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ABSTRACT
Conventional reflection waveform inversion solves a two-parameter seismic inverse problem alternately for subsurface reflectivity
and acoustic background velocity as the model parameters. It seeks to reconstruct a low-wavenumber velocity model of the
subsurface from pure reflection data cyclically, through alternating migration and tomography loops, such that the remodelled
data fits the observed data. Low-resolution seismic images with unpreserved amplitudes, full-wave inconsistency in the short-
offset data and cycle skipping in the long-offset are perceived as the main reasons for suboptimal tomographic updates and
slow convergence in conventional reflection waveform inversion. In the context of one-way reflection waveform inversion, this
paper addresses the listed limitations through four main components. First, it augments one-way reflection waveform inversion
with a computationally affordable preconditioned least-squares wave equation migration algorithm to ensure high-resolution
reflectors with preserved amplitudes. Second, the paper verifies how well the full-wave consistency condition in the short-offset
data is satisfied in one-way reflection waveform inversion and suggests muting inconsistent short-offset residual waveforms in
the tomography loop to attenuate their adverse imprint. Third, the paper suggests extending the migration offset beyond short
offsets to improve both the illumination and the signal-to-noise ratio of the reflectors. Fourth, the paper presents a data-selection
algorithm to exclude the damaging effect of the cycle-skipped long-offset data in the tomography loop. The effectiveness of the
proposed one-way reflection waveform inversion algorithm is finally validated through three numerical examples, demonstrating
its capability to recover high-fidelity tomograms.

1 Introduction

Since the early 1980s, multiple efforts have been made by
geoscientists to recover high-resolution subsurface models (e.g.,
velocity, density) by explaining observed seismic waveforms. In
a big step forward, Tarantola (1984) introduced full waveform
inversion (FWI) in the acoustic approximation. Conventional
FWI solves a minimization problem by defining an L2-normmis-
fit function that measures the difference between the modelled
and observed seismic waveforms to reconstruct high-resolution

subsurface models. While conventional FWI has shown great
success in reconstructing high-fidelity shallow subsurfacemodels
described by the field data (e.g., Vigh et al. 2011; Liu et al.
2012; Plessix et al. 2013), it has been shown incapable of retriev-
ing deep subsurface targets, where refracted and diving waves
do not reach due to the limited offset range in the acquired
data (e.g., Irabor and Warner 2016; Vigh et al. 2016; Jones
2019; Brittan and Jones 2019). Given the technical barriers of
acquiring ultra-long-offset seismic data, the expenses of modern
seismic data acquisition equipment for acquiring long offsets,
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physical obstacles in acquisition areas, and short-offset legacy
data, conventional FWI cannot always provide the optimum out-
come.

While observed refracted and diving waves suffer from limited
penetration depth for a given offset, the reflected waves can
penetrate deeper. To benefit from pure reflection data and
illuminate deep targets, Mora (1989) elaborated on the signifi-
cance of scale separation, separating the retrieval of high local
model wavenumbers (migration process, also called imaging)
from the retrieval of low local model wavenumbers (tomography
process). After Mora (1989), multiple variations of migration-
based velocity analysis (MVA) relying on model-scale separation
have been developed. Notably, among these variants, those
incorporating wave equation forward modelling have emerged
as significant due to their enhanced handling of wave propa-
gation in complex geological environments. Specifically, wave
equation MVA (WEMVA) algorithms, as introduced by Sava and
Biondi (2004), typically aim to optimize an image-domain error
function computed from common image gathers (CIGs). This
optimization is achieved using either the classical semblance or a
differential semblance (DS) function,which evaluates the flatness
or coherency of the CIGs (Chauris and Noble 2001; Shen et al.
2003). WEMVA can also be expressed within the extended-image
framework, as described by Shen (2005). Shen and Symes (2008)
demonstrated the use of the DS function in conjunction with
subsurface-offset CIGs. This approach has been widely studied,
and various challenges have been identified and partly addressed
– such as the imprint of small-scale heterogeneities on the
macromodel update, the need for efficient quantitative migration
methods and the limitations arising from incorrect physics,
for instance, the constant-density acoustic approximation (see
Chauris and Farshad 2023 for a review). Later, Symes (2008)
developed a joint framework that combines WEMVA and FWI,
known as tomographic full-waveform inversion (TFWI). TFWI
has since been further explored by Almomin and Biondi (2012)
and D. Sun and Symes (2013), with some practical success,
albeit at high computational cost due to the extended-domain
imaging condition and the large number of Green’s functions
involved.

In the meantime and with the same understanding as WEMVA,
several reflection waveform inversion (RWI) techniques also
originated by combining wave equation migration and FWI into
a single framework (e.g., Xu, Wang, Chen, Lambaré, et al. 2012;
H. Zhou et al. 2012). RWI, like WEMVA, relies on the idea
of model-scale separation; however, such a separation between
the migration and tomography sensitivity kernels in waveform
inversion has always been challenging. So far, there are three
main alternatives to address the challenge: (a) scattering-angle
filtering (e.g., Alkhalifah 2014; Xie 2015; Kazei et al. 2016; Wu and
Alkhalifah 2017; Yao et al. 2018; Yao, da Silva, Kazei et al. 2019), (b)
wavefield decomposition (e.g., Liu et al. 2011; F. Wang et al. 2013;
Tang et al. 2013; Irabor andWarner 2016; Chi et al. 2017; Lian et al.
2018), and (c) Born modelling (e.g., Xu, Wang, Chen, Lambaré,
et al. 2012; Xu, Wang, Chen, Zhang, et al. 2012; H. Zhou et al.
2012; D. Sun et al. 2016; Vigh et al. 2016; P. Wang et al. 2018). To
improve the RWI gradient, some studies examinedmerging early-
arrival waveform inversion and RWI (W. Zhou et al. 2015; Z. Wu
and Alkhalifah 2015).

Berkhout (2012; 2014b) introduced an algorithm for reflection
waveform inversion – based on wavefield decomposition into
upgoing and downgoing waves – and named it joint migration
inversion (JMI). Wavefield decomposition in JMI relies on a
one-way acoustic wavefield extrapolation scheme known as full
wavefield modelling (FWMod) (Berkhout 2014a), which includes
both primaries and controlled-order multiples (Verschuur et al.
2016). Angle-independent FWMod is set up on two classes of
parameters: acoustic background velocity and angle-independent
reflectivity. Due to the adequate parameterization in FWMod,
the tomographic and imaging sensitivity kernels in JMI appear
independent. Recently, Lu et al. (2018), Dong et al. (2018),
Romahn et al. (2021), Hassine et al. (2022) and Soubaras et al.
(2023) have also utilized the one-way acoustic wave equation for
the purpose of wave equation migration and reflection waveform
inversion. Constraining FWMod to single-scattered waveforms-
primary wavefield modelling, in short PWMod – we use the
same notion as JMI for reflection waveform inversion here and
refer to it as one-way reflection waveform inversion (ORWI). As
an inverse problem, ORWI alternately solves a two-parameter
minimization problem with a misfit function that measures the
reflection data (primaries) error in the least-squares sense. Both
classes of parameters in ORWI – background velocity and angle-
independent reflectivity – are reconstructed in a cyclic process,
including least-squares migration and reflection tomography
loops (Algorithm 1). Based on a zero initial reflectivity model,
a smooth initial background velocity model, and full-offset
reflection data in both migration and tomography loops, the flow
begins with themigration loop and proceeds to alternate between
the loops until reaching convergence with accurate solutions for
the background velocity and reflectivity.

Similarly to the process of optimizing a DS function (Chauris
and Farshad 2023), building true amplitude and high-resolution
reflectors can considerably help any RWI technique recover
strong and in-phase tomographicwavepaths in each cycle (Gomes
and Yang 2018; Y. Chen et al. 2020). However, iterative least-
squares migration (LSM) techniques, for example, least-squares
reverse time migration and least-squares one-way wave equa-
tion migration, are often expensive to employ in RWI because
LSM requires iterations to be converged optimally. Although the
number of iterations can be cut down by preconditioning the
gradient direction with the reciprocal of the Hessian information,
the Hessian computation turns prohibitively costly when deal-
ing with large-scale seismic problems (Lines and Treitel 1984).
For cost reduction, Beydoun and Mendes (1989), Chavent and
Plessix (1999), Shin et al. (2001) and Plessix and Mulder (2004)
approximated the diagonal coefficients of the Hessian matrix
rather than full coefficients, and others have tried to approximate
the complete coefficients at an affordable cost in either the
data or image domain. Pratt et al. (1998) calculated the Gauss–
Newton approximation of the Hessian matrix (also known as
the linear or approximate Hessian). Hu et al. (2001), Guitton
(2004) and Yu et al. (2006) approximated the inverse Hessian by
constructing deconvolution filters in the image domain. For a
target-oriented imaging problem, explicit computation of a sparse
Hessian matrix via cross-correlation of the source and receiver
Green’s functions is feasible (Valenciano et al. 2006). Choi et al.
(2008) replaced the Hessian with a scaled pseudo-Hessian. Point
spread functions have also been used to reduce the relevant
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ALGORITHM 1 Cyclic workflow of one-way reflection waveform inversion

cost via computing local Hessian matrices in the image domain
(Lecomte 2008; Fletcher et al. 2016). The truncated-Newton
method is also used to implicitly approximate the application
of the inverse Hessian on the gradient vector (Métivier et al.
2013; Assis and Schleicher 2021; Assis et al. 2024). Recently,
researchers have also proposed explicit inverse formulas for
the one-/two-way modelling operators in the high-frequency
limit, mostly compensating for geometrical spreading. In this
context, Zhang et al. (2007) and Kiyashchenko et al. (2007)
proposed true-amplitude wave equation migration schemes with
one-way forward modelling operators. ten Kroode (2012) derived
an explicit inversion expression for the Kirchhoff modelling
operator, while ten Kroode (2014) and Hou and Symes (2015)
derived similar inversion expressions for the Born modelling
operator, both in the subsurface-extended domain. In a similar
vein to Hou and Symes (2015), Chauris and Cocher (2017) approx-
imated a pseudo-inverse operator for the subsurface-extended
Born modelling operator; Chauris and Cocher (2018) presented
a comparison of the two methods. A pseudo-inverse operator
can also be used as a preconditioner in a gradient-descent
inversion scheme to speed up convergence, as demonstrated by
Hou and Symes (2016) and Qin and Lambaré (2016). In this paper,
to build the approximate Hessian information with affordable
computational cost, we use the efficient preconditioned least-
squares wave equation migration (PLS-WEM) algorithm recently
introduced by Abolhassani and Verschuur (2024). PLS-WEM
constructs the approximate Hessian operator recursively, depth
by depth, thanks to PWMod. It decomposes and reduces the
massive approximate Hessian operator for the entire domain
into sub-operators relevant to each depth level. PLS-WEM can
recover reflectors to be fit for our purpose in one to five iterations
at best.

