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A B S T R A C T

While nowadays a lot of measurements are conducted at wastewater treatment plants, data reliability could 
further be improved, e.g., through data reconciliation. This study demonstrated the added value of data 
reconciliation to improve data quality in a full-scale wastewater treatment plant. Also, the effect of the mass 
balance setting (linear and bilinear mass balances) was quantitatively evaluated, considering data sets with 
missing measurements and with gross errors. The improvement in the precision of the key variables was higher 
with bilinear mass balances (40–80 %) compared to the linear setting (0–70 %). Besides, it delivered a higher 
number of improved key variables, especially when flow measurements were limited (minimum improved 
variables of 15 and 0, respectively). Bilinear mass balances were also more efficient in gross error detection and 
played a crucial role in cross-validation based on flow measurements, resulting in lower incorrectly-identified 
gross errors. Overall, it is recommended to use bilinear mass balances.

List of symbols and abbreviations
Symbol Description Units
x Reconciled variable kg.day-1

y Measured variable kg.day-1

u Unmeasured variable kg.day-1

Qi Volumetric flow of the stream i m3.day-1

mTPi Total phosphorus mass flow of stream i kg.day-1

mCODi Chemical Oxygen Demand mass flow of stream i kg.day-1

mTNi Total nitrogen mass flow of stream i kg.day-1

mTKNi Total Kjeldahl nitrogen mass flow of stream i kg.day-1

DENI Denitrified nitrogen in the activated sludge reactor kg.day-1

OCCOD Required oxygen for the oxidation of COD kg.day-1

NITR Required oxygen for nitrification kg.day-1

OCnet Required total oxygen by the activated sludge unit kg.day-1

ix Improvement index of a variable x %
σi

2 Standard error of the mean y ​
Abbreviation Description
WWTP Wastewater Treatment Plant
p.e Population equivalents
K Key variable
M Measured variable
U Unmeasured variable

1. Introduction

Measurements provide the primary source of information for design, 
process optimisation, operator training, developing control strategies, 
benchmarking and simulation. The accuracy and reliability of data sets 
are, therefore, of great value. Data reconciliation is a proven technique 
to evaluate the consistency of collected data (Crowe, 1996; Özyurt and 
Pike, 2004). It involves a procedure of optimally adjusting estimates of 
the variables such that these estimates satisfy the conservation laws 
(mass balances) and other constraints (Crowe, 1996) and are therefore 
more accurate and reliable than the original values. Data reconciliation 
is often accompanied by statistical tests for gross error detection (mea
surement validation), which verify whether the deviation between each 
estimate and its measurement is acceptable compared to the measure
ment error. Data reconciliation has been applied in the field of (bio) 
chemical process engineering for decades (Madron et al., 1977; Madron 
and Veverka, 1992; van der Heijden et al., 1994).

Data quality is also crucial in wastewater treatment plants (WWTPs). 
Nowadays large amounts of data are generated, but data-rich is often 
equivalent to information-poor. Thus, data reconciliation is essential to 
improve plant data reliability. However, even though it is a mature 
technique, its application to wastewater treatment processes in general 
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and to full-scale WWTPs in particular remains limited. Most closely 
related to wastewater treatment were the applications of data recon
ciliation for microbiology by Strous et al. (1998) and later by Lotti et al. 
(2014). In these studies, data reconciliation was applied to long-term 
operating data sets from a lab-scale reactor to calculate the stoichiom
etry of carbon and nitrogen conversions by Anammox biomass. Inspired 
by the work of Barker and Dold (1995) and then Nowak et al. (1999), 
data reconciliation was performed on full-scale WWTPs by Behnami 
et al. (2016), Meijer et al. (2015) and Puig et al. (2008). These studies 
implemented measuring campaigns to collect additional data for various 
purposes. The collection of additional data was designed in such a way 
that data reconciliation could be applied to the resulting data sets. The 
reconciled data (where applicable) were then used for modelling, 
calculating operational conditions, benchmarking or performance 
evaluation. Kim et al. (2017) and Yoshida et al. (2015) applied data 
reconciliation for material flow analysis of certain substances in WWTPs 
such as total organic carbon, heavy metals and organic pollutants, using 
the software STAN (Cencic, 2016). The latter studies referred to data 
reconciliation as a proper approach for detecting error propagation and 
to obtain a balanced data set, in which all data satisfy the constraints or 
material balances.

For data reconciliation in industrial applications, the set of con
straints which the balanced data need to fulfil could either be linear, 
bilinear and/or nonlinear mass balances, energy balances or any 
empirical equations (Câmara et al., 2017). As for the applications to 
wastewater treatment processes reported in literature, the constraints 
were usually in the form of linear or bilinear mass balances and the 
choice seemed to depend on the available tools to solve the data 
reconciliation problem. Behnami et al. (2016), Meijer et al. (2015), Lotti 
et al. (2014), Puig et al. (2008) and Strous et al. (1998) used conven
tional linear mass balances as constraints for data reconciliation. More 
specifically, Strous et al. (1998), Meijer et al. (2015) and Puig et al. 
(2008) relied exclusively on the linear data reconciliation method 
developed by van der Heijden et al. (1994), which was implemented in 
the software Macrobal (Hellinga and Romein, 1992). Kim et al. (2017)
and Yoshida et al. (2015) used the software STAN for data reconcilia
tion, which is a graph-based approach to generate relations between 
variables. The constraints were designed to be a combination of linear 
and bilinear mass balances depending on the input information (Cencic, 
2016).

