work is interesting, both for its incorporation of a ramp-like geometry which exhibits flow separation
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and reattachment, but also for its attempt to simulate the wall shear-stresses. They describe that
despite the imperfections in experimental measurement of the near-wall boundary layer, the PINN is
able to compensate in accuracy through its implementation of the 3D Navier Stokes equations. They
comment on good agreement of the near-wall velocity profiles when operating solely on the Navier-
Stokes equations, with additional loss terms (pressure, shear-stress) contributing little or negatively to
the final predictions. They summarize by saying that when devoid of near-wall velocity data, the PINN
struggles in computing the magnitude of the velocity gradient in the viscous sub-layer.
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Figure 3.4: Comparison of predicted and measured velocity fields for each velocity component. [37]

Figure 3.4 displays the results from this work, where the predicted velocity fields by the PINN are shown
for each velocity component. The predictions are compared to the PIV data, and shows impressive
agreement at outlining the region of separation of the flow. Due to this work’s relevance to that of the
Boeing-bump, it will remain an interesting reference point over the course of this project.

Finally, a work assessing the ability of PINNs to reconstruct experimental flow data over periodic hills for
a range of turbulent Reynolds numbers (up to Re = 37,000) corroborates reasonable predictions of an
APG boundary layer [38]. The authors limited the PINN’s exposure to 6 data points of the inner boundary
layer and 13 points within the outer boundary layer. Reattachment locations were predicted with good
agreement to experimental results, though friction coefficient C'; magnitudes remained areas where
the PINN struggled. They go on to assess the recirculation zone, whose volume was well predicted,
but internal velocity field was unsatisfactorily modelled.

An interesting conclusion that the authors arrive at is that available data remains the most crucial vari-
able in predicting PINN success. With regards to their setup, they recommend that experimental data
must be obtained from the region of interest (e.g. recirculation zone) to obtain the desired improve-
ments in prediction accuracy. This brings important relevance for the project for this literature review,
since they assert that PINNs cannot improve understanding of regions of flow that it is not provided
data on.

To conclude on the broader trends of PINN work applied to PIV data, it is evident that PINNs remain
data-driven in their methodology, and their success is directly dependent on the quantity of data they are
fed. For this reason, many of the mentioned use cases limit the PINN method to works of interpolation
and do not study data-deficient problems where PINNs may propose strong use-cases. This work will
aim to break new ground on the topic, by assessing the prediction accuracy by training on experimental
data at Reynolds numbers not examined previously in PINN works.
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Methodology

This chapter will serve to describe the overall methodology used in obtaining experimental data, as well
as developing the 2D and 3D PINN models used for testing. For an overview of how the experimental
campaigns and machine learning methodology coincide, Appendix A provides a flowchart as a visual
aid. Section 4.1 described the methods used to obtain experimental data at Caltech’s Lucas Wind
Tunnel, while Section 4.2 describes the work done to produce the 2D and 3D PINN models.

4.1. Experimental Data Collection

This section will document the efforts made in Caltech’s Lucas Wind Tunnel to obtain experimental
velocity and pressure data over the Boeing bump geometry. The focus of this campaign was to produce
PIV data to contribute to the open repository of experimental and numerical results hosted on the Nasa
Turbulence page’.

Despite the efforts directed at the experimental campaign producing internal results over the Boeing
bump, it must be acknowledged that these were not used in testing and validating the Neural Network
(discussed in section 4.2). The reason for this arose from the need to begin NN training while preparing
the wind tunnel environment. These were pursued in parallel, and as such delays in experimentation
did not adversely affect neural network development. Additionally, the wind tunnel test sections (e.g.
cross-section dimensions) vary substantially between the academic institutions of Caltech, University
of Washington and University of Notre-Dame. For this reason, inevitable differences in experimental
results have been and are likely to arise, and a consistent selection was needed throughout the machine
learning training process.

Due to the contribution of these experimental results to the experimental Boeing bump repository hosted
by NASA?, as well as contribution to further works by colleagues at Caltech and Boeing, it felt perti-
nent to include a discussion of the methodology. Their availability can thus encourage continued work
integrating experimental data into the PINN methodology to further improve on the results shown in
section 5.2.

4.1.1. Experimental Setup

This section will describe the aspect of experimental measurements that aimed at collecting PIV and
static pressure data of the flow over the Boeing bump. Due to the goal of obtaining a pipeline that inputs
and outputs velocity fields, it was logical to investigate PIV as an input for the PINN. Furthermore, the
established literature supports the ability of PINNs to successfully integrate PIV and pressure data into
their training (see chapter 3).

An image of the experimental setup as used in the Lucas Wind Tunnel facility at Caltech is shown in Fig-
ure 4.1. The setup is designed for compatibility with modern flow measurement techniques, including

"https://turbmodels.larc.nasa.gov/index.html
2https://turbmodels.larc.nasa. gov/0ther_exp_Data/speedbump_sep_exp.html
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an acrylic (left) wall to allow for optical access for PIV. The back wall is covered in non-reflective tape to
allow for better imaging contrast and minimize reflectivity, particularly laser reflectivity as encountered
in PIV. A similarly non-reflective (and heat-resistant) tape is applied along the bump, to indicate where
PIV imaging should take place. Figure 4.1 displays only a sample image, and the true measurement
location was chosen with previous experimental campaigns in mind. Given the wealth of previous data
available, a novel, but comparable, setup was sought to further contribute to the availability of data
surrounding the geometry. Much of this concerns the 3D region at the shoulders of the bump, due to
the propensity for out-of-plane flow phenomena and the associated difficulty of accurately capturing
such flow behavior.

Figure 4.1: Boeing Gaussian Speed Bump model (L = 0.914 m) installed in the Lucas Wind Tunnel.

Also shown in the images is the turntable setup, allowing for rotation of the entire bump setup. Despite
this, to mirror previous experimental and numerical campaigns, the setup is inserted with the walls
parallel to the flow. The setup also accommodates circular windows along the center line to provide
additional access for lasers that a PIV campaign may require. The direction of the camera faces the
upstream direction, pointing into the wind-tunnel contractionary zone. The bed of the setup extends
symmetrically to a splitter plate with a fixed leading edge and adjustable trailing-edge flap (fixed at 0°
deflection.

Finally, the images also display the curved ceiling of the wind tunnel, where the adaptive ceiling allows
for modification of the wind tunnel height at various streamwise locations (adapting the ceiling geometry)
to accommodate a consistent streamwise static pressure distribution throughout the test section. This
is a notable feature of the Lucas wind tunnel, but evidently not conserved across previous experimental
campaigns. For this reason, the possibility of mounting the bump and splitter-plate upside down will be
investigated in ongoing experimental campaigns. This will also allow the channel to be closed on the
sides of the bump, as opposed to its current configuration where the walls do not extend to the ceiling
and make for an unconstrained test section.

4.1.2. Particle Image Velocimetry

The PIV experiments were conducted over the Boeing bump using a conventional setup depicted in
Figure 4.2. A single imaging device (Imperx B3420M) was used, which could contribute a maximum
frame rate of 42 FPS, which, by appropriate timing of laser pulses, was able to capture frames at flow
velocities up to 20 [ms~'] [39]. The limitations imposed by the Lucas wind tunnel’s maximum flow
velocity, as well as the available frame rate of the imagine devices prevented measurements above a
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flow velocity of 20 [ms—!], further contributing to the reliance on pre-existing data by courtesy of the
previous collaborations with Boeing’s Research & Technology group. The light sheet was provided by a
Quantel Evergreen 532 [nm] laser which was expanded using a series of converging-diverging lenses
from ThorLabs.

Laser sheet
optics

[ 4

Mirror

\

Imaging

to t,

Figure 4.2: Schematic of PIV setup as conducted in Lucas Wind Tunnel.

Post-processing of the raw image data was performed using PIVLab [40], capable of efficiently ana-
lyzing and averaging multiple frames in parallel. A total of 200 frames were analyzed to overcome the
influence of any statistical outliers captured in individual frames.

4.1.3. Pressure Tap Data Collection

Since the PINN can accommodate a variety of data types, static pressure data collection was also
prioritized within the Lucas Wind Tunnel.

Pressure tap locations

E;ump height contours

y/L

Pref
Three ports (A5, C6, C7) unresponsive

Figure 4.3: Location of static pressure taps where measurements were taken in Lucas Wind Tunnel [41].

Figure 4.3 displays the locations over the bump surface where static pressure taps are located. Os-
hima and colleagues [41] performed the initial pressure measurements displayed above, while addi-
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tional pressure data was taken to conform to the PINN study. The locations are color coded red, blue
and black, corresponding to the Scanivalve tubing outputs, where a separate key denotes the exact
locations in 3D space. The pressure values are denoted in terms of pressure coefficient, computed
using the relation in Equation 4.1.

D — Dref
C, = 4.1

Since the machine learning methodology was performed in parallel to experimental measurement in
the Lucas Wind Tunnel, the PINN model begun training on previously obtained data at the Universi-
ties of Notre-Dame and Washington, publicized by the NASA Turbulence Page 2. This is an important
distinction to make, since the measurement techniques implemented at Caltech serve to support fu-
ture investigations in machine-learning enhanced studies. For this reason, it is of benefit to be able to
iterate the PIV planes, and obtain a more robust distribution of static pressure ports than what was pre-
viously made available. Furthermore, in the interest of consistent training data, only data from unique
campaigns were used for training to prevent conflicts between the boundary layer development across
different experimental campaigns. The next chapter will discuss the machine learning methodology
which was undertaken in parallel to the experimental data collection.

4.2. Machine Learning Methodology

Initially, a larger variety of machine learning methods were considered for this investigation, but due to
the simplicity and emerging literature on PINNs, they became the logical candidate.

Employing a ground-up approach, the PINN model was initially trained in a 2D domain, with the goal
of an eventual expansion to 3D. Many of the inherent difficulties in training PINNs appear in both 2D
and 3D domains, so a 2D domain was a logical choice to begin with to gain familiarity with the network
and easily debug issues. This chapter will document the PINN development across both 2D and 3D
domains, providing motivation on certain design choices and training challenges. Finally, architectural
considerations for the neural network design will also be discussed.