It is well understood that two-way traveltime varies with both
reflector’s depth and background velocity, a fundamental prob-
lem known as ambiguity in the depth–velocity determination
problems. Froma traveltime perspective, RWI also aims to resolve
this ambiguity and estimate the subsurface model by measuring
how much of the overall traveltime error in the reflection data
is due to errors in depth versus errors in background velocity.
In RWI, the background velocity and reflectivity models are
updated alternately. The reflectivity model is obtained by a depth
migration, which is expected to fit the kinematics of the short-
offset data, while the tomography loop updates the background
velocity model based on this reflectivity model. The alternating
approach of conventional RWI ignores the fact that a change in
the velocity model immediately changes the reflectivity model

– by fixing the reflectors’ positions in depth while updating the
background velocity (Xu, Wang, Chen, Lambaré, et al. 2012; H.
Zhou et al. 2012). This results in depth inconsistency between
the background velocity and reflectivity models, an issue known
as reflectivity–velocity coupling in RWI (Baina and Valensi 2018;
Audebert and Cocher 2020; Valensi and Baina 2021; Provenzano
et al. 2023). To address this, a first approach has been proposed
with pseudo-time domain RWI, where reflectors’ positions are
calculated in vertical time and are less dependent on background
velocity (e.g., Qu et al. 2020; Provenzano et al. 2023), while Valensi
and Baina (2021) proposed to take into account the reflectivity–
velocity coupling in the RWI tomographic gradient. Note also that
the so-called migration-based traveltime tomography (Clément
1991; Chavent et al. 1994) – an idea that somehow inspired the
development of RWI itself – had already solved this issue by
introducing a reflectivity in the data domain rather than in the
image domain. A second issue in RWI is that the reflectivity
model obtained after the depthmigration loopmay not allow for a
perfect match of the amplitude and phase of the short-offset data
in the tomography loop. This is particularly true when non-short-
offset traces are migrated with an erroneous background velocity
model, or even when the background velocity is correct but
the depth migration is not quantitative in amplitude and phase.
This mismatch introduces a full-wave inconsistency between the
modelled and observed data in the tomography loop, particularly
at short offsets, resulting in an adverse imprint on the tomo-
graphic gradient. To address this, several approaches have been
suggested so far. Many have attempted to reduce this effect using
quantitative migration with short-offset data or even near-zero
offset data (W. Zhou et al. 2015; Guo and Alkhalifah 2017; P. Wang
et al. 2018; Li et al. 2019; Yao et al. 2020; Hassine et al. 2022; Robin
et al. 2023). In another interesting approach, Liang et al. (2022)
proposed replacing the conventional image in RWIwith an image
extracted from stacked, flattened common image gathers. This
effect is hereafter referred to as the full-wave inconsistency in the
short-offset data. This paper first investigates how effectively the
full-wave consistency condition holds between the short-offset
modelled and observed data within the context of ORWI. Then,
considering that the negative impact of full-wave inconsistency
is stronger on the contribution of short offsets in background
velocity estimation, we suggest muting short-offset data with
inconsistent waveforms in the residual data domain during the
tomography loop. Relying on this muting approach, this paper
also proposes extending the migration offset beyond near-zero or
short offsets to avoid limitations in the reflectors’ illumination
and amplitudes. This strategy does not match the amplitude
and phase of short-offset data but excludes their contribution
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FIGURE 1 (a) Schematic representation of the 𝑗th row of the downward extrapolation matrix 𝐖+
𝑧𝓁+1;𝑧𝓁

for a virtual layer bounded between two
virtual depth levels. (b) Schematic representation of how the incident wavefields interact (reflection and transmission) at a particular virtual depth level
in PWMod, where 𝑟∪ represents an upward reflection scalar, 𝑡+ represents a downward transmission scalar and 𝑡− represents an upward transmission
scalar.

from the tomographic gradient of ORWI (limits their negative
impact) and improves illumination and signal-to-noise ratio
through an extended migration offset. We define the extended
migration offset as the offset at which the misfit function no
longer significantly decreases and refer to it as MEMO, which
stands for maximum effective migration offset. Note that this
paper deals only with the issue of full-wave inconsistency, leaving
reflectivity–velocity coupling outside its scope.

Cycle skipping (Virieux and Operto 2009) in long-offset data
due to a poor initial background velocity model is perceived
as another hurdle in RWI. Building a kinematic-accurate initial
background velocity model, multi-scaling (Bunks et al. 1995;
Pratt et al. 1998) and adopting alternative misfit functions rather
than traditional waveform-based misfit functions have been the
most common solutions. Notable among the alternative misfit
functions are traveltime-basedmisfit functions (Luo and Schuster
1991; de Hoop and van Der Hilst 2005; van Leeuwen and Mulder
2010; Ma and Hale 2013; Luo et al. 2016), unwrapped-phase misfit
functions (Choi and Alkhalifah 2013, 2014; Choi et al. 2015),
envelope-based misfit functions (Bozdağ et al. 2011; R. Wu et al.
2014; Chi et al. 2014; G.-X. Chen et al. 2018), optimal-transport-
based misfit functions (Métivier et al. 2016; Yang and Engquist
2018) and the normalized integrationmethod (Chauris et al. 2012;
Donno et al. 2013). In this paper, we first illustrate the detrimental
contribution of cycle-skipped long-offset data on the tomographic
gradient of ORWI. We then introduce, inspired by van Leeuwen
and Mulder (2010), a time-domain two-step data-selection algo-
rithm excluding the contribution of the cycle-skipped long-offset
residual data in each iteration of the tomography loop to obtain a
high-fidelity tomographic update. The algorithm relies on global
and local cross-correlations between the observed and modelled
reflection data in the time domain.

This paper is organized as follows: After the introduction, we
first review the theoretical features of ORWI and reintroduce the
PLS-WEM technology to replace the migration core of ORWI.
Next, we examine how far the full-wave consistency condition is
supported in the context of ORWI. Following this, we describe
our approach tomitigating the imprint of full-wave inconsistency
on background velocity estimation in ORWI. We then introduce
the concept of MEMO and its significance. We also present
a workflow to extract the uncycle-skipped part of the long-
offset reflection data in each tomography loop. We evaluate our
proposal through three numerical examples: two dipping layers

placed in a linear background velocity model, the flat section of
the Marmousi model and the faulted section of the Marmousi
model. We end with a discussion and conclusions.

2 Standard One-Way ReflectionWaveform
Inversion

One-way reflection waveform inversion (ORWI) is an acoustic
reflection waveform tomography tool based on wavefield decom-
position into upgoing and downgoing waves. Wavefield decom-
position in ORWI relies on a one-way wavefield extrapolation
scheme known as PWMod (Berkhout 2014a), based on first-
order scattering and incorporating transmission effects. PWMod
perceives wave propagation as a one-way extrapolation from
multiple points at 𝑧𝓁 to a point at 𝑧𝓁+1, where 𝑧𝓁 and 𝑧𝓁+1 denote
two subsequent virtual depth levels, respectively. The absolute
value of the vertical distance between 𝑧𝓁 and 𝑧𝓁+1 is called the
extrapolation step and is considered small enough to be assumed
homogeneous vertically. The upward and downward data extrap-
olations are performed using extrapolation kernels, which are the
analytical solutions to the acoustic wave equation in a homoge-
neous medium in the frequency-wavenumber domain. PWMod
defines the two-dimensional forward extrapolatedwavefield from
all lateral positions located at 𝑧𝓁 towards a lateral position located
at 𝑧𝓁+1 in the +z direction as a frequency-space convolution
integral along the x-axis (Rayleigh integral II in two dimensions)

𝑝+(𝑥𝑗, 𝑧𝓁+1, 𝜔𝑓) = ∫
+∞

−∞
𝑝+(𝑥, 𝑧𝓁, 𝜔𝑓

)
𝑤+

𝑧𝓁+1;𝑧𝓁

(
𝑥𝑗; 𝑥𝑗 − 𝑥, 𝜔𝑓

)
𝑑𝑥,

(1)
in which 𝑤+

𝑧𝓁+1;𝑧𝓁
denotes the monochromatic downward wave-

field extrapolation kernel from the virtual depth level 𝑧𝓁 to one
lateral position at the virtual depth level 𝑧𝓁+1, the index 𝑗 means
the lateral position at 𝑧𝓁+1, 𝑥𝑗 is the convolution lag, 𝜔𝑓 is a given
angular frequency, 𝑝+(𝑥, 𝑧𝓁, 𝜔𝑓) is the monochromatic downgo-
ing wavefield located at 𝑧𝓁 and 𝑝+(𝑥𝑗, 𝑧𝓁+1, 𝜔𝑓) is the monochro-
matic downgoing wavefield at the lateral position 𝑥𝑗 located at
𝑧𝓁+1. The wavefield extrapolation kernel in Equation (1) reads

𝑤+
𝑧𝓁+1;𝑧𝓁

(
𝑥𝑗; 𝑥𝑜, 𝜔𝑓

)
= 1

2𝜋 ∫
+∞

−∞
e
−𝑖

√√√√√(
𝜔𝑓

𝑣𝑗

)2

−𝑘2
𝑥 |𝛿𝑧|

e−𝑖𝑘𝑥𝑥𝑜𝑑𝑘𝑥, (2)
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in which the integral represents the inverse Fourier transform
of the downward extrapolation kernel-downward phase-shift
extrapolation kernel-in the frequency-wavenumber domain in
the x-direction, the index 𝑜means the lateral position at 𝑧𝓁, 𝑥𝑗; 𝑥𝑜

means from 𝑥𝑜 to 𝑥𝑗 , 𝛿𝑧 represents the extrapolation step and
equals the vertical distance between 𝑧𝓁 and 𝑧𝓁+1, 𝑣𝑗 represents the
velocity value at 𝑥𝑗 between the virtual depth levels 𝑧𝓁 and 𝑧𝓁+1

and 𝑘𝑥 is the horizontal wavenumber.

