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Abstract. We have studied, for the first time, the sensing capabilities of plasma-enhanced che-
mical vapor deposition (PECVD) SiC-SiO2-SiC horizontal slot waveguides. Optical propagation
losses were measured to be 23.9 dB∕cm for the quasi-transverse magnetic mode. To assess the
potential of this device as a sensor, we simulated the confinement factor in the slot. This simula-
tion revealed that SiC-based slot waveguides can be used, advantangeously, for sensing as the
confinement strongly varies with the refractive index of the slot material. A confinement factor
change of 0.15∕refractive index units was measured for different slot materials. © 2012 Society
of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JNP.6.063530]
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1 Introduction

Optical waveguide-based sensors are considered to be very powerful tools in the field of
biochemical sensing, because they offer the possibility to achieve high sensitivity and a high
degree of on-chip integration. For this reason, over the past decade, many attempts have been
made to find new configurations of optical waveguides that optimize light-analyte interaction.
For applications in biochemical and environmental monitoring, this implies confining the light
in a low index media. A possible approach, to improve the light-analyte interaction, is the use
of liquid core waveguides. Previous approaches were often based on antiresonant-reflecting or
Bragg confinement effect.1,2 Another important example of a waveguide structure that is able to
confine light in a liquid channel is given by the slot waveguide.3

In a slot waveguide, the high index contrast at the waveguide interfaces enhance the light in a
nanometer-wide region filled with a low refractive index medium. This strong optical confinement
increases the interaction of the field with the low-index media, which promotes very high sensi-
tivity detection of substances in water-based solutions. For this reason, slot waveguides are widely
applied as highly sensitive tools, especially in biochemical and environmental applications, and
have demonstrated very high flexibility for integration in more complex lab-on-a-chip systems.4–6

Silicon is commonly used as material for the high refractive index regions, while oxide or
liquids/biological materials are used as the low refractive index region.7

The fabrication of a vertical slot involves local etching. This can cause large roughness in the
vertical interfaces and, thus, large propagation losses.8 Furthermore, when these devices are used
for handling very small objects such as trapping and transporting of nanometer-sized particles,
the high optical absorption poses a restriction on the amount of optical power that can be applied
(the high heat generation damaging the biological targets).9,10 These problems can be overcome
by working in the visible range, where the absorption coefficient of water is about 2000 times
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lower than in the near infrared range. Moreover, in label-based sensing methods, the possibility
to operate in the visible range of the electromagnetic spectrum permits the use of commercially
available fluorescence markers for molecular labeling. Due to the enhanced E-field intensity in
the slot region, it has been demonstrated that the use of a slot-waveguide can improve both the
excitation and the collection efficiencies with respect to a single slab waveguide.11

To overcome losses, horizontal slot-waveguides are preferred as they do not involve etching
but a control of the deposited layers. Experimental demonstration of horizontal slot-waveguides
in a Si∕SiO2 material system with good propagation losses have been recently reported.12 In this
case, smoothing the bottom silicon interface eliminates scattering loss. However, achieving low
losses requires a very tight control of the waveguide dimensions, especially for amplification
purposes where the size of the slot is on the order of 10 nm.

When replacing silicon with a material of lower refractive index such as silicon carbide (SiC),
the slot height can be designed to be larger (to achieve the same power in the slot) due to a
weaker optical confinement making their filling with liquid or biological samples for sensing
easier. SiC has, in this case, an important advantage compared to silicon nitride (SiN) as it is
chemically a much stronger material.13 This makes SiC extremely interesting for applications
in harsh environments.14

In this work, we propose horizontal slot waveguides that make use of SiC as the high refrac-
tive index material. We show that the fabricated slot waveguides have a high tolerance to dimen-
sion deviations during fabrication and do not require etching of the high refractive index regions.
Propagation losses have been measured and (by replacing the slot filling material) the sensitivity
of such wave guiding system is estimated both theoretically and experimentally.

2 Theoretical Filling Factor and Sensitivity of SiC-Based Slot
Waveguides

At 1.3 μm, the wavelength used to simulate the device performances, plasma-enhanced chemical
vapor deposition (PECVD) SiC has a refractive index of 2.34 and no absorption.15 Previous work
on PECVD SiC waveguides has shown reasonably low losses in the visible (5 dB∕cm) and a
very low loss behavior at 1.3 μm.15,16 It is, therefore, possible to have sensors based on slot
waveguides working in a very large wavelength range with high confinement in the slot region.
This is not possible with Si-based slot waveguides due to the absorption of Si in the visible.