4.2.1. 2D PINN Model

The choice for a 2D model was motivated both by the desire to begin with a simple model, as well
as the need to verify the implementation, particularly for the turbulence modeling. For this reason, it
could most easily be compared to open source CFD simulations* that had been run over the Boeing
bump geometry, which provided the initial/boundary conditions for the problem. The following subsec-
tion will discuss the boundary conditions, while subsequent sections will discuss the loss function and
turbulence model that comprise the rest of the model. For the PINN architecture, chapter 3 can be
referenced, and Figure A.1 can be referenced for an overarching description of the processes and their
flow.

Boundary Conditions

To simulate the 2D flow in a channel over the Boeing bump, the domain in Figure 4.4 was established,
with an inlet on the left, and outlet on the right. The inlet boundary specifies the inlet velocity (M = 0.2),
and turbulence variable (), whose value was fixed corresponding to the inlet Reynolds number of
Re = 3 - 109, determined from the relation Re; = % Since velocity was fixed at the inlet, static
pressure was fixed only at the outlet to the atmospheric value P, = 101325 [Pa].

The top and bottom boundary conditions represent the floor and ceiling through a no-slip condition,
respectively, where horizontal velocity, u, and vertical velocity, v, are fixed to 0.

Shttps://turbmodels.larc.nasa.gov/0Other_exp_Data/speedbump_sep_exp.html
“https://turbmodels.larc.nasa.gov/index.html
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Figure 4.4: Boundary conditions as used in the OpenFoam simulations®(left) and replicated domain for the PINN (right)

Notably, there are certain differences between the boundary conditions imposed in Figure 4.4, specifi-
cally regarding the size of the domain. Due to the relative expensiveness of training a PINN compared
to a RANS simulation, it was necessary to conserve the computational effort by limiting the domain
size. Furthermore, the domain enforced in the current study has been produced to match the geometry
of the wind tunnel experiments (e.g. cross-section dimensions), owing to the need for experimental
data integration. This extends also to the exact curvature function describing the surface of the bump,
which differs slightly between numerical and experimental campaigns. For this reason, some inherent
differences can be expected between 2D results produced by the PINN and by the CFD solver, further
discussed in section 5.1.

Physical Data Integration

The primary selling point of PINNs (as well as Physics-Informed Machine Learning methods in general),
remain their aptitude for physical data acquisition. While possible in conventional CFD solvers, it cannot
be disputed that the PINN method involves a drastically simpler approach to integrating experimental
data.

In similar fashion to the integration of boundary conditions (through generation of collocation points at
domain locations where conditions are known), the data can too be integrated into the PINN domain.
This is shown in Figure 4.5, where multiple planes of streamwise (U-component) velocity are integrated
over the bump boundary, in conjunction with boundary conditions (blue).

Shttps://turbmodels.larc.nasa.gov/index.html
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Figure 4.5: 2D, 2-component PIV streamwise velocity data over bump centerline, capturing incoming flow (from left to right:
x-580, x-738, x-867), and downstream flow data (A & B plane). Nomenclature is consistent with source of data in [10, 13, 14]

As shown in the figure, data acquisition remains as straightforward as the prescription of boundary con-
ditions, since, their introduction to, and evaluation within the neural network remain the same. Use of a
uniform coordinate system centered at the bump apex ensures alignment of data with no-slip boundary
condition imposed over bump surface. The nomenclature of the various PIV planes is consistent with
that of the original experiments with which they are produced [10, 13, 14]; with numbers for upstream
data indicating distance in [mm] from front splitter plate, located at /L = —1, where L = 0.9144 [m].
Planes A and B begin at z = 0.022 and = = 0.272 [m], respectively.

Physics-Informed Loss Formulation

The third and final component, which distinguishes the PINN method from physics-unaware methods,
is the introduction of collocation points upon which PDE residuals are to be evaluated. As supported
by recent works [42], these can be best distributed in a pseudo-random manner, though the spacings
between these points can be fit to "mesh” a certain geometry more appropriately. Figure 4.6 displays
an example of 2601 collocation points pseudo-randomly distributed over a 4 x 0.5 [m] domain, mirroring
that of the experimental test section. In reality, 10201 collocation points were used for the 2D simulation,
however this image serves to display the relative easy of generating a grid of points when compared
to the meshing requirements of CFD methods. To provide sufficient collocation point density over the
bump and lower surface, an exponential spacing is placed in the y-dimension. The density of these
collocation points can best be compared to the mesh that a typical CFD solver would require, and
similarly a sufficiently refined representation is required for optimal results. Particularly due to the
efficient computation of derivatives using the autograd method, excessively sparse points can further
hinder the accurate computation of partial derivatives, introducing errors into the optimization.
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Figure 4.6: Collocation points distributed across domain, with exponential spacing in y-dimension indicating coordinates where
PDE residuals are evaluated and returned as loss to PINN.

The governing equations of relevance to this investigation are the 2D Reynolds-Averaged Navier Stokes
equations, depicted Equation 4.2. In this sense, the governing equations allow the PINN to intelligently
interpolate over the domain at points where boundary conditions or data are not available to provide
information.

V-U:el

_ (4.2)

p(U-VU) + Vp — uV?U - V- (—p(u't)) =
While the object of this investigation is not to replace contemporary CFD methodologies, it is most
closely comparable to a RANS methodology, which was the justification for this choice of governing
equations. Given the unclosed terms within the RANS equations, it was therefore necessary to include
a turbulence model, for which the Spalart-Allmaras model was chosen.

Turbulence Modeling & Verification
The Spalart-Alimaras (one-equation) model is governed by the transport equation for the eddy viscosity-
like quantity, for which it was chosen, v:

o 0w - Ch1 P\ 1[0 N v O
E"‘“J%j = cp1(1 = fr2) SV — [Cwlfw - ?ftQ} (d) +- {ax] {(V+V)8:Ej} +Cbzamicfm} (4.3)

where:

v is the modeled eddy viscosity-like quantity, ¢ is time, z; and u; represent spatial coordinates and
velocity components, respectively, d is the distance to the nearest wall, v is the kinematic viscosity of
the fluid, Cy1, Cy2, Cy1, o are model constants, and S is the modified strain rate, given by:

S=5+ f'u2; (44)

1%
K2d?
for which S is the strain rate magnitude, given by:

S = 1/25:;5:5, (4.5)
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and §;; is the strain rate tensor, given by:

- 1 8ul 8Uj
5i =73 (axj + axi) . (4.6)

The damping functions f,, and f,» are defined as:

1/6 ~
fwg[glﬁ—:_cf”?;] / . g=714 cua(r® —7), r:ﬁ, (4.7)
fvzzl—ﬁ, ng. (4.8)
The model constants are:
Cp1 = 0.1355, Cy2 = 0.622, K = 0.41,
Cypl = % + (14 Cy2), o=2/3, Cw2 = 0.3,
Cw3 = 2, for = 1.4.

While various implementations and variations of the Spalart-Allmaras model exist, the NASA turbulence
page was used as a baseline and source of information. The purpose of the 2D model, remained only
to verify the turbulence model selected, and therefore consistency with the turbulence model used in
the OpenFoam simulations was the primary criteria.

Regarding its inclusion in the Physics-Informed Neural Network, its contribution came in the form of
another loss variable:

o . N2 1[0 N v O
uja% = cp1(1 — fi2) SV — [Cwlf’w - Cblftz} (;) + [ {(V+l/ V} +Cbzyy} = €3 (4.9)

; 2 - oz, oz, Os O,

The outcome of the 2D verification campaign is discussed in section 5.1. The creation and evaluation
of a successful 2D model remained crucial to the eventual expansion to a 3D model, as will be seen in
the subsequent chapters. To recall the way in which these three components are summed into a unified
loss for the PINN to train upon, chapter 3 provides the architectural diagram of the PINN designed for
this exercise and the relevant equations that comprise the loss function. The 2D PINN architecture
differs to the 3D architecture only in the absence of the 3rd dimension, z, and its velocity variable w.
As such, the 2D PINN case accepts two (x, y) coordinates as input and only outputs (u, v, p, D).
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4.2.2. 3D PINN Model

Building upon the 2D PINN model, only a minimal number of changes were required in achieving a 3D
PINN model, which are outlined in this section. The simplest modification came in the PINN architecture,
which required only an additional input variable (z-axis coordinate), and an additional output variable
(w-component velocity. The most involved modifications came in the form of boundary condition and
data integration, as well as re-fitting various hyperparameters. These will be discussed in appropriate
detail in the following sections.

Modifications to Domain & Boundary Conditions

To visualize the 3D domain, the ParaView software was used and an STL file of the Boeing bump
geometry was imported to provide context to the flow. The geometry overlaid with collocation points
to be evaluated by the PINN is shown in Figure 4.7. Similar to the previous 2D case, the collocation
points follow an exponential distribution giving increased density at lower y-coordinates. This is done
to provide sufficient representation in the boundary layer of interest over the bump surface, owing to
the need for accurate evaluation of partial derivatives. As such, a compromise was required, allowing
a sufficiently dense distribution to be spread over the lower surface while not sacrificing the required
density to accurately represent the upper boundary layer. The distribution of collocation points is also
increased over, and slightly after the bump apex, to adequately represent the regions of interest.

Figure 4.7: Front, downstream view of collocation points through bump channel (left) and side view (right), with exponential
sparsity distribution.

On the Boundary Layer Resolution (y+ criterion) and Convergence Study

In a CFD study, it would be necessary to perform a convergence study, varying the mesh count over
simulations until the error no longer diminishes, verifying convergence of the method. A similar method
must be implemented in training PINNs, where the collocation point count is increased until no further
benefit is witnessed. While this study was limited in compute power, the need to investigate conver-
gence was respected, and the results are described in section 5.2. Similarly, owing to the original
interest to model the viscous sublayer of the boundary layer, the y+ criterion was determined such that
it could be fulfilled. While this study did not contain the required computational power to effectively
resolve the boundary layer (discussed also in section 5.2 and 6), the consequences are noted.

Due to the symmetry of the domain and the need for efficient computation, the domain was cut in half
across the axis of symmetry. To correctly enforce the symmetry at the center-line, a symmetry boundary
condition was imposed, as shown in Figure 4.8. The same figure also displays the no-slip boundary
condition (u, v, w = 0) which was implemented over the surfaces of the bump, sidewalls and ceiling.
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Figure 4.8: No-slip boundary condition enforcing zero velocity (u, v, w = 0) at surfaces (left) and symmetry boundary condition
enforcing 2D flow (w = 0) at z = 0 (right).