This work aimed to demonstrate the added value of applying data 
reconciliation in wastewater treatment, using a full-scale treatment 
plant as an illustration. In addition, the effect of the mass balance setup 
on data reconciliation was evaluated. The results of data reconciliation 
based on bilinear mass balances were compared to the ones of conven
tional data reconciliation based on linear mass balances, considering 
various collected data sets. Three quantitative performance indicators 
were defined in order to evaluate the reconciliation results and to 
facilitate the comparison between the bilinear setting and the linear 
setting, namely (i) precision improvement of key variables, (ii) number 
of reconciled key variables and (iii) gross error detection.

2. Materials and methods

2.1. Data reconciliation and gross error detection procedure

Various data reconciliation and gross error detection procedures 
described in literature were integrated into the general flow scheme 
visualized in Fig. 1. Details of the applied procedures of (1) data 
reconciliation and (2) gross error detection are provided in Supple
mentary Material S1.1. The whole evaluation procedure was imple
mented in MATLAB 2014a, The MathWorks, Inc., Natick, Massachusetts, 
United States. The consecutive steps are detailed below.

2.1.1. Data reconciliation
The objective function of the data reconciliation problem in this 

work is defined as the weighted least squares of the distance between the 
measurements vector and the vector of reconciled values weighted by 
the measurement error. 

min
∑ (y − x)2

σ2
y

subject to f(x,u) = 0

⎫
⎪⎬

⎪⎭
(1) 

where y is measured, x is reconciled and u is unmeasured variable. f(x,
u) = 0 is a set of equality constraint equations in the form of mass 
balances. In this study, both overall mass balances and component mass 
balances are considered. σ2

y is a weighing factor, which is usually the 
standard error of the mean of y. If it is assumed that the measurement 
errors are normally distributed with zero mean, the solution for this 
constrained optimization problem gives maximum likelihood estimates 
of process variables, so they are minimum variance and unbiased esti
mators (Verheijen, 2010).

The implementation of the data reconciliation procedure using the 
raw data set and a set of constraints will result in a reconciled data set. 
This reconciled data set typically contains the following types of 
variables: 

- reconciled measured variables, i.e., measured values of which the 
value is ‘improved’ through data reconciliation, The reconciled 
values are more reliable than the original values in the sense that 
they satisfy the constraints (mass balances). Besides a different 
(mean) value, the reconciled variables typically also have a higher 
accuracy (lower standard deviation or variance).

- reconciled unmeasured variables, i.e., values which were not 
measured but of which the value could be estimated from reconciled 
measured variables and from the constraints.

- unreconciled variables, be it measured or unmeasured, i.e., of which 
the values could not be calculated from (other) measured variables 
and the constraints

Measured variables for which an improved value can be found and 
unmeasured variables for which the value can be calculated through 
data reconciliation, are sometimes referred to as ‘observable’. Variables 

Fig. 1. Data reconciliation and gross error detection procedure proposed in 
this study.
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for which no (new) value can be calculated through data reconciliation, 
are then referred to as ‘unobservable’.

Three types of input information are required for data reconciliation 
as applied in this work: 

(i) a set of constraints in the form of mass balances, which are based 
on the plant configuration. The input form of mass balances de
termines the formulation of the objective function and the pre- 
processing of the input data. 
- In a linear setting, the input mass balances are in the form of 

linear combinations of variables of total mass flows (or flow 
rates if flow density is assumed unity for all the streams) and 
individual mass flows (such as mass flows of total phosphorus, 
COD or total nitrogen). The objective function is formed to 
determine the estimates of these variables such that the 
weighted sum of squares of the adjustments made to the mass 
flow of components is minimized (see example in Table 1).

- In a bilinear setting, the input mass balances are in the form of 
both linear and bilinear combinations of variables. The mass 
balances of the total mass flows – or flow rates in case of con
stant density - are linear, while the individual mass flow bal
ances are bilinear, by expressing each individual mass flow as a 
product of flow and corresponding concentration as separate 
variables. The objective function is formed to determine the 
estimates of all flows and concentrations such that the weighted 
sum of squares of adjustments made to flows and concentra
tions is minimized (Table 1).

(ii) a pre-processed raw measured data set, which contains mean 
values and standard errors of the means of the measured vari
ables. The mean values of the total mass flows are calculated from 
time series data in the same way for both linear and bilinear data 
reconciliation. The distinction lies in the calculation of the input 
information of individual mass flows: 
- In a linear setting, the mean value of an individual mass flow is 

calculated as a product of the corresponding mean value of flow 
and the mean value of concentration. The standard error of the 
mean of each individual mass flow variable needs to be calcu
lated following the error propagation rule.

