
Reduced Order Modeling
for Spatially Varying
Radiative Interfaces

by

Nina Bagchus

MSc Applied Mathematics - Computational Science & Engineering

In collaboration with ASML

Daily Supervisor: Shobhit Jain
Responsible Supervisor: Martin van Gijzen
ASML Supervisor: Abdullah Waseem

Cover: Graphic image made by Lotte Vollebregt

Abstract

Radiative heat transfer between moving geometries is critical in many high-temperature engi-
neering systems, yet existing simulation approaches are often too computationally expensive.
This study addresses this challenge by developing and testing a reduced order modeling frame-
work for a transient, coupled, nonlinear radiative heat transfer problem with spatially varying
subsystems.

We implemented a finite element model of two geometries in Python as a test problem, incorpo-
rating the nonlinear radiation boundaries, and varying view factors due to the motion between
the subsystems. Different model order reduction techniques are applied on the test problem,
each facing distinct limitations. The spatially varying nonlinearity caused most of the com-
plexities. This nonlinearity is solely on the boundary, hence we use substructuring to isolate
the nonlinearity. The linear internal dynamics can be reduced with well-established reduction
techniques, like the Craig-Bampton method. In addition, the nonlinear boundary term is ap-
proximated by a feedforward neural network that was trained on simulation data to approximate
nonlinear radiation exchange as a function of the temperatures on the radiative boundaries and
relative position, enabling us to ignore the view factor computations, which are computationally
very expensive.

The proposed reduced order model (ROM), combining Craig-Bampton reduction for internal
degrees of freedom with a neural network approximation for interface radiation, achieves signif-
icant computational savings compared to the full order model (FOM). Results show that with
decoupling internal and interface dynamics, the Craig-Bampton basis reduces the system ma-
trices sizes while preserving accuracy in the full solution. On the interface, the neural network
provides an efficient approximation for the nonlinear, spatially varying radiation operator, re-
ducing the computational costs from quadratic O(NM) scaling (FOM) to a linear O(N + M)
dependence, where N and M are the number of elements on the radiative boundaries of two
components. In time integration, the Newton iterations remain identical in terms of the setup
to the full model, but the reduced residual and Jacobian evaluations are significantly faster as
the matrix sizes are reduced. Although both the Craig-Bampton reduction and neural network
require additional offline computations (modal analysis and training), these are one-time costs.
The online benefits are significant: the ROM reproduces the full solution very accurately while
enabling much faster simulations, making it very useful for repeated evaluations, parametric-,
and design studies.

i i

Contents

Nomenclature vii

1 Introduction 2
1.1 Problem Statement . 2
1.2 Background: Reduced Order Modeling . 3
1.3 Research questions . 6
1.4 Outline . 7

2 Test Problem 9
2.1 Radiation . 9
2.2 View Factor . 10

2.2.1 View Factor Equation in 2D . 11
2.3 Two-dimensional Heat Equation . 13

3 Model Reduction: Mathematical Framework 15
3.1 Projection-Based Model Reduction . 15

3.1.1 Modal Decomposition . 16
3.1.2 Proper Orthogonal Decomposition . 16
3.1.3 DEIM . 17

3.2 Substructuring . 19
3.2.1 Craig-Bampton . 20
3.2.2 Neural Network for the Nonlinear Radiative Boundary Term 22

3.3 Linearization of the nonlinearity . 24
3.4 View Factor Matrix Reduction . 25

4 Numerical Results and Analysis 27
4.1 POD . 28

4.1.1 Comparison Strategies . 29
4.1.2 Results POD Strategies . 29

4.2 POD DEIM . 36
4.2.1 Results DEIM . 36

4.3 Modal Decomposition . 38
4.3.1 Linearized system . 38
4.3.2 Modal decomposition for the nonlinear system 45

4.4 Substructuring . 49
4.4.1 Internal Reduction: Craig-Bampton . 49
4.4.2 Interface Reduction: Neural Networks . 50

ii

Contents Contents

5 Case study in ANSYS: 3D model 56
5.1 Initializing 3D model . 56
5.2 Collecting Data . 57
5.3 Neural Networks . 57
5.4 Results . 59

5.4.1 Stationary model . 59
5.4.2 Moving component . 63

5.5 Computational Complexity . 64

6 Discussion 67
6.1 Sub research aspects: . 67
6.2 Outlook . 68

7 Conclusion 70

A Computational Complexity of the Neural Network 74

B Radiation Code 76

C Code: ANSYS snippets 81

iii iii

List of Figures

1.1 Simplified model of the metroframe and the waferstage 2
1.2 Overview of different MOR techniques. Including the advantages and disadvan-

tages of the methods. 4

2.1 View factor matrix. 12
2.2 Visualization of view factor . 12

4.1 Overview POD strategies. As most industries uses component-wise reduction to
be able to assemble them in different subsystemsyes, we will apply DEIM on the
two bases strategy only. 28

4.2 Singular values of the POD method for a single or two bases. The singular values
come from applying an SVD method to the data matrix. 30

4.3 Results of the FOM for a specific timestep . 30
4.4 POD method with a single basis, conserves small part of the energy. 31
4.5 POD method with a single basis, conserves part of the energy. 31
4.6 Temperature over time on a boundary and interior node. The first figure gives

the results for a slow motion of component B and the second gives the results for
fast motion. Both result has the same heat source, an inward flux of 200 W/m2.
The eigenbasis consists of a single basis with 7 modes. 31

4.7 Temperature over time on a boundary and interior node for the last 100 timesteps
of the full simulation. The first figure gives the results for a slow motion of
component B and the second gives the results for fast motion. Both result has
the same heat source, an inward flux of 200 W/m2. The eigenbasis consists of a
single basis with 7 modes. 32

4.8 Temperature over time of a boundary and an internal node in component A using
one basis with varying number of modes. 33

4.9 POD method with two bases, conserves small part of the energy. 34
4.10 POD method with two bases, conserves part of the energy. 34
4.11 POD method with two bases, conserve almost all the energy. 34
4.12 Temperature over time of a boundary and an internal node in component A using

two bases with varying number of modes. 35
4.13 L2 error (Eq. (4.2)) of component A for the two strategies for the POD method

based on a timestep compared to the FOM. The number of modes are the total
number of modes used for both systems, i.e. when we use two separate bases, we
add the number of modes in both systems. 36

4.14 Temperature over time of a node in component A. POD-DEIM compared to the
FOM and POD method. velocity 37

iv

List of Figures List of Figures

4.15 Error of the POD-DEIM method versus the number of eigenmodes. The error of
the temperature of the last timestep compared to the FOM. The error of the POD
method with two bases is also given as a reference. The L2-error is computed as
(Eq. (4.2)). 37

4.16 Overview modal decomposition strategies. 38
4.17 The eigenvalues of the global system in ascending order. 40
4.18 Projection of the RHS onto the full eigenbasis scaled with the eigenvalues for a

single basis. 41
4.19 Error (component A): comparison between taking the eigenvectors correspond-

ing to the smallest eigenvalues and between setting a criterion to select specific
eigenvalues for a single basis. The error is computed as (Eq. (4.2)). 42

4.20 Projection of the RHS onto the full eigenbasis scaled with the corresponding
eigenvalues (two different subspaces with two different eigenbases). 43

4.21 Error (component A): comparison between taking the eigenvectors corresponding
to the smallest r eigenvalues and between setting a criterion to select specific
eigenvalues for two bases. Note that this is the total number of modes, i.e. for
two bases this means the number of modes of both reduced bases. The error is
computed as (Eq. (4.2)). 43

4.22 Modal decomposition: comparison between one or two bases for different mode
counts. 44

4.23 Comparison of the full right-hand side and the nonlinear component projected
onto the full eigenbasis. 45

4.24 The error (Eq. (4.2)) of both strategies compared for a nonlinear system. 46
4.25 The comparison of the error (Eq. (4.2)) between the linearized and the nonlinear

system using an increasing number of eigenmodes in the bases. 46
4.26 FOM of the system. A reference for the results given in Figures 4.28 and 4.30. . 47
4.27 Plots of the temperature over time on one node: FOM compared to the modal

decomposition of a nonlinear system. The total number of modes is 27, that is
for both systems. The eigenvectors are chosen based on a criterion. 47

4.28 Modal decomposition for the nonlinear system with two bases. 47
4.29 Plots of the temperature over time on one node: FOM compared to the modal

decomposition of a nonlinear system. The total number of modes is 26, that is
for both systems. The eigenvectors corresponding to the 13 smallest eigenvalues
are taken for both systems. 48

4.30 Modal decomposition for the nonlinear system with two bases. The nonlinear
behavior is not captured accurately. 48

4.31 Temperature of nodes over the full time period and the last 100 timesteps for
the comparison of the FOM and the substructured system with Craig-Bampton
reduction for zero eigenmodes. 49

4.32 Temperature of nodes over the full time period and the last 100 timesteps with
fast motion (four eigenmodes). 50

4.33 Temperature of nodes over the full time period and the last 100 timesteps with
fast motion (10 eigenmodes). 51

4.34 Temperature of nodes over the full time period and the last 100 timesteps with
fast motion with 12 eigenmodes . 51

4.35 The results of the neural networks used in this work. A test sample is used to
visualize the accuracy of the results from both models 52

v v

List of Figures List of Figures

4.36 Temperature of nodes over the full time period and the last 100 timesteps for the
comparison of the substructured system with Craig-Bampton reduction and with
the neural network. 52

4.37 Radiation on a boundary node on component A 53
4.38 Temperature of nodes over the full time period and the last 100 timesteps for the

comparison of the substructured system with Craig-Bampton reduction and with
the neural Network. 53

4.39 Radiation on a boundary node on component A. The results for relatively slow
motion (∆t = 80). 54

4.40 Algorithm ROM: (1) substructuring, (2) Craig-Bampton reduction of internal
DOFs (reduction in matrix sizes) (3) neural network approximation of interface
radiation (does not reduce size), (3) ROM . 55

5.1 3D model in ANSYS . 56
5.2 The temperature at the bottom of component A. The heat source is an inward

flux of 135 W/m2. 57
5.3 Workflow of Chapter 5; ANSYS and MATLAB. 58
5.4 Neural networks of both components. A test sample of the data set is visualized

to see the effect of the neural network. 58
5.5 Temperature over time on the radiative surfaces for the FOM and the ROM. . . 59
5.6 Case A: temperature on the bottom of component A at t = 250,000 s (Nt = 22)

with 80 W/m2 heating. ROM (MATLAB) vs. FOM (ANSYS). 60
5.7 Case B: temperature on the bottom of component A at t = 100,000 s (Nt = 19)

with 100 W/m2 heating. ROM (MATLAB) vs. FOM (ANSYS). 61
5.8 Case C: temperature on the bottom of component A at t = 250,000 s with

80 W/m2 heating. ROM (MATLAB) vs. FOM (ANSYS). 61
5.9 Case D: temperature on the bottom of component A at t = 200,000 s with

65 W/m2 heating. ROM (MATLAB) vs. FOM (ANSYS). 62
5.10 Case E: temperature on the bottom of component A at t = 10,000 s with 130 W/m2

heating. ROM (MATLAB) vs. FOM (ANSYS). 62
5.11 ROM results for different positions of component B. 63
5.12 Log-log plot comparing the computational complexity of radiation assembly (FEM)

and a neural network approximation. The radiation method scales quadratically
as O(N · M) due to pairwise interactions between boundary elements, while the
neural network scales linearly as O(N + M). This demonstrates the significant
computational advantage of the ROM for large scale simulations. 66

vi vi

Nomenclature

Abbreviations
FOM Full Order Model
ROM Reduced Order Model
POD Proper Orthogonal Decomposition
SVD Singular Value Decomposition
DEIM Discrete Empirical Interpolation Method
VFM View Factor Matrix
RHS Right-Hand side
FEM Finite Element Method
MOR Model Order Reduction

Table 1: Simulation parameters (2D case)

Parameter Symbol Value
Length A m 0.5
Height A m 0.15
Length B m 0.1
Height B m 0.03
Thermal conductivity k 237 W/(m · K)
Density ρ 2700 kg/m3

Specific heat capacity cp 900 J/(kg · K)
Heat flux g 200 W/m2

Emissivity ϵ 1
Heat transfer coefficient A κA 5 W/(m2 · K)
Heat transfer coefficient B κB 5 W/(m2 · K)
Step size h 0.05 m
Time step (fast motion) ∆t 1 s
Time step (slow motion) ∆t 80 s
Temperature T0 295 K

vii

List of Figures List of Figures

Table 2: Simulation parameters (3D ANSYS case)

Parameter Symbol Value
Length A m 0.5
Height A m 0.15
Width A m 0.5
Length B m 0.1
Height B m 0.03
Width B m 0.1
Material Aluminium Alloy
Emissivity ϵ 1
Heat transfer coefficient A κA 20 W/(m2 · K)
Heat transfer coefficient B κB 2 W/(m2 · K)
Mesh Linear Tetrahedrons (Patch Conforming)
Temperature (initial and ambient) T0 295 K

1 1

Chapter 1

Introduction

This chapter provides the context and motivation for the research presented in this thesis. We
begin by outlining the problem statement. Finally, we discuss the limitations of the existing
research, present the research questions and give an overview of the structure of the thesis.

1.1 Problem Statement

In many engineering and physical systems, heat transfer between separate geometries occurs
primarily through radiative exchange. This study investigates such a case within the context
of ASML, an international company that develops machines to produce microchips. These
microchips are used in a wide variety of everyday products, like telephones, laptops, cars or
smartwatches.

Given that these chips require a nanometer precision, thermal management is very important
in the development and maintenance of the machines. Minimal thermal deformation of internal
components in the machine can cause the microchips to be defective. Therefore, accurate mod-
eling of heat transfer in this machine is essential. The Full Order Model (FOM) of a thermal
numerical model of the ASML machine is computationally very expensive, due to the high di-
mensionality and the complexity of it. Reduced Order Models (ROMs) are developed to reduce
the costs of the simulations, while preserving the essential dynamics of the system.

The machine consists of numerous distinct parts that can be modeled and reduced separately
prior to reconstructing them as one single model. For this study, we focus on a specific subsystem
of the machine: the metroframe and the waferstage. This part plays a significant role in radiative
heat transfer. The metroframe is a part that is a stationary part which is fixed, the waferstage
moves under the metroframe, see Figure 1.1, where the smaller and lower geometry is the

Figure 1.1: Simplified model of the metroframe and the waferstage

2

1.2. Background: Reduced Order Modeling Chapter 1. Introduction

moving waferstage. Note that the two blocks are separated, they do not touch. In the actual
machine, the waferstage is connected to a cable carrier which transports energy and data. This
cable carrier heats the waferstage, causing it to radiate heat to its surroundings, including the
metroframe.

The numerical model developed in this study for the metroframe-waferstage subsystem, contains
two main difficulties, both mainly happening in the interface between the two geometries. The
first is the nonlinear radiation boundary conditions that occur at the boundaries facing each
other. The other component is the view factor matrix. The view factor matrix can be seen as a
matrix that captures how much the elements or areas ”see” each other. The view factor matrix
contains all scalars, Fij ’s, with a number between 0 and 1 with a quantity that tells you how
much element i sees element j. The number 0 means that the elements do not see each other,
so a ray of heat will never hit that surface. A view factor of 1 means that all the energy that
leaves an element will be absorbed by the other element [1].
The moving waferstage causes complexity in the computations of this view factor matrix. The
view factor matrix will change every timestep because the elements ”see” each other from a
different point. During simulations of the heat distribution, the calculation of this view factor
matrix is very expensive.

1.2 Background: Reduced Order Modeling

This study focuses on Model Order Reduction (MOR). This is a widely used technique to re-
duce high-dimensional mathematical models. MOR replaces a high-dimensional model with a
low-dimensional approximation, the reduced order model (ROM), that preserves the dominant
dynamics while reducing simulation time and the dimension of the FOM. Such high dimensional-
ity typically arises when discretizing partial differential equations (PDEs), in this work it arises
when discretizing the heat equation.

To solve the heat equation, the governing PDEs are discretized according to the Finite Element
Method (FEM), i.e. the domain is partitioned into smaller subdomains. The heat equation is
solved separately over the subdomains. This partitioning results in a large algebraic system.
Accuracy requires fine meshes, and the number of degrees of freedom in the algebraic system
grows rapidly with mesh refinement and domain size. Especially, for large, complex geometries
or assemblies (e.g., ASMLs machines), it yields very high-dimensional and computationally
expensive models, motivating MOR.

Numerous model-reduction methods exist, each suited to different aspects of a dynamical system.
Choosing an appropriate method depends on the system’s characteristics, whether it is linear
or exhibits weak or strong nonlinearities; whether coupling is one- or two-way; whether there
is time-dependent forcing (e.g., transient heat transfer); and whether a steady state exists.
These are examples that are important for the scope of this thesis, there are in general a lot
more characteristics for systems. In general, strong nonlinearities often require more complex
nonlinear reduction techniques, whereas weak nonlinearities can sometimes be reduced with
linear techniques. One-way coupling can simplify reduction by eliminating feedback, while two-
way coupling introduces feedback that typically increases complexity.

