
2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

MSc THESIS

Hierarchical Memory Diagnosis Approach

Vishwas Raj Jain

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-15

Semiconductor memories are an inherent part of many modern
electronic systems. Due to the fast development of memory process
technology and the escalating computing speeds, the on-chip share
of memories is rapidly increasing. Additionally, the quality and reli-
ability requirements are becoming more severe especially for critical
applications such as automotive and aerospace. Zero defect per mil-
lion level is now a reality. To satisfy the quality constraints, it is vital
to investigate the failure mechanisms. Also, it is required to address
the problem of continually decreasing memory yield. Low yield is one
of the major threats of the miniaturized electronic systems. Desire
for high yield along with the stress to decrease the time to market,
has heightened the importance of memory fault diagnosis. The tra-
ditional ways of fault diagnosis are not adequate for covering the
entire memory fault scope. They suffer from various drawbacks like
high complexity, high cost, platform dependence and limited scope.
There is a need to introduce changes to the fundamental principles
of memory testing and diagnosis approaches.

This thesis presents a novel memory fault diagnosis approach
which accurately identifies the faulty memory block and determines
the fault type. The proposed approach is platform independent,

based on a hierarchical methodology and incorporates several innovative ideas and algorithms. It builds
upon the concepts of Test Primitives, Test Classes and Design for Diagnosis. The strength of Hierarchical
Memory Diagnosis approach lies in the fact that, unlike conventional approaches, there are no specific im-
plementation requirements other than running a test and determining the pass/fail status of the applied
diagnostic test. The scope of the target faults includes all static and dynamic faults occurring in all parts
of the memory system. The new approach contributes to the acceleration of characterization of possible
defect mechanisms responsible for yield loss in the emerging technologies.

Hierarchical Memory Diagnosis Approach
Deals with defects in all parts of a memory system

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Vishwas Raj Jain
born in Bikaner, India

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Hierarchical Memory Diagnosis Approach

by Vishwas Raj Jain

Abstract

S
emiconductor memories are an inherent part of many modern electronic systems. Due to
the fast development of memory process technology and the escalating computing speeds,
the on-chip share of memories is rapidly increasing. Additionally, the quality and reliability

requirements are becoming more severe especially for critical applications such as automotive
and aerospace. Zero defect per million level is now a reality. To satisfy the quality constraints,
it is vital to investigate the failure mechanisms. Also, it is required to address the problem of
continually decreasing memory yield. Low yield is one of the major threats of the miniaturized
electronic systems. Desire for high yield along with the stress to decrease the time to market, has
heightened the importance of memory fault diagnosis. The traditional ways of fault diagnosis are
not adequate for covering the entire memory fault scope. They suffer from various drawbacks like
high complexity, high cost, platform dependence and limited scope. There is a need to introduce
changes to the fundamental principles of memory testing and diagnosis approaches.

This thesis presents a novel memory fault diagnosis approach which accurately identifies
the faulty memory block and determines the fault type. The proposed approach is platform
independent, based on a hierarchical methodology and incorporates several innovative ideas and
algorithms. It builds upon the concepts of Test Primitives, Test Classes and Design for Di-
agnosis. The strength of Hierarchical Memory Diagnosis approach lies in the fact that, unlike
conventional approaches, there are no specific implementation requirements other than running
a test and determining the pass/fail status of the applied diagnostic test. The scope of the target
faults includes all static and dynamic faults occurring in all parts of the memory system. The
new approach contributes to the acceleration of characterization of possible defect mechanisms
responsible for yield loss in the emerging technologies.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-15

Committee Members :

Advisor: Dr. ir. Said Hamdioui, CE, TU Delft

Chairperson: Dr. ir. Koen Bertels, CE, TU Delft

Member: Prof. Dr. ir. Ad J. van de Goor, CE, TU Delft

Member: Dr. ir. Zaid Al-Ars, CE, TU Delft

Member: Dr. ir. Jaap Hoekstra, Electronics, TU Delft

i

ii

To my parents and to my teachers

iii

iv

Contents

List of Figures xi

List of Tables xiv

Acknowledgements xv

1 Introduction 1

1.1 Semiconductor Memories . 1

1.2 Importance of Memory Testing and Diagnosis 3
1.3 Contributions of the Project . 6

1.4 Organization of Thesis . 7

2 Memory Architecture 9

2.1 Memory Models . 9

2.2 Memory as a Black-box . 11

2.3 Functional Memory Model . 12

2.4 Electrical Memory Model . 13
2.4.1 Memory Cells . 13

2.4.2 Address Decoder . 15

2.4.3 Read/Write Circuitry . 16

2.5 Memory Process Technology . 18

3 Memory Fault Space 21

3.1 Reduced Memory Functional Model . 21

3.2 Fault Primitive: Concept . 22
3.3 Fault Primitive: Classification . 22

3.4 Static Faults . 24

3.4.1 Static Memory Cell Array Faults (sMCAFs) 24

3.4.2 Static Address Decoder Faults (sADFs) 29

3.4.3 Static Peripheral Circuitry Faults (sPFs) 30
3.5 Dynamic Faults . 31

3.5.1 Dynamic Memory Cell Array Faults (dMCAFs) 31

3.5.2 Dynamic Address Decoder Faults (dADFs) 39

3.5.3 Dynamic Peripheral Circuitry Faults (dPFs) 41

4 State of the Art in SRAM Diagnosis 43

4.1 Detection versus Diagnosis . 43

4.2 Classification of Existing Diagnosis Schemes 44
4.2.1 Probability-based diagnosis . 45

4.2.2 Signature-based diagnosis methods 46

v

4.2.3 Design for Diagnosis . 48
4.3 The Need for a New Approach . 49

5 Hierarchical Memory Diagnosis 51
5.1 Introduction to Hierarchical Memory Diagnosis 51
5.2 Notation of test algorithms and stresses 54
5.3 Concept of Test Class and Test Primitive 55

5.3.1 Test Class Dictionary Generation 57
5.3.2 Test Primitive Diagnostic Dictionary Generation 58

5.4 Static Hierarchical Analysis . 60
5.4.1 Diagnostic Levels . 61
5.4.2 Level 1: Diagnosing the Fault Class 62
5.4.3 Level 2: Diagnosing the Fault Type 66

5.5 Dynamic Hierarchical Analysis . 72
5.5.1 Diagnostic Levels . 73
5.5.2 Level 1: Diagnosing the Fault Class 73
5.5.3 Level 2: Diagnosing the Fault Type 77

5.6 Advantages and cost of HMD . 80
5.6.1 Advantages . 81
5.6.2 Cost . 81

6 Case Studies 85
6.1 SRAM Simulation Model and Simulation Approach 85

6.1.1 Simulation Model . 85
6.1.2 Simulation Approach . 89

6.2 Static Hierarchical Analysis . 90
6.2.1 Diagnosing Faults in Memory Cell Array 90
6.2.2 Diagnosing Faults in Address Decoder 95
6.2.3 Diagnosing Faults in Peripheral Circuitry 104

6.3 Dynamic Hierarchical Analysis . 110
6.3.1 Diagnosing Faults in Memory Cell Array 110
6.3.2 Diagnosing Faults in Address Decoder 118
6.3.3 Diagnosing Faults in Peripheral Circuitry 122

6.4 Summary . 128

7 Conclusions and Future Work 129
7.1 Conclusions . 129
7.2 Future Work . 130

Bibliography 136

vi

List of Figures

1.1 Classification of semiconductor memories 2

1.2 Share of embedded memories in systems on chip [5] 3

1.3 Yield vs time curve: Yield learning phases [52] 5

1.4 Effect of memory size on yield [20] . 6

2.1 Memory models and abstraction levels . 10

2.2 Black-box model of SRAM . 11

2.3 Two-dimensional black-box model of SRAM 12

2.4 Functional model of SRAM . 13

2.5 Different configurations for SRAM cells [17] 14

2.6 Row decoders [17, 50] . 16

2.7 Column decoders [17, 37] . 17

2.8 Write circuitry [17] . 17

2.9 Voltage mode sense amplifiers [17] . 18

2.10 Basic steps in forming a MOS transistor [17] 19

3.1 Reduced functional model . 21

3.2 Classification of fault primitives . 22

3.3 Static one-cell and two-cell faults in memory cells 25

3.4 Static address decoder faults . 30

3.5 Combination of static address decoder faults 30

3.6 Example of an inter-gate open in a CMOS address decoder [22] 39

3.7 Example of an intra-gate open [22] . 40

3.8 Activation and deactivation delays [18] . 40

3.9 Impact of open defect on word line timing [18] 41

3.10 Impact of open defect on column select timing [18] 41

4.1 Classification of different diagnosis approaches 45

5.1 Procedure of Hierarchical Memory Diagnosis 52

5.2 High level overview of Hierarchical Memory Diagnosis approach 53

5.3 Diagnostic levels for static faults in SRAM 61

5.4 Static address decoder faults . 64

5.5 Design for diagnosis . 67

5.6 Design for diagnosis for faulty peripheral circuitry 71

5.7 Diagnostic levels for dynamic faults in SRAM 74

5.8 Memory Model . 82

5.9 Memory model with design for diagnosis 83

6.1 Electrical level schematic of SRAM . 86

6.2 Diagnosis hardware for column decoder 88

6.3 Diagnosis hardware for write path . 88

6.4 Memory addressing . 89

vii

6.5 Memory addresses vs. memory cells location 90
6.6 Resistive defect causing static fault in the memory cell array 91
6.7 HSpice simulation: March MSSm-up in normal mode 92
6.8 HSpice simulation: March MSSm-down in normal mode 93
6.9 HSpice simulation: March MSSm-up in diagnosis mode 94
6.10 Resistive defect causing static fault in the address decoder 96
6.11 HSpice simulation: March MSSm-up in normal mode 97
6.12 HSpice simulation: March MSSm-down in normal mode 99
6.13 HSpice simulation: March MSSm-up in diagnosis mode 99
6.14 HSpice simulation: March AFr0up . 101
6.15 HSpice simulation: March AFr0down . 101
6.16 HSpice simulation: March AFr1up . 103
6.17 HSpice simulation: March AFr1down . 103
6.18 Resistive defect causing static fault in the peripheral circuitry 104
6.19 HSpice simulation: March MSSm-up in normal mode 105
6.20 HSpice simulation: March MSSm-down in normal mode 106
6.21 HSpice simulation: March MSSm-up in diagnosis mode 107
6.22 HSpice simulation: Memory SCAN test in normal mode 109
6.23 HSpice simulation: Memory SCAN test in diagnosis mode 109
6.24 Resistive defect causing dynamic fault in the memory cell array 111
6.25 HSpice simulation: March MD2y . 112
6.26 HSpice simulation: March RAWAW-H1mx applied for each row of the

memory cell array . 114
6.27 HSpice simulation: March RAWAW-H1my applied for each row of the

memory cell array . 115
6.28 HSpice simulation: March MD21 . 117
6.29 HSpice simulation: March MD22 . 118
6.30 Resistive defect causing dynamic fault in the address decoder 119
6.31 HSpice simulation: March RAWAW-H1mx applied for each row of the

memory cell array . 120
6.32 HSpice simulation: March RAWAW-H1my applied for each row of the

memory cell array . 121
6.33 Resistive defect causing dynamic fault in the peripheral circuitry 122
6.34 HSpice simulation: March RAWAW-H1mx applied for each row of the

memory cell array . 124
6.35 HSpice simulation: March RAWAW-H1my applied for each row of the

memory cell array . 124
6.36 HSpice simulation: March WDmm . 126
6.37 HSpice simulation: March BLI . 127

viii

List of Tables

3.1 Single-cell static FPs . 26

3.2 Single-cell static FFMs . 26

3.3 Two-cell static FPs . 28

3.4 Two-cell static FFMs . 28

3.5 Single-cell dynamic FFMs and their FPs [24] 32

3.6 Two-cell dynamic FPs and FFMs caused by Saa [24] 34

3.7 Two-cell dynamic FPs and FFMs caused by Svv [24] 35

3.8 Two-cell dynamic FPs and FFMs caused by Sav [24] 37

3.9 Two-cell dynamic FPs and FFMs caused by Sva [24] 38

4.1 Fault signatures for March C- algorithm 46

5.1 FC x TC dictionary . 58

5.2 FP x TP dictionary . 60

5.3 Fault coverage of March MSSm-up and March MSSm-down for two-cell
coupling faults . 64

5.4 Fault coverage of March MSSm-up and March MSSm-down for address
decoder faults . 65

5.5 Diagnostic dictionary . 66

5.6 Diagnostic dictionary . 67

5.7 Diagnostic dictionary for memory cell array faults 68

5.8 Fault coverage of March AFr0up, March AFr0down, March AFr1up and
March AFr1down for address decoder faults 69

5.9 Diagnostic dictionary for address decoder faults 70

5.10 Diagnostic dictionary for peripheral circuitry faults 72

5.11 Diagnostic dictionary . 77

5.12 Diagnostic dictionary for memory cell array faults 78

5.13 Diagnostic dictionary for address decoder faults 79

5.14 Diagnostic dictionary for peripheral circuitry faults 80

6.1 Level 1: Memory cell array identified as the faulty block 95

6.2 Level 2: Fault in the memory cell array identified as single-cell fault . . . 96

6.3 Level 1: Address decoder identified as the faulty block 98

6.4 Level 2: Fault in the address decoder identified as AFnma 102

6.5 Level 1: Peripheral circuitry identified as the faulty block 107

6.6 Level 2: Fault in the peripheral circuitry identified as read path fault . . . 110

6.7 Level 1: Memory cell array identified as the faulty block 116

6.8 Level 2: Fault in the memory cell array identified as single-cell fault . . . 118

6.9 Level 1: Address decoder identified as the faulty block 121

6.10 Level 2: Fault in the address decoder identified as the row decoder fault . 122

6.11 Level 1: Peripheral circuitry cell array identified as the faulty block 125

6.12 Level 2: Fault in the peripheral circuitry identified as write path fault . . 127

ix

x

Acknowledgements

It is a pleasure to thank the many people, who made this thesis possible. First and fore-
most, I wish to thank my supervisor Dr. ir. Said Hamdioui whose guidance, feedback
and continued support helped me throughout the project. I would further like to thank
Sandra Irobi for her valuable comments on the thesis work and methodology. I wish
to give my personal gratitude to Venkataraman Krishnaswami for the time and effort
he dedicated to prolonged discussions at every step of the project. The thesis writing
benefited greatly from the inputs and suggestions contributed by Seyab Khan and Mot-
taqiallah Taouil. I would like to mention Halil Kukner for his help and support during
the onset of the project. My gratitude also goes to my flatmates and all my friends for
their moral support and for making my stay at Delft cheerful and fun. I would like to
thank the Computer Engineering department for the technical facilities and the Nether-
lands government for the financial support without which this thesis could not have been
realized.

Many thanks go to my parents for their love, unlimited support and patience along
all these years. I would like to mention my brother and sister for their belief in me and
never ending support during this long stay away from home. Lastly, I offer my regards
to everyone associated with research work in the field of memory testing and diagnosis.

Vishwas Raj Jain
Delft, The Netherlands
September 8, 2011

xi

xii

Introduction 1
Semiconductor memories are gaining importance in every aspect of electronics, starting
from simple calculators and extending to super computers. With increasing computing
power and decreasing technology dimensions, more and more memory can be accommo-
dated in the same silicon area. Such an exponential increase in density comes at the cost
of higher sensitivity to manufacturing defects and process variations, which in turn leads
to an increasing number of faults in the memory and thus, decreasing yield. Effective
memory diagnosis and failure analysis methodologies are therefore essential to improve
and speed up the yield learning. Ensuring fast yield ramp up in turn helps achieving
rapid revolution and short time-to-market for new products.

This chapter presents an introduction to memory fault testing, fault diagnosis and
motivates the thesis. It also presents the main contributions and outcomes of the thesis.
This chapter is organized as follows. Section 1.1 describes the classification and trend
for semiconductor memories. Section 1.2 discusses the importance of memory testing
and diagnosis. Section 1.3 presents the challenges of memory diagnosis and the specific
contributions of this thesis. Section 1.4 outlines the contents of this thesis.

1.1 Semiconductor Memories

In a layman’s language, memory is a simple device used to store and retrieve information.
It contains inputs for writing data into the memory and outputs for reading data from
the memory. There are control signals and address lines to facilitate the read/write
operations. Semiconductor memories have come a far way ahead of their contemporaries
(for example, magnetic memories, drum memories etc.). The reason is the optimum
combination of price, performance and area, which puts them at the heart of today’s
electronics industry. Semiconductor memories are built mainly from transistors and
depending on the characteristics, they can be classified into different categories. Figure
1.1 shows a broad level classification of semiconductor memories. They can be divided
among Read Only Memories (ROMs) and Random Access Memories (RAMs).

ROMs are pre-programmed devices which produce the same output data at all times.
Data stored in ROM cannot be modified, or can be modified only slowly or with difficulty.
ROMs can be further classified into Programmable read-only memory (PROM), Erasable
programmable read-only memory (EPROM), Electrically erasable programmable read-
only memory (EEPROM) and Flash memories. PROM can be written to or programmed
via a special device called a PROM programmer. This device uses high voltages to
permanently create internal links within the chip. Consequently, a PROM can only
be programmed once. EPROM is a type of ROM that can be erased by exposure to
strong ultraviolet light, then rewritten with a process that again needs higher than usual
voltage applied. Writing EPROMs is a difficult and slow process. EEPROM is based

1

2 CHAPTER 1. INTRODUCTION

Semiconductor Memories

ROM

PROM EPROM EEPROM Flash

RAM

SRAM DRAM

Figure 1.1: Classification of semiconductor memories

on a similar semiconductor structure to EPROM, but it can be electrically erased, then
rewritten electrically. Writing an EEPROM is a slow process and takes up to milliseconds
per bit. Flash memory is a modern type of EEPROM. Flash memory can be erased and
rewritten faster than ordinary EEPROM.

RAMs are memory devices that can be accessed to read or write data without
any predetermined order. The two main forms of RAM are static RAM (SRAM) and
dynamic RAM (DRAM). SRAM stores a bit of data using cross coupled inverters.
SRAMs are expensive to produce, but are generally faster and require less power than
DRAM. DRAM stores a bit of data using a transistor and capacitor pair. DRAMs are
required to be refreshed periodically and because of this refresh requirement, it is a
dynamic memory as opposed to SRAM (static memory). This thesis considers SRAM
as the memory device for the presented work.

Nowadays, embedded memories represent the great majority of embedded electronics
in Systems on Chip (SoC). It is very common to find SoCs with hundreds of memories
representing more than 50% of the overall chips area. According to the ITRS, todays
SoCs are moving from logic-dominant to memory-dominant chips in order to deal with
application requirements of today and the future. Figure 1.2 shows how the dominant-
logic is changing to memory, approaching 94% of the chip area in 2014 [5]. This clearly
establishes the importance of semiconductor memory components in our day-to-day life.

Such exponential increase in the on-chip share of memory is due to the ongoing
developments in the fabrication process. Silicon area per memory cell is decreasing
exponentially. Progressive technology scaling, as tracked by the International Technol-
ogy Roadmap for Semiconductors (ITRS) and encapsulated by Moores law [38], has
driven the phenomenal success of the semiconductor industry. Silicon technology has
now entered the nano-era and the 10nm transistors are expected to be in production by
2018. Consequently, embedded memory test and diagnosis challenges will significantly
impact the overall testability of SoC. Solving such challenges for memories will sub-
stantially contribute to the resolution of electronic system test problems in the future;
hence, supporting the continuation of the semiconductor technology revolution and the

1.2. IMPORTANCE OF MEMORY TESTING AND DIAGNOSIS 3

manufacturability of future highly complex systems (giga-scale) and highly integrated
technologies (nano-scale).

Figure 1.2: Share of embedded memories in systems on chip [5]

1.2 Importance of Memory Testing and Diagnosis

Semiconductor memories are an inherent part of many modern System-on-Chip (SoC)
designs. Due to an increase in computing capacity of SoCs, a proportional increase in the
amount of data to be processed can be observed, thus creating larger memory require-
ments for electronic systems. This, along with the shrinking technology dimensions, has
motivated the design and development of Ultra-Large Scale Integrated (ULSI) circuits.

The manufacturing of such large circuits is a complicated and time-consuming process
and defects in them are inevitable. Defects can be present due to impurities or disloca-
tions in original silicon. These defects manifest in forms of fluctuations, extra/missing
transistors, spot defects etc. With decreasing technological dimensions, defects are es-
calating as devices are more vulnerable to process, voltage and technology (PVT) vari-
ations. It is widely recognized that variability in device characteristics and its impact
on the overall quality and reliability of the system represents major challenges to scaling
and integration for present and future nanotechnology generations [6, 9]. Sensitivity to
faults is increasing and faults are becoming more and more complex. Therefore, it is
becoming very important to carry out appropriate testing of a memory device in order
to guarantee the required product quality.

Testing is a very critical step in the whole design and manufacturing chain; not only
because it has to screen out all the defective chips before they are sold, but also because
it is the last chance to deliver the required quality and reliability to the end customer.
It constitutes a major part of the manufacturing costs of todays products, especially in
critical applications such as the automotive, health care, security and aerospace sectors
[49]. Developing new fundamentals, which will enable the resolution of the electronic
system test challenges is a must in order to sustain the technology growth and the
manufacturability of future technology. At the same time, it is required to achieve the
quality and reliability standards in an economically viable fashion as any increase in cost

4 CHAPTER 1. INTRODUCTION

of testing leads to a proportional increase in device cost.

From both economic and technological point of view, it is very important to carry
out testing in any memory manufacturing process. All these factors make memory fault
testing a topic of vital importance. Memory fault testing is a fast evolving field and a
lot of work is going on in this area. The research work in memory testing can be broadly
divided into the following challenges:

• Fault models: Defining new fault models to characterize the possible memory de-
fects.

• Design of test algorithms: Developing specific test algorithms for specific memory
structures while maintaining low cost, low test complexity and high fault coverage.

• Fault diagnosis: Diagnose faults in an extensible and efficient way in order to realize
a fast yield ramp up.

Fault Models

For testing a memory system, the logical behavior of the device under test is compared
against the behavior of a good memory. This is done by modeling physical faults as
logical faults. Modeling the physical faults as logical fault makes testing process more
general and independent of technology and manufacturing process. With the decreasing
technology dimensions and the emerging of new failure mechanisms, it is required to
establish new fault models. Precise fault modeling is essential for efficient test design.

Design of test algorithms

A test can be defined as a manufacturing step that ensures that the physical device,
manufactured from the synthesized design, has no manufacturing defect. Test application
is to be performed on every manufactured device and are responsible for quality of
devices. The cost of testing memories increases rapidly with every new generation of
memory chips [15]. Thus, efficient test design is very important to maintain high fault
coverage while keeping test cost and time within economically acceptable limits.

Fault Diagnosis

Diagnosis consists in locating the physical faults in the structural model of the device
under test and is considered very important for ensuring fast yield ramp up. This thesis
targets memory fault diagnosis.

Manufacturing yield is a critical economic parameter in the semiconductor industry.
When starting a new process, the yield is generally very low. A rapid yield ramp-up (as
well as a high yield maintain in volume production) is a mandatory. Figure 1.3 shows
the three phases of the yield learning [52]. In the early phase, yield bring up is mainly
based on fab-owned monitor structures. Test chips/ modules are designed to cover most
known topological problems, and an extensive test data analysis (local to the fab) is
performed. In the intermediate phase, the first products (which may have unexpected
low yield) are then introduced. Different topologies are then generated. The root cause

1.2. IMPORTANCE OF MEMORY TESTING AND DIAGNOSIS 5

of yield loss in this phase may be topology specific. In the mature phase, the yield is
stable and PCMs (Process Module Structures) are used for monitoring. Product test
data is then used for yield learning

As the memory cores usually represent a significant portion of the chip area, the
memory yield will have a dramatic impact on the overall SoC yield. Today, embedded
memories are increasingly identified as having potential for introducing new yield loss
mechanisms at a rate, magnitude, and complexity large enough to demand major changes
in fault diagnosis schemes [39, 19]. Figure 1.4 shows how the yield decreases dramatically
with increasing memory size [20].

With the increasing on-chip share of memory, it is increasing becoming important to
take extra measures to ensure high yield and fast yield ramp up. It is not enough to run
memory tests designed only to detect memory faults, but it is of utmost importance to
to understand the nature of these unknown faults. It is vital to use diagnosis methods
to identify the origin of fault and location of defect.

A full diagnosis process requires on-chip and off-chip analysis using several algorith-
mic sequences. It includes a set of diagnostic test algorithms and a method/tool to
analyze the collected diagnostic data. This data is to be further processed to generate a
detailed fault report for failure analysis. Memory diagnosis process helps to reduce the
ever increasing test cost of newly developed chips. Firstly, it helps in eliminating the
faults by allowing required corrections in the process/design. Secondly, using informa-
tion from the diagnosis, the tests for memory chips can be limited to detect the set of
faults occurring in that particular memory architecture, instead of testing for the whole
possible memory fault space. All of these significantly contribute to fast yield ramp up
and overall cost reduction.

Figure 1.3: Yield vs time curve: Yield learning phases [52]

6 CHAPTER 1. INTRODUCTION

Figure 1.4: Effect of memory size on yield [20]

1.3 Contributions of the Project

The traditional fault diagnosis approaches are not adequate for covering the entire mem-
ory fault scope. They suffer from various drawbacks like high complexity, high cost, plat-
form dependence and limited scope. Most of the diagnosis approaches consider only the
memory cell array for the diagnosis purposes, while ignoring the possibility of defects in
other memory blocks like the address decoder and the peripheral circuitry [12, 28, 45, 58].
So far, no serious attempt has been made to target all the static and dynamic faults in
all the memory blocks. Also, nearly all the traditional approaches assume that there is
information available on the pass/fail status of each read operation of the applied diag-
nostic test while this is not practical in the case of plenty of test platforms [2]. Clearly,
there is a need to bring in changes to the fundamental principles of memory testing and
diagnosis approaches. The challenge is to come up with new diagnosis solutions which
are able to identify the fault and provide accurate location of the faulty component while
ensuring that all the static and dynamic faults occurring in memory are covered.

This thesis targets the development of a new hierarchical diagnosis approach which
is able to diagnose unconventional faults in all parts of the memory system including
address decoders and peripheral circuits. The approach is both extendable and platform
independent. Traditional methods deal only with conventional faults within only the
memory cell array part of the memory system. Following is a summary of the thesis
contributions:

• A new diagnosis approach to realize memory fault diagnosis in an hierarchical
fashion: Hierarchical Memory Diagnosis.

• The approach targets static and dynamic faults in all memory blocks: the memory
cell array, the address decoder and the peripheral circuitry.

• The approach uses the idea of Test classes and Test Primitives as foundation; this

1.4. ORGANIZATION OF THESIS 7

makes the approach platform independent.

• The efficiency and superiority of the approach is demonstrated using defect injec-
tion and SPICE simulations.

1.4 Organization of Thesis

This thesis is organized in 8 chapters. Chapter 1 presented a brief introduction to
memory fault testing and established the importance of memory fault diagnosis. A brief
outline of remaining chapters is provided below.

Chapter 2 explains the basic architecture of SRAM in an hierarchical manner. Start-
ing from the behavioral memory model, at each hierarchical level, memory model is
presented and explained with the help of block diagrams. Design of essential memory
components like the memory cell array, the address decoder and the peripheral circuitry
is explained. Finally, a brief introduction to memory process technology is provided.

Chapter 3 starts with defining the reduced functional model. Further, the concepts
of Fault Primitives and Functional Fault Models are described. A classification of the
fault space is presented and the behavior of targeted faults is described in detail.

Chapter 4 initiates the subject of memory fault detection and diagnosis. It provides
an overview of available memory fault diagnosis algorithms. Shortcomings of the preva-
lent approaches are discussed and the need for a new diagnosis solution is established.

Chapter 5 introduces the proposed Hierarchical Memory Diagnosis (HMD) approach.
The concept of Test Primitives is explained and a new concept of Test Classes is intro-
duced. A number of selected/developed diagnostic test algorithms are presented to
diagnose static and dynamic faults in the memory. A complete theoretical proof of the
methodology is provided.

Chapter 6 validates the theory developed in the previous chapters. Defects are in-
jected in the memory model and SPICE simulations are done. Simulation results are
presented for analysis of static and dynamic faults in order to prove the efficiency and
superiority of the proposed diagnosis approach.

Chapter 7 concludes the thesis by presenting the major contributions. Additionally,
recommendations are given for further improvements and extension of the project.

8 CHAPTER 1. INTRODUCTION

Memory Architecture 2
This chapter describes the SRAM architecture in an hierarchical fashion. It starts with
a description of models for presenting any electrical system and specifically addresses a
memory system. Following a top-down approach, SRAM is discussed at different levels
of abstraction starting with the behavioral description and ending with the actual physical
implementation.

This chapter is organized as follows. Section 2.1 defines different models used to
present the memory architecture. Section 2.2 describes memory as a black-box with only
the input and output ports visible to the external world. Section 2.3 further details the
black-box model and present memory as a system of several independent subsystems.
Section 2.4 discusses the implementation and working of these subsystems. Finally a
brief introduction to SRAM cell layout is provided in Section 2.5.

2.1 Memory Models

This section introduces the concept of modeling. A model presents physical phenomena
and processes in a logical and objective way while maintaining a level of abstraction.
Figure 2.1 presents different levels of abstraction for a memory model [54]. These models
are developed to simplify the process of understanding a system by explicitly presenting
only required information at that particular level, while hiding irrelevant details. As we
move up in the hierarchy, the abstraction level increases and the model defines the way
the system is expected to behave while not going in details of physical implementation.
The higher the model is in hierarchy, the farther it is from physical representation and
closer to the way the system behaves. A fault at a higher level cannot be necessarily
mapped to a particular physical failure. Similarly, the low level information like the
physical implementation of gates/transistors is not visible at higher levels. The modeling
levels presented in Figure 2.1 are further explained below.

Behavioral Model

This is the highest level of abstraction in the hierarchy and defines the functional
behavior of the system. It defines a system as a box consisting of several input
and output pins. The only available description is the relation between input and
output signals with no details about the internal memory structure. As the imple-
mentation details of the system are not visible with only the functional behavior
specified, such a model is often referred to as black-box model. Further details
about the behavioral model are presented in Section 2.2.

9

10 CHAPTER 2. MEMORY ARCHITECTURE

Behavior Model

Functional Model

Logical Model

Electrical Model

Geometrical Model

A
bs

tra
ct

io
n

in
cr

ea
se

s Fault localization increases

Figure 2.1: Memory models and abstraction levels

Functional Model

Functional model is similar to the behavioral model in describing the function
specifications but it also provides some details about the internal structure of a
system. This model divides the system into several interacting subsystems and
defines specific function of each of the subsystems. In a broader sense, functional
model can be defined as a collection of behavioral models of related subsystems of
a main system. Behavioral model can be considered a special case of functional
model, where only one function is presented, the system itself. Each of the subsys-
tems acts as a functional block with an independent behavioral model of its own.
Functional model is further described in detail in Section 2.3.

Logical Model

Logical model represents the system at the gate level. It is useful to describe the
system’s functionality in terms of boolean relations and logic equations. But in
the case of memory, it is not a common practice to use logical models as memory
is represented using transistors instead of gates. Therefore, logical model will not
be considered anywhere further.

Electrical Model

An electrical model is an electrical equivalent circuit that represents the behavior
of a system and also contains details about the internal structure at electrical
level. This model describes the electrical components constituting the system.
Since this research is concerned with memory testing and diagnosis, it is important
to understand the detailed electrical structure of a memory. Electrical model is
discussed in more detail in Section 2.4.

2.2. MEMORY AS A BLACK-BOX 11

Memory

Addresses

Data-in

Controls

N

B

C

Data-out
B

Figure 2.2: Black-box model of SRAM

Geometrical Model

Geometrical model is the lowest level in hierarchy and assumes complete knowledge
of the system layout. Thus, this model is also referred to as the layout model.
It includes detailed description of physical implementation and considers factors
like device geometries, line widths, distances between different components, etc.
This model is of importance for manufacturing processes. It is not studied much
in literature due to confidentiality reasons and so, only a brief introduction to
fabrication process for memory is provided in Section 2.5.

2.2 Memory as a Black-box

The most general model of a system is the black-box model which describes just the input
and output pins. This section describes such a black-box model for memory. It is worth
noting that this model makes no assumption about the internal structure of memory
and contains the least information required to describe the functioning of memory. As
shown in Figure 2.2, the input pins provide memory device with control signals, address
and input data values. The output produced by memory is provided to external world
through data-out pins. Input values consist of C control signals, N address lines and B
input data values where B is the word width of memory. It is possible to combine data-in
and data-out lines to reduce the total number of pins. To carry out a basic read/write
operation, following signals are required:

• Control signals to indicate a read/write operation and to activate the start of an
operation.

• Address indicating where to read the data from or where the data is to be written.

• Data input values in case of write operation.

Further details can be added to the black-box model presented in Figure 2.2 to
produce a slightly more detailed version. Figure 2.3 divides the black-box model in
memory core and input/output ports to produce the so-called two-dimensional memory
model [17, 46]. The memory cell array consists of a large number of memory cells. Every
cell is capable of storing only one bit of data. Memory ports act as an interface between
memory core and the external world.

12 CHAPTER 2. MEMORY ARCHITECTURE

Memory Cell
Array

.

.

.

.

. . .

A
ddresses

Memory Ports

. . .

N D
ata-in

B C
ontrols

C D
ata-out

B

Figure 2.3: Two-dimensional black-box model of SRAM

2.3 Functional Memory Model

As discussed above, a functional model consists of a collection of behavioral models
of related subsystems of a main system. Figure 2.4 shows a block diagram of SRAM
functional model. As shown in the figure, SRAM can be divided in 4 major subsystems:
(1) Memory cell array, (2) Address Decoders, (3) Read/Write Circuitry, (4) Control
circuits. A brief description of these subsystems follows here and further details are
presented in Section 2.4.

The memory cell array is the heart of the SRAM. It consists of n cells which are
organized in an array structure. The capacity of the memory is RxC where R is the
number of rows and C is the number of columns. It is important to note the difference
in external and internal organization of the memory cell array. A memory chip of 1 Kbit
can be logically seen as 1K addresses with a word size of 1 bit while physically it might
be organized as an matrix of 100 rows x 10 columns. The word width of the memory also
plays a role in deciding the physical organization of the memory cell array. While the
number of rows can be any integer, the number of columns should be an integer multiple
of the word width.

Address decoder consists of the row decoder and the column decoder. As the memory
cell array is organized as a matrix, the memory cell address is divided into row address
bits and column address bits. The high order bits select appropriate row and the low
order bits select appropriate column. Both of them combined point to a unique cell of
the memory cell array. It is possible to select more than one column at a time when the
word width B > 1. In that case, B cells are accessed together at a given time.

Read/write circuitry can be further divided in sense amplifiers, write drivers and
precharge circuits. During a read operation, the content of the selected memory cells
is read and amplified by sense amplifiers, loaded into the data register and further pre-
sented on the data-out pins. During a write operation, the data present on data-in
pins is loaded into data registers and written into the selected memory cells using write
drivers. As mentioned before, it is possible to combine data-in and data-out lines to

2.4. ELECTRICAL MEMORY MODEL 13

Memory Cell Array

R
ow

 D
ecoder

Column Decoder

Read/write circuits
and data registers

.