Not shown but of equal importance to the simulation of a correct solution are the inlet and outlet bound-
ary conditions. These remain identical in magnitude to the 2D case, with the inlet boundary condition
prescribing the inlet velocity (parallel flow, u© = u..; v, w = 0), while the outlet fixes the static pressure

(p = po)-

Correct implementation of the boundary conditions is crucial to a successful simulation, not unlike CFD.
Having verified the proper implementation in 2D, the expansion to a 3D domain only consisted of the
inclusion of one additional dimension, and could be easily implemented.

Modifications to Data Integration

Similar to the inclusion of 3D boundary conditions, additional data could be included for a 3D domain.
Figure 4.9 displays the inclusion of all PIV planes for which streamwise velocity measurements were
taken. In the downstream segment of the bump, a total of 4 planes of 2D2C PIV measurements were
integrated. Upstream, 3 additional planes of 2D2C SPIV measurements were integrated, however
along the same (center-line) axis.

— 1.0e+02

Figure 4.9: Streamwise center-line velocity data consisting of 2D2C PIV downstream of bump and 2D2C SPIV upstream data
of bump (left), shown alongside multiple spanwise planes of downstream 2D2C PIV.
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In similar fashion, the vertical component of the velocity (v) can also be shown, with which the PINN
was also trained, shown in Figure 4.10. Important to note is that the PINN receives no information
about the spanwise velocity (out-of-plane component), which it is to interpret from 2D data exclusively.

Figure 4.10: Vertical center-line velocity data consisting of 2D2C PIV downstream of bump and 2D2C SPIV upstream data of
bump (left), shown alongside multiple spanwise planes of downstream 2D2C PIV.

Finally, the third data component with which the PINN can be trained is the static pressure collected
over the surface of the bump, shown in Figure 4.11, where a clear pressure minimum can be seen over
the apex of the bump. Similarly, in the upstream region of the bump, an increase in pressure can be
observed, owing to the incoming velocity entering the throat of the channel.

Figure 4.11: Static pressure measured using taps over the Boeing bump surface recreated from [14].

Indeed, the approach to data acquisition did not differ much from the 2D case, and exemplifies the
PINN use case for its straightforward ability to assimilate a variety of data types. Ultimately, it will be of
interest to discuss with how little information the PINN can operate, and which data types are the most
crucial to a successful simulation (see section 5.3).

Modifications to Governing Physical Equations

The expansion from 2D Reynolds Averaged Navier Stokes equations to a 3D PDE consists only of
adding the third component equation. As such, this was the simplest aspect of the PINN to expand to a
3D solution. Due to the existence of a third dimension, it was then possible to extend this investigation
and predict the direction of the surface shear stresses of the flow. The surface shear (traction vectors)
are related to the first spatial derivatives of the flow velocity in every axis, namely through the following
definition:

Oui | Oy
8xj 8:131

Ty = —p-ni + p¥;( )n; (4.10)
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The velocity gradients are already available from the PINN method, due to their calculation for the
RANS equations used in Equation 4.2. In expanded form, these stress tensor components take the
following notation:

ou ou Ov ou Ow

T, = (_p+2,u%)nx+,u(afy+ %)ny“"ﬂ(@“r%)nz (4.11)
ov ov Ou ov  Ow

T = (— 22— — 4+ — —_— 4 — 412
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T. = (*p+2u§)nz+u(£+$)nz+u(@+afy)ny (4.13)

In fulfillment of the ultimate objective in this investigation, these equations allow for the computation of
the shear topology over the surface of the bump, only available in a 3D campaign.

Since they provide only a qualitative insight into the flow behavior, their magnitudes are normalized,
and combined into a normalized vector to provide a general flow direction with no extrapolation on the
magnitude of the surface shear stress. The need for normal vectors (n) at every coordinate was fulfilled
from previous data obtained during the collaboration between Caltech and Boeing [41].

4.2.3. Preliminary Analysis and Architectural Considerations

This section will discuss the architectural considerations that proved to be important in the search for a
global solution. While the base PINN architecture was proposed to be simple, the desire to apply such
networks to more advanced problems accompanies the need for more advanced network architectures.
Stemming in equal parts from a computational cost and accuracy perspective, certain alterations to the
architecture were explored in attempts to reduce the RAM limitations, improve training time and improve
overall convergence. As will be discussed in the remainder of this study, the limitations imposed by
the RAM overhead remain a significant hurdle in the PINN use-case, ultimately limiting the accuracy of
results and convergence, as well as hindering the training time.

Model Parallelization over Multiple GPUs

The most obvious solution to maximize the computational resources available for this investigation was
to use 2 GPUs instead of a single GPU. Available for this study were two Nvidia RTX A5000 GPUs,
upon which the 3D model was run when Google Colab’s A100 GPUs provided insufficient RAM for
training. A single Nvidia RTX A5000 GPU offers 24GB of RAM, with two GPUs offering RAM just short
of 50GB.

For this reason, model parallelization was prompty investigated, and implemented. When discussing
parallelization, it is important to differentiate between model parallelism and data parallelism:

» Model parallelism involves modifying the neural network architecture to manually (or in an auto-
mated fashion) distribute the layers and nodes over two or more GPUs.

+ Data parallelism involves distributing the training data, allowing the network to process multiple
chunks of information simultaneously.

Model parallelism remains more straightforward and applicable for PINN problems due to the need to
represent the full domain over every epoch. Splitting the data, as with data parallelism, would require
enforcing boundary conditions for each tranche of data which has been distributed. Model parallelism,
on the other hand, continues to process the entire dataset, with different devices responsible for hosting
different parts of the neural network. This remains more straightforward to implement, since the training
data can remain on a single device, provided the input and output layers of the neural network reside
on the same device. This was the approach that was implemented to access the RAM of both GPUs,
where the training data was introduced to the first layer of the PINN, which resided on GPU 0, and then
passed the output of the forward pass to the subsequent layers, which resided on GPU 1. The entire
"body” of the PINN was then trained on GPU 1, until its final output was passed to the final two layers,
which again resided on GPU 0. Figure 4.12 displays a diagram of the distributed network over 2 GPUs.
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Figure 4.12: Sample diagram for network PINN with 12 layer architecture distributed over 2 Nvidia RTX A5000 GPUs.

Noteworthy is that while this significantly increases the available RAM, training time is hindered due
to the need for both GPUs to communicate the information between each other. While the increased
time as a result of this implementation over 2 GPUs was negligible, it remains important to note if
considering a larger GPU cluster. Accordingly, this parallelization offered double the RAM allowance
compared to a single GPU, approximately allowing for the choice of increasing the network size by
factor 2, or increasing the number of collocation (evaluation) points by factor 2. Following subsections
will discuss the trade-off between these two avenues, and problem-specific consequences on training
time, convergence and accuracy.

Trade-off on Collocation Points and PINN Size.

Following the limitations imposed by the RAM availability of the two RTX A5000 GPUs that were used
for training, a trade-off arose between the number of collocation points and the size of the PINN. These
parameters come at odds with another, with the former dictating the accuracy of the physical loss
term (whose terms depend strongly on the spatial derivatives of the velocity and pressure variables in
question). Therefore, an insufficient coverage over the entire domain will limit the model’s accuracy in
data-deficient locations. Conversely, the size of the neural network directly affects the model’s ability to
attain sufficient expressivity as a universal approximator; an insufficiently large model will be incapable
of expressing the complexities of a turbulent 3D flow. Finally, on either end, significant computational
cost is to be expected, with additional neurons/layers as well as collocation points incurring significantly
more resources and training time.

For this reason, it was imperative to track the effects of these parameters on the overall error of the
solution. This encourages the use of the most optimal parameters, which in PINN studies remains
highly problem-dependent.

The first parameter varied is that of the node count (the width of the Multi-Layer Perceptron network).
Due to the industry practice of increasing this parameter in powers of 2 [43], it came at significant cost
of compute power. For this reason, an increase in node count by factor 2 accompanied a decrease in
collocation point count by the same factor. The effects are summarized in Figure 4.13.
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Figure 4.13: Comparison of training performance as PINN hidden layer count is varied.

The figure above seems to unambiguously reinforce the relative importance of architecture node count
over collocation points, and the benefits of a larger network cannot be denied. Nevertheless, the col-
location points density directly affects the accuracy of velocity/pressure gradient computation. Further-
more, it remains possible that the lower boundary of expressiveness was limited through the architec-
ture, beyond which further improvements could only be yielded through increased collocation points.
Nevertheless, at this stage of computational effort, it remains undeniable that increasing the PINN size
unlocked significant gains in decreased loss.

Similarly, one can assess the effects of increasing the number of NN layers, while maintaining a con-
stant node and collocation count. The results of such a study are shown in Figure 4.14, where the
training losses are shown for various layer counts for the best performing combination of node and
collocation count outlined previously. Notable is that increasing the layer count does not affect com-
putational cost as adversely, since improved expressivity are attainable through integer increments of
hidden layers. As such, it was only necessary to increase by one to two layers at a time, and diminishing
returns were observed.
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Figure 4.14: Comparison of training performance as PINN hidden layer count is varied.

Important to note is that despite the apparent improvement in total error reduction by virtue of the
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increased number of hidden layers, this is not indicative of improved performance when compared to
the validation data. When plotting the data produced by the PINN with 12 layers, it was discovered that
it trained towards a trivial solution, where the z-axis velocity, w, was predicted to be 0 throughout the
entire domain. While this is likely to be a manifestation of the random initialization of collocation points,
it remains important to note that preliminary analysis only provides a limited view to the PINN’s final
performance.

Table 4.1: Overview of training times per architectural configuration.

NN Depth | NN Nodes | Fourier Frequency | Batch Count | Collocation Points
Value 9 32 2 25 217
Range 8-12 32-256 1-10 1-50 215 _ 218

Ultimately, a PINN architecture with 8 hidden layers and 32 nodes was decided due to the diminished
returns observed when increasing the architecture depth. Instead, offering the computational resources
towards an increased collocation point count offered far more return on investment, and was selected for
the remainder of this investigation. Nevertheless, the possibility remains that due to the need to trade-
off collocation points for network size, that an insufficient number of collocation points were provided
to fully exploit the expressiveness of the larger networks. For this reason, the subsequent section
discusses methods employed to increase the domain coverage with use of fewer collocation points.