The downward extrapolation kernel in its matrix form is
expressed as

𝐖+
𝑧𝓁+1 ;𝑧𝓁

=

⎡⎢⎢⎢⎢⎢⎢⎣

𝐰+
𝑧𝓁+1 ;𝑧𝓁

(
𝑥1; 𝑥, 𝜔𝑓

)
⋱

𝐰+
𝑧𝓁+1 ;𝑧𝓁

(
𝑥𝑗; 𝑥, 𝜔𝑓

)
⋱

𝐰+
𝑧𝓁+1 ;𝑧𝓁

(
𝑥𝑛𝑥

; 𝑥, 𝜔𝑓

)

⎤⎥⎥⎥⎥⎥⎥⎦
, (3)

where 𝑛𝑥 shows the total number of model parameters located on
each virtual depth level,𝐖+

𝑧𝓁+1;𝑧𝓁
is a square matrix of dimension

𝑛𝑥 × 𝑛𝑥 and 𝐰+
𝑧𝓁+1;𝑧𝓁

(
𝑥𝑗; 𝑥, 𝜔𝑓

)
represents a row vector. For a

virtual layer without lateral velocity variations,𝐖+
𝑧𝓁+1;𝑧𝓁

becomes
a Toeplitz matrix (Berkhout 1982, 164), and for a laterally inho-
mogeneous virtual layer, defined by locally averaged velocities,
𝐖+

𝑧𝓁+1;𝑧𝓁
becomes a space-variant convolutional matrix (Thor-

becke et al. 2004). Figure 1a schematically displays one row of
𝐖+

𝑧𝓁+1;𝑧𝓁
. If more clarification is required, the extrapolation kernel

is further described in Berkhout (2014a).

PWMod reads the following equations – in the vector–matrix
form-to model the angle-independent primary reflection data
(traditional surface seismic data excluding direct waves, refrac-
tions, and diving waves), including reflection and transmission
effects (Figure 1b)

𝐩−
mod

(
𝑧0, 𝜔𝑓

)
=

1∑
𝑚=𝑁

[[
𝑚−1∏
𝑛=1

𝐖−
𝑧𝑛−1;𝑧𝑛

𝐓−(𝑧𝑛)

]
𝐖−

𝑧𝑚−1;𝑧𝑚

](
𝐫∪(𝑧𝑚)◦𝐩+

mod

(
𝑧𝑚, 𝜔𝑓

))
,

(4)

𝐩+
mod

(
𝑧𝑚, 𝜔𝑓

)
=

[[
1∏

𝑛=𝑚−1

𝐖+
𝑧𝑛+1;𝑧𝑛

𝐓+(𝑧𝑛)

]
𝐖+

𝑧1;𝑧0

]
𝐬+
(
𝑧0, 𝜔𝑓

)
,

(5)
in which 𝐩−

mod

(
𝑧0, 𝜔𝑓

)
is the monochromatic upgoing wavefield

modelled at 𝑧0 and 𝐩+
mod

(
𝑧𝑚, 𝜔𝑓

)
is the monochromatic downgo-

ing wavefield modelled at 𝑧𝑚. The matrix–matrix multiplication
operations enclosed by the outer square brackets in Equation (4)
contain the upward extrapolation operator (𝐖−) along with
the upward transmission diagonal-matrix-operator (𝐓− (𝑧𝑛) = 𝐈 −
diag(𝐫∪ (𝑧𝑛)), encapsulating all the operators required for a wave-
field to reach from 𝑧𝑚 to 𝑧0. The matrix–matrix multiplication
operations enclosed by the outer square brackets in Equation (5)
contain the downward extrapolation operator (𝐖+) along with
the downward transmission diagonal-matrix-operator (𝐓+ (𝑧𝑛) =
𝐈 + diag(𝐫∪ (𝑧𝑛)), encapsulating all the operators required for
a wavefield to reach from 𝑧0 to 𝑧𝑚. Here, 𝐫∪ (𝑧𝑚) represents
the angle-independent upward reflectivity vector-operator at 𝑧𝑚,
𝐬+
(
𝑧0, 𝜔𝑓

)
shows themonochromatic downgoing physical source

at the Earth’s surface, 𝑁 is the total number of virtual depth
levels and the symbol ◦ means element-wise product. Note that,
diag(.) represents a mathematical function that receives a vector
and gives a diagonal matrix as its output, and 𝐈 means the
identity matrix.

ORWI inverts for reflectivity and background velocity (two
different classes of parameters) by minimizing the errors in
primary reflection waveforms for each class of parameters alter-
nately. Standard ORWI originally aims to minimize the following
two-parameter misfit function iteratively:

 = 1

2

𝑁𝑓∑
𝑓=1

𝑁𝑠∑
𝑠=1

‖𝐩−
obs,𝑠

(
𝑧0, 𝜔𝑓

)
− 𝐩−

mod,𝑠

(
𝑧0, 𝜔𝑓; 𝐫

∪, 𝐯
)‖2

2, (6)

in which 𝐩−
obs,𝑠

(
𝑧0, 𝜔𝑓

)
represents the observed monochro-

matic multiple-free reflection waveforms for shot 𝑠 recorded at
the receiver locations, 𝐩−

mod,𝑠

(
𝑧0, 𝜔𝑓

)
represents the modelled

monochromatic primary reflection waveforms for shot 𝑠 recorded
at the receiver locations, the vector difference 𝐩−

obs,𝑠

(
𝑧0, 𝜔𝑓

)
−

𝐩−
mod,𝑠

(
𝑧0, 𝜔𝑓

)
is called the monochromatic residual data vector

for shot 𝑠 and represented later by 𝛿𝐝−
𝑠

(
𝜔𝑓

)
, 𝐯 represents the

background velocity vector, 𝐫∪ represents the angle-independent
upward reflectivity vector,𝑁𝑠 is the total number of shots and𝑁𝑓

is the total number of angular frequency components.

Taking the partial derivatives of the misfit function with respect
to 𝐫∪ and 𝐯 gives the total descent direction as

g =

⎡⎢⎢⎢⎢⎢⎢⎣

g𝑟 (𝑧0)

⋮

g𝑟 (𝑧𝑁)

g𝑣 (𝑧0)

⋮

g𝑣 (𝑧𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦
= −

𝑁𝑓∑
𝑓=1

𝑁𝑠∑
𝑠=1

ℜ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
g𝑠 (𝜔𝑓)

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞

J𝑠(𝜔𝑓)
⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞

𝜕p−
mod,𝑠

(
𝑧0, 𝜔𝑓

)
𝜕r∪ (𝑧0)

⋯
𝜕p−

mod,𝑠

(
𝑧0, 𝜔𝑓

)
𝜕r∪ (𝑧𝑁)

𝜕p−
mod,𝑠

(
𝑧0, 𝜔𝑓

)
𝜕v (𝑧0)

⋯
𝜕p−

mod,𝑠

(
𝑧0, 𝜔𝑓

)
𝜕v (𝑧𝑁)

]†

𝛿d−
𝑠

(
𝜔𝑓

)
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (7)

inwhich 𝐠denotes the total two-parameter gradient vector,𝐠𝑟(𝑧𝑚)

shows the reflectivity gradient at a given depth level formigration,
𝐠𝑣(𝑧𝑚) shows the background velocity gradient between 𝑧𝑚 and
𝑧𝑚+1 for tomography (for simplicity, shown in notation at 𝑧𝑚),
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FIGURE 2 Schematic representation of one element of the reflectiv-
ity gradient for one shot, Equation (10), in amedium including five virtual
depth levels. Green signifies forward wavefields, while yellow denotes
back-propagated wavefields.

𝐠𝑠(𝜔𝑓) is the total gradient vector for one shot and one frequency,
†means the adjoint operator, 𝐉𝑠

(
𝜔𝑓

)
is the total Jacobian matrix

for one shot and one frequency and each column of 𝐉𝑠

(
𝜔𝑓

)
denotes the partial derivative of the upgoing modelled wavefield
at the receiver locations with respect to the model parameters of

one class, either reflectivity or background velocity, located at a
given depth level.

Similarly to RWI (Xu, Wang, Chen, Lambaré, et al. 2012; Xu,
Wang, Chen, Zhang, et al. 2012), the two-parameter nature of
ORWI – as a minimization problem – is turned into a single-
parameter by keeping a class of parameters constant while
updating the other class. As a result, Equation (7) is broken into
two parts:

𝐠𝑟 = −
𝑁𝑓∑
𝑓=1

𝑁𝑠∑
𝑠=1

ℜ

⎧⎪⎨⎪⎩
[

𝜕𝐩−
mod,𝑠

(
𝑧0, 𝜔𝑓

)
𝜕𝐫∪(𝑧0)

⋯
𝜕𝐩−

mod,𝑠
(
𝑧0, 𝜔𝑓

)
𝜕𝐫∪(𝑧𝑁)

]†

𝛿𝐝−
𝑠

(
𝜔𝑓

)⎫⎪⎬⎪⎭,
(8)

𝐠𝑣 = −
𝑁𝑓∑
𝑓=1

𝑁𝑠∑
𝑠=1

ℜ

⎧⎪⎨⎪⎩
[

𝜕𝐩−
mod,𝑠

(
𝑧0, 𝜔𝑓

)
𝜕𝐯(𝑧0)

⋯
𝜕𝐩−

mod,𝑠
(
𝑧0, 𝜔𝑓

)
𝜕𝐯(𝑧𝑁)

]†

𝛿𝐝−
𝑠

(
𝜔𝑓

)⎫⎪⎬⎪⎭,
(9)

where 𝐠𝑟 shows the total reflectivity gradient for migration and
𝐠𝑣 shows the total velocity gradient for tomography. Indeed, with

such a gradient separation, ORWI turns into an iterative cycle
alternating between LS-WEM and least-squares one-way wave
equation reflection tomography (LS-WET) until the data residual
vanishes (Algorithm 1).