- In a bilinear setting, the mean value of flow rate and concen
trations are treated as separate inputs.

(iii) a list of key process variables, which are the variables one aims to 
reconcile using data reconciliation. These variables can be either 
measured or unmeasured ones. In this study, key variables are 
defined in the form of total mass flow and individual component 
mass flows for both linear and bilinear data reconciliation, to 
provide the same basis for comparison.

2.1.2. Gross error detection
Three common tests reported in literature were used in this study 

(Table 2). The measurement test compares each of the new estimates x 
with the original measurements y (Eq. (1)). Secondly, one can substitute 
each of the measurements into the active constraints, f(y). In these two 
cases, the variances of the respective residuals can be derived easily. 
Thirdly, the sum-of-squares of the residuals of Eq. (1) has a known 
distribution and can therefore be used. Details of the gross error detec
tion procedure are presented in Supplementary Material S1.3. The level 
of significance was set as 0.05 for the three tests.

2.1.3. Performance indicators
In this work, the results of linear and bilinear settings were compared 

by using three quantitative performance indicators, namely (i) the pre
cision improvement of key variables, (ii) the number of reconciled key 
variables and (iii) the gross error detection efficiency.

Indicator 1. precision improvement of key variables

The precision improvement of a measured key variable x, noted ix, is 
defined as the difference between the variance of the measurement, 
var(x), and the variance of the reconciled value, var(y), relative to the 
former value, and expressed as a percentage (Eq. (2)).

In case of an unmeasured key variable x, its precision improvement ix 
is defined analogously (Eq. (2)), but this time comparing its reconciled 
value with its directly calculated value, i.e., calculated from other 
measured, non-reconciled variables using the available set of mass bal
ances. var(x) was calculated by considering the variance of each 
measured variable involved in the calculation according to error prop
agation rules. 

ix =
var(x) − var(y)

var(x)
× 100 (2) 

The precision improvement ix is also sometimes referred to as the 
effect of balancing. The value of ix is always between 0 and 100 and is 
typically positive, which means that a better estimate (i.e., characterized 
by a smaller variance) is found for the key variable. The higher ix, the 
larger the improvement of key variables through data reconciliation.

In a linear setting, the variables are total and individual mass flows 
and the variance of new estimates of (key) variables var(y) can directly 
be obtained from data reconciliation and will be used to calculate ix. In a 
bilinear setting, for key variables in the form of individual mass flows, 
the variance of their reconciled values is calculated from the variance of 
the reconciled value of the corresponding flow rate and the reconciled 
value of the corresponding component concentration, following the 
general rule of error propagation (Supplementary Material S1.4). Note 
that, in the bilinear setting, a key variable in the form of a mass flow of a 
component is considered ‘improved’ if both corresponding flow rate and 
concentration are improved. Otherwise, it is termed ‘partially 
improved’.

Indicator 2. number of reconciled key variables

The number of reconciled key variables is used as an indicator in the 
comparison between the linear and bilinear mass balance approaches. 
Indeed, the number of reconciled (key) variables does not only depend 
on the redundancy of the data set but also depends on how variables are 
related by mass balances (van der Heijden et al., 1994).

Indicator 3. gross error detection efficiency

Table 1 
Difference between linear and bilinear mass-balance-based data reconciliation – 
mass balances and objective function set up for total mass flow and mass flow of 
total phosphorus as an example. Q = total mass flow with uniform density of all 
flow is assumed. TP = total phosphorus concentration, mTP is mass flow of total 
phosphorus. σ = standard error of the mean of the measurement. Unit: kg.d-1.

Linear Bilinear

Key 
variables

Qin, mTPin Qin, mTPin

Mass 
balances

Qin – Qout = 0 
mTPin – mTPout = 0

Qin – Qout = 0 
Qin⋅TPin – Qout⋅TPout = 0

Objective 
function minimize

(
∑ (Q̂ − Q)

2

σ2
Q

+

∑ (m̂TP − mTP)2

σ2
mTP

)

minimize

(
∑ (Q̂ − Q)

2

σ2
Q

+

∑ (T̂P − TP)2

σ2
TP

)

Table 2 
Basic tests in gross error detection (Verheijen, 2010).

Test Description Measure

Measurement 
test

Each individual measurement is considered y - x

Nodal test Each individual constraint misfit is considered f(y)
Global test Weighted sum of residuals squared gives an 

overall view

∑
(y − x)2
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The gross error detection efficiency was quantified through the 
number of so-called type I errors in the measurement test. Type I errors 
refer to error-free variables that are incorrectly identified as containing 
gross errors.