Mini-Batching and Batch Sizes

A common method in machine learning is to deploy the training data in smaller batches to reduce the
overhead during a single training epoch/cycle. Since PINN applications typically require a full domain to
be introduced to the network, "mini-batching” limits the minimum collocation points that can be supplied
for successful training. Nevertheless, to provide a larger coverage of the domain than RAM-limits allow,
conventional methods cycle the coordinates of these collocation points in every epoch to allow the PINN
to train over more spatial locations. In situations where the RAM-limits allow for more collocation points
than necessary, this methodology can also be used to compromise the number of collocation points
used in a single training epoch, while still maintaining domain coverage.

An additional consequence of the shuffling of these collocation points per epoch (or several epochs),
is the natural introduction of noise during the training process. This (as with many hyperparameters)
provides another optimization problem, where excess noise can prohibit training, but an appropriate
degree can improve training and encourage the network to explore different paths of optimization (and
reduce the risk of overfitting).

Due to the increasing number of hyperparameters in question, a quick study was performed on the
batch size to explore its optimal upper and lower limits.
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Figure 4.15: Comparison of training performance as quantity of sub-batches (collocation points) are varied.

Optimally, a robust multi-variable analysis would be performed due to the co-dependence between
variables such as batch size, network size, collocation points, etc. In the interest of time and compu-
tational resources, this study will only provide a brief study on these variables insofar as it related to a
better validation error with regards to the test data. chapter 6 will suggest various recommendations to
improve the search for an optimal network size and its related parameters.

Choice of Loss Function

The structure of PINNs with their evaluation of the PDE residuals allows for active loss tracking through-
out the entire training process. In other words, PINN’s "learning” can be observed through time, pro-
viding insight into which areas of the domain remain difficult to resolve accurately, and whether a local
or global minimum is being targeted. At each epoch, the neural network estimates the loss landscape
through backpropagation of the linear sum of all loss terms. As a result, the exact method of computa-
tion of these loss parameters are highly influential on the loss landscape, and conducive to whether the
PINN may approach a local or global minimum. While the literature recommends the use of a Mean
Squared Error (MSE) function to evaluate the loss terms, this investigation discovered that a Root
Mean Squared Error (RMSE) function is more conducive to a balance landscape, and the approach to
a global solution.

To illustrate the importance of this, Figure 4.16 displays two identical plots of the z-momentum equation
loss over all collocation points during late-stage training. The left figure, displays what appears to be
a nearly uniform loss landscape, despite the scale showing a large error (existing in the farfield of the
domain). When clipping the error and removing the outlier loss, the right plot is obtained displaying the
unresolved z-momentum equation. The strongly defined plane on the down-sloping region of the bump
shows the error over one of the validation planes.
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Figure 4.16: Comparison of identical loss landscape with (left) outlier losses included and (right) outlier losses removed.
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In relation to the loss functions described previously, it was discovered that applying a RMSE function
as opposed to a MSE function, returns a more homogenous loss landscape to the optimizer, and avoids
the targeting of these outlier losses. This realization was crucial in the approach of a global solution,
due to the relative unimportance of errors in the farfield, compared to the post-bump flow region. Other
candidates for the loss function often implemented are the Huber loss function or the log function;
empirically, the RMSE function worked best in this case, though further investigation is necessary to
determine whether this is a problem-specific observation.

Choice of Optimizer

The choice of optimizer is equally crucial in the search for a global solution to PINN problems. Common
in modern PINN literature is to begin the training with an Adam optimizer, and then pivot to L-BFGS
as an optimizer after several thousand epochs. This is well described by authors in [44], where the
relative performance of each optimizer, as well as their combination is assessed. Ultimately, it remains
important to note that the performance of these optimizers is (as with many PINN problems), case-
dependent. In this investigation, the pivot to an L-BFGS optimizer showed little promise in further
reducing the loss as literature might suggest.

The theory-based justification for this change of optimizer argues that L-BFGS being a quasi-Newtonian
optimizer targets local minima. This, coupled with its computational expensiveness as a result of its
repeated approximation of the Hessian at every iteration, make it a better candidate for late-stage train-
ing when the global solution is approached, and fewer iterations are necessary. Adam, as a gradient-
descent optimizer instead avoids such saddle points that quasi-Newtonian optimizers struggle with
[44].

Ultimately, as it relates to this investigation, the Adam optimizer was used in the entirety of the train-
ing. Coupled with the fact that no noticeable benefit was observed (at the cost of significantly greater
computational effort), the PyTorch implementation of L-BFGS requires the use of a single GPU, which
was no longer feasible when the model was split over 2 GPUs. The lack of benefits observed from
the L-BFGS optimizer in this investigation did not warrant the solutions to either, write an independent
quasi-Newtonian optimizer, or employ a different machine learning library. Nevertheless, one must
conclude that the lack of success of the L-BFGS optimizer may stem from an ill-formalized optimiza-
tion where the Adam optimizer never escaped a saddle point, explaining the lack of benefits of the
quasi-Newtonian algorithm.

Random Fourier Features

Implementation of a Fourier transform prior to the first hidden layer of the PINN has become common
practice and crucial in this study. The simple justification for this modification of the standard MLP
architecture of the PINN is an ability for the PINN to approximate non-linear solutions that are linearized
in the Fourier space. A reverse Fourier transform is not necessary, since the MLP learns to implicitly
perform the reverse Fourier transform, though adaptations to this implementation exist where a manual
reverse transform is performed, or alternatively, consisting of multiple transformations.

The effects of a well-tuned Fourier transform in the PINN is best visually observed in the 2D model,
through which is was initially calibrated. section 5.1 discusses the differing results based on this pa-
rameter and its importance for a convergent solution.

Learning Rate and Decay Rate

The benefits of an exponentially decaying learning rate scheme are well documented in PINN literature
[44], and much effort was therefore not dedicated to the optimization of this parameter. A slightly larger
than usual initial learning rate of I» = 5 - 10~ was employed to accelerate initial training, since lower
learning rates empirically showed the same outcome despite a higher time burden. Additionally, the
use of a higher learning rate is conducive to the optimizer’s ability to approach the global minimum of
the solution as opposed to trending towards a local minimum. The specific decay algorithm(s) used in
this investigation are detailed in Appendix B.

Overview of Network Parameters
In summation of the architectural decision outlined in this chapter, it is relevant to provide an overview
of those most relevant to achieving convergence towards the global minimum solution. The findings



472. Machine Learning Methodology 36

are summarized in Table 4.2, where the hyperparameters most relevant to the proper convergence are
displayed.

Table 4.2: Overview of relevant hyperparameters relevant for tuning

Parameter | NN Depth | NN Nodes | Fourier Frequency | Batch Count | Collocation Points
Value 9 32 2 25 517
Range 8-12 32-256 1-10 1-50 515 — 518

The parameters above can be likened to tuning knobs in a control system, where the PINN prediction
is highly sensitive to its arguments. For each parameter, the optimal value for this investigation is
displayed, as well as the appropriate range supported by findings in literature. It is important to note
here that the size of the neural network (nodes, depth), as well as the number of collocation points are
best maximized when possible. Only the computational cost limits this variable from being maximized,
and no hindrance to performance is exhibited at excessively large values. Conversely, excessively
large values for the Fourier Frequency and batch count can severely affect the network’s ability to
convergence to the correct minimum, or converge at all.



Results & Analysis

This chapter will document the PINN prediction results after full training cycles and optimized hyperpa-
rameter selection. The goal of this investigation remains to predict a fully developed 3D velocity and
pressure field from 2D experimental data. It is necessary to note that the results presented in this chap-
ter are obtained by training on publicly available data obtained from the NASA turbulence modeling
resource’. This was decided from the need to maintain consistency between training and testing (vali-
dation) data, which for the M = 0.2 case (demonstrating greatest separation of flow), was not able to
be produced in the Lucas Wind Tunnel at Caltech. The results will be documented both for the 2D and
3D cases studied, and an ablation study will be included for the latter, allowing conclusions to be drawn
regarding the lower limit of data required for a successful reconstruction. Finally, a subsection will be
dedicated to the prediction of surface shear stresses and the coefficient of friction over the geometry.

5.1. 2D Vector Field Reconstruction

To ensure a functional data acquisition and training pipeline, the model was first examined over a 2D
domain, as discussed in section 4.2. The prediction of an accurately developed boundary layer, and
correct representation of flow reversal remained difficult, despite provision of PIV-data. This allowed
exposure to the behavior of the PINN in an environment where errors were easy to diagnose. Fur-
thermore, errors in PINN prediction recognizable by the eye test, would go on to present themselves
in similar manners in 3D results. An example of this, is shown in Figure 5.1, where two simulation
predictions of streamwise velocity are shown, differing only in 1 hyperparameter setting. Notably, this
setting was the frequency of the Fourier transform applied to the PINN, shown as the first layer of the
MLP architecture in Figure 3.2. The intuitive explanation of the Fourier transform comprising the first
layer of the PINN architecture, is the capacity for the PINN to express increasingly non-linear solutions
(controlled by the weights of the Fourier transform). In essence, the PINN is able to more easily approx-
imate non-linear basis functions which are linearized in the frequency domain, allowing larger gradients
in the spatial domain to be represented. As such, the frequency of the transform, as a proxy for the
non-linearity of the solution can allow higher frequency solutions to be modeled, as required for the
correct representation of boundary layer thickness, for instance.

"https://turbmodels.larc.nasa.gov/0ther_exp_Data/speedbump_sep_exp.html
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Figure 5.1: Comparison of 2D PINN streamwise velocity prediction without (left) and with (right) effects of Fourier transform.

The larger boundary layer on the upper ceiling can be attributed to the overlapping datapoints, as well
as increased sparsity of collocation points with increasing y-axis.

The greatest conclusions obtained at the 2D stage of training was the following relation which strongly
dictated the accuracy of the prediction:

Ldata , F(w)) (5.1)

Ephysics

e o< f(

where, L., and Lppysics dictate the weights of the data and physics losses, respectively, while F
represents the Fourier transform, with input frequency, w. This echoes a similar conclusion discussed
previously, following the works of [34], where authors conclude that the natural limitations of data-
driven methods such as PINNs remain the availability of training data itself. As such, of the relevant
parameters Ny, Negns, @and Nyq1q, the latter remains the most influential in the optimization towards
a globally low error solution.