In order to evaluate the feasibility and the performance of SiC-based slot waveguides, we
have investigated the dependence of the filling factor, such as the power coupled, in the gap
region. We estimated the maximum confinement, such as the power in the slot divided by
the power launched, using MIT photonic bands when oxide (n ¼ 1.45) fills the slot as illustrated
in Fig. 1.17 In the following, Wslab represents the thickness of the SiC films and Wslot represents

Fig. 1 Schematic of the simulated slot waveguide,W slab represents the width of the region of high
refractive index (here SiC), W slot the width of the guiding region (here water). The refractive cover
of the cover is 1 and the substrate is chosen infinite and has a refractive index of 1.45.
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the thickness of the filling material in the slot region. In our current simulations, no specific
width of the waveguide is defined, but the surrounding medium is set to be air (n ¼ 1).

Figure 2 shows the dependence of the filling factor, such as the power flux in the region of
widthWslot, at a wavelength of 1.3 μmwhenWslab equals 78, 117, and 156 nm. We see that when
Wslab gets thicker, the confinement factor tends to reach a limit (0.3) and this occurs for every
Wslot. This is an important result for the fabrication as it relaxes the tolerance on the layer
thicknesses that are often difficult to control, especially when using PECVD depositions.

In Fig. 3, we plotted the variation of the confinement factor depending on the refractive
index of the filling material in the slot. The sensitivity, also referred to as the slope, of 0.15∕
refractive index unit (RIU) is found. The changes of refractive effective index of the slot wave-
guide (neff ), compared to the refractive index changes of the filling material (or bulk sensitivity),
are often used to evaluate the maximum performance of a propagating waved sensor.18 The
sensitivity, in that case, is found to be 0.75. However, in the following, we concentrated on
experimentally estimating the confinement factor of SiC-based slot waveguides with different
filling materials, so we keep the first evaluated sensitivity; refer to Fig. 3 as reference.

3 Optical Losses of SiC-Based Slot Waveguides

After estimating the sensitivity of SiC based slot waveguides, we fabricated some devices
to measure their propagation losses. We first deposited a 2 μm thick PECVD SiO2 layer on
a standard h100i Si wafer. The oxide serves to optically isolate the circuit from the substrate,
thus reducing the loss due to substrate leakage. Then, a 118 nm thick PECVD SiC layer is
deposited using silane and methane. A 268 nm SiO2 forms, then, the slot and 118 nm SiC
seals the slot waveguide. The layers are chosen thicker here than in the previous section to

Fig. 2 Dependence on W slot of the filling factor for a quasi-TM mode in the gap region of an SiC-
based slot in the case of an oxide filling. W slab being 78 nm ( . . . .), 117 nm (——) and 156 nm
(plain).

Fig. 3 Variation of the confinement factor for different refractive indices in the case of an SiC-
based slot waveguide with W slot ¼ 117 nm and W slab ¼ 156 nm.
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ease the coupling in and out of the waveguides. Finally, a 2 μm thick PECVD SiO2 layer covers
the stack to make a perfectly symmetrical structure. There is a 10 nm difference between the
deposited SiC layers and the layers with best confinement (30 nm for SiO2). Due to the layers
being thin, some discrepancy in the expected and obtained thicknesses can occur as the deposi-
tion times are short. However, as we used a lower refractive index layer than Si as confining
material, the SiC∕SiO2 system has much higher tolerance as shown in Fig. 2. The temperature of
deposition of all the layers is 400°C which ensures compatibility with CMOS processes.

The horizontal confinement is ensured by patterning the whole stack with a mask containing
2.8 μm wide waveguides. Inductively coupled plasma process is used to etch down to the first
oxide layer. Figure 4 shows a scanning electron microscope (SEM) view of the fabricated slot
waveguide.