.

.

.

. . .

Data flow and
Control circuitry

. . .

.

.

A
ddresses

N D
ata-in

B C
ontrols

C

D
ata-out

B

Row address

Column address

Dataword in Dataword out

Figure 2.4: Functional model of SRAM

form bidirectional data lines.
Control circuits are responsible for the co-ordination of the operations by means of

control signals like read enable, write enable, sense amplifier enable, etc.

2.4 Electrical Memory Model

Electrical model of the SRAM is closely related to this work and thus is described in
detail as compared to other models. The subsystems presented in Section 2.3 will be
taken one by one and closely examined to learn the internal structure of the memory and
how things actually happen in the memory. This will be done for the memory cell array,
the address decoder and the read/write circuitry. This is important to understand the
faults that can take place and to devise methods capable of detecting them.

2.4.1 Memory Cells

Memory cell for the SRAM is a bistable circuit, which can be driven into one of the
two stable states (‘1’ referred to as true or ‘0’ referred to as false). After removing the
driving stimulus, the circuit retains its state. Depending on the application, the design
of a memory cell is affected by various factors. Thus, different designs are available
for memory cells. Figure 2.5 shows the general configuration and three other possible
configurations for a memory cell [17].

Memory cell consists of two load elements, two storage elements and two pass tran-
sistors. This can be seen in the general configuration of the memory cell presented in

14 CHAPTER 2. MEMORY ARCHITECTURE

Vdd

Vss

BL BL

WL

Vdd

L2

M1 M2

P1 P2

Vdd

Vss

BL BL

WL

R1

Vdd

R2

M1 M2

P1 P2

Vdd

Vss

BL BL

WL

L1

Vdd

L2

M1 M2

P1 P2

Vdd

Vss

BL BL

WL

L1

Vdd

L2

M1 M2

P1 P2

a) Generalized SRAM memory cell

L1

b) Four transistor cell with resistor load

c) Six transistor cell with NMOS depletion load d) Six transistor full CMOS cell

Figure 2.5: Different configurations for SRAM cells [17]

Figure 2.5(a). The pass transistors (P1 and P2) are used to isolate the cell from external
circuitry when the cell is not being accessed. The load elements (L1 and L2) along with
the storage elements (M1 and M2) form two cross-coupled inverters, thus forming a latch
to store a single data bit. Complementary bit-lines are connected to the source/drain of
pass transistors and are used to read/write the memory cell. The word line is connected
to the gate of the pass transistors and is used to activate access to a particular memory
cell. Thus, the memory cell can be accessed via the Word Line (WL) and Bit-Lines
(BL and BL). During a write operation, BL and BL are driven to complementary data
values. When the WL is turned high, the cell is forced to the state presented on BL and
BL as these lines are driven with more force than the force with which the cell retains
its information. To read the data from a memory cell, first the bit-lines BL and BL are
precharged to high level (Vdd or ‘1’). When the WL is turned high, depending on the
value stored, the memory cell starts pulling down one of the bit-lines. The voltage dif-
ference between the complementary bit-lines is sensed and amplified by the read circuit
and appropriate value is loaded in the data register. It is to be understood that read
process for the SRAM cell is a non-destructive process. The cell retains its data after
the read operation.

Depending on the application, the load elements of the generalized configuration can
be replaced by polysilicon resistors, depletion mode NMOS transistors, or PMOS tran-
sistors. Figure 2.5(b) shows SRAM cell with polysilicon resistors being used as load

2.4. ELECTRICAL MEMORY MODEL 15

element. This design choice reduces the silicon area when compared to other configu-
rations. The disadvantage of this approach is increase in dissipated power due to small
but continuously flowing current through resistors. Another choice is shown in Figure
2.5(c) which uses depletion mode NMOS transistors as load element. Compared to pre-
vious design with polysilicon resistors, this design occupies a higher silicon area but with
decreased power consumption. It is also possible to use enhancement mode NMOS tran-
sistors but depletion mode transistors are preferred due to better switching performance,
higher impedance and relatively less sensitivity towards power supply variations [17, 48].
The most commonly used and prevalent design choice uses PMOS transistors as load ele-
ments (Figure 2.5)(d). This design choice enables zero static power consumption (except
the leakage current) as either the NMOS or the PMOS transistor is always off. Dynamic
power is consumed during the switching activity. The disadvantage of this choice comes
during fabrication as due to the presence of both the NMOS and the PMOS transistors,
the process steps are more complex and costly than other design configurations.

2.4.2 Address Decoder

Address decoder is required to access a particular cell(s) out of a number of cells present
in the memory cell array. As discussed before, the memory cell array is arranged as a
two-dimensional matrix. This is useful for the address decoder circuitry. If the memory
cell array is arranged as a one-dimensional array with only row or column decoder, the
size of the decoder and the length of the word line and the bit-lines would be prohibitive.
The size of the decoder and area required for the bit-lines is proportional to

√
n for two-

dimensional addressing as opposed to n for one dimensional addressing, where n is the
number of bits in memory chip [54]. Thus, two-dimensional addressing scheme is used
with a row decoder for selecting word lines and a column decoder for selecting bit-lines.

2.4.2.1 Row Decoders

The row decoder is required to select only one row of the memory cell array by activating
a particular word line. Depending upon the implementation, decoders can be divided in
the category of static decoders and dynamic or clocked decoders. The inputs of a decoder
are formed by address bits A0 to An−1 or their complements and the output is the word
line. When a word line is selected by the row decoder, all the cells on that row have
their respective pass transistors in on state and the cells get connected to the bit-lines.
Depending on the control signals, read/write operation is performed. For selecting a
particular address, for example address 39 which is 100111 in binary, the input to gates
A0 to A5 should be A0A1A2A3A4A5.

Figure 2.6 shows two implementations (CMOS decoder [17] and PMOS-load decoder
[50]) for the static row decoder. Both of these have their advantages and disadvantages.
The address lines are connected to both the NMOS and the PMOS transistors in CMOS
decoder while they are connected only to the NMOS transistors in PMOS-load decoder.
This causes the signal load capacitance to be half in case of PMOS-load decoder when
compared to load capacitance of CMOS decoder. Also, the area of PMOS-load decoder
is less than that of CMOS decoder. But this comes at a price of comparatively more

16 CHAPTER 2. MEMORY ARCHITECTURE

Vdd

Vss

WL

An-1A1A0

A0

A1

An-1

Buffer

a) PMOS-load decoder b) CMOS decoder

WL

Vdd

Vss

A0

A1

An-1

Buffer

Vss WL

Vdd

Vss

A0

A1

An-1

Buffer

Clock

C) Simple decoder

Figure 2.6: Row decoders [17, 50]

static power consumption. The CMOS decoder has an advantage of drawing no static
current (other than leakage current).

Figure 2.6 shows an implementation (Simple decoder) for the dynamic row decoder
[17]. The advantage of the dynamic decoder is that they combine compact layout with
zero static power consumption. Only power consumed is due to the switching activity
during the period of address transition. Dynamic decoders are smaller and faster, as no
long series of gates is used. The additional cost involved is of the clocking circuit.

2.4.2.2 Column Decoders

The column decoder is responsible for selecting appropriate bit-line pair(s) to read data
from or to write data on a memory cell for a successful read/write operation. Depending
on the application, different types of column decoder can be used. Figure 2.7(a) shows
an example of logarithmic tree decoder [17]. Such a decoder is used for single-ended
memory i.e., the memory system which uses only one bit-line for read/write operations.
It is a simple but slow decoder as the output has to be routed through log2 n levels.
Also, in total there are 2*log2 n addressing signals. A faster implementation of column
decoder is shown in 2.7(b) [37]. It is based on the PMOS-load decoder of Figure 2.6.
The output of the decoder goes to an inverter, where the output signal is amplified,
after which it enables the selected transistors. This design has the advantage of being
compact.

2.4.3 Read/Write Circuitry

The write circuitry is responsible for loading the data input value on the memory cell.
Once the appropriate bit-line pair(s) has been selected, write circuitry forces the com-
plementary data values on the selected bit-lines. Figure 2.8 shows two very simple

2.4. ELECTRICAL MEMORY MODEL 17

A0

Data

A0

A1

A1

A2

A2

BL1BL2BL3BL4BL5BL6BL7BL8

Vdd

Vss

A0

A1

An-1

Buffer

Vss

BL BL

Read/write circuit

a) Tree decoder b) Decoder based on PMOS load

Figure 2.7: Column decoders [17, 37]

BL BL

Data in

Write

a) Circuit based on inverters b) Circuit based on NAND gates

Data in

Write

BL BL

Figure 2.8: Write circuitry [17]

implementations of write circuitry. When write control input is high, data to be written
is passed from data-in pin to the complementary bit-lines. True bit-line BL contains
data-in while the complementary bit-line BL contains the complementary of data-in.
The data-in value then gets written on the selected memory cell.

The read circuitry is much complex when compared to the write circuitry. The
purpose of the read circuitry is to sense the voltage difference between true and com-
plementary bit-line, amplify the difference and load the resulting logic value in the data
register. Thus, the read circuitry is often referred to as sense amplifiers. Depending on
the implementation of the memory cells, different read circuitry designs are used in prac-
tice. It can be single-ended or differential design [17]. Due to fast switching capability to

18 CHAPTER 2. MEMORY ARCHITECTURE

sense and amplify small voltage differences, differential sense amplifiers are preferred for
high performance SRAMs [31]. This capability of differential sense amplifiers is due to
their cross-coupled inner structure. Sense amplifiers can also be differentiated based on
signal transporting technique: (a) Voltage based sense amplifier, or (b) Current based
sense amplifier. Current based sense amplifiers operate faster than the voltage based
sense amplifiers [17].

Figure 2.9 shows two different implementations of voltage based sense amplifier: (a)
a single-ended PMOS differential sense amplifier [17], and (b) a double-ended PMOS
cross-coupled amplifier [17]. The sense amplifiers are activated by making the column
switch control signal high. In circuit 2.9(a), when BL is high (i.e., the data on the BL
is ‘1’), the transistor M1 is on and M2 is off. The voltage at the gate of transistor
Q2 becomes ‘0’ and the transistor is turned on. Hence, the Out signal becomes high.
In circuit 2.9(b), output voltage transitions are accelerated due to the cross coupled
structure.

a) Single-ended sense amplifier

Vss

Vdd

Column Switch

BL BL

Out

Vss

Vdd

BL BL

OutOut

Column Switch

M1 M2 M1 M2

Q2 Q2Q1Q1

b) Double-ended sense amplifier

Figure 2.9: Voltage mode sense amplifiers [17]

Two different implementations of current based sense amplifier are available: a
double-ended current mirror amplifier, and a hybrid current sense amplifier [11, 17].
The former one is prevalent in use owing to its fast sensing speed, large voltage gain and
good output voltage stability [16].

2.5 Memory Process Technology

The most detailed information about memory can be provided using the layout informa-
tion. It deals with the physical implementation of the memory and thus, is the lowest
level in the hierarchy of describing memory architecture. A large number of steps are
involved in putting a design on silicon, i.e., going from the electrical model to the layout
model. A number of constraints like area, power and cost influence the layout design and
thus, make the process exhaustive and labor-intensive. Layout level details for memory
are rarely published in the literature due to the confidentiality and sensitivity of this
information for semiconductor companies. After the layout is complete and simulations

2.5. MEMORY PROCESS TECHNOLOGY 19

(a) (b) (c)

(d) (e) (f)

Figure 2.10: Basic steps in forming a MOS transistor [17]

are performed, the process to physically manufacture the memory takes place. A brief
description of the MOS technology based memory fabrication process follows.

The basic raw material used for manufacturing memory is silicon. It is because of
the special electrical properties of silicon which allow to alter the resistivity of silicon as
a function of the impurity atoms introduced in silicon crystal. Silicon is not available
in its purest form in nature. So the first and foremost step is growth of a single crystal
of pure silicon. Once grown, the silicon crystal is sliced to form circular disks called
wafers. These wafers are usually 20 to 30 cm in diameter and are less than 1 mm thick.
All the further process steps take place on the surface of wafer. The memory circuit is
constructed on the wafer surface through a number of processes executed in succession.
The most important steps for a MOS process are described further.

The process starts with a pure silicon disk or wafer. Depending upon the requirement,
the wafer can be doped with p-type or n-type impurity atoms to create positively or
negatively doped semiconductor. A p-type semiconductor has holes as the majority
carriers while an n-type semiconductor has electrons as its majority carriers. Figure 2.10
illustrates the MOS process on an p-type silicon wafer. The first step, i.e., step (a) is
the thermal oxidization of the silicon wafer. It creates a layer of silicon dioxide on the
wafer’s surface. This oxide layer is used as gate insulator in MOSFET. Then in step (b)
oxide is covered with a layer of photoresist, which is sensitive to UV light. In step (c) the
actual circuitry is created through use of photomasks and photolithography. On exposing
photoresist to UV light, it becomes soluble in certain solutions. A pattern is created on
photoresist by exposing certain areas to UV light with help of a patterned mask. The
mask will eventually define the source, drain and channel of the MOSFETs. The area
exposed to UV light is now soluble and is removed. Then in step (d) the exposed oxide
layer is removed using for e.g., chemical etch. Step (e) shows ion implantation process
where dopant atoms are introduced in now exposed silicon. This can also be done by

20 CHAPTER 2. MEMORY ARCHITECTURE

diffusion process. Diffusion is performed in high temperature gas environment while ion
implantation is carried out using an ion beam accelerator. The implantation causes the
silicon to act as N-type or P-type doped. Finally in step (f) the remaining photoresist
is removed. This process can be repeated several times to produce required pattern and
configurations on wafer. The last step is to form metal contacts to form interconnect
lines and to access the MOS structures from outside.

Memory Fault Space 3
This chapter introduces the reduced functional model of the memory consisting of three
main subsystems: the memory cell array, the address decoder and the peripheral circuitry.
Without any impact on available information, reduced functional model is simpler and
effective with the perspective of memory testing and diagnosis. Further, the memory fault
space is defined and the targeted faults in this work are discussed.

This chapter is organized as follows. Section 3.1 defines the reduced functional fault
model. Section 3.2 introduces the concept of fault primitives and fault models. Section
3.3 categorizes fault primitives into different fault classes and shows the scope of targeted
faults in this work. Section 3.4 and Section 3.5 discusses the targeted fault models in
more detail.

3.1 Reduced Memory Functional Model

For memory testing purposes, it is considered sufficient to test the major functional
blocks of the memory: the memory cell array, the row decoder, the column decoder,
sense amplifiers, write drivers and data registers. In order to simplify the presentation,
the functional model presented in Figure 2.4 can be modified, without suffering any loss
in the available information. These changes produce the reduced functional fault model
as shown in Figure 3.1 [54]. The row decoder and the column decoder, both concerned
with addressing the memory cell(s), can be combined in one single block called the
address decoder. Read/write circuits, data registers and all other circuitry concerned
with the transport of data to and from the memory cell array can be put together as
one block called the peripheral circuitry. This reduced functional model reduces the
complexity of the testing and analysis process, makes it faster and to the point.

Address decoder

Memory cell array

Read/write logic

Addresses

Data

Figure 3.1: Reduced functional model

21

22 CHAPTER 3. MEMORY FAULT SPACE

Fault
Primitives

Static Dynamic

Simple Linked

Single-port Multi-port

Single-cell Multi-cell

Simple Linked

Multi-port Single-port

Single-cell Multi-cell

Targeted faults in
this work

Figure 3.2: Classification of fault primitives

3.2 Fault Primitive: Concept

A functional fault can be detected by applying a number of operation sequences on
the memory under test and then observing the output behavior. Functional faults can
be precisely defined as deviation from the expected behavior under the influence of
performed operations(s). Thus, a function fault model can be defined as [17]:

• A list of performed operations that cause a deviation from specified/expected be-
havior. As these operations sensitize the fault, they are also called Sensitizing
Operation Sequence (SOS).

• A list of faulty behavior i.e., corresponding deviations observed under performed
SOS.

Recently, a new functional parameter has also been added to the functional fault
model. The logical output level of a read operation is relevant to modeling read operation
related faults [17]. The combination of these fault parameters, the Fault Primitive (FP),
is thus annotated as < S/F/R > [55]. Here, S represents the SOS which sensitizes the
fault, F represents the value or the behavior in the faulty cell and R represents the
logical output of the read operation. FPs can be grouped on the basis of similar or
complementary SOS to form Functional Fault Models (FFM) [55].

3.3 Fault Primitive: Classification

Figure 3.2 shows four different and independent categories of FPs [17]. They can be
classified based on:

• the way the FPs manifest themselves, into simple and linked faults.

3.3. FAULT PRIMITIVE: CLASSIFICATION 23

• the number of sequential operations required in the SOS, into static and dynamic
faults.

• the number of simultaneous operations required in the SOS, into single-port and
multi-port faults.

• the number of different cells the FPs do involve, into single-cell and multi-cell
faults.

Simple and Linked Faults

Depending on the way the FPs manifest themselves, they can be classified into simple
and linked faults.

Simple faults are the faults which have no affect on the behavior of other faults and
so, no fault masking can take place. While linked faults are the ones which can influence
other faults. The behavior of one fault can affect the behavior of another fault and thus
fault masking can happen [17]. Linked faults consist of two or more simple faults.

Static and Dynamic Faults

Depending on the number of sequential operations required in the SOS, faults can be
classified into static and dynamic faults.

Let #O be defined as the number of operations performed sequentially. Static faults
are the faults that can be sensitized using at most one operation i.e., #O≤1 while
dynamic faults are the faults sensitized by performing at least two operations sequentially
i.e., #O≥1. With the decreasing dimensions of the process technology, more attention
is being paid to two-operation dynamic faults.

Single-port and Multi-port Faults

Depending on the number of simultaneous operations required in the SOS, faults can be
classified into single-port and multi-port faults.

Let #P be defined as the number of ports required simultaneously to apply a SOS.
Single-port faults (1PFs) require at most one port to be sensitized i.e., #P≤1 while
multi-port faults (pPFs) can be sensitized using at least 2 ports i.e., #P≥1. Multi-port
faults require two or more operations to be applied simultaneously through different
ports. It should be clear that single-port faults can be present in both the single-port
and the multi-port memory.

Single-cell and Multi-cell Faults

Depending on the number of different cells the FPs do involve, faults can be classified
into single-cell and multi-cell faults.

Let #C be defined as the number of cells accessed during a SOS. Single-cell faults
take place in the same cell where the SOS is applied while multi-cell faults involve more
than one cell while in the case of multi-cell faults, fault may appear in a different cell

24 CHAPTER 3. MEMORY FAULT SPACE

than the one on which the sensitizing sequence is applied. Depending on #C, multi-cell
faults can be further categorized in two-cell coupling FPs, three-cell coupling FPs etc.

In this dissertation, we will focus on simple single-port faults, both static and two-
operation dynamic faults, including single-cell and two-cell faults, see Figure 3.2. From
here on, the term fault or FP will refer to simple single-port FP. Details about targeted
FPs will be discussed in Section 3.4 and Section 3.5.

3.4 Static Faults

Static faults are faults that are timing independent and can be sensitized by performing
at most one operation. Referring back to the reduced memory functional model of Figure
3.1, memory static faults can be classified into three classes: (a) memory cell array faults,
(b) address decoder faults and (c) peripheral circuitry faults. Each of these classes are
discussed next.

3.4.1 Static Memory Cell Array Faults (sMCAFs)

Faults in the memory cell array can be divided among single-cell faults and multi-cell
coupling faults. Single-cell FPs cover faults occurring in a single cell while multi-cell
FPs involve more than one cell at a time. In addition to single-cell FPs, we will only
consider two-cell FPs (coupling faults) as they are demonstrated to be an important
class in SRAM faults [17].

Figure 3.3 shows single-cell and two-cell faults in the memory cell array. As can be
seen from the figure, the aggressor and the victim cells are same for the single-cell fault;
i.e., the fault appears in the same cell on which the sensitizing operation is applied. For
the two-cell fault, depending upon the cell on which the sensitizing operation is applied,
there can be three cases:

• 1PF2s: Rater than any operation, the state of the aggressor cell sensitizes the
fault in the victim cell. No operation is required to sensitize the fault. In notation
1PF2s, subscript s denotes state.

• 1PF2a: A particular operation performed on the aggressor cell sensitizes the fault
in the victim cell. In notation 1PF2a, subscript a denotes aggressor.

• 1PF2v : A particular operation performed on the victim cell sensitizes the fault in
the victim cell, given that the aggressor cell is in a particular state. In notation
1PF2v , subscript v denotes victim.

Single-cell Faults

Before proceeding to the listing and description of single-cell FPs, it is a good idea to de-
fine the FP notation in proper detail. < S/F/R > denotes a FP for a single memory cell.
S represents the sensitizing value or operation: S ∈ {0, 1, 0w0, 1w1, 0w1, 1w0, r0, r1}.
Here, 0 (1) denotes the state 0 (1) of the cell, 0w0 (0w1) denotes a non-transition

3.4. STATIC FAULTS 25

Cv Ca Cv Ca Cv Ca Cv

1PF2s 1PF2a 1PF2v

Two-cell faultsSingle-cell faults

Single-port faults

Figure 3.3: Static one-cell and two-cell faults in memory cells

write 0 (1) operation, 0w1 (1w0) denotes a transition write 0→1 (1→0) operation and
r0 (r1) denotes a read 0 (1) operation. F is the value/behavior of the faulty cell:
F ∈ {0, 1, ↑, ↓} where ‘↑’ (‘↓’) denotes an up (down) transition in faulty cell. R is
the logical value received on memory output when the sensitizing operation is a read
operation: R ∈ {0, 1,−}. R contains a value ‘0’ or ‘1’ when the fault is sensitized by
a read operation while R = − signifies that the fault is sensitized by a write operation
and no output value is applicable. For example, in the FP < 1w1/0/− >, which is the
write destructive fault, S = 1w1 means a w1 operation is applied to a cell initialized to
‘1’. The fault effect F = 0 indicates that after performing w1 operation, faulty cell state
changes to ‘0’. R = − denotes that no output is expected of S.

Given that S ∈ {0, 1, 0w0, 1w1, 0w1, 1w0, r0, r1}, F ∈ {0, 1, ↑, ↓} and R ∈ {0, 1,−};
three cases can be distinguished (Table 3.1):

• S ∈ {0, 1}
if S = 0, F = 1 and R = −; this results in FP1 of Table 3.1.
if S = 1, F = 0 and R = −; this results in FP2.

• S ∈ {0w0, 1w1, 0w1, 1w0}
if S = 0w0, F =↑ and R = −; this results in FP5.
if S = 1w1, F =↓ and R = −; this results in FP6.
if S = 0w1, F = 0 and R = −; this results in FP3.
if S = 1w0, F = 1 and R = −; this results in FP4.

• S ∈ {r0, r1}
if S = r0, F =↑ and R = 1; this results in FP7.
if S = r0, F =↑ and R = 0; this results in FP9.
if S = r0, F = 0 and R = 1; this results in FP11.
if S = r1, F =↓ and R = 0; this results in FP8.
if S = r1, F =↓ and R = 1; this results in FP10.
if S = r1, F = 1 and R = 1; this results in FP12.

26 CHAPTER 3. MEMORY FAULT SPACE

Table 3.1: Single-cell static FPs

S F R < S/F/R > FFM # S F R < S/F/R > FFM

1 0 1 - < 0/1/− > SF 7 0r0 ↑ 1 < 0r0/ ↑ /1 > RDF

2 1 0 - < 1/0/− > SF 8 1r1 ↓ 0 < 1r1/ ↓ /0 > RDF

3 0w1 0 - < 0w1/0/− > TF 9 0r0 ↑ 0 < 0r0/ ↑ /0 > DRDF

4 1w0 1 - < 1w0/1/− > TF 10 1r1 ↓ 1 < 1r1/ ↓ /1 > DRDF

5 0w0 ↑ - < 0w0/ ↑ /− > WDF 11 0r0 0 1 < 0r0/0/1 > IRF

6 1w1 ↓ - < 1w1/ ↓ /− > WDF 12 1r1 1 0 < 1r1/1/0 > IRF

Table 3.2: Single-cell static FFMs

FFM Fault Primitives # FFM Fault Primitives

1 SF < 0/1/− >, < 1/0/− > 4 RDF < 0r0/ ↑ /1 >, < 1r1/ ↓ /0 >

2 TF < 0w1/0/− >, < 1w0/1/− > 5 DRDF < 0r0/ ↑ /0 >, < 1r1/ ↓ /1 >

3 WDF < 0w0/ ↑ /− >, < 1w1/ ↓ /− > 6 IRF < 0r0/0/1 >, < 1r1/1/0 >

As can be seen from Table 3.1, write operations are capable of sensitizing 4 FPs
and read operations are capable of sensitizing 6 FPs. In total there are 12 single-cell
FPs. The above mentioned FPs can be combined and categorized into FFMs. Table 3.2
summarizes the FFMs together with their respective FPs.

1. State Fault (SF): The logic value stored in a cell flips before accessing the cell.
It is a special case as no operation is required to sensitize the fault and the fault
depends on the initial stored value in the cell. SF consists of 2 FPs: < 0/1/− >
and < 1/0/− >.

2. Transition Fault (TF): A transition write operation to the cell fails i.e., the
cell is unable to undergo a transition (0 → 1 or 1 → 0). TF consists of two FPs:
< 0w1/0/− > and < 1w0/1/− >.

3. Write Destructive Fault (WDF): A non-transition write operation (0w0 or
1w1) reverses the logic value stored in the cell. WDF consists of 2 FPs: < 0w0/ ↑
/− > and < 1w1/ ↓ /− >.

4. Read Destructive Fault (RDF): A read operation causes a transition in the
cell and returns the new incorrect value on output. RDF consists of 2 FPs: <
0r0/ ↑ /1 > and < 1r1/ ↓ /0 >.

5. Deceptive Read Destructive Fault (DRDF): A read operation causes a tran-
sition in the cell but returns the old correct value on output. DRDF consists of 2
FPs: < 0r0/ ↑ /0 > and < 1r1/ ↓ /1 >.

6. Incorrect Read Fault (IRF): A read operation returns an incorrect value on
output while the cell contains the correct logic value. IRF consists of 2 FPs:
< 0r0/0/1 > and < 1r1/1/0 >.

3.4. STATIC FAULTS 27

Two-cell Faults

Two-cell faults involve more than one cell at a time. For two-cell coupling faults, the FPs
are described as < Sa;Sv/F/R >a,v where Sa (Sv) is the sensitizing operation applied
to aggressor (victim) cell: Sa, Sv ∈ {0, 1, 0w0, 1w1, 0w1, 1w0, r0, r1}. Here a (v) denotes
the address of the aggressor (victim) cell for a coupling fault. It is to be noted that, if
Sa is an operation, than Sv can be only a state (0,1). If Sa is a state, Sv can be either
a state or an operation. The meaning of F and R has already been defined in section
3.4.1.

Given that Sa, Sv ∈ {0, 1, 0w0, 1w1, 0w1, 1w0, r0, r1}, F ∈ {0, 1, ↑, ↓} and R ∈
{0, 1,−}; two cases can be distinguished while maintaining restriction of #O≤1 :

• Sa ∈ {0, 1}
Here, notation < Sa;Sv/F/R > can be divided in two subparts: < 0;Sv/F/R >a,v

(12 FPs) and < 1;Sv/F/R >a,v (12 FPs). Based on the state/sensitizing operation
of Sv, we can further classify these 24 FPs in two subclasses:

– Sv ∈ {0, 1}: This the special case when the fault is sensitized without per-
forming any operation. The state of the aggressor cell sensitizes a fault in the
victim cell i.e., a 1PF2s fault. This results in 4 FPs namely FP1 to FP4 of
Table 3.3.

– Sv ∈ {0w0, 1w1, 0w1, 1w0, r0, r1}: A particular operation performed on the
victim cell sensitizes a fault in the victim cell, given that the aggressor cell is
in a particular state i.e., a 1PF2v fault. This results in 20 FPs namely FP5
to FP24 of Table 3.3.

• Sa ∈ {0w0, 1w1, 0w1, 1w0, r0, r1}
A particular operation performed on the aggressor cell sensitizes the fault in the
victim cell i.e., a 1PF2a fault. This results in 12 FPs. Based on the state of Sv,
we can further classify these 12 FPs in two subclasses:

– < Sa; 0/ ↑ /− >: As Sa can be any one of the six SOSs, this notation
represents 6 FPs namely FP25 to FP30 of Table 3.3.

– < Sa; 1/ ↓ /− >: As Sa can be any one of the six SOSs, this notation
represents 6 FPs namely FP30 to FP36 of Table 3.3.

As can be seen from Table 3.3, in total there are 36 two-cell coupling FPs. The above
mentioned FPs can be combined and categorized into FFMs. Table 3.4 summarizes the
classification of FFMs together with their respective FPs. Please note that the FFMs
are arranged as 1PF2s, 1PF2v and 1PF2a FFMs.

1PF2s FFMs

1. State Coupling Fault (CFst): A particular state in the aggressor cell sensitizes
the fault by flipping the value in the victim cell. It is a special case as no operation
is required to sensitize the fault and the fault depends on the initial stored value
in the cell. CFst consists of 4 FPs: < 0; 0/1/− >, < 0; 1/0/− >,< 1; 0/1/− > and
< 1; 1/0/− >.

28 CHAPTER 3. MEMORY FAULT SPACE

Table 3.3: Two-cell static FPs

Sa Sv F R < Sa;Sv/F/R > FFM # Sa Sv F R < Sa;Sv/F/R > FFM

1 0 0 1 - < 0; 0/1/− > CFst 19 1 r0 ↑ 0 < 1; r0/ ↑ /0 > CFdrd
2 0 1 0 - < 0; 1/0/− > CFst 20 1 r1 ↓ 1 < 1; r1/ ↓ /1 > CFdrd
3 1 0 1 - < 1; 0/1/− > CFst 21 0 r0 0 1 < 0; r0/0/1 > CFir
4 1 1 0 - < 1; 1/0/− > CFst 22 0 r1 1 0 < 0; r1/1/0 > CFir
5 0 0w1 0 - < 0; 0w1/0/− > CFtr 23 1 r0 0 1 < 1; r0/0/1 > CFir
6 0 1w0 1 - < 0; 1w0/1/− > CFtr 24 1 r1 1 0 < 1; r1/1/0 > CFir
7 1 0w1 0 - < 1; 0w1/0/− > CFtr 25 r0 0 ↑ - < r0; 0/ ↑ /− > CFdsrx
8 1 1w0 1 - < 1; 1w0/1/− > CFtr 26 r1 0 ↑ - < r1; 0/ ↑ /− > CFdsrx
9 0 0w0 ↑ - < 0; 0w0/ ↑ /− > CFwd 27 0w1 0 ↑ - < 0w1; 0/ ↑ /− > CFdsxwx

10 0 1w1 ↓ - < 0; 1w1/ ↓ /− > CFwd 28 1w0 0 ↑ - < 1w0; 0/ ↑ /− > CFdsxwx

11 1 0w0 ↑ - < 1; 0w0/ ↑ /− > CFwd 29 0w0 0 ↑ - < 0w0; 0/ ↑ /− > CFdsxwx

12 1 1w1 ↓ - < 1; 1w1/ ↓ /− > CFwd 30 1w1 0 ↑ - < 1w1; 0/ ↑ /− > CFdsxwx

13 0 r0 ↑ 1 < 0; r0/ ↑ /1 > CFrd 31 r0 1 ↓ - < r0; 1/ ↓ /− > CFdsrx
14 0 r1 ↓ 0 < 0; r1/ ↓ /0 > CFrd 32 r1 1 ↓ - < r1; 1/ ↓ /− > CFdsrx
15 1 r0 ↑ 1 < 1; r0/ ↑ /1 > CFrd 33 0w1 1 ↓ - < 0w1; 1/ ↓ /− > CFdsxwx

16 1 r1 ↓ 0 < 1; r1/ ↓ /0 > CFrd 34 1w0 1 ↓ - < 1w0; 1/ ↓ /− > CFdsxwx

17 0 r0 ↑ 0 < 0; r0/ ↑ /0 > CFdrd 35 0w0 1 ↓ - < 0w0; 1/ ↓ /− > CFdsxwx

18 0 r1 ↓ 1 < 0; r1/ ↓ /1 > CFdrd 36 1w1 1 ↓ - < 1w1; 1/ ↓ /− > CFdsxwx

Table 3.4: Two-cell static FFMs

FFM Fault Primitives

1 CFst < 0; 0/1/− >, < 0; 1/0/− >,< 1; 0/1/− >, < 1; 1/0/− >

2 CFtr < 0; 0w1/0/− >, < 0; 1w0/1/− >, < 1; 0w1/0/− >, < 1; 1w0/1/− >

3 CFwd < 0; 0w0/ ↑ /− >, < 0; 1w1/ ↓ /− >, < 1; 0w0/ ↑ /− >, < 1; 1w1/ ↓ /− >

4 CFrd < 0; r0/ ↑ /1 >, < 0; r1/ ↓ /0 >, < 1; r0/ ↑ /1 >, < 1; r1/ ↓ /0 >

5 CFdrd < 0; r0/ ↑ /0 >, < 0; r1/ ↓ /1 >, < 1; r0/ ↑ /0 >, < 1; r1/ ↓ /1 >

6 CFir < 0; r0/0/1 >, < 0; r1/1/0 >, < 1; r0/0/1 >, < 1; r1/1/0 >

7 CFdsrx < r0; 0/ ↑ /− >, < r0; 1/ ↓ /− >, < r1; 0/ ↑ /− >, < r1; 1/ ↓ /− >

8 CFdsxwx < 0w1; 0/ ↑ /− >, < 0w1; 1/ ↓ /− >, < 1w0; 0/ ↑ /− >, < 1w0; 1/ ↓ /− >

9 CFdsxwx < 0w0; 0/ ↑ /− >, < 0w0; 1/ ↓ /− >, < 1w1; 0/ ↑ /− >, < 1w1; 1/ ↓ /− >

1PF2v FFMs

1. Transition Coupling Fault (CFtr): A transition write operation to the victim
cell fails, given that the aggressor cell is in a particular state i.e., depending on
the state of the aggressor cell, the victim cell is unable to undergo a transition
(0 → 1 or 1 → 0). CFtr consists of 4 FPs: < 0; 0w1/0/− >, < 0; 1w0/1/− >,
< 1; 0w1/0/− > and < 1; 1w0/1/− >.

2. Write Destructive Coupling Fault (CFwd): A non-transition write operation
(0w0 or 1w1) to the victim cell reverses the logic value stored in the victim cell,
given that the aggressor cell is in a particular state. CFwd consists of 4 FPs:

3.4. STATIC FAULTS 29

< 0; 0w0/ ↑ /− >, < 0; 1w1/ ↓ /− >, < 1; 0w0/ ↑ /− > and < 1; 1w1/ ↓ /− >.

3. Read Destructive Coupling Fault (CFrd): A read operation in the victim
cell causes a transition in the victim cell and returns the new incorrect value on
output, given that the aggressor cell is in a particular state. CFrd consists of 4
FPs: < 0; r0/ ↑ /1 >, < 0; r1/ ↓ /0 >, < 1; r0/ ↑ /1 > and < 1; r1/ ↓ /0 >.