Extending from the previous plots, the normalized eddy viscosity over the apex of the bump is shown
in Figure 5.2. Important at this stage of verification, is that the trend was correctly matched, as well as
order of magnitude. Note the difference in apex height (0.075 vs 0.05), stemming from different bump
geometries used in the OpenFOAM campaign vs PINN study. The PINN study could not modify its
geometry to that of the OpenFOAM study due to the need to match the training data (obtained using
experimental geometry). For this reason (and others elaborated on subsequently) an exact recreation
of the turbulence variable in both form and magnitude was not deemed necessary before advancing to
a 3D model.
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Figure 5.2: Comparison of normalized eddy viscosity over bump apex predicted by 2D PINN (left) and 2D OpenFOAM
simulation (right). Differences in y-axis are due to slight differences in Boeing bump geometry used in experimental and CFD
campaigns.

Ultimately, due to the difficulty in correctly replicating the results of the OpenFOAM simulations, fol-
lowing from the use of an independent turbulence model, and inherent differences between the ex-
perimental and numerical model/domain, a correct trend was sought instead of a exact reproduction.
Furthermore, due to the reliance of the turbulence variable on the velocity gradients (through the Boussi-
nesq assumption only), it was unclear whether a 1:1 recreation was achievable. This stems from the
efficient approximation of partial derivatives using the autograd function, and the inherent numerical
accuracies from such a method. This raised the idea that experimental data may be required for the
correct modeling of the turbulence variable (discussed further in section 5.2).

The purpose of the 2D investigation remained largely to calibrate the model, and gain familiarity with
its behavior before advancing to a 3D model. For this reason, and due to the lack of validation data for
a 2D prediction, the simulated velocity field shown in Figure 5.1 was deemed to pass the eye test, and
sufficient at the 2D stage of development.

To confirm that much of the accuracy had been realized, a brief ablation study was performed on the
size of the neural network (nodes vs. layers), presented in Figure 5.3.
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Figure 5.3: Comparative study of architectural size (layers, nodes) and the corresponding effects on streamwise velocity
reconstruction accuracy.
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As can be seen, this confirms the relation presented in Equation 5.1, showing that NN size improve-
ments only yield limited improvements, after which hyperparameter optimization is required for lower
error. Also important to note is the tendency towards "higher-frequency” solutions observed in the re-
sults of the smaller architecture. This highlights the co-dependence between hyperparameters such
as the Fourier layer and the network architecture, and thus the need to consistently re-optimize the
network parameters.

Not shown in Figure 5.3 are larger combinations of NN nodes (128, 256) and layers (8, 10, 12) for which
no noticeable difference was observed to the prediction made with 64 nodes and 6 layers. Similarly,
and as done in CFD, a convergence study was similarly performed over collocation point quantity,
where no noticeable improvements were yielded after exceeding 10,000 points for this domain size.
For simulations of this size, a training time of 3-6 hours was expected, depending on network size,
with collocation count remaining constant and a training cycle of 12,000 epochs. These findings are
summarized in Table 5.1, where one can see that the largest impact on training time comes from the
large increase in node count:

Table 5.1: Training times for 2D PINN model, trained on Nvidia A100 using 10,000 collocation points for 12,000 epochs.

4 Layers | 5 Layers | 6 Layers | Units
24 Nodes 214 269 315 [min]
64 Nodes 596 637 724 [min]

The takeaway from this table is the observation that layer count has diminished effects on training
time when compared to node count. Furthermore, due to the quick diminishing effects of layer count
increases, these are most easily maximized for a set cost, though it must be noted that vanishing
gradients owing to excessive layers can have detrimental effects on training as well. Under idealized
circumstances, both architectural characteristics are optimized.

5.2. 3D Vector Field Reconstruction

For the depiction of 3D PINN predictions, the Paraview software is used again, where the entire flow
field can be easily viewed in vector form. Figure 5.4 shows the prediction over the entire bump-in-
channel geometry, with a fully developed boundary layer aft of the bump. The vectors represent the
resultant velocity, colored by the streamwise velocity magnitude to display the strong sense of flow
reversal commensurate with experimental findings.

0
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Figure 5.4: Sideview of 3D PINN predicted resultant velocity flow field, colored by streamwise velocity, u, to highlight
downstream flow reversal.
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The flow can also be colored by different magnitudes, such as the vertical/spanwise velocity, pressure
and turbulence viscosity. These are shown in Figure 5.5, and empirically also show consistency with
the experimental data.
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Figure 5.5: Sideview of 3D PINN predicted resultant velocity flow field, colored by vertical velocity, v, (left), and pressure, p,
(right)

To provide insight into the training process of the PINN that facilitated these results, Figure 5.6 displays
the evolution of the training losses over time. A total of 80,000 epochs are simulated, over which
all loss components can be seen to decrease, eventually plateauing long before the 80,000 epoch
mark. This excessive training time was used both to resolve the smaller scales which are crucial to the
reconstruction accuracy of the flow, as well as to confirm convergence of the simulation.
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Figure 5.6: PINN training loss over 80,000 epochs to demonstrate converged behavior.

The plot of training loss is among the most crucial to observe during training to ensure the convergence
towards a global minimum. An ill-posited problem may convergence towards a minimum that does not
satisfy all loss criteria, and this would be observed in the above plot if all losses would not decrease
over epochs. The training time for a simulation representative of these results totaled approximately
5,000 minutes.

5.2.1. 3D Flow Field Validation

Following from the successful empirical recreation of experimental data, the next step was to validate
the results compared to experimental data upon which the network was not trained. In other words,
the PINN’s performance was assessed on data it had not previously seen, truly assessing whether the
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recreated flow field was accurate. Figure 5.7 displays the locations of the PIV planes which were used
for downstream training, and those used for testing.

Figure 5.7: Streamwise (left) and spanwise (right) locations of PIV planes used for training and testing, respectively [9].

While the training data contains only 2D2C velocity data upon which the PINN was trained, the test
data contains 2D3C stereo PIV data, allowing a quantitative assessment to be made of all 3 velocity
components predicted by the model. The spanwise planes used for validation were plotted alongside
the PINN prediction at those locations. Figures 5.8, 5.10, and 5.12 display these for all velocity compo-
nents, namely streamwise, u, vertical, v, and spanwise, w. Each plot contains red dashed, vertical lines
indicating where the streamwise training data was located, suggesting regions where the prediction is
expected to be consistent with the experimental results.

In the plots that follow, one can see the empirical assessment of the flow field reconstruction in all
dimensions, in an upstream view. For all velocities shown, the plane corresponds to the third plane
downstream of the bump as depicted in Figure 5.7. In distances, this corresponds to a location at
x/L = 0.306 post-bump. It should be noted that the final plane was removed from the study due to an
error in the experimental data obtained leading to inconsistency between the spanwise and streamwise
data. The prediction, and corresponding error plots, for the remaining planes can be found in the
appendix (Appendix C).

Due to the need to numerically assess the numerical accuracy, the error between the prediction and
experimental results were computed over each spanwise plane. To deliver a statistical representation
of the overall plane, box and whisker plots were created to assess the performance at each location.
The results of these are displayed in Figures 5.9, 5.11, and 5.13 for each velocity component.

u from PINN Prediction u Velocity from PIV Data

0.10 1 0.10 1

0.08 4

0.08 4

0.06

Y Coordinate
Y Coordinate
u Velocity [m/s]

0.04 4 0.04 4

0.02 4 0.02 4

] 1

T T T T T T T T } T T T T T T T

0.00 002 0.04 006 008 010 012 014 016 0.00 0.02 004 006 008 010 012 014 0.16
Z Coordinate Z Coordinate

Figure 5.8: Side-by-side comparison of predicted (left) and experimental (right) streamwise velocity flow field at distance
z/L = 0.306 post-bump apex.
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Figure 5.8 displays the PINN prediction alongside the experimental data obtained from the spanwise
PIV campaign. In this example, one can see the qualitative success of the reconstruction. Red dashed
lines indicate the locations where 2D2C PIV data were fed to the network for training; zones between
these dashed lines are interpolated solely from the governing equations.

Percentage error in U Velocity Across Planes

U-Velocity Absolute Error

-] T

Velocity Error [%]

254

-751

Plane 1 Plane 2 Plane 3
Planes

Figure 5.9: Absolute velocity error for streamwise velocity flow field at distance x/L = 0.306 post-bump apex (left), and
box-and-whisker plot of percent error across all planes (right).

Figure 5.9 displays both the absolute error of the reconstruction, as well as box-and-whisker plots for
the reconstruction error over all planes used in the validation study. The boxplot takes the conventional
format where the quartiles and maximum/minima are also displayed for each plane. The whiskers here
are drawn at the 1.5 IQR value, and values exceeding these limits are denoted as outliers. For all
following velocity error plots, the absolute error has been used (ui-ue — Uprea), Maintaining the error
in its base units of [ms~!]. For the box and whisker plots, the mean percentage error (MPE) is used
instead to maintain information regarding the positive or negative direction of the error:

1 Ypred; — Ytrue;
MPE = Nzgilpytif (5.2)

One can notice the overall strong performance at the left (centerline) and bottom boundaries, where
data as well as boundary conditions are provided. Departing from these, the center and right-hand side
of the plot show largest regions of error, where the PINN relies almost entirely on the accuracy of the
governing equations. The boxplot shows that as a percentage, these errors seldom exceed 10%.
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Figure 5.10: Side-by-side comparison of predicted (left) and experimental (right) vertical velocity flow field at distance
z/L = 0.306 post-bump apex.

Figure 5.10 displays the same side-by-side reconstruction for the vertical velocity, v. Again, a qual-
itatively strong reconstruction can be observed, despite an underestimation of the magnitude at its
maxima and minima.
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Figure 5.11: Absolute velocity error for vertical velocity flow field at distance z/L = 0.306 post-bump apex (left), and
box-and-whisker plot of percent error across all planes.

When assessing the reconstruction error, as shown in Figure 5.11, one can see that the variations in
error are less drastic, though a higher maximum percent error is observed than when compared to the
streamwise velocity, u. This could be attributed to the smaller magnitude of vertical velocity, and its
contribution to the loss function dictating the PINN'’s learning.
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Figure 5.12: Side-by-side comparison of predicted (left) and experimental (right) spanwise velocity flow field at distance
z/L = 0.306 post-bump apex.

Finally, discussing the side-by-side comparison for the third velocity component, w, one can see a
more strained reconstruction. Naturally, since no data was used in training the w component velocity,
the PINN relied entirely upon its governing equations to interpret the velocity field. As such, its accuracy
relies on the success of the two prior velocity field reconstructions. While the trend is broadly intact, an
inability in reconstructing the correct magnitudes is shown, even qualitatively.
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Figure 5.13: Absolute velocity error for spanwise velocity flow field at distance /L = 0.306 post-bump apex (left), and
box-and-whisker plot of percent error across all planes.