2.2. WWTP under study

2.2.1. Plant configuration
The system under study is the municipal WWTP Houtrust, The 

Hague, The Netherlands. The plant has a capacity of 330,000 population 
equivalents (p.e), treating a daily flow rate of 60.000 m3.d-1. The plant 
consists of a A2O process configuration with primary and secondary 
sludge digestion (Fig. 2). The three stage Phoredox process or A2O 
process consists of an activated sludge reactor divided into three com
partments with the sequence anaerobic-aerobic-anoxic. This allows for 
the removal of carbon, nitrogen and phosphorus from the wastewater. 
The main objectives of the plant were to ensure effective nutrient 
removal to meet effluent standards while minimizing operational costs, 
particularly in terms of energy consumption and sludge production.

2.2.2. List of key variables
Key variables were summarized in Table 3. The key process variables 

were defined to monitor COD, N, P transformations, according to the 
plant objectives. Additionally, the unmeasured variables were selected 
as a proxy for the activated sludge reactor performance and energy 
consumption. Fifteen variables were defined related to total mass flow 
(Q, m3⋅day-1) and individual mass flows (COD, total nitrogen and total 
phosphorus, kg⋅day-1) of the influent (stream 4), settled influent (stream 
7), WWTP effluent (stream 17), waste activated sludge (stream 26), 
primary sludge (stream 28) and WWTP waste sludge (stream 36). All of 
the key variables of individual mass flow were considered measured if 
both flow and corresponding concentration were measured. Three key 
variables that cannot be measured were defined: required oxygen for the 
oxidation of COD (OCcod, kg⋅day-1), denitrified nitrogen (DENI, kg⋅day- 

1) and the oxygen required for nitrification (NITR, kg⋅day-1) of the 
activated sludge units.

2.2.3. Mass balances
The set of constraints was expressed in the form of linear mass bal

ances on the one hand and bilinear mass balances on the other hand 

(Table 4), considering the (combined) unit processes from Fig. 2. The 
subsystems over which mass balances were set up, were selected to 
ensure that they yield the maximum amount of independent mass bal
ances, which contain all the key variables. The mass balances for the 
linear and bilinear case are essentially the same, but the bilinear terms of 
mass flow of components are regarded differently: 

- For the linear setting, the constraints are the mass balances in linear 
form, i.e. in terms of total mass flows and mass flow of components 
(individual mass flows).

- For the bilinear setting, the constraints are the mass balances in 
terms of total mass flows (as for the linear case) and the bilinear form 
of individual mass flows (i.e. for the components), which are the 
products of the flows and the corresponding concentrations.

The mass balances for total mass flows assumed the same density for 
all streams and thus reduced to flow rate balances. Individual mass flows 
were set up for total phosphorus (TP), COD and total nitrogen (TN). The 
mass balances were set up in a way that they contain all key variables in 
terms of total mass flow and mass flow of components (in the linear 
setting) or an equivalent product term of flow and concentration (in the 

Fig. 2. Simplified process diagram of WWTP Houtrust. K: key variable.

Table 3 
Key variables defined in this study (15 in total). All of the key variables of in
dividual mass flow were considered measured if both flow and corresponding 
concentration were measured. (U) indicates unmeasured key variables.

Number in process 
diagram & stream name

Total 
mass 
flow

Total 
phosphorus

COD Total 
nitrogen

4 WWTP influent Q4 mTP4 mCOD4 ​
7 Settled influent Q7 mTP7 mCOD7 ​
26 Waste activated 

sludge (WAS)
Q26 mTP26 mCOD26 ​

28 Primary sludge Q28* mTP28* mCOD28* ​
36 WWTP waste sludge Q36 mTP36 mCOD36 ​
​ denitrified nitrogen ​ ​ ​ DENI (U)
​ required oxygen for 

the oxidation of 
COD

​ ​ OCCOD 

(U)
​

​ the total required 
oxygen

​ ​ NITR (U) ​
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bilinear setting). The external carbon source (stream 45) and the biogas 
(stream 43) were reasonably assumed to represent only COD; their total 
mass flow rates were neglected (in mass balances over #AS and #DIG, 
respectively).

Note that in this study, mass balances were set only with conserva
tive variables, and referred to only one type of individual component. 
Nevertheless, the mass balances could also include kinetic relations, 
equality constraints or electron balances. For instance, kinetic relations 
between variables based on biological conversions could further 
improve the reconciliation results (Le et al., 2022). More detailed 
practical guidance on the selection of conservative quantities is provided 
by Meijer et al. (2015).

A key variable in terms of mass flow of component e.g. the mass flow 
of COD of primary sludge, mCOD28, was considered improved in the 
linear setting if its new estimate was found by data reconciliation using 
linear mass balances as the constraints. This definition was applied to all 
the observable variables, i.e., both measured variables and unmeasured 
variables. In a bilinear setting, this key variable will only be considered 
improved if improved estimates of both the flow (Q28) and the con
centration (COD28) are found by data reconciliation using the bilinear 
form of mass balances as the constraints.