Expanding one component of Equation (8), which denotes
the reflectivity gradient for a particular depth level, frequency
component and shot, yields (Figure 2)

𝐠𝑟
𝑠(𝑧𝑚, 𝜔𝑓) = −ℜ

⎧⎪⎪⎨⎪⎪⎩
(
𝐩+
mod,s

(
𝑧𝑚, 𝜔𝑓

))∗

◦

Back-propagated wavefield
⏞⎴⎴⎴⎴⏞ ⎴⎴⎴⎴⏞(
𝐋−†

𝑧0;𝑧𝑚
𝛿𝐝−

𝑠

(
𝜔𝑓

))⎫⎪⎪⎬⎪⎪⎭
,

(10)
in which 𝐋−

𝑧0;𝑧𝑚
is defined as

𝐋−
𝑧0;𝑧𝑚

=

[
𝑚−1∏
𝑛=1

𝐖−
𝑧𝑛−1;𝑧𝑛

𝐓−(𝑧𝑛)

]
𝐖−

𝑧𝑚−1;𝑧𝑚
. (11)

Expanding one component of Equation (9), which denotes
the velocity gradient for a particular depth level, frequency
component and shot, yields (Figure 3)

𝐠𝑣
𝑠 (𝑧𝑚, 𝜔𝑓) = 𝐠

𝑣𝐴
𝑠 (𝑧𝑚, 𝜔𝑓) + 𝐠

𝑣𝐵
𝑠 (𝑧𝑚, 𝜔𝑓) = −ℜ

⎧⎪⎪⎨⎪⎪⎩
𝐆−∗

𝑧𝑚;𝑧𝑚+1
𝐪−∗

mod,s

(
𝑧𝑚+1, 𝜔𝑓

)
◦

Back-propagated wavefield
⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞((

𝐋−
𝑧0;𝑧𝑚

𝐓− (𝑧𝑚)
)†

𝛿𝐝−
𝑠

(
𝜔𝑓

))⎫⎪⎪⎬⎪⎪⎭
−ℜ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐆+∗

𝑧𝑚+1;𝑧𝑚
𝐪+∗

mod,𝑠

(
𝑧𝑚, 𝜔𝑓

)
◦

Back-propagated wavefield
⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎛⎜⎜⎝
[
𝐋−

𝑧0;𝑧𝑚+1
𝐑∪ (𝑧𝑚+1) +

[
𝑚+2∑
𝑚′=𝑁

𝐋−
𝑧0;𝑧𝑚′ 𝐑

∪ (𝑧𝑚′ ) 𝐋+
𝑧𝑚′ ;𝑧𝑚+1

]
𝐓+ (𝑧𝑚+1)

]†

𝛿𝐝−
𝑠

(
𝜔𝑓

)⎞⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

,

(12)

and given the assumption that 𝐖+
𝑧𝑚+1;𝑧𝑚

approximates 𝐖−
𝑧𝑚;𝑧𝑚+1

,
𝐆 is defined as

𝐆+
𝑧𝑚+1;𝑧𝑚

= 𝐆−
𝑧𝑚;𝑧𝑚+1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐰1,⋆

𝜕𝑣1

𝜕𝐰2,⋆

𝜕𝑣2

⋮

𝜕𝐰𝑛𝑥,⋆

𝜕𝑣𝑛𝑥

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

in which𝐰𝑗,⋆ means the 𝑗th row of𝐖−
𝑧𝑚;𝑧𝑚+1

and

𝐪−
mod,s

(
𝑧𝑚+1, 𝜔𝑓

)
= 𝐓− (𝑧𝑚+1) 𝐩

−
mod,s

(
𝑧𝑚+1, 𝜔𝑓

)
+ 𝐑∪ (𝑧𝑚+1) 𝐩

+
mod,s,(

𝑧𝑚+1, 𝜔𝑓

)
𝐪+
mod,s

(
𝑧𝑚, 𝜔𝑓

)
= 𝐓+ (𝑧𝑚) 𝐩+

mod,s

(
𝑧𝑚, 𝜔𝑓

)
,

(14)
in which 𝐑∪ (𝑧𝑚+1) = diag (𝐫∪ (𝑧𝑚+1)). It is important to recall
that while Equation (12) represents the background veloc-
ity gradient at 𝑧𝑚 in notation, it updates the background
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velocity over the depth interval between 𝑧𝑚 and 𝑧𝑚+1 in
practice.

To optimize the update direction, standard ORWI preconditions
both gradient vectors as follows (equivalent to equation 27 in
Plessix and Mulder (2004))

𝛿𝐫∪(𝑧𝑚) = ℜ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Preconditioner (a column vector)
⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞

𝑁𝑓∑
𝑓=1

𝑁𝑠∑
𝑠=1

(
𝐩+
mod,s

(
𝑧𝑚, 𝜔𝑓

)
◦𝐩+∗

mod,s

(
𝑧𝑚, 𝜔𝑓

))
◦

(
𝑁𝑔∑
𝑔=1

[
𝐋−

𝑧0;𝑧𝑚

]
𝑔,⋆

◦
[
𝐋−∗

𝑧0;𝑧𝑚

]
𝑔,⋆

)𝑇

⎫⎪⎪⎪⎬⎪⎪⎪⎭

−1

◦𝐠𝑟(𝑧𝑚), (15)

and

𝛿𝐯(𝑧𝑚) = ℜ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Preconditioner (a column vector)
⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞

𝑁𝑓∑
𝑓=1

𝑁𝑠∑
𝑠=1

(
𝐪−
mod,s

(
𝑧𝑚+1, 𝜔𝑓

)
◦𝐪−∗

mod,s

(
𝑧𝑚+1, 𝜔𝑓

))
◦

(
𝑁𝑔∑
𝑔=1

[Θ]𝑔,⋆◦[Θ
∗]𝑔,⋆

)𝑇

⎫⎪⎪⎪⎬⎪⎪⎪⎭

−1

◦𝐠𝑣𝐴 (𝑧𝑚)

+ℜ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Preconditioner (a column vector)
⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞

𝑁𝑓∑
𝑓=1

𝑁𝑠∑
𝑠=1

(
𝐪+
mod,s

(
𝑧𝑚, 𝜔𝑓

)
◦𝐪+∗

mod,s

(
𝑧𝑚, 𝜔𝑓

))
◦

(
𝑁𝑔∑
𝑔=1

[Ψ]𝑔,⋆◦[Ψ
∗]𝑔,⋆

)𝑇

⎫⎪⎪⎪⎬⎪⎪⎪⎭

−1

◦𝐠𝑣𝐵 (𝑧𝑚),

(16)

with

Θ = 𝐋−
𝑧0;𝑧𝑚

𝐓−(𝑧𝑚)𝐆−
𝑧𝑚;𝑧𝑚+1

,

Ψ =

[
𝐋−

𝑧0;𝑧𝑚+1
𝐑∪(𝑧𝑚+1) +

[ 𝑚+2∑
𝑚′=𝑁

𝐋−
𝑧0;𝑧𝑚′ 𝐑

∪(𝑧𝑚′ )𝐋+
𝑧𝑚′ ;𝑧𝑚+1

]
𝐓+(𝑧𝑚+1)

]
𝐆+

𝑧𝑚+1;𝑧𝑚
,

(17)
where 𝛿𝐫∪(𝑧𝑚) represents the reflectivity update/perturbation
vector at 𝑧𝑚 and 𝛿𝐯(𝑧𝑚) is the background velocity
update/perturbation vector between 𝑧𝑚 and 𝑧𝑚+1.

Finally, standard ORWI updates the total angle-independent
upward reflectivity and background velocity vectors as

𝐫∪
𝑘+1

= 𝐫∪
𝑘
+ 𝛼𝑟

𝑘
𝛿𝐫∪

𝑘
, (18)

𝐯𝑘+1 = 𝐯𝑘 + 𝛼𝑣
𝑘
𝛿𝐯𝑘, (19)

inwhich 𝑘means the current cycle number, 𝛿𝐫∪ is the total reflec-
tivity perturbation vector, 𝛿𝐯 is the total velocity perturbation
vector and 𝛼𝑣 and 𝛼𝑟 represent the minimization step lengths for
estimating reflectivity and background velocity, respectively. For
𝛼𝑟

𝑘
, we use

𝛼𝑟
𝑘
=

𝛿𝐝†
(
𝐫∪
𝑘
+ 𝛿𝐫∪

𝑘
, 𝐯𝑘

)
𝛿𝐝
(
𝐫∪
𝑘
, 𝐯𝑘

)
𝛿𝐝†

(
𝐫∪
𝑘
+ 𝛿𝐫∪

𝑘
, 𝐯𝑘

)
𝛿𝐝
(
𝐫∪
𝑘
+ 𝛿𝐫∪

𝑘
, 𝐯𝑘

) , (20)

and for 𝛼𝑣
𝑘
, we use

𝛼𝑣
𝑘
=

𝛿𝐝†
(
𝐫∪
𝑘+1

, 𝐯𝑘 + 𝛿𝐯𝑘

)
𝛿𝐝
(
𝐫∪
𝑘+1

, 𝐯𝑘

)
𝛿𝐝†

(
𝐫∪
𝑘+1

, 𝐯𝑘 + 𝛿𝐯𝑘

)
𝛿𝐝
(
𝐫∪
𝑘+1

, 𝐯𝑘 + 𝛿𝐯𝑘

) , (21)

where 𝛿𝐝 is the superposition of all shots and the frequency
components within the range. For more information on the
gradient derivation, see Y. Sun et al. (2019).

3 Enhanced Migration Algorithm in One-Way
ReflectionWaveform Inversion

In this section, we introduce the first of our four proposed
improvements to the one-way reflection waveform inversion
(ORWI) methodology, with which we aim to enhance the migra-
tion algorithm embedded within ORWI. Least-squares migration
(LSM) techniques have proven to be computationally expensive
as their convergence requires multiple iterations. Gradient pre-
conditioning helps reduce the number of LSM iterations. The
preconditioned least-squares one-way wave equation migration
(PLS-WEM) introduced by Abolhassani and Verschuur (2024) is
a depth least-squares migration technology that recovers high-
resolution and accurate seismic images by reconstructing the
approximate Hessian information recursively in depth; PLS-
WEM accelerates the convergence of the migration process after
employing the reciprocal of the approximateHessian information
for gradient preconditioning. PLS-WEM is relatively fast when
compared to similar technologies because it recursively calcu-
lates the approximate Hessian operator depth by depth rather
than calculating one huge approximate Hessian for the entire
medium. This reduces the huge approximate Hessian operator
for the entire domain into smaller, depth-dependent operators.
Furthermore, as PLS-WEM uses PWMod for forward modelling,
this facilitates switching from LS-WEM to PLS-WEM in the
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standard ORWI cycle. This section provides an overview of the
PLS-WEM theory.