When quantitatively assessing the reconstruction, one can see an inability to predict the correct velocity
magnitudes, particularly within the lower boundary layer where the largest error is seen. The boxplots
also display a high number of errors deemed as outliers, with most data points being erroneous when
quantitatively compared to the experimental baseline.

To better provide insight to the training process and potentially identify the cause for any discrepancies
in velocity prediction, one can similarly plot the residual losses over the landscape to pinpoint the
specific governing equation that is poorly represented in the solution. Figure 5.14 displays the residual
errors of the governing equations across the first spanwise plane, located at = /L = 0.208.
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Figure 5.14: Visualization of predicted governing equation errors for all components across first spanwise plane
(z/L = 0.208): (a) continuity equation and (b), (c), (d) show momentum equations in x, y, z, respectively.

As one can see, many of the errors in governing equations, particularly across the momentum equations
take on similar forms, with zones of high error being shared across different momentum axes. The same
process can be performed for the remaining planes of interest, shown in Figure 5.15 for 2:/L = 0.250,
and Figure 5.16 for /L = 0.306. One must realize that these provide only localized insights into the
overall loss landscape, which is evaluated over the entire domain for the governing equations.
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Figure 5.15: Visualization of predicted governing equation errors for all components across second spanwise plane
(z/L = 0.250): (a) continuity equation and (b), (c), (d) show momentum equations in x, y, z, respectively.

The second plane, shown above, shows similar coherence across different residual equations, this
time with a larger congruence between the continuity and the y-momentum equation. Nevertheless, all
equations show a region of similar error across the center-line of the domain (z/L = 0.0), where the
physics, boundaries and training data must all be reconciled. Despite this, a strong relation between an
individual loss component and the overarching validation errors could not be identified. This reiterates
the idea that the pursuit towards a global optimum remains necessary, and potentially identifies the lack
of collocation point density or architectural size as the limiting factors in this optimization.
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Figure 5.16: Visualization of predicted governing equation errors for all components across third spanwise plane
(z/L = 0.306): (a) continuity equation and (b), (c), (d) show momentum equations in x, y, z, respectively.

Finally, the third plane is shown in Figure 5.16, where some consistency is shown again in the continuity
and momentum equation in . Notably, these also present the largest residuals errors (note that the
loss of the continuity equation was empirically increased by a factor of 10 before being returned in the
global loss function), which may indicate the reason for their pervasiveness across planes, as opposed
to the remaining momentum equations in y and z. What this section displays above all is the remaining
magnitude of the residual equations at the conclusion of training, clearly indicating a lack of global
convergence. This will be further discussed in section 5.3 and chapter 6, where it may be a leading
contributor to the validation error.

5.3. Minimum Data Solutions and Ablation Study

In the interest of determining the minimum-data solution, several parameters were chosen as part of an
ablation study to investigate the relative importance of various measurement techniques. For simplicity,
this ablation study was limited to only varying parameters based on the scalars they represent. As
such, one study was performed with pressure only, another with PIV data only (center plane), and
another with PIV data only (all planes). The objective of this is to investigate the effect that specific data
types contribute to the overall PINN solution, and obtain insights into the most relevant measurement
techniques.

5.3.1. Training without Pressure Data
First, one can investigate the contributions of the pressure data to the overall solution, and observe the
differences when training occurs without information about the pressure field. The pressure variable
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only appears in the momentum equations in its derivative form across each dimension. As such, it
has less influence over the entire governing equations than the velocity gradients, which are present
on multiple occasions in both the continuity and momentum equations. The velocity field shown in
Figure 5.17, Figure 5.18, and Figure 5.19 display the predicted velocity in the spanwise plane when
pressure data is absent from training, alongside the corresponding error for each plane investigated.
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(c) Third plane (z/L = 0.306) u-velocity prediction and PIV result.
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Figure 5.17: Pressure-absent predicted velocity field for u component across all spanwise planes: (a), (b), (c):
component-wise velocities in X, y, z, respectively, (d): errors across all planes
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(c) Third plane (z/L = 0.306) v-velocity prediction and PIV result.
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Figure 5.18: Pressure-absent predicted velocity field for v component across all spanwise planes: (a), (b), (c):
component-wise velocities in X, y, z, respectively, (d): errors across all planes
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Figure 5.19: Pressure-absent predicted velocity field for w component across all spanwise planes: (a), (b), (c):
component-wise velocities in X, y, z, respectively, (d): errors across all planes
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As can be seen, qualitatively no large differences are observed, due to the reasons mentioned above.
To better identify the effects, a quantitative assessment must be performed. This is best done by
individually assessing the predictions in the streamwise and spanwise directions over coordinates for
which static pressure data exists. These results are displayed side-by-side in Figure 5.20, where the
predicted and real values can be seen on the same axes.
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Figure 5.20: Difference between PINN-predicted and experimentally obtained static pressures over bump surface in
streamwise (left) and lateral (right) axes.

As can be seen, the exact pressure field is not recreated, and this can only be attributed to an inability
for the PINN to sufficiently resolve the momentum equations, in which the contribution of the pressure
through its partial derivatives is uniquely present. Nevertheless, the pressure gradients in both axes,
which are directly fed into the momentum equations, as opposed to the absolute pressure values show
the correct trends. This may be a contributing factor to why the velocity reconstruction can remain
sufficiently accurate.

5.3.2. Training Without PIV Data
Finally, the most data minimal outcome (obtained by training with pressure data only) was shown to be
most difficult in producing a clear reconstruction of the velocity field.

The results are shown below for all velocity parameters in Figure 5.21, Figure 5.22, and Figure 5.23,
respectively:
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(b) Second plane (z/L = 0.250) u-velocity prediction and PIV result.
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Figure 5.21: PIV-absent predicted velocity field for u component across all spanwise planes: (a), (b), (c): component-wise
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(c) Third plane (z/L = 0.306) v-velocity prediction and PIV result.
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Figure 5.22: PIV-absent predicted velocity field for v component across all spanwise planes: (a), (b), (c): component-wise
velocities in X, y, z, respectively, (d): errors across all planes
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(c) Third plane (z/L = 0.306) w-velocity prediction and PIV result.
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Figure 5.23: PIV-absent predicted velocity field for w component across all spanwise planes: (a), (b), (c): component-wise
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As can be seen for the streamwise case, while the correct magnitudes are broadly reconstructed, there
remains a lack of accuracy in the curvature and location of velocity gradients. Due to the lack of
information in the upper regions of the boundary layer, one can see the PINN’s dependence upon
missing velocity information that cannot (at this level of complexity) be sufficiently reconstructed through
the governing equations.

Extending the analysis to the vertical dimension, one can see that the velocity is poorly reconstructed,
with a high validation error being shown across all planes. Since static pressure data was obtained
exclusively over the surface of the bump, it provides little information over the velocity gradients in the
y-axis, likely hindering the flow field reconstruction. The percentage errors obtained across all planes
also remain excessively high (larger than the respectively errors in other components for this training
cycle), hinting at the importance of information in the y-dimension.

Finally, when assessing the third component, one can see an overall failure to predict the general flow
behavior in its respective dimension. While the magnitudes are broadly correct, the 3-dimensionality of
the flow towards the lower y-axis is not reconstructed. One may point to the lack of variation expressed
in the z-axis by the streamwise velocity, indicating that the inclusion (or density) of pressure taps was
not sufficient for the PINN to extrapolate a velocity gradient in the z-axis. As expected, the validation
error remains high across all planes for this configuration, and the results across all components point
towards the importance of having information of all types across all spatial axes of the domain.

5.3.3. Performance comparison

To assess the performance of the PINN with training on each data type, the individual performances
were assessed for each velocity component. The results are shown in Tables 5.2, and 5.3, where
the values are obtained by performing a linear average over all planes, as depicted from the box and
whisker plots.

Table 5.2: Average PINN velocity component prediction errors for various training data types over all planes.

u-velocity | v-velocity | w-velocity
All data 4.18% 8.27% 12.4%
PIV data only 6.30% 10.1% 19.8%
Pressure data only 13.9% 30.5% 26.1%

As can be seen, there is a clear trend displaying the importance of both velocity and pressure data
types, with the PINN configuration trained on all data leading to the lowest validation error across all
velocity dimensions. Notable also is the increase in error from each velocity axis to the next, with the
u-velocity displaying the lowest validation error, next to the v-velocity, and finally the w-velocity. The
only exception is for that of the pressure-only trained PINN results, where lack of information given in
the y-axis may have caused the y-component velocity to suffer in its reconstruction.

Table 5.3: Maximum PINN velocity component prediction errors for various training data types over all planes.

u-velocity | v-velocity | w-velocity
All data 11.1% 20.9% 38.0%
PIV data only 21.5% 35.6% 74.4%
Pressure data only 40.5% 87.7% 103.2%

In similar fashion to the average errors by training data type, the maximum error shows similar trends,
with provision of all data types leading to the lowest error across the board. In contrast to the average
results, for the case of only training on PIV data, the extremes are far more exaggerated in the max-
imum errors, where the removal of pressure data leads to nearly a factor 2 increase in the maximum
error observed. Additionally, the trend exposed for the mean values is also repeated for the maximum
validation errors, where the streamwise velocity, u, displays the lowest validation error, followed by v,
and w, respectively. Due to the pervasiveness of this trend across all types of training data, one may
point to the lower magnitudes of the y- and z-component velocities, and the consequence of this on
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its loss magnitude during training. Despite each component being normalized at every epoch, the nor-
malization values are obtained at the start of training, and thus the optimization may move away from
an equal attention to all parameters. This relates again to the difficulty in asserting a globally minimum
solution, discussed further in chapter 6.

5.4. Surface Shear Stress Reconstruction at M=0.1

Given the flow field previously shown in section 5.2, and the low relative error in the lower boundary
layer, the partial derivatives of the velocity can be used to predict the shear stress topology over the
entire surface (using Equation 4.2). This remains one of the stronger, yet untapped potentials of PINNs,
which is their ability to extrapolate flow features from which it is untrained. In both experimental and
numerical attempts, modeling the flow shearing over the surface remains a difficult task. The results
of this endeavor are shown in Figure 5.24, where it is compared with the results obtained through
experimental campaigns. Note that the PINN prediction obtained in this segment is trained on boundary
conditions and experimental data corresponding to a freestream velocity of M = 0.1. The reason for
this is the inability for the PINN to reproduce a sensible shear stress reconstruction at higher velocities.
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Figure 5.24: Traction vectors of surface shear stresses downstream of bump taken from PINN prediction.