4. Deceptive Read Destructive Coupling Fault (CFdrd): A read operation to
the victim cell causes a transition in the victim cell but returns the old correct value
on output, given that the aggressor cell is in a particular state. CFdrd consists of
4 FPs: < 0; r0/ ↑ /0 >, < 0; r1/ ↓ /1 >, < 1; r0/ ↑ /0 > and < 1; r1/ ↓ /1 >.

5. Incorrect Read Coupling Fault (CFir): A read operation to the victim cell
returns an incorrect value on output while the cell contains the correct logic,
given that the aggressor cell is in a particular state. CFir consists of 4 FPs:
< 0; r0/0/1 >, < 0; r1/1/0 >, < 1; r0/0/1 > and < 1; r1/1/0 >.

1PF2a FFMs

1. Disturb Coupling Fault (CFds): A particular operation in the aggressor cell
sensitizes the fault by flipping the value in the victim cell. Depending on the
operation performed on the aggressor cell (read, transition write, non-transition
write), CFds can be divided in three sub-parts.

– CFdsrx: < r0; 0/ ↑ /− >, < r0; 1/ ↓ /− >, < r1; 0/ ↑ /− > and
< r1; 1/ ↓ /− >.

– CFdsxwx: < 0w1; 0/ ↑ /− >, < 0w1; 1/ ↓ /− >, < 1w0; 0/ ↑ /− > and
< 1w0; 1/ ↓ /− >.

– CFdsxwx: < 0w0; 0/ ↑ /− >, < 0w0; 1/ ↓ /− >, < 1w1; 0/ ↑ /− > and
< 1w1; 1/ ↓ /− >.

3.4.2 Static Address Decoder Faults (sADFs)

Static address decoder faults refer to those faults in the address decoder, which can be
sensitized using at most one operation. The faults in the address decoder are assumed
to demonstrate similar behavior during the read and the write operation [31]. Only
the faults relevant to bit-oriented memory (one bit of information at one address) are
discussed here. Figure 3.4 shows four kinds of functional faults that may be present in
the address decoder [16].

• Fault 1: No memory cell is addressed with a particular address.

• Fault 2: A particular memory cell is not accessed by any address.

• Fault 3: A particular address accesses more than one memory cell.

• Fault 4: A particular memory cell is accessed by more than one address.

30 CHAPTER 3. MEMORY FAULT SPACE

Fault 1 Fault 2 Fault 3 Fault 4

Ax
Ay

Cx

Cy

Ax

Ay

Cx

Cx

Figure 3.4: Static address decoder faults

Ax

Ay

Cx

Cy

AFnca AFnmc AFnma AFmca

Ax Cx

Ax

Ay

Cx

Cy

Ax

Ay

Cx

Cy

Figure 3.5: Combination of static address decoder faults

As the number of the memory cells and addresses is same, it is obvious that only one
of these fault cannot exist in memory and these faults take place in pairs. For example,
when Fault 1 occurs Fault 2 or Fault 3 should also take place. With Fault 2, Fault 1 or
Fault 4 will also occur. Figure 3.5 shows four possible fault combinations. These faults
can be defined as [16]:

• Fault AFnca: It is a combination of Fault 1 and Fault 2, and is called a no cell and
no address fault.

• Fault AFnmc: It is a combination of Fault 1 and Fault 3, and is called a no cell
and multiple cell fault.

• Fault AFnma: It is a combination of Fault 2 and Fault 4, and is called a no address
and multiple address fault.

• Fault AFmca: It is a combination of Fault 3 and Fault 4, and is called a multiple
cell and multiple address fault.

3.4.3 Static Peripheral Circuitry Faults (sPFs)

Static peripheral circuitry faults refer to those faults in the peripheral circuitry, which
can be sensitized using at most one operation. These faults are related to defects in the
rest of the memory (write drivers, sense amplifiers, data registers, precharge circuits).
Short and open defects in the peripheral circuitry lead to and are mapped to faults in
the memory cell array. Fault models considered for peripheral circuitry are similar to
those considered for logic circuits such as stuck-at-faults and bridging faults [10].

3.5. DYNAMIC FAULTS 31

3.5 Dynamic Faults

Dynamic faults are timing and speed related faults. Referring back to Figure 3.1, dy-
namic faults can be also classified into dynamic memory cell array faults, dynamic address
decoder faults and dynamic peripheral circuitry faults.

For memory cell array, the dynamic faults are different from static faults in that,
they require more than one operation to be applied sequentially in order to sensitize a
dynamic fault. Unlike static faults where #O≤1, for dynamic faults #O≥1. Depending
upon the number of operations, dynamic faults can be further classified as two-operation
dynamic faults (#O = 2), three-operation dynamic faults (#O = 3), etc. It has been
stated in literature that the possibility to trigger a dynamic fault falls down with increase
in number of operations [3], thus investigation of dynamic fault space is restricted to two-
operation dynamic fault space.

For address decoder, dynamic faults mainly means delay faults in the selection of
appropriate word line and/or column select lines; while for peripheral circuitry, dynamic
faults are caused by slow circuitry (for e.g., write driver) due to defects like partial opens.

In the rest of this section, each of the dynamic fault classes will be discussed.

3.5.1 Dynamic Memory Cell Array Faults (dMCAFs)

Dynamic faults in the memory cell array can be divided into single-cell faults and multi-
cell faults. This work restricts the considered dynamic faults to only two-operation
single-cell and two-cells dynamic faults; this is because they are the most addressed
dynamic faults in the literature.

Single-cell Faults

Single-cell dynamic faults are sensitized by applying more than one operation sequen-
tially to the same cell. As mentioned earlier, a single-cell fault primitive is denoted as
< S/F/R >. S is the sensitizing operation sequence. Since, we are considering two
operations, S can be of the form xO1yO2z where x, y, z ∈ {0, 1} and O1A,O2 can be
read/write operations. Combining all permutations, 18 different sensitizing sequences
are possible [24].

• 8 S have the form of write after write operation: xwywz. For example, 1w1w0
denotes a w1 operation to a memory cell whose initial state is ‘1’, immediately
followed by a w0 operation.

• 2 S have the form of read after read operation: xrxrx. For example, 1r1r1 denotes
a r1 operation to a memory cell whose initial state is ‘1’, immediately followed by
a r1 operation.

• 4 S have the form of write after read operation: xrxwz. For example, 1r1w0
denotes a r1 operation to a memory cell whose initial state is ‘1’, immediately
followed by a w0 operation.

32 CHAPTER 3. MEMORY FAULT SPACE

Table 3.5: Single-cell dynamic FFMs and their FPs [24]

FFM Fault Primitives

1 dRDF < 0r0r0/1/1 >, < 1r1r1/0/0 >,
< 0w0r0/1/1 >, < 1w1r1/0/0 >,
< 0w1r1/0/0 >, < 1w0r0/1/1 >

2 dDRDF < 0r0r0/1/0 >, < 1r1r1/0/1 >,
< 0w0r0/1/0 >, < 1w1r1/0/1 >,
< 0w1r1/0/1 >, < 1w0r0/1/0 >

3 dIRF < 0r0r0/0/1 >, < 1r1r1/1/0 >,
< 0w0r0/0/1 >, < 1w1r1/1/0 >,
< 0w1r1/1/0 >, < 1w0r0/0/1 >

4 dTF < 0w0w1/0/− >, < 1w1w0/1/− >,
< 0w1w0/1/− >, < 1w0w1/0/− >,
< 0r0w1/0/− >, < 1r1w0/1/− >

5 dWDF < 0w0w0/1/− >, < 1w1w1/0/− >,
< 0w1w1/0/− >, < 1w0w0/1/− >,
< 0r0w0/1/− >, < 1r1w1/0/− >

• 4 S have the form of read after write operation: xwyry. For example, 1w1r1 de-
notes w1 operation to a memory cell whose initial state is ‘1’, immediately followed
by a r1 operation.

In the FP notation, F denotes the behavior/state of the faulty cell: F ∈ {0, 1}. R
denotes the logical value at the output of the memory: R ∈ {0, 1,−}. R = − signifies
that the last operation was a write operation and output data is not available. Based
on the values of S, F and R, 30 dynamic single-cell FPs are determined. All these FPs
can be compiled in 5 FFMs as shown in Table 3.5 [24]; they are explained next.

1. Dynamic Read Destructive Fault (dRDF): A read operation on a cell, per-
formed immediately after a read/write operation on the same cell, changes the
data in the cell and returns the new incorrect value on output. dRDF consists
of six FPs: < 0r0r0/1/1 >, < 1r1r1/0/0 >, < 0w0r0/1/1 >, < 1w1r1/0/0 >,
< 0w1r1/0/0 > and < 1w0r0/1/1 >.

2. Dynamic Deceptive Read Destructive Fault (dDRDF): A read operation on
a cell, performed immediately after a read/write operation on the same cell, changes
the data in the cell but returns the old correct value on output. dRDF consists
of six FPs: < 0r0r0/1/0 >, < 1r1r1/0/1 >, < 0w0r0/1/0 >, < 1w1r1/0/1 >,
< 0w1r1/0/1 > and < 1w0r0/1/0 >.

3. Dynamic Incorrect Read Fault (dIRF): A read operation on a cell, performed
immediately after a read/write operation on the same cell, returns an incorrect
value on output while the cell contains the correct logic value. dIRF consists of
six FPS: < 0r0r0/0/1 >, < 1r1r1/1/0 >, < 0w0r0/0/1 >, < 1w1r1/1/0 >,
< 0w1r1/1/0 > and < 1w0r0/0/1 >.

3.5. DYNAMIC FAULTS 33

4. Dynamic Transition Fault (dTF): A transition write operation on a cell, per-
formed immediately after a read/write operation on the same cell, fails. dTF
consists of six FPs: < 0w0w1/0/− >, < 1w1w0/1/− >, < 0w1w0/1/− >,
< 1w0w1/0/− >, < 0r0w1/0/− > and < 1r1w0/1/− >.

5. Dynamic Write Destructive Fault (dWDF): A non-transition write operation
(0w0 or 1w1) on a cell, performed immediately after a read/write operation on
the same cell, reverses the logic value stored in the cell. dWDF consists of six
FPs: < 0w0w0/1/− >, < 1w1w1/0/− >, < 0w1w1/0/− >, < 1w0w0/1/− >,
< 0r0w0/1/− > and < 1r1w1/0/− >.

Two-cell Faults

Two-cell dynamic faults are sensitized by applying more than one operation sequentially
to two cells: the aggressor cell and the victim cell. As in the case of single-cell dynamic
operations, here also we restrict our fault space to two-operation dynamic faults. De-
pending on the order in which sensitizing operations(state) is applied to the aggressor
cell and the victim cell, four different sensitizing sequences can be distinguished:

1. Saa: Both sensitizing operations are sequentially applied to the aggressor cell. The
fault is sensitized in the victim cell.

2. Svv : Both sensitizing operations are sequentially applied to the victim cell. The
fault is sensitized if the aggressor cell is in a particular state.

3. Sav: First sensitizing operation is applied to the aggressor cell followed immediately
by a second operation to the victim cell. The sensitization of the fault requires
access to two different cells sequentially.

4. Sva: First sensitizing operation is applied to the victim cell followed immediately
by a second operation to the aggressor cell. The sensitization of the fault requires
access to two different cells sequentially.

Since, we are considering two operations, S can be of the form xO1yO2z where
x, y, z ∈ {0, 1} and O1,O2 can be read/write operations. Combining all permutations
and 4 possible orders results into 18*4 = 72 different sensitizing sequences.

Faults caused by Saa

Saa requires both sensitizing operations to be applied sequentially to the aggressor cell.
Given that the victim cell is in a certain state, the logical value stored in the victim cell
flips as a result of the fault effect. Since both operations are applied to the aggressor
cell, FP < Saa/F/R > is denoted as < Sa;Sv/F/R >. Sa = yO1zO2t and Sv = x where
x, y, z, t ∈ {0, 1} and, O1 and O2 are read/write operations. Sa is the SOS applied to the
aggressor cell and Sv is the state of the victim cell. F represents the flip of the victim
cell and is denoted as x. R = − as no operation is performed on the victim cell. Thus,
faults sensitized by Saa can be denoted as < yO1zO2t;x/x/− >.

34 CHAPTER 3. MEMORY FAULT SPACE

Table 3.6: Two-cell dynamic FPs and FFMs caused by Saa [24]

FFM Fault Primitives

1 dCFdsww < 0w0w0;x/x/− >, < 1w1w1;x/x/− >,
< 0w0w1;x/x/− >, < 1w1w0;x/x/− >,
< 0w1w0;x/x/− >, < 1w0w1;x/x/− >,
< 0w1w1;x/x/− >, < 1w0w0;x/x/− >

2 dCFdswr < 0w0r0;x/x/− >, < 1w1r1;x/x/− >,
< 0w0r1;x/x/− >, < 1w0r0;x/x/− >

3 dCFdsrw < 0r0w0;x/x/− >, < 1r1w1;x/x/− >,
< 0r0w1;x/x/− >, < 1r1w0;x/x/− >

4 dCFdsrr < 0r0r0;x/x/− >, < 1r1r1;x/x/− >

The operation sequence yO1zO2t gives 18 possible sensitizing sequences. Victim cell
state x can have two values {0,1}. So, in total 18*2 = 36 FPs are possible for Saa. Table
3.6 shows all FPs and FFM for Saa.

• Dynamic Disturb Coupling Fault (dCFds): Two operations applied sequen-
tially on the aggressor cell sensitize the fault by flipping the value in the victim
cell, given that the victim cell is in a certain state. Depending on the operations
performed on the aggressor cell dCFds can be divided in four sub-parts.

– dCFdsww: Operations applied in a write after write sequence. dCFdsww con-
sists of 16 FPs: < 0w0w0;x/x/− >, < 1w1w1;x/x/− >, < 0w0w1;x/x/− >,
< 1w1w0;x/x/− >, < 0w1w0;x/x/− >, < 1w0w1;x/x/− >, <
0w1w1;x/x/− > and < 1w0w0;x/x/− >.

– dCFdswr: Operations applied in a read after write sequence. dCFdswr consists
of 8 FPs: < 0w0r0;x/x/− >, < 1w1r1;x/x/− >, < 0w0r1;x/x/− > and
< 1w0r0;x/x/− >.

– dCFdsrw: Operations applied in a write after read sequence. dCFdsrw consists
of 8 FPs: < 0r0w0;x/x/− >, < 1r1w1;x/x/− >, < 0r0w1;x/x/− > and
< 1r1w0;x/x/− >.

– dCFdsrr: Operations applied in a read after read sequence. dCFdsrr consists
of 4 FPs: < 0r0r0;x/x/− > and < 1r1r1;x/x/− >.

Faults caused by Svv

Svv requires both sensitizing operations to be applied sequentially on the victim cell.
Given that the aggressor cell is in a certain state, the sensitizing operations sensitizes
a fault in the victim cell. Since both operations are applied to the victim cell, FP
< Svv/F/R > is denoted as< Sa;Sv/F/R >. Sa = x and Sv = yO1zO2t where x, y, z, t ∈
{0, 1} and, O1 and O2 are read/write operations. Sa is the state of the aggressor cell
and Sv is the SOS applied to the victim cell. F represents the faulty behavior of the
victim cell. R gives the read results if the second operation applied to victim cell (i.e.,

3.5. DYNAMIC FAULTS 35

Table 3.7: Two-cell dynamic FPs and FFMs caused by Svv [24]

FFM Fault Primitives

1 dCFrd < x; 0r0r0/1/1 >, < x; 1r1r1/0/0 >,
< x; 0w0r0/1/1 >, < x; 1w1r1/0/0 >,
< x; 0w1r1/0/0 >, < x; 1w0r0/1/1 >

2 dCFdrd < x; 0r0r0/1/0 >, < x; 1r1r1/0/1 >,
< x; 0w0r0/1/0 >, < x; 1w1r1/0/1 >,
< x; 0w1r1/0/1 >, < x; 1w0r0/1/0 >

3 dCFir < x; 0r0r0/0/1 >, < x; 1r1r1/1/0 >,
< x; 0w0r0/0/1 >, < x; 1w1r1/1/0 >,
< x; 0w1r1/1/0 >, < x; 1w0r0/0/1 >

4 dCFtr < x; 0w0w1/0/− >, < x; 1w1w0/1/− >,
< x; 0w1w0/1/− >, < x; 1w0w1/0/− >,
< x; 0r0w1/0/− >, < x; 1r1w0/1/− >

5 dCFwd < x; 0w0w0/1/− >, < x; 1w1w1/0/− >,
< x; 0w1w1/0/− >, < x; 1w0w0/1/− >,
< x; 0r0w0/1/− >, < x; 1r1w1/0/− >

O2) is a read operation, otherwise R = −. Thus, faults sensitized by Svv can be denoted
as < x; yO1zO2t/F/R >. From the discussion on single-cell dynamic faults, we know
that < x;Sv/F/R > with x ∈ {0, 1} is a superset of < Sv/F/R >. Thus, the notation
< x; yO1zO2t/F/R > represents 60 FPs: 30 Fps denoted as < 0; yO1zO2t/F/R > and
30 FPs denoted as< 1; yO1zO2t/F/R >. Table 3.6 summarizes all FPs and FFMs for
Svv.

1. Dynamic Read Destructive coupling Fault (dCFrd): A read operation on
the victim cell, performed immediately after a read/write operation on the same
cell, causes a transition in the victim cell and returns the new incorrect value
on output, given that the aggressor cell is in a particular state. dCFrd has the
forms of < x; ywzrz/z/z > and < x; yryry/y/y > and consists of 12 FPs: <
x; 0r0r0/1/1 >, < x; 1r1r1/0/0 >, < x; 0w0r0/1/1 >, < x; 1w1r1/0/0 >, <
x; 0w1r1/0/0 > and < x; 1w0r0/1/1 >.

2. Dynamic Deceptive Read Destructive coupling Fault (dCFdrd): A read
operation on the victim cell, performed immediately after a read/write operation
on the same cell, causes a transition in the victim cell but returns the old correct
value on output, given that the aggressor cell is in a particular state. dCFdrd
has the forms of < x; ywzrz/z/z > and < x; yryry/y/y > and consists of 12
FPs: < x; 0r0r0/1/0 >, < x; 1r1r1/0/1 >, < x; 0w0r0/1/0 >, < x; 1w1r1/0/1 >,
< x; 0w1r1/0/1 > and < x; 1w0r0/1/0 >.

3. Dynamic Incorrect Read coupling Fault (dCFir): A read operation on the
victim cell, performed immediately after a read/write operation on the same cell,
returns an incorrect value on output while the cell contains the correct logic,

36 CHAPTER 3. MEMORY FAULT SPACE

given that the aggressor cell is in a particular state. dCFir has the forms of <
x; ywzrz/z/z > and < x; yryry/y/y > and consists of 12 FPs: < x; 0r0r0/0/1 >,
< x; 1r1r1/1/0 >, < x; 0w0r0/0/1 >, < x; 1w1r1/1/0 >, < x; 0w1r1/1/0 > and
< x; 1w0r0/0/1 >.

4. Dynamic Transition coupling Fault (dCFtr): A transition write operation
(0w1 or 1w0) on the victim cell, performed immediately after a read/write op-
eration on the same cell, results in failing second operation (O2), given that the
aggressor cell is in a particular state. dCFtr has the forms of < x; ywzwz/z/− >
and < x; yrywy/y/− > and consists of 12 FPs: < x; 0w0w1/0/− >, <
x; 1w1w0/1/− >, < x; 0w1w0/1/− >, < x; 1w0w1/0/− >, < x; 0r0w1/0/− >
and < x; 1r1w0/1/− >.

5. Dynamic Write Destructive coupling Fault (dCFwd): A non-transition
write operation (0w0 or 1w1) on the victim cell, performed immediately after
a read/write operation on the same cell, reverses the logic value stored in vic-
tim cell, given that the aggressor cell is in a particular state. dCFwd has the
forms of < x; ywzwz/z/− > and < x; yrywy/y/− > and consists of 12 FPs:
< x; 0w0w0/1/− >, < x; 1w1w1/0/− >, < x; 0w1w1/0/− >, < x; 1w0w0/1/− >,
< x; 0r0w0/1/− > and < x; 1r1w1/0/− >.

Faults caused by Sav

Sav requires first of the two sensitizing operation to be applied to the aggressor cell
followed immediately by the second operation on the victim cell. FP < Sav/F/R >
is denoted as < Sa;Sv/F/R >. Sa = xO1y and Sv = zO2t where x, y, z, t ∈ {0, 1}
and, O1 and O2 are read/write operations: xO1y, zO2t ∈ {0w0, 0w1, 1w0, 1w1, 0r0, 1r1}.
Sa = xO1y denotes the sensitizing operation applied to the aggressor cell and Sv = zO2t
is the sensitizing sequence applied to the victim cell. F represents the faulty behavior of
the victim cell. R gives the read results if the applied operation on the victim cell (i.e.,
O2) is a read operation, otherwise R = −. Thus, faults sensitized by Sav can be denoted
as < xO1y; zO2t/F/R > and represents 60 FPs as shown:

• if Sv = zwt then F = t and R = −; z, t ∈ {0, 1}, Sv ∈ {0w0, 0w1, 1w0, 1w1}. This
case can be denoted as < Sa; zwt; t > and results in 6*4 = 24 FPs as Sa can be
any one of the six read/write operation sequences.

• if Sv = yry; y ∈ {0, 1}, Sv ∈ {0r0, 1r1}
– if F = y then R = y. This case can be denoted as < Sa; yry/y/y > and

results in 12 FPs.

– if F = y then R ∈ {y, y}. This case can be denoted as < Sa; yry/y/y > (12
FPs) and < Sa; yry/y/y > (12 FPs).

Table 3.8 summarizes all FPs and FFM for Sav . In the table, xOy denotes any
read/write operation: xOy ∈ {0w0, 0w1, 1w0, 1w1, 0r0, 1r1}. The FPs are compiled into
5 FFMs; Note that the names used for FFMs are the same as that used for faults based
in Svv sensitizing operations.

3.5. DYNAMIC FAULTS 37

Table 3.8: Two-cell dynamic FPs and FFMs caused by Sav [24]

FFM Fault Primitives

1 dCFrd < xOy; 0r0/1/1 >, < xOy; 1r1/0/0 >

2 dCFdrd < xOy; 0r0/1/0 >, < xOy; 1r1/0/1 >

3 dCFir < xOy; 0r0/0/1 >, < xOy; 1r1/1/0 >

4 dCFtr < xOy; 0w1/0/− >, < xOy; 1w0/1/− >

5 dCFwd < xOy; 0w0/1/− >, < xOy; 1w1/0/− >

1. Dynamic Read Destructive coupling Fault (dCFrd): A read operation on
the victim cell, performed immediately after a read/write operation on the ag-
gressor cell, causes a transition in the victim cell and returns the new incorrect
value on output. dCFrd has the form of < Sa; zrz/z/z > and consists of 12 FPs:
< xOy; 0r0/1/1 > and < xOy; 1r1/0/0 >.

2. Dynamic Deceptive Read Destructive coupling Fault (dCFdrd): A read
operation on the victim cell, performed immediately after a read/write operation
on the aggressor cell, causes a transition in the victim cell but returns the old
correct value on output. dCFdrd has the form of < Sa; zrz/z/z > and consists of
12 FPs: < xOy; 0r0/1/0 > and < xOy; 1r1/0/1 >.

3. Dynamic Incorrect Read coupling Fault (dCFir): A read operation on the
victim cell, performed immediately after a read/write operation on the aggressor
cell, returns an incorrect value on output while the cell contains the correct logic.
dCFdrd has the form of < Sa; zrz/z/z > and consists of 12 FPs: < xOy; 0r0/0/1 >
and < xOy; 1r1/1/0 >.

4. Dynamic Transition coupling Fault (dCFtr): A transition write operation
(0w1 or 1w0) on the victim cell, performed immediately after a read/write op-
eration on the aggressor cell, results in a failing write operation on the vic-
tim cell. dCFtr has the form of < Sa; zwz/z/− > and consists of 12 FPs:
< xOy; 0w1/0/− > and < xOy; 1w0/1/− >.

5. Dynamic Write Destructive coupling Fault (dCFwd): A non-transition
write operation (0w0 or 1w1) on the victim cell, performed immediately after a
read/write operation on the aggressor cell, reverses the logic value stored in the
victim cell. dCFwd has the form of < Sa; zwz/z/− > and consists of 12 FPs:
< xOy; 0w0/1/− > and < xOy; 1w1/0/− >.

Faults caused by Sva

Sva requires first of the two sensitizing operation to be applied to the victim cell followed
immediately by the second operation on the aggressor cell. FP < Sva/F/R > is denoted
as < Sv/F/R;Sa >. Sv = zO1t and Sa = xO2y where x, y, z, t ∈ {0, 1} and, O1

and O2 are read/write operations: zO1t, xO2y ∈ {0w0, 0w1, 1w0, 1w1, 0r0, 1r1}. Sv =
zO1t denotes the sensitizing operation applied to the victim cell and Sa = xO2y is

38 CHAPTER 3. MEMORY FAULT SPACE

Table 3.9: Two-cell dynamic FPs and FFMs caused by Sva [24]

FFM Fault Primitives

1 dCFrd < 0r0/1/1;xOy >, < 1r1/0/0;xOy;>

2 dCFdrd < 0r0/1/0;xOy >, < 1r1/0/1;xOy >

3 dCFir < 0r0/0/1;xOy >, < 1r1/1/0;xOy >

4 dCFtr < 0w1/0/−;xOy >, < 1w0/1/−;xOy >

5 dCFwd < 0w0/1/−;xOy >, < 1w1/0/−;xOy >

the sensitizing operation sequence applied to the aggressor cell. The number of faults
and FFMs for Sva is same as for Sav. The only difference is the order in which the
aggressor cell and the victim cell are accessed. Faults sensitized by Sva can be denoted
as < zO1t/F/R;xO1y;> and represents 60 FPs as shown:

• if Sv = zwt then F = t and R = −; z, t ∈ {0, 1}, Sv ∈ {0w0, 0w1, 1w0, 1w1}. This
case can be denoted as < zwt; t;Sa > and results in 24 FPs.

• if Sv = zrz; z ∈ {0, 1}, Sv ∈ {0r0, 1r1}
– if F = z then R = z. This case can be denoted as < zrz/z/z;Sa > and results

in 12 FPs.

– if F = z then R ∈ {z, y}. This case can be denoted as < zrz/z/z;Sa > (12
FPs) and < zrz/z/z;Sa > (12 FPs).

Table 3.9 summarizes all FPs and FFM for Sva. In the table, xOy denotes any
read/write operation: xOy ∈ {0w0, 0w1, 1w0, 1w1, 0r0, 1r1}

1. Dynamic Read Destructive coupling Fault (dCFrd): A read operation on
the aggressor cell, performed immediately after a read/write operation on the vic-
tim cell, causes a transition in the victim cell and returns the new incorrect value
on output. dCFrd has the form of < zrz/z/z;Sa > which consists of 12 FPs:
< 0r0/1/1;xOy > and < 1r1/0/0;xOy >.

2. Dynamic Deceptive Read Destructive coupling Fault (dCFdrd): A read
operation on the aggressor cell, performed immediately after a read/write operation
on the victim cell, causes a transition in the victim cell but returns the old correct
value on output. dCFdrd has the form of < zrz/z/z;Sa > and consists of 12 FPs:
< 0r0/1/0;xOy > and < 1r1/0/1;xOy >.

3. Dynamic Incorrect Read coupling Fault (dCFir): A read operation on the
aggressor cell, performed immediately after a read/write operation on the victim
cell, returns an incorrect value on output while the cell contains the correct logic.
dCFdrd has the form of < zrz/z/z;Sa > and consists of 12 FPs: < 0r0/0/1;xOy >
and < 1r1/1/0;xOy;>.

4. Dynamic Transition coupling Fault (dCFtr): A read operation on the
aggressor cell, performed immediately after a read/write operation on the vic-
tim cell, results in failing write operation on the victim cell. dCFtr has the

3.5. DYNAMIC FAULTS 39

Figure 3.6: Example of an inter-gate open in a CMOS address decoder [22]

form of < zwz/z/−;Sa > and consists of 12 FPs: < 0w1/0/−;xOy > and
< 1w0/1/−;xOy >.

5. Dynamic Write Destructive coupling Fault (dCFwd):A read operation on
the aggressor cell, performed immediately after a read/write operation on the
victim cell, reverses the logic value stored in the victim cell. dCFwd has the
form of < zwz/z/−;Sa > and consists of 12 FPs: < 0w0/1/−;xOy > and
< 1w1/0/−;xOy >.

3.5.2 Dynamic Address Decoder Faults (dADFs)

Dynamic faults considered in this work are the address decoder delay faults (ADDFs).
It is an important class of memory faults. Klaus [29] claims that the defect-per-million
level decreases by 670 due to tests for ADDFs. This class of faults is getting more and
more important for high speed memories. Resistive open defects are the major cause
of ADDFs. Depending on the physical presence of the defect in the address decoder,
resistive opens can be differentiated between:

• Inter-gate opens: Figure 3.6 shows three examples of inter-gate open defects (Rdef1,
Rdef2, Rdef3). Rdef1 is located in the line connecting a1 to the NAND gate
decoding WL0. Due to the long global wiring in address decoders, the probability
of inter-gate defects is at least one order of magnitude larger than the probability
of intra-gate defects [29].

• Intra-gate opens: Figure 3.7 shows an example of an intra-gate open defect(Rdef4)
in the source of the pull up transistor for input a1.

40 CHAPTER 3. MEMORY FAULT SPACE

Figure 3.7: Example of an intra-gate open [22]

Figure 3.8: Activation and deactivation delays [18]

These opens may cause the activation or the deactivation of a word line (or a column
select line) to be delayed. Figure 3.8 shows an example of memory access with a good
word line WLg, immediately followed by memory access with a potentially faulty word
line WLf. In presence of an address decoder delay fault, the activation or deactivation
of WLf will be delayed causing an Activation Delay (ActD) or a deactivation delay
(DeactD) fault [18]. Figure 3.9 shows a simulation example of the impact of a resistive
open on the word line, while Figure 3.10 shows an example of the impact of a resistive
open on the column select line. Two faults models for the ADDFs are defined [22]:

• Activation Delay (ActD): This is a delay-related fault that effects the rising edge
of word line or column select signal due to resistive defects. ActD can be observed
due to both inter-gate opens and intra-gate opens.

• Deactivation Delay (DeactD): This is a delay-related fault that effects the falling
edge of word line or column select signal due to resistive defects. DeactD can be
observed due to both inter-gate opens and intra-gate opens.

It is worth noting that ADDFs occur for intermediate values of resistive defects. For
very high resistive value, the open will behave as a open connection and the resulting
fault will be a static address decoder fault.

3.5. DYNAMIC FAULTS 41

Figure 3.9: Impact of open defect on word line timing [18]

Figure 3.10: Impact of open defect on column select timing [18]

3.5.3 Dynamic Peripheral Circuitry Faults (dPFs)

Dynamic peripheral circuitry faults are speed related faults in the peripheral circuitry
(for e.g., write drivers, sense amplifiers and precharge circuits) or faults due to excessive
leakage (due to leaky pass transistors) [56]. Below is the description of the faulty behavior
of the peripheral circuitry and operation sequences required to sensitize these faults.

1. Slow Write Driver Fault (SWDF): Presence of a defect (open, short, bridge)
in the write driver (for example, a partial open via) can lead to a slow write driver.
As a result of the defect, the voltage difference between the complementary bit
lines (BL and BL) is decreased. This can cause the write operation to fail. SWDF
can be sensitized by sequentially applying complementary write operations on two
different memory cells which use the same write driver. For example, applying a
w0 operation on a memory cell immediately followed by a w1 operation on another
memory cell, but in the same column as that of the previous memory cell, will
sensitize the slow write driver fault. The second write operation (i.e., w1) will fail.

42 CHAPTER 3. MEMORY FAULT SPACE

2. Slow Sense Amplifier Fault (SSAF): Presence of a defect in the sense amplifier
can lead to a slow or asymmetric sense amplifier. An asymmetric sense amplifier
will have some voltage offset between the two bit lines. As a result of the defect,
the read operation on the memory cell will produce incorrect result. SSAF can
be sensitized by sequentially applying complementary operations on two different
memory cells which share the same sense amplifier. The second of the two op-
erations should be a read operation. For example, applying a w0 operation on a
memory cell immediately followed by a r1 operation on another memory cell, but in
the same column as that of the previous memory cell, will sensitize the slow sense
amplifier fault. The read operation will produce an incorrect result on output.

3. Slow Precharge Circuit Fault (SPRF): Presence of a defect in the precharge
circuit can lead to a slow or biased precharge circuit. A biased precharge circuit
will not precharge both bit lines to same voltage level. As a result of the defect,
the read operation on the memory cell will produce incorrect result. Sensitizing
conditions for SPRF are same as for SSAF faults.

4. Bit Line Imbalance Fault (BLIF): As the transistor sizes are decreasing, the
proportion of the leakage current with respect to switching current is increasing.
With the shrinking process technology sizes, transistors increasingly draw more
current in the off-state. The effect of leakage current on pass transistors might
impact the read operations applied to the memory cell. In order to correctly detect
the logical value stored in a cell, during the read operation the voltage difference
developed between the complementary bit lines should be higher than a certain
threshold value. But the leakage current can act against the developed voltage
difference and lead to an incorrect read operation. For example, assume a column
of memory cells where all cells store logic value ‘1’ except one which has the logic
value ‘0’. When a read operation is performed on the cell storing ‘0’, the voltage
difference developed between bit lines can decrease under the required threshold
level and even neutralized by the leaking pass transistors of the cells storing logic
value ‘1’. Ideally, while reading logic value ‘0’, voltage of BL should be higher than
that of BL but due to the leakage current from other cells, the voltage of BL can
be higher, resulting in an incorrect read data output. BLIF can be sensitized by
performing a read x operation on a memory cell when all other cells sharing the
same bit lines contain logic value x.

State of the Art in SRAM
Diagnosis 4
This chapter presents the existing memory diagnosis approaches along with their
strengths and drawbacks. It also highlights the need of a new memory diagnosis scheme
and lists the requirements for such a scheme.

This chapter is organized as follows. Section 4.1 differentiates between memory fault
detection and diagnosis. Section 4.2 classifies the existing diagnosis approaches into
three different classes, namely probability-based diagnosis, signature-based diagnosis and
design for diagnosis. These approaches are discussed in Section 4.3 to 4.5 respectively.
Finally, Section 4.6 summarizes the main shortcomings of the existing approaches and
justifies the need for a new approach.

4.1 Detection versus Diagnosis

Semiconductor memories are an integral part of modern VLSI and ULSI circuits. For
SoC designs, memories are the most space-consuming components; and therefore they
dominate the chip yield. According to the Semiconductor Industry Association (SIA),
the on-chip share of memory is expected to increase to 94% by 2014 [5].

Just like in any other technology, faults are inherent in the new/established memory
fabrication procedure. In today’s competitive world, it is necessary to satisfy very high
quality constraints ranging from 50 DPM for computers to less than 10 DPM for critical
applications. The importance of memory fault testing cannot be therefore overlooked.