To incorporate gradient preconditioning into Equation (8), PLS-
WEM minimizes the misfit function (Shin et al. 2001; Jang et al.
2009; Oh and Min 2013)

 = 1

2

𝑁𝑓∑
𝑓=1

𝑁𝑠∑
𝑠=1

‖‖‖𝛿𝐝−
𝑠

(
𝜔𝑓

)
− 𝐉𝑟

𝑠

(
𝜔𝑓

)
𝛿𝐫∪

(
𝜔𝑓

)‖‖‖2

2
, (22)

where 𝐉𝑟
𝑠

(
𝜔𝑓

)
=

𝜕𝐩−
𝐦𝐨𝐝,𝑠(𝑧0,𝜔𝑓)

𝜕𝐫∪
and is called the total monochro-

matic reflectivity Jacobian for shot 𝑠.

The stationary point of Equation (22) with respect to 𝛿𝐫∪
(
𝜔𝑓

)
is

given by

𝛿𝐫∪ = −
𝑁𝑓∑
𝑓=1

⎛⎜⎜⎝ℜ
{

𝑁𝑠∑
𝑠=1

𝐇𝑟,a
𝑠 (𝜔𝑓)

}−1

ℜ

{
𝑁𝑠∑
𝑠=1

𝐠𝑟
𝑠(𝜔𝑓)

}⎞⎟⎟⎠, (23)

with 𝐠𝑟
𝑠(𝜔𝑓) and𝐇𝑟,a

𝑠 (𝜔𝑓) defined as

𝐠𝑟
𝑠(𝜔𝑓) = 𝐉𝑟

𝑠
†
(𝜔𝑓)𝛿𝐝

−
𝑠

(
𝜔𝑓

)
, (24)

𝐇𝑟,a
𝑠 (𝜔𝑓) = 𝐉𝑟

𝑠
†
(𝜔𝑓)𝐉

𝑟
𝑠(𝜔𝑓), (25)

in which 𝐉𝑟
𝑠(𝜔𝑓) denotes the monochromatic reflectivity Jacobian

for shot 𝑠, 𝐠𝑟
𝑠(𝜔𝑓) represents the monochromatic reflectivity

gradient for shot 𝑠 (mathematically derived in Equation (10) for
each virtual depth level), and 𝐇𝑟,a

𝑠 (𝜔𝑓) refers to the monochro-
matic reflectivity approximate Hessian for shot 𝑠 compensating
for geometrical spreading, spatial correlations of neighbouring
model parameters on the same virtual depth levels (Pratt et al.
1998) and also conducting source deconvolution as it acts on the
gradient vector frequency by frequency.

Thanks to PWMod, each column of the total monochromatic
reflectivity Jacobian for shot 𝑠, introduced in Equation (24),
satisfies

𝐉𝑟
𝑠(𝑧𝑚, 𝜔𝑓) =

𝜕𝐩−
mod,𝑠(𝑧0, 𝜔𝑓)

𝜕𝐫∪(𝑧𝑚)
. (26)

Abolhassani and Verschuur (2024) showed that 𝐉𝑟
𝑠(𝑧𝑚, 𝜔𝑓) can be

expressed as follows:

𝐉𝑟
𝑠

(
𝑧𝑚, 𝜔𝑓

)
=

[
1∏

𝑛=𝑚−1

𝐖−
𝑧𝑛−1;𝑧𝑛

𝐓−(𝑧𝑛)

]
𝐖−

𝑧𝑚−1;𝑧𝑚

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝

𝑝+
1mod,𝑠

(
𝑧𝑚, 𝜔𝑓

)
0

⋮

0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

0

𝑝+
2mod,𝑠

(
𝑧𝑚, 𝜔𝑓

)
⋮

0

⎞⎟⎟⎟⎟⎟⎠
. . .

⎛⎜⎜⎜⎜⎜⎝

0

0

⋮

𝑝+
𝑛𝑥 mod,𝑠

(
𝑧𝑚, 𝜔𝑓

)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
, (27)

in which 𝑛𝑥 denotes the number of gridpoints at 𝑧𝑚,
𝑝+

𝑗 mod,𝑠

(
𝑧𝑚, 𝜔𝑓

)
is the monochromatic downgoing modelled

wavefield at the 𝑗th gridpoint of 𝑧𝑚 and 𝐉𝑟
𝑠(𝑧𝑚, 𝜔𝑓) is a

(a) Receiver-side background velocity gradient

(b) Source-side background velocity gradient

FIGURE 3 Schematic representation of one element of the back-
ground velocity gradient for one shot, Equation (12), in a medium
including five virtual depth levels. (a) Receiver-side background velocity
gradient for one shot: the term 𝐠

𝑣𝐴
𝑠 (𝑧𝑚, 𝜔𝑓) fromEquation (12). (b) Source-

side background velocity gradient for one shot: the term 𝐠
𝑣𝐵
𝑠 (𝑧𝑚, 𝜔𝑓) from

Equation (12). Green signifies forward wavefields, while yellow denotes
back-propagated wavefields.

matrix of dimension 𝑛𝑥 × 𝑛𝑥 . Plugging Equation (27) into
Equation (25) yields 𝐇𝑟,a

𝑠 (𝑧𝑚, 𝜔𝑓). Adopting Equation (23) for
each virtual depth level, the reflectivity update vector 𝛿𝐫∪(𝑧𝑚)

is now constructed. Clearly, Equation (23) requires a direct
inversion of the approximate Hessian matrix for each frequency
component. Finally, Equation (18) is used to update the total
angle-independent upward reflectivity vector.

PLS-WEM is computationally more feasible compared to alterna-
tive technologies that approximate Hessian coefficients at once,
as it operates in a depth-marching regime. PLS-WEM achieves
this by decomposing and reducing the entire approximate Hes-
sian operator into multiple smaller sub-operators. Each of these
sub-operators is relevant to a single virtual depth level and
captures only the correlation of the partial derivative wavefields
at that depth level. If assembled together for all virtual depth
levels, these operators form a block-diagonal presentation of the
approximate Hessian operator for the entire medium. With PLS-
WEM, each time 𝐇𝑟,a

𝑠 (𝑧𝑚, 𝜔𝑓) and its reciprocal are calculated,
indeed, only 1∕𝑁 of the total number of model parameters is
involved (Abolhassani and Verschuur 2024).
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(a) True background velocity model
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FIGURE 4 Flat-layered medium. (a) True background velocity model. (b) True reflectivity model. In the reflectivity model, red indicates positive
reflectivity values (velocity increases with depth), while blue represents negative reflectivity values (velocity decreases with depth).
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(a) Tomographic update via ORWI equipped with LS-WEM
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(b) Tomographic update via ORWI equipped with PLS-WEM
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(c) Image update with LS-WEM
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(d) Image update with PLS-WEM

FIGURE 5 Estimated background velocity models after 1 cycle of ORWI based on LS-WEM and PLS-WEM images, associated with the flat-layered
medium shown in Figure 4. (a) and (c) Tomographic and imaging updates after 1 cycle of ORWI equipped with LS-WEM (standard ORWI). (b) and (d)
Tomographic and imaging updates after 1 cycle of ORWI equipped with the PLS-WEM image.

FIGURE 6 Modelled and observed waveforms for a flat reflector medium with a homogeneous overburden when the full-wave consistency
condition is not met at short offsets. (a) The homogeneous initial velocity is greater than the true velocity. (b) The homogeneous initial velocity is
less than the true velocity.
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(a) True background velocity model
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FIGURE 7 Single-reflector medium. (a) True background velocity model. (b) Initial background velocity model.
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(c) Scenario 3
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(d) Scenario 4

FIGURE 8 Tomographic updates of ORWI associated with the single-reflector medium after one cycle in four different data scenarios introduced
in Table 1. (a) Tomographic update estimated by ORWIwhen the full offset range is used for both imaging and tomography (Scenario 1). (b) Tomographic
update estimated by ORWI after excluding contributions of the cycle-skipped long-offset data to the tomographic gradient – that is, ∣ offset ∣ < 1000 m
(Scenario 2). (c) Tomographic update estimated by ORWI after excluding contributions of the cycle-skipped long-offset data to the tomographic gradient
and using the same offset range for imaging as for tomography – that is, ∣ offset ∣< 1000m (Scenario 3). (d) Tomographic update estimated by ORWI after
muting short-offset tomographic wavepaths, coupled with excluding contributions of the cycle-skipped long-offset data to the tomographic gradient, and
using the same offset range for imaging as for tomography – that is, ∣ offset ∣ < 1000 m (Scenario 4).
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FIGURE 9 The middle-shot subset of the tomographic update
shown inFigure 8a. The arrows represent different tomographicwavepath
batches, as explained in the main body of the paper.

To evaluate the performance of ORWI based on PLS-WEM
compared to ORWI based on LS-WEM (standard ORWI), for
a flat-layered medium shown in Figure 4, we compare the
background velocity model update estimated by standard ORWI
to that estimated by ORWI equipped with PLS-WEM, both after
one cycle. To avoid amplitude fitting in tomography, we use the
relative amplitude scaling proposed by Son et al. (2013). With a
zero initial reflectivity model, a homogeneous acoustic velocity

model of 2000 m/s, a Ricker wavelet with a peak frequency of 10
Hz, surface acquisition, the reflection dataset within the range
of 0–15 Hz, a maximum offset of 500 m for migration and a
maximum offset of 1000 m for tomography (no cycle-skipping),
we run the comparison. After 1 cycle of ORWI, including 1x
LS migration and 1x LS tomography, the resultant images and
tomograms are shown in Figure 5. As expected, ORWI based
on PLS-WEM delivers a superior tomographic update compared
to ORWI based on LS-WEM. The superposition of tomographic
wavepaths obtained based on PLS-WEM is stronger and more
geometrically consistent with the true layers. This enhanced
performance is attributed to the improved amplitude preservation
and resolution power of PLS-WEM, as shown in Figure 5d.

4 Optimizing the Tomographic Update in
One-Way ReflectionWaveform Inversion

In this section, we first examine how well the full-wave consis-
tency condition is met in one-way reflection waveform inversion
(ORWI). Next, we suggest three strategies for offset selection

10 of 24 Geophysical Prospecting, 2025
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FIGURE 10 Imaging updates of ORWI for the single-reflector
medium (note that on both frames (a) and (b), each wiggle indicates
a different lateral location; the lateral locations are ordered from 0 to
5000 m from left to right). (a) Image estimated by the migration mode of
ORWIwhen the data for imaging is cycle-skipped (allmigration offsets are
included); the image is not focused enough. The lack of focus is evidenced
by a phase effect observed in the recovered shape of the reflector and also
by non-damped amplitudes preceding the reflector (highlighted in blue).
(b) Image estimated by the migration mode of ORWI, where ∣ offsets ∣>

250 m are muted; the image is focused enough now.
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FIGURE 11 Four-layer medium: True background velocity model.
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FIGURE 12 Migration offset analysis to extract the MEMO for the
four-layer medium; the red line on the curve denotes the MEMO.