As can be seen, the PINN is able to intelligently interpret the general flow features in regions where the
boundary layer is sufficiently recovered. In the region of the separation bubble and flow reversal, the
traction vectors over the surface are qualitatively reconstructed to a sufficient degree.

When comparing to the experimental results obtained using fluorescent oil flow imaging, the overall vec-
tor direction strongly resembles the shearing topology observed in Figure 2.3. Here one can directly
compare the results with time-averaged streamlines, depicting the locations of separation, reattach-
ment and foci. While the location of separation remains difficult to distinguish in the PINN-reconstructed
plot, the locations of reattachment, and foci are well visualized. Table 5.4 summarizes the locations as
shown in the experimental results, contrasted with those of the PINN prediction. One must be reminded
of the differences in streamwise velocity used in the Oil Flow data and the PINN results, explaining why
the locations of foci and reattachment occur further downstream for the PINN case, (since the growth
of the separation bubble and severity of recirculation with increased freestream velocity is well docu-
mented, see chapter 2). Despite this, surprising agreement is shown between the experimental data
and PINN prediction, especially when reminded of the relative error in spanwise PIV predictions. For
locations predicted experimentally, only a precision of + 2 [mm] is available due to the resolution of the
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measurement technique; the PINN obeys a similar reconstruction prediction as a result of the density of
vectors available over the surface. As a direct result of the aforementioned inaccuracy, the PINN’s pre-
diction for the location of initial separation, S1, is set to the center-line. Furthermore, perfect symmetry
is assumed due to the simulation of a single half-domain in the z-dimension.

Table 5.4: Locations of experimentally-obtained and PINN-predicted separation, reattachment and foci points [9].

S1 S2 F1 F2 Units | Velocity Us.
PINN | (0.0,0.0) | (325, 0.0) | (122.5, 75.0) | (122.5,-75.0) | (z,2)[mm] | M=0.1
Oil Flow | (6.0, 0.0) | (360, 0.0) | (124.7, 113.8) | (129.3, -109.6) | (z,z) [mm] | M=0.2

In addition to a qualitative plot, the traction vectors can also be colored according to the magnitudes
of their vectors. The result of this is shown in Figure 5.25, where the largest magnitudes are observed
over the bump apex. This empirically aligns with expectations since shearing will be significant before
separation, followed by near-zero in value at the point of separation, as located by S1 in Figure 2.3.
While the coloring is scaled with the resultant magnitude in all dimensions, it is worth noting that the
streamwise component contains the highest influence due to being larger in magnitude.
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Figure 5.25: Traction vectors of surface shear stresses over bump taken from PINN prediction, colored by magnitude of
resultant traction vector.

What one can notice in addition to the large shearing shortly after the apex, is the sudden drop in
shearing at the location of flow reversal. In this area, the shearing takes on a near-zero value, owing
to the existence of the separation bubble, echoed by the works of Uzun [20]. Furthermore, one can
then plot the curvature of the friction coefficient over the surface, as obtained by the shear stress
magnitudes. The results of this are shown in Figure 5.26, where an agreement in trend is shown with
previous numerical studies (see 2.8, [20]).
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Figure 5.26: Traction vectors of surface shear stresses over bump taken from PINN prediction, colored by magnitude of
resultant traction vector.

As can be seen, the expected surge in friction coefficient slightly before the bump apex at z/L = 0.0 can
be observed, with a reversion to near-zero shortly after. The second, smaller peak is owed to the surge
in traction vector magnitude, as seen in Figure 5.25, while the final hump, observed at /L ~ 0.37
broadly corresponds to the area of reattachment (note that an «/L value of 0.37 corresponds to a
distance of x = 0.33 [mm], as output by the PINN in Table 5.4. In regards to the magnitude of the
coefficient of friction, one can refernce Table 2.1, where numerous boundary layer properties were
outlined in previous experimental studies. One such parameter is the friction coefficient observed in the
developed boundary layer (z/L = —0.469) upstream of the bump apex, where a value of 3.10-10~3 was
observed. While the PINN prediction for the friction coefficient only begins at an apex upstream distance
of /L = 0.05, the equal magnitude mark an encouraging result. Refering to previous advancements
in PINN methods applied to PIV data, [37] claim challenges in mirroring the magnitude of the friction
coefficient in adverse pressure gradient separated flows. The relative success of this work in mirroring
the magnitude despite an unresolved boundary layer shows promising advancements in the possibilities
of PINN methods when complemented with sufficient data.
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Conclusion

In this thesis, the potential of Physics-Informed Neural Networks (PINNs) to enhance sparse experi-
mental wind tunnel data and reconstruct dense, 3D flow fields has been thoroughly investigated. By
leveraging the Gaussian Boeing bump geometry and the experimental data obtained at Caltech’s Lu-
cas Wind Tunnel, University of Notre Dame, and University of Washington, the study aimed to address
the challenges of modeling complex, turbulent flow phenomena, such as flow separation, reattachment,
and surface shear stress. The ability of PINNs to extract meaningful information from low-fidelity, 2D
experimental data and reconstruct higher-dimensional velocity and pressure fields has been a central
focus of this work.

The research questions posed at the outset provided a clear structure for exploring the capabilities of
PINNs. Specifically, the study assessed the influence of data resolution, the accuracy of reconstructed
flow fields, and the feasibility of predicting turbulent shear stress topologies at high Reynolds numbers
of up to 3 million.

The findings of this thesis highlight both the strengths and limitations of Physics-Informed Machine
Learning in turbulent flow modeling, contributing valuable insights into its role within aerospace design
and experimental fluid mechanics. The following sections provide a discussion on the key results,
implications, and avenues for future research.

3D flow reconstruction from 2D data

the results presented in this study offer a comprehensive assessment of the Physics-Informed Neu-
ral Network’s (PINN) ability to reconstruct 3D flow fields from sparse, low-fidelity experimental data.
By utilizing downstream spanwise PIV planes for validation, the PINN’s performance was rigorously
evaluated across all three velocity components: streamwise, vertical, and spanwise.

The findings demonstrate that the PINN successfully captured the dominant trends and structures of
the flow field, particularly in regions where training data or boundary conditions were explicitly provided.
For the streamwise velocity component, the reconstruction exhibited strong qualitative agreement with
experimental data, with minimal error at the center-line and bottom boundaries. Errors tended to grow
in regions where the model relied solely on the governing physics, yet these errors remained generally
below 10% across the validated planes.

The reconstruction of the vertical velocity component v showed similar qualitative success, though dis-
crepancies were observed in predicting the magnitudes of maxima and minima. Quantitative analysis
revealed a slightly higher percentage error compared to u, likely due to the smaller magnitude of v
and its relative contribution to the loss function. Although these were normalized in their contribution
to the loss, controlling the evolution of each loss term throughout training and ensuring each term is
sufficiently optimized remains a difficult task for PINNSs.

The greatest challenges emerged in reconstructing the spanwise velocity component, w, where no
direct training data was available. Here, the PINN relied entirely on the governing equations to infer the
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velocity field, resulting in significant inaccuracies, particularly within the lower boundary layer. While the
global flow trends were maintained, the inability to accurately reconstruct velocity magnitudes highlights
the limitations of the current approach when sparse or incomplete data is provided. The error analysis
further revealed a high prevalence of outliers, underscoring the difficulty in resolving this component
without additional training data or enhanced physics-based constraints.

In summary, the results confirm that while PINNs exhibit strong potential for reconstructing dense flow
fields from sparse measurements, their accuracy is highly dependent on the availability of training
data and the complexity of the target flow field. Streamwise and vertical components can be recon-
structed with reasonable accuracy, especially in regions with training data and boundary constraints.
However, the spanwise velocity component remains a challenge, and this investigation could not con-
clude whether this could be solved through additional investment in computational effort, or whether
the optimization landscape remains ill-defined for a global solution of such scale. Since the accuracy
of the physical residuals is dependent upon the accuracy with which partial derivatives are computed,
it remains possible that further improvements to the network density, architecture or training scheme
can yield improvements in regions absent of experimental data. Most obvious, would be the inclusion
of additional training data, which can now be obtained through the experimental setup in the Lucas
Wind Tunnel. Additional planes of imaging will directly improve the reconstruction accuracy, with data
availability remaining the limiting factor in machine learning methods.

Data Minimal Solutions

The results presented in this section highlight the critical role of data diversity in achieving accurate
predictions using Physics-Informed Neural Networks (PINNs). Across all configurations, the inclusion
of both pressure and PIV data significantly enhanced the reconstruction of velocity fields in all three
spatial dimensions. The errors for the configuration trained on all data types were consistently lower
compared to those using only pressure or PIV data, with the streamwise velocity (u) achieving the
highest accuracy, followed by the spanwise (v) and vertical (w) components.

When training solely on pressure data, the PINN struggled to resolve velocity gradients, particularly in
the y- and z-directions, as the static pressure information provided insufficient information for recon-
structing these components. Conversely, training on only PIV data also led to larger errors due to the
absence of pressure gradients, which are critical for resolving momentum equations in all dimensions.
The observed trends emphasize the limitations of using incomplete data types and highlight the ne-
cessity of a balanced dataset for effective PINN training. The optimization towards a global minimum
remains a challenge in utilizing PINNs for practical applications.

The analysis also reveals the inherent difficulty in reconstructing the w-component of velocity, which
displayed the highest error magnitudes across all configurations. This may be attributed to the lower
relative magnitudes of v- and w-velocities and their reduced influence on the overall loss function during
training. This imbalance suggests the need for tailored strategies, such as normalization schemes or
weighting adjustments, to ensure equal attention to all velocity components.

Overall, the findings demonstrate the importance of comprehensive datasets that integrate both pres-
sure and velocity measurements to fully leverage the potential of PINNs for accurate and robust flow
field reconstructions. Contrary to previous claims that the addition of pressure does not yield an im-
proved solution, these insights are crucial for guiding future efforts in improving PINN architectures and
training methodologies for complex fluid dynamics problems.