Methodologically, it is useful to distinguish between physics-informed and data-driven elements,
and between projection-based and non-projection approaches. Projection-based ROMs construct
a low-dimensional subspace and project the governing equations onto it. Many of these are also
data-driven in how the subspace is identified. Purely data-driven ROMs learn patterns and

3 3

1.2. Background: Reduced Order Modeling Chapter 1. Introduction

Figure 1.2: Overview of different MOR techniques. Including the advantages and disadvantages of the
methods.

dominant dynamics directly from data or experiments. On the contrary, physics-informed ROMs
are useful because they use the underlying physics to create a low-dimensional model, instead of
relying only on data. This strategy does not require any data, which is advantageous, but they
can be impractical when the equations are not general, i.e. they are unknown, too complex, or
inaccessible. There are also hybrid strategies that combine both: physics-informed subspaces
combined with data-driven approaches. An overview of these different MOR techniques and
their advantages and disadvantages is given in Figure 1.2. In the figure, it becomes clear that
the physics-informed ROMs are often relatively easy to implement, they are reliable because
they are based on physics, and often have relatively low computational costs. In contrast, data-
driven approaches are very general, meaning they can be applied across a wide range of domains
with limited interpretability.

In this study, we are working with with a nonlinear heat transfer problem which shows a periodic
steady state solution, due to the periodic movement of the waferstage. We begin with the
classical, data-driven, projection-based method, the Proper Orthogonal Decomposition (POD)
[2]. It uses the Singular Value Decomposition (SVD) to recognize the dominant modes - that
capture the dominant spatial and temporal patterns - in the system and projects the full system
onto a lower-dimensional subspace. This method only efficiently reduces a model if the system
is linear, as the nonlinear term has to be evaluated in full space [3]. A strongly nonlinear system
needs some additional techniques to capture the nonlinear behavior of the system.

A solution would be to linearize the nonlinear radiation boundary conditions to approximate
it as linear boundary condition. This makes the system easier and very efficient to reduce if
the ROM approximates the real solution accurate enough. For linear systems, there are already
a lot of very efficient MOR techniques, like the POD method. Sometimes a data-driven SVD-
based method, like the POD, is not efficient, because an SVD is relatively expensive to compute.
There are a lot of other linear methods, like krylov methods [4], [5], which do not require the
computation of the SVD and already have promising results. The difficulty of this study will
be significantly reduced if the linearization of the nonlinear boundary conditions is accurate
enough. Linearization is in practice hard to apply, as the test model is an idealized version of
the real model with sharp corners, holes and non smooth movements of the waferstage. This
motivates the investigation in nonlinear MOR techniques.

The Discrete Empirical Interpolation Method (DEIM) method is a popular extension to the POD
method as it accelerates the computation of the nonlinearity [3]. When combined with POD,

4 4

1.2. Background: Reduced Order Modeling Chapter 1. Introduction

it is proved to dramatically reduce the computational complexity of the POD for a nonlinear
system [6]. DEIM uses, like POD, the SVD method to extract dominant modes of the nonlinear
part of the system and creates a second basis with these modes. DEIM is most effective when
the nonlinear term can be represented accurately with only a few modes. For systems with
more complex nonlinearities, more modes may be required to achieve the same accuracy, and
alternative reduction approaches may be more suitable.

We can also solve a general eigenvalue problem with the FEM matrices. This motivates the use
of a modal decomposition. We can identify the small and large eigenvalues, which corresponds to
the slow and fast modes of the system. The eigenvectors ϕi’s form an orthogonal basis and allow
projection on this basis to obtain a reduction of the system. To reduce the system, one chooses
the smallest eigenvalues and creates a basis of the corresponding eigenvectors. Discarding some
eigenvectors result in a lower-dimensional subspace onto which the full-order model (FOM) can
be projected.

Usually, the eigenvalues provide information in the neighborhood of the equilibrium, but because
the system has nonlinear behavior, the true dynamics can be very different. However, nonlinear
systems often evolve on low-dimensional, curved surfaces in phase space known as invariant man-
ifolds. Nonlinear Modal Decomposition is a method that provide guidelines of the construction
of these manifolds and how to project the full-system onto it. Spectral Submanifolds (SSMs)
are the smoothest invariant manifolds tangent to spectral subspaces of the linearized system [7].
They extend classical modal subspaces to nonlinear manifolds and capture the local nonlinear
behavior near equilibria [8]. These methods require a steady state solution, which we do not
have in our spatially varying model. There are some new studies that are also able to construct
periodic SSMs, which are useful when the system does not have a constant steady state solution,
but a periodic steady state solution [9], [10]. In the actual model, the behavior is less smooth
compared to our test model, making it challenging to identify the periodic steady state.

As mentioned before, there are other reduction techniques that are more suitable for nonlinear
systems. For example, data-driven neural networks are efficient in modeling nonlinear behavior
[11]. Autoencoders are a popular method that learns projections from the high dimensional
system to a low dimensional latent space. These methods do not rely on linear combinations
of modes, but learn a nonlinear manifold that represents the important dynamics [12]. Au-
toencoding methods, like the use of Convolutional Autoencoders (CAEs) [13] or Variational
Autoencoders (VAEs) [14] have already promising results. However, neural networks can be ex-
pensive to develop because they require large, representative datasets generated from the FOM.
Moreover, a trained network is typically developed to a specific system; applying it to a different
system generally requires new training data. By contrast, physics-informed approaches, which
use the governing equations and constraints, are often more adaptable across different systems.

Furthermore, to align with the industry standard, in this thesis, we will reduce subsystems of
the big assembly separately before assembling them together. Modal decomposition is a widely
used method in the industry, therefore we have a strong focus on this method throughout this
thesis.

The main MOR method for the interface is the use of partitioning the interface in so-called N
nodes which assume constant fluxes on these patches. This method is also called the virtual
point transformation [15]. All the interface information is mapped to one N node. Note that
for a spatially varying problem, this assumption is not representative and can cause a significant
error. A ROM for this specific problem has not yet been developed within existing workflows.
Therefore, we will look beyond these workflows and propose an alternative approach.

5 5

1.3. Research questions Chapter 1. Introduction

Each method described above has its own strengths and limitations. The choice depends on the
dynamics of the system:

• Modal decomposition: fits ASMLs workflow and provide a clear physics-informed ROM.

• POD: data-driven, effective for systems with weak nonlinearities.

• DEIM: additional method which is efficient for handling nonlinearities.

• Autoencoders: powerful for strong and complex nonlinearity.

• NMD/SSM: non data-driven technique for stronger nonlinearity and periodic behavior.

• Linearized boundaries: make all reduction methods easier to apply.

We do not aim to cover all possible methods, but we will explore methods or combinations of
these methods to reduce the spatially varying nonlinear heat transfer problem. Along the way,
practical constraints and other limitations shaped our choices to investigate in a certain range
of MOR techniques.

This study also addresses another computational complex operation, namely the View Factor
Matrix (VFM) computation. The view factor can be seen as a measurement of visibility. It
computes how much a surface sees the other surface. In a FEM model, this results in a matrix
(element-to-element measurement). Section 2.2 will explain this phenomena in detail. Due to
the moving waferstage, the view factor from one element to another changes every timestep.
This study also focuses on reducing the costs of computing that matrix. The study focuses on
reducing the dimension of the matrix. One method will compute specific view factor matrix
computations for different locations offline and store those. The VFM for the positions within
the simulations that are not stored are approximated by an interpolation of the VFMs that are
stored.

1.3 Research questions

This study focuses on Reduced Order Modeling for Spatially Varying Radiation Interfaces. The
physical problem consists of heat transfer between two systems, which are coupled through the
radiation boundary conditions. One of the systems is moving in space, resulting in a transient,
nonlinear, coupled heat transfer system with a periodic steady-state solution if the moving sys-
tem moves in a periodic matter.

Solving the system with the FEM method is computational very expensive due to the high di-
mensionality of the problem, the view factor matrix computations and the nonlinear boundary
conditions. Furthermore, it is a coupled system where one component is moving relative to the
other component. The main reserach question for this paper is: Can we develop a ROM for
the spatially varying radiative interface problem, that accurately approximates the
solution of the FOM, while reducing the computational costs?

Sub research aspects

1. Nonlinearity:

6 6

1.4. Outline Chapter 1. Introduction

One of the sub-research questions focuses on the nonlinearity of the system. How much does this
nonlinearity influence the system, e.g: it is only applied on the boundary, maybe the system is
dominated by linear behavior? How good is the approximation when you linearize the boundary
conditions? Extending the test problem to the real model will result in more difficult behavior
of the system. Linearizing the system will probably not be accurate enough. The nonlinearity
is therefore a strong component in this problem, and it influences the way of reduced-order
modeling. First we will see how the linearized system behaves in comparison with the nonlinear
system. After this, we will encoounter the nonlinearity in the problem and find a way to reduce
the nonlinear system. There are various methods that have already been shown to be efficient,
so we will try to see if those methods can be used in this specific problem.

2. View Factor matrix:

Another aspect of the ROM for this problem is the View Factor Matrix (VFM). Because of
the high dimensionality and the moving waferstage, this VFM is computationally expensive.
To reduce the computations of the view factor matrix, we can store data matrices at specific
locations and interpolate the matrix during the time steps. Is this a good approximation for the
real model, when the geometries become more complex?

3. Methods:

There is a wide variety of methods for reduced-order modeling available. The question is which
one is best suited or which combination is best suited for this specific problem. Each method
excels in different dynamical systems. It is important to know the dynamics of the system to
know which method is best suited. This aspect is very important for this problem and results
in the following research question: Which methods approximates the FOM the most accurate,
while reducing the computation time efficiently?

4. Coupling of the systems:

The study contains two separate subsystems, the metroframe and the waferstage. They are
connected with dynamics, but how strong is this connection? Can we solve the systems in-
dependently or do we have to solve the coupled system as a whole? In some reduced order
modeling techniques, we create a basis, this basis can be a basis for the entire system or there
can be two bases for the two different geometries. Also, the coupling between two systems can
be one- or two-way coupling. One-way coupling reduces the complexity of the system, since the
feedback is being neglected. For one way coupling, one subsystem is radiating all the heat and
the other subsystem only absorbs heat. In two-way coupling, the later subsystem will eventually
also radiate heat back.

1.4 Outline

Firstly, we will evaluate the methods on a test problem, described in chapter 2. Subsequently,
the aim is to apply the model order reduction techniques, which are assumed to be the most
promising for this problem, to a prototype of the metroframe-waferstage system developed in
ANSYS, the 3D modeling software used within ASML. This 3D model resembles the actual real-
life system more closely and allows for a more realistic evaluation of the Model Order Reduction
approaches.

Chapter 3 will dive into the mathematical depth of the explained methods. Chapter 4 will go over
all the results for the methods tested on our test problem, it also proposes the most promising
algorithm for the problem. Chapter 5 shows the results of the most promising method on the

7 7

1.4. Outline Chapter 1. Introduction

3D model in ANSYS. We will also discuss the limitations and options for further investigation
in the Discussion in Chapter 6 and provide a conclusion for the proposed algorithm in Chapter
7. Finally, you can find all the Python- and MATLAB code in the Gitlab repository [16].

8 8

Chapter 2

Test Problem

Test problems are commonly used to reduce the complexity of a model. In this study, the test
problem consists of two separate two-dimensional geometries without a common boundary, i.e.
they are separated, but they are coupled through the radiation boundary conditions. The heat
equation for this problem is solved within the framework of the Finite Element Method (FEM).

2.1 Radiation

The geometries are coupled through radiation boundary conditions. All bodies above the tem-
perature of 0 K emit radiation. Thermal radiation is a volume phenomenon, i.e. the radiation
is the result of excitation of all the particles of a body. However, radiation travels to the surface
and is then emitted from the surface, radiation in interacting geometries is therefore considered
as surface phenomenon [1].

The equation for radiation is given by the Stefan–Boltzmann law:

q = σT 4, (2.1)

where σ is the Stefan–Boltzmann constant, T is the temperature in Kelvin and q is energy
emitted by radiation from the body in W/m2. This is the equation for a black body, i.e. a
perfect absorber and a perfect emitter. For a more realistic body, we need to take the emissivity
into account. Eq. (2.1) becomes

q = ϵσT 4, (2.2)

where ϵ is the emissivity, the ratio of the energy emitted in comparison with a perfect emitter,
which is a constant between zero and one.

For body i, we can describe the outward heat flow using Eq.(2.2): qi = ϵiσT 4
i where qi is the

energy emitted per m2. Scaling this, with the area of the emitting surface, Ai, gives

Qi = AiϵiσT 4
i

where Qi is the energy emitted from surface Ai in W . From body j, which also emits energy,
qj = σT 4

j (assumption: black box), a part of the energy is absorbed by body i

qabsorbed = αqreceived,

9

2.2. View Factor Chapter 2. Test Problem

for α between zero and one. From the radiation emitted by the body j, the part absorbed by
the body i is

qabs = αA1σT 4
2 .

Therefore, the net energy emitted (or absorbed) by body i is
Q1 = A1ϵ1σT 4

1 − A1α1σT 4
2

For simplification, we will assume that α1 = ϵ1 (assumption), the equation will therefore simplify
to

Q1 = A1ϵ1σ(T 4
1 − T 4

2), W (2.3)

Eq. (2.3) represents the derived expression for nonlinear radiative heat transfer between two
surfaces. This formulation assumes that all the heat emitted by one surface travels completely
to the other, i.e. the surfaces see each other with a view factor of one. However, this is not
always the case, hence we should incorporate the view factor

2.2 View Factor

In radiation between two surfaces the view factor plays an important role. In a general enclosure
with n surfaces, a surface i contributes to the heat exchange of the surrounding surfaces in the
enclosure that are visible from surface i. For this matter, we introduce the view factor, the
fraction of surface j that is visible by surface j. In a more mathematical way, it can be described
as the amount of energy that leaves surface i and that is intercepted by surface j [17]:

Fij = qi→j

AiJi
, (2.4)

where Fij is the view factor from surface i to j, Ai the area of surface i and Ji the total radiosity.

Consider two differential patches dAi and dAj separated by a distance R. The radiant intensity
leaving dAi is dIi, which is the intensity of radiation leaving surface i. The rate at which the
energy leaves surface Ai and is intercepted by dAj is expressed as

dqi→j = Ii cos θi dΩj→i dAi,

where θi is the angle between the surface and the outward normal and dΩj→i is the angle
subtended by dAj when viewed from dAi[18]. dΩj→i = dAj cos θj

R2 , hence we have

dqi→j = Ii
cos θi cos θj

R2 dAj dAi.

For the total rate of the energy emitted by surface i and received by surface j, assuming it is a
black body, i.e. Ji = πIi, we can integrate over both surfaces

qi→j = Ji

∫
Ai

∫
Aj

cos θi cos θj

πR2 dAj dAi

From the definition of the view factor in Eq. (2.4), we get the generalized equation for the view
factor

FAi→Aj = 1
Ai

∫
Ai

∫
Aj

cos θi cos θj

πR2 dAj dAi . (2.5)

A detailed explanation and visualization for this equation can be found in chapter 4 of Modest
[19] or in chapter 13 of Incropera and DeWit [18].

10 10

2.2. View Factor Chapter 2. Test Problem

2.2.1 View Factor Equation in 2D

For a 2D problem, we can follow the same analogy: for a diffuse, line element dli the radiative
intensity is Ii. The energy leaving dli toward a second element dlj is

dqi→j = Ii cos θi dφj→i dli.

The angle of dlj and dli is
dφj→i = cos θjdli

R
,

where R is the distance between the midpoints of i and j. Hence

dqi→j = Ii
cos θi cos θj

R
dlj dli.

Following the exact same reasoning as above in the 3D case, we obtain the 2D formula for the
view factor:

FLi→Lj = 1
Li

∫
Li

∫
Lj

cos θi cos θj

πR
dlj dli . (2.6)

The view factor is important in this study, because the waferstage is a moving geometry, which
causes the geometric quantities to change every timestep. In each timestep, the surfaces face
each other from a different angle and distance. In an FEM analysis, we work with differential
areas, which causes the view factor matrix to have a very high dimension if there is a fine mesh.
Also, in the real model, the geometry is not as ideal as in this test problem, there are corners
or holes, causing the view factor computation to be more complex. All of this together causes
a computationally complex situation.

The view factor matrix is calculated for each element on the boundary which radiates heat.
In the test problem, this is the bottom of the metroframe and the top of the waferstage. To
construct the view factor matrix, we loop over each element on these boundaries. Within this
loop, each element will also loop over every other element that is on a radiation boundary to
compute the view factor. The view factors of the elements on the same boundary are zero in
this test problem. Note that in the real model, because of holes and corners, this does not have
to be true. If there are 14 elements at the bottom of the metroframe and 11 on the top of the
waferstage, the view factor matrix will be a 25 × 25 matrix. For a visualization of the view
factor matrix, see Figure 2.1. Note that the white blocks are equal to zero; this shows that for
element 14 (row 14) on surface A the view factor for the first 15 elements (first 15 columns),
which are on the same surface A, are zero. For the last 11 columns (elements on surface B), the
values are nonzero. Note that this structure of the matrix only applies for two facing surfaces.
The diagonal will always be zero, since the view factor from one element to itself is always zero.
The expressions in Eq. (2.5) and Eq. (2.6) assume that the surfaces are diffuse emitters and
that there are no obstructions between them. It also satisfies the reciprocity relation:

AiFij = AjFji, (2.7)

which makes computations easier. The effect of the view factor is visualized in Figure 2.2. A
schematic drawing of the position of the waferstage (lower block) is given with the heat distri-
bution in the metroframe (top block). Note that in Figures 2.2a and 2.2b, only the metroframe
(top block) is given.