2.2.4. Pre-processed data set
The pre-processed data set contains the mean values and standard 

errors of the mean, which are derived from measurements during a 
stable operation period of WWTP Houtrust. The time series data includes 
50 daily measurements of flow rates and corresponding concentrations 
(24 h composite or grab samples) of total phosphorus (TP), COD, total 
nitrogen (TN) and total Kjeldahl nitrogen (TKN) under dry weather 
conditions (Meijer et al., 2015). 

- For bilinear data reconciliation, data of flow rates (Q) and concen
trations (TP, COD, TN, TKN) were used as the raw input data.

- For linear data reconciliation, data of flow rates (Q) or mass flow of 
components were used (mTP, mCOD, mTN, mTKN). The mass flow of 
components was derived as the product of the flow and the 

corresponding concentrations. Their error terms were calculated 
following the general rule of error propagation (Supplementary 
Material S1.4), assuming that there was no correlation between the 
error of flow measurements and the error of concentration 
measurements.

Several types of data sets were used in this study, namely the refer
ence data set, reduced data sets and erroneous data sets (detailed in 
Supplementary Material S2). 

- Reference data set. The original dataset consisted of 30 measure
ments, including total flows (10), TP (6), COD (8), TN (3) and TKN 
(3) (Supplementary Material, section S2.1). It served as a reference 
data set to compare the precision improvement of the key variables 
between the linear and bilinear settings (indicator 1). It was also 
used to derive reduced or erroneous data sets in this study.

- Reduced data set. Reduced data (Supplementary Material, section 
S2.2) were used to compare the number of reconciled key variables 
in dealing with missing data (indicator 2). 57 reduced data sets were 
formed by removing one or more measured variables from the 
reference data set. The reduced data sets were obtained from the 
reference data set by removing (A) all measured data (both flow rates 
and individual component concentrations); (B) only flow measure
ments; (C) only measurements of component concentrations, for one 
or more streams.

- Erroneous data sets. Erroneous data sets were used to compare the 
efficiency of linear and bilinear settings in detecting gross errors 
(indicator 3). Thirty erroneous data sets were formed by introducing 
an error of +20 %, +35 % and +50 % to the following measurements 
(one at a time): influent flow (Q4), flow of WWTP waste sludge (Q36), 
effluent flow (Q17), flow of waste activated sludge (Q26), total 
phosphorus of influent (TP4), total phosphorus of settled influent 
(TP7), total phosphorus of waste activated sludge (TP26), COD of 
settled influent (COD7), COD of waste activated sludge (COD26) and 
COD of WWTP waste sludge (COD36).

3. Results and discussion

3.1. Precision improvement of the key variables

The data reconciliation procedure was applied to the reference data 
set using linear and bilinear mass balances as constraints. For both the 
linear and bilinear setting, all 18 key variables were reconciled, meaning 
that more accurate estimates for their values were found by the data 
reconciliation procedure. Detailed results are provided in Supplemen
tary Material S3. In both settings, the gross error detection procedure did 
not indicate any gross error in the reference data set.

The bilinear setting resulted in a more substantial improvement i 
(Eq. (2)) of key variables (40–80 %) overall compared to the linear 
setting (0–70 %) (Fig. 3A). For example, the flow of waste activated 
sludge (Q36) is a measured key variable with a measured value of Q36 =

49 ± 5 m3⋅day-1. The newly estimated value for this variable through 
bilinear data reconciliation was 51 ± 2 m3⋅day-1 (i36 = 78 %) while 
linear data reconciliation resulted in the same value as the raw value 
(i36≈ 0 %). The flow of primary sludge (Q28) was improved the most. Q28 
is an unmeasured key variable of which the value was directly calculated 
value from raw data as 5194 ± 3326 m3⋅day-1. The improved reconciled 
values of Q28 in linear and bilinear settings were 5051 ± 141 m3⋅day-1 

and 5067 ± 137 m3⋅day-1, respectively. This corresponded with an 
improvement of i28 ≈100 % with both settings.

The larger improvement through bilinear data reconciliation 
compared to the linear setting was also expressed per stream (10–65 %, 
40–70 %, respectively, Fig. 3B). For instance, the average improvement 
of key variables in the activated sludge units (AS) including required 
oxygen for the oxidation of COD (OCcod, kg⋅day-1), the mass flow of 
denitrified nitrogen (DENI, kg⋅day-1) and the oxygen required for 

Table 4 
Mass balances around individual/combined unit processes, which serve as 
constraints for data reconciliation. Balances #1–7 are expressed in m3⋅ day-1, 
#8–16 in kg⋅ day-1. Variables in bold are key variables.