(in both migration and tomography loops) to optimize the
tomographic updates in ORWI.

4.1 Tomographic Update Analysis

A central idea of reflection waveform inversion (RWI) is that
the reflectivity model used for the tomographic update allows
for fitting the kinematics of the zero-offset observed data (Xu,
Wang, Chen, Lambaré, et al. 2012; Xu, Wang, Chen, Zhang,
et al. 2012). The assumption is that the velocity errors can be
inferred from the time shifts between the observed and modelled
traces at larger offsets. While a constant-offset (in particular,
zero-offset) migration and demigration can be fully reciprocal in
time, amplitude, and phase, this is not necessarily true when a
single reflectivitymodel is computed as the result of amulti-offset
migration. Indeed, stacking defocused migrated images from
multiple offsets and then demigrating the result into modelled
data will create mismatches with the observed data (even if
quantitative). Figure 6 shows an interesting illustration of the
phenomenon. It compares observed andmodelled traces obtained
through a full-offset quantitative migration and demigration pro-
cess for a flat reflector mediumwith a homogeneous overburden.
Figure 6a shows the comparison when the homogeneous initial
velocity is greater than the true velocity, and Figure 6b shows
when it is smaller. We first observe that the traveltime curves
in offset are more open for the modelled traces than for the
observed oneswhen themigration velocity is greater than the true
velocity – and the opposite holds when the migration velocity is
smaller.We also observe significant changes in wavelet shape and
amplitude – not only between observed and modelled traces but
also between modelled traces generated with greater or smaller
migration velocities (see the relative amplitudes of the three lobes
of the wavelet). These observations are particularly evident at
short offsets and arewhatwe call full-wave inconsistencies. These
observations (i.e., changes in traveltime, amplitude and wavelet
behaviour) can be quantified using the ray theory and stationary-
phase approximation Bleistein and Handelsman (1986), but that
lies beyond the scope of the present paper.

To evaluate the impact of full-wave inconsistency in the short-
offset data on ORWI, we here display the tomographic update of
ORWI for a single-reflector medium after one cycle. The medium
consists of a single reflector and a homogeneous overburden
with an acoustic velocity of 3000 m/s (Figure 7a). For the
initial background velocity model, a homogeneous model with
an acoustic velocity of 2700 m/s is used (Figure 7b). For such a
medium, the tomographic updates following one cycle of ORWI,
including 1x LSmigration and 1x LS tomography, in four different
data scenarios are displayed in Figure 8. The data scenarios are
listed in Table 1. Note that in the table, offsets with absolute values
smaller than 1000 m are counted as uncycle-skipped.

Scenario 1 evaluates how the use of the full-offset data range in
both migration and tomography affects the ORWI background
velocity update. As evident in Figure 8a, associated with Scenario
1, the background velocity update appears to be completely
inefficient. While “ideally” a positive homogeneous velocity
update everywhere above the reflector position is expected, an
inhomogeneous velocity update with strong vertical variations
is retrieved. To have a better understanding, the middle-shot
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(a) Proposed ORWI without offset selec�on (i.e., Table 2 excluding
rows 3, 4, and 5).
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(b) Proposed ORWI employing |offset| < 100 m for migra�on (i.e.,
Table 2 excluding rows 3 and 4).
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(c) Proposed ORWI (i.e., Table 2 in which MEMO is set  to 1000 m
based on Figure 12).

FIGURE 13 Tomographic updates associated with the four-layer medium after 15 cycles. (a) Final background velocity model estimated after 15
cycles of the (a) proposed ORWI without any offset selection, (b) proposed ORWI using short-offset migration and (c) proposed ORWI.

TABLE 1 Four different data scenarios for retrieving tomographic updates via ORWI.

Data for imaging Data for tomography Imprint of full-wave inconsistency

Scenario 1 Full-offset range Full-offset range Present
Scenario 2 Full-offset range Uncycle-skipped: ∣ offset ∣ <1000 m Present
Scenario 3 Same range as tomography Uncycle-skipped: ∣ offset ∣ <1000 m Present
Scenario 4 Same range as tomography Uncycle-skipped: ∣ offset ∣ <1000 m Muted at short offsets
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(a) True background velocity model
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FIGURE 14 Two-dipping-layer model (Example 1). (a) True back-
ground velocity model. (b) Initial background velocity model.

subset of the tomographic update shown in Figure 8a is separately
represented in Figure 9. According to Figure 9, the tomographic
update can be described as the superposition of three batches
of tomographic wavepaths updating against each other: uncycle-
skipped mid-to-long-offset tomographic wavepaths, denoted by
the grey arrow, increasing the background velocity above the
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FIGURE 15 Migration offset analysis to extract the MEMO (Exam-
ple 1); the red line on the curve denotes the MEMO.

reflector (correct update sign), cycle-skipped long-offset tomo-
graphic wavepaths, denoted by the blue arrow, decreasing the
background velocity above the reflector (incorrect update sign)
and short-offset tomographic wavepaths, denoted by the red
arrow, decreasing the background velocity above the reflector
(incorrect update sign). These oscillations in the tomographic
gradient indicate that the tomographic gradient of ORWI is
degraded not only by cycle skipping in long-offset data due to
longer propagation in the incorrect velocity but also by full-wave
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FIGURE 16 Data fit for the first and middle shots calculated in the true background velocity model, shown in red, and the initial background
velocity model, shown in blue (Example 1). (a) First shot gather. (b) Middle shot gather.
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FIGURE 17 Estimated background velocity model perturbation
after 1 cycle of the proposed ORWI (Example 1).
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FIGURE 18 Final estimated background velocity model after 45
cycles of the proposed ORWI (Example 1).

inconsistency in the short-offset data. Note that narrowing the
migration offset to short offsets, given the depth of investigation,
and increasing the number of LS migration iterations can attenu-
ate the imprint (Provenzano et al. 2023); this last point, however,
comes at the price of increased computational cost. Moreover,
theremight be caseswhere the short-offset data are eithermissing
or unusable due to technical reasons.

Scenario 2 evaluates the impact of excluding any contribution of
the long-offset data to the tomographic gradient to improve the
tomographic gradient of ORWI. The background velocity update
associated with Scenario 2 is represented in Figure 8b. Clearly, it
exhibits weaker vertical variations compared to Scenario 1.

Scenario 3 examines the impact of excluding any contribution
of the cycle-skipped long-offset data to the imaging and tomo-
graphic gradients to improve the tomographic gradient of ORWI.
The background velocity update associated with Scenario 3 is

represented in Figure 8c. Compared to the previous scenario, the
update exhibits even weaker vertical variations.

Scenario 4 examines the impact of muting short-offset tomo-
graphic wavepaths (affected by the full-wave inconsistency in the
short-offset data) and excluding contributions of long-offset data
to the imaging and tomographic gradients, aiming to improve
the tomographic gradient of ORWI. Figure 8d shows the asso-
ciated background velocity update. As illustrated, Scenario 4
clearly enhances both the magnitude and homogeneity of the
background velocity update.

4.2 Optimal Offset Selection

4.2.1 Tomography Offset: Short andMid-to-Long
Offsets

Based on the analysis of Scenarios 1–4, we propose muting the
tomographicwavepaths affected by full-wave inconsistency in the
short-offset data, directly in the residual data gathers and depend-
ing on depth. In this paper,we adopt a depth-dependentmute that
increases linearly, with a maximum aperture of ±500 m.

4.2.2 Migration Offset

In the Introduction, it was acknowledged that one approach to
mitigate the imprint of full-wave inconsistency in RWI is to use
short-offset data for migration. Figure 10a shows the stacked
image estimated by the migration mode of standard ORWI for
the single-reflector medium (Figure 7) when all migration offsets
are included. As can be observed, due to the velocity error
and its resultant defocusing, the vertical reflectivity profile is
affected in phase and amplitude. Such an effect will definitely
affect modelled waveforms in the tomography loop, degrading
the full-wave consistency between the short-offset modelled and
observed data for tomography. To minimize such error leakage
from the migration loop to the tomography loop, a focused
image is required. The focused image may be obtained by either
improving the background velocity model or removing the non-
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FIGURE 19 Vertical background velocity profiles. A vertical profile of the final estimated background velocity model in already shown in (a)
Figure 18 at the lateral location of 2500 m and (b) Figure 24 at the lateral location of 3000 m.
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FIGURE 20 Flat section of the Marmousi model (Example 2). (a)
True background velocity model. (b) Initial background velocity model.

focused contributions to the imaging gradient. Since a better
velocity model is what ORWI aims to achieve, the second option
is the only way forward. However, we have already shown that
excluding contributions from long-offset data in imaging though
necessary but not sufficient for retrieving an optimal tomographic
update (Figure 8: Scenario 3).

As a result, short-offset or even near-zero offset migration has
become a widely accepted and effective approach in the RWI
community. Figure 10b displays how muting the traces with
offsets of absolute values greater than 250 m results in a focused

stacked image compared to the original stacked image shown in
Figure 10a.

Limiting migration offsets – if it gives a fair match of wavelet
shape and amplitude at zero and short offsets – can significantly
reduce full-wave inconsistencies in the short-offset data and the
need for muting them in tomography. However, stacked images
from short- or near-zero offset data may suffer from a low signal-
to-noise ratio (SNR) and sub-optimal illumination.While this can
be resolved through LS iterations, it increases the computational
cost. Extending the migration offset is another way to address
the SNR issue, although it compromises reflector focusing, as dis-
cussed (Figure 10). Despite this trade-off, extending themigration
offset may be justified, as we already mute the short-offset resid-
ual waveforms for tomography, where reflector defocusing would
cause the most significant damage. The most significant damage
occurs at short offsets because, at those offsets, velocity-related
errors are largely compensated by depth changes thereby limiting
their impact on traveltimes while waveforms remain affected by
reflectivity-related errors. Therefore, we suggest extending the
migration offset. We extend the migration offset to the point
where themisfit function computed based on the full-offset range
no longer significantly decreases. At this offset, the amplitude fit
does not get any better as the image is mapped by more and more
out-of-phase data due to velocity errors. We refer to this as the
maximum effective migration offset (MEMO). The MEMO may
vary depending on the migration velocity, acquisition geometry
and frequency content, and averagely sits somewhere between
the near-zero offsets and the maximum uncycle-skipped offset in
the data. To set the MEMO, we follow the pseudo-code presented
in Algorithm 2 as a pre-processing/QC (quality control) step
before running ORWI, which calculates the misfit function value
associated with different ranges of offsets (e.g., intervals of 250
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ALGORITHM 2 Migration offset analysis pseudo-code

m) up to the maximum offset available in the acquisition. On
the misfit-offset graph, we pick an offset right before the curve
starts to become nearly horizontal on a logarithmic scale (see the
discussion on the amplitude vs. offset effect).