11 11

2.2. View Factor Chapter 2. Test Problem

Figure 2.1: View factor matrix.

(a) Waferstage is placed in the middle (b) Waferstage is placed at the right

(c) Schematic drawing (a) (d) Schematic drawing (b)

Figure 2.2: Visualization of view factor

12 12

2.3. Two-dimensional Heat Equation Chapter 2. Test Problem

This view factor can be incorporated into Eq. 2.3. Also we can change the equation to the heat
flux q1 in W/m2:

q1 = F12ϵ1σ(T 4
1 − T 4

2).

This equation gives the radiative boundary condition which can be incorporated into the dis-
cretized FEM equation of the two dimensional heat equation. This process is given in the next
section.

2.3 Two-dimensional Heat Equation

To solve the transient heat equation, we start with the strong form of the energy equation:

ρcp
∂T

∂t
= ∇ · (k∇T) in Ω,

where ρ is the material density, cρ the specific heat capacity, T the temperature field, k is the
thermal conductivity and Ω is the computational domain.

Take the following boundary conditions into account:

• Neumann boundary condition

−k
∂T

∂n
= gN on ΓN

• Convection boundary condition (Newton’s Law of Cooling)

−k
∂T

∂n
= κ(T − T∞) on ΓC

where:

– κ is the convection heat transfer coefficient.

– T∞ is the ambient temperature.

• Radiation boundary condition

−k
∂Ti

∂n
= σϵFij(T 4

i − T 4
j) on ΓR (2.8)

where:

– Ti(x, y) and Tj(x, y) are the temperatures on surfaces i and j

In this study the temperature for component A, the metroframe (top geometry), is denoted
by TA and the temperature of the waferstage, component B is denoted by TB. The radiation
boundary condition from Eq. (2.8) for component A, in the continuous form, can be written as

−k
∂TA

∂n
= σϵFAB(T 4

A − T 4
B),

but for simplicity we will omit the view factor term in the following part.

The following analysis focuses on component A: to derive the weak form, we multiply the strong
form by a test function v and integrate over the domain Ω. Using integration by parts (Green’s

13 13

2.3. Two-dimensional Heat Equation Chapter 2. Test Problem

theorem), the diffusion term is rewritten, and the natural boundary conditions are applied. The
resulting weak form is: find all solutions for TA(t) with initial condition TA(0) = TA,0 so, s∫

Ω
ρcp

∂TA

∂t
v dΩ +

∫
Ω

k∇TA · ∇v dΩ +
∫

ΓC

κTAv dΓ

=
∫

ΓN

gN v dΓ +
∫

ΓC

κT∞v dΓ − (
∫

ΓR

σϵT 4
Av dΓ −

∫
ΓR

σϵT 4
Bv dΓ),

holds for all test functions v ∈ V . We then discretize the function space using piecewise linear
basis functions. Let Vh ⊂ V be this space. Then, the problem is to find TA,h(t) ∈ Vh, with
initial condition TA,h(0) = TA,0 such that the equation above holds for all v ∈ Vh at each time
t. In a coupled system we also need to find TB,h(t) ∈ Vh for component B.

For time integration, we apply a Crank-Nicolson scheme to the time derivative, this scheme is
unconditionally stable. Also, to derive a system of equations, let {ϕi}n

i=1, be the basis of the space
Vh, also known as the hat functions. Let the test function represent one of the basis functions
and know that the following equation has to hold for all basis functions. Then, approximate
TA as the linear combination of the values on the nodes, i.e. TA,h = ∑nu

j=1 TA,jϕj . With the
same analogy, TB,h = ∑nw

j=1 TB,jϕj . The discrete system for each test function ϕi, i = 1, . . . , nu,
becomes:

MṪA + KTA = F − R(TA, TB)

where

Mij =
∫

Ω
ρcpϕjϕi dΩ

Kij =
∫

Ω
k∇ϕj · ∇ϕidΩ +

∫
ΓC

κϕjϕi dΓ

Ri =
∫

ΓR

σϵ(
n1∑

j=1
TA,jϕj)4ϕi dΓ −

∫
ΓR

σϵ(
n2∑

k=1
TB,kϕk)4ϕi dΓ

Fi =
∫

ΓN

gN ϕi dΓ +
∫

ΓC

κu∞ϕi dΓ

To obtain the full coupled system, we get(
MA 0
0 MB

)(
ṪA

ṪB

)
+
(

KA 0
0 KB

)(
TA

TB

)
=
(

Fu

Fw

)
−
(

RA(TA, TB)
RB(TA, TB)

)
. (2.9)

Eq. (2.9) presents the discretized form of the test problem. This formulation can be solved
using finite element software, such as the FEM method. This concludes the setup of the test
problem.

a(t) = V T T (t)

14 14

Chapter 3

Model Reduction: Mathematical
Framework

In this chapter, we present the mathematical framework of the reduced order modeling tech-
niques used in this work. While Chapter 1 provided a conceptual overview, we now focus on the
detailed derivation and theory of each method.

We begin with the modal decomposition and the Proper Orthogonal Decomposition (POD),
which are very common projection based techniques. Next, we introduce the Discrete Empirical
Interpolation Method (DEIM) to handle nonlinearities efficiently.

During the development of the ROM, it became evident that additional reduction techniques
were needed to handle this systems with two separate subsystems with a nonlinear radiation
boundary. As a result, this chapter also includes a detailed explanation of substructuring and
the Craig-Bampton method, which were introduced at a later stage of the project.

3.1 Projection-Based Model Reduction

Projection-based Model reduction aims to approximate the high-dimensional solution of a dy-
namical system by projecting it onto a lower-dimensional subspace spanned by a reduced basis.
Consider an uncoupled nonlinear full-order model of the form:

MṪ + KT = F − R(T)

We approximate the solution in a reduced system as a linear combination of the vectors of the
reduction basis :

T (t) ≈
r∑

i=1
viai(t) = V a(t), (3.1)

where V ∈ RN×r is the reduced basis matrix and a(t) ∈ Rr are the reduced coordinates.

Substituting into the full-order equation and applying a Galerkin projection (multiplying by V T

from the left), we obtain the reduced-order model:
V T MV︸ ︷︷ ︸

Mr

ȧ + V T KV︸ ︷︷ ︸
Kr

a = V T F︸ ︷︷ ︸
Fr

− V T R(V a)︸ ︷︷ ︸
Rr(V a)

(3.2)

15

3.1. Projection-Based Model ReductionChapter 3. Model Reduction: Mathematical Framework

This is a reduced system of size r ≪ N that captures the dominant dynamics of the full model.
Projection-based methods like modal decomposition or POD are methods for creating such a
reduction matrix V . For nonlinear terms R(T), the evaluation of R(V a) may still be expensive,
and projection-based technique such as DEIM can be used to reduce computational cost

3.1.1 Modal Decomposition

When analyzing large dynamical systems, modal decomposition is a useful first step to under-
stand the behavior of the system, especially when the system is linear or can be linearized. In
the context of heat transfer, the spatial discretization of the governing equations are

MṪ + KT = F − R(T),

where both M and K are constant if the nonlinearity is restricted to the boundary.

To better understand the dynamics of this system, assume that the forcing terms, F and R(T),
are zero. We can perform an eigenvalue decomposition of the generalized eigenproblem:

Kϕi = λiMϕi, for i = 1, . . . , n (3.3)

which yields eigenvalues λi and eigenvectors ϕi. These eigenvectors form an orthogonal basis.
Using this basis, the solution T (t) can be projected onto the eigenmodes, and the dynamics of
each mode can be analyzed separately. The reduced basis will look like:

VMD =
[
ϕ1 ϕ2 . . . ϕr

]
∈ RN×r.

The eigenvalues λi carry important information about the system:

• Negative real parts indicate stable modes that decay over time.

• Small magnitudes correspond to slow dynamics.

• Complex eigenvalues indicate oscillatory behavior.

This modal decomposition is especially useful in systems where a few modes dominate the long-
term behavior. In such systems it helps to identify the slow subspace of the dynamics. We
can neglect the other modes to efficiently reduce the system. The eigenvectors corresponding
to the dominant eigenvalues, the dominant eigenmodes, form the reduces matrix V . Note that
the eigenvalue problem assumes a zero forcing term. This is an assumption which is generally
not true, like in our case. The behavior of the forcing terms is therefore not captured in the
reduction basis and can result in larger errors or the necessity of more eigenmodes.

3.1.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is another projection-based technique. It is a data-
driven technique that extracts the most dominant modes in the data set. The method creates
the reduced basis V and again it consists of an orthonormal basis that tries to capture the
behavior of the model optimally. The following analysis will focus on an arbitrary temperature
T . This method, also tries to approximate the solution as

T (t) ≈
r∑

i=1
viai(t) = V a(t), (3.4)

where ϕi are the POD modes, which we will construct and ai(t) are the time dependent coef-
ficients, this is explained in more detail in Sabrina Kelbij Star et al., [20]. First, a snapshot

16 16

3.1. Projection-Based Model ReductionChapter 3. Model Reduction: Mathematical Framework

matrix is constructed with snapshots of the solution of a full-order system, T (t). The snapshots
are stored in a data matrix

X(t) =

 | | |
T1(t) T2(t) · · · Tm(t)

| | |

 ,

where m is the number of snapshots. A Singular Value Decomposition (SVD) of the snapshot
matrix is then performed:

S = UΣW T

where:

• U ∈ RN×n contains the left singular vectors (POD modes),

• Σ ∈ Rn×n is a diagonal matrix of singular values,

• W ∈ Rn×n contains the right singular vectors.

The columns of U corresponding to the largest singular values span the subspace in which the
system evolves most significantly. By selecting the first r modes (where r ≪ N), we define the
reduced basis:

VPOD =
[
u1 u2 . . . ur

]
∈ RN×r

where ui are the dominant left singular vectors. This basis is then used to project the full-order
model as described in the previous section.

3.1.3 DEIM

Consider the arbitrary nonlinear heat transfer equation

MṪ + KT = F − R(T), (3.5)

Using Eq. (3.1) to approximate the solution with the POD method and projecting Eq. (3.5)
onto the reduced basis, Vr ∈ RN×r, using the Galerkin projection, like Eq. (3.2) gives

Mrȧ + Kra = Fr − V T R(V a) (3.6)

The linear terms are reduced successfully to a lower-dimensional space. However, the non-linear
term R(V a) is still computationally expensive. It requires evaluating the term in the full space
(RN), whereas the POD method does not benefit in the sense of model reduction of the nonlinear
term.

The Discrete Empirical Interpolation Method (DEIM) is developed to take care of the nonlinear
part of the system. It approximates the nonlinear part as

R(V a(t)) ≈ Ξc(t),

where Ξ ∈ Rn×q and c(t) ∈ Rqx1 a coefficient vector. The POD-DEIM method uses, besides
the common basis extracted from the snapshots of the full system, a second basis representing
snapshots of the nonlinear term, Ξ [21]. It uses a DIEM interpolation matrix P ∈ Rn×q, which
is made up of unit vector with specific interpolation points, such that

P T R(V a(t)) ≈ P T Ξc(t),

17 17

3.1. Projection-Based Model ReductionChapter 3. Model Reduction: Mathematical Framework

which gives
c(t) ≈ (P T Ξ−1)P T R(V a(t)),

so finally
R(V a(t)) ≈ Ξ(P T Ξ)−1P T R(V a(t)). (3.7)

where Ξ ∈ RN×q is the reduced basis for the nonlinear term R(V a(t)) and P ∈ RN×p is a
selection matrix that picks p important interpolation points.

Since q ≪ N , and it only evaluates the nonlinear part at p selected indices, it significantly
reduces the cost of evaluating R(V a(t)), making MOR efficient even for nonlinear systems [6].

The remaining task is to develop these matrices Ξ and P . Firstly, to construct the second basis,
we take m snapshots from the nonlinear term R,

Y (t) =

 | | |
R1(t) R2(t) · · · Rm(t)

| | |

 .

Taking the SVD of this matrix gives Y = HΣV T . Similarly as the POD method, we can take a
rank-p approximation and form a new basis for Ξ, Ξp = [η1 η2 . . . ηp].

After creating the second basis Ξp, we can now sample the matrix P by constructing measure-
ments. To create the first interpolation point, choose [ρ, γ1] = max|η1|, where γj is the index
and ρ the extracted variable. Then P1 = [eγ1], which gives the first measurement matrix. For
Pj , where j = 2, 3, . . . , p, use Algorithm 1.

Algorithm 1 P matrix for POD DEIM
1: P1 = [eγ1]
2: for j = 1, 2, 3, . . . , p do
3: P T

j Hjcj = P T
j ηj+1

4: Ej+1 = ηj+1 − Hjcj

5: [ρ, γj] = max|Ej+1|
6: Pj+1 = [Pj eγj]
7: end for

Algorithm 1 gives the complete derivation of P , whereas we can approximate R as in Eq. (3.7).
Inserting this approximation in Eq. (3.6) gives

Mr + Kr = Fr − V T
r Ξq(P T Ξq)−1P T R(Vra(t)). (3.8)

So, in the full model, the costs of evaluating the nonlinear part R(U) is to a cost of O(n). In the
POD-DEIM method, the nonlinear term is only evaluated at p = q << N points which efficiently
reduces the computational costs to O(q) for the nonlinear term. The matrix multiplications

V T
r Ξq(P T Ξq)−1

can be precomputed offline. So the evaluation of the nonlinear term is followed by a matrix-
vector multiplications of order O(q) and O(qr). Therefore, the total cost of the nonlinear term
is

O(q + rq).

18 18

3.2. Substructuring Chapter 3. Model Reduction: Mathematical Framework

In contrast, evaluating the nonlinear term in the full-order model requires evaluating the non-
linear term in n entries, so of order O(n).

The terms Mr and Kr involve reduced mass and stiffness matrices of size r × r, which can
be precomputed offline. The online cost for evaluating each of these terms is thus O(r2) for
the multiplication with a(t) or its derivative. In contrast, in the full-order model, the same
operations involve matrices of size n × n, resulting in a cost of O(n2).

Combining all components of Eq. (3.8), the total cost per time step of the POD-DEIM reduced-
order model is

O(r2 + rq + q) ,

whereas the full-order model typically has a cost of:

O(n2 + n) .

Since r, q ≪ n, the POD-DEIM approach results in efficient reduction in computational cost.

The dynamics of the DEIM can also be combined with the classic modal decomposition. A
bottleneck for this method is the accessibility of the nonlinear term. This method modifies
the nonlinear term, a requirement is therefore that the nonlinear term is accessible and we can
change it.

This concludes the projection-based methods that we investigate in this thesis. Furthermore, we
investigate in structural changes within the discretized equation to isolate the nonlinear behavior
of the system.

3.2 Substructuring

In the previous sections, we discussed some model order reduction techniques for the system. All
these techniques had some limitations, e.g. the eigenvalue problem used in this method assumes
a zero external force vector in the heat equation, whereas the test problem includes a nonlinear
radiation term. Such behavior is not captured by the eigenvalues.

However, the nonlinearity that complicates the reduced-order modeling appears only on the
boundary. This observation motivates the use of substructuring, a widely used technique that
treats internal and boundary nodes separately. Substructuring enables the use of model re-
duction for internal nodes while keeping the boundary nodes in full space. This approach is
explored by van Steen et al. [15] for model order reduction for interfaces. In the research of van
Steen et al., model order reduction is only applied on the internal degrees of freedom, leaving
the boundary nodes intact to facilitate coupling between subdomains.

In Eq (2.9) the full system is given. If we couple the two equation for the subsystems we get(
MA 0
0 MB

)(
ṪA

ṪB

)
+
(

KA 0
0 KB

)(
TA

TB

)
=
(

FA

FB

)
−
(

RA(TA, TB)
RB(TA, TB)

)
(3.9)

19 19

3.2. Substructuring Chapter 3. Model Reduction: Mathematical Framework

Splitting this into internal and boundary nodes by permuting the matrices gives
MA,ii MA,ib 0 0
MA,bi MA,bb 0 0

0 0 MB,ii MB,ib

0 0 MB,bi MB,bb




ṪA,i

ṪA,b

ṪB,i

ṪB,b

+


KA,ii KA,ib 0 0
KA,bi KA,bb 0 0

0 0 KB,ii KB,ib

0 0 KB,bi KB,bb




TA,i

TA,b

TB,i

TB,b

 =


0

FA,b

0
FB,b

−


0

RA,b(TA, TB)
0

RB,b(TA, TB)

 .

(3.10)

The zeros on the right-hand side occur because all the forces are applied on the boundary. This
method allows us to treat the internal and external dynamics separately. There are different
reduction techniques for the internal dynamics and for the interface dynamics, they are all listed
and explained in detail by van Steen et al. [15]. We do not discuss all available substructuring
and interface reduction techniques in this thesis, as the internal dynamics are governed by a
classical linear system for which many effective and well-established methods exist. Instead, we
focus on the nonlinear boundary system, for which a new framework is developed in this work:
a neural network–based model reduction applied specifically to the radiative coupling. First, we
will explain the linear reduction method Craig-Bampton which is used within this thesis.