There are two major aspects to testing: fault detection and fault diagnosis. Fault
detection stands for monitoring a system and identifying whether a fault has occurred
while fault diagnosis pinpoints the type of fault, its location and tries to identify the
reasons for fault manifestation. With developing technology, the exponential increase
in the density of memory components has made memory testing and fault analysis very
important. Along with satisfying quality and reliability issues, it is desirable to have a
fast yield learning curve. Thus, it is not sufficient to just screen faulty memories after
production but efficient mechanisms are required to precisely point out the physical
presence of a fault in order to take corrective measures and get the yield as high as
possible within minimum time. Manufacturing yield is an extremely critical economical
parameter in the semiconductor industry. A fast yield ramp-up is a must!

The final outcome of the diagnosis is that the root cause of failures is located and
understood, and therefore either the design, manufacturing process or test program will
be tuned in order to realize a better yield, quality and reliability. Another advantage of
the diagnosis process is that the manufacturer accumulates the knowledge on importance
of different faults and their occurrence probabilities. The original test programs can be
modified and/or optimized to target the most important faults and thus greatly improve
efficiency and reduce the test cost [32]. Customer returns i.e., the products which passed

43

44 CHAPTER 4. STATE OF THE ART IN SRAM DIAGNOSIS

the original test but failed in the field, can be analyzed using the diagnosis process
and can provide insight to help identify or define the faults the product contains. This
is of use for finding and locating the design and/or process errors and inconsistency.
Thus, memory diagnosis is very important for improving the fault testing procedure and
improve the yield.

A well-established memory diagnosis process helps to reduce the ever-increasing test
cost of newer ICs. Firstly, it helps to eliminate the faults by allowing the required
corrections to be made in the process/design. Secondly, by using the information derived
from the diagnosis, the tests for memory chips can be limited to detecting the set of faults
occurring in that particular memory architecture, instead of testing the whole possible
memory fault space. A full diagnosis process requires on-chip and off-chip analysis using
several algorithmic sequences. It includes a set of diagnostic test algorithms and a
method/tool to analyze the collected diagnostic data. This data is further processed to
generate a detailed fault report for failure analysis.

Traditional test algorithms aim at just detecting faults and do not have implicit sup-
port for fault diagnosis. Memory fault diagnosis has not been given as much importance
as the testing of memory chips. But with the growing importance of fault diagnosis, this
subject is now being studied by a number of researchers. In the recent past, more at-
tention has been paid to this problem and several diagnostic tests have been introduced,
which are capable not only of detecting but also of identifying the fault.

4.2 Classification of Existing Diagnosis Schemes

Despite the huge growth potential of the field of memory diagnosis, little work has been
published on to this important aspect by the electronics industry. New faults models and
test generation techniques are being developed. Due to the company confidential nature
of this field, not much information about the existing memory diagnosis procedures in
industry is openly available, which makes it extremely difficult to take advantage of
experience drawn from existing approaches.

The techniques being used for memory diagnosis are still evolving. Depending on the
underlying technique and principles of operation, the majority of the published memory
diagnosis techniques (mainly by academia) can be classified into three categories (see
Figure 4.1):

• Probability-based diagnosis: These are non-deterministic methods that were
introduced during the early stages of memory diagnosis research area [12, 35, 54].
These methods are not based on any mathematical/analytical thinking but they
define the occurrence probability of a fault using statistical analysis.

• Signature-based diagnosis: This is the most common approach to memory
diagnosis. Diagnostic tests provide unique signatures for each targeted fault which
are then used to identify the fault type [28, 45, 58]. These techniques make use of
march tests for the diagnosis.

4.2. CLASSIFICATION OF EXISTING DIAGNOSIS SCHEMES 45

Memory fault
diagnosis

Probability-
based

diagnosis

Design for
diagnosis

Signature-
based

diagnosis

Figure 4.1: Classification of different diagnosis approaches

• Design for Diagnosis: These techniques advocate the use of additional hardware
for the purpose of memory diagnosis [43, 44]. Applied diagnostic tests along with
the inserted special hardware help in diagnosing the fault and in locating faulty
blocks of the memory.

In the rest of this section each of the above classes will be discussed, and their
drawbacks will be highlighted.

4.2.1 Probability-based diagnosis

Probability-based fault analysis methods for memory diagnosis were introduced in the
nineties during the onset of the field of memory fault diagnosis [12, 54]. These methods
did not find a wide application and were soon replaced by other diagnosis techniques.
The basic principle behind these methods is to implement a large number of random
experiments. Fault sites are narrowed down by appropriately overlapping the faulty
areas and faults are distinguished by comparing the pass/fail data with statistically
generated fault probabilities.

David and Fuentes demonstrated a diagnosis approach that uses pseudo-random ex-
periments to distinguish between different faults [12]. The fundamental principle behind
the approach is to have tests target different faults. The strategy used by the approach
involves several steps. First of all, random testing experiments are performed on different
areas of the memory cell array i.e., a subset of the memory words. Each experimental
result gives some information to distinguish the targeted faults. Each experiment con-
sists of initializing an area, testing an area, and then obtaining probabilistic conclusions.
If the operator is not absolutely sure of the result, further experiments can be performed
to determine whether the result is good or not. A similar methodology is introduced by
Savir et. al where five pseudo-random tests for coupling faults are described [51].

Probability-based methods showed that interesting deductions can be obtained from
random testing experiments. The diagnosis can guarantee with a degree of certainty
confidence that a certain fault type exists in the device being tested. Some methods
have been also been shown to determine the fault location but only for limited number

46 CHAPTER 4. STATE OF THE ART IN SRAM DIAGNOSIS

of faults [12]. The proposed random testing methodology depends on tests of a higher
order, such as O(N2), which leads to high test application times. These methods are
not deterministic in nature, have a low fault coverage and are rather time-consuming in
terms of the test time. The fault type and fault location can be identified only for a
small set of faults. These methods were soon replaced by other diagnosis techniques.

4.2.2 Signature-based diagnosis methods

Signature-based diagnosis methods apply diagnostic march tests and use the results to
identify the fault. A march test is a finite sequence of march elements; and a march
element is a finite sequence of operations or primitives applied to every memory cell
before proceeding to next cell in a given address direction [53]. March tests have become
dominant because their test times are in linear proportion with the size of the memory,
and their fault coverage can be proved mathematically [13]. Diagnostic march tests are
march tests that provide unique signatures for targeted faults. The number of bits in
diagnostic signature is equal to the number of read operations in the march test. When
a diagnostic test is applied on the memory, all the read operations that fail are recorded
along with the information on failing memory cells. A failed read operation is denoted as
a ‘1’ in the signature bit of that particular read operation for that particular memory cell.
A ‘0’ in signature denotes that the cell is fault-free or that the fault cannot be detected
through the applied test. Depending upon the test, unique or non-unique signatures are
generated for different memory faults and a fault dictionary is created. All the faults
with unique signatures can be distinguished.

The underlying principle of the signature-based diagnosis can be demonstrated by
means of a simple example using the well-known March C- test: { 	 (w0);⇑ (r0, w1);⇑
(r1, w0);⇓ (r0, w1);⇓ (r1, w0);	 (r0) } [34]. Signatures can be generated for targeted
fault models and their corresponding syndromes. For example, signatures concerning
state faults and transition faults for March C- are given in Table 4.1; see Table 3.1
and Section 3.4.1 for the definition of the fault models. Here, Read i = 0 (1) signifies
that the ith read operation of the test algorithm has returned a correct (faulty) value.
For example, a state-0 fault (SF0) is detected by all r1 operations. Consequently, the
march syndrome for SF0 is (01010). More fault signatures can be derived for all the
fault models covered by March C-. By comparing these signatures with the obtained
signatures during the test, one can identify the fault type causing the memory to fail.

Table 4.1: Fault signatures for March C- algorithm

Fault Model Read 0 Read 1 Read 2 Read 3 Read 4

SF0 0 1 0 1 0

SF1 1 0 1 0 1

TF0 0 1 0 1 0

TF1 0 0 1 0 1

Yarmolik et al. presented a very basic diagnostic test to distinguish Coupling Faults
(CFs) occurring in the memory cell array [58]. It is one of the first attempts to develop

4.2. CLASSIFICATION OF EXISTING DIAGNOSIS SCHEMES 47

a signature-based diagnostic test. It modifies the already available march tests (March
E and March C). Each of the targeted faults is detected in a separate read operation of
the test. A similar method based on combinations of fault decomposition and output
tracing of the memory outputs is proposed by Niggemeyer and Rudnickin [45]. The idea
is to keep track of the pass/fail information of every read operation in the diagnostic test,
thereby generating a signature for each fault. But these tests are designed to diagnose
a limited number of memory faults. Hierarchical procedure for fault diagnosis targeting
memory cell array faults is proposed in [15]. First, a march algorithm is used for fault
detection and classification; then more march algorithms are introduced to divide the
fault groups with the same syndrome into smaller groups. On similar foundations, a
two-phase diagnostic procedure to distinguish different CFs in SRAMs is proposed by
Vardanian et al. [57, 8, 33]. Lately, a novel diagnosis approach based on the concept of
Test Primitives is proposed [2]. The strength of this method lies in the fact that it is
extensible and implementation independent. It requires only the pass/fail status of the
applied tests instead of keeping track of all failed read operations.

Recently, dynamic faults in the memory are also being considered and diagnosis ap-
proaches are being extended to cover dynamic faults as well. Harutunyan et al. proposed
a march-based fault location and a full diagnosis algorithm which uses signatures for di-
agnosis of dynamic faults in bit-oriented SRAMs [28]. A march algorithm is defined
for the detection of all unlinked dynamic faults and for their partial diagnosis. Further
march algorithms are used to locate the aggressor bits of the CFs. More march algo-
rithms are proposed for the full diagnosis of dynamic faults. The target faults include
all two-operation single-cell dynamic faults, as well as a subclass of two-operation two-
cell dynamic faults where both of the sensitizing operations are applied either to the
aggressor cell or to the victim cell.

The drawback of signature-based approaches is that such signatures are hardwired
to a predefined diagnostic test. Consequently, if a memory is affected by a fault that
is not considered in the fault dictionary, the diagnosis phase fails to provide any result
or may even provide a wrong response. Any modification to the set of targeted faults
needs a new diagnostic test with a new set of fault signatures. In order to increase the
signature fields and therefore improve the diagnosis capability, the tests considered need
to be extended by adding extra read operations. Such increased complexity of march
tests can be excessive if used for industrial purposes. Another drawback of the signature
approach is that it assumes knowledge of the pass/fail status of every read operation for
a diagnostic march test. This is not generally possible on every memory test platform
[2]. The scope of the existing approaches is also limited as most of the existing signature-
based solutions target only the diagnosis of static faults. Moreover, these solutions are
generally unable to distinguish between all faults (or all fault models) and so, make it
impossible to determine which memory component is defective. It should be noted that
a fault can occur in any part of the memory system (address decoders, core-cells, sense
amplifiers, write drivers). For example, a signature-based diagnosis approach would
indicate that the memory is affected by a transition fault but without providing any
information on the faulty block of the memory where the malfunction is actually caused.
This fault might be caused by a defect in the memory cell or a defect in the write driver.
Such information is useful for the yield ramp up as well as for guiding the repair schemes.

48 CHAPTER 4. STATE OF THE ART IN SRAM DIAGNOSIS

Identifying which block of the memory (the memory cell array, the address decoder,
the peripheral circuitry) is defective leads to considerable time-saving during the ramp
up phase. An irredundant march test for the diagnosis of all distinguishable simple static
faults in the memory cell array is proposed to distinguish static address decoder faults
from static single cell and two-cell memory cell array faults [4]. But it only covers static
faults in the address decoder and the memory cell array. As it is a fault signature-based
approach, it cannot be justified as an efficient approach.

Another signature-based approach which locates faulty memory block and is useful
for both static and dynamic faults is proposed by A. Ney et al. [41]. It consists of the
extension of the fault syndrome and it operates without modifying the test algorithm.
This extension is made by using information taken from the march test execution and
from the memory structure itself. Although this work improves the diagnosis capability
without escalating test complexity, it has the same limitations as all the signature-based
approaches proposed so far.

As an alternative to the traditional signature-based approaches, an effect-cause
paradigm-based diagnosis approach is presented in [42]. It consists of creating a database
containing the history of operations (read and write) performed on those memory cells
where read operations returned faulty logic values during the test phase. This informa-
tion is used to generate the set of possible fault primitives representing the suspected
fault models and to further determine the root cause of the observed faulty behavior.
Such a history-based diagnosis approach does not rely on an established fault dictionary.
This method is able to perform the diagnosis of both static and dynamic faults and
provides better resolution as compared to other signature-based diagnosis approaches.
From our viewpoint, history-based diagnosis is so far the best way available for locating
the faulty block of memory. The drawback of this approach lies in the fact that the
diagnosis tool is to be modified with respect to the faults being targeted. Adding a new
fault to the list means that the whole procedure/tool has to be updated. In addition, the
approach does not always succeed to provide the exact fault type and the exact faulty
component of the memory system. Moreover, just like the signature-based approach,
the history-based diagnosis approach assumes that the pass/fail information of all read
operations is available.

4.2.3 Design for Diagnosis

This is an altogether different class of methods which insert extra hardware into the
memory system for the diagnosis purposes. This extra hardware is termed Design for
Diagnosis (DfD) hardware. This technique is based on the philosophy of not just iden-
tifying the fault but also determining the faulty block of the memory [43, 44]. It has
been shown that a fault model may be related to more than one defect in the various
blocks of the memory. Thus, it is not sufficient to just identify the type of fault but the
faulty block also has to be identified. The novelty of this technique is that unlike other
diagnostic techniques, it does not depend on the pass/fail status of applied diagnostic
tests. Instead, the DfD hardware is monitored regularly and an alarm is raised if any
anomaly is found. Diagnostic tests are applied for the purpose of imposing maximum
stress on the targeted memory block, which sensitize the fault and, in turn, detect it by

4.3. THE NEED FOR A NEW APPROACH 49

the DfD hardware.

A. Ney et al. made an attempt in this direction and proposed a low cost DfD
solution for identifying faulty write drivers [43]. It consists of verifying logic and analog
conditions that guarantee the fault-free behavior of the write driver. The logic condition
is verified by comparing the bit-line logic levels with the data to be written. The analog
condition consists of verifying whether the write driver delivers enough current to the
bit-lines. The hardware implementation of such a principle is composed of two parts; the
analog structure and the data processing providing the diagnosis result. It is achieved
by using several additional transistors and gates. The proposed solution allows a fast
diagnosis using only three consecutive write operations to fully diagnose the write driver
and induces a low area overhead (about 0.5% for a 512x512 SRAM) [43].

The proposed DfD in [43] targets only faults in write drivers. In fact, a fault can
occur in any part of the memory system. Adding hardware solutions to target all static
and dynamic faults in each component of the memory system would surely lead to a
huge area overhead and to a surge in power consumption. Moreover, it does not provide
any insight into the nature of the fault in the faulty block.

4.3 The Need for a New Approach

As silicon technology has entered the nano-era, diagnosis challenges have become more
complex. Today, embedded memories are increasingly identified as having potential
for introducing new yield loss mechanisms at a rate, magnitude, and complexity large
enough to demand major changes in fault diagnosis schemes [39, 19]. In particular,
emerging unconventional faults (such as timing related or complex faults) that originate
in the highest density areas of semiconductor designs require new methods to diagnose
such faults affecting not only large groups of memory cells but also other parts of the
memory system as well such as address decoders. Traditional methods deal only with
conventional faults within only the memory cell array part of the memory system.

The published work on memory diagnosis schemes suffer from the following short-
comings:

• They are all hardwired and are designed to diagnose a limited number of con-
ventional memory faults related to only memory cell array; any modification of a
set of targeted faults needs a new diagnosis test along with the new set of fault
signatures.

• They do not target unconventional faults that emerge in the nano-era (for e.g., eak
faults, timing related faults). In addition, they do not deal with faults in all parts
of the memory system (for e.g., address decoders, sense amplifiers, etc).

• The existing approaches are unable to determine the faulty memory block and this
leads to prolonged diagnosis periods and NTFs.

• Most of techniques are off-line reasoning procedures gearing toward an efficient
fault diagnosis. In order to diagnose the memory against unconventional faults, it
must be tested at-speed, hence on-line.

50 CHAPTER 4. STATE OF THE ART IN SRAM DIAGNOSIS

• The prevalent signature-based approaches assumes knowledge of the pass/fail sta-
tus of every read operation for a diagnostic march test. This is not generally
possible on every memory test platform.

It can be concluded from the above-mentioned approaches and their drawbacks that
existing approaches are not adequate for covering the entire memory fault scope. Clearly,
there is a need to bring in changes to the fundamental principles of memory diagnosis
approaches. In the absence of new diagnosis methods being able to accurately deal with
upcoming failure mechanisms in future technologies, it will be impossible to manufacture
such technologies. A new approach is required, which can contribute to the resolution
of failure analysis in the highly complex systems of future. With the downscaling of
the technology, the demand of the hour is for an efficient approach which builds on the
drawbacks of the traditional approaches. The challenge is to come up with an ideal
diagnosis solution that:

• Targets faults in all parts of a memory system.

• Can accurately locate the faulty block and determine the fault type.

• Has high fault coverage, i.e., covers all static and dynamic faults.

• Is platform independent i.e., diagnosis scheme does not require any specific imple-
mentation techniques or technologies, other than running a set of algorithms..

• Is extensible i.e., new diagnosis capabilities for any new faults can be added easily
without the need to modify anything in the method.

Hierarchical Memory Diagnosis 5
This chapter introduces a new memory diagnosis approach referred to as Hierarchical
Memory Diagnosis. The underlying concepts of the approach will be explained and the
advantages will be discussed. The approach will be applied to the diagnosis of both static
and dynamic faults in different parts of a memory system (the memory cell array, the
address decoder and the peripheral circuitry).

This chapter is organized as follows. Section 5.1 gives an introduction to Hierarchical
Memory Diagnosis approach. Section 5.2 a gives a brief description of notation for test
algorithms and stresses which will be used through out this thesis. Section 5.3 explains
the concept and application of test primitives and test classes. Section 5.4 discusses the
diagnosis procedure for static faults while Section 5.5 discusses the diagnosis procedure
for dynamic faults in all parts of the memory system. The outcomes and conclusions are
summarized in Section 5.6.

5.1 Introduction to Hierarchical Memory Diagnosis

In the previous chapters, the drawbacks of the traditional memory diagnosis approaches
were established. There is certainly a need for a new approach which targets faults, not
only in the memory cell array, but in all memory blocks and with a higher resolution. We
propose a new approach to perform memory diagnosis; it is referred to as Hierarchical
Memory Diagnosis (HMD).

The concept behind the HMD approach is to diagnose memory faults and memory
blocks in an hierarchical order. Figure 5.1 gives an insight into intended application
of the proposed approach. Given a faulty memory, first of all it is subjected to the
diagnosis for static faults. If a static fault is present, it is mapped to an already defined
functional fault model. Otherwise, if no fault is found, the faulty memory is subjected
to the diagnosis for dynamic faults. If a dynamic fault is present, it is mapped to a fault
model; otherwise the faulty memory is categorized as No Trouble Found.

HMD aims to narrow down the possible faulty component from the beginning and
diagnostic tests can be applied accordingly. This helps in putting the effort into fault
diagnosis in a well-directed way. This, in turn, cuts down the time required for the
diagnosis and ensures fast yield ramp up. Figure 5.2 shows a high level overview of the
proposed methodology. First of all, given a faulty memory, HMD finds out which memory
block is faulty: the memory cell array, the address decoder or the peripheral circuitry.
After identifying the faulty block, at the next level down the hierarchy, diagnostic tests
designed for that particular faulty block are applied. Depending on the resolution of
applied tests, the fault type and the location can be determined. Let us assume that
we have a faulty memory with a fault in the address decoder. The first diagnosis level
determines that the address decoder block is faulty. Then, at the next level down the

51

52 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Faulty
Memory

Fault/no fault

Static hierarchical analysis

Fault report

No fault found

Detected

Not detected

Fault/no fault

Dynamic hierarchical analysis

Fault reportDetected

Not detected

Figure 5.1: Procedure of Hierarchical Memory Diagnosis

hierarchy, it can be determined whether the fault is a row decoder fault or a column
decoder fault. Further down the hierarchy, the fault type can be determined.

The most common drawback attached to the traditional approaches is that they
assume the knowledge of the pass/fail status for each read operation in the applied
diagnostic test while this is not practical for plenty of test platforms. This is because
normally a test machine will stop running when it encounters the first read operation
failure. To eliminate this drawback, HMD is built on the concept of Test Primitive (TP)
[2]. A TP is a march test designed with the specific purpose of detecting a particular
Fault Primitive (FP). Developing on the key concept of TP, a modified version of TP
referred to as Test Class (TC) is introduced. A Test Class is a diagnostic test designed
with the specific purpose of detecting a particular set of faults or a single Fault Class
(FC). The implementation details of the HMD approach, based on TP and TC; will be
discussed later in this chapter.

The major strengths of the HMD approach are:

• Targets static and dynamic faults in all the memory blocks, namely, the memory

5.1. INTRODUCTION TO HIERARCHICAL MEMORY DIAGNOSIS 53

Memory
Memory cell array faults
Address decoder faults

Peripheral circuitry faults

Diagnosis level 1

Address
decoder faults

Memory cell
array faults

Peripheral
circuitry faults

Diagnosis level 2 Diagnosis level 2 Diagnosis level 2

Fault A Fault B Fault C Fault X Fault Y Fault A Fault E

Figure 5.2: High level overview of Hierarchical Memory Diagnosis approach

cell array, the address decoder and the peripheral circuitry.

• No specific implementation requirements other than applying a test and determin-
ing the pass/fail status of the diagnostic test. Sometimes requires information on
the address of first fail of the applied test.

• Accurate information on faulty block.

• Hierarchical methodology significantly reduces diagnosis effort. For example, there
is no need to apply diagnostic tests for coupling faults in the memory cell array
when a fault exists in the address decoder. The faulty memory block is identified
at the first step of the diagnosis.

• New diagnosis capabilities for new FPs can be added without the need to modify
existing tests or diagnostic signatures.

• Improved diagnostic ratio without escalating test complexity.

54 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

• Assists in test program optimization.

5.2 Notation of test algorithms and stresses

A test consists of a Base Test ‘BT’, applied using a particular Stress Combination ‘SC’.
A BT forms the main test algorithm, whereas an SC consists of a combination of values
for the different stresses; for e.g., VDD = 1.8V, Temp = 70C, etc. Most BTs have a
march test format. March test algorithms are the most common algorithms used for
testing memories [54]. A march test consists of a finite sequence of march elements.
A March Element (ME) is a finite sequence of operations applied to every cell in the
memory before proceeding to the next cell. A complete march test is delimited by the
‘{...}’ bracket pair; while a march element is delimited by the ‘(...)’ bracket pair. The
march elements are separated by semicolons, and the operations within a march element
are separated by commas. The way one proceeds to the next cell is determined by the
Address Orders (AOs) which can be an increasing address order (for e.g., increasing AO
from the cell 0 to the cell n− 1), denoted by ⇑ symbol, or a decreasing AO, denoted by
⇓ symbol, and which is the exact inverse of the ⇑ AO. When the AO is irrelevant, the
symbol 	 (i.e., ⇑ or ⇓) will be used. An example of a march algorithm is MATS+ [40],
defined as:

MATS+: {	 (w0);⇑ (r0, w1);⇓ (r1, w0)}

MATS+ consists of three MEs, which are separated by the ‘;’ symbol. The ME
‘⇑ (r0, w1)’ specifies the ⇑ AO, while to each address a read operation with expected
logic value ‘0’ will be applied, after which a logic ‘1’ will be written.

A BT can be applied with different stresses. The stresses can be divided into two
types i.e., algorithmic and non algorithmic stresses [56].

• A non-algorithmic stresses is also referred as an environmental stress, as it specifies
the environmental values, such as the supply voltage, the temperature, the timing
(the clock frequency), etc.; they are effective during the application of the test [56].

• An algorithmic stress specifies the way the test is performed, and therefore it
influences the sequence and/or the type of the memory operations performed. The
most known algorithm stresses are the address direction, counting method and
data-background [56] [22].

Next, the three different algorithmic stresses will be discussed.

Address direction is the addressing extension of the one-dimensional ‘AO’ to the two
dimensional space of the memory cell array [56]. A real memory consists of a number
or rows and columns (and thus also of a number of diagonals). The address directions
specifies the direction (i.e., rows, columns, or diagonals) in which the address sequence
has to be performed. The commonly used address directions in the industry are:

5.3. CONCEPT OF TEST CLASS AND TEST PRIMITIVE 55

• Fast row: In fast row addressing, each address increment or decrement operation
causes an adjacent physical row to be accessed.

• Fast column: In fast column addressing, each address increment or decrement
operation causes an adjacent physical column to be accessed.

• Fast diagonal: In fast diagonal addressing, each address increment or decrement
operation causes an adjacent physical diagonal to be accessed. Fast diagonal ad-
dressing is used less frequently in industry [56].

Counting method determines the address sequence. It has been shown that the count-
ing method is important for detecting AD delay faults. Some of the counting methods
used are linear, Address Complement, 2i, H1 addressing etc [22].

• Linear counting method: This is the most common counting method used.
It is denoted by the superscript ‘L of the AO (for e.g., L ⇑), where ‘L’ specifies
the address sequence 0,1,2,3, etc. Because it is the default counting method, the
superscript ‘L is usually deleted.

• Address Complement counting method: It specifies an address sequence: 000,
111, 001, 110, 010, 101, 011, and 100; each bold address is the 1s complement of
the preceding address.

• 2i counting method: This counting method is typically used by the MOVI
algorithm It repeats the PMOVI algorithm ‘N’ times (N = is the number of memory
address bits) with an address increment/decrement value of 2i; with 0 ≤ i ≤ N−1.

• H1 counting method: It specifies an address sequence: 000, 001, 000, 010, 000,
100, 000; each address has a hamming distance of ‘1’ with respect to the preceding
address.

Data Background ‘DB’ is the pattern of zeros and ones as seen in an array of memory
cells [56]. The most common types of DBs are:

• Solid (sDB): (0000.../0000...) or (1111.../1111...)

• Checkerboard (cDB): (0101.../1010.../0101.../1010...)

• Column Stripe (cDB): (0101.../0101.../0101.../0101..)

• Row Stripe (rDB): (0000.../1111.../0000.../1111..)

5.3 Concept of Test Class and Test Primitive

For the HMD approach, we make use of Test Classes (TCs) and test Primitives (TPs). A
TC is defined as a march test designed with the specific purpose of detecting a particular
Fault Class (FC) while maintaining the minimum number of operations required to detect
faults from the the targeted fault class. For diagnosis purpose, We require only the
pass/fail status of applied TCs.

56 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

TCs are used at higher diagnosis levels to distinguish between FCs i.e., identifying
which block of the memory is faulty. For example, if we target the distinction of memory
cell array faults and address decoder faults, a single TC may detect all memory cell
array faults and no address decoder faults while another TC may detect all address
decoder faults and no memory cell array faults. FCs can then be classified using the TC
signatures by comparing the pass/fail information of TCs to an already developed TC
diagnostic dictionary. It is worth noting that often a TC developed for a particular FC
will also detect faults in other FCs. This happens when the detection conditions of faults
from different FCs are same and faults get detected by the same operation sequence.
For example, a test developed to detect memory cell array faults will also detect some
peripheral circuitry faults. This makes it difficult to distinguish FCs. Often, to insulate
the detection of several faults, additional read/write operations are added to diagnostic
tests. This leads to an increase in test length but it improves the diagnosis capability
and resolution.

The use of TPs becomes more significant at lower levels of hierarchy where it is
required to identify the type of the fault. A TP is a march test designed with the
specific purpose of detecting a particular Fault Primitive (FP) while maintaining the
minimum number of operations required to detect the targeted fault. The condition of
targeting a single FP is useful for the diagnosis purpose as it helps avoiding the detection
of any fault other than the targeted one. It is also important for optimizing the test
length and thus, reducing test cost. Faults can be classified using the TP signatures
by comparing the pass/fail information of TPs to an already developed TP diagnostic
dictionary. TPs have the same notation as of a march test.

HMD constructs over the basic idea of TCs and TPs due to the following advantages
they offer over other fault detection and diagnosis methodologies:

• Extensibility: Support for new FPs can be added without modifying the existing
diagnosis scheme or diagnostic dictionary.

• Platform Independence: TCs and TPs have the same notation as of march
tests and can be applied in the same regular way as any fault detecting test is
applied. No extra memory is required to store specific read operations failing or
the test signatures as the diagnostic process requires only the pass/fail information
of applied tests. Thus, HMD can be used on any memory test platform irrespective
of its capabilities.

• Unknown Fault Identification: There can be several combinations of failing
TCs and TPs that do not attribute to any described fault. Thus, making it possible
to define a fault and further develop/modify tests to detect the fault. This is a
useful contribution to theoretical understanding of new faults.

In the rest of this section, it will be shown how the concepts of TC and TP are used
to generate appropriate diagnosis dictionaries in order to identify different fault classes
and fault primitives, respectively.

5.3. CONCEPT OF TEST CLASS AND TEST PRIMITIVE 57

5.3.1 Test Class Dictionary Generation

For the classification of the targeted fault classes, it is required to develop a TC diagnostic
dictionary. The procedure for it is described as follows:

• Step 1: Develop TCs for targeted FCs.

• Step 2: Create FC x TC dictionary based on pass/fail information.

Develop TCs for targeted FCs

A TC can be developed by combining the detection conditions of all the targeted faults.
It is required to generate TCs with march elements containing the minimum number
of operations to sensitize and detect the targeted FPs. This is needed to prevent the
TC from sensitizing any other non-targeted FPs. For example, the TC for detecting all
single-cell static faults in the memory cell array can be:

• TCx: { ⇑ (w0);⇑ (w1);⇑ (w1);⇑ (r1);⇑ (r1);⇑ (w0);⇑ (w0);⇑ (r0);⇑ (r0) } or

• TCy: { ⇑ (w0);⇑ (w1, w1, r1, r1);⇑ (w0, w0, r0, r0) }

However, TCy is not preferred since it may also detect some dynamic faults like
dynamic write destructive fault < 1; 1w0w0/1/− > as well as some static coupling
faults. Maintaining minimum test length is easier for single-cell faults, but for coupling
faults, meeting minimum test length criteria is not so direct and needs systematic
analysis. Thus, for this work, priority has been given to establish a proper diagnostic
process and if required, neglecting the minimum test length requirement.

Next, an example will be given to illustrate the use of TC dictionary. Obviously,
developing TCs requires in depth understanding of memory fault models and test gen-
eration. Nevertheless, the example below is intended to only show how the dictionary
can be used in order to identify the fault class. More details about the TC development
is given in Section 5.4.2. Let us consider the following TCs:

• TC1: { ⇑ (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);⇑ (r0, w1) }

• TC2: { ⇓ (w0);⇓ (r0, r0, w1, w1);⇓ (r1, r1, w0, w0);⇓ (r0, w1) }

The above TCs are adapted from March MSS [27]. TC1 has only up addressing,
and is able to detect all static single-cell faults. It can only detect 50% of the two-cell
coupling faults; the two-cell faults that will be detected here have victim cell with higher
address than aggressor cell. On the other hand, TC2 uses only down addressing, and is
able to detect all static single-cell faults. It can only detect 50% of the two-cell coupling
faults. Note that only two-cell faults where the address of the victim cell is lower than
the aggressor cell will be detected.

58 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Table 5.1: FC x TC dictionary

FC TC1 TC2

No fault 0 0

Static single-cell faults 1 1

Static two-cell coupling faults 0 1
1 0

Create FC x TC dictionary based on pass/fail information

The next step is to incorporate signatures of all FCs with respect to all TCs into a table.
Through unique signatures, different sets of FPs can be identified; i.e., distinguishing
static single-cell faults from static two-cell coupling faults. Although it looks similar
to the traditional signature-based diagnosis method, it is not the case. Traditional
signature-based methods require the outcome of each read operation in a march test
which is not practical. But for the TP based approach, we just need to know whether
one TP fails or passes and move on to another TP, which is easily implementable for
automatic test machines. We will produce FCs x TCs table following two steps:

• Compare all the developed TCs and if two or more TCs are same, include only one
of them. Thus, only unique TCs are included.

• Fill in the pass/fail information of TCs for the FPs, and then compare the generated
signatures. If two targeted sets of FPs have the same signature, then add new TC(s)
to distinguish them.

The process has to be repeated till all the fault classes have unique signatures or it
is not possible to distinguish further. Table 5.1 gives the FCs x TCs dictionary. The
table symbolizes fault detected as ‘1’ and fault not detected as ‘0’. It is clear that based
on the pass/fail information of each TC we can identify the appropriate fault class. If
none of the TCs fail, then no single-cell nor two-cell coupling fault occurs. If only one
TC fails, then a two-cell coupling fault is present in the memory. Finally, if both TCs
fail, then a single-cell fault occurs. It is to be noted, that signatures for single-cell faults
and two-cell coupling faults are unique and thus, fault classes can be distinguished.

It is worth noting that we only care about the pass/fail information of the TC, and
that we assume the presence of a single fault at a time in the memory system.

5.3.2 Test Primitive Diagnostic Dictionary Generation

Once the fault class is identified, one can use the TP concept to further precisely pinpoint
the fault. In a similar way as done for TC dictionary generation, the diagnosis process
for FPs requires two steps:

• Step 1: Develop TPs for targeted FPs.

• Step 2: Create FP x TP dictionary based on pass/fail information.

5.3. CONCEPT OF TEST CLASS AND TEST PRIMITIVE 59

Develop TPs for Targeted FPs

A TP can be developed for a FP by using the detection conditions of the target fault.
Maintaining minimum length is important to avoid detection of any other non-targeted
FPs. For example, the TP for FP WDF0 = < 0w0/1/− > (see Table 3.1) can be:

• TPx: {	 (w0);	 (w0);	 (r0)} or

• TPy: {	 (w0);	 (w0, r0)}
The latter is not preferred since it can also detect the dynamic read destructive fault

< 0w0r0/1/1 >.

Next, an example will be given to illustrate the use of TP dictionary. Developing
TPs requires in depth understanding of memory fault models and test generation. Nev-
ertheless, the example below is intended to only show how the dictionary can be used
in order to identify the fault type. More details about the TC development is given in
Section 5.4.2. Let us consider four TPs which can be used to distinguish static single-cell
faults: TF1, WDF0, IRF0, and SF0 occurring in the memory cell array; (see Table 3.1).

• TP1: {	 (w1);	 (w0);	 (r0)} for TF1 = < 1w0/1/− >

• TP2: {	 (w0);	 (w0);	 (r0)} for WDF0 = < 0w0/1/− >

• TP3: {	 (w0);	 (r0);	 (w1)} for IRF0 = < 0r0/1/− >

• TP4: {	 (w0);	 (r0);	 (w1)} for SF0 = < 0/1/− >

The above TCs are adapted from [32]. Each TP targets a particular FP by including
the detection conditions only for the targeted FP. This is essential to generate unique
signatures for distinguishing the faults.

Create FP x TP dictionary based on pass/fail information

The next step is to incorporate signatures of all FPs with respect to all TPs into a table.
Through unique signatures, different set of FPs can be identified. Next, We will produce
FPs x TPs table following two steps:

• Compare all the developed TPs and if two or more TPs are same, include only one
of them. Thus, only unique TPs are included. It is to be noted that TP3 for IRF0

and TP4 for SF0 are same so TP4 has been eliminated.

• Fill in the pass/fail information of TPs for the FPs, and then compare the generated
signatures. If two targeted sets of FPs have the same signature, then add new TP(s)
to distinguish them.