4.2.3 Tomography Offset: Cycle-Skipped Long Offsets

In every seismic waveform-fitting operation, cycle skipping
occurs when the initial velocity model is not kinematically accu-
rate enough in order to model the seismic waveforms with less
thanhalf a cycle time shiftwith respect to the observedwaveforms
in each iteration, leading to a local minimum situation in the
correspondingminimization problem (Virieux and Operto 2009).
Earlier, we elaborated on the damaging effect of the cycle-skipped
long-offset data on tomograms. This section presents a data-
selection algorithm to minimize such a damaging effect. While
employing an L2-normwaveform-basedmisfit function inORWI,
we develop an automated algorithm to recognize and exclude the
cycle-skipped long-offset reflection data in each tomography loop
based on the same idea suggested by van Leeuwen and Mulder
(2010).

A given pair of modelled and observed seismic traces in the time
domain is called cycle-skipped if their corresponding maximum
correlation lag is greater than a reference lag, which is defined
based on the dominant period of the observed trace. Based on
this, we base our time-domain data-selection algorithm on the
cross-correlation of the given traces within a sliding window
(local cross-correlation), protected by a global cross-correlation
of the given traces beforehand (Algorithm 3). The global cross-
correlation serves as a kind of guard to keep the chain of
the subsequent local cross-correlations away from facing the
irregularities in themodelled waveform before formingmaturely.
Otherwise, the outputs of the local cross-correlations would not
be accurate enough.

In Algorithm 3, for each source location, we run two loops
independently (indicated by the counter ‘m’), one starting from
the receiver index meeting the apex point of the shot gather and
increasing, and one starting from the same index but decreasing.
In each of these two loops, for each index, we perform global
cross-correlation between the modelled and measured traces
from the first-break time sample to the last time sample, to
calculate the average time delay between the two signals. If the
calculated time delay is less than a pre-defined reference time
delay (reference lag), then we divide the signals into windows
and perform cross-correlation for eachwindow, until a time delay
greater than the reference lag is found. If the time delay is greater
than the reference lag, we exit the ‘for’ loop and move on to
the next source location. The time delays calculated during each

iteration are stored in a time table. As a result, for a given shot
gather, the reflection data aperture is not allowed to be extended
from the apex point towards the positive/negative offsets unless it
satisfies the relevant global cross-correlation as well as the local
cross-correlations to the last window.

5 Proposed One-Way ReflectionWaveform
Inversion Algorithm

In an effort to resolve the limitations inherent to conventional
reflection waveform inversion, as mentioned earlier and listed
in the following, we propose our one-way reflection waveform
inversion (ORWI) algorithm based on all of the analyses and
discussions that we carried out so far. Our proposed ORWI algo-
rithm incorporates the introduced cost-friendly preconditioned
least-squares wave equationmigration algorithm to retrieve high-
resolution amplitude-preserved reflectors, thereby overcoming
the challenge of low-resolution seismic images with unpreserved
amplitudes in conventional reflection waveform inversion. Mut-
ing short-offset residual waveforms in the tomography loop is
an additional aspect of our proposal that minimizes the impact
of full-wave inconsistency at short offsets. Leveraging these data
mute, we advocate extending the migration offset beyond short
offsets by calculating the maximum effective migration offset
(MEMO) to address limitations in reflection tomography linked
to suboptimal low signal-to-noise ratio) and illumination of
reflectors. Furthermore, we propose a data-selection algorithm
to exclude the negative impact of cycle-skipped long-offset data.
The general features of our proposed ORWI algorithm are
summarized in Table 2.

It would now be insightful to compare our proposal (Table 2) to
when it uses full-offset range for both migration and tomography
(no offset selection), and to when it uses short offsets for
migration and full offsets for tomography (the common offset
selection practice in reflection waveform inversion). To make the
comparison, we use a four-layer medium (Figure 11a), with the
initial background velocity model being a homogeneous model
of 3500 m/s.

Figure 12 displays the resulting graph following Algorithm 2
for the MEMO calculation, considering the initial background
velocity model and the full frequency band. Based on the graph,
theMEMO is chosen to be 1000m. After 15 cycles, each including
1x LS migration and 1x LS tomography, Figure 13 exhibits the
resultant tomograms.

As observed, while our proposed ORWI accurately estimates
the background velocity model of the four-layer medium from
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ALGORITHM 3 Uncycle-skipped data extraction pseudo-code

reflections within 15 cycles (Figure 13c), the two other approaches
do not retrieve the layers as effectively as our proposal within the
same number of cycles (Figure 13a,b). Although the tomogram
estimated using the common offset selection practice (Figure 13b)
is a much better estimation than the one obtained with no offset
selection (Figure 13a), our proposed approach appears to converge
faster. Note that moving closer to zero-offset data for migration
and increasing the number of LS iterations can improve the
tomogram estimated using the common offset selection practice
– though at an increased cost, as noted earlier. This examination
shows that the offset selection strategies in our proposed ORWI
effectively refine the input data for migration and tomography,
reaching the optimal solution in fewer cycles.

6 Numerical Examples

In this section, we apply our proposed one-way reflection wave-
form inversion (ORWI) algorithm to three synthetic cases. In
all cases, we refine velocity model updates in each cycle using
a Gaussian smoothing operator with a standard deviation of 3
(gridpoints).

6.1 Example 1: Two-Dipping-Layer Model

First, we apply our proposed ORWI algorithm on a two-dipping-
layer model, where two dipping layers are placed in a linear
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TABLE 2 General features of our proposed ORWI.

Proposed ORWI

1 Each cycle LS migration and
LS tomography

2 Migration technology PLS-WEM
3 Migration offset ∣ offset ∣ <MEMO

based on
Algorithm 2

4 Tomography offset Mid to long
5 Cycle skipping in

tomography
Algorithm 3

background velocity model (following Warner et al. 2018).
Figure 14a and 14b show the true and initial background velocity
models, respectively. The model is 5 km in width and 1.5 km in
depth and is discretized by 251 × 301 gridpoints with a horizontal
grid interval of 20 m and a vertical grid interval of 5 m. As
shown, the main task here is to reconstruct the missing layers
from the initial background velocitymodel. The observed dataset,
containing only primary reflections, is modelled via PWMod and
acquired using 51 surface shots every 100mand 251 fixed receivers
every 20 m. A Ricker wavelet with a peak frequency of 20 Hz is
employed as the source function. The maximum available offset
in the acquisition is limited to 4000 m. We record the reflection
dataset for 1.8 s.

Figure 15 illustrates the migration offset analysis output graph,
considering the initial background velocity model and the full
frequency band, for this example. According to the misfit-offset
graph,we choose theMEMOto be 1750m (fixed). For tomography,
we use offsets larger than 500 m, and any contribution from the
cycle-skipped long-offset data into the tomographic gradient is
excluded viaAlgorithm3 in each cycle. Asweprogress andupdate
the background velocity, additional offsets become relevant in
tomography since they are not cycle-skipped anymore. This
continues until all offsets are included. Figure 16 shows the
data fit prior to inversion, where cycle skipping is obvious in
the dataset.

We invert the full-frequency band 0–60 Hz simultaneously
(no multi-scaling strategy) in 45 cycles, each including 1x LS
migration and 1x LS tomography. Figure 17 shows the estimated
background velocity model perturbation after 1 cycle. As seen,
the reconstructed background velocity perturbation accurately
represents the true update direction from the very first cycle.
Figure 18 shows the final background velocity model estimated
after 45 cycles. The result shows a remarkable accuracy in
recovering the missing dipping layers in the background velocity.
This recovery comes with a high level of vertical resolution.
Note that the finite lateral extent of the estimated layers is
due to the finite extent of the acquisition. Also, note that we
cannot update the deepest layer in the model, below 1300 m,
using reflection tomography, as expected. One profile of the final
estimated background velocitymodel is shown in Figure 19a. This
profile oncemore illustrates the effective vertical illumination via
our proposed ORWI algorithm.
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FIGURE 21 Migration offset analysis to extract the MEMO (Exam-
ple 2); the red line on the curve denotes the MEMO.

6.2 Example 2: Flat Section of the Marmousi
Model

Next, we verify our proposedORWI algorithmwith a selected part
of the Marmousi model that is almost flat. Figure 20a shows the
true background velocity model, which is 6 km in width and 1.74
km in depth. Themodel is discretized by 251 × 175 gridpoints with
a horizontal grid interval of 30 m and a vertical grid interval of
10 m. To construct the initial background velocity model, after
smoothing out the true background velocity model using a two-
dimensional (2D) Gaussian filter with a standard deviation of
50 (gridpoint), we selected a single vertical profile to construct
the initial one-dimensional model. Figure 20b shows the initial
background velocity model. Forty-one surface shots are used for
acquisition, with a shot spacing of 150 m. There exist 251 fixed
receivers distributed on the surface every 10 m. The recording
time is 2.2 s. The maximum available offset is limited to 4000
m. Using a Ricker wavelet with a peak frequency of 15 Hz as the
source function, the observed reflection dataset, containing only
primaries, is generated by PWMod.

Figure 21 displays the migration offset analysis output graph,
considering the initial background velocity model and the full
frequency band. Based on the misfit-offset graph, the MEMO
is fixed at 3000 m. Comparing the MEMO with the maximum
available offset in the acquisition, we can infer that the cycle
skipping is not that severe in this example. For tomography,
offsets larger than 500 m are employed, and the cycle-skipped
long-offset data contribution to the tomographic gradient is
excluded in each cycle by Algorithm 3. As we advance in cycles
and update the background velocity, more and more offsets
contribute to tomography because they are no longer cycle-
skipped. This process goes on until all offsets are addressed.
Figure 22 demonstrates the data fit in the first- and middle-
shot gathers prior to inversion, confirming the minimum cycle
skipping in the dataset.