The slot waveguides were characterized in terms of losses using the cutback method. The
technique consists of measuring the total insertion loss caused by the waveguide for different
waveguide length. By doing so, it is possible to isolate the contributions from propagation
and total coupling losses. The characterization was done at 1.3 μm using a fiber coupled super-
luminescent diode. Light was sent into the waveguide and collected at the output using
butt-coupled standard single-mode fibers (SMF28). The optical bench used here is depicted
elsewhere.19 The results for both the quasi-TE and the quasi-transverse magnetic (TM)
modes are presented in Table 1. As expected, the quasi-TM mode gives the lowest losses
(23.9 dB∕cm), while the quasi-TE mode has higher losses (38.8 dB∕cm).20

The strong polarization dependency makes it experimentally easier to be sure that the light is
coupled into the waveguides and not in the oxide slab. The loss figure is in agreement with
previously reported losses obtained with vertical slot waveguides made on an SiN∕SiO2 material
system.13 By making the lateral dimension of the waveguide smaller, the quasi-TE mode
will disappear, which leads to a fully single polarization device. In the present paper, we
concentrated on the suitability of SiC for sensor purposes, therefore, we did not attempt to
make the waveguides narrower. Having a single polarization structure will be required when
considering the slot waveguides in sensor platforms to limit, for example, cross sensitivity.
In the current study, the quasi-TM mode is anyway insensitive to lateral dimensions fluctuations.

We measured, by atomic force microscope (AFM), the roughness at the surface of the SiC
layer after deposition on a PECVD oxide layer. The roughness was found to be 15 nm RMS
which is much higher than the 0.5 nm reported roughness of an amorphous SiN∕SiO2 interface.

21

In order to decrease the roughness of the PECVD layers, which is source of losses in the
present structure, several techniques can be used such as polishing. Unfortunately, such

Fig. 4 Fabricated optimized SiC-SiO2-SiC slot waveguide. The thickness of the SiC layers was
found to be 118 nm with SEM.

Table 1 Optical losses of the proposed slot waveguide measured by cut back technique for
both quasi-TE and quasi TM-modes.

Losses in dB∕cm Error in dB∕cm

Quasi-TM 23.9 �1.3

Quasi-TE 38.8 �1.2
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processing is not cost effective for sensor systems. However, in optical sensing, very compact
but highly sensitive devices can be designed to make the loss figure less of a problem.22

4 SiC Slot-Based Sensitivity

To estimate the sensitivity of the device to refractive index changes and confirm what was shown
in the simulation section, we made slot waveguides with TEOS oxide and SiN as slot material.
The fabrication process of these new slot waveguides follows the one described in Sec. 2 with the
deposition of PECVD TEOS (at 350°C in this case) and PECVD SiN, respectively, instead of
SiO2. The fabricated slots are also patterned and etched to ensure a horizontal confinement.

By measuring the propagation losses for each material, like in Sec. 2, we also know the
coupling losses such as the confinement. Figure 5 shows the measured confinement factor versus
the refractive index (n). It can be demonstrated that the sensitivity (S) and the power confinement
in a slot waveguide (Γs) are related to each other by Ref. 23,

S ≅
n0s
neff

ðΓs þ δzÞ; (1)

z being the propagation direction, ns0 the refractive index in the slot when not filled, neff the
effective mode index, and δz the intensity confinement factor. In the present paper, we study
the sensing capabilities of the fabricated slot waveguides and, therefore, we limited ourselves
to the study of the confinement factor. To fabricate a sensor, structures like interferometers or
ring resonators are required.24 However, the study of the confinement factor for Si slot wave-
guides have shown that for three different slot materials, namely air, water, and silicon oxide, the
confinement varies by 0.14 per refractive index unit (RIU).23

The sensitivity of the proposed slot structure is measured by estimating for every filling
materials (SiN, TEOS, SiO2) the coupling losses. The coupling losses are obtained from cut
back measurements by intersecting the linear fit with the vertical axis. The coupling losses
are then plotted against the refractive index which is shown in Fig. 5, and the slope of the linear
fit defines the sensitivity. Here, a 0.15∕RIU sensitivity is obtained. The measured performance
compares with the confinement of Si-based devices.

5 Conclusions

A PECVD SiC∕SiO2∕SiC horizontal slot waveguide sensor has been demonstrated. Propagation
losses of 23.9� 1.2 dB∕cm for the quasi-TM mode have been measured using the cut
back method. This promising first demonstration of horizontal silicon carbide/silicon oxide
slot-waveguide devices makes this material system an appropriate trade-off between high
integration and ease of access to the slot region (larger dimension) for sensing photonic devices
based on integrated slot-waveguides. Further, the sharp changes in confinement factor when the

Fig. 5 Experimental confinement factor in function of the refractive index with the errors bars
associated.
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slot dimensions vary can find application not only in refractive index measurement setups, but
also in pressure sensors. As the light is so confined in the slot region, they are also ideal as
transducers read out.
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