The process has to be repeated till all FPs have unique signatures or it is not possible
to distinguish them further. Table 5.2 gives the FPs x TPs dictionary. It is clear that
based on the pass/fail information of each TP we can identify the appropriate fault
type. If none of the TPs fail, then none of the targeted FPs occur. If only TP1 fails,

60 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Table 5.2: FP x TP dictionary

FP TP1 TP2 TP3

No Fault 0 0 0

TF1 1 0 0

WDF0 0 1 0

IRF0 1 1 1

SF0 1 1 1

Not Applicable 0 0 1
0 1 1
1 0 1
1 1 0

then the fault TF1 is present in the memory. If only TP2 fails, then the fault WDF0 is
present in the memory. If all the TPs fail, then either IRF0 or SF0. These faults are
externally indistinguishable and thus cannot be distinguished even by including more
TPs. Signatures for other faults are unique and thus, those faults can be distinguished.
The other signatures (for e.g., 110,101, etc.) do not attribute to any of the targeted FPs
and can be used to define new faults.

5.4 Static Hierarchical Analysis

This section describes the HMD approach to diagnose static faults in the memory. We
assume the presence of only a single defect at a time causing a static fault in the memory.
The targeted faults are memory cell array faults, address decoder faults and peripheral
circuitry faults. Detailed description of these faults can be found in Section 3.4. In this
section, the term “memory cell array faults” refers to static faults in the memory cell
array, “peripheral circuitry faults” refers to static faults in the peripheral circuitry and
“address decoder faults” refers to static faults in the address decoder. The diagnosis
procedure consists of two levels and follows a hierarchical order. To simplify the ex-
planation of diagnostic tests and methodology, it is assumed that every column of the
memory cell array has its own set of peripheral circuitry (sense amplifier, write drivers,
precharge circuits).

In the rest of this section, first an overall overview of the different diagnosis levels will
be presented. Then, the first level of diagnosis distinguishing the different fault classes
(related to different memory blocks) will be addressed; this includes the differentiation
of memory cell array, address decoder and peripheral circuitry faults. Third, the second
level of hierarchy will be explained in order to be able to identify the exact fault type.

It is worth noting that for diagnosis of static faults, the target fault space is explained
in Section 3.4.

5.4. STATIC HIERARCHICAL ANALYSIS 61

Memory
Static faults

Diagnosis level 1

Address
decoder faults

Memory cell
array faults

Peripheral
circuitry faults

Diagnosis level 2 Diagnosis level 2 Diagnosis level 2

AFnca
AFnmc

AFnma AFmca

Single-
cell

faults

Two-cell
coupling

faults

Faulty
read
path

Faulty
write
path

Figure 5.3: Diagnostic levels for static faults in SRAM

5.4.1 Diagnostic Levels

One of the benefits of the HMD approach lies in applying first only the minimum required
effort by determining the faulty block at the first step itself. In this way, later diagnostic
procedures will have to be applied only to identify faults in faulty block instead of
applying diagnostic tests for all the memory components. Figure 5.3 provides a high
level overview of the different diagnostic levels considered for static hierarchical analysis.
We consider the reduced memory functional model of the SRAM consisting of 3 major
subsystems: (1) Memory Cell Array, (2) Peripheral Circuitry, (3) Address Decoder. A
detailed description of these subsystems can be found in Section 3.1. During the diagnosis
procedure, first of all the faulty memory block is determined, which informs whether the
memory cell array, the address decoder or the peripheral circuitry is defective. Further
down the hierarchy, a new set of diagnostic tests is applied to diagnose the fault in the
faulty memory block. Level 2 of HMD provides details like fault type and location.

62 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

5.4.2 Level 1: Diagnosing the Fault Class

The aim of level 1 is to determine which block of the memory is faulty, i.e., either the
address decoder, the peripheral circuitry or the memory cell array is defective. It is to
be achieved by means of TCs. As it is difficult to maintain the minimum test length for
such a large scope of faults, establishing a proof of concept is prioritized. Still, significant
effort has been put to minimize the number of operations and to use already established
minimum length tests wherever possible.

As explained in Section 5.3, diagnosing the fault class is a two step process:

• Step 1: Develop TCs for targeted FCs.

• Step 2: Create FC x TC dictionary.

Next, these two steps are analyzed in detail.

Step 1: Test Classes

The basis for developing TCs that detect only a certain set of faults is to include the
detection condition for only the targeted faults. At level 1, it is required to distinguish
between the peripheral circuitry, the memory cell array and the address decoder fault
classes. The problem arises when faults from two different fault classes have the same
detection conditions. For example, all peripheral circuitry faults are detected by any
test detecting all static faults in the memory cell array [21]. Also any test detecting all
memory cell array faults may also detect address decoder faults. Similar is the case for
address decoder faults and peripheral circuitry faults. The peripheral circuitry faults
may lead to stuck-at faults in the associated memory cell(s) and thus, demonstrate
similar behavior as stuck-at address decoder faults (AFnca and AFnmc).

As the detection conditions are same for the fault classes, distinguishing them using
algorithms/tests depending only on the pass/fail information of read operations is
not possible. Thus, there arises a need to introduce a new parameter. Tests provide
many parameters that can be explored; for e.g., data background, address orders,
address directions, counting methods, etc [54]. A possible way is to distinguish the
faults by observing the first failing address of the test. First failing address is
the memory address (row address bits and column address bits) where first read
operation failure is observed. It is important for the diagnosis process, as otherwise
any test targeting one fault class also detects faults in another fault class, thus making
it impossible to distinguish these fault classes using just the pass/fail information.
We need to observe the address of only the first fail of a read operation. This can
be easily implemented for the automatic test machine without any specific require-
ments. The information of first failing address, used along with different addressing
directions can provide unique signatures for fault classes with same detection conditions.

Many memory test algorithms have been proposed [28, 45, 58]. Some of them target
all static faults including memory cell array, address decoder and peripheral circuitry;
Example are March SS [26] and its optimized version March MSS [27]. The description
of March MSS is:

5.4. STATIC HIERARCHICAL ANALYSIS 63

March MSS: { � (w0); ⇑ (r0, r0, w1, w1); ⇑ (r1, r1, w0, w0); ⇓ (r0, r0, w1, w1); ⇓ (r1, r1, w0, w0);
� (r0)}

Using the test as it is will not help in diagnosis. In order to make it suitable, we make
use of two important parameters already mentioned: (a) first failing address, and (b)
address order. Therefore, we will split the test in two parts: (1) a part with an increasing
address order, and (2) a part with a decreasing address order, and add a march element
for each part; the latter is necessary to guarantee the detection of 50% two-cell coupling
faults for each part. This results into:

• March MSSm-up: { ⇑ (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);⇑ (r0, w1) }
• March MSSm-down: { ⇓ (w0);⇓ (r0, r0, w1, w1);⇓ (r1, r1, w0, w0);⇓ (r0, w1) }
Next, we will show that when we apply March MSSm-up and March MSSm-down, all

static faults will be detected. This will be done for memory cell array, address decoder
and peripheral circuitry faults.

Memory Cell Array Faults

It is easy to verify that both March MSSm-up and March MSSm-down detects all single-
cell faults; see Table 3.1. Moreover, both tests will produce the same address in case
of a failure. For two-cell faults, depending on the address of the aggressor cell (say a)
and the address of the victim cell (say v), either March MSSm-up or March MSSm-down
will detect the fault but not both of them. Table 5.3 gives the fault coverage of these
two tests regarding two-cell coupling faults. In the table, a distinction is made between
faults where a > v and a < v. For example, < 0; 0/1/− >av means a coupling state fault
where a < v, while < 0; 0/1/− >va means the same fault for a > v. Table 5.3 clearly
shows that each test detects 50% of the two cell coupling faults. The results presented
have also been verified using RASTA memory fault simulator [7].

Address Decoder Faults

It can be easily verified that the application of March MSSm-up and March MSSm-
down will detect all address decoder faults as they satisfy the detection conditions for
such faults, which are reported in [22, 54]. Nevertheless, we will explain how these faults
will be detected.

Table 5.4 shows the fault coverage of March MSSm-up and March MSSm-down with
respect to address decoder faults of Figure 5.4. The first column in the table gives the
fault, and the second column the address (see also Figure 5.4). For example in the
presence of AFnca, irrespective of the behavior of the fault (for e.g., stuck-at-0 or stuck-
at-1), both tests will fail at address Ax. In case of AFnmc, the tests will fail at Ax but
not at Ay, irrespective of the property of the fault. For fault AFnma, depending upon
the property (i.e., whether Ax>Ay or Ax<Ay), March MSSm-up and March MSSm-
down will fail at Ax or Ay. For example, when Ax >Ay, March MSSm-up fails for Ax

while March MSSm-down fails for Ay. But both the tests fail at atleast one address.
Similar to AFnmc, in case of AFmca, depending upon the property (i.e., whether Ax>Ay

or Ax<Ay), March MSSm-up and March MSSm-down will fail at Ax or Ay.

64 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Table 5.3: Fault coverage of March MSSm-up and March MSSm-down for two-cell coupling faults

FP Fault MSSm-up MSSm-down # FP Fault MSSm-up MSSm-down

1 < 0; 0/1/− >av CFst 0 1 19 < 1; r0/ ↑ /0 >av CFdrd 1 0
2 < 0; 1/0/− >av CFst 1 0 20 < 1; r1/ ↓ /1 >av CFdrd 0 1
3 < 1; 0/1/− >av CFst 1 0 21 < 0; r0/0/1 >av CFir 0 1
4 < 1; 1/0/− >av CFst 0 1 22 < 0; r1/1/0 >av CFir 1 0
5 < 0; 0w1/0/− >av CFtr 0 1 23 < 1; r0/0/1 >av CFir 1 0
6 < 0; 1w0/1/− >av CFtr 1 0 24 < 1; r1/1/0 >av CFir 0 1
7 < 1; 0w1/0/− >av CFtr 1 0 25 < r0; 0/ ↑ /− >av CFdsrx 1 0
8 < 1; 1w0/1/− >av CFtr 0 1 26 < r1; 0/ ↑ /− >av CFdsrx 0 1
9 < 0; 0w0/ ↑ /− >av CFwd 0 1 27 < 0w1; 0/ ↑ /− >av CFdsxwx 1 0
10 < 0; 1w1/ ↓ /− >av CFwd 1 0 28 < 1w0; 0/ ↑ /− >av CFdsxwx 0 1
11 < 1; 0w0/ ↑ /− >av CFwd 1 0 29 < 0w0; 0/ ↑ /− >av CFdsxwx 0 1
12 < 1; 1w1/ ↓ /− >av CFwd 0 1 30 < 1w1; 0/ ↑ /− >av CFdsxwx 1 0
13 < 0; r0/ ↑ /1 >av CFrd 0 1 31 < r0; 1/ ↓ /− >av CFdsrx 0 1
14 < 0; r1/ ↓ /0 >av CFrd 1 0 32 < r1; 1/ ↓ /− >av CFdsrx 1 0
15 < 1; r0/ ↑ /1 >av CFrd 1 0 33 < 0w1; 1/ ↓ /− >av CFdsxwx 0 1
16 < 1; r1/ ↓ /0 >av CFrd 0 1 34 < 1w0; 1/ ↓ /− >av CFdsxwx 1 0
17 < 0; r0/ ↑ /0 >av CFdrd 0 1 35 < 0w0; 1/ ↓ /− >av CFdsxwx 1 0
18 < 0; r1/ ↓ /1 >av CFdrd 1 0 36 < 1w1; 1/ ↓ /− >av CFdsxwx 0 1

1 < 0; 0/1/− >va CFst 1 0 19 < 1; r0/ ↑ /0 >va CFdrd 0 1
2 < 0; 1/0/− >va CFst 0 1 20 < 1; r1/ ↓ /1 >va CFdrd 1 0
3 < 1; 0/1/− >va CFst 0 1 21 < 0; r0/0/1 >va CFir 1 0
4 < 1; 1/0/− >va CFst 1 0 22 < 0; r1/1/0 >va CFir 0 1
5 < 0; 0w1/0/− >va CFtr 1 0 23 < 1; r0/0/1 >va CFir 0 1
6 < 0; 1w0/1/− >va CFtr 0 1 24 < 1; r1/1/0 >va CFir 1 0
7 < 1; 0w1/0/− >va CFtr 0 1 25 < r0; 0/ ↑ /− >va CFdsrx 0 1
8 < 1; 1w0/1/− >va CFtr 1 0 26 < r1; 0/ ↑ /− >va CFdsrx 1 0
9 < 0; 0w0/ ↑ /− >va CFwd 1 0 27 < 0w1; 0/ ↑ /− >va CFdsxwx 0 1
10 < 0; 1w1/ ↓ /− >va CFwd 0 1 28 < 1w0; 0/ ↑ /− >va CFdsxwx 1 0
11 < 1; 0w0/ ↑ /− >va CFwd 0 1 29 < 0w0; 0/ ↑ /− >va CFdsxwx 1 0
12 < 1; 1w1/ ↓ /− >va CFwd 1 0 30 < 1w1; 0/ ↑ /− >va CFdsxwx 0 1
13 < 0; r0/ ↑ /1 >va CFrd 1 0 31 < r0; 1/ ↓ /− >va CFdsrx 1 0
14 < 0; r1/ ↓ /0 >va CFrd 0 1 32 < r1; 1/ ↓ /− >va CFdsrx 0 1
15 < 1; r0/ ↑ /1 >va CFrd 0 1 33 < 0w1; 1/ ↓ /− >va CFdsxwx 1 0
16 < 1; r1/ ↓ /0 >va CFrd 1 0 34 < 1w0; 1/ ↓ /− >va CFdsxwx 0 1
17 < 0; r0/ ↑ /0 >va CFdrd 1 0 35 < 0w0; 1/ ↓ /− >va CFdsxwx 0 1
18 < 0; r1/ ↓ /1 >va CFdrd 0 1 36 < 1w1; 1/ ↓ /− >va CFdsxwx 1 0

Ax

Ay

Cx

Cy

AFnca AFnmc AFnma AFmca

Ax Cx
Ax

Ay

Cx

Cy

Ax

Ay

Cx

Cy

Figure 5.4: Static address decoder faults

Thus, both March MSSm-up and March MSSm-down will fail in the presence of
address decoder faults. Also, since any fault in address decoder will effect the entire
row/column, March MSSm-up and March MSSm-down will fail will produce different
first failing address.

5.4. STATIC HIERARCHICAL ANALYSIS 65

Table 5.4: Fault coverage of March MSSm-up and March MSSm-down for address decoder faults

Static ADF Property Address MSSm-up MSSm-down

1 AFnca Stuck-at-0 behavior Ax 1 1
Stuck-at-1 behavior Ax 1 1

2 AFnmc Stuck-at-0 behavior Ax 1 1
Ay 0 0

Stuck-at-1 behavior Ax 1 1
Ay 0 0

3 AFnma Ax > Ay Ax 1 0
Ay 0 1

Ax < Ay Ax 0 1
Ay 1 0

4 AFmca Ax > Ay Ax 1 0
Address Ay reads logical AND/OR Ay 0 1

of values in Cx and Cy

Ax < Ay Ax 0 1
Address Ay reads logical AND/OR Ay 1 0

of values in Cx and Cy

Peripheral Circuitry Faults

Peripheral circuitry faults will be detected by both TCs. Since a fault in peripheral
circuitry (write driver, sense amplifier, etc.) will affect all operations through that circuit,
the fault will be detected on accessing any cell in the column associated with that circuit.
Hence, March MSSm-up and March MSSm-down will fail at different addresses.

Step 2: Diagnostic Dictionary

So far in this section, we have developed TCs for distinguishing the fault classes into
memory cell array faults, address decoder faults and peripheral circuitry faults. The
next step is to incorporate signatures of all FCs with respect to all TPs into a diagnostic
dictionary. Table 5.5 presents the diagnostic signatures which use aforementioned TCs
and DfD to distinguish the faulty memory block. The failing address considered is the
memory address where first read operation failure is observed.

It can be seen from the table that the fault signature for address decoder FC and
peripheral circuitry FC is same and thus, these two FCs cannot be distinguished using
the developed TCs. Due to the overlapping detection conditions of both fault classes,
they cannot be distinguished using different addressing sequences (fast-row, fast-column
or diagonal addressing) or introducing new TCs. A possible way to distinguish these
faults is by introducing some extra hardware (transistors) for the diagnosis purpose.
Introduction of hardware for the purpose of the diagnosis is referred to as Design for
Diagnosis (DfD).

For the diagnosis purpose, other than normal mode of operation of a memory, a
diagnosis mode is introduced. The concept can be understood from Figure 5.5. In
diagnosis mode, every column of the memory is addressed by the addressing sequence
of the adjacent column i.e., column 1 of the memory is operated on when address bits

66 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Table 5.5: Diagnostic dictionary

Faulty Block MSSm-up in MSSm-down in Failing
(failing address) (failing address) address

1 Address 1 (Aα) 1 (Aβ) α �= β
decoder

2 Peripheral 1 (Aα) 1 (Aβ) α �= β �= δ
circuitry

3 Memory cell 1 (Aα) 1 (Aα) α �= β
array

1 (Aα) 0 α �= β

0 1

for column 2 are supplied and column 2 of the memory is operated on when address
bits for column 1 are supplied. This can be realized using one multiplexer per memory
cell array column and a control pin. It is to be noted that when the peripheral circuitry
is faulty, and a diagnostic test is applied, the fault will be detected at different memory
addresses in diagnosis mode and in normal mode. For example, let us assume fault in
the peripheral circuitry for column 1 of the memory cell array. March MSSm can detect
all the static faults in the peripheral circuitry and all the static faults in the address
decoder as well. On application of March MSSm in both the normal and diagnosis
mode, due to the faulty peripheral circuitry, March MSSm applied in normal mode
will fail for a memory address in column 1 while March MSSm applied in diagnosis
mode will fail for a memory address in column 2. But if the fault exists in the address
decoder, the fault will be detected at the same memory addresses in diagnosis mode
and in normal mode. Thus, address decoder faults and peripheral circuitry faults can
be distinguished by applying March MSSm in normal mode and diagnosis mode.

Table 5.6 presents the diagnostic signatures which use aforementioned TCs and DfD
to uniquely distinguish the faulty memory block. The failing address considered is the
memory address where first read operation failure is observed. The total complexity for
all the diagnostic tests at level 1 is 11*3*n = 33n.

5.4.3 Level 2: Diagnosing the Fault Type

Once the faulty block of the memory has been determined, it is required to identify the
fault type. For this purpose, diagnostic tests specific to the faulty memory block are
applied to the memory. As explained in Section 5.3, diagnosing the fault type is a two
step process:

• Step 1: Develop TPs for targeted FCs.

• Step 2: Create FP x TP dictionary.

Next, these two steps are analyzed in detail with respect to different faulty blocks.

5.4. STATIC HIERARCHICAL ANALYSIS 67

PC

PC

PC

PC

PC

PC

PC

PC

Normal Mode

PC

PC

PC

PC

PC

PC

PC

PC

Diagnosis Mode

Column Address Decoder Circuitry

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

Column Address Decoder Circuitry

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

C1.R1

C1.R2

C1.R3

C1.R4

C2.R1

C2.R2

C2.R3

C2.R4

C3.R1

C3.R2

C3.R3

C3.R4

C4.R1

C4.R2

C4.R3

C4.R4

M
em

or
y

C
el

l
C

ol
um

n
1

C2.R1

C2.R2

C2.R3

C2.R4

C1.R1

C1.R2

C1.R3

C1.R4

C4.R1

C4.R2

C4.R3

C4.R4

C3.R1

C3.R2

C3.R3

C3.R4

M
em

or
y

C
el

l
C

ol
um

n
1

Figure 5.5: Design for diagnosis

Table 5.6: Diagnostic dictionary

Faulty Block MSSm-up in MSSm-down in MSSm-up in Failing
normal mode normal mode diagnosis mode address

(failing address) (failing address) (failing address)

1 Address 1 (Aα) 1 (Aβ) 1 (Aα) α �= β
decoder

2 Peripheral 1 (Aα) 1 (Aβ) 1 (Aγ) α �= β �= δ
circuitry

3 Memory cell 1 (Aα) 1 (Aα) 1 (Aβ) α �= β
array

1 (Aα) 0 1 (Aβ) α �= β

0 1 0

Faulty Memory Cell Array

Once the faulty block has been identified as the memory cell array, the fault can be
classified as a single-cell or a two-cell coupling fault.

68 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Table 5.7: Diagnostic dictionary for memory cell array faults

Fault MSSm-up MSSm-down

1 Single-cell fault 1 1

2 Two-cell coupling fault 1 0
0 1

Step 1: Test Primitives

This can be achieved without applying any new tests. The pass/fail information of TCs
applied at level 1 is sufficient for this classification. As stated before, the single-cell faults
in the memory cell array are detected by both March MSSm-up and March MSSm-down.
But the two-cell coupling faults in the memory cell array will be detected by either one
of the two TCs. This is because March MSSm-up and March MSSm-down are the same
diagnostic test applied in different address directions and depending on the address of
aggressor and victim cell, a two-cell coupling fault will fail in one of these two TCs (see
Table 5.3).

Step 2: Diagnostic Dictionary

As mentioned above, no new tests are applied to classify the memory cell array fault as
single-cell or two-cell coupling fault. Table 5.7 uses the pass/fail status of TCs applied
at level 1 and provides the diagnostic dictionary for classification of memory cell array
faults.

Faulty Address Decoder

It is already known from level 1 that the fault lies in the address decoder. It is of interest
to find out which of the four address decoder faults (AFnca, AFnmc, AFnma, AFmca) is
present.

Step 1: Test Primitives

From the description of address decoder faults, it can be observed that fault AFnca and
AFnmc cannot be distinguished from each other. This is because both the faults display
the stuck-at-0 or stuck-at-1 behavior and have same detection conditions. To classify the
distinguishable address decoder faults, we need to introduce new diagnostic tests. We
propose four TPs for classifying all distinguishable address decoder faults:

• March AFr0up: { 	 (w0);⇑ (r0, w1) }

• March AFr0down: { 	 (w0);⇓ (r0, w1) }

• March AFr1up: { 	 (w1);⇑ (r1, w0) }

• March AFr1down: { 	 (w1);⇓ (r1, w0) }

5.4. STATIC HIERARCHICAL ANALYSIS 69

Table 5.8: Fault coverage of March AFr0up, March AFr0down, March AFr1up and March
AFr1down for address decoder faults

Static ADF Property Address AFr0up AFr0down AFr1up AFr1down

1 AFnca Stuck-at-0 behavior Ax 0 0 1 1
Stuck-at-1 behavior Ax 1 1 0 0

2 AFnmc Stuck-at-0 behavior Ax 0 0 1 1
Ay 0 0 0 0

Stuck-at-1 behavior Ax 1 1 0 0
Ay 0 0 0 0

3 AFnma Ax > Ay Ax 1 0 1 0
Ay 0 1 0 1

Ax < Ay Ax 0 1 0 1
Ay 1 0 1 0

4 AFmca Ax > Ay Ax 1 0 1 0
Address Ay reads logical Ay 0 0 0 1

AND of values in Cx and Cy

Ax > Ay Ax 1 0 1 0
Address Ay reads logical Ay 0 1 0 0

OR of values in Cx and Cy

Ax < Ay Ax 0 1 0 1
Address Ay reads logical Ay 0 0 1 0

AND of values in Cx and Cy

Ax < Ay Ax 0 1 0 1
Address Ay reads logical Ay 1 0 0 0

OR of values in Cx and Cy

Address decoder faults AFnca and AFnmc demonstrate either a stuck-at-0 behavior
or stuck-at-1 behavior and will be detected by either a r0 operation or a r1 operation.
Hence, these faults will be detected by both March AFr0up and March AFr0down or both
March AFr1up and AFr1down. Address decoder fault AFnma will be detected by all four
TPs. AFmca takes place when a single address accesses more than one cell. Detection
of fault AFmca depends on whether the read value obtained on accessing faulty address
is the result of ANDing the contents of both cells or ORing them. It depends on the
technology used to manufacture memory chips. Due to this behavior, depending on the
technology, AFmca will not be detected by one of the four TPs.

Table 5.8 shows the fault coverage of the above mentioned TPs for address decoder
faults. The table uses the same notation as of Figure 5.4 to represent addresses of the
memory cells.

Step 2: Diagnostic Dictionary

Previous sections provide details about the generation of adequate TPs and have demon-
strated the capability of TPs to further classify address decoder faults in the memory.
The next step is to create the diagnostic dictionary. Table 5.9 presents the TP signatures
which use the above mentioned TPs to classify address decoder faults. The table uses
the same notation as of Figure 5.4 to represent addresses of the memory cells. The total

70 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Table 5.9: Diagnostic dictionary for address decoder faults

Static ADF AFr0up AFr0down AFr1up AFr1down

1 AFnca 0 0 1 1
1 1 0 0

2 AFnmc 0 0 1 1
1 1 0 0

3 AFnma 1 1 1 1
4 AFmca 1 0 1 1

1 1 1 0
0 1 1 1
1 1 0 1

complexity for all the diagnostic tests is 12n.

The fault can also be classified as a row decoder or column decoder fault. It can be
done using information about the pattern of failing addresses. If the failing addresses
for different TPs fall on the beginning and ending addresses of a row, it can be classified
as a row decoder fault and if on the ends of a column, as a column decoder fault.

Faulty Peripheral circuitry

Once the faulty block has been identified as the peripheral circuitry, the fault can be
classified as a read path fault or a write path fault.

Step 1: Test Primitives

The classification of a peripheral circuitry fault in read path fault or write path fault
cannot be made using only the pass/fail information of read operations as it cannot be
identified whether the read operation sensitized the fault or the memory cell contained a
wrong value due to a faulty write operation. To classify peripheral circuitry faults, DfD
hardware is used.

In order to accommodate more diagnosis capabilities, extra diagnosis hardware is
required. We need to introduce a new diagnosis mode here. The new diagnosis mode
can be understood from Figure 5.6. As we need to find whether the read path is faulty
or write path is faulty, in diagnosis mode, we alter the write path for every column of
the memory cell array. In diagnosis mode, every column of the memory cell array is
connected to the write circuitry of the adjacent column while the read circuitry remains
unchanged i.e., the memory cells of column 1 of the memory cell array are connected to
the write circuitry of column 2 and read circuitry of column 1 while the memory cells of
column 2 are connected to the write circuitry of column 1 and read circuitry of column
2. This can be realized using two multiplexers per column of the memory cell array. It
is to be noted that when write path circuitry is faulty and a diagnostic test is applied,
the fault will be detected in different memory cells/addresses in diagnosis mode and in
normal mode. But if the read path is faulty, and a diagnostic test is applied, the fault
will be detected in the same memory cells/addresses in diagnosis mode and in normal
mode.

5.4. STATIC HIERARCHICAL ANALYSIS 71

Write
Path

Read
Path

Normal Mode Diagnosis Mode

Read
Path

Read
Path

Read
Path

Read
Path

Read
Path

Read
Path

Read
Path

Write
Path

Write
Path

Write
Path

Write
Path

Write
Path

Write
Path

Write
Path

Column Address Decoder Circuitry

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

Column Address Decoder Circuitry

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

C1.R1

C1.R2

C1.R3

C1.R4

C2.R1

C2.R2

C2.R3

C2.R4

C3.R1

C3.R2

C3.R3

C3.R4

C4.R1

C4.R2

C4.R3

C4.R4

M
em

or
y

C
el

l
C

ol
um

n
1

C1.R1

C1.R2

C1.R3

C1.R4

C2.R1

C2.R2

C2.R3

C2.R4

C3.R1

C3.R2

C3.R3

C3.R4

C4.R1

C4.R2

C4.R3

C4.R4

M
em

or
y

C
el

l
C

ol
um

n
1

Figure 5.6: Design for diagnosis for faulty peripheral circuitry

For example, let us assume a faulty sense amplifier in column 1 of the memory cell
array. We also assume that there exists a march test called March XYZ that can detect
all the static faults in the peripheral circuitry. The automatic test machine applies March
XYZ in normal mode and in diagnosis mode. March XYZ applied in diagnosis mode will
fail for a cell in column 1 and March XYZ applied in normal mode will also fail for a cell
in column 1. The reason is that diagnosis mode altered only the write path for column
1 while maintaining the same (and thus, faulty) read path. For classifying peripheral
circuitry faults, a single test is to be applied in normal mode and in diagnosis mode. It
is important to develop the test while keeping in attention the diagnosis hardware. This
is because, in diagnosis mode, for a given column address, different memory cell array
columns are written and read. For this purpose, only one read/write operation is kept in
one march element. The TP used for diagnosing peripheral circuitry faults is well known
Memory Scan test [1]:

Memory Scan test: { 	 (w0); 	 (r0); 	 (w1); 	 (r1) }

Observing the test, it can be easily verified that Memory Scan test can detect all the
stuck-at-faults faults in the peripheral circuitry.

72 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Table 5.10: Diagnostic dictionary for peripheral circuitry faults

Faulty Block Memory SCAN in Memory SCAN in Failing address
normal mode diagnosis mode

(failing address) (failing address)

1 Read Path 1 (Aα) 1 (Aα)
circuitry

2 Write Path 1 (Aα) 1 (Aβ) α �= β
circuitry

Step 2: Diagnostic Dictionary

Previous sections provide details about the generation of TP and have demonstrated the
capability of TP and DfD to further classify peripheral circuitry faults in the memory.
The next step is to create the diagnostic dictionary. Table 5.10 presents the diagnostic
dictionary for the faulty peripheral circuitry. Memory Scan test is applied in normal
mode and diagnosis mode; hence the total complexity for all the diagnostic tests is 8n.

In this section, detailed analysis was presented for the diagnosis of static faults in the
memory. The diagnosis approach has been based on the concepts of TCs, TPs and DfD.
The outcome of the diagnosis contains details about the faulty block of the memory and
the fault type. The failing addresses give some insight into possible fault location. The
work can be extended to go further down the hierarchy to precisely pin-point the defect
location. Also, with this proof of concept, more TCs and TPs can be added to include
support for newer fault models.

The limitation here is that while targeting static faults, several dynamic faults can
also get sensitized and detected. This might lead to wrong classification of a dynamic
fault as a static fault. Care has been taken to detect as less dynamic faults as possible.
For this purpose, all TCs and TPs are to be applied in fast-row direction to nullify the
effect of read equivalent stress [14]. Also, the DfD hardware will lead to some extra
cost and delay in the system but this is a considerably negligible cost compared to the
benefits of the diagnosis. Moreover, these multiplexers can be removed from design
when the characterization testing procedure is over and the memory is approved for
mass production.

5.5 Dynamic Hierarchical Analysis

This section describes the HMD approach to diagnose dynamic faults in the memory.
We assume the presence of only a single defect at a time causing a dynamic fault in the
memory. The targeted faults include memory cell array faults, address decoder faults and
peripheral circuitry faults. Detailed description of these faults can be found in Section
3.5. In this section, the terms “memory cell array faults” refer to dynamic faults in the
memory cell array, “peripheral circuitry faults” refer to dynamic faults in the peripheral
circuitry and “address decoder faults” refer to dynamic faults in the address decoder.

5.5. DYNAMIC HIERARCHICAL ANALYSIS 73

The diagnosis process consists of two levels and follows a hierarchical order.
In the rest of this section, first an overall overview of the different diagnosis levels will

be presented. Then, the first level of diagnosis distinguishing the different fault classes
(related to different memory blocks) will be addressed; this includes the differentiation
of memory cell array, address decoder and peripheral circuitry faults. Third, the second
level of hierarchy will be explained in order to be able to identify the exact fault type.

It is worth noting that for diagnosis of dynamic faults, the target fault space is
explained in Section 3.5.

5.5.1 Diagnostic Levels

The benefits of following an hierarchical order for the diagnosis are already mentioned
before. One of the advantages is applying only required effort by determining the faulty
block at the first step itself. Figure 5.7 provides a high level overview of the different
diagnostic levels considered for dynamic hierarchical analysis. We consider the reduced
memory functional model of the SRAM consisting of 3 major subsystems: (1) Memory
cell array, (2) Peripheral Circuitry, (3) Address Decoder. A detailed description of these
subsystems can be found in Section 3.1. At the first level of the HMD approach, the
faulty memory block is identified. As we move down in hierarchy, diagnostic tests are
applied for detecting faults only in the identified block instead of applying diagnostic tests
for all the memory components. Level 2 of HMD gives details like type and location of
fault.

5.5.2 Level 1: Diagnosing the Fault Class

Similar to level 1 for static faults, the aim of level 1 for dynamic faults is to determine
which block of the memory is faulty i.e., either the address decoder, the peripheral
circuitry or the memory cell array is defective. As it is difficult to maintain the minimum
test length for such a scope of faults, establishing a proof of concept is prioritized. Still,
significant effort has been put to minimize the number of operations and to use already
established minimum length tests wherever possible.

As explained in Section 5.3, diagnosing the fault class is a two step process:

• Step 1: Develop TCs for targeted FCs.

• Step 2: Create FC x TC dictionary.

Next, these two steps are analyzed in detail.

74 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Memory
Dynamic faults

Diagnosis level 1

Address
decoder faults

Memory cell
arrayfaults

Peripheral
circuitry faults

Diagnosis level 2 Diagnosis level 2 Diagnosis level 2

Row
decoder

fault

Column
decoder

fault

Single-
cell

faults

Two-cell
coupling

faults
SWDF BLIFSSAF

SPRF

Figure 5.7: Diagnostic levels for dynamic faults in SRAM

Step 1: Test Classes

Minimum length test to detect all the dynamic single-cell and two-cell coupling faults in
the memory cell array is March MD2 [15]. The description of March MD2 is:

March MD2:
{ 	 (w0); ⇑ (r0, w1, w1, r1, w1, w1, r1, w0, w0, r0, w0, w0, r0, w0, w1, w0, w1);
⇑ (r1, w0, w0, r0, w0, w0, r0, w1, w1, r1, w1, w1, r1, w1, w0, w1, w0);
⇓ (r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0, w0, w1, w0, w1);
⇓ (r1, w0, r0, w0, r0, r0, r0, w1, r1, w1, r1, r1, r1, w1, w0, w1, w0); 	 (r0) }

It is to be established that the targeted faults in the memory cell array are single-
cell faults and two-cell coupling faults where both sensitizing operations are sequentially
applied either on the aggressor cell or on the victim cell. In order to maximize the test
stress, March MD2 is to be applied in fast-column direction and is termed as March
MD2y . Applying a test in fast-column direction is useful for detecting dynamic faults

5.5. DYNAMIC HIERARCHICAL ANALYSIS 75

as it increases the test stress due to the read equivalent stress [14]. March MD2y might
also detect some peripheral circuitry faults due to presence of operation sequences like
(..w0, w1), (..w1, w0), (r1, ..w0) and (r0, ..w1). Consecutive complementary write oper-
ations can sensitize slow write driver fault while a write operation followed by a com-
plementary read operation can sensitize slow sense amplifier and slow precharge circuit
faults. As March MD2y makes address transitions in both row and column decoder, it
will also detect some address decoder delay faults. Thus, March MD2y detects all the
dynamic faults in the memory cell array, some dynamic faults in the peripheral circuitry
and some address decoder delay faults.