We invert the full-frequency band 2–45 Hz at once (no multi-
scaling strategy). We perform 150 cycles of the proposed ORWI,
each consisting of 1x LS migration and 1x LS tomography.
Figure 23a,b displays the cumulative background velocity model
perturbation estimated after 1, 50 and 150 cycles. As seen, the
recovery of the background velocity model begins with large-
scale events and develops towards tiny events. One profile of the
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FIGURE 22 Data fit for the first and middle shots calculated in the true background velocity model, shown in red, and the initial background
velocity model, shown in blue (Example 2). (a) First shot gather. (b) Middle shot gather.
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(b) Es�mated model perturba�on a�er 50 cycles
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FIGURE 23 Estimated background velocity model perturbations
(Example 2). (a) Estimated background velocity model perturbation after
1 cycle. (b) Cumulative estimated background velocitymodel perturbation
after 50 cycles. (c) Cumulative estimated background velocity model
perturbation after 150 cycles.

final estimated background velocity model is also displayed in
Figure 19b, revealing a good vertical resolution. Figure 24 shows
the final background velocity model estimated after 150 cycles of
the proposed ORWI, confirming the effectiveness of the proposal.
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FIGURE 24 Final estimated background velocity model after 150
cycles of the proposed ORWI (Example 2).

6.3 Example 3: Faulted Section of the Marmousi
Model

Finally, we validate our proposed ORWI algorithm using the
faulted section of the Marmousi model (marine scenario). The
true background velocity model, illustrated in Figure 25a, spans
almost 7 km in width and 2.5 km in depth. This model is
discretized into 296 × 104 gridpoints, with a horizontal grid
interval of 25 m and a vertical grid interval of 25 m.

To create the initial background velocity model, we apply a
2D Gaussian filter with a standard deviation of 20 (gridpoint)
to construct the true background velocity model. The resulting
initial background velocity model with a water layer on top is
depicted in Figure 25b. For acquisition, 31 surface shots are used
on the surface (the shots are spaced either 250 m apart or 225 m
apart), and 296 fixed receivers are distributed on the surface at
25 m intervals. The recording time is 4.092 s, and the maximum
available offset is limited to 4000 m. Using a Ricker wavelet with
a peak frequency of 10 Hz as the source function, we generate the
observed reflection dataset, only primaries, through PWMod.

Figure 26 illustrates the output of migration offset analysis,
considering the initial background velocity model and the full
frequency band, through themisfit-offset graph. TheMEMO is set
at 2000mbased on themisfit-offset graph. In the tomography pro-
cess, offsets exceeding 500 m are employed, and the contribution
from the cycle-skipped long-offset to the tomographic gradient
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TABLE 3 Frequency strategy employed with Example 3.

2–3 Hz 2–5 Hz 2–7 Hz 2–14 Hz 2–21 Hz

Total cycle 4 4 4 20 25
LS migration iteration in each cycle 5 5 5 3 2
LS tomography iteration in each cycle 5 5 5 3 2
Image reset to zero after each cycle Yes Yes Yes Yes Yes
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(a) True background velocity model
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FIGURE 25 Faulted section of the Marmousi model (Example 3).
(a) True background velocity model. (b) Initial background velocity
model.
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FIGURE 26 Migration offset analysis to extract the MEMO (Exam-
ple 3); the red line on the curve denotes the MEMO.

is excluded in each cycle through Algorithm 3. As we progress
through cycles and update the background velocity, an increasing
number of offsets contribute to tomography since they are no
longer cycle-skipped. This process carries on until all offsets have
been accounted for.

The inversion here employs a multi-scaling strategy (data are low
pass filtered with increasing high cut frequencies), which starts
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(a) 2-7 Hz
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(b) 2-14 Hz

0 1750 3500 5250 7000
Lateral location (m)

0

1250

2500

D
ep

th
 (

m
)

1500

3000

4450

v 
(m

/s
)

(c) 2-21 Hz

FIGURE 27 Estimated background velocity models using different
frequency ranges (Example 3). (a) Estimated background velocity model
with the frequency range of 2–7 Hz. (b) Estimated background velocity
model with the frequency range of 2–14 Hz. (c) Estimated background
velocity model with the frequency range of 2–21 Hz.

from a low frequency of 2 Hz and gradually increases up to 21
Hz. Table 3 displays the frequency strategy used in the inversion,
presenting details on the frequency ranges, the total number
of cycles, and the number of iterations for both LS migration and
LS tomographywithin each cycle. Note that the reflectivitymodel
is reset back to zero after each frequency scale. Figure 27a–c
shows the estimated background velocity models estimated after
the frequency ranges of 2–7Hz, 2–14Hz and 2–21 Hz, respectively,
and Figure 28a and 28b presents the stacked imagesmapped using
the true, initial estimated and final estimated background velocity
models, respectively.
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(a) True image mapped using the true background velocity model
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FIGURE 28 Estimated images using different background velocity models (Example 3). Estimated images using (a) the true background velocity
model, (b) the initial background velocity model and (c) the final estimated background velocity model.
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FIGURE 29 Image difference. (a) Difference between the images mapped by the true and initial background velocity models. (b) Difference
between the images mapped by the true and final estimated background velocity models.

As can be seen in Figures 27 and 28, while not flawless, par-
ticularly in the deep right of the estimated model marked with
a dashed ellipse in Figure 27c, the kinematic properties of the
background velocity model during the inversion are improved
significantly to incorporate the essential traveltime information
for accurate depth migration. For a more precise evaluation of
the overall accuracy in estimations, Figure 29 compares the image
difference between the true and initial image, as well as the
difference between the true and final estimated image.

7 Discussion

In the field of exploration seismology, full waveform inversion
(FWI) has been widely regarded as the ultimate solution for sub-
surface property reconstruction since its introduction. However,
it was later discovered by the FWI community that the reflection-
associated tomographic wavepaths in the FWI kernel were too
weak to update deep low-wavenumber properties beyond the
reach of refractions. In response to this limitation, reflection
waveform inversion (RWI) was developed to make full use
of the reflection-associated tomographic wavepaths. Despite its

potential, RWI has its own limitations, as mentioned earlier.
To address these limitations, in the present study, we analysed
the current state of RWI in the context of one-way reflection
waveform inversion (ORWI).

We acknowledge that our proposed solution to address full-
wave inconsistencies in the short-offset data within ORWI is
an intermediate step and may not be perfect. It may be viewed
as a ‘dirty solution’ needing further validation and tuning. An
alternative promising approach is the one proposed by Liang et al.
(2022). Moreover, it should be noted that we have not addressed
the issue of reflectivity–velocity coupling, for which solutions
have already been proposed – such as working in the pseudo-time
domain or explicitly accounting for the couplingwhen computing
the tomographic gradient of RWI (Valensi and Baina 2021).

In this research, we chose not to introduce any model-based
regularization to our tomography misfit function. However, we
believe that adding a model-based regularization, particularly a
structure-oriented type of regularization guided by the reflectivity
model (Masaya and Verschuur 2018; Yao, da Silva, and Wu 2019;
Provenzano et al. 2023), could positively influence the overall
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performance of the tomographic updates. We plan to explore this
possibility in future investigations.

The multi-scaling strategy, in the context of RWI, involves invert-
ing the reflection waveforms at multiple scales or frequencies,
starting from low frequencies towards higher frequencies. This
is done to mitigate the effect of the cycle-skipping issue in the
long-offset waveforms in the context of RWI. With Example 3,
we showed that a multi-scaling strategy may be beneficial in
ORWI wherever the full-band reflection dataset is too complex
to be resolved tomographically with the reflection wavepaths all
at once. The same is reported in Y. Chen et al. (2020).

Another important aspect for discussion is the amplitude varia-
tion with offset (AVO) effect. The ORWI process, given its angle-
independent properties, cannot reproduce AVO on the data.
Indeed, an angle-independent reflectivity model is insufficient
for capturing AVO (Davydenko and Verschuur 2017; Farshad and
Chauris 2020). Therefore, we propose to reduce AVO in the data
before applying the ORWI methodology, as described in Qu and
Verschuur (2021). The examples in this paper were created with
the inverse crime approach; that is, we consider the optimum
situation where AVO effects do not play a role, such that we can
focus on the convergence aspects of ORWI.

There are additional challenges in real data applications. An
accurate estimation of the source signal is essential. If there
is a mismatch in the source signal, it will bias imaging and
tomography results. As the 2D field data still have propagated in
a three-dimensional (3D) world, amplitudes have to be corrected
(3D to 2D transformation), and out-of-plane effects may not
be well addressed by two-dimensional ORWI. Naturally, when
ORWI is applied in a full 3D sense to 3D field data, those
amplitude and out-of-plane effects will no longer be present.
Another challenge with field data is the potential presence of
the anisotropy effect. While anisotropy effects can be included
in ORWI, updating the anisotropy parameters is not trivial
(Alshuhail and Verschuur 2019). The Q-effect in the data can
represent another challenge, and this can also be integrated into
the ORWI process, as explained by Safari and Verschuur (2023).

Finally, the ORWI method can be extended to the 3D case, where
we have wavefields measured along inline and crossline direc-
tions. The approximate Hessian matrix for the entire medium
will be a 3D block-diagonal matrix, where each block exhibits
non-zero elements on and around the main diagonals in three
directions, forming a 3D band-diagonal matrix for each virtual
data plane, which is still manageable to invert. It will, of course,
incur higher computational costs, akin to the entire ORWI
method, which is also more expensive in three dimensions.

8 Conclusion

This paper addressed reflection waveform inversion limitations
to recover an improved background velocity model update. To
do so, in the context of one-way reflection waveform inversion
(ORWI), we replaced the least-squares wave equation migra-
tion technology with an efficient preconditioned least-squares
wave equation migration technology to retrieve high-resolution
reflectors with preserved amplitudes. To mitigate the imprint of

full-wave inconsistency in the short-offset data for tomography,
we muted short-offset traces in the residual data gathers in the
tomographic gradient of ORWI. We also adopted an extended
migration offset rather than a short offset to avoid limitations in
reflection tomography linked to the suboptimal signal-to-noise
ratio and illumination of the reflectivity model. We also proposed
a data-selection algorithm to exclude the damaging effect of the
cycle-skipped long-offset data from the tomographic gradient of
ORWI. The results of three numerical examples demonstrated the
effectiveness of the proposed approach in recovering high-fidelity
tomograms with good vertical resolution.
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