# Unit Bilinear mass balance Linear mass balance

​ PS Q4 + Q5 - Q7 - Q28

​ AS Q7 - Q17 - Q26

​ ST Q26 - Q27 - Q37

​ PT Q28 - Q31 - Q39

​ DIG Q27 + Q31 - Q34

​ DEW Q34 - Q36 - Q38

​ INT Q37 + Q38 + Q39 + Q40 - Q5

​ PS Q4⋅TP4 + Q5⋅TP5 - Q7⋅TP7 - 
Q28⋅TP28

mTP4 + mTP5 - mTP7 - mTP28

​ AS Q7⋅TP7 - Q17⋅TP17 - Q26⋅TP26 mTP7 - mTP17 - mTP26

​ ST Q26⋅TP26 + Q28⋅TP28 - Q5⋅TP5 - 
Q36⋅TP36

mTP26 + mTP28 - mTP5 - 
mTP36

​ PS Q4⋅COD4 + Q5⋅COD5 - Q7⋅COD7 - 
Q28⋅COD28

mCOD4 + mCOD5 - mCOD7 - 
mCOD28

​ AS Q7⋅COD7 + Q45⋅COD45 - 
Q17⋅COD17 - Q26⋅COD26 - OCcod - 
2.86⋅DENI

mCOD7 + mCOD45 - mCOD17 

- mCOD26 - OCcod- 2.86⋅DENI

​ ST Q26⋅COD26 + Q28⋅COD28 - 
Q5⋅COD5 - Q36⋅COD36 - Q43⋅COD43

mCOD26 + mCOD28 - mCOD5 

- mCOD36 - mCOD43

​ AS Q7⋅TN7 - Q17⋅TN17 - Q26⋅TN26 - 
DENI

mTN7 - mTN17 - mTN26 - DENI

​ AS Q7⋅TKN7 - Q17⋅TKN17 - Q26⋅TKN26 

- NITR
mTKN7 - mTKN17 - mTKN26 - 
NITR

​ WWTP OCnet - OCcod - 4.57⋅NITR

OCnet = required total oxygen by activated sludge unit (kg⋅day-1); OCcod =
required oxygen for COD removal (kg⋅ day-1).
NITR = nitrified nitrogen (kg⋅ day-1); DENI = denitrified nitrogen (kg⋅ day-1).
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nitrification (NITR, kg⋅day-1) were much better with the bilinear setting 
(iAS = 53 %) compared to that with the linear setting (iAS = 10 %). 
Note that, since these key variables in AS were unmeasured key vari
ables, their improvements were calculated with regard to their directly 
calculated values as mentioned in Section 2.1.3.

The bilinear setting resulted in a larger improvement of the key 
variables because the new estimates of the key variables were derived 
from more measurements than in the linear setting. The more measured 
variables a variable can be calculated from (is constrained by), the more 
its value can be improved through data reconciliation (van der Heijden 
et al., 1994). Hence, in the bilinear setting, mCOD4 was improved by i36 
= 60 % in the linear setting this was only 48 %.

Only in the bilinear setting, variables of one type (such as mCOD4 
mentioned above) can be improved by multiple types of measurements 
(e.g. TP, COD, TN and Q). When considering linear mass balances, each 
type of measurement can only help to improve variables of that type. 
This principle holds only for conserved components (i.e., those not 
involved in any conversion process). For instance, previous studies with 
the linear setting (Behnami et al., 2016; Meijer et al., 2002; Puig et al., 
2008;Meijer et al., 2015) demonstrated that flow rate measurements 
only contributed to improvements of flow rates, while contributions of 
the conserved total phosphorus measurements were limited to the 
improvement of the phosphorus mass flow. In bilinear setting, total 
phosphorus measurements could help to not only total phosphorus value 
but also others since they can be related to others by flow measurements. 
Since not all measured data were effectively utilised in the linear setting, 
a lower improvement of key variables was obtained.

3.2. Effect of limited data on key variable identifiability

For the reference case, all 18 key variables were reconciled for both 
the linear and bilinear settings. For the reduced data sets, the number of 
identified key variables is expected to be lower, since also the redun
dancy of the available data will likely be lower.

In case both flow and concentration were removed from the 

reference data set i.e. the reduced data sets A, both linear and bilinear 
settings had the same results (Fig. 4A). The number of improved key 
variables decreased with the reduction of the dataset, from 18 (ref. 
dataset) to 0 (dataset #1) improved key variables. In this case, there 
were the same losses in the redundancy for both the linear and bilinear 
settings. For example, when all flows and corresponding concentrations 
of stream 4 and 5 were removed from the reference data set to form the 
reduced data set #14A (Supplementary Material S2), the linear setting 
lost 6 measurements of the variables Q4, mCOD4, mTP4, Q5, mCOD5 and 
mTP5 and the bilinear lost the same number of measurements Q4, COD4, 
TP4, Q5, COD5 and TP5. Therefore, both settings were able to identify ten 
key variables in data set #14A.