Several march tests are introduced in the literature for detecting the activation and
deactivation delay faults in the address decoder. March RAWAW-H1 is a march test
based on RAWAW (read after write after write) address sequence and H1 addressing
[22]. The description of March RAWAW-H1 is:

March RAWAW-H1x: { 	x (w0); 	H1
x (w0g , w1f , r0g); 	x (w1);

	H1
x (w1g, w0f , r1g) }

When applied in fast-row address direction, it can detect all the activation and de-
activation delay faults in the row decoder. This test also detects all peripheral circuitry
faults. March RAWAW-H1 has been modified to ensure maximum stress for detection
of bit-line coupling faults and is termed as March RAWAW-H1m. This same test can be
applied in fast-column direction to detect all the activation and deactivation delay faults
in the column decoder. When applied in fast-column direction, March RAWAW-H1m
can also detect some memory cell array faults due to the read equivalent stress.

For level 1 TCs, March MD2 is applied in fast-column direction (March MD2y),
March RAWAW-H1m is applied in fast-row direction (March RAWAW-H1mx) and fast-
column direction (March RAWAW-H1my). March MD2y is required for detecting mem-
ory cell array faults. March RAWAW-H1mx and March RAWAW-H1my are required for
detecting address decoder delay faults and peripheral circuitry faults. In total, three
TCs are proposed:

• March MD2y:
{ 	y (w0); ⇑y (r0, w1, w1, r1, w1, w1, r1, w0, w0, r0, w0, w0, r0, w0, w1, w0, w1);
⇑y (r1, w0, w0, r0, w0, w0, r0, w1, w1, r1, w1, w1, r1, w1, w0, w1, w0);
⇓y (r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0, w0, w1, w0, w1);
⇓y (r1, w0, r0, w0, r0, r0, r0, w1, r1, w1, r1, r1, r1, w1, w0, w1, w0); 	y (r0) }

• March RAWAW-H1mx: { 	x (w0); 	H1
x (w0g , w1f , r0g, r1f , w0f); 	x (w1);

	H1
x (w1g, w0f , r1g, r0f , w1f) }

• March RAWAW-H1my : { 	y (w0); 	H1
y (w0g , w1f , r0g, r1f , w0f); 	y (w1);

	H1
y (w1g, w0f , r1g, r0f , w1f) }

Ideally, memory cell array faults should not be detected by March RAWAW-H1mx

or March RAWAW-H1my . This is because in these tests no two consecutive operations
are performed on the same memory cell. But it does not hold true; as due to the read

76 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

equivalent stress March RAWAW-H1my will detect some memory cell array faults. Also,
as stated before, March MD2y detects some address decoder delay faults. For some
specific faults, this causes same diagnostic signature for the faulty address decoder and
the faulty memory cell array. Generalizing, any test for detecting column decoder delay
faults is to be applied in fast-column direction and due to read equivalent stress, it will
detect some memory cell array faults. Also, any test used for detecting memory cell array
faults will include some address decoder transitions, leading to detection of some address
decoder delay faults. Thus, it is not possible to generate unique diagnostic signatures to
distinguish address decoder delay faults and memory cell array faults by using just the
pass/fail status of TCs.

Similar problem comes while distinguishing peripheral circuitry faults and address
decoder delay faults. Any test for detecting peripheral circuitry faults is to be applied in
fast-row direction and thus, will also detect some address decoder delay faults. Also, any
test applied for detecting row decoder delay faults is applied in fast-row direction and
will detect some peripheral circuitry faults. Again, it is not possible to generate unique
diagnostic signatures to distinguish address decoder delay faults and peripheral circuitry
faults by using just the pass/fail status of TCs. All these conclusions have been verified
by simulations on HSpice. Thus, an additional parameter is required to distinguish
peripheral circuitry faults from address decoder delay faults and to distinguish memory
cell array faults from address decoder delay faults.

This can be accomplished by avoiding unnecessary address transitions in March
RAWAW-H1mx and March RAWAW-H1my ; i.e., by applying March RAWAW-H1mx

individually to every column of the memory cell array and March RAWAW-H1my to
every row of the memory cell array. Diagnostic signatures will include logical AND and
logical OR of the pass/fail status of march tests applied on each row and each column.
As only one fault is present in the memory, if a memory cell array fault gets detected
by March RAWAW-H1my , it is detected only by the TC applied to a particular row and
logical ANDING of the pass/fail status of March RAWAW-H1my for each row gives a
‘0’ in diagnostic signature for memory cell array faults. Similarly, peripheral circuitry
faults are detected by March RAWAW-H1mx applied to a particular column and logical
ANDING of the pass/fail status of March RAWAW-H1mx for each column gives a ‘0’
in diagnostic signature for peripheral circuitry faults. But an address decoder fault will
be detected by diagnostic tests applied to all the rows (columns) and logical ANDING
of the pass/fail status of March RAWAW-H1yx for each row (March RAWAW-H1mx for
each column) gives a ‘1’ in diagnostic signature. Logical ORing of the pass/fail status of
March RAWAW-H1mx for each column and getting a ‘1’ denotes presence of a periph-
eral circuitry faults or an address decoder delay fault. In this way, unique diagnostic
signatures can be generated for memory cell array faults, address decoder faults and
peripheral circuitry faults.

Step 2: Diagnostic Dictionary

In the previous section, TCs have been developed/presented and have demonstrated the
capability to successfully locate the faulty block in the memory. The next step is to
create the diagnostic dictionary. Table 5.11 presents the diagnostic signatures which

5.5. DYNAMIC HIERARCHICAL ANALYSIS 77

Table 5.11: Diagnostic dictionary

Faulty Block March MD2y March RAWAW March RAWAW March RAWAW
-H1mx(AND) -H1mx(OR) -H1my(AND)

1 Address - 1 1 0
decoder - 0 0 1

2 Peripheral - 0 1 0
circuitry

3 Memory cell 1 0 0 0
array

use the above mentioned TCs and uniquely distinguish the faulty memory block. The
value ‘-’ in the diagnostic dictionary symbolizes the irrelevance of that bit in diagnostic
signature. Depending on the fault, ‘-’ can be either ‘0’ or ‘1’. The total complexity for
all the diagnostic tests at level 1 is 70n for March MD2y + 2*(2n + 5nN) for March
RAWAW-H1mx and March RAWAW-H1my . Here, n is the number of memory cells and
N is number of address bits.

5.5.3 Level 2: Diagnosing the Fault Type

Once the faulty block of the memory has been determined, it is required to identify the
fault type. For this purpose, diagnostic tests specific to the faulty memory block are
applied to the memory. As explained in Section 5.3, diagnosing the fault type is a two
step process:

• Step 1: Develop TPs for targeted FCs.

• Step 2: Create FP x TP dictionary.

Next, these two steps are analyzed in detail with respect to different faulty blocks.

Faulty Memory Cell Array

Once the faulty block has been identified as the memory cell array, the fault can be
classified as a single-cell or a two-cell coupling fault. To further classify memory cell
array faults, we need to introduce new diagnostic tests. As we need to classify fault
subclasses, TCs are used instead of TCs. For level 2, March MD2 is divided in two TCs
(March MD21 and March MD22).

Step 1: Test Classes

We propose two TCs for classifying all memory cell array faults:

• March MD21: { 	y (w0); ⇑y (r0, w1, w1, r1, w1, w1, r1, w0, w0, r0, w0, w0,
r0, w0, w1, w0, w1); ⇓y (r1, w0, r0, w0, r0, r0, r0, w1, r1, w1, r1, r1, r1, w1, w0,
w1, w0); 	y (r0) }

78 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

• March MD22: { 	y (w0); ⇓y (r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0,
w0, w1, w0, w1); ⇑y (r1, w0, w0, r0, w0, w0, r0, w1, w1, r1, w1, w1, r1, w1, w0,
w1, w0); 	y (r0) }

March MD21 is able to detect all static single-cell faults but it can only detect 50% of
the two-cell coupling faults. Similarly, March MD22 is able to detect all static single-cell
faults but can only detect 50% of the two-cell coupling faults. Thus, a single-cell fault is
detected by both March MD21 and March MD22 but a two-cell coupling fault is detected
either by March MD21 or March MD22. March MD21 and March MD22, combined can
detect all the targeted memory cell array faults. All these conclusions have been verified
using the RASTA memory fault simulator [7].

Step 2: Diagnostic Dictionary

Previous sections provide details about the generation of adequate TCs and have demon-
strated the capability of TCs to further classify memory cell array faults in the memory.
The next step is to create the diagnostic dictionary. Table 5.12 presents the diagnostic
signatures which use the above mentioned TCs to classify memory cell array faults. The
total complexity for all the diagnostic tests is 72n.

Table 5.12: Diagnostic dictionary for memory cell array faults

Fault March MD21 March MD22

1 Single-cell fault 1 1

2 Two-cell coupling fault 1 0
0 1

Faulty Address Decoder

It is already known from level 1 that the fault lies in the address decoder. It is of interest
to find whether the fault is a row decoder delay fault or a column decoder delay fault.

Step 1: Test Primitives

This can be achieved without applying any new tests. The pass/fail information of
TCs applied at level 1 is sufficient for this classification. As March RAWAW-H1mx is
applied individually for every column, there are no column address transitions and a
fault in column decoder cannot be detected. Similarly, March RAWAW-H1my is applied
individually for every row and there are no row address transitions. Hence, a fault in row
decoder cannot be detected by March RAWAW-H1my . Logical ANDING of the pass/fail
status of March RAWAW-H1mx for each column gives a ‘0’ in diagnostic signature for
column decoder faults and Logical ANDING of the pass/fail status of March RAWAW-
H1my for each row gives a ‘0’ in diagnostic signature for row decoder faults.

5.5. DYNAMIC HIERARCHICAL ANALYSIS 79

Table 5.13: Diagnostic dictionary for address decoder faults

Faulty Block March RAWAW-H1mx March RAWAW-H1my

(AND) (AND)

1 Row decoder 1 0

2 Column decoder 0 1

Step 2: Diagnostic Dictionary

As mentioned above, no new tests are applied to further classify the address decoder
faults. Table 5.13 uses the pass/fail status of TCs applied at level 1 and provides the
diagnostic dictionary for classification of address decoder faults.

Faulty Peripheral Circuitry

Once the faulty block has been identified as the peripheral circuitry, the fault can be
further classified as slow write driver fault, bit-line imbalance fault, slow sense amplifier
fault or slow precharge circuit fault. To make this classification, we need to introduce
new diagnostic tests.

Step 1: Test Primitives

We propose two TPs for further classifying peripheral circuitry faults. The first test
March WDmm is derived from March WDm [56]. The description of March WDm is:

March WDm: { 	x (wD), 	x (rD,wD), 	x (wD̄), 	x (rD̄, wD̄)
Here D represents checkerboard or row stripe data background.

March WDm can detect slow write driver faults in the peripheral circuitry. It is
modified to include detection conditions for slow sense amplifier fault and slow precharge
circuit fault. The modified test is termed March WDmm. The second test is March BLI,
which is an already established march test for detecting slow write driver fault and
bit-line imbalance fault [56].

• March WDmm: { 	x (wD), 	x (rD,wD), 	x (wD̄), 	x (rD̄, wD̄)
Here D represents checkerboard or row stripe data background.

• March BLI: { 	x (wD), 	x (wD̄, rD̄, wD), 	x (wD̄), 	x (wD, rD,wD̄)
Here D represents solid or column stripe data background.

Step 2: Diagnostic Dictionary

Previous sections provide details about the generation of adequate tests and have demon-
strated the capability of TPs to classify distinguish peripheral circuitry faults in the
memory. The next step is to create the diagnostic dictionary. Table 5.14 presents the
diagnostic signatures which use the above mentioned tests to classify peripheral circuitry
faults. The total complexity for all the diagnostic tests is 14n.

80 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Table 5.14: Diagnostic dictionary for peripheral circuitry faults

Fault March WDmm March BLI

1 Slow write driver fault 1 1

2 Bit-line imbalance fault 0 1

3 Slow sense amplifier fault 1 0
Slow precharge circuit fault

It can be observed from the diagnostic dictionary that the fault signatures for slow
sense amplifier fault and slow precharge circuit fault are same. It is not possible to
distinguish slow sense amplifier fault and slow precharge circuit fault as both of these
faults have same detection conditions. Any test applied to detect slow sense amplifier
fault will also detect slow precharge circuit fault and vice versa. However, these faults
can be distinguished if internal structure of the memory is known. We assume that every
column of the memory cell array has its own set of peripheral circuitry. In that case,
these two faults cannot be distinguished by using just the outcome of read operations.
But if the memory structure is different; for e.g., four columns of the memory cell array
share a sense amplifier while every column has its own precharge circuit, faults can be
distinguished. March WDmm applied in fast-column direction will detect slow sense
amplifier fault as complementary operations with RAW sequence are applied on the same
sense amplifier but will not detect slow precharge circuit fault as no consecutive operation
are applied on same precharge circuit. Thus, by using information about the memory
structure, slow sense amplifier fault and slow precharge circuit fault can be distinguished.

In this section, detailed analysis was presented for the diagnosis of dynamic faults in
the memory. The diagnosis approach has been based on the concepts of TCs and TPs.
The outcome of the diagnosis contains details about the faulty block of the memory and
what type of fault is present. The work can be extended to go further down the hierarchy
to precisely pin-point the defect location. Also, with this proof of concept, more TCs
and TPs can be added to include support for newer fault models.

5.6 Advantages and cost of HMD

In this chapter, a theoretical proof has been given for the proposed HMD approach.
HMD has been demonstrated to diagnose static and dynamic faults in all the blocks
of the memory system. The outcome of the diagnosis includes the details about the
faulty block of the memory at level 1 and further down the hierarchy, more details like
fault location and fault type are made available. In this section, we will summarize the
advantages of the proposed approach and the cost involved.

5.6. ADVANTAGES AND COST OF HMD 81

5.6.1 Advantages

The advantages of the proposed HMD approach are:

• Targets static and dynamic faults in all the memory blocks, namely, the memory
cell array, the address decoder and the peripheral circuitry.

• No specific implementation requirements other than applying a test and determin-
ing the pass/fail status of the diagnostic test. Sometimes requires information on
the address of first fail of the applied test.

• Accurate information on faulty block.

• Hierarchical methodology significantly reduces diagnosis effort. For example, there
is no need to apply diagnostic tests for coupling faults in the memory cell array
when a fault exists in the address decoder. The faulty memory block is identified
at the first step of the diagnosis.

5.6.2 Cost

HMD has been based upon the concept of TCs, TPs and DfD. The diagnosis process is
able to locate the fault but every such process involves cost (for e.g., test complexity,
post-test analysis, platform dependence etc.). As HMD uses only pass/fail status of the
diagnostic tests, involved costs are minimal. In addition to cost of applying diagnostic
tests to the faulty memory, DfD hardware is the only other requirement.

DfD uses extra hardware for introducing new operational modes of the memory.
These modes are referred to as diagnosis mode and have been explained in Section
5.4.2 and Section 5.4.3. These sections provide the conceptual description of the DfD
hardware. For the sake of simplicity, an assumption has also been made that each column
of the memory cell array has its own set of peripheral circuits such as sense amplifies,
write drivers, pre-charge circuits, etc. Here, we will talk about the implementation
and cost of using DfD for real case memories where peripheral circuits (sense amplifies,
write drivers) are shared by several memory cell array columns. We will do this for the
diagnosis mode described in Section 5.4.3.

First of all, we will present the memory model without the DfD hardware. Figure
5.8 shows the memory model where peripheral circuits are shared by two columns of the
memory cell array. It can be seen that memory cell array column 1 and column 2 share
the same set of peripheral circuitry (PC1) and are accessed by address line 1 and address
line 2 respectively. Similarly, memory cell array column 3 and column 4 share the same
set of peripheral circuitry (PC2) and are accessed by address line 3 and address line 4
respectively.

As explained in Section 5.4.3, a new operational mode (diagnosis mode) is required
to distinguish the address decoder and peripheral circuitry fault classes. This is done by
accessing same peripheral circuits (PC1 and PC2) by different address lines. This can be
achieved by inserting extra multiplexers in the memory. Figure 5.9 shows the implemen-
tation of DfD for the memory model presented in Figure 5.8. For the diagnosis purpose,
additional multiplexers have been inserted in the memory system. Depending on the

82 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Column Address Decoder Circuitry

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

C1.R1

C1.R2

C2.R3

C4.R4

C2.R1

C2.R2

C2.R3

C2.R4

C3.R1

C3.R2

C3.R3

C3.R4

C4.R1

C4.R2

C4.R3

C4.R4

M
em

or
y

C
el

l
C

ol
um

n
1

PC1

Mux

PC2

Mux

PC1

Mux

PC2

Mux

Column
Select

Column
Select

Figure 5.8: Memory Model

select line of the multiplexers, memory operates in normal mode (diagnosis (OFF)) or
diagnosis mode (diagnosis (ON)). Fig 5.9(a) shows the connections between the func-
tional blocks of the memory system in normal mode. It can be seen that the peripheral
circuitry PC1 is connected to address line 1 and address line 2 while in diagnosis mode
(see Fig 5.9(b)), the peripheral circuitry PC1 is connected to address line 3 and address
line 4.

For this work, we have used extra multiplexers for diagnosis purpose. The imple-
mentation of DfD is explained above. The aim of DfD is to distinguish address decoder
and peripheral circuitry fault class and this is done by accessing same peripheral circuits
by different address lines. However, the above presented implementation is not the only
way to achieve this. Depending on the internal structure of the memory, it is possible
to implement the same operational mode by inserting DfD hardware elsewhere. For
example, it is possible to extend the peripheral circuitry multiplexers and include the
diagnosis pin as select line. The select lines will thus include the different address lines
and diagnosis pin, and depending on the state of diagnosis pin, a particular address line
will access the memory cell array.

The addition of the multiplexers adds extra overhead in terms of silicon area. How-
ever, this overhead is minimal as a multiplexer consists of only 4 transistors and is smaller
than a single memory cell (6 transistors) in terms of silicon area. For the explained imple-
mentation, the requirement is of only one multiplexer per address line and thus, the area
overhead is negligible. The DfD hardware also leads to some extra delay in the mem-

5.6. ADVANTAGES AND COST OF HMD 83

(b) Diagnosis Mode

Column Address Decoder Circuitry

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

C3.R1

C3.R2

C3.R3

C3.R4

C4.R1

C4.R2

C4.R3

C4.R4

C1.R1

C1.R2

C1.R3

C1.R4

C2.R1

C2.R2

C2.R3

C2.R4

M
em

or
y

C
el

l
C

ol
um

n
1

PC1

Mux

Diagnosis (ON)

PC2

Mux

Mux Mux

PC1

Mux

PC2

Mux

Column
Select

(a) Normal Mode

Column Address Decoder Circuitry

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

C1.R1

C1.R2

C2.R3

C4.R4

C2.R1

C2.R2

C2.R3

C2.R4

C3.R1

C3.R2

C3.R3

C3.R4

C4.R1

C4.R2

C4.R3

C4.R4

M
em

or
y

C
el

l
C

ol
um

n
1

PC1

Mux

Diagnosis (OFF)

PC2

Mux

Mux Mux

PC1

Mux

PC2

Mux

Column
Select

Column
Select

Mux Mux Mux Mux

Column
Select

Figure 5.9: Memory model with design for diagnosis

ory system but experimental results show that it does not affect the normal memory
operation. The involved cost of DfD is negligible compared to the benefits of the diagno-
sis. Moreover, these multiplexers can be removed from design when the characterization
testing procedure is over and the memory is approved for mass production.

84 CHAPTER 5. HIERARCHICAL MEMORY DIAGNOSIS

Case Studies 6
This chapter validates the Hierarchical Memory Diagnosis (HMD) approach by means
of simulations. Defects are injected in various blocks of the SRAM simulation model
and the HMD approach is applied for the diagnosis. Simulation results are presented for
both static faults and dynamic faults. The injected fault is diagnosed and fault type is
determined, thus establishing the usefulness of HMD.

This chapter is organized as follows. Section 6.1 explains the simulation model and
the simulation approach. Section 6.2 presents the simulation results for static analy-
sis and Section 6.3 presents the simulation results for dynamic analysis. Section 6.4
summarizes the conclusions.

6.1 SRAM Simulation Model and Simulation Approach

Theoretical proof for the HMD approach has been established in chapter 5. This chapter
validates theoretical proof using simulations. In this section, we will first start with the
explanation of the simulation model, list the simulation parameters and explain the
additional Design for Diagnosis (DfD) hardware. Then, the simulation approach, and
memory addressing will be explained using a memory block diagram.

6.1.1 Simulation Model

For the simulations, an appropriate memory simulation model has been used; it consists
of a 4x4 cell array, address decoder and each column has its own set of peripheral circuits
such as sense amplifies, write drivers, pre-charge circuits, etc. Figure 6.1 presents the
gate and transistor level description of the memory model used for simulation. It is to
be noted that the dotted lines of same color means that there is a physical connection
between the two points. The entire physical connections have been avoided due to lack
of space.

As mentioned in Section 3.1, all the memory components of a memory system can be
categorized in three major functional blocks, namely, the memory cell array, the address
decoder and, the peripheral circuitry. The three functional blocks are highlighted in the
figure and they consist of following components:

• Memory cell array: A 4x4 cell array, with cells numbered from 1 to 16 along
horizontal direction; see Figure 2.5 for cell description.

• Address decoder

– Row decoder

– Column decoder

85

86 CHAPTER 6. CASE STUDIES

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Memory Cell ArrayAddress Decoders

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

Vdd

Gnd

Vdd

PMOS

NMOSNMOS

NMOS NMOS

PMOS

..

Gnd Gnd

NMOS

NMOSNMOS

NMOS

Gnd Gnd

Vdd

PMOS

NMOS

PMOS

..

NMOS

NMOS

Gnd Gnd

NMOSNMOS

Gnd Gnd

BL1 BL1cmp BL2 BL2cmp BL3 BL3cmp BL4 BL4cmp

Gnd

PMOSPMOS

PMOS

cdout1

cdout2

cdout3

cdout4

wl1

wl2

wl3

wl4

Adc1 Adc2

Adr1 Adr2

Row decoder

Column decoder

soutx soutcmpx

DLx DLcmpx

BLx BLcmpx

RE

cdoutx

Sense amplifier Write driver

BLx BLcmpx

WE

cdoutx

DLx DLcmpx

SAenable

SAprechcmp

Bit-line precharge

Sense amplifier
 precharge

BLx BLcmpx

BLprechcmp

DLx DLcmpx

21 3 4

65 7 8

109 11 12

1413 15 16

Sense amplifier Write driver

BL1 BL1cmp BL2 BL2cmp BL3 BL3cmp BL4 BL4cmp

Gnd

Vdd

Vdd

PMOSPMOS

PMOS

Vdd

Vdd

Data-in

Peripheral circuitry

Figure 6.1: Electrical level schematic of SRAM

• Peripheral circuitry

– Precharge circuits for bit lines and sense amplifiers.

– Differential mode voltage sense amplifiers

– Write drivers

In the figure, only one set of peripheral circuitry has been shown but as it has been
mentioned above every column in the memory cell array has its own set of peripheral
circuitry. In the labels for peripheral circuitry, x ∈ {1, 2, 3, 4 } signify that the periph-
eral circuitry is connected to different bit-lines. For the ease of presenting the simulation

6.1. SRAM SIMULATION MODEL AND SIMULATION APPROACH 87

results, depending on which memory cell column is read, the outputs of four sense ampli-
fiers (soutx and soutcmpx) will be multiplexed to give outputs sout and soutcmp; thus
in the simulation waveforms the results of the read operations performed on memory
will be presented using one common signal sout and soutcmp (see Figure 6.7).

The timing generation and control circuitry has not been shown, as for simulations
signals were defined manually using Piece Wise Linear (PWL) function in HSPICE. The
voltage levels for different signals are defined for different instances of time and the
simulations are performed through transient analysis. The inputs to the memory model
consists of signals:

• Bit-line precharge enable (BLprechcmp in figure)

• Data input (Data-in)

• Write enable signal (WE)

• Read enable (RE)

• Sense amplifier precharge enable (SAprechcmp)

• Sense amplifier enable (SAenable)

• Row decoder enable (rdenable)

• Column decoder enable (cdenable)

• Row and column address lines (Adr1, Adr2, Adc1 and, Adc2)

The behavior of simple components like resistors, capacitors, etc. can be easily
simulated by HSPICE. However, to simulate the behavior of a transistor, a number of
parameters must be taken into account. The MOS model cards provides the specification
for the parameters, which describe the working of a transistor. The transistor param-
eters used for design and implementation of the simulation model are as described for
65nm BSIM4 (level 54) Berkeley MOS models. Several other parameters describing the
simulation circuit and simulation conditions are listed below:

• The supply voltage (vdd) is 1.2v. Voltage levels between 0v to vdd/2 (0.6v) are
refereed as logic 0, while voltage levels between vdd/2 to vdd are refereed as logic
1.

• The bit lines, word lines and data lines have a capacitance to ground of 0.1pF.

• The coupling capacitances between bit lines and word lines are neglected.

• All simulations are performed at 300K temperature conditions.

As it has been explained in Section 5.4.2 and Section 5.4.3, for diagnosis purposes,
additional hardware referred to as DfD is required. For the simulations, the above
described memory model is modified to add DfD hardware. The additions consists of
extra multiplexers added at two places, the column decoder circuitry and the write

88 CHAPTER 6. CASE STUDIES

Diagnosis = 0 Diagnosis = 1

Normal mode Diagnosis mode

Figure 6.2: Diagnosis hardware for column decoder

Diagnosis = 0

NMOS

NMOSNMOS

NMOS

Gnd Gnd

Gnd

WE

DL1 DL1cmp

BL1 BL1cmp BL2 BL2cmp BL2 BL2cmp

cdout1

NMOS

NMOSNMOS

NMOS

Gnd Gnd

Gnd

WE

DL2 DL2cmp

cdout2

DL1 DL1

DL1cmp DL1cmp

DL2

DL2cmp

DL2

DL2cmp

DL1 DL1

DL1cmp DL1cmp

DL2 DL2

DL2cmpDL2cmp

Data-in Data-in Data-in Data-in

Diagnosis = 0

Write Driver for column 1 Write Driver for column 2

Diagnosis = 1

NMOS

NMOSNMOS

NMOS

Gnd Gnd

Gnd

WE

DL1 DL1cmp

BL1 BL1cmp

NMOS

NMOSNMOS

NMOS

Gnd Gnd

Gnd

WE

DL2 DL2cmp

cdout2cdout1

Diagnosis = 1

Write Driver for column 1 Write Driver for column 2

Normal mode Diagnosis mode

Figure 6.3: Diagnosis hardware for write path

circuitry. Figure 6.2 shows the multiplexers for DfD explained in Section 5.4.2. In
diagnosis mode, every column of the memory is addressed by the addressing sequence
of the adjacent column i.e., column 1 of the memory is operated on when address bits
for column 2 are supplied and column 2 of the memory is operated on when address
bits for column 1 are supplied. As it can be observed, in normal mode cdout1 is “ON”
when address “00” is applied but in diagnosis mode cdout2 is “ON” when address “00”
is applied.

Figure 6.3 shows the multiplexers for DfD explained in Section 5.4.3. In diagnosis
mode, every column of the memory cell array is connected to the write circuitry of the
adjacent column i.e., the bit lines cells of column 1 of the memory cell array are connected
to the write circuitry of column 2 while the bit lines of column 2 are connected to the
write circuitry of column 1.

6.1. SRAM SIMULATION MODEL AND SIMULATION APPROACH 89

6.1.2 Simulation Approach

For the validation of the proposed approach, faults are introduced in the simulation
model and then diagnosed using HMD approach. Defect injection is used induce faults
at the hardware level. It is done by introducing additional components (defects) between
any two nodes in the circuit, producing voltage or current changes in the circuit. Restive
opens and bridges are injected in various blocks of the memory following the philosophy
of only one defect at a time. The resulting fault is then diagnosed using the HMD
approach; the procedure for diagnosis has been shown in Figure 5.1. The simulation
approach can be briefly summarized as:

• Inject defect in a single block

• Apply static hierarchical analysis

• If no fault is detected, apply dynamic hierarchical analysis

As, it is already known which fault will be caused by the injected defect, simulation
results have been presented only for dynamic analysis and not for static analysis when
a dynamic fault is induced in the simulation model.

For analyzing simulation results and generating signatures, identification for memory
addresses is required. Figure 6.4 denotes the addressing of the memory. Here, C stands
for column and R stands for row. A diagnostic test applied in fast-row addressing
direction accesses the memory addresses in order:

C1.R1

C1.R2

C1.R3

C1.R4

PC

PC

Column Address Decoder Circuitry

C2.R1

C2.R2

C2.R3

C2.R4

PC

PC

C3.R1

C3.R2

C3.R3

C3.R4

PC

PC

C4.R1

C4.R2

C4.R3

C4.R4

PC

PC

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

M
em

or
y

C
el

l
C

ol
um

n
1

Figure 6.4: Memory addressing

Up addressing (⇑): C1.R1 → C1.R2 →
C1.R3 → C1.R4 → C2.R1 → C2.R2 →
C2.R3 → C2.R4 → C3.R1 → C3.R2 →
C3.R3 → C3.R4 → C4.R1 → C4.R2 →
C4.R3 → C4.R4.

Down addressing (⇓): C4.R4→ C4.R3→
C4.R2 → C4.R1 → C3.R4 → C3.R3 →
C3.R2 → C3.R1 → C2.R4 → C2.R3 →
C2.R2 → C2.R1 → C1.R4 → C1.R3 →
C1.R2 → C1.R1.

For a test applied in fast-column ad-
dressing direction with up addressing;
the order in which the cells are ac-
cessed is: C1.R1, C2.R1, C3.R1...C3.R4,
C4.R4. Similarly, for a test applied
in fast-column addressing direction with
down addressing; the order in which
the cells are accessed is: C4.R4, C3.R4,
C2.R4...C2.R1, C1.R1.

As the cell addressing is defined in terms of column and row address lines, in diagnosis
mode defined for level 1 (Section 5.4.2), the mapping between the memory addresses

90 CHAPTER 6. CASE STUDIES

PC

PC

PC

PC

PC

PC

PC

PC

Normal Mode

PC

PC

PC

PC

PC

PC

PC

PC

Diagnosis Mode

Column Address Decoder Circuitry

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

Column Address Decoder Circuitry

Address
Column 1

Address
Column 2

Address
Column 3

Address
Column 4

C1.R1

C1.R2

C1.R3

C1.R4

C2.R1

C2.R2

C2.R3

C2.R4

C3.R1

C3.R2

C3.R3

C3.R4

C4.R1

C4.R2

C4.R3

C4.R4

M
em

or
y

C
el

l
C

ol
um

n
1

C2.R1

C2.R2

C2.R3

C2.R4

C1.R1

C1.R2

C1.R3

C1.R4

C4.R1

C4.R2

C4.R3

C4.R4

C3.R1

C3.R2

C3.R3

C3.R4

M
em

or
y

C
el

l
C

ol
um

n
1

Figure 6.5: Memory addresses vs. memory cells location

and memory cells location will change. Figure 6.5 shows the mapping of the memory
addresses and cells location in the normal mode and the diagnosis mode.

6.2 Static Hierarchical Analysis

This section presents the simulation results for diagnosing static faults occurring in the
memory. A single defect causing a static fault is injected in the memory model at a time.
Three experiments have been performed:

• Inject a defect in the memory cell array

• Inject a defect in the address decoder

• Inject a defect in the peripheral circuitry

In each of the experiment, the HMD procedure is performed and the faulty memory
block as well as the fault type has been identified. In the rest of this section, the three
experiments will be discussed and the results will be reported.

6.2.1 Diagnosing Faults in Memory Cell Array

A resistive defect has been injected in the memory cell at address C3.R1; see Figure 6.4.
The defect is injected between the gate of pull down transistor at true node and the

6.2. STATIC HIERARCHICAL ANALYSIS 91

FT

BLcmpBL WL

Gnd

NMOSNMOS

NMOS

PMOS

..

NMOS

PMOS

Gnd Gnd

Vdd

Resistive defect

Figure 6.6: Resistive defect causing static fault in the memory cell array

false node as shown in Figure 6.6. The resistance of the defect is taken to be very high
to make sure that it causes a static fault. In fact, such a defect can cause state fault
< 1/0/− >; see Table 3.1.

As mentioned in Section 5.1, the diagnosis procedure consists of two levels of hierar-
chy. In the first level, the faulty memory block will be identified, and in the second level,
the fault primitive and its location will be pinpointed. The two levels are discussed next.

Diagnosis Level 1

The TCs developed in Section 5.4.2 will be applied. They consist of:

• March MSSm-up: { ⇑ (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);⇑ (r0, w1) }

• March MSSm-down: { ⇓ (w0);⇓ (r0, r0, w1, w1);⇓ (r1, r1, w0, w0);⇓ (r0, w1) }

The procedure consists of the following:

• Apply March MSS-up in normal mode

• Apply March MSS-down in normal mode

• Apply March MSS-up in diagnosis mode

All the tests will be applied in fast-row direction to nullify the effect of read
equivalent stress [14], and thus, to avoid detection of dynamic faults.

The simulation results of the application of the above tests are presented in Figure
6.7, Figure 6.8, and Figure 6.9.

92 CHAPTER 6. CASE STUDIES

Figure 6.7: HSpice simulation: March MSSm-up in normal mode

March MSSm-up in normal mode: The simulation result of this test is shown
in Figure 6.7. The top and middle graph in the figure give the outputs of the sense
amplifier V (sout) and its complement V (sout) (denoted as V (soutcmp)), respectively,
while the bottom graph gives the true node voltage of the faulty cell (denoted as
V (t3)).

Each operation of the test is applied to all 16 cells considered in the simulation model;
see Figure 6.4. As we are using up addressing with fast-row address direction, the order
in which the cells are accessed is: C1.R1, C1.R2, C1.R3...C4.R3, C4.R4. First, all the
16 cells are initialized to 0 by the first march element ⇑ (w0). Second, each cell is
read two times and thereafter written two times with 1 by the second march element
⇑ (r0, r0, w1, w1). The top and the middle graph in Figure 6.7 shows the V (sout)
and V (soutcmp) signal of the cell read operations. As it can be seen, all the read
operations pass correctly; i.e., V (sout) = 0 and V (soutcmp) = 1. Third, each cell is
read two times and then written with 1 by the third march element ⇑ (r1, r1, w0, w0).
As the figure shows, the r1 operation applied to the cell labeled as C3.R1 fails. Finally,
every cell is read and written to 0 by the fourth march element ⇑ (r0, w1); these read
operations pass correctly. It is worth noting that the true node of the faulty cell shown
in the bottom graph remains always 0; hence it fails to undergo an up transition. In
conclusion, March MSSm-up fails only once at C3.R1.

The fault detecting read operation is marked in bold.
March MSSm-up: { ⇑ (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);⇑ (r0, w1) }

6.2. STATIC HIERARCHICAL ANALYSIS 93

Figure 6.8: HSpice simulation: March MSSm-down in normal mode

March MSSm-down in normal mode: The simulation result of this test is shown
in Figure 6.8.