3.2.1 Craig-Bampton

The Craig-Bampton method is a classic method for reducing the internal nodes with the eigen-
modes of the system [22]. First we look at the problem for component A, i.e.(

MA,ii MA,ib

MA,bi MA,bb

)(
ṪA,i

ṪA,b

)
+
(

KA,ii KA,ib

KA,bi KA,bb

)(
TA,i

TA,b

)
=
(

0
FA,b

)
−
(

0
RA,b(TA, TB)

)
. (3.11)

To reduce the number of degrees of freedom in the problem, we will reduce the internal nodes
by expressing them in static and dynamic modes, i.e.

TA,i = TA,s + TA,d.

The static solution for the internal nodes can be obtained by ignoring the time derivative com-
ponent and considering the internal dynamics only, Eq. (3.11) becomes

KA,iiTA,i + KA,ibTA,b = 0.

Therefore, the static solution for the internal nodes can be expressed expressed as

TA,s = −K−1
A,iiKA,ibTA,b. (3.12)

Note that the solution for the internal nodes can be expressed in terms of the solution of the
boundary nodes in this scenario.

The dynamic part of the solution can be expressed by the eigenmodes. These can be obtained
by solving

(KA,ii − ω2MA,ii)ϕi = 0. (3.13)

20 20

3.2. Substructuring Chapter 3. Model Reduction: Mathematical Framework

Note that Eq. (3.13) can be written as

TA,i ≈ TA,s + TA,d = ΨTA,b + ΦT̂A,i, [15]

where Ψ := −KA,iiKA,ib from Eq. (3.12) and Φ contains the eigenmodes from the eigenvalue
problem explained in Eq. (3.13). T̂A,i is derived in the same manner as the regular modal
decomposition technique.

We want the boundary nodes to stay in full space, i.e. after applying the reduction to the
system, the boundary nodes should be the same. To reduce the internal nodes we apply the
reduction matrix

ZCB =
(

Φ Ψ
0 I

)
,

Note that with this reduction matrix, the boundary nodes are kept in full space:(
TA,i

TA,b

)
= ZCB

(
T̂A,i

TA,b

)

This reduction matrix can be applied in the usual way for the system, i.e. for an arbitrary
system this look like

ZT MZ ˆ̇T + ZT KZT̂ = ZT F − ZT R(T). (3.14)

Note that this projection keeps the same problem like we discussed with the POD method.
The nonlinear term still needs to be evaluated in full space. Other methods like DEIM can be
applied, but for this problem, we introduce also a new concept: a neural network specific for the
nonlinear radiation boundary term.

The radiative heat flux is computed element-wise on the surface elements of the radiative bound-
ary. Because the reduction strategy described above retains the boundary temperatures explic-
itly, there is no need to project the reduced solution back to the full space to recover the
temperatures at the boundary nodes. This property motivates the use of a neural network that
takes the boundary temperatures directly as input. The following section will explain in detail
the neural network used in this thesis.

From Eq. (3.14), it follows that the nonlinear part can be written as

ZT
CBR(T) =

(
ΦT 0
ΨT I

)(
0

RA,b(TA, TB)

)
=
(

0
RA,b(TA, TB)

)
, (3.15)

indicating that the boundary remains unaffected by this reduction matrix. This is consistent
with the purpose of the Craig-Bampton method: to retain the boundary degrees of freedom,
thereby simplifying the coupling between components. Several methods for further reducing
the boundary are known within ASML; see, the study of Van Steen et al [15]. The reduction
techniques rely on applying another reduction matrix that only reduces the boundary nodes.
The following matrix

V =
(

I 0
0 Ξ

)
,

keeps the already reduced internal nodes untouched and reduced the boundary:(
T̂A,i

TA,b

)
=
(

I 0
0 Ξ

)(
T̂A,i

T̂A,b

)
. (3.16)

21 21

3.2. Substructuring Chapter 3. Model Reduction: Mathematical Framework

Applying this reduction matrix to the full system in the same manner as Eq. (3.14) and evalu-
ating the nonlinear boundary term, like Eq. (3.15), gives:

V T R(T) =
(

I 0
0 ΞT

)(
0

RA,b(TA, TB)

)
=
(

0
ΞT RA,b(TA, TB)

)

As mentioned above, methods for constructing this matrix are discussed in Van Steen et al. [15].
However, these existing methods do not address our specific challenge: reducing the nonlinear
radiation term. The nonlinear function R(TA, TB) requires the full temperature vectors of both
components as input, since the function is evaluated element-wise. Unfortunately, this structure
cannot be modified. This will be discussed in Section 4.2, where we face a similar limitation
in ANSYS, where the element-wise definition of the radiation term is fixed and inaccessible.
Consequently, methods such as the Discrete Empirical Interpolation Method (DEIM), which
rely on structural changes to the nonlinear term, cannot be applied directly.

3.2.2 Neural Network for the Nonlinear Radiative Boundary Term

The existing interface reduction techniques do not resolve our problem. An alternative approach
is to replace the nonlinear function R with an approximation that avoids the need for element-
wise evaluation. A neural network is an approximation based on data, therefore we do not need
access to the nonlinear radiation equations. In this work, we implement a deep feedforward
neural network (also known as a multilayer perceptron, MLP) as an approximation for the
nonlinear radiation term [23]. These kinds of neural network are a class of Artificial Neural
Networks (ANNs), which are data-driven models trying to replicate biological neural systems.
They are useful at approximating complex, nonlinear mappings between inputs and outputs
when the underlying relationship is unknown or computationally expensive to evaluate.

In our case, a neural network can be trained to approximate the mapping (TA, TB, x) 7→ R,
where x denotes the spatial coordinate. This neural network creates a function which is a
direct mapping from inputs to outputs. Instead of evaluating the full nonlinear finite element
formulation at each timestep, the neural network takes as input the boundary temperatures of the
radiative surfaces and the position of the waferstage. The output is the corresponding radiative
heat flux on the boundary. By including the position as part of the input, we can neglect the
expensive costs of the computation of the View Factor Matrix (VFM). This eliminates the need
to recompute the VFM during the simulation, which significantly reduces the computational cost
of the full simulation. Also, in Eq. (2.3), one can see that the function we want to approximate is
dependent on the position through the VFM and the temperatures on the boundary. Therefore,
these are the aspects that we want as input in our network.

The architecture of a feedforward neural network consists of layers of nodes (neurons), where
each neuron computes a weighted sum of its inputs, applies a nonlinear activation function, and
passes the result to the next layer, a detailed explanation can be found in the book of Goodfellow
et al [23]. By including multiple layers, the network will be more accurate in approximating the
nonlinear relationships between inputs and outputs.

In general, a feedforward neural network with L layers computes its output as

y = H(L)(W (L−1)H(L−1)(. . . H(1)(W (0)x + b(0)) . . .) + b(L−1))+ b(L), (3.17)

where x is the input vector, W is the the weight matrix and b is the bias vector. H(·) is a
nonlinear activation function (e.g., ReLU, sigmoid, tanh) [23].

22 22

3.2. Substructuring Chapter 3. Model Reduction: Mathematical Framework

While other neural network models such as Convolutional Neural Networks (CNNs) or Recurrent
Neural Networks offer additional capabilities. They all excel for different uses: CNNs work well
with images or videos, and RNNs are suited for learning from past inputs in a sequence. However,
they can be harder to run or need more structured data. The network used here is simpler, easier
to understand, and still able to learn the nonlinear radiation relation from the simulation data.

Pseudoalgorithm of the Neural Network

In our problem, the goal is to approximate the nonlinear mapping

f : (TA,rad, TB,rad, x)︸ ︷︷ ︸
x∈Rd

7→ qrad︸︷︷︸
y∈Rn

,

where TA,rad and TB,rad represent temperature values on the radiative boundaries A and B, and
x denotes spatial positioning of a moving geometry. The output qrad is the nodal radiative heat
flux at a designated radiation boundary (A or B). For both subsystems, we will create separate
neural networks.

Another advantage of the neural network is regarding the input of the neural network. The
input is a vector of the temperature on the nodes of the radiative boundary. The Craig-Bampton
method does not reduce the boundary nodes, they remain untouched, i.e. in full space. This
allows us to extract the full temperature vector on the radiative boundary without mapping
the reduced temperature vector back to full space. This saves a matrix-vector multiplication in
every timestep.

Feedforward Network Structure The model is a feedforward neural network with two
hidden layers. More layers usually make the network more flexible and better able to capture
complicated relationships, but they also make training slower and increase evaluation costs.
Using too few layers, on the other hand, may lead to a model that does not capture the nonlinear
behavior. Let x ∈ Rd be an input vector, and define the neural network mapping f(x; θ) as:

Z(1) = H
(
W (1)x + b(1)

)
,

Z(2) = H
(
W (2)Z(1) + b(2)

)
,

ŷ = W (3)Z(2) + b(3),

where W (k) and b(k) are the weights and biases at layer k, H(·) is the activation function and ŷ
is the network’s prediction of the radiative flux.

In this work, we choose the ReLU (Rectified Linear Unit) function,

H(x) = max(0, x),

for both hidden layers due to its simplicity and ability to capture nonlinear dynamics. The
training of the neural network consists of adjusting the parameter set θ = {W (k), b(k)} to min-
imize a loss function that measures the difference between predictions and true outputs. A
pseudo-algorithm for the process can be found in Algorithm 2.

23 23

3.3. Linearization of the nonlinearity Chapter 3. Model Reduction: Mathematical Framework

Algorithm 2 Algorithm for the development of the Neural Network for predicting the radiation
flux on the radiative boundary of component A.
Require: Snapshots: TA, qA ∈ Γrad,A ∈ Rg×1, TB ∈ Γrad,B ∈ Rh×1 and x ∈ Rs×1 at times tk:

1: Build dataset D = {(x, y)} with xk = [TA(tk), TB(tk), xk] ∈ R(g+h+s)×1, yk = [qA(tk)] ∈
Rg×1.

2: Split D into train/test.
3: Define network fθ : Rin →Rout with n hidden layers and activation function.
4: Train by minimizing L(θ) = MSE(fθ(X), Y) on the training set.
5: Test on the test set.
6: Validate: given new (TA, TB, x) on Γrad,A, output q̂A = fθ∗(x).

Jacobian The FOM of this problem is computed using the Newton method. This includes
computing the Jacobian of the nonlinear radiation term. This was a part of the element wise
function, which besides the radiation also created the Jacobian. This Jacobian can not be
computed anymore since we do not have a known function anymore. This issue arose during the
implementation, when we already noticed that the contribution to the Jacobian of the nonlinear
term R(T) is very small in contrast to the linear contributions. This suggested we can neglect
the Jacobian of the nonlinear part, as the Newton method still converges if the Jacobian is not
exact; it just needs some additional steps.

Note that this reduction approximates an element-wise function with a single input-output
function. This is not a reduction based on a projection based method or it does not reduce
the dimension of the system, but it does reduce the time of the simulation since it is a simple
input-output function. Furthermore, it does not require the full temperature vector on the entire
domain, but solely on the boundary. As they are kept in full space, we do not need to map the
reduced temperature vector back to full space. Also, the computational expensive view factor
matrix computations at each timestep can be neglected.

3.3 Linearization of the nonlinearity

As explained, linearization of the boundary conditions can be very efficient to reduce the system,
as it enables the use of one of the many linear reduction techniques. In our continuous heat
equation for component A, we want to linearize the radiative boundary condition

qrad = c
(
T 4

A − T 4
B

)
.

Linearize around reference temperatures T̄A and T̄B:

T 4
A ≈ T̄ 4

A + 4T̄ 3
A (TA − T̄A),

T 4
B ≈ T̄ 4

B + 4T̄ 3
B (TB − T̄B),

⇒ T 4
A − T 4

B ≈
(

− 3T̄ 4
A + 3T̄ 4

B

)
+ 4T̄ 3

A TA − 4T̄ 3
B TB.

Hence
qrad ≈ c

(
− 3T̄ 4

A + 3T̄ 4
B

)
+ 4c T̄ 3

A TA − 4c T̄ 3
B TB.

Hence the Robin-like boundary condition is:

qrad ≈ hA TA − hB TB + q0, hA = 4c T̄ 3
A, hB = 4c T̄ 3

B, q0 = c
(

− 3T̄ 4
A + 3T̄ 4

B

)
.

24 24

3.4. View Factor Matrix Reduction Chapter 3. Model Reduction: Mathematical Framework

For component B, we follow the same analogy.

Implementing this in the full system, given in Eq. (3.5), gives

MAṪA + (KA + LA)TA − LABTB = FA

MBṪB + (KB + LB)TB − LBATA = FB,
(3.18)

where LA = hA, LAB = hB and q0 is incorporated in the right-hand side (RHS). LB and LBA

are derived from following the same analogy for component B.

Note that within this constant c, the view factor is incorporated. As explained in Section 2.3,
a Robin boundary condition appear on the RHS of the discretized FEM formulation and in the
stiffness matrix. The view factor is not a constant, it will vary in time if the component B
moves. Resulting in a varying stiffness and force vector in time.

This method is very tricky as we are testing it on an idealized version of the real world. The
linearization can be much more accurate in this test problem compared to the actual model,
where the movement is less smooth and there are gaps and corners in the geometries. Also,
we need a steady state solution, or reference solution to linearize around, but as we already
mentioned, we do no have that in our problem.

3.4 View Factor Matrix Reduction

In the test model presented in Section 1.4, the view factor matrix (VFM) is an (n+m)×(n+m)
matrix, where:

• n denotes the number of boundary elements on geometry A,

• m denotes the number of boundary elements on geometry B.

The VFM depends directly on the spatial discretization of the domain. As the FEM mesh
becomes finer, the number of boundary elements increases, and the VFM dimension grows
accordingly. In addition, since the wafer stage moves in time, the view factors between boundary
elements vary at each time step. As a result, the VFM must be recomputed dynamically, making
this step computationally expensive.

In a numerical scheme for a real model, evaluating the VFM requires looping over all boundary
element pairs, checking whether they are mutually visible (i.e., not obstructed), and computing
the corresponding view factor. Assuming that all elements can see each other, the computational
cost scales as:

O
(
(n + m)2 + (n + m)

)
In the idealized version, i.e. the test problem, we already know that every element sees all the
elements of the other geometry and none on their own geometry, so the costs for computing the
VFM will be lower. In the real model, elements on the same boundary can still see each other
due to gaps.

One method to reduce the cost of view factor computation is to use interpolation of precomputed
matrices. The idea is as follows:

1. Compute and store the VFM for a discrete set of relative positions between geometries
A and B. Let these positions be denoted by {p1, p2, . . . , pN }, and their corresponding
matrices be {V F1, V F2, . . . , V FN }.

25 25

3.4. View Factor Matrix Reduction Chapter 3. Model Reduction: Mathematical Framework

2. During the simulations, when the wafer stage is at a new position p /∈ {pi}, approximate
the VFM V F (p) using interpolation, e.g.,

V F (p) ≈
N∑

i=1
wi(p)V Fi

where wi(p) are interpolation weights satisfying ∑i wi = 1 and wi ≥ 0. We can use linear
interpolation, but also other methods like cubic interpolation depending on how the view
factor changes.

This method is particularly effective when the wafer moves in a predictable or structured manner,
allowing for a structured sampling, which is the case.

Another way to reduce computational cost is by decreasing the size of the VFM. This is achieved
by grouping boundary elements into clusters based on geometric similarity or similar radiative
behavior.

For example, suppose we have:

• n = 30 elements on boundary A,

• m = 20 elements on boundary B.

The full VFM would be of size 50 × 50. If we identify 4 regions on A and 6 regions on B with
internally similar view factor patterns, we can replace each group with a representative node.
This reduces the VFM size to 10 × 10, leading to a reduction in computational costs. This is a
widely used technique. However, due to the spatially varying waferstage, we cannot define any
fixed regions since it will always change over time.

This chapter included the mathematical formulations of the reduction techniques used in this
thesis. The next section will test the techniques on the test problems and provide the results of
each technique.

26 26

Chapter 4

Numerical Results and Analysis

In this section, we present the results of applying several model order reduction (MOR) tech-
niques to the nonlinear thermal system introduced in the previous chapters. The primary objec-
tive is to evaluate the effectiveness of various methods, ranging from classical projection-based
techniques to data-driven neural networks, in capturing the dominant dynamics of the full-order
model while significantly reducing computational complexity. This chapter will discuss the POD
method first, followed by the DEIM which accelerates the computations of the nonlinear term.
The chapter continues with the modal decomposition for the linearized system and the modal
decomposition for the nonlinear system. This forms the basis for the last part of the chapter,
namely substructuring. Substructuring is used to split the internal and boundary (interface)
dynamics. This forms eventually the basis for our proposed algorithm. For each method, we
analyze the accuracy of the reduced-order model and the simulation time in comparison with
the full-order model (FOM).

The numerical results are calculated over a specific amount of time with a stepsize ∆t. Using
an implicit time integration scheme, namely Backward Euler, allowed us to pick any ∆t, this
is beneficial to compute the results over a longer period. The Newton-Rhapson method was
used to iteratively approximate the time-dependent radiation term each timestep. The initial
condition of both geometries and the ambient temperature is 295K (22◦C) throughout the thesis.
The ambient temperature is important for the convection boundary conditions which serves as
cooling elements for the geometries. The cooling elements are applied at the top surface of
geometry A and at the bottom surface of geometry B. The heat source is applied as an inward
heat flux at the bottom surface of geometry B. Furthermore, the top surface of geometry B and
the bottom surface of geometry A are the only radiation boundaries.