Reconstruction of the surface shear stress topology

The results presented with regards to the surface shear stresses demonstrate the potential of Physics-
Informed Neural Networks (PINNs) to reconstruct shear stress topologies over complex flow fields, even
in regions untrained by the model. The PINN’s predictions align qualitatively well with experimental
results, particularly in regions where the boundary layer has recovered. The accurate depiction of flow
features, including reattachment points and foci, highlights the model’s capability to extrapolate flow
characteristics from limited data.

Despite challenges in predicting exact separation locations, the PINN provides valuable insights into
surface shear stress distributions. The ability to visualize traction vectors and their magnitudes, as
well as to derive the curvature of the friction coefficient, underscores the utility of PINNs in analyzing
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surface flows. This approach not only complements experimental and numerical methods but also
opens avenues for leveraging PINNs in more advanced flow prediction tasks, especially for scenarios
where traditional methods face limitations.

The findings suggest that with further refinement, particularly at higher Mach numbers, PINNs may
hold promise as robust tools for fluid dynamics research, providing a blend of predictive accuracy and
computational efficiency.

Evaluation

Ultimately, this study highlights the capacity for PINNs to reconstruct highly turbulent, complex 3D flows
when provided with limited experimental data. The ability for PINNs to extrapolate a velocity-component
for which no training data is provided is assessed, where the maximum achievable accuracy is identified
for the given dataset. Limitations in the PINN'’s flowfield reconstruction without increases to computa-
tional power or experimental data were established. The importance of diverse training data, as well
as adequate spatial distribution of such data across all dimensions is established as a prerequisite to
steer the optimization towards a global solution and reduction in validation error. The extension of the
reconstructed flow field to the reconstruction of surface shear stresses over the Gaussian Boeing bump
are also examined, with encouraging agreement to experimental and numerical results.

Much is left to be desired from PINNs before they can rival contemporary numerical solvers, which
remain desirable within industry for their strong combinations of accuracy, cost, and iterability with
decades of development and established practices. However, the straightforward capacity for PINNs
to integrate experimental data remains unrivaled when compared to the difficulty of performing the
same data acquisition in conventional CFD schemes. Despite the shortcomings of PINNs in establish-
ing a global minimum solution, the young and rapidly developing space of Physics-Informed Machine
Learning methods remain an attractive contender to bridge the middle-ground between experimental
data and numerical solutions. The next chapter will discuss recommendations based on this investi-
gation that may pave the way to a future where continued development for machine learning methods
can establish a use-case for itself.



Further Work

This section identifies key areas for improving and extending the application of Physics-Informed Neural
Networks (PINNs) from their use in predicting 3D flows and surface shear stresses using sparse static
pressure and 2D2C Particle Image Velocimetry (PIV) data. A brief comment on continued work at
Lucas Wind Tunnel is given, after which the recommendations for improvement are discussed and
categorized into two main areas: aerodynamic applications and machine learning improvements.

Continued work at Lucas Wind Tunnel

While this thesis was capable of reproducing flow features with limited training data, the greatest im-
provement in accuracy would be yielded from a greater availability of data to train on. This remains the
largest benefit from an integrated training/testing pipeline at Lucas Wind Tunnel, where the PINN can
be iteratively studied for its accuracy with varying quantities fo training data. Recommended further
work at Lucas Wind Tunnel will consist of continued PIV imaging on streamwise planes not imaged
previously, providing additional input data to the network, and assessing the improvement on accu-
racy that this yields. Furthermore, the study and enhancement of alternative measurement techniques,
which has remained the principal interest of Caltech’s collaboration with Boeing over the Gaussian ge-
ometry, can investigate the PINN’s capacity for integrating less conventional data types (e.g. tufts) and
developing a flow geometry.

Areas of Improvement for Aerodynamic Analysis

Extending the PINN framework to accommodate multiple flow configurations is an essential step to-
ward demonstrating its robustness and ability for generalization. Applying the model across variations
in geometry and inflow conditions would provide valuable insights into its adaptability to diverse aerody-
namic scenarios. By varying parameters such as freestream velocity, surface geometry, and Reynolds
number, one could assess how effectively the PINN captures boundary layer development, separation
and reversal. This capability would bring PINNs closer to being a general-purpose tool for aerodynamic
analysis.

Another promising avenue is integrating alternative data types into the PINN framework to broaden its
utility in experimental aerodynamics. For example, using tufts to capture qualitative directional flow
data could provide PINNs with a novel input source. This approach would allow the network to ac-
curately predict surface-level velocity fields from data that traditional methods often overlook due to
their qualitative nature. Such an extension would open unique opportunities for PINNs in experimental
studies that rely on unconventional, or low-cost datasets.

Validating PINN predictions against high-fidelity CFD results is also crucial for benchmarking their ac-
curacy. Cross-validation with CFD solvers would help identify discrepancies and provide insights into
areas where the PINN framework requires refinement. This iterative process of comparison and im-
provement would enhance the reliability of PINNs, particularly in regions with sparse or noisy input data.
Moreover, such validation efforts could highlight the conditions under which PINNs can serve as viable
alternatives to CFD solvers, particularly in resource-constrained environments.
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A key limitation of this work lies in its focus on steady-state flows. Extending the PINN methodology
to unsteady and dynamic flow conditions is a logical progression for future research. Incorporating
temporal terms into the governing equations or training on time-resolved datasets would enable PINNs
to predict transient phenomena, and by addressing these time-dependent behaviors, PINNs could sig-
nificantly expand their applicability to real-world aerodynamic challenges.

The utility of PINNs in industrial applications, such as aerodynamic shape design, remains an ultimate
goal in their application. Straightforward data-acquisition and prediction capabilities make PINNs par-
ticularly valuable for industrial design processes, where contemporary numerical methods can possess
large barriers to entry for reliable analyses. The ability to optimize parameters such as lift-to-drag ratios
or reduce flow separation over surfaces remain crucial for the improved design of aerospace structures.
Collaborating with industrial partners could facilitate the application of PINNs to complex aerodynamic
problems, showcasing their potential to streamline design cycles and improve accuracy where numer-
ical methods struggle.

Areas of Improvement for Machine Learning

One of the primary limitations of the current PINN framework is the resolution of its predictions, which
is constrained by the computational grid. Enhancing the grid density could significantly improve the
accuracy and detail of predicted flow fields. The reliance of the PINN on accurate partial derivative
computation has been well established in the goal for a globally minimum solution, and lower errors in
governing equations. Not unlike a CFD mesh, improved grid spacing would allow the network to better
capture essential aerodynamic phenomena.

While the inclusion of the Fourier Feature Layer has substantially improved the network’s ability to
resolve complex flow features, there remains considerable scope for architectural enhancements. In-
creasing the size of the network, adopting alternative architectures such as residual-based attention
mechanisms, or implementing multi-optimizer schemes could further enhance the expressivity and
convergence of PINNs. Adaptive loss weighting schemes that dynamically balance the contributions of
physics, data, and boundary condition losses could lead to more efficient optimization processes and
better final solutions.

Finally, addressing the computational cost of training PINNs is essential for their widespread adop-
tion. While computational expense is a limiting factor, many industrial partners possess the resources
needed to train larger and more complex networks. Exploring distributed training and parallelization
strategies could make the training process more efficient, enabling the possibility to deploy PINNs on
larger datasets or more intricate flow configurations. By addressing these challenges, the PINN frame-
work can continue to evolve and provide increasingly powerful tools for aerodynamic and fluid dynamics
research.

By addressing these recommendations, future research can build upon this work, advancing the fidelity
and utility of PINNs for both academic and industrial fluid dynamics applications. This dual focus on
aerodynamic challenges and machine learning advancements ensures a holistic approach to overcom-
ing the current limitations of PINNs.
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Figure A.1: Flowchart depicting work/data flow contextualized within past, current and future progress.



Learning Decay Rate Scheduler

Manually defined exponential decay schedule of learning rate:

def 1lr_lambda(epoch: int) -> float:

1
2 # Learning rate decay

3 if epoch < 5000:

4 return 1.0 # Keep initial learning rate for first 5000 epochs

5 elif epoch < 10000:

6 return 0.5 # Reduce the learning rate by half after 7500 epochs

7 elif epoch < 20000:

8 return 0.1

9 elif epoch < 30000:

10 return 0.05

1 elif epoch < 40000:

12 return 0.01

13 elif epoch < 65000:

14 return 0.005

15 else:

16 return 0.0025 # Further reduce the learning rate after 10000 epochs

Similarly, a continuous exponential decay rate scheduler was also investigated, which yielded similar
results. Nevertheless, since the manual scheduler had already been established and performed slightly
better, it was used over the simpler alternative, shown below:

def 1lr_lambda(epoch):
decay_steps = 2000
decay_rate = 0.9
# Apply exponential decay
return decay_rate ** (epoch / decay_steps)

[ I N R
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PINN velocity predictions

Here the remaining velocity predictions by the PINN are displayed, for each plane not shown previ-
ously. Note again, that the final plane (z/L = 0.361) was discarded due to its lack of coherence to the
streamwise PIV data.

C.1. Streamwise velocity, u:
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Figure C.1: Side-by-side comparison of predicted (left) and experimental (right) streamwise velocity flow field at distance
/L = 0.208 post-bump apex.
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C.1. Streamwise velocity, u: 74
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Figure C.2: Side-by-side comparison of predicted (left) and experimental (right) streamwise velocity flow field at distance
z/L = 0.250 post-bump apex.
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Figure C.3: Side-by-side comparison of predicted (left) and experimental (right) streamwise velocity flow field at distance
z/L = 0.361 post-bump apex.



C.2. Streamwise velocity, v:
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Figure C.4: Side-by-side comparison of predicted (left) and experimental (right) vertical velocity flow field at distance

/L = 0.208 post-bump apex.
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Figure C.5: Side-by-side comparison of predicted (left) and experimental (right) vertical velocity flow field at distance

/L = 0.250 post-bump apex.



C.3. Streamwise velocity, w:
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Figure C.6: Side-by-side comparison of predicted (left) and experimental (right) vertical velocity flow field at distance
z/L = 0.361 post-bump apex.
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Figure C.7: Side-by-side comparison of predicted (left) and experimental (right) spanwise velocity flow field at distance
z/L = 0.208 post-bump apex.



C.3. Streamwise velocity, w:
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Figure C.8: Side-by-side comparison of predicted (left) and experimental (right) spanwise velocity flow field at distance
z/L = 0.250 post-bump apex.
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Figure C.9: Side-by-side comparison of predicted (left) and experimental (right) spanwise velocity flow field at distance
z/L = 0.361 post-bump apex.
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