In March MSSm-down, as we are using down addressing with fast-row address direc-
tion, the order in which the cells are accessed is: C4.R4, C4.R3, C4.R2...C1.R2, C1.R1.
First, all the 16 cells are initialized to 0 by the first march element ⇓ (w0). Second,
each cell is read two times and thereafter written two times with 1 by the second march
element ⇓ (r0, r0, w1, w1). As it can be seen from the figure, all the read operations
pass correctly. Third, each cell is read two times and then written with 1 by the third
march element ⇓ (r1, r1, w0, w0). As the figure shows, the r1 operation applied to the
cell labeled as C3.R1 fails. Finally, every cell is read and written to 0 by the fourth
march element ⇓ (r0, w1); these read operations pass correctly. In conclusion, March
MSSm-down fails only once at C3.R1

The fault detecting read operation is marked in bold.
March MSSm-down: { ⇓ (w0);⇓ (r0, r0, w1, w1);⇓ (r1, r1, w0, w0);⇓ (r0, w1) }
March MSSm-up in diagnosis mode: The simulation result of this test is shown
in Figure 6.9.

It is worth noting that in diagnosis mode, every column of the memory is addressed
by the addressing sequence of the adjacent column i.e., column 1 of the memory is
operated on when address bits for column 2 are supplied and column 2 of the memory
is operated on when address bits for column 1 are supplied. First, all the 16 cells are
initialized to 0 by the first march element ⇑ (w0). Second, each cell is read two times

94 CHAPTER 6. CASE STUDIES

Figure 6.9: HSpice simulation: March MSSm-up in diagnosis mode

and thereafter written two times with 1 by the second march element ⇑ (r0, r0, w1, w1).
Third, each cell is read two times and then written with 1 by the third march element
⇑ (r1, r1, w0, w0). As the figure shows, the r1 operation applied to the cell labeled as
C4.R1 fails. Finally, every cell is read and written to 0 by the fourth march element
⇑ (r0, w1); these read operations pass correctly. In conclusion, March MSSm-up fails
only once at C4.R1.

It is to be noted that the first failing address is different from when the same test
(March MSSm-up) is applied in normal mode. This is because, in diagnosis mode the
memory cell column containing the faulty cell is accessed by a different address line
than in normal mode; hence the faulty cell is operated upon when a different address
is accessed than that in normal mode.

The fault detecting read operation is marked in bold.
March MSSm-up: { ⇑ (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);⇑ (r0, w1) }

It is to be observed from provided simulation waveforms that logic value at true
node of the faulty memory cell is always 0 i.e., the cell shows fault behavior of state-0
fault. All the applied tests fail generating a diagnostic signature “1(C3.R1) 1(C3.R1)
1(C4.R1)”. In the signature, the first entry 1(C3.R1) signifies that the first test has
failed and the first fail for this test is observed at address location C3.R1.

Table 6.1 shows comparison of the obtained signature with level 1 diagnostic dictio-
nary (see Table 5.6). On comparing the obtained signature with the diagnostic dictio-

6.2. STATIC HIERARCHICAL ANALYSIS 95

nary, the fault can be classified as a fault in the memory cell array. This was indeed the
memory block where the defect was injected; thus the correct faulty block is indicated
by the diagnosis process.

Table 6.1: Level 1: Memory cell array identified as the faulty block

Faulty Block Signature MSSm-up in MSSm-down in MSSm-up in Failing
normal mode normal mode diagnosis mode address

(failing address) (failing address) (failing address)

Memory cell Dictionary 1 (Aα) 1 (Aα) 1 (Aβ) α �= β
array signature

Observed 1 (C3.R1) 1 (C3.R1) 1 (C4.R1)
signature

Diagnosis Level 2

At level 1, the faulty block has been identified as the memory cell array. At level 2, the
fault type will be identified. As explained in Section 5.4.3, when the memory cell array is
faulty, we do not need to apply any new diagnostic tests at level 2. Further classification
can be made on the basis of pass/fail status of tests applied at level 1. This will be done
using the results of:

• March MSSm-up in normal mode

• March MSSm-down in normal mode

The simulation results of the above tests are presented in Figure 6.7 and Figure 6.8.
The results have already been explained above during the discussion of diagnosis level
1. Both the tests fail generating a diagnostic signature “1 1”. In the signature, the first
entry 1 signifies that the first test has failed.

Table 6.2 shows comparison of the obtained signature with level 2 diagnostic dictio-
nary (see Table 5.7). On comparing the obtained signature with the diagnostic dictionary,
the fault can be classified as a single-cell fault. Also, the fault location is known to be
at C3.R1 as the first failing address is same (C3.R1) for both the tests. The injected
defect causes a state-0 fault in a single cell located at C3.R1; thus the correct fault type
is indicated by the diagnosis process.

6.2.2 Diagnosing Faults in Address Decoder

A resistive defect has been injected in the row decoder between word line 1 (WL1)
(corresponding to row 1 of the memory cell array) and WL2 (corresponding to row 2 of
the memory cell array); see Figure 6.10. This defect causes the address decoder fault
AFnma between row 1 and row 2 of the memory; see Figure 3.5. As shown in the figure,
the defect causes memory cells of row 1 (shown as Cx) to be accessed when address
sequence for either row 1 and row 2 is applied while the memory cells of row 2 (shown
as Cy) are inaccessible.

96 CHAPTER 6. CASE STUDIES

Table 6.2: Level 2: Fault in the memory cell array identified as single-cell fault

Fault Signature MSSm-up in MSSm-down in
normal mode normal mode

Single-cell Dictionary 1 1
fault signature

Observed 1 1
signature

AD1 AD2

WL1

WL3

WL2

WL4

Resistive defect

Figure 6.10: Resistive defect causing static fault in the address decoder

The diagnosis procedure consists of two levels of hierarchy. In the first level, the
faulty memory block will be identified, and in the second level, the fault primitive and
its location will be pinpointed. The two levels are discussed next.

Diagnosis Level 1

The TCs developed in Section 5.4.2 will be applied. The procedure consists of the
following:

• Apply March MSS-up in normal mode

• Apply March MSS-down in normal mode

• Apply March MSS-up in diagnosis mode

6.2. STATIC HIERARCHICAL ANALYSIS 97

v(wl1)
v(wl2)

Figure 6.11: HSpice simulation: March MSSm-up in normal mode

The simulation results of the application of the above tests are presented in Figure
6.11, Figure 6.12, and Figure 6.13.

March MSSm-up in normal mode: The simulation result of this test is shown in
Figure 6.11. Here, the bottom graph gives the voltage of the faulty word lines (denoted
as V (wl1) and V (wl2)).

As the figure shows, the r0 operation applied to the cell labeled as C1.R2 fails. Other
cells accessed by address lines for row 2 (C2.R2, C3.R2 and, C4.R2) also fail for the r0
operation. It is worth noting that voltage of WL2 shown in the bottom graph remains
always 0; hence the memory cells of row 2 are never accessed. It can also be seen that
WL1 is activated consecutively two times for every operation in the march test; thus
demonstrating the fault behavior for fault address decoder fault AFnma. In conclusion,
March MSSm-up has its first failing address at C1.R2.

The fault detecting read operation is marked in bold.
March MSSm-up: { ⇑ (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);⇑ (r0, w1) }

March MSSm-down in normal mode: The simulation result of this test is shown
in Figure 6.12.

As the figure shows, the r0 operation applied to the cell labeled as C4.R1 fails. Other
cells accessed by address lines for row 1 (C3.R1, C2.R1 and, C1.R1) also fail for the
r0 operation. In conclusion, March MSSm-down has its first failing address at C4.R1.

98 CHAPTER 6. CASE STUDIES

The fault detecting read operation is marked in bold.
March MSSm-down: { ⇓ (w0);⇓ (r0, r0, w1, w1);⇓ (r1, r1, w0, w0);⇓ (r0, w1) }
March MSSm-up in diagnosis mode: The simulation result of this test is shown
in Figure 6.13.

As the figure shows, the r0 operation applied to the cell labeled as C1.R2 fails. Other
cells accessed by address lines for row 2 (C2.R2, C3.R2 and, C4.R2) also fail for the
r0 operation. In conclusion, March MSSm-up has its first failing address at C1.R2.

It is to be noted that the first failing address for March MSS-up in diagnosis mode
is same as that of March MSSm-up in normal mode. This is because, the diagnosis
mode alters the column decoder to access different peripheral circuitries and does not
effect the row decoder. As the complete row is affected by the injected defect, a defect
in row decoder produces the same first failing address on application of same test.

The fault detecting read operation is marked in bold.
March MSSm-up: { ⇑ (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);⇑ (r0, w1) }

It is to be observed from provided simulation waveforms that WL2 is never active
and WL1 is active in its place. This is because of the injected defect, which demonstrates
the fault behavior of address decoder fault AFnma. All the applied tests fail generating
a diagnostic signature “1(C1.R2) 1(C4.R1) 1(C1.R2)”.

Table 6.3 shows comparison of the obtained signature with level 1 diagnostic dictio-
nary (see Table 5.6). On comparing the obtained signature with the diagnostic dictionary,
the fault can be classified as a fault in the address decoder. This was indeed the memory
block where the defect was injected; thus the correct faulty block is indicated by the
diagnosis process.

Table 6.3: Level 1: Address decoder identified as the faulty block

Faulty Block Signature MSSm-up in MSSm-down in MSSm-up in Failing
normal mode normal mode diagnosis mode address

(failing address) (failing address) (failing address)

Address Dictionary 1 (Aα) 1 (Aβ) 1 (Aα) α �= β
decoder Signature

Observed 1 (C1.R2) 1 (C4.R1) 1 (C1.R2)
Signature

Diagnosis Level 2

At level 1, the faulty block has been identified as the address decoder. At level 2, the
fault type will be identified. When the address decoder is faulty, we need to apply new
diagnostic tests at level 2. The TPs developed in Section 5.4.3 will be applied. They
consist of:

• March AFr0up: { 	 (w0);⇑ (r0, w1) }

6.2. STATIC HIERARCHICAL ANALYSIS 99

v(wl1)
v(wl2)

Figure 6.12: HSpice simulation: March MSSm-down in normal mode

v(wl1)
v(wl2)

Figure 6.13: HSpice simulation: March MSSm-up in diagnosis mode

100 CHAPTER 6. CASE STUDIES

• March AFr0down: { 	 (w0);⇓ (r0, w1) }
• March AFr1up: { 	 (w1);⇑ (r1, w0) }
• March AFr1down: { 	 (w1);⇓ (r1, w0) }

The procedure consists of the following:

• Apply March AFr0up

• Apply March AFr0down

• Apply March AFr1up

• Apply March AFr1down

March AFr0up: The simulation result of this test is shown in Figure 6.14. Here,
the bottom graph gives the voltage of the faulty word lines (denoted as V (wl1) and
V (wl2)).

This test is applied using up addressing with fast-row address direction. First, all the
16 cells are initialized to 0 by the first march element 	 (w0). It is to be noted, that
the first march element can be applied using either up addressing or down addressing;
for simulation we are using up addressing here. Second, each cell is read and thereafter
written with 1 by the second march element ⇑ (r0, w1). As the figure shows, the r0
operation applied to the cell labeled as C1.R2 fails. Other cells accessed by address
lines for row 2 (C2.R2, C3.R2 and, C4.R2) also fail for the r0 operation. In conclusion,
March AFr0up has its first failing address at C1.R2.

The fault detecting read operation is marked in bold.
March AFr0up: { 	 (w0);⇑ (r0, w1) }
March AFr0down: The simulation result of this test is shown in Figure 6.15.

This test is applied using down addressing with fast-row address direction. First,
all the 16 cells are initialized to 0 by the first march element 	 (w0). It is to be
noted, that the first march element can be applied using either up addressing or down
addressing; for simulation we are using down addressing here. Second, each cell is read
and thereafter written with 1 by the second march element ⇓ (r0, w1). As the figure
shows, the r0 operation applied to the cell labeled as C4.R1 fails. Other cells accessed
by address lines for row 1 (C3.R1, C2.R1 and, C1.R1) also fail for the r0 operation.
In conclusion, March AFr0down has its first failing address at C4.R1.

The fault detecting read operation is marked in bold.
March AFr0down: { 	 (w0);⇓ (r0, w1) }
March AFr1up: The simulation result of this test is shown in Figure 6.16.

This test is applied using down addressing with fast-row address direction. First, all
the 16 cells are initialized to 1 by the first march element 	 (w1). It is to be noted, that
the first march element can be applied using either up addressing or down addressing;

6.2. STATIC HIERARCHICAL ANALYSIS 101

v(wl1)
v(wl2)

Figure 6.14: HSpice simulation: March AFr0up

v(wl1)
v(wl2)

Figure 6.15: HSpice simulation: March AFr0down

102 CHAPTER 6. CASE STUDIES

for simulation we are using up addressing here. Second, each cell is read and thereafter
written with 0 by the second march element ⇑ (r1, w0). As the figure shows, the r1
operation applied to the cell labeled as C1.R2 fails. Other cells accessed by address
lines for row 2 (C2.R2, C3.R2 and, C4.R2) also fail for the r1 operation. In conclusion,
March AFr1up has its first failing address at C1.R2.

The fault detecting read operation is marked in bold.
March AFr1up: { 	 (w1);⇑ (r1, w0) }

March AFr1down: The simulation result of this test is shown in Figure 6.17.

This test is applied using down addressing with fast-row address direction. First,
all the 16 cells are initialized to 1 by the first march element 	 (w1). It is to be
noted, that the first march element can be applied using either up addressing or down
addressing; for simulation we are using down addressing here. Second, each cell is read
and thereafter written with 0 by the second march element ⇓ (r1, w0). As the figure
shows, the r1 operation applied to the cell labeled as C4.R1 fails. Other cells accessed
by address lines for row 1 (C3.R1, C2.R1 and, C1.R1) also fail for the r1 operation.
In conclusion, March AFr1down has its first failing address at C4.R1.

The fault detecting read operation is marked in bold.
March AFr1down: { 	 (w1);⇓ (r1, w0) }

It is to be observed from provided simulation waveforms that WL2 is never active
and WL1 is active in its place. This is because of the injected defect, which demonstrates
the fault behavior of address decoder fault AFnma. All the applied tests fail generating
a diagnostic signature “1 1 1 1”. Here, we do not require the information of failing
addresses for identifying the fault type. But if the failing addresses are known, the fault
can be pinpointed to particular row(s) or column(s) of the address decoder.

Table 6.4 shows comparison of the obtained signature with level 2 diagnostic dictio-
nary (see Table 5.9). On comparing the obtained signature with the diagnostic dictionary,
the fault can be classified as address decoder fault AFnma. Also, as the applied tests
observe first failing addresses (C1.R2, C4.R1, C1.R2, and C4.R1) at the opposite ends
of the memory cell rows, the fault can be classified as a row decoder fault in row 1 and
2 of the address decoder. The injected defect causes address decoder fault AFnma in the
row decoder; thus the correct fault type is indicated by the diagnosis process.

Table 6.4: Level 2: Fault in the address decoder identified as AFnma

Fault Signature AFr0up AFr0down AFr1up AFr1down

AFnma Dictionary 1 1 1 1
Signature

Observed 1 1 1 1
Signature

6.2. STATIC HIERARCHICAL ANALYSIS 103

v(wl1)
v(wl2)

Figure 6.16: HSpice simulation: March AFr1up

v(wl1)
v(wl2)

Figure 6.17: HSpice simulation: March AFr1down

104 CHAPTER 6. CASE STUDIES

Vdd

SOUTcmp

PMOS

NMOS

PMOS

..

NMOS

NMOS

Gnd Gnd

Gnd SOUTSOUT

SAenable

DL DLcmp

Resistive defect

Figure 6.18: Resistive defect causing static fault in the peripheral circuitry

6.2.3 Diagnosing Faults in Peripheral Circuitry

A resistive defect has been injected in the sense amplifier for column 2 of the memory
cell array; see Figure 6.18. This defect causes an incorrect read fault in memory cells
connected to the faulty sense amplifier; see Table 3.1.

The diagnosis procedure consists of two levels of hierarchy. In the first level, the
faulty memory block will be identified, and in the second level, the fault primitive and
its location will be pinpointed. The two levels are discussed next.

Diagnosis Level 1

The TCs developed in Section 5.4.2 will be applied. The procedure consists of the
following:

• Apply March MSS-up in normal mode

• Apply March MSS-down in normal mode

• Apply March MSS-up in diagnosis mode

6.2. STATIC HIERARCHICAL ANALYSIS 105

Figure 6.19: HSpice simulation: March MSSm-up in normal mode

The simulation results of the application of the above tests are presented in Figure
6.19, Figure 6.20, and Figure 6.21.

March MSSm-up in normal mode: The simulation result of this test is shown
in Figure 6.19. Here, the bottom graph gives the true node voltage for two of the
memory cells connected to faulty sense amplifier (denoted as V (t2) and V (t6)).

As the figure shows, the r1 operation applied to the cell labeled as C2.R1 fails. Other
cells connected to faulty sense amplifier (C2.R2, C2.R3 and, C2.R4) also fail for the
r1 operation. It is worth noting that 0 is read from memory cells connected to faulty
sense amplifier even when they contain 1. In conclusion, March MSSm-up has its first
failing address at C2.R1.

The fault detecting read operation is marked in bold.
March MSSm-up: { ⇑ (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);⇑ (r0, w1) }

March MSSm-down in normal mode: The simulation result of this test is shown
in Figure 6.20.

As the figure shows, the r1 operation applied to the cell labeled as C2.R4 fails. Other
cells connected to faulty sense amplifier (C2.R3, C2.R2 and, C2.R1) also fail for the
r1 operation. In conclusion, March MSSm-down has its first failing address at C2.R4.

The fault detecting read operation is marked in bold.
March MSSm-down: { ⇓ (w0);⇓ (r0, r0, w1, w1);⇓ (r1, r1, w0, w0);⇓ (r0, w1) }

106 CHAPTER 6. CASE STUDIES

Figure 6.20: HSpice simulation: March MSSm-down in normal mode

March MSSm-up in diagnosis mode: The simulation result of this test is shown
in Figure 6.21.

As the figure shows, the r1 operation applied to the cell labeled as C1.R1 fails. Other
cells connected to faulty sense amplifier (C1.R2, C1.R3 and, C1.R4) also fail for the
r1 operation. In conclusion, March MSSm-up has its first failing address at C1.R1.

It is to be noted that the location of first fail for March MSS-up in diagnosis mode is
different from that of March MSSm-up in normal mode. This is because, in diagnosis
mode the faulty sense amplifier is accessed by a different address line than in normal
mode; hence the fail is observed at different addresses than those in normal mode.

The fault detecting read operation is marked in bold.
March MSSm-up: { ⇑ (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);⇑ (r0, w1) }

It is to be observed from provided simulation waveforms that due to the injected
defect, even when the memory cells connected to faulty sense amplifier contain 1, 0 is
read by the sense amplifier. All the applied tests fail generating a diagnostic signature
“1(C2.R1) 1(C2.R4) 1(C1.R1)”.

Table 6.5 shows comparison of the obtained signature with level 1 diagnostic dictio-
nary (see Table 5.6). On comparing the obtained signature with the diagnostic dictio-
nary, the fault can be classified as a fault in the peripheral circuitry. This was indeed the
memory block where the defect was injected; thus the correct faulty block is indicated
by the diagnosis process.

6.2. STATIC HIERARCHICAL ANALYSIS 107

Figure 6.21: HSpice simulation: March MSSm-up in diagnosis mode

Table 6.5: Level 1: Peripheral circuitry identified as the faulty block

Faulty Block Signature MSSm-up in MSSm-down in MSSm-up in Failing
normal mode normal mode diagnosis mode address

(failing address) (failing address) (failing address)

Peripheral Dictionary 1 (Aα) 1 (Aβ) 1 (Aγ) α �= β �= γ
circuitry signature

Observed 1 (C2.R1) 1 (C2.R4) 1 (C1.R1)
signature

Diagnosis Level 2

At level 1, the faulty block has been identified as the peripheral circuitry. At level 2, the
fault type will be identified. As explained in Section 5.4.3, when the peripheral circuitry
is faulty, we need to use DfD hardware and apply new diagnostic tests to identify the
type of fault. It is worth mentioning again, that for the diagnosis of peripheral circuitry
at level 2, diagnosis mode alters the write path for every column of the memory i.e.,
in diagnosis mode every column of the memory cell array connects to the write path
circuitry of the adjacent column but the read path remains the same. The TP developed
in Section 5.4.3 will be applied. Only one TP is required:

• Memory Scan test: { 	 (w0); 	 (r0); 	 (w1); 	 (r1) }

The procedure consists of the following:

108 CHAPTER 6. CASE STUDIES

• Apply Memory Scan test in normal mode

• Apply Memory Scan test in diagnosis mode

Memory Scan test in normal mode: The simulation result of this test is shown
in Figure 6.22. Here, the bottom graph gives the true node voltage for two of the
memory cells connected to faulty sense amplifier (denoted as V (t2) and V (t6)).

It is to be noted, that all the march elements can be applied using either up addressing
or down addressing; for simulation we are using up addressing with fast-row address
direction. First, all the 16 cells are initialized to 0 by the first march element 	 (w0).
Second, each cell is read by the second march element 	 (r0). As can be seen in the
figure, all the read operations pass correctly. Third, each cell is written 1 by the third
march element 	 (w1). Then each cell is read by the fourth march element 	 (r1).
As the figure shows, the r1 operation applied to the cell labeled as C2.R1 fails. Other
cells connected to faulty sense amplifier (C2.R2, C2.R3 and, C2.R4) also fail for the
r1 operation. In conclusion, Memory Scan test has its first failing address at C2.R1.

The fault detecting read operation is marked in bold.
Memory Scan test: { 	 (w0); 	 (r0); 	 (w1); 	 (r1) }
Memory Scan test in diagnosis mode: The simulation result of this test is shown
in Figure 6.23.

It is to be noted, that all the march elements can be applied using either up addressing
or down addressing; for simulation we are using up addressing with fast-row address
direction. The diagnosis mode alters the write path for every memory cell array column
and it has no affect on the way cells are addressed. Thus, the addressing remains the
same as in normal mode. As the figure shows, the r1 operation applied to the cell
labeled as C1.R1 fails. Other cells connected to faulty sense amplifier (C1.R2, C1.R3
and, C1.R4) also fail for the r1 operation. In conclusion, Memory Scan test has its
first failing address at C2.R1.

It is to be noted that the failing addresses are same as in the test applied in normal
mode. This is because, in diagnosis mode the write path for every memory cell column
is changed but the read path remains the same; as the fault lies in the sense amplifiers
i.e., the read path, Memory Scan test fails for the same address locations.

The fault detecting read operation is marked in bold.
Memory Scan test: { 	 (w0); 	 (r0); 	 (w1); 	 (r1) }

It is to be observed from provided simulation waveforms that due to the injected
defect, even when the memory cells connected to faulty sense amplifier contain 1, 0 is
read by the sense amplifier. All the applied tests fail generating a diagnostic signature
“1 1”.

Table 6.6 shows comparison of the obtained signature with level 1 diagnostic dic-
tionary (see Table 5.10). On comparing the obtained signature with the diagnostic
dictionary, the fault can be classified as a read path fault. The injected defect causes a
faulty sense amplifier; thus the correct fault type is indicated by the diagnosis process.

6.2. STATIC HIERARCHICAL ANALYSIS 109

Figure 6.22: HSpice simulation: Memory SCAN test in normal mode

Figure 6.23: HSpice simulation: Memory SCAN test in diagnosis mode

110 CHAPTER 6. CASE STUDIES

Table 6.6: Level 2: Fault in the peripheral circuitry identified as read path fault

Faulty Block Signature Memory SCAN test in Memory SCAN test in
normal mode diagnosis mode

(failing address) (failing address)

Read path Dictionary 1 (Aα) 1 (Aα)
signature

Observed 1 (C2.R1) 1 (C2.R1)
signature

6.3 Dynamic Hierarchical Analysis

This section presents the simulation results for diagnosing dynamic faults occurring in
the memory. A single defect causing a dynamic fault is injected in the memory model
at a time. Three experiments have been performed:

• Inject a defect in the memory cell array

• Inject a defect in the address decoder

• Inject a defect in the peripheral circuitry

In each of the experiment, the HMD procedure is performed and the defective memory
block as well as the fault have been identified. In the rest of this section, the three
experiments will be discussed and the results will be reported.

6.3.1 Diagnosing Faults in Memory Cell Array

A resistive defect has been injected in the memory cell at address C4.R1. The defect is
injected between the between the vdd and power supply of the cell as shown in Figure
6.24. The resistance of the defect is taken to be in medium range to make sure that it
causes a dynamic fault. Such a defect causes a dynamic deceptive read destructive fault
¡1r1r1/0/1¿; see Table 3.5.

As mentioned in Section 5.1, the diagnosis procedure consists of two levels of hierar-
chy. In the first level, the faulty memory block will be identified, and in the second level,
the fault primitive and its location will be pinpointed. The two levels are discussed next.

Diagnosis Level 1

The TCs developed in Section 5.5.2 will be applied. They consist of:

• March MD2y:
{ 	y (w0); ⇑y (r0, w1, w1, r1, w1, w1, r1, w0, w0, r0, w0, w0, r0, w0, w1, w0, w1);
⇑y (r1, w0, w0, r0, w0, w0, r0, w1, w1, r1, w1, w1, r1, w1, w0, w1, w0);
⇓y (r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0, w0, w1, w0, w1);
⇓y (r1, w0, r0, w0, r0, r0, r0, w1, r1, w1, r1, r1, r1, w1, w0, w1, w0); 	y (r0) }

6.3. DYNAMIC HIERARCHICAL ANALYSIS 111

FT

BLcmpBL WL

Gnd

NMOSNMOS

NMOS

PMOS

..

NMOS

PMOS

Gnd Gnd

Vdd
Resistive defect

Figure 6.24: Resistive defect causing dynamic fault in the memory cell array

• March RAWAW-H1mx: { 	x (w0); 	H1
x (w0g , w1f , r0g, r1f , w0f); 	x (w1);

	H1
x (w1g, w0f , r1g, r0f , w1f) }

• March RAWAW-H1my : { 	y (w0); 	H1
y (w0g , w1f , r0g, r1f , w0f); 	y (w1);

	H1
y (w1g, w0f , r1g, r0f , w1f) }

The procedure consists of the following:

• Apply March MD2y

• Apply March RAWAW-H1mx separately on each column of the memory cell array

• Apply March RAWAW-H1my separately on each row of the memory cell array

The simulation results of the application of the above tests are presented in Figure
6.25, Figure 6.26, and Figure 6.27.

March MD2y: The simulation result of this test is shown in Figure 6.25. The top
and middle graph in the figure give the outputs of the sense amplifier V (sout) and its
complement V (sout) (denoted as V (soutcmp)), respectively, while the bottom graph
gives the true node voltage of the faulty cell (denoted as V (t4)).

The test is applied to the memory in fast-column direction. Each operation of the
test is applied to all 16 cells considered in the simulation model. First, all the 16
cells are initialized to 0 by the first march element 	y (w0). It is to be noted, that
the first march element can be applied using either up addressing or down address-
ing; for simulation we are using up addressing here. As we are using up address-
ing with fast-column address direction, the order in which the cells are accessed
is: C1.R1, C2.R1, C3.R1...C3.R4, C4.R4. Second, each cell is read and thereafter
more read/write operations are performed as given in the second march element

112 CHAPTER 6. CASE STUDIES

v(t4)

Figure 6.25: HSpice simulation: March MD2y

⇑y (r0, w1, w1, r1, w1, w1, r1, w0, w0, r0, w0, w0, r0, w0, w1, w0, w1) and the third
march element ⇑y (r1, w0, w0, r0, w0, w0, r0, w1, w1, r1, w1, w1, r1, w1, w0, w1, w0)).
All the read operations pass correctly. Then the fourth march element ⇓y

(r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0, w0, w1, w0, w1) is applied in down ad-
dressing; the order in which the cells are accessed is: C4.R4, C3.R4, C2.R4...C2.R1,
C1.R1. Figure 6.25 shows the simulation result when fourth march element is ap-
plied. As it can be seen, the r1 operation applied to the cell labeled as C4.R1
fails. Further read operations are then performed by fifth march element ⇓y

(r1, w0, r0, w0, r0, r0, r0, w1, r1, w1, r1, r1, r1, w1, w0, w1, w0) and finally every cell is
read by the sixth march element 	y (r0). It is worth noting that, the true node of
the faulty cell shown in the bottom graph is flipped on application of consecutive read
operations. In conclusion, March MD2y fails only once at C4.R1.

The fault detecting read operation of the fourth march element is marked in bold.
March element 4: ⇓y (r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0, w0, w1, w0, w1)

March RAWAW-H1mx: The simulation result of this test is shown in Figure 6.26.
As explained in 5.5.2, to avoid column decoder transitions March RAWAW-H1mx is
applied separately to every column of the memory i.e., first it is applied to column 1
and the pass/fail status of the test is stored, then the test is applied to column 2 and
so on. Diagnostic signature will include logical AND and logical OR of the pass/fail
status of March RAWAW-H1mx applied on each column. The first four graphs in the
figure give the outputs of the sense amplifier (V (sout) and V (soutcmp)), for the four
memory cell columns (column 1, column 2, column 3 and, column 4 respectively), while

6.3. DYNAMIC HIERARCHICAL ANALYSIS 113

the bottom graph gives the true node voltage of the faulty cell (denoted as V (t4)).

For the march RAWAW-H1mx, special addressing mode called H1 addressing is used.
For accessing a column with four rows using H1 addressing method, the row address
lines should include the following transitions: 00 → 01 → 00, 00 → 10 → 00, 11 → 01
→ 11, and 11 → 10 → 11. For the used memory model, row address lines 00 signify
row 1, 10 signify row 2, 01 signify row 3 and, 11 signify row 4. Thus, the transitions
should be: R1 → R3 → R1, R1 → R2 → R1, R4 → R3 → R4, and R4 → R2 →
R4. H1 addressing used Sensitizing Operation Pairs (SOP) and Sensitizing Operation
Triplets (SOT) for accessing the memory. SOPs and SOTs are explained in detail in
[22]. Read write operations are performed using addresses triplets “Ag, Af, Ag; where
the first and the third addresses are identical; for e.g., “C1.R1 C1.R3 C1.R1”. Next,
the simulation result for application of March RAWAW-H1mx to column 1 will be
explained.

Each operation of the test is applied to all 4 cells of column 1 (C1.R1, C1.R2, C1.R3,
C1.R4). It is to be noted, that all march elements can be applied using either up
addressing or down addressing; for simulation we are using up addressing here. First,
all the 4 cells are initialized to 0 by the first march element 	x (w0). Then the second
march element is applied in H1 addressing and so the read/write operations will be
applied using the above explained row address transitions. For the second march ele-
ment 	H1

x (w0g , w1f , r0g, r1f , w0f), initially g will assume the location corresponding
to address lines 00 i.e., cell C1.R1 and f will assume the location corresponding to
address lines 01, i.e., cell C1.R3. So, C1.R1 is written with 0, then C1.R3 is written
to 1; then both the cells are read and then C1.R1 is written with 0. This gives us
address transitions R1 → R3 → R1. For the next address transition, g will assume
the location corresponding to address lines 00 i.e., cell C1.R1 and f will assume the
location corresponding to address lines 10, i.e., cell C1.R2 and the process is repeated
until all the required row address transitions are performed. The top graph in Figure
6.26 shows the results of cell read operations for the first column of the memory. All
the read operations pass correctly; i.e., V (sout) = 0 and V (soutcmp) = 1 for r0 oper-
ations and V (sout) = 1 and V (soutcmp) = 0 for r1 operations. After the completion
of second march element, all the 4 cells are written with 1 by the third march element
	x (w1). Then the fourth march element 	H1

x (w1g , w0f , r1g, r0f , w1f) is applied in
H1 addressing and follows the same addressing order as for second march element. As
can be seen in the figure, all the read operations pass correctly.

In a similar way, March RAWAW-H1mx is applied for column 2, 3 and 4 of the memory.
The simulation results can be seen in second, third and fourth graph of Figure 6.26.
As can be seen, all the read operations pass correctly and no failure is detected.

March RAWAW-H1my : The simulation result of this test is shown in Figure 6.27.
As explained in 5.5.2, to avoid row decoder transitions March RAWAW-H1my is ap-
plied separately to every row of the memory i.e., first it is applied to row 1 and the
pass/fail status of the test is stored, then the test is applied to row 2 and so on. The
first four graphs in the figure give the outputs of the sense amplifier (V (sout) and
V (soutcmp)), for the four memory cell rows (row 1, row 2, row 3 and, row 4 respec-

114 CHAPTER 6. CASE STUDIES

Column 1

Column 2

Column 3

Column 4

v(t4)

Figure 6.26: HSpice simulation: March RAWAW-H1mx applied for each row of the memory cell
array

tively), while the bottom graph gives the true node voltage of the faulty cell (denoted
as V (t4)).

For the march RAWAW-H1my , special addressing mode called H1 addressing is used.
For accessing a row with four columns using H1 addressing method, the column address
lines should include the following transitions: 00 → 01 → 00, 00 → 10 → 00, 11 → 01
→ 11, and 11 → 10 → 11. For the used memory model, column address lines 00 signify
column 1, 10 signify column 2, 01 signify column 3 and, 11 signify column 4. Thus,
the transitions should be: C1 → C3 → C1, C1 → C2 → C1, C4 → C3 → C4, and C4
→ C2 → C4. Next, the simulation result for application of March RAWAW-H1my to
row 1 will be explained.

Each operation of the test is applied to all 4 cells of row 1 (C1.R1, C2.R1, C3.R1,
C4.R1). It is to be noted, that all march elements can be applied using either up
addressing or down addressing; for simulation we are using up addressing here. First,
all the 4 cells are initialized to 0 by the first march element 	y (w0). Then the second
march element is applied in H1 addressing and so the read/write operations will be
applied using the above explained column address transitions. For the second march
element 	H1

y (w0g , w1f , r0g, r1f , w0f), initially g will assume the location correspond-
ing to address lines 00 i.e., cell C1.R1 and f will assume the location corresponding to
address lines 01, i.e., cell C3.R1. So, C1.R1 is written with 0, then C3.R1 is written to
1; then both the cells are read and then C1.R1 is written with 0. This gives us address
transitions C1 → C3 → C1. For the next address transition, g will assume the loca-
tion corresponding to address lines 00 i.e., cell C1.R1 and f will assume the location

6.3. DYNAMIC HIERARCHICAL ANALYSIS 115

Row 1

Row 2

Row 3

Row 4

v(t4)

Figure 6.27: HSpice simulation: March RAWAW-H1my applied for each row of the memory cell
array

corresponding to address lines 10, i.e., cell C2.R1 and the process is repeated until all
the required column address transitions are performed. The top graph in Figure 6.27
shows the results of cell read operations for the first row of the memory. All the read
operations pass correctly; i.e., V (sout) = 0 and V (soutcmp) = 1 for r0 operations
and V (sout) = 1 and V (soutcmp) = 0 for r1 operations. After the completion of
second march element, all the 4 cells are written with 1 by the third march element
	y (w1). Then the fourth march element 	H1

y (w1g, w0f , r1g, r0f , w1f) is applied in
H1 addressing and follows the same addressing order as for second march element. As
can be seen in the figure, all the read operations pass correctly.

In a similar way, March RAWAW-H1my is applied for row 2, 3 and 4 of the memory.
The simulation results can be seen in second, third and fourth graph of Figure 6.27.
As can be seen, all the read operations pass correctly and no failure is detected.

It is to be observed from provided simulation waveforms that due to the injected
defect, despite of several write 1 operations, the true node of the faulty cell shown in
the bottom graph either does not contain a strong 1 value or is pulled up very slowly.
Of all the applied tests, only March MD2y fails generating a diagnostic signature “1 0 0”.