The movement is simulated with a sinusoidal oscillation from left to right, meaning that multiple
measurements are required within one full cycle to accurately capture the dynamic behavior.
To obtain a periodic steady-state solution, the simulation must span a sufficiently long time
interval. Slow movements are easier to capture over longer time intervals, as larger timesteps
can be used. As previously mentioned, to capture a sinusoidal motion accurately, multiple
measurements within a single cycle are required. For slow behavior with big timesteps, this
results in long cycle durations. Conversely, capturing fast motion requires smaller timesteps.
For example, to accurately resolve a cycle, at least 10 measurements should be taken within one
period, meaning the cycle time should be approximately:

∆t × 10

27

4.1. POD Chapter 4. Numerical Results and Analysis

where ∆t is the chosen timestep. Table 1 shows the parameters used for the different motions.
Fast motion is simulated with ∆t = 1, hence a full cycle is completed within 10 seconds. Slow
motion is modeled with timesteps of 80 seconds. This is the same throughout the rest of the
chapter.

4.1 POD

The Proper Orthogonal Decomposition (POD) method, as introduced in Section 3.1.2, is a
data-driven approach that constructs a reduced basis from simulation data. The corresponding
Galerkin projection formulation for this method is presented in Eq. (3.8). The workflow is as
follows:

1. Collect data from simulations over longer periods.

2. Apply the Singular Value Decomposition (SVD) on the data to obtain modes.

3. Plot the singular values to rank the importance of the modes.

4. Select the number of dominant modes to construct a projection basis.

Following this workflow yields a reduction matrix Φ ∈ Rr×n, where r denotes the number of
modes used in the reduction and n the total number of nodes in the full-order system.

For the POD method for our test problem, the two components A and B, we can apply two
different approaches:

1. A single basis for both components.

2. Two separate bases; one for each component

An overview is given in Figure 4.1.

POD Method

Single Basis Two Bases

POD DEIM

Figure 4.1: Overview POD strategies. As most industries uses component-wise reduction to be able to
assemble them in different subsystemsyes, we will apply DEIM on the two bases strategy only.

In the first approach, a single basis is constructed for the entire coupled system. The snapshot

matrices of both components are concatenated, i.e. T =
(

TA

TB

)
and the Proper Orthogonal

Decomposition (POD) is applied globally. This results in one reduced basis Φ that spans the
dynamics of the full system. For the reduction one can recall Eq. (3.2), i.e.

V T
r MVR

da(t)
dt

+ V T
r KVra(t) = V T

r F − V T
r R(Vra(t)), (4.1)

28 28

4.1. POD Chapter 4. Numerical Results and Analysis

where M =
(

MA 0
0 MB

)
, K =

(
KA 0
0 KB

)
, F =

(
FA

FB

)
and R =

(
RA(TA, TB)
RB(TA, TB)

)
.

This method captures correlated behavior between components and can be advantageous when
the interaction between geometries is strong or tightly coupled.

Alternatively, each component can be treated as a separate subsystem. Two independent
bases ΦA and ΦB are computed for each geometry based on its own snapshots, TA and TB.
The overall reduced model is then assembled by coupling the individual reduced models. This

is done in the same manner as Eq. (4.1), but with Φ =
(

ΦA 0
0 ΦB

)
.

This strategy allows for reusing the basis of the components in different configurations/simula-
tions. This makes it suitable if this is a subsystem of a bigger structure.

The choice between a single or component-wise basis has implications on computational effi-
ciency, accuracy, and flexibility. While a global (single) basis may better capture cross-domain
dynamics, the component-wise approach supports substructural designs and is often preferable
for systems with structured coupling.

4.1.1 Comparison Strategies

While constructing the reduced-order model, one can analyze the singular values obtained from
the POD method to examine how much energy each mode captures. By plotting the decay of
these singular values, we gain insight into the modal importance and it will allow us to determine
how many modes are required to approximate the original system with sufficient accuracy.

A rapid decay in the singular values indicates that a small number of modes are sufficient to
capture the dominant dynamics of the system. Conversely, a slow decay suggests that the
system exhibits more complex behavior, requiring a larger number of modes for an accurate
reduced representation. The number of modes r is typically chosen such that a predefined
energy threshold (e.g., 99% of the cumulative energy) is captured.

From Figure 4.2, we can analyze the singular values for both the global and component-wise
POD approaches. One can obtain that in Figure 4.2, the clear drop in the graph includes more
modes then the graphs for the separate subsystems (the corner is more to the right for the
single basis). This is because the coupling terms introduce additional correlations across the
domains. In essence, the coupling creates new patterns in the data. Therefore, the POD of
the full coupled system must account for both the internal dynamics of each subsystem and
the interaction effects between them, requiring more modes to accurately capture the dominant
behavior.

4.1.2 Results POD Strategies

The results of the FOM are presented in Figure 4.3. In this figure, we show the spatial tem-
perature at a specific timestep. We will compare the accuracy of reduced-order models using
either a single global basis or separate bases for each component. In this part of the chapter, we
will show spatial heat patterns as results. This is to give an idea how Reduced Order Modeling
in this system works and to give a visualization of the heat pattern. Later on we will only
show the temperature evolution over time evolutions. This gives a better overview of the results
throughout the simulation.

29 29

4.1. POD Chapter 4. Numerical Results and Analysis

(a) Singular values for a single basis (b) Singular values for two separate bases.

Figure 4.2: Singular values of the POD method for a single or two bases. The singular values come
from applying an SVD method to the data matrix.

The material properties and mesh are identical across all simulations in this thesis. The velocity
of component B varies: slow motion allows larger time steps (faster runtime), while fast motion
requires smaller time steps (slower runtime). We report the chosen velocity only when varying
it leads to different results. Otherwise, we omit it for simplicity. The wafer stage motion is
prescribed as a sinusoidal trajectory. To represent this motion in the simulation, the cycle is
discretized into 11 timesteps. Hence, larger timesteps represents slower motion.

(a) Component A: FOM (b) Component B: FOM

Figure 4.3: Results of the FOM for a specific timestep

In Figure 4.3, one can obtain a clear pattern: the wafer stage moves from left to right, leaving
a thermal trail in its path.

One global basis. We first consider the case where one global basis is used for both com-
ponents. The effect of the number of retained modes in the reduction basis Φ is illustrated in
Figures 4.4 and 4.5, which show the temperature fields at a specific time index using three and
five modes, respectively.

As the number of modes increases, the reduced-order solution converges toward the full-order
reference. This is seen in the decreasing error in Figure 4.13. The improvement occurs because
additional modes account for higher-order contributions to the system’s dynamics, which are
neglected in lower-dimensional models. Note that from these results, the results for including
five modes seem to already be very accurate.

To evaluate the accuracy in time, we also consider the temperature over time at two repre-
sentative nodes: one located at the boundary and one in the interior of component A. For the

30 30

4.1. POD Chapter 4. Numerical Results and Analysis

(a) Component A: POD with 3 modes (b) Component B: POD with 3 modes

Figure 4.4: POD method with a single basis, conserves small part of the energy.

(a) Component A: POD with 5 modes (b) Component B: POD with 5 modes

Figure 4.5: POD method with a single basis, conserves part of the energy.

following analysis, we consider 7 modes in the reduced bases. To give an idea of the movement of
the waferstage, Figure 4.6 plots the results of the temperature evolution over time. When com-
ponent B moves relatively slow, see Figure 4.6a, the results are clear and easy to interpret. The

(a) Slow motion. ∆t = 100. (b) Fast motion.∆t = 1.

Figure 4.6: Temperature over time on a boundary and interior node. The first figure gives the results
for a slow motion of component B and the second gives the results for fast motion. Both result has the
same heat source, an inward flux of 200 W/m2. The eigenbasis consists of a single basis with 7 modes.

temperature of the boundary and internal node are very similar over time. However, this does
not reflect the actual situation we are studying. In reality, the waferstage moves at a relatively
high speed. Therefore, it is important to focus on fast motion as well. To accurately capture
fast motion, small timesteps are required, which significantly increase the total simulation time.
Due to the high speed, the temperature differences between the nodes become smaller, making
it harder to observe clear variations in the full simulation results, see Figure 4.6b. For this
reason, we often zoom in on a window of 100 timesteps throughout this thesis to better visualize
the effects, see Figure 4.7. Note that the boundary node shows stronger deviations due to its
direct contact with the nonlinear radiation interface. In contrast, the interior node remains more

31 31

4.1. POD Chapter 4. Numerical Results and Analysis

stable, it experiences less deviation for faster motion, which is logical.

(a) Slow motion. (b) Fast motion.

Figure 4.7: Temperature over time on a boundary and interior node for the last 100 timesteps of the
full simulation. The first figure gives the results for a slow motion of component B and the second gives
the results for fast motion. Both result has the same heat source, an inward flux of 200 W/m2. The
eigenbasis consists of a single basis with 7 modes.

To visualize the effect of taking more modes into account, the last 100 timesteps of the full
simulation for different numbers of modes with a relatively fast motion are given in Figure 4.8.
The accuracy improves with more modes, as expected.

Figure 4.13 presents the error of the reduced model (with a single basis) as a function of the
number of modes used. We again see a reduction in error with increasing modes. The dominant
contribution to the error originates from component A, reflecting its stronger nonlinear behavior,
hence we will focus on the results for component A throughout this thesis. Also throughout this
thesis we calculate the error at a given time tk: let Tk ∈ RN be the reference (FOM) temperature
vector and T̂k the reduced one. We calculate the relative L2 error with:

erel
k = ∥Tk − T̂k∥2

∥Tk∥2
. (4.2)

32 32

4.1. POD Chapter 4. Numerical Results and Analysis

(a) Temperature over time for 3 modes.

(b) Temperature over time for 5 modes.

(c) Temperature over time for 10 modes.

Figure 4.8: Temperature over time of a boundary and an internal node in component A using one
basis with varying number of modes.

33 33

4.1. POD Chapter 4. Numerical Results and Analysis

Two separate bases. Next, we investigate a reduced model using two separate bases: one
for component A and one for component B. Figure 4.11 shows the result with 60 modes for
component A and 30 for component B - which contain approximately all energy (see Figure
4.2b) - while Figures 4.9 and 4.10 explore the effect of using fewer modes. Again, the accuracy
improves with more modes.

(a) Component A: POD with 3 modes. (b) Component B: POD with 2 modes.

Figure 4.9: POD method with two bases, conserves small part of the energy.

(a) Component A: POD with 5 modes. (b) Component B: POD with 3 modes.

Figure 4.10: POD method with two bases, conserves part of the energy.

(a) Component A: POD with 60 modes. (b) Component B: POD with 30 modes.

Figure 4.11: POD method with two bases, conserve almost all the energy.

To assess time-dependent behavior, Figure 4.12 displays the temperature over time for the same
representative nodes as before. The reduced solution closely follows the FOM when taking more
modes into account.

Finally, Figure 4.13 shows the error decay with respect to the number of modes per component.
The error is again computed as Eq. (4.2). As with the single global basis, a way to determine the
required number of modes is to impose a maximum acceptable error threshold for the reduced
model.

In conclusion, the POD method provides an effective model reduction technique, producing
accurate results with a significantly lower-dimensional representation. However, as we know,
its main limitation lies in the treatment of nonlinear terms, which still require evaluation in
the full-order space. This drawback motivates the use of additional reduction strategies such as
the Discrete Empirical Interpolation Method (DEIM), which enables efficient approximation of
nonlinearities and further accelerates the reduced-order model.

34 34

4.1. POD Chapter 4. Numerical Results and Analysis

(a) Temperature over time for 3 modes.

(b) Temperature over time for 5 modes.

(c) Temperature over time for 10 modes.

Figure 4.12: Temperature over time of a boundary and an internal node in component A using two
bases with varying number of modes.

35 35

4.2. POD DEIM Chapter 4. Numerical Results and Analysis

Figure 4.13: L2 error (Eq. (4.2)) of component A for the two strategies for the POD method based on
a timestep compared to the FOM. The number of modes are the total number of modes used for both
systems, i.e. when we use two separate bases, we add the number of modes in both systems.

4.2 POD DEIM

In the previous sections, we have used Proper Orthogonal Decomposition (POD) to construct
reduced-order models of the full system. While the POD method is very effective for reducing
the dimensionality of the linear part of the system, it does not necessarily reduce the evaluation
of the nonlinear terms, this is also shown in Section 3.1.3. This section also shows how the
Discrete Emperical Interpolation Method (DEIM) can be combined with the POD method to
resolve this issue. The previous section showed that the system can be approached in two ways:
using one global basis or two separate bases. Since both methods gave sufficient results, we now
focus on using two separate bases. This fits better with a subsystem setup, which is made up of
different connected subsystems. Using a separate basis for each part gives more flexibility and
matches how the system is actually built.

In Section 3.1.3, we saw that applying the algorithm leads to evaluating P T R(Φra(t)). However,
this does not resolve the issue that we are facing. DEIM uses a trick: it swaps the order of
evaluation and projection, computing R(P T Φra(t)) instead. This means the nonlinear function is
now evaluated only at selected locations. The full function is then approximated by interpolating
from these values, reducing the computational cost significantly.

DEIM addresses this limitation by approximating the nonlinear term using a separate reduced
basis and a small number of interpolation points. This enables a reduction in computational
cost for the nonlinear part. This approach allows the nonlinear term to be evaluated only at a
few selected entries, significantly reducing the cost of computing R(TA, TB) during simulations.

4.2.1 Results DEIM

In the previous section, we saw that the results of the POD method for both strategies give
promising results. The error for two separate bases is slightly larger, as seen in Figure 4.13. The
absolute maximum difference in error is bounded by 10e−3, this can be compensated by taking
more modes into account. To fit in the way of working of the industry (where it is common to
have big assemblies and different subssystems), this result is acceptable. Therefore, the following
results will only focus on a system with two separate bases.

In Figure 4.14, the temperature over time of a node on the boundary of component A can be
obtained for the FOM, POD method and POD-DEIM method. The error is plotted in Figure

36 36

4.2. POD DEIM Chapter 4. Numerical Results and Analysis

Figure 4.14: Temperature over time of a node in component A. POD-DEIM compared to the FOM and
POD method. velocity

Figure 4.15: Error of the POD-DEIM method versus the number of eigenmodes. The error of the
temperature of the last timestep compared to the FOM. The error of the POD method with two bases is
also given as a reference. The L2-error is computed as (Eq. (4.2)).

4.15 and is computed as Eq. (4.2). It is clear that the POD DEIM offset is significant in
comparison with the POD method. In this simulation, we took 50 POD modes, so the basis
contains approximately all the dynamics, as seen in 4.13. Therefore, the error that occurs in
this simulation comes only from the DEIM basis. For the POD DEIM method, we took as many
interpolation points as the number of nodes on the nonlinear boundary, this would result in
the most optimal solution. It is obvious that the error grows as time increases. This means
that the error is accumulative, i.e. for every time integration step, the error is small, but after
enough timesteps, it becomes significant. There are a few assumptions we make during the
approximation with DEIM, e.g. we interchange the interpolation matrix and the radiative FEM
term. The offset can come from one of these assumptions.

To conclude, the POD-DEIM method has some promising results for this problem in terms of
reducing the evaluation of the nonlinear term, however it does give an offset in the results.
To implement the POD-DEIM method, it is necessary to change the code of the nonlinear
radiation term. However, this is not possible in the ANSYS environment within ASML. ANSYS
does not provide information on the nonlinear term, therefore we cannot extract and adapt these
calculations. Also, POD-DEIM is a data-driven approach which requires more data in real life
complex problems in comparison to this test problem. This can be a bottleneck for this method.

37 37

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

Taken these disadvantages into account, we will try if there are other methods which also give
promising results.

4.3 Modal Decomposition

To analyze and reduce the system dynamics, we consider two main approaches for eigenvalue
(modal) decomposition:

1. Linearized System: where the nonlinear terms are linearized around a equilibrium state.

2. Full Nonlinear System

Each of these approaches can be applied using the same two possibilities as the previous section:

1. A single basis for the coupled system as a whole.

2. Separate bases for each subsystem individually.

An overview is given in Figure 4.16.

Modal Decomposition

Linearized System

Single Basis
(coupled system)

Two Bases
(separate systems)

Nonlinear System

Single Basis
(coupled system)

Two Bases
(separate systems)

Figure 4.16: Overview modal decomposition strategies.

4.3.1 Linearized system

We begin by focusing on the linearized system. The linearization is carried out as described in
Section 3.3, that is

MAṪA + (KA + LA)TA − LABTB = FA

MBṪB + (KB + LB)TB − LBATA = FB,
(4.3)

which results in the following system(
MA 0
0 MB

)(
ṪA

ṪB

)
+
(

KA + LA −LAB

−LBA KB + LB

)(
TA

TB

)
=
(

FA

FB

)
(4.4)

Note that linearization usually requires an equilibrium state to expand around. To achieve such
a state, we keep component B fixed so that a steady-state solution exists — one that does
not change over time. If we linearize the real moving model, we get a time-dependent stiffness
matrix due to the changing view factor and we would not have a steady state solution, instead
the system will have a periodic steady state solution due to the periodic movement.

38 38

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

In this case, the view factor stays constant. The linearized model serves not only as a reference
for the nonlinear modal decomposition, but also as a tool for gaining insight into the system’s dy-
namics. Furthermore, it provides a basis for validating other methods and assessing uncertainty.
In case unexpected behavior appears during simulations or model reduction, the linearized sys-
tem offers a reliable fallback to help determine whether nonlinear effects are responsible for the
observed issues.