In case one or more flows were removed from the reference data set, 
i.e. for the reduced data sets B, the bilinear setting resulted in a much 
higher number of improved key variables compared to the linear setting 
(minimum number of improved key variables of 15 and 0, respectively, 
Fig. 4B). For example, in the reduced data set #9B (Supplementary 
Material S2), the flows of settled influent (Q7) and effluent (Q17) were 
removed but their corresponding concentrations of TP, COD, TN and 
TKN remained. For the linear setting, ten variables Q7, Q17, mTP7, 
mTP17, mCOD7, mCOD17, mTN7, mTN17, mTKN7 and mTKN17 became 
unknown while in the bilinear setting only Q7 and Q17 became un
known. Therefore, the bilinear setting offered much better results with 
all 18 reconciled key variables in contrast to seven reconciled key var
iables with the linear setting.

In case only the concentrations of one or more streams were removed 
from the reference data set, i.e. for the reduced data sets C, again, the 
linear and bilinear settings had the same results, showing a decrease 
from 18 to 5 improved key variables with the reduction of the dataset 
(Fig. 4C). The loss of redundancy in the data sets, in this case, was the 
same for both the linear and bilinear settings. For example, when the 
measurement of COD7 was removed from the reference data set to form 
the reduced data set #13C (Supplementary Material S2), in the linear 
setting, mCOD7 became an unknown variable and in the bilinear setting, 
COD7 became an unknown variable. As a result, both settings had the 

Fig. 3. Improvement of individual key variables (A) and average improvement of key variables in important streams (B) after the reconciliation procedure using 
linear (empty cycle) and bilinear setting (filled circle).
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same performance in this case, with 11 reconciled key variables. In 
addition to the reconciled key variables, the bilinear setting also resulted 
in partially reconciled key variables as the mass flow of a component 
was calculated from a reconciled flow and an unreconciled concentra
tion. For instance, four partially reconciled key variables were found in 
the reduced data set #13C with the bilinear setting including mCOD4, 
mCOD26, mCOD36 and mTP26 because Q4, Q26 and Q36 were reconciled 
but not the corresponding concentrations.

Overall, when measured data are limited, the bilinear setting will 
always lead to at least the same but in most cases higher number of key 
variables that can be reconciled, since it has at least an equal and mostly 
higher redundancy compared to the linear setting. With a higher 
redundancy, more variables can be expressed by other measured vari
ables using the set of mass balances and this usually leads to a higher 
number of reconciled key variables.

The possibility to have a higher number of improved key variables 
with the bilinear setting is beneficial when there is a gross error in the 
data set. In such a case, the measurement of one or several suspected 
variables must be removed from the data set. The removal or missing 
measurement of a flow variable results in one unknown variable in the 
bilinear setting but at least two unknown variables in the linear setting 
as the flow becomes an unmeasured variable, and so does the mass flow 
of all components for the corresponding stream.

3.3. Gross error detection

The gross error detection results in case of one-at-a-time gross errors 
of +50 % are summarized in Fig. 5. More detailed results on gross error 
detection are summarised in Supplementary Material S3.3. A gross error 
is identified if at least one of the three tests (global, measurement or 
nodal test) indicates a gross error. The measurement test is used to 
report the suspected measurements.

Both linear and bilinear setting could detect gross errors in 8/11 and 
10/11 cases, respectively. Both settings failed to detect a gross error in 

the effluent COD measurement (COD17). The reason was that this vari
able was not constrained by other measured variables and its value 
could thus not be improved by data reconciliation. The linear setting, 
however, also failed to detect a gross error in other reconciled key 
variables of the waste activated sludge (COD26) and the waste sludge 
(COD36).

It is important to note that the improvement of a measured variable 
is directly correlated to the possibility to detect gross errors in that 
variable (Narasimhan and Jordache, 2000). The higher the 

Fig. 4. Number of identifiable key variables when data reconciliation with linear (empty circles) and bilinear (filled circles) mass balances were applied to 60 
reduced data sets of three types: (A) all measured data (both flow and corresponding component’s concentrations) of one or more streams are removed; (B) only flow 
measurements of one or more streams were removed; (C) only measurements of component’s concentrations were removed. The empty small dots are the number of 
“partially improved” key variables.

Fig. 5. Number of variables incorrectly identified to have a gross error (type I 
errors) in linear (empty circles) and bilinear (filled circles) settings when a 
genuine gross error of +50 % occurs in a single variable (flow or concentration 
measurement). The actual gross error was identified in all cases except the ones 
denoted by ND = no gross error detected.
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improvement of (key) variables, the more chance gross errors could be 
detected. For example, when a gross error occurred in COD26 or COD36, 
the bilinear setting could pick up the gross error in these variables 
(Fig. 5). However, since the linear setting had a rather low improvement 
of mCOD26 and mCOD36 (about ≈10 % compared to 30–60 % of the 
bilinear setting), the linear setting could not detect any gross error in 
these cases.