Table 6.7 shows comparison of the obtained signature with level 1 diagnostic dic-
tionary (see Table 5.11). On comparing the obtained signature with the diagnostic
dictionary, the fault can be classified as a memory cell array fault. This was indeed the
memory block where the defect was injected; thus the correct faulty block is indicated
by the diagnosis process.

116 CHAPTER 6. CASE STUDIES

Table 6.7: Level 1: Memory cell array identified as the faulty block

Faulty Block Signature March MD2y March RAWAW March RAWAW March RAWAW
(AND) -H1mx(AND) -H1mx(OR) -H1my(AND)

Memory cell Dictionary 1 0 0 0
array signature

Observed 1 0 0 0
signature

Diagnosis Level 2

At level 1, the faulty block has been identified as the memory cell array. At level 2, the
fault type will be identified. This will be done using tests developed in Section 5.5.3.
They consist of:

• March MD21: { 	y (w0); ⇑y (r0, w1, w1, r1, w1, w1, r1, w0, w0, r0, w0, w0,
r0, w0, w1, w0, w1); ⇓y (r1, w0, r0, w0, r0, r0, r0, w1, r1, w1, r1, r1, r1, w1, w0,
w1, w0); 	y (r0) }

• March MD22: { 	y (w0); ⇓y (r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0,
w0, w1, w0, w1); ⇑y (r1, w0, w0, r0, w0, w0, r0, w1, w1, r1, w1, w1, r1, w1, w0,
w1, w0); 	y (r0) }

The procedure consists of the following:

• Apply March MD21

• Apply March MD22

The simulation results of the application of the above tests are presented in Figure
6.28 and Figure 6.29.

March MD21: The simulation result of this test is shown in Figure 6.28. Here, the
bottom graph gives the true node voltage of the faulty cell (denoted as V (t4)).

The test is applied to the memory in fast-column direction. Each operation of the
test is applied to all 16 cells considered in the simulation model. First, all the 16
cells are initialized to 0 by the first march element 	y (w0). It is to be noted, that
the first march element can be applied using either up addressing or down address-
ing; for simulation we are using up addressing here. Second, each cell is read and
thereafter more read/write operations are performed as given in the second march el-
ement ⇑y (r0, w1, w1, r1, w1, w1, r1, w0, w0, r0, w0, w0, r0, w0, w1, w0, w1). Then the
third march element ⇓y (r1, w0, r0, w0, r0, r0, r0, w1, r1, w1, r1, r1, r1, w1, w0, w1, w0)
is applied in down addressing. Figure 6.28 shows the simulation result when third
march element is applied. As it can be seen, the r1 operation applied to the cell
labeled as C4.R1 fails. Finally, every cell is read by the fourth march element 	y (r0).

The fault detecting read operation of the fourth march element is marked in bold.
March element 3: ⇓y (r1, w0, r0, w0, r0, r0, r0, w1, r1, w1, r1, r1, r1, w1, w0, w1, w0)

6.3. DYNAMIC HIERARCHICAL ANALYSIS 117

v(t4)

Figure 6.28: HSpice simulation: March MD21

March MD22: The simulation result of this test is shown in Figure 6.29.

The test is applied to the memory in fast-column direction. Each operation of
the test is applied to all 16 cells considered in the simulation model. First, all
the 16 cells are initialized to 0 by the first march element 	y (w0). It is to be
noted, that the first march element can be applied using either up addressing or
down addressing; for simulation we are using up addressing here. Then the sec-
ond march element ⇓y (r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0, w0, w1, w0, w1)
is applied in down addressing. Figure 6.29 shows the simulation result when
second march element is applied. As it can be seen, the r1 operation ap-
plied to the cell labeled as C4.R1 fails. Then the third march element ⇑y

(r1, w0, w0, r0, w0, w0, r0, w1, w1, r1, w1, w1, r1, w1, w0, w1, w0) is applied in up ad-
dressing and finally every cell is read by the fourth march element 	y (r0).

The fault detecting read operation of the fourth march element is marked in bold.
March element 2: ⇓y (r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0, w0, w1, w0, w1)

All the applied tests fail generating a diagnostic signature “1 1”.

Table 6.8 shows comparison of the obtained signature with level 2 diagnostic dic-
tionary (see Table 5.12). On comparing the obtained signature with the diagnostic
dictionary, the fault can be classified as single-cell fault in the memory cell array. Also,
the fault location is known to be at C4.R1 as the first failing address is same (C4.R1)
for both the tests. The injected defect causes a dynamic deceptive read destructive fault

118 CHAPTER 6. CASE STUDIES

v(t4)

Figure 6.29: HSpice simulation: March MD22

in a single cell located at C4.R1; thus the correct fault type is indicated by the diagnosis
process.

Table 6.8: Level 2: Fault in the memory cell array identified as single-cell fault

Faulty Block Signature March MD21 March MD22

Memory cell Dictionary 1 1
array signature

Observed 1 1
signature

6.3.2 Diagnosing Faults in Address Decoder

An inter-gate resistive defect has been injected in the row decoder that causes activation
delay fault in WL1 (corresponding to row 1). The defect is injected at the input of the
NAND gate controlling WL1; as shown in Figure 6.30. The resistance of the defect is
taken to be in medium range to make sure that it causes a delay fault.

The diagnosis procedure consists of two levels of hierarchy. In the first level, the
faulty memory block will be identified, and in the second level, the fault primitive and
its location will be pinpointed. The two levels are discussed next.

The procedure consists of the following:

6.3. DYNAMIC HIERARCHICAL ANALYSIS 119

AD1 AD2

WL1

WL3

WL2

WL4

Resistive defect

Figure 6.30: Resistive defect causing dynamic fault in the address decoder

• Apply March MD2y

• Apply March RAWAW-H1mx separately on each column of the memory cell array

• Apply March RAWAW-H1my separately on each row of the memory cell array

The simulation results of the application of the above tests are presented in Figure
6.31 and Figure 6.32.

March MD2y: As can be seen from Table 5.11, the pass/fail status of March MD2y
is irrelevant for diagnosing a fault in the address decoder. Hence, the simulation result
for application of March MD2y is not presented here.

March RAWAW-H1mx: The simulation result of this test is shown in Figure 6.31.
Here, the bottom graph gives the voltage of the faulty word line (denoted as V (wl1)).

March RAWAW-H1mx is applied for each column of the memory. The address
transitions for H1 addressing have been explained above. Considering the applica-
tion of test for column 1 of the memory, the top graph in Figure 6.31 shows the
V (sout) and V (soutcmp) signal of the cell read operations for the first column of
the memory. As can be seen from the graph, r1 operation in fourth march element
	H1
x (w1g , w0f , r1g, r0f , w1f) fails when applied to the cell labeled as C1.R1

In a similar way, March RAWAW-H1mx is applied for column 2, 3 and 4 of the memory.
The simulation results can be seen in second, third and fourth graph of Figure 6.31.

120 CHAPTER 6. CASE STUDIES

Column 1

Column 2

Column 3

Column 4

v(wl1)

Figure 6.31: HSpice simulation: March RAWAW-H1mx applied for each row of the memory cell
array

Fail can be observed at cells labeled as C2.R1, C3.R1 and C4.R1. It is to be noted from
the bottom graph, that activation delay fault is present in WL1 due to the injected
defect. In conclusion, March RAWAW-H1mx fails for all the columns of the memory
cell array.

The fault detecting read operation of the fourth march element is marked in bold.
March RAWAW-H1mx: 	H1

x (w1g , w0f , r1g, r0f , w1f)

March RAWAW-H1my : The simulation result of this test is shown in Figure 6.32.

March RAWAW-H1my is applied for each row of the memory. The address transitions
for H1 addressing have been explained above. Considering the application of test for
row 1 of the memory, the top graph in Figure 6.32 shows the V (sout) and V (soutcmp)
signal of the cell read operations for the first row of the memory. As can be seen in
the figure, all the read operations pass correctly.

In a similar way, March RAWAW-H1my is applied for row 2, 3 and 4 of the memory.
The simulation results can be seen in second, third and fourth graph of Figure 6.32.
As can be seen, all the read operations pass correctly and no failure is detected.

It is to be observed from provided simulation waveforms that activation delay fault
is present in WL1 due to the injected defect. The pass/fail status of March MD2y is
irrelevant here, and March RAWAW-H1mx fails for all the columns.

Table 6.9 shows comparison of the obtained signature with level 1 diagnostic dic-
tionary (see Table 5.11). On comparing the obtained signature with the diagnostic

6.3. DYNAMIC HIERARCHICAL ANALYSIS 121

printed Tue Jun 7 2011 16:48:03 by vjain on ce-ws002 Synopsys, Inc. (c) 2000-2008

Rows

0

0

10n

10n

20n

20n

30n

30n

40n

40n

50n

50n

60n

60n

70n

70n

sec (lin)

0
0.2
0.4
0.6
0.8

1
1.2

vo
lt

(li
n)

0
0.2
0.4
0.6
0.8

1
1.2

vo
lt

(li
n)

0
0.2
0.4
0.6
0.8

1
1.2

vo
lt

(li
n)

0
0.2
0.4
0.6
0.8

1
1.2

vo
lt

(li
n)

0
0.2
0.4
0.6
0.8

1
1.2

vo
lt

(li
n)

Row 1

Row 2

Row 3

Row 4

v(wl1)

Figure 6.32: HSpice simulation: March RAWAW-H1my applied for each row of the memory cell
array

Table 6.9: Level 1: Address decoder identified as the faulty block

Faulty Block Signature March MD2y March RAWAW March RAWAW March RAWAW
(AND) -H1mx(AND) -H1mx(OR) -H1my(AND)

Address Dictionary - 1 1 0
decoder signature - 0 0 1

Observed 1 1 1 0
signature

dictionary, the fault can be classified as a address decoder fault. This was indeed the
memory block where the defect was injected; thus the correct faulty block is indicated
by the diagnosis process.

Diagnosis Level 2

At level 1, the faulty block has been identified as the address decoder. At level 2, the
fault type will be identified. As explained in Section 5.5.3, when the address decoder is
faulty, we do not need to apply any new diagnostic tests at level 2. Further classification
can be made on the basis of pass/fail status of tests applied at level 1. This will be done
using the results of:

• March RAWAW-H1mx

• March RAWAW-H1my

122 CHAPTER 6. CASE STUDIES

Table 6.10: Level 2: Fault in the address decoder identified as the row decoder fault

Fault Signature March RAWAW-H1mx March RAWAW-H1my

(AND) (AND)

Row decoder Dictionary 1 0
signature

Observed 1 0
signature

Vdd

Gnd

Datain Dataincmp

NMOS

PMOS

Rdef

wmux

Datain

BLcmpBL

WE

Cdenable

NMOS

NMOSNMOS

NMOS

Gnd Gnd

Gnd

Figure 6.33: Resistive defect causing dynamic fault in the peripheral circuitry

The simulation results of the above tests are presented in Figure 6.31 and Figure
6.32. The results have already been explained above during the discussion of diagnosis
level 1.

Table 6.10 shows comparison of the obtained signature with level 2 diagnostic dic-
tionary (see Table 5.13). On comparing the obtained signature with the diagnostic
dictionary, the fault can be classified as row decoder fault. The injected defect causes
an activation delay fault in the row decoder; thus the correct fault type is indicated by
the diagnosis process.

6.3.3 Diagnosing Faults in Peripheral Circuitry

A resistive defect has been injected the write driver for column 2 causing a slow write
driver fault. The defect is injected at the input of the inverter used for complementing
data-in value; as shown in Figure 6.33. The resistance of the defect is taken to be in
medium range to make sure that it slows down the peripheral circuitry.

The diagnosis procedure consists of two levels of hierarchy. In the first level, the
faulty memory block will be identified, and in the second level, the fault primitive and

6.3. DYNAMIC HIERARCHICAL ANALYSIS 123

its location will be pinpointed. The two levels are discussed next.

The procedure consists of the following:

• Apply March MD2y

• Apply March RAWAW-H1mx separately on each column of the memory cell array

• Apply March RAWAW-H1my separately on each row of the memory cell array

The simulation results of the application of the above tests are presented in Figure
6.34 and Figure 6.35.

March MD2y: As can be seen from Table 5.11, the pass/fail status of March MD2y
is irrelevant for diagnosing a fault in the peripheral circuitry. Hence, the simulation
result for application of March MD2y is not presented here.

March RAWAW-H1mx: The simulation result of this test is shown in Figure 6.34.
Here, the bottom graph gives the true node voltage of tow of the memory cells con-
nected to faulty write driver (denoted as V (t2) and V (t6)).

March RAWAW-H1mx is applied for each column of the memory. The address tran-
sitions for H1 addressing have been explained above. Considering the application of
test for column 1 of the memory, the top graph in Figure 6.34 shows the V (sout) and
V (soutcmp) signal of the cell read operations for the first column of the memory. As
can be seen in the figure, all the read operations pass correctly.

In a similar way, March RAWAW-H1mx is applied for column 2, 3 and 4 of the memory.
The simulation results can be seen in second, third and fourth graph of Figure 6.34.
As can be seen, fail can be observed at all the cells of column 2. All the read operations
for column 3 and 4 pass correctly. It is to be noted from the bottom graph, that the
second march element fails to write 0 in the cells connected to the faulty write driver
i.e., the memory cells of column 2. In conclusion, March RAWAW-H1mx fails only for
column 2.

The fault detecting read operation of the fourth march element is marked in bold.
March RAWAW-H1mx: 	H1

x (w1g , w0f , r1g, r0f , w1f)

March RAWAW-H1my : The simulation result of this test is shown in Figure 6.35.

March RAWAW-H1my is applied for each row of the memory. The address transitions
for H1 addressing have been explained above. Considering the application of test for
row 1 of the memory, the top graph in Figure 6.35 shows the V (sout) and V (soutcmp)
signal of the cell read operations for the first row of the memory. As can be seen in
the figure, all the read operations pass correctly.

In a similar way, March RAWAW-H1my is applied for row 2, 3 and 4 of the memory.
The simulation results can be seen in second, third and fourth graph of Figure 6.35.
As can be seen, all the read operations pass correctly and no failure is detected.

124 CHAPTER 6. CASE STUDIES

Column 1

Column 2

Column 3

Column 4

Figure 6.34: HSpice simulation: March RAWAW-H1mx applied for each row of the memory cell
array

Row 1

Row 2

Row 3

Row 4

Figure 6.35: HSpice simulation: March RAWAW-H1my applied for each row of the memory cell
array

6.3. DYNAMIC HIERARCHICAL ANALYSIS 125

It is to be observed from provided simulation waveforms that slow write driver fault
occurs in column 2 of the memory. When the diagnostic test is applied in fast-row
direction, the faulty write driver (for column 2) is able to write 0 only in the first cell
and all other write 0 operations fail. The pass/fail status of March MD2y is irrelevant
here, and March RAWAW-H1mx fails for column 2.

Table 6.11 shows comparison of the obtained signature with level 1 diagnostic dic-
tionary (see Table 5.11). On comparing the obtained signature with the diagnostic
dictionary, the fault can be classified as a peripheral circuitry fault. This was indeed the
memory block where the defect was injected; thus the correct faulty block is indicated
by the diagnosis process.

Table 6.11: Level 1: Peripheral circuitry cell array identified as the faulty block

Faulty Block Signature March MD2y March RAWAW March RAWAW March RAWAW
(AND) -H1mx(AND) -H1mx(OR) -H1my(AND)

Memory cell Dictionary - 0 1 0
array signature

Observed 1 0 1 0
signature

Diagnosis Level 2

At level 1, the faulty block has been identified as the peripheral circuitry. At level 2,
the fault type will be identified. When the peripheral circuitry, we need to apply new
diagnostic tests at level 2. The TPs developed in Section 5.5.3 will be applied. They
consist of:

• March WDmm: { 	x (wD), 	x (rD,wD), 	x (wD̄), 	x (rD̄, wD̄)
Here D represents checkerboard or row stripe data background (See Section 5.2).

• March BLI: { 	x (wD), 	x (wD̄, rD̄, wD), 	x (wD̄), 	x (wD, rD,wD̄)
Here D represents solid or column stripe data background (See Section 5.2).

The procedure consists of the following:

• Apply March WDmm

• Apply March BLI

The simulation results of the application of the above tests are presented in Figure
6.36 and Figure 6.37.

March WDmm: The simulation result of this test is shown in Figure 6.36. Here,
the bottom graph gives the true node voltage of tow of the memory cells connected to
faulty write driver (denoted as V (t2) and V (t6)).

126 CHAPTER 6. CASE STUDIES

Figure 6.36: HSpice simulation: March WDmm

It is to be noted, that all the march elements can be applied using either up addressing
or down addressing; for simulation we are using up addressing with fast-row address
direction. First, all the 16 cells are written to row stripe data background by the first
march element 	x (wD). Second, each cell is read and again written (to the initial data
background) by the second march element 	x (rD,wD). As can be seen in the figure,
all the read operations pass correctly. Third, each cell is written (to complementary
of initial data background) by the third march element 	x (wD̄). Then each cell is
read and written (to complementary of initial data background) by the fourth march
element 	x (wD, rD,wD̄). As the figure shows, the rD̄ operation applied to the cells
of column 2 fails. In conclusion, March WDmm fails for all memory cells of column 2.

The fault detecting read operation is marked in bold.
March WDmm: { 	x (wD), 	x (rD,wD), 	x (wD̄), 	x (rD̄, wD̄)

March BLI: The simulation result of this test is shown in Figure 6.37.

It is to be noted, that all the march elements can be applied using either up addressing
or down addressing; for simulation we are using up addressing with fast-row address
direction. First, all the 16 cells are written to solid data background (all cells ini-
tialized to 0) by the first march element 	x (wD). Second, each cell is written (to
complementary of initial data background), then read and again written (to initial
data background) by the second march element 	x (wD̄, rD̄, wD). As can be seen in
the figure, all the read operations pass correctly. Third, each cell is written (to comple-
mentary of initial data background) by the third march element 	x (wD̄). Then, each
cell is written (to initial data background), then read and again written (to comple-

6.3. DYNAMIC HIERARCHICAL ANALYSIS 127

Figure 6.37: HSpice simulation: March BLI

mentary of initial data background) by the forth march element 	x (wD, rD,wD̄). As
the figure shows, the rD operation applied to the cells of column 2 fails. In conclusion,
March BLI fails for all the memory cells of column 2.

The fault detecting read operation is marked in bold.
March BLI: { 	x (wD), 	x (wD̄, rD̄, wD), 	x (wD̄), 	x (wD, rD, wD̄)

It is to be observed from provided simulation waveforms that slow write driver fault
occurs in column 2 of the memory. As can be seen, only the first write 0 operation of
the faulty write driver succeeds and rest all write 0 operations fail. All the applied tests
fail generating a diagnostic signature “1 1”.

Table 6.12 shows comparison of the obtained signature with level 2 diagnostic dictio-
nary (Table 5.14). On comparing the obtained signature with the diagnostic dictionary,
the fault can be classified as write driver fault. The injected defect causes a slow write
driver fault; thus the correct fault type is indicated by the diagnosis process.

Table 6.12: Level 2: Fault in the peripheral circuitry identified as write path fault

Faulty Block Signature March WDmm March BLI

Memory cell Dictionary 1 1
array signature

Observed 1 1
signature

128 CHAPTER 6. CASE STUDIES

6.4 Summary

This chapter provided simulation results for the validation of theory presented in Chapter
5. Defects were injected in various memory blocks of the SRAM memory model and the
HMD approach was applied for the diagnosis. Simulation results were presented for
analysis of static faults and dynamic faults in the memory. The injected fault was
diagnosed and correct fault type/class was determined, thus establishing the usefulness
of HMD.

Conclusions and Future Work 7
This chapter concludes the thesis and gives some recommendations for future research
work. This chapter is organized as follows. Section 8.1 gives conclusions of the work
presented in previous chapters. Section 8.2 gives an insight into future research direc-
tions.

7.1 Conclusions

This thesis started with a discussion about the importance of semiconductor memory
testing and diagnosis. An overview of the memory architecture is provided with focus on
explaining the functional and electrical properties of the single-port memory. Thereafter,
the reduced functional model of the SRAM is discussed; it consists of 3 major subsystems:
(1) Memory Cell Array, (2) Peripheral Circuitry, and (3) Address Decoder is described.
The functional behavior of the memory has been explained using block diagrams while
the electrical model is described in terms of transistors.

In this thesis, single-port static and single-port two-operation dynamic faults in the
memory have been considered. The concept of Fault Primitives and Functional Fault
Models is presented. Furthermore, the established fault models used for SRAM have
been thoroughly described. Memory faults have been divided into memory cell array
faults, address decoder faults and peripheral circuitry faults.

An overview of the available memory fault diagnosis algorithms is provided and short-
comings of the prevalent approaches is discussed. Thereafter, the need for a new diagnosis
solution is established and a new approach called Hierarchical Memory Diagnosis (HMD)
is proposed.

The concept behind the HMD approach is to diagnose memory faults in a hierarchical
order. HMD narrows down the faulty area from the beginning and diagnostic tests are
applied accordingly. This helps in putting the effort into fault diagnosis in a well-directed
way. The proposed approach is able to locate the fault in any part of the memory system.
Diagnosing the faults in all parts of the memory system will speed up the yield learning
curve. The strength of the HMD lies in the fact that, unlike traditional approaches, it
has no specific implementation requirements other than running a test and determining
the pass/fail status of the test. The only other information required is the first failing
address for the applied diagnostic test. The approach is based on the concept of Test
Classes and Test Primitives, combined with Design for Diagnosis (DfD). A number of
selected/developed diagnostic test algorithms are demonstrated to diagnose static and
dynamic faults occurring in all parts of the memory system. Detailed discussion about
the diagnosis of static and dynamic faults in the memory is presented. The outcome of
the diagnosis includes details about the faulty block of the memory and further down
the hierarchy, more details like fault location and fault type are made available.

129

130 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

A complete theoretical explanation of the approach is provided for static and dynamic
faults in the memory. The approach has been validated using SPICE simulations. Defects
are inserted into the memory model and simulation results are presented for analysis of
static and dynamic faults.

The main contributions of the work can be summarized as follows:

• A new diagnosis approach is proposed to realize memory fault diagnosis in an
hierarchical fashion: Hierarchical Memory Diagnosis.

• The approach targets static and dynamic faults in all memory blocks: the memory
cell array, the address decoder and the peripheral circuitry.

• The approach can successfully locate the faulty block and identify the fault type.

• The approach uses the idea of Test Classes and Test Primitives as foundation; this
makes the approach platform independent.

• The efficiency and superiority of the approach is demonstrated using defect injec-
tion and SPICE simulations.

7.2 Future Work

In this thesis, the focus has been on introducing a new approach for diagnosing static
and dynamic faults in the memory. A number of optimizations can be performed and
new ideas can be explored. Some recommendations for future work are given below:

• Exploring different stress combination: First failing address and different
addressing orders have been used for diagnosis in this work. It is suggested to
explore other parameters (for e.g., data backgrounds, counting methods, etc.) as
well.

• Indus trail application of proposed approach: Industrial application and
analysis of the HMD approach can give further insight into efficiency and the
required changes/possible optimizations.

• Extending the diagnosis scope: With the proposed approach, more TCs and
TPs can be added to include support for new emerging fault mechanisms. The
work can also be extended to go further down the hierarchy to precisely pin-point
the defect location.

• Optimization of diagnostic tests: For the diagnosis purpose, minimum length
tests have been used wherever possible but further effort can be put into optimizing
the complexity of presented diagnostic tests, especially for dynamic hierarchical
analysis.

• Optimization of DfD hardware: Diagnosis hardware can careful designed to
reduce the area overhead and nullify the effect of DfD on the delay of the memory
system. This can be done efficiently if internal structure of the memory is known.

7.2. FUTURE WORK 131

• Diagnosis of weak faults: The proposed approach can be extended to perform
the diagnosis of weak faults. A weak fault can be defined as small disturbance that
does not produce an error but additive combinations of two or more weak faults
can produce an error. The concept of weak faults is new and no specific tests are
available for the detection and diagnosis of weak faults. Future research can be
conducted in the area of weak faults by developing new tests for fault detection,
and combining them with the proposed approach for diagnosis purposes.

132 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] M. S. Abadir and J. K. Reghbati, Functional Testing of Semiconductor Random
Access Memories, ACM Computing Surveys 15 (1983), 175–198.

[2] Z. Al-Ars and S. Hamdioui, Fault Diagnosis using Test Primitives in Random Access
Memories, Asian Test Symposium, 2009, pp. 403–408.

[3] Z. Al-Ars and A. J. van de Goor, Approximating infnite dynamic behavior for DRAM
cell defects, Proceedings of 20th IEEE VLSI Test Symposium, 2002, pp. 401–406.

[4] S. M. Al-Harbi, F. Noor, and F. M. Al-Turjman, March DSS: A new diagnostic
march test for all memory simple static faults, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 26 (2007), no. 9, 1713–1720.

[5] A. Allan, D. Edenfeld, Jr. W. H. Joyner, A. B. Kahng, M. Rodgers, and Y. Zorian,
2001 technology roadmap for semiconductors, Computer 35 (2002), 42–53.

[6] B. Becker, S. Hellebrand, I. Polian, B. Straube, W. Vermeiren, and H. J. Wunderlich,
Massive statistical process variations: A grand challenge for testing nanoelectronic
circuits, International Conference on Dependable Systems and Networks Workshops,
2010, pp. 95–100.

[7] A. Benso, S. D. Carlo, G. D. Natale, , and P. Prinetto, Specification and design of a
new memory fault simulator, Proceedings of the 11th Asian Test Symposium, 2002,
pp. 92–97.

[8] T. J. Bergfeld, D. Niggemeyer, and E. M. Rudnick, Diagnostic testing of embed-
ded memories using BIST, Proceedings of Design, Automation and Test in Europe
Conference and Exhibition, 2000, pp. 305–309.

[9] A. Bhavnagarwala, S. Borkar, T. Sakurai, and S. Narendra, The semiconductor in-
dustry in 2025, IEEE international Solid-State Circuits Conference Digest of Tech-
nical Papers, 2010, pp. 534–535.

[10] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing, Kluwer Aca-
demic Publishers, 2000.

[11] P. Y. Chee, P.C. Liu, and L. Siek, High-speed Hybrid Current-Mode Sense-Amplifier
for CMOS SRAM’s, Electronics Letters 28 (1992), no. 9, 871–873.

[12] R. David and A. Fuentes, Fault Diagnosis of RAMs from Random Testing Experi-
ments, IEEE Transactions on Computers 39 (1990), no. 2, 220–229.

[13] R. Dekker, F. Beenker, and L. Thijssen, A realistic fault model and test algorithms
for static random access memories, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 9 (1990), no. 6, 567–572.

133

134 BIBLIOGRAPHY

[14] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri, and M. Hage-Hassan,
Efficient March Test Procedure for Dynamic Read Destructive Fault Detection in
SRAM Memories, Journal of Electronic Testing 21 (2005), 551–561.

[15] G.Harutunyan, V.A.Vardanian, and Y.Zorian, Minimal March Tests for Dynamic
Faults in Random Access Memories, Eleventh IEEE European Test Symposium,
2006, pp. 43–48.

[16] S. Hamdioui, Fault Models and Tests for Multi-port Memories, Master’s thesis, Delft
University of Technology, 1997.

[17] , Testing Multi-Port Memories : Theory and Practice, Ph.D. thesis, Delft
University of Technology, 2001.

[18] , Efficient tests and DFT for RAM address decoder delay faults, 3rd Inter-
national Design and Test Workshop, 2008, pp. 225–230.

[19] , Testing Embedded Memories in the Nano-Era: Will the Existing Approaches
Survive?, Proceedings of the 2009 Asian Test Symposium, 2009, p. 339.

[20] , Trends in Testing Embedded Memories in the nano-Era, Presentation, 2011.

[21] S. Hamdioui and Z. Al-Ars, Scan More with Memory Scan Test, 4th International
Conference on Design and Technology of Integrated Systems in Nanoscal Era, 2009,
pp. 204–209.

[22] S. Hamdioui, Z. Al-Ars, and A. J. Van De Goor, Opens and Delay Faults in CMOS
RAM Address Decoders, IEEE Transactions on Computers 55 (2006), 1630–1639.

[23] S. Hamdioui, Z. Al-Ars, J. Jimenez, and J. Calero, PPM Reduction on Embedded
Memories in System on Chip, IEEE proceedings of European Test Symposium,
2007, pp. 85–90.

[24] S. Hamdioui, G. N. Gaydadjiev, and A. J. van de Goor, A Fault Primitive Based
Analysis of Dynamic Memory Faults, 2003.

[25] S. Hamdioui, V. Krishnaswami, S. Irobi, and Z. Al-Ars, A New Test Paradigm for
Semiconductor Memories in the Nano-Era, Submitted to Asian test Symposium,
2011.

[26] S. Hamdioui, A. J. van de Goor, and M. Rodgers, March SS : A test for All Static
Simple RAM Faults, Proceedings of the 2002 IEEE International Workshop on Mem-
ory Technology, Design and Testing, 2002, pp. 95–100.

[27] G. Harutunyan, V. A. Vardanian, and Y. Zorian, Minimal March Tests for Un-
linked Static Faults in Random Access Memories, Proceedings of the 23rd IEEE
Symposium on VLSI Test, 2005, pp. 53–59.

[28] , An Efficient March-Based Three-Phase Fault Location and Full Diagnosis
Algorithm for Realistic Two-Operation Dynamic Faults in Random Access Memo-
ries, 26th IEEE VLSI Test Symposium, 2008, pp. 95–100.

BIBLIOGRAPHY 135

[29] M. Klaus and A. J. van de Goor, Tests for resistive and capacitive defects in address
decoders, Proceedings of 10th Asian Test Symposium, 2001, pp. 31–36.

[30] V. Krishnaswami, A New Test Paradigm for Semiconductor Memories in the Nano-
Era, Master’s thesis, Delft University of Technology, 2011.

[31] H. Kukner, Generic and Orthogonal March Element based Memory BIST Engine,
Master’s thesis, Delft University of Technology, 2010.

[32] C. Li, Testing of Deep-Submicron Embedded Memories in FPGAs, Master’s thesis,
Delft University of Technology, 2008.

[33] J. Li, K. Cheng, C. Huang, and C. Wu, March-based RAM diagnosis algorithms for
stuck-at and coupling faults, Proceedings of International Test Conference, 2001,
pp. 758–767.

[34] M. Marinescu, Simple and Efficient Algorithms for Functional RAM Testing, IEEE
Test Conference, 1982, pp. 236–239.

[35] W. H. McAnney, P. H. Bardell, and V. P. Gupta, Random testing for stuck-at storage
cells in an embedded memory, Proceedings of the 1984 international test conference
on The three faces of test: design, characterization, production, 1984, pp. 157–166.

[36] O. Mende, Halbleiter Bauelemente in der Automobil Elektronik, Presentation, 2008.

[37] O. Minato, T. Masuhara, T. Sasaki, Y. Saka, T. Hayashida, K. Nagasawa,
K. Nishimura, and T. Yasui, A Hi-CMOSII 8K8 bit static RAM, IEEE Journal
of Solid-State Circuits 16 (1982), no. 5, 793–798.

[38] G. E. Moore, Cramming more components onto integrated circuits, Readings in
computer architecture, Morgan Kaufmann Publishers Inc., 2000, pp. 56–59.

[39] N. Mukherjee, A. Pogiel, J. Rajski, and J. Tyszer, High Volume Diagnosis in Mem-
ory BIST Based on Compressed Failure Data, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 29 (2010), no. 3, 441–453.

[40] R. Nair, Comments on “An Optimal Algorithm for Testing Stuck-at Faults in Ran-
dom Access Memories”, IEEE Transactions onComputers C-28 (1979), no. 3, 258–
261.

[41] A. Ney, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, and A. Virazel, A sig-
nature based approach for diagnosis of dynamic faults in SRAMs, 3rd International
Conference on Design and Technology of Integrated Systems in Nanoscale Era, 2008,
pp. 1–6.

[42] A. Ney, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, and
M. Bastian, A History-Based Diagnosis Technique for Static and Dynamic Faults
in SRAMs, IEEE International Test Conference, 2008, pp. 1–10.

136 BIBLIOGRAPHY

[43] A. Ney, P. Girard, S. Pravossoudovitch, A. Virazel, M. Bastian, and V. Gouin, A
Design-for-Diagnosis Technique for SRAM Write Drivers, Design, Automation and
Test in Europe, 2008, pp. 1480–1485.

[44] , An SRAM Design-for-Diagnosis Solution Based on Write Driver Voltage
Sensing, Proceedings of the 26th IEEE VLSI Test Symposium, 2008, pp. 89–94.

[45] D. Niggemeyer and E. Rudnick, Automatic Generation of Diagnostic March Tests,
Proceedings on 19th IEEE VLSI Test Symposium, 2001, pp. 299–304.

[46] A. Offerman, Automatic Memory Test Verification and Generation, Master’s thesis,
Delft University of Technology, 1995.

[47] T. Powell, A. Kumar, J. Rayhawk, and N. Mukherjee, Chasing subtle embed-
ded RAM defects for nanometer technologies, International Test Conference, 2005,
pp. 842–850.

[48] B. Prince, Semiconductor Memories: A Handbook Of Design Manufacture And Ap-
plication, Johan Wiley and Sons Ltd. England, 1991.

[49] W. C. Rhines, Keynote speech at IEEE Workshop on Design and Test, 2007.

[50] K. Sasaki, S. Hanamura, K. Ueda, T. Oono, O. Minato, Y. Sakai, S. Meguro,
M. Tsunematsu, T. Masuhara, M. Kubotera, and H. Toyoshima, A 15-ns 1-Mbit
CMOS SRAM, IEEE Journal of Solid-State Circuits, 1988, pp. 1067–1072.

[51] J. Savir, W. H. McAnney, and S.R. Vecchio, Testing for coupled cells in random-
access memories, IEEE Transactions on Computers, 2011, pp. 1177–1180.

[52] J. Segal and R. Segers, Test as a key enabler for faster yield ramp-up, Proceedings
of 20th IEEE VLSI Test Symposium, 2002, p. 177.

[53] A. J. van de Goor, Using march tests to test SRAMs, Design and Test of Computers,
IEEE 10 (1993), no. 1, 8–14.

[54] , Testing Semiconductor Memories : Theory and Practice, ComTex Publish-
ing, 1998.

[55] A. J. van de Goor and Z. Al-Ars, Functional Fault Models: A Formal Notation and
Taxonomy, Proceedings of 18th IEEE VLSI Test Symposium, 2000, pp. 281–289.

[56] A. J. van de Goor, S. Hamdioui, and R. Wadsworth, Detecting faults in the periph-
eral circuits and an evaluation of SRAM tests, Proceedings of International Test
Conference, 2004, pp. 114–123.

[57] V. Vardanian and Y. Zorian, A march-based fault location algorithm for static ran-
dom access memories, Proceedings of the Eighth IEEE International On-Line Test-
ing Workshop, 2002, pp. 256–261.

[58] V. Yarmolik, Y. Klimets, A. J. van de Goor, and S. Demidenko, RAM Diagnostic
Tests, Records of the 1996 IEEE International Workshop on Memory Technology,
Design and Testing, 1996, pp. 100–102.