Coupled system, one basis. The eigenvalue decomposition is discussed in Section 3.1.1. It
creates a basis by solving the eigenvalue problem in Eq. (3.3), i.e. solving

Kϕi = λiMϕi. (4.5)

Solving this problem for a single eigenvalue is equivalent to solving this problem with

M =
(

MA 0
0 MB

)

and
K =

(
KA + LA −LAB

−LBA KB + LB

)
.

After applying the eigenvalue problem, we obtain a set of eigenvectors ϕi and eigenvalues λi.
We assemble the eigenvectors into the matrix Φ = [ϕ1, ϕ2, . . . , ϕn] and define the reduced tem-
perature vector q by the transformation:

T = Φq. (4.6)

Substituting into the original equation, we obtain:

MΦq̇ + KΦq = F. (4.7)

Using the Galerkin projection, i.e. multiplying both sides from the left by Φ⊤, we get:

Φ⊤MΦ = I, Φ⊤KΦ = Λ = diag(λ1, . . . , λn),

we obtain the decoupled system:
q̇ + Λq = Φ⊤F. (4.8)

The method of selecting certain eigenvectors, ϕi, in the reduced matrix Φ can differ. A very
common method is to consider the smallest r eigenvalues, see Figure 4.17, where the eigenvalues
are ordered from the smallest eigenvalue as the first index and the largest eigenvalue as the
last index. It is well known that eigenvalues with the smallest magnitudes correspond to the
system’s long-term behavior and therefore tend to dominate the systems behavior over time.
In the figure, the eigenvalues are plotted on a logarithmic scale, where it becomes clear that
the first eigenvalues contain the most energy. This makes it natural to consider an eigenbasis
formed from the eigenvectors associated with the smallest r eigenvalues. This can, for example,
be done in the same manner as in Section 4.1, by defining a certain threshold to determine the
percentage of the energy conserved in the reduced model. The error of this ROM is shown in
Figure 4.19, where the error is based on the comparison with the FOM at a certain timestep.

39 39

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

Figure 4.17: The eigenvalues of the global system in ascending order.

Another method is considering the projection of the right hand sight (RHS) onto the eigenbasis.
This method is important in systems where there is a nonzero external forcing term. This term
is not captured in the eigenvalue dynamics since it was assumed to be zero. Each qi satisfies:

q̇i + λiqi = ϕ⊤
i Fi. (4.9)

This shows that the excitation of each mode i depends directly on the projection ϕ⊤
i F . If this

projection is zero for some i, then the corresponding mode is not directly excited by the forcing.

To identify which modes are activated, we compute:

fi := ϕ⊤
i F. (4.10)

This is done with all eigenvectors of the eigenvalue problem in the matrix Φ, where they are
ordered again in the same manner as above, the eigenvector with the corresponding eigenvalue
with the smallest magnitude is first, i.e. ϕ1. A mode i is strongly excited if fi is large in
magnitude over time. The solution to this scalar ODE is:

qi(t) = qi(0)e−λit + fi

λi

(
1 − e−λit

)
, (4.11)

and converges to a steady-state value q∞
i = fi/λi as t → ∞. This reveals that the contribution

of each mode to the solution is governed by its excitation score:

excitationi :=
∣∣∣∣ fi

λi

∣∣∣∣ =
∣∣∣∣∣ϕ⊤

i F

λi

∣∣∣∣∣ . (4.12)

In Figure 4.18, the excitation scores for each index are visualized. For this method, a mode
should be included in a reduced basis if it exceeds a threshold:∣∣∣∣∣ϕ⊤

i F

λi

∣∣∣∣∣ ≥ ε, (4.13)

where ε is chosen based on desired accuracy.

The following question arises: if a mode i is not activated by the forcing term, i.e.,

fi := ϕ⊤
i F = 0

does this imply that mode i is unimportant and can be discarded?

40 40

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

Figure 4.18: Projection of the RHS onto the full eigenbasis scaled with the eigenvalues for a single
basis.

This is not necessarily the case. Even if fi = 0, the modal amplitude qi satisfies the homogeneous
equation:

q̇i + λiqi = 0,

with solution:
qi = qi(0)e−λit.

Thus, mode i contributes to the solution purely through its initial condition qi(0). Since,

t → ∞,

this solution tends to zero. This means that the modes excited by the RHS contribute more
dominant to the solution when approaching the steady state solution. Remember, we consider
a stationary system, i.e. we have a constant steady state solution. However, for a transient
solution, the modes contributing solely through the initial condition do play a role in the solution.

To visualize the excitation of the RHS, we plot the excitation scores, shown in Figure 4.18.
From this figure, it becomes clear that not only the first r eigenmodes are significantly excited
by the forcing term. Therefore, instead of blindly selecting the r smallest eigenmodes, we define
a selection criterion based on the excitation scores. This leads to the following workflow:

1. Solve the eigenvalue problem.

2. Sort the eigenvalues.

3. Project the system’s right-hand side (Eq. (4.3)) onto the eigenbasis by computing inner
products.

4. Set a criterion, i.e. define ϵ to select the eigenmodes.

In Figure 4.19, the error of component A is given for this workflow. The error is computed as
Eq. (4.2). The solution for the ROM with the modal reduction is compared to the FOM at
a given timestep. It is compared to the other strategy: taking the eigenvectors for the basis
corresponding to the smallest r eigenvectors. It becomes clear that increasing the number of
modes according to the smallest r method gives certain jumps in the error at the positions where
an eigenmode is excited. The jumps corresponds to including an eigenvector which excitation
value is relatively high.

41 41

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

Figure 4.19: Error (component A): comparison between taking the eigenvectors corresponding to the
smallest eigenvalues and between setting a criterion to select specific eigenvalues for a single basis. The
error is computed as (Eq. (4.2)).

Remarks:

• We looked at the error at the last timstep, which is close to a steady state solution.

• A useful alternative is to shift the system to its steady-state solution. Let T∞ = K−1F
denote the steady-state temperature. Define the shifted variable T̃ := T − T∞, which
satisfies:

M ˙̃T + KT̃ = 0, (4.14)
i.e., a homogeneous system with zero forcing. This transformation isolates the transient
dynamics and avoids the need to project the forcing term. The solution becomes:

q̃i(t) = q̃i(0)e−λit. (4.15)

Coupled system, two bases. Again, an alternative approach for constructing a reduced
basis for the system in Eq. (4.3) is to consider the system as two separate subsystems. The
benefits are discussed already in the previous section and this approach is also needed to fit in
the way of working, since these components are part of a bigger ensemble.

Each subsystem has its own generalized eigenvalue decomposition:

KAϕA
i = λA

i MAϕA
i , for i = 1, . . . , nA,

KBϕB
j = λB

j MBϕB
j , for j = 1, . . . , nB,

(4.16)

leading to two separate modal bases ΦA and ΦB.

We define the reduced temperature vectors as:

TA = ΦAqA, TB = ΦBqB,

and substitute into the global system. Projecting onto the respective eigenbases yields a reduced
system in modal coordinates:[

q̇A

q̇B

]
+
[

ΛA Φ⊤
AKABΦB

Φ⊤
BKBAΦA ΛB

] [
qA

qB

]
=
[

Φ⊤
AFA

Φ⊤
BFB

]
, (4.17)

42 42

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

Figure 4.20: Projection of the RHS onto the full eigenbasis scaled with the corresponding eigenvalues
(two different subspaces with two different eigenbases).

Figure 4.21: Error (component A): comparison between taking the eigenvectors corresponding to the
smallest r eigenvalues and between setting a criterion to select specific eigenvalues for two bases. Note
that this is the total number of modes, i.e. for two bases this means the number of modes of both reduced
bases. The error is computed as (Eq. (4.2)).

where ΛA and ΛB are the diagonal matrices of eigenvalues for subsystems A and B.

Following the same workflow as in the single-basis approach, the excitation values are shown
in Figure 4.20. The errors, computed as Eq. (4.2), at a specific time step for both strategies
(smallest r and the criterion-based method) are presented in Figure 4.21. From this figure, we
observe that the error using the two-basis method is significantly larger compared to the global
single-basis approach.

Equation (4.17) highlights that the eigenvalue problems in Equation (4.16) do not include the
off-diagonal coupling terms in the full stiffness matrix. These terms represent the dynamic
interaction between the two subsystems. As a result, more eigenmodes may be required to
accurately capture the system’s behavior.

Results strategies Figure 4.22 clearly visualizes the benefits of the use of one single basis.
The error is more significant for two bases, the reason for this is already discussed above.
However, both methods significantly reduces the dimension of the system with a relatively small
error. As mentioned before, to fit the way of working, we will continue this section with two
separate bases.

43 43

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

(a) Two separate bases, 29 modes. (b) One single basis, 29 modes.

(c) Two separate bases, 17 modes. (d) One single basis, 14 modes.

Figure 4.22: Modal decomposition: comparison between one or two bases for different mode counts.

44 44

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

4.3.2 Modal decomposition for the nonlinear system

We now extend the analysis to systems with nonlinearities in the form:

MṪ + KT = F − R(T), (4.18)

The nonlinearity enters as a force of the right-hand side. Despite the introduction of nonlinearity,
we still consider the same eigenvalue problem for the model reduction:

Kϕi = λiMϕi, for i = 1, . . . , n (4.19)

The following section assumes two bases for the two separate subsystems, constructed the same as
above. For this analysis we consider a spatially varying simulation again. Unlike the linearized
case, the projection of the nonlinear term onto these bases is time-dependent rather than a
constant. As a result, we cannot precompute the important modes for this nonlinear term, nor
can we shift the system to obtain a homogeneous system. Figure 4.23a shows the nonlinear
term evaluated at the intial conditions, projected onto the full eigenbases. Figure 4.23b shows
the full right-hand side of the system, namely F − R(T) for both systems, projected onto their
corresponding full eigenbasis.

(a) Full force vector, F − R(T). (b) Nonlinear term, R(T)

Figure 4.23: Comparison of the full right-hand side and the nonlinear component projected onto the
full eigenbasis.

One can find that the constant forcing term yields larger excitation scores. To compare the
mode-selection strategies, we will revisit the two methods again: first compare the results with
the smallest r eigenvalues, for an increasing r. Hereafter, we will use a criterion for the full
right-hand side, where the nonlinear term is evaluated at the initial condition. In Figure 4.24,
the error for the two different approaches are given, computed as Eq. (4.2).

Furthermore, we can compare the linearized system with the nonlinear system. Because we
cannot shift the equilibrium to obtain a homogeneous system for the nonlinear case, and the
results in the linearized system for using a criterion were significantly better, we will compare
the results for using a criterion for both methods. The results are given in Figure 4.25.

To visualize the results and errors, we will compare it to a spatial plot of the FOM, see Figure
4.26. Figure 4.27 represents the temperature evolution over time on one node, to obtain the
error over time. The plot is again given for a full time simulation and the last 100 steps to get a
closer look at the dynamics. For these plots, a criterion was set to select the number of modes.
The approximation seems actually quite accurate, but if we plot the spatial temperature at the

45 45

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

Figure 4.24: The error (Eq. (4.2)) of both strategies compared for a nonlinear system.

Figure 4.25: The comparison of the error (Eq. (4.2)) between the linearized and the nonlinear system
using an increasing number of eigenmodes in the bases.

46 46

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

last timstep, see Figure 4.28, one can observe that this looks different then Figure 4.26. If we
take a closer look at Figure 4.23, one can obtain that the excitation scores are much higher for
the constant force vector then the nonlinear radiation term which include the view factor. These
effects are not accurately incorporated in the modes used for these results.

(a) Component A: FOM. (b) Component B: FOM.

Figure 4.26: FOM of the system. A reference for the results given in Figures 4.28 and 4.30.

(a) Full time simulation. (b) Last 100 timesteps.

Figure 4.27: Plots of the temperature over time on one node: FOM compared to the modal decomposi-
tion of a nonlinear system. The total number of modes is 27, that is for both systems. The eigenvectors
are chosen based on a criterion.

(a) Component A: Modal decomposition with 16
modes.

(b) Component B: Modal decomposition with 11
modes.

Figure 4.28: Modal decomposition for the nonlinear system with two bases.

It is also possible to use the other strategy: taking the eigenvectors corresponding to the smallest
r eigenvalues. The results for this are given in Figure 4.29 and Figure 4.30. One can also obtain
that the error is quite significant within visualization in the later figure. In Figure 4.24, it can
be seen that the error does not decrease much if we take some more modes into account.

The results for the modal decomposition are at first sight really promising. The L2-error can
be reduced to > 10e−6 with a limited (∼ 10) number of eigenmodes, see Figure 4.19. However,
the results for the linearized system are only results for a stationary system. We can not move

47 47

4.3. Modal Decomposition Chapter 4. Numerical Results and Analysis

(a) Full time simulation. (b) Last 100 timesteps.

Figure 4.29: Plots of the temperature over time on one node: FOM compared to the modal decomposi-
tion of a nonlinear system. The total number of modes is 26, that is for both systems. The eigenvectors
corresponding to the 13 smallest eigenvalues are taken for both systems.

(a) Component A: Modal decomposition with 10
modes.

(b) Component B: Modal decomposition with 10
modes.

Figure 4.30: Modal decomposition for the nonlinear system with two bases. The nonlinear behavior is
not captured accurately.

48 48

4.4. Substructuring Chapter 4. Numerical Results and Analysis

the waferstage due to limitations of the linearization, which is a big aspect of our problem.
The modal decomposition for the nonlinear system does give a good basis, i.e. the error can
be relatively small, around 10e−5 for more then 10 eigenmodes, in comparison with the FOM
but, as we visualized, some spatial patterns are not captured within the eigenvalue problems.
The results are therefore not accurate enough. As mentioned before, the nonlinearity appears
only at the boundary, this motivates the use of substructuring, where we can apply the modal
decomposition to the linear dynamics of the system.

4.4 Substructuring

As discussed in Section 3.2, the previous results motivate the use of substructuring. The con-
stant mass- and stiffness matrix allow us to solve the generalized eigenvalue problem. However,
the force vectors are nonzero, therefore the general eigenvalue problem does not capture the
behavior appropriately. These forces are only applied on the boundary, motivating the use of
substructuring. After substructuring, we can apply Craig-Bampton for the linear internal part
and apply another technique on the boundary.

4.4.1 Internal Reduction: Craig-Bampton

The next step is to evaluate this method. As mentioned before, the velocity of the movement of
the component B can vary. To obtain a periodic steady-state solution, the simulation must span
a sufficiently long time interval. We start with a slow motion allowing us to quickly compute
solutions over a longer time period.

(a) Full time period (b) Last 100 timesteps

Figure 4.31: Temperature of nodes over the full time period and the last 100 timesteps for the com-
parison of the FOM and the substructured system with Craig-Bampton reduction for zero eigenmodes.

The simulation monitors the temperature evolution at two distinct nodes in component A: a
boundary node and an internal node. As a result, the latter is expected to have a smaller
temperature variation due to its distance from the radiative boundary.

The reduction to zero eigenvalues (i.e. Φ ≡ 0) yields already an accurate result, see Figure 4.31.
The results obtained in Figure 4.31a are the full time simulation of the FOM compared to the
substructured system with the Craig-Bampton reduction with zero eigenmodes. Figure 4.31b
show the last 100 timesteps to get a closer look at the results. The results are really accurate, they
are overlapping very closely, meaning the ROM accurately captures the dynamics of the FOM.
This insist that the internal dynamics can be fully described by the solution on the boundaries.

49 49

4.4. Substructuring Chapter 4. Numerical Results and Analysis

This conclusion follows from the decomposition of the solution into static and dynamic modes:
the static modes are expressed as functions of the boundary nodes, while the dynamic modes are
associated with the system’s eigenmodes. Applying this reduction technique allows us to reduce
the system so that only boundary solutions need to be computed. Effectively, this reduces a
two-dimensional problem to a one-dimensional one.

However, it is important to note that the previous simulations involved a slowly moving geometry,
enabling us to observe long-term behavior over a relatively short simulation time. To now assess
the model with faster motion, we decrease the timestep. We first examine a simulation using
four eigenmodes and compare its performance to the FOM.

As shown in Figure 4.32a, the reduced-order model accurately represents the FOM throughout
the entire simulation period. However, the overall temperature variations remain relatively small
compared to the total temperature scale. Figure 4.32b provides a detailed view of the final 100
time steps, where noticeably larger deviations between the two models become visible.

(a) Full time period (b) Last 100 timesteps

Figure 4.32: Temperature of nodes over the full time period and the last 100 timesteps with fast motion
(four eigenmodes).

In both Figure 4.33 and Figure 4.34, the results are shown for an increasing number of eigen-
modes. From the figures, it is evident that as the number of eigenmodes increases, ROM con-
verges towards the Full Order Model (FOM), as expected. For the result with 12 eigenmodes,
we can obtain nearly overlapping graphs, yielding a very accurate result. These results show
that the system can still be significantly reduced for the interior nodes. However, it became
clear that within the fast-motion case the transient behavior is stronger than in the slow-motion
simulation. Since the Craig-Bampton eigenmodes represent this transient part, they become
more important for accurate reduction when the system moves faster. This suggests that the
motion of the system is important in determining the number of eigenmodes in the reduction.

4.4.2 Interface Reduction: Neural Networks

The data used to train the network was generated from long simulations of the reduced finite
element model with the Craig-Bampton method. Specifically, we collected snapshots of the tem-
perature on the radiation boundaries and the corresponding radiation outputs. These snapshot
matrices were used to form the training dataset.

We implemented the neural network in TensorFlow, using a feedforward architecture with mul-
tiple hidden layers and a nonlinear activation function, see Section 3.2.2.

50 50

4.4. Substructuring Chapter 4. Numerical Results and Analysis

(a) Full time period (b) Last 100 timesteps

Figure 4.33: Temperature of nodes over the full time period and the last 100 timesteps with fast motion
(10 eigenmodes).

(a) Full time period (b) Last 100 timesteps

Figure 4.34: Temperature of nodes over the full time period and the last 100 timesteps with fast motion
with 12 eigenmodes

51 51

4.4. Substructuring Chapter 4. Numerical Results and Analysis

The neural network we created splits the data into a train and test set. This allows us to test
the neural network on data it does not know yet. Figure 4.35a shows the results of specific test
index for model A and Figure 4.35b shows it for model B.

(a) Neural network for component A (b) Neural network for component B

Figure 4.35: The results of the neural networks used in this work. A test sample is used to visualize
the accuracy of the results from both models

In the results in this section, we included eight eigenmodes in Φ. In Figure 4.36, the temperature
on a node of component A is given. The results give for a relatively fast motion. Again, since
the temperature fluctuations are small, the deviations are not clear from the plot of the full time
period. Therefore, the last 100 timesteps are given in Figure 4.36b. We obtain a very promising

(a) Full time period (b) Last 100 timesteps

Figure 4.36: Temperature of nodes over the full time period and the last 100 timesteps for the com-
parison of the substructured system with Craig-Bampton reduction and with the neural network.

result: the approximation with a neural network closely resembles the results without neural
networks. Note that when zooming into a very small region of the graph, a slight offset appears.
The offset in the last figure is a consequence of accumulative error. Due to the accumulative
nature of numerical error, even a very small error can become significant after a large number of
time steps. In this case, after approximately 20000 steps, the error, which was initially negligible,
begins to noticeably affect the solution. The error in Figure 4.35a is barely visible, however,
computing the absolute error gives a maximum value of

10e−4,

which will be significant after many timesteps. Unlike other reduction techniques based on
eigenmodes, this model is based on a neural network architecture, and therefore increasing the
number of eigenmodes is not applicable as a means of reducing the error. This offset is so small
that we consider it acceptable and attribute it to numerical effects.

52 52

4.4. Substructuring Chapter 4. Numerical Results and Analysis

Figure 4.37: Radiation on a boundary node on component A

The results of the radiation term alone are shown in Figure 4.37. It can be seen that, in a full
simulation, the radiation obtained from the standard computation of the nonlinear radiation
term is approximately the same as the results from the neural network computation. However, we
just saw that the very small error appearing in the approximation add up after many timesteps.

Figure 4.38 shows the results for a slow motion of component B. Also, Figure 4.39 shows the
predicted radiation with the neural network again, compared to the full FEM computation of
the radiation. As expected, the temperatures of the boundary node and the interior node are
much closer to each other. These results are again very promising and provide motivation to
extend the approach to a 3D case using ASML software.

(a) Full time period (b) Last 100 timesteps

Figure 4.38: Temperature of nodes over the full time period and the last 100 timesteps for the com-
parison of the substructured system with Craig-Bampton reduction and with the neural Network.

The results in this section are very promising. We therefore propose the algorithm as an efficient
technique to reduce the system: use substructuring to divide the internal and boundary dynam-
ics. The nonlinearity is only appearing on the boundary, so we isolate the nonlinearity with
the substructuring approach. The internal linear system can be reduced with a well-established
known method, like the Craig-Bampton method. This method effectively reduces the system;
for a stationary system, we can even ignore the transient behavior and reduce the system to a
boundary problem only. The movement of the waferstage introduces transient internal behav-
ior, the eigenmodes in the Craig-Bampton method capture this behavior and a few modes are

53 53

4.4. Substructuring Chapter 4. Numerical Results and Analysis

Figure 4.39: Radiation on a boundary node on component A. The results for relatively slow motion
(∆t = 80).

needed to accurately capture this. For our proposed algorithm, we create a surrogate function
for the nonlinear spatially varying term with a neural network. It creates a simple input-output
function which is computationally very cheap. So, the nonlinear boundary term is not reduced
in size, but within the complexity of the evaluation, and hence the runtime is reduced. Both
components need separate neural networks, which is in line with the way of working of reducing
component-wise: reduce all the subsystems separate so you can interconnect them with other
sub assemblies, and within the whole assembly.

As mentioned before, the input of the neural network is the temperature on the radiative bound-
aries only. Craig-Bampton reduced the internal nodes only, leaving the boundary degrees of
freedom in full space. This implies that we do not have to map the reduced temperature vector
back to full space.

Also, the view factor matrix is incorporated within the neural network. This is an important fea-
ture of the neural network, as the view factor matrix computations are very expensive, especially
for complex geometries.

Overall, this algorithm provides a promising reduction technique for the nonlinear, spatially
varying, radiative heat problem and we will test it on a case study in ANSYS. An overview of
the algorithm can be found in Figure 4.40 and Algorithm 3.

Algorithm 3 ROM workflow: Substructuring → Craig–Bampton (internal) → NN (interface
radiation) → Time integration (Newton) → Reconstruct
Initialize FE model: e.g. M, K, loads F and R(t), path (x(t), y(t)), initial state T0, time
discretization. Offline

1. Substructuring: split DOFs into interface and internal.
2. Craig-Bampton (internal DOFs): build CB basis; project to get reduced matrices.
3. Neural network (interface radiation DOFs): train NN to map interface temps +

position → radiation flux.
Online

1. Time stepping with Newton: for each timestep,
• evaluate interface radiation via NN,
• assemble reduced residual/Jacobian, solve Newton update.

2. Reconstruct full field: map reduced solution back using the CB basis.

54 54

4.4. Substructuring Chapter 4. Numerical Results and Analysis

Figure 4.40: Algorithm ROM: (1) substructuring, (2) Craig-Bampton reduction of internal DOFs
(reduction in matrix sizes) (3) neural network approximation of interface radiation (does not reduce
size), (3) ROM

This algorithm can be reproduced within Python, the code can be found in the GitLab Reposi-
tory [16].

55 55

https://gitlab.tudelft.nl/-/snippets/375
https://gitlab.tudelft.nl/-/snippets/375

Chapter 5

Case study in ANSYS: 3D model

This chapter applies the proposed algorithm from the previous chapter to a 3D case study in
ANSYS. ANSYS is a 3D simulation platform with built-in finite-element solvers for PDEs such
as the heat equation. The 3D model closely resembles the earlier test problem. Although the
geometry remains an idealized, isolated model, it provides a realistic intermediate step and a
suitable test model for evaluating the algorithm’s performance.

5.1 Initializing 3D model

The 3D model in ANSYS is given in Figure 5.1. The radiative boundaries are the surfaces facing
each other. Note that this is also an assumption: in the actual model, every boundary surface
can radiate and absorb heat. Again, two relatively small, cooling Robin boundary conditions
are applied at the top surface of component A and at the bottom surface of component B.
Furthermore, a heat source is placed at the bottom surface of component B. The simulation
parameters can be found in Table 2, these are the parameters that do not change throughout
the simulations. The parameters that do change are given in Section 5.4.1. ANSYS can run a
transient heat simulation and it can give the spatial temperatures defined on surfaces at specific
intermediate timesteps, e.g. the temperature of the bottom surface of component A is given in
Figure 5.2

Figure 5.1: 3D model in ANSYS

56

5.2. Collecting Data Chapter 5. Case study in ANSYS: 3D model

Figure 5.2: The temperature at the bottom of component A. The heat source is an inward flux of 135
W/m2.

5.2 Collecting Data

We want to extract the data we need for a neural network: the temperatures on the radiative
boundaries and the corresponding radiation fluxes on those boundaries. A snippet to export data
is given in Appendix C, in Listing C.1. A simulation with a moving component is computation-
ally expensive and time consuming to generate some samples. Hence, we start by restricting the
study to stationary datasets: multiple static poses solved as separate runs, from which we built
and evaluated the reduced models. In this way, we can quickly validate whether the proposed
algorithm works for this case.

From ANSYS, we also extract other data needed for our ROM, like the global nodes of the whole
assembly, the nodes of all the boundaries, the element connections, and the coordinates of the
nodes. With this data, we can assemble our FEM matrices within MATLAB.

The fluxes on the radiation boundary that we extract are given on the nodes with the unit W/m2,
this means that we also have to adapt the data to Watt on that node, e.g. we can calculate
the area of the surfaces attached to the nodes. However, these hand-made computations and
adaptions can cause the FEM model in MATLAB to differ slightly from the model in ANSYS.
A complete workflow is shown in Figure 5.3.

5.3 Neural Networks

The neural networks for this setup are the same as in the 2D case, a feedforward neural network
with multiple layers. We train it in a similar manner and also test the results on a test set. The
results are again very similar to the real radiative flux, see Figure 5.4. To gain more insight in
the mathematical depth of the training of neural networks, the code of this training is provided
in the Gitlab Repository [16].

57 57

5.3. Neural Networks Chapter 5. Case study in ANSYS: 3D model

Figure 5.3: Workflow of Chapter 5; ANSYS and MATLAB.

(a) Neural network for component A. (b) Neural network for component B.

Figure 5.4: Neural networks of both components. A test sample of the data set is visualized to see the
effect of the neural network.

58 58

5.4. Results Chapter 5. Case study in ANSYS: 3D model

5.4 Results

This section discusses the results for the stationary problem and the limitations of further
research.

5.4.1 Stationary model

To test the approximation of the model with Craig-Bampton and the neural networks from AN-
SYS data, we can compare a full simulation in ANSYS to our reduced simulation in MATLAB.
In the following section we take into account 8 eigenmodes in component A and 3 eigenmodes
in component B. The error does not reduce much when we include more modes. We compare
runtime of a simulation over similar time simulations. To ensure a fair comparison for one
case: material properties, mesh, and boundary conditions are the same. Also, both models use
the same tstart, tend and number of steps (Nt). The runtimes are measured excluding pre/post-
processing and visualization. To obtain general results, we run the simulation for different cases.
Within the cases, the heat source can change, i.e. the inward heat flux on the bottom surface
of component B varies. tend and Nt also varies throughout the cases:

• Case A: g = 100 W/m2, tend = 100,000s, Nt = 19

• Case B: g = 80 W/m2, tend = 250,000s, Nt = 22

• Case C: g = 40 W/m2, tend = 250,000s, Nt = 100

• Case D: g = 65 W/m2, tend = 200,000s, Nt = 1000

• Case E: g = 130 W/m2, tend = 10,000s, Nt = 10000

(a) Component A: temperature of a boundary node (b) Component B: temperature of a boundary node

Figure 5.5: Temperature over time on the radiative surfaces for the FOM and the ROM.

For case A, we visualized the temperature over time of a node at the radiative boundary for
components A and B compared to the FOM, see Figure 5.5. There is a clear offset between the
temperatures of component A of the FOM and ROM. There are multiple explanations for this:
modifying the radiative fluxes on the nodes in MATLAB can cause significant errors. Also, the
mass- and stiffness matrix and the constant force vectors and matrices were not directly available
within ANSYS. These are also computed separately out of the mesh, material properties and
other information from ANSYS. These computations can cause significant errors in the results.
However, the visualization and pattern of the temperature is quite accurate, see Figures 5.6 -

59 59

5.4. Results Chapter 5. Case study in ANSYS: 3D model

5.10. The runtime of a simulation is also significantly improved. The results for these runtimes
are given in Table 5.1. Note that the average time for one timestep for the FOM in ANSYS is
0.124s and the time for the ROM in MATLAB is 0.0151s. This means that the speed factor is
given by:

0.124
0.0151 ≈ 8.2.

Hence, the ROM is 8.21 times faster compared to the FOM for the stationary setup.

Table 5.1: Runtime: FOM (ANSYS) vs. ROM (MATLAB). [Median time] over Nt timesteps.

Case Num. Steps (Nt) FOM time [s] ROM time [s] Rel. L2 error Abs. L2 error
A 22 2.60 [0.19] 0.45 [0.0194] 3.47e-3 1.36
B 19 2.2 [0.16] 0.60 [0.03] 2.33e-3 0.91
C 100 8.6 [0.086] 1.37 [0.0137] 2.47e-3 0.96
D 1000 88.6 [0.0886] 6.48 [0.0065] 3.79e-3 1.48
E 10000 980.8 [0.098] 60.14 [0.006] 2.55e-3 0.99
Avg. 1 0.124 0.0151

(a) MATLAB: ROM results at final timestep. (b) ANSYS: FOM results at final timestep.

Figure 5.6: Case A: temperature on the bottom of component A at t = 250,000 s (Nt = 22) with
80 W/m2 heating. ROM (MATLAB) vs. FOM (ANSYS).

60 60

5.4. Results Chapter 5. Case study in ANSYS: 3D model

(a) MATLAB: ROM results at final timestep. (b) ANSYS: FOM results at final timestep.

Figure 5.7: Case B: temperature on the bottom of component A at t = 100,000 s (Nt = 19) with
100 W/m2 heating. ROM (MATLAB) vs. FOM (ANSYS).

(a) MATLAB: ROM results at final timestep. (b) ANSYS: FOM results at final timestep.

Figure 5.8: Case C: temperature on the bottom of component A at t = 250,000 s with 80 W/m2 heating.
ROM (MATLAB) vs. FOM (ANSYS).

61 61

5.4. Results Chapter 5. Case study in ANSYS: 3D model

(a) MATLAB: ROM results at final timestep. (b) ANSYS: FOM results at final timestep.

Figure 5.9: Case D: temperature on the bottom of component A at t = 200,000 s with 65 W/m2 heating.
ROM (MATLAB) vs. FOM (ANSYS).

(a) MATLAB: ROM results at final timestep. (b) ANSYS: FOM results at final timestep.

Figure 5.10: Case E: temperature on the bottom of component A at t = 10,000 s with 130 W/m2

heating. ROM (MATLAB) vs. FOM (ANSYS).

62 62

5.4. Results Chapter 5. Case study in ANSYS: 3D model

The results can also be given for different positions, see Figure 5.11. Within our ROM, we can
move the block, but the training data did not include transient behavior, due to limitations in
ANSYS. This is for further research.

(a) Position at (x, y) = (0.15; −0.15) (b) Position at (x, y) = (−0.2; 0.15)

Figure 5.11: ROM results for different positions of component B.

5.4.2 Moving component

The next step involves modeling a spatially varying component, which more closely reflects the
core focus of this thesis. As discussed in the problem statement, the view factor matrix (VFM)
is a computationally expensive component of the model. In the stationary case, the VFM is
computed only once at the beginning of the simulation. Furthermore, the reported runtime
includes only the time required for the time-dependent simulation; preprocessing steps such as
the VFM computation are excluded.

Modeling a moving block for 10 timesteps took 12.8s for the FOM. In MATLAB, 10 timesteps
give a total runtime of 0.33s. This would mean the ROM is approximately

12.8
0.33 ≈ 39

times as fast as the FOM.

Furthermore, in ANSYS 2023R, which is the software available within ASML, it is not possible
to update the view factors each timestep, because they are fixed after the preprocessing steps.
This means that component B contains a movement, but the radiation is fixed at the initial
position of the moving component. As a result, we are unable to collect the correct data and
cannot generate the ROM for this problem. However, the updated version of ANSYS supports
this functionality, and the workflow to enable it is already in place. An APDL snippet can be
added to the analysis branch in the project tree. The snippet is added in appendix C, Listing
C.2. This means that the the speedfactor will be even higher then 39 as the view factor matrix
computations are not included in this runtime. The single view factor calculation within this
setup is 1.39s. This means that calculating it every timestep will significantly increase the
runtime.

Note that generating the data for the ROM can be very time consuming and expensive, espe-
cially in this moving setup. However, once the ROM is constructed, its evaluation becomes a
computationally inexpensive operation. The input does not affect the evaluation cost compared

63 63

5.5. Computational Complexity Chapter 5. Case study in ANSYS: 3D model

to the stationary case, as the VFM is embedded within the model. The ROM functions as a
single input-output mapping, meaning it does not matter whether the spatial input remains
constant across the timesteps or varies. This observation is very promising for further research.
The costs of one evaluation of a neural network can also be calculated by running the neural
network for an amount of iterations and dividing the total time by the number of iterations.
The total time for an evaluation is: 1.8367e − 5s.

The average simulation time for one timestep is 0.124 seconds, see Table 5.1. Including the view
factor matrix computations would give a simulation time of

0.124 + 1.39 = 1.514

seconds. Comparing this to the ROM gives:

1.514
0.0151 = 100.26.

This means, including the view factor matrix for a single timestep would mean that the ROM
would be 100.26 times faster than the FOM.

To conclude, the proposed algorithm for this nonlinear spatially varying radiative heat transfer
problem will significantly reduce the total runtime. Without the movement, which causes the
dominant part of the total runtime, the ROM is already approximately 8.21 faster than the
FOM. Including movement, this speedfactor already scales up to approximately 39. This is the
case where the view factor matrix is excluded from the runtime. This matrix evaluation for
a single computation is already 1.39 seconds. Including this computation every timestep will
significantly increase the total runtime. The factor will even increase to 100.26. Meaning the
ROM is approximately 100 times faster than the FOM. To give an idea: some simulation of
complex geometries can take a couple of days, e.g. 3 × 24 × 60 × 60 = 259.200 seconds (3 days).
Computing this with the proposed algorithm will take only 2592 seconds, or approximately 43
minutes. Therefore the speed up for the ROM is really promising.

The code to reproduce the ROM can be found in [16].

5.5 Computational Complexity

The runtime we mentioned in the previous paragraph is only focused on this specific model.
To gain more insight in the actual computational benefits of the ROM, we will look at the
computational complexity of the two models. Firstly, we zoom into the comparison of the
evaluation of the radiative term. Eventually, also the overall reduction is considered, as the
Craig-Bampton method also reduces the system matrices.

A simulation consists of offline and online costs. Offline costs refer to precomputed models that
are run beforehand, like predefining the material properties, mesh, training data or static mass-
and stiffness matrices. It consists of all computations that do not change in time. In contrast,
online costs are executed during the simulation to compute solutions. These costs must be kept
minimal to enable fast evaluations of different simulations.

Neural Network. The most promising reduction technique in the algorithm is the neural
network. The nonlinear, spatially varying radiative FEM assembly is the computational bottle-
neck of this problem. The online costs are especially very expensive as the view factor matrix

64 64

5.5. Computational Complexity Chapter 5. Case study in ANSYS: 3D model

needs to be computed every timestep. The costs were already discussed in Section 3.4. For
every timestep, the costs are

O
(
(N + M)2 + (N + M)

)
,

where N is the number of radiative interface elements on component A and M the number of
radiative interface elements on component B.

To compute the computational costs of the neural network, we have to revisit the online eval-
uation. A detailed explanation for the computational complexity is given in Appendix A. The
online costs are

FLOPsfwd ≈ (2Ht1Nin + Ht1) + (2Ht2Ht1 + Ht2)
+ (2Hp1Dp + Hp1) + (2Hp2Hp1 + Hp2)
+ (2H3(Ht2 + Hp2) + H3) + (2H4H3 + H4)
+ (2NoutH4 + Nout),

(5.1)

where Nin = N + M and Dp = 2 (2D case). The order then grows as O(N + M).

Radiation Assembly The FEM assembly is modeled with a specific code, where radiative
heat transfer between two components (A and B) is modeled. This can be found in Appendix
B. The core of the algorithm consists of a loop over all boundary elements of component A and
component B. For each pair of radiation boundary elements (i, j) ∈ ΓA and (k, l) ∈ ΓB, the
function computes view factors, evaluates nonlinear radiation terms (e.g. T 4

A, T 4
B), computes

and assembles the Jacobian and assembles contributions into global matrices.

Let N and M denote the number of boundary elements on components A and B, respectively.
The total number of floating point operations (FLOPs) required by the algorithm scales as:

FLOPs = O(N · M)

This quadratic scaling comes from the pairwise interaction between all boundary elements of
the two components, i.e. we need to evaluate all combinations.

A detailed estimate shows that each (i, j)−(m, n) pair requires approximately 144 floating point
operations, this can be derived from computing the flops of all the steps in the FEM code.

N M FEM FLOPs (N · M) NN FLOPs (N + M)
10 10 1,900 20
100 100 190,000 200

1,000 1,000 19,000,000 2,000
10,000 10,000 1,900,000,000 20,000

100 1,000 1,900,000 1,100
1,000 10,000 190,000,000 11,000

Table 5.2: Comparison of estimated FLOPs for radiation FEM assembly (quadratic scaling) and the
neural network approximation (linear scaling). The radiation model scales as N × M , while the neural
network scales as N + M , making it computationally more efficient for large scale problems.

Table 5.2 and Figure 5.12 give an overview of the comparison of the growth of FLOPs when
scaled as O(N · M) or O(N + M).

The ROM achieves a computational complexity of only O(N + M) for the evaluation of the
neural network, which is significantly more efficient than the O(N · M) growth of a full model,

65 65

5.5. Computational Complexity Chapter 5. Case study in ANSYS: 3D model

Figure 5.12: Log-log plot comparing the computational complexity of radiation assembly (FEM) and a
neural network approximation. The radiation method scales quadratically as O(N · M) due to pairwise
interactions between boundary elements, while the neural network scales linearly as O(N + M). This
demonstrates the significant computational advantage of the ROM for large scale simulations.

making the ROM far better suited for problems with large input sizes. Furthermore, the com-
putational costs for the view factor matrix every timestep should also be taken into account,
this significantly increases the complexity of the FOM. Of course, the full online costs of the
simulation involve more than these radiation evaluations alone (e.g. Newton iterations, assem-
bly, and residual/Jacobian updates), but these algorithmic steps remain unchanged in structure.
The only difference within the ROM is the decrease in the size of the system matrices due to
the Craig-Bampton method, leading to a further reduction in terms of FLOPs (e.g. matrix
multiplications). A dominant feature in the proposed algorithm is the multiplication of a square
system matrix with a vector. For a matrix of size n × n, one matrix-vector product requires n
multiplications and (n − 1) additions per row, i.e.,

FLOPs = n (n + (n − 1)) = 2n2 − n ≈ 2n2.

Hence, the cost scales quadratically with the number of degrees of freedom n. For a ROM, the
full dimension n is replaced by a much smaller reduced basis size r ≪ n. The corresponding
matrix-vector cost becomes

FLOPsROM ≈ 2r2,

yielding a significant speedup, especially in time-dependent settings where such products are
performed at every time step.

A drawback of both the neural network and Craig-Bampton reduction is that they require
additional offline computations (e.g. training in the case of the neural network, or modal analysis
and projections (matrix multiplications) in the case of Craig-Bampton). These precomputations
can be significant, but they are one time costs. Once completed, the online phase is where
the ROM gives significant advantages. The reduction in online complexity is very important
to enable fast tests and simulations, making the ROM approach computationally better for
repeated simulations or large scale parametric studies.

66 66

Chapter 6

Discussion

This chapter revisits the problem statement and subsequently addresses the sub-aspects of the
main research question, as introduced in Section 1.3.

The central objective of this study is to develop a fast and accurate reduced-order model (ROM)
for a spatially varying, nonlinear radiative heat transfer assembly. The full-order model becomes
high-dimensional due to the fine finite element discretization of a complex geometry, combined
with the computational cost of evaluating the nonlinear radiative boundary condition.

6.1 Sub research aspects:

1. Nonlinearity: The nonlinearity of the model was a big subject of this study. The
nonlinearity of the model significantly influences other aspects of this research. Specifically,
linear reduction methods failed to produce sufficiently accurate results due to the nonlinear
contributions. This limitation led us to adopt a structural reduction approach: substructuring.
Van Steen et al. [15] did extensive research on substructuring techniques. However, their work
did not address the challenge of nonlinear interface reduction, which is the central focus of
this thesis. Here, we aim to fill that gap by developing an algorithm that effectively handles
nonlinearities at the interfaces. A neural network can deal with nonlinearity efficiently because
the nonlinear activation functions in its layers let it learn complex relationships directly from
the data, without needing to predefine them.

The linearization of the boundary conditions introduced additional complications. Specifically,
the constants that appeared in both the stiffness matrix and the forcing term were not truly
constant, they varied over time. The linearization is therefore not an accurate approximation
of the moving nonlinear boundary condition. However, there are also other linear time-varying
reduction techniques that we did not address in this thesis. This can be interesting for further
research.

2: View Factor Matrix: The nonlinear boundary conditions also contain another complex,
time consuming computation, namely the view factor matrix (VFM). The VFM changes every
timestep due to moving waferstage and calculating this high-dimensional matrix is inefficient.
Approximating the View Factor Matrix (VFM) through interpolation of precomputed VFMs
reduced computational costs. However, in the proposed algorithm, this interpolation becomes
redundant, as the VFM is already embedded in the training data. Consequently, neural networks
implicitly learn the VFM during training, eliminating the need for separate interpolation.

67

6.2. Outlook Chapter 6. Discussion

3: Methods: Within this research, we investigated several reduction techniques on the test
problem explained in Section 1.4. All the techniques excel at different aspects: some physics-
informed methods are easy applicable, while data-driven ROMs need training data, which can
be expensive to generate. However, physics-informed techniques are not always applicable due
to limitations in the software or the complexity of the PDEs we want to solve.

We began with a data-driven technique, the POD method, where we efficiently reduced the linear
part of the system. The nonlinear part was unfortunately not reduced due to the evaluation
in full space for this term. This limitation can be handled with a nonlinear extension: DEIM.
However, limitations within the ASML software, whereas we could not access the radiation
calculation to adjust this, led us to exploring other methods.

A common reduction technique for linear systems is modal decomposition. It uses the eigen-
vectors of the general eigenvalue problem to construct a reduced basis. The results for the
linearized model were very promising. However, the linearized model was not able to generate a
spatially varying system. We evaluated the results of using the linear eigenbasis for our nonlin-
ear problem. This gave some promising results, but the eigenbasis did not capture the nonlinear
behavior accurate enough.

Again, the nonlinear radiation term is only applied on the boundary nodes and elements in
a FEM model. This motivates the use of substructuring. Substructuring allows us to treat
the internal dynamics, which are linear, separate from the nonlinear boundary dynamics. The
nonlinear boundary part of the system was a new challenge, especially because we did not have
any access to the radiation calculation in the simulation software. Modifying the nonlinear term,
like applying DEIM, was therefore not an option. To address this, we adopted a neural network
based approach to approximate the nonlinear term, which turned out to be an effective and
promising reduction technique.

Coupling of the systems: The assembly consists of two subsystems, for which bases can be
generated either globally or separately. While both approaches yielded accurate results, using a
single global basis provided higher accuracy, as it captures the full cross-subsystem dynamics.
However, to align with the subsystems workflow, we adopted the use of two separate bases, one
for each subsystem. Despite the slightly bigger error, this approach still produced sufficiently
accurate results, validating its practical applicability.

The sub-aspects are closely connected and can all be summarized as our proposed algorithm,
see Figure 4.40 and Algorithm 3: The model contains strong nonlinearities on the radiative
boundaries of the system. The isolation of the nonlinearity in the boundaries resulted in the use
of substructuring. Reducing the linear internal dynamics can be done with known linear reduc-
tion methods, like the Craig-Bampton. The nonlinear, spatially separated, radiative interface
between the two components caused the difficulty. A neural network can be used to generate
a surrogate model for the radiation calculation. Generating data for this problem is possible
within the software we use. The first, most expensive step is to create a training set. However,
once the neural network is trained, the evaluation during ROM simulation is very fast, which is
a significant reduction in simulation time compared to the FOM in ANSYS. An overview of the
workflow of the algorithm can be found in Figure 5.3.

6.2 Outlook

Despite the promising results, several limitations emerged during the course of this study. First
of all, the scope of model order reduction explored in this thesis is limited compared to the

68 68

6.2. Outlook Chapter 6. Discussion

broader landscape of available techniques. Several well-established methods, such as balanced
truncation, rational Krylov/IRKA approaches, Physics-Informed Neural Networks, and purely
data-driven autoencoder approximations, were not investigated.

The chosen methodological path was shaped by the specific requirements and limitations of the
model: constraints on data availability, access to system operators, and the need to align with the
subsystem-coupled workflow. These factors influenced and also justified the focus on the selected
techniques. Future work could revisit other methods, like the ones above. Or for example, further
research could investigate the Nonlinear Modal Decomposition with Subspectral Submanifolds,
for periodic steady state solutions. This category of techniques, which rely on periodic steady-
state or quasiperiodic solutions, remains unexplored throughout this thesis. In the actual model,
the wafer stage moves in a periodic manner; however, the period is characterized by abrupt,
non-smooth transitions, making it probably difficult to identify and work with these periodic
steady-state solutions.

Another relevant class of methods addresses systems whose stiffness matrix varies in time, K(t).
In our case, this appears after linearizing the problem with changing view factors (moving
geometry). There already some known methods for this class that successfully reduced this class
of problems. Like parametric MOR (pMOR) [24], [25], POD-DEIM or again, the Subspectral
Submanifolds methods [26]. This is also an interesting path to follow for further research.

ANSYS imposed several practical limitations that prevented us to apply the originally proposed
algorithm in 3D. We were not able to extract transient thermal behavior for a moving geometry
as the view factor matrix can only be computed in the preprocessing step. Also, we could not
modify the solvers internal code or even access the code, so integrating DEIM, which requires a
change in the evaluation of the nonlinear term, was not feasible.

The data we needed to build and validate the method (e.g., consistent snapshots of the nonlinear
term) was not easily accessible, we had to modify it to obtain the correct training input. Also,
the ANSYS built-in structure did not allow us to make a transient spatially varying setup.
ANSYS expects a stationary fixed geometry when evaluating a transient thermal simulation,
because it fixes the VFM throughout the simulation. However, the results obtained in Chapter
5 are promising for a stationary nonlinear radiative model. The results on the test model proved
that it is also feasible on a transient system. Therefore, if we can generate the correct training
input, this will be a valid algorithm for a nonlinear spatially varying system. The algorithm and
workflow is easily adjustable when this will be available.

Compared with the idealized test geometry, the real machine from ASML is substantially more
complex. It consists of multiple interacting components with tight tolerances. Material proper-
ties (coatings, emissivities) and other boundary conditions further increase the modeling com-
plexity. In this test model, the metroframe only heats because of the waferstage, while in the
actual model, there are a lot of other components that influence this. To model this properly
we need very fine meshes, which makes the models huge, computationally expensive and it also
makes it harder to extract the correct data. This motivates the use of the proposed algorithm,
as the evaluation of the neural network remains extremely fast. The only added complexity lies
in the data generation process, but this is a one-time effort.

69 69

Chapter 7

Conclusion

The main research question of this thesis is: can we develop a reduced order model for a spatially
varying radiative interface? We propose a reduced order model for a system with a spatially
varying radiative interface, which enables efficient simulations while preserving the dynamics of
the problem. The system consists of a moving component that heats up and radiates heat to its
surroundings, including another component. The radiative boundary condition is a nonlinear
spatially varying boundary condition, including the computation of a view factor matrix every
timestep. These computations are very expensive.

While linear reduction methods did not accurately approximated the behavior of the full order
model (FOM), the internal dynamics of the system are fully linear. Therefore, the nonlinearity
was isolated at the boundary with the use of substructuring, where we partitioned the problem
in internal and boundary dynamics. The internal dynamics are fully linear and can be reduced
with well established linear reduction techniques like the Craig-Bampton method.

The nonlinearity, isolated on the boundary of the model, introduced a new challenge. Although
existing literature offers numerous interface reduction techniques, they do not address the type
of nonlinear, spatially separated and varying radiation problem encountered here.

This study proposes a new method: a neural network for this nonlinear term in the discretized
FEM formulation. The surrogate is an input-output function, which takes the temperature on
the radiative boundaries and the relative position as input. The output is the radiative flux on
the boundary. Both assemblies have there own neural network which fit our desired workflow,
i.e. to create ROMs per sub-assembly separately.

Substructuring and the Craig-Bampton method leave the boundary nodes untouched. It only
reduces the internal nodes and therefore we do not need to map the reduced temperature solution
back to full space every timestep, this is a real benefit in comparison to other techniques. The
output is a vector consisting of the radiative fluxes on the designated boundaries, so it can be
integrated directly into the FEM model.

Neural networks offer a powerful and efficient framework for Reduced Order Modeling (ROM),
particularly in large scale simulations where computational cost is critical. By replacing tradi-
tional FEM radiation assembly, which scales quadratically as O(N · M), with a neural network
based model that scales linearly as O(N +M), significant speedups can be achieved in the online
phase. N and M are the number of radiative interface elements.

Furthermore, the internal dynamics of the system are reduced using the Craig-Bampton method,
which projects the full-order model onto a lower-dimensional subspace. This not only simplifies

70

Chapter 7. Conclusion

the dynamic behavior but also reduces the size of the system matrices involved in the simulation.
Combined with the neural network surrogate, this leads to a computational cheap and efficient
ROM that retains essential physical accuracy while enabling fast evaluations of the full solution.

Lastly, the number of eigenmodes required in the Craig-Bampton reduction basis varied depend-
ing on the type of motion. For slow motion, no eigenmodes were necessary. In contrast, faster
motion required more eigenmodes, although the graphs showed that even a small number cap-
tured most of the dynamic behavior. Using just 12 eigenmodes, the ROM closely approximates
the FOM. This is a significant reduction in the sizes of the system matrices, resulting in very
efficient computations, as matrix-vector multiplication are of order O(n2), where n is the size of
the system matrix.

Overall, the computational efficiency and the accuracy of the results are highly promising for
this ROM.

71 71

Bibliography

[1] M. Thirumaleshwar. Fundamentals of Heat and Mass Transfer. Pearson India, India, 2006.
Includes Mathcad-based solutions to problems.

[2] Philip Holmes. Turbulence, coherent structures, dynamical systems and symmetry. Cam-
bridge university press, 2012.

[3] Carmen Gräßle, Michael Hinze, and Stefan Volkwein. Model order reduction by proper
orthogonal decomposition, 2020.

[4] Xiaofei Liu, Hu Wang, Xiaolong Yu, and