Gross error detection using the bilinear setting mostly resulted in less 
type I errors, i.e. error-free variables that are incorrectly identified as 
containing gross errors, than using the linear setting (Fig. 5). For 
example, in case of an erroneous waste activated sludge flow rate (Q26), 
the linear setting indicated two variables as suspected: the mass flow of 
total phosphorus in the effluent (mTP7) and in the wasted activated 
sludge (mTP26). This means that the gross error could originate from 
either one of the four variables Q7, TP7, Q26 or TP26. In the same case, 
the bilinear setting indicated that three variables Q26, TP7 and TP26 were 
suspected. Since only Q26 contains a gross error, the number of type I 
errors of linear and bilinear settings were reported in Fig. 5 as three and 
two, respectively. In short, linear setting usually leads to a higher 
number of type I errors since it can distinguish between gross errors in 
flow or concentration. Similar results were also observed when gross 
errors of 35 and 20 % were introduced in the datasets (Supplementary 
Material S3.3).

When there is a gross error in the data set, the result of data recon
ciliation is affected by the smear effect (Narasimhan and Jordache, 
2000), in which one erroneous variable would trigger the detection of 
gross error in many other measured variables, and therefore still pro
duces a high number of type I errors. For this reason, process insights 
and expert knowledge are essential in isolating the found errors. Some 
common sources of measurement errors in WWTP provided by (Rieger 
et al., 2010) could be a good starting point for gross error elimination.

It is important to realize that not all measured variables will be 
checked by gross error detection but only the measured variables which 
are reconciled, i.e. the ones of which the measured value has been 
double-checked against mass balances. Gross errors in unreconciled 
measured variables cannot be detected, but will likely propagate into 
reconciled values (new estimates) of unmeasured variables. It is advised 
to double-check the measurements and carefully calibrate sensors to 
guarantee the error-free unreconciled measured variables (Heyen et al., 
1996). Further, some reconciled variables may show a very low 
improvement after data reconciliation. It is likely that gross error 
detection also fails to detect an error in these variables. These variables 
with low improvement are usually referred to as practically unidentifi
able variables in literature.

Using the bilinear setting for data reconciliation would be more 
useful if there are one or more variables subjected to gross error in a data 
set. The benefit would be two-fold. First, since the bilinear setting pro
duces higher improvement, it has a higher chance to detect the gross 
error and to pinpoint the exact variable that contains an error. Second, 
more importantly, as the erroneous measurements were excluded from 
the data set, the bilinear approach, in many cases, was still able to 
maintain the same number of reconciled key variables as illustrated in 
Section 3.2. It means that when the redundancy of the data set was 
reduced by gross error elimination, it is highly likely that all the key 
variables will still be validated and reconciled using the bilinear mass 
balances.

4. Conclusions

Reliable data is crucial in many industries, including wastewater 
treatment. This study aimed to demonstrate the added value of applying 
data reconciliation to improve data quality in a full-scale wastewater 
treatment plant. In addition, the effect of mass balance setting on the 
result of data reconciliation has been evaluated. The bilinear mass bal
ances hold the following advantages over linear mass balances: 

- Data reconciliation improved data reliability with both linear and 
bilinear mass balances.

- Data reconciliation with bilinear mass balances resulted in a higher 
precision improvement of key variables of 40–80 % compared to the 
linear setting (0–70 %). Since a higher precision implies a higher 
chance of detecting errors in these variables, gross error detection 
and isolation were also more efficient with bilinear mass balances.

- Besides, bilinear mass balances delivered a higher number of 
improved key variables in comparison to linear mass balances, in 
particular when flow measurements were limited (minimum 
improved key variables of 0 and 15 for the linear and bilinear setting, 
respectively) and/or several measurements had to be removed due to 
gross errors.

- The bilinear setting played a crucial role in cross-validation, based on 
flow measurements. With a bilinear setting, a distinction could be 
made between gross errors in flow rates and in concentrations, 
resulting in less incorrectly detected gross errors. Flow measure
ments played a vital role because they were not only involved in the 
improvement of flow variables but also in that of all other types of 
variables.

- Data reconciliation was demonstrated for a wastewater treatment 
plant, but its application could be generalized for other processes 
with measurements of flows and concentrations.

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Q.H. Le: Writing – review & editing, Writing – original draft, Visu
alization, Investigation, Formal analysis, Data curation, Conceptualiza
tion. P. Carrera: Writing – review & editing, Visualization, Formal 
analysis. M.C.M. van Loosdrecht: Writing – review & editing, Valida
tion, Supervision. E.I.P. Volcke: Writing – review & editing, Validation, 
Supervision, Resources, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.compchemeng.2025.109012.

Data availability

All the relevant data is included in Supplementary Information.

References

Barker, P.S., Dold, P.L., 1995. COD and nitrogen mass balances in activated sludge 
systems. Water Res. 29, 633–643. https://doi.org/10.1016/0043-1354(94)00155-Z.

Behnami, A., Shakerkhatibi, M., Dehghanzadeh, R., Benis, K.Z., Derafshi, S., Fatehifar, E., 
2016. The implementation of data reconciliation for evaluating a full-scale 
petrochemical wastewater treatment plant. Environ. Sci. Pollut. Res. 23, 
22586–22595. https://doi.org/10.1007/s11356-016-7484-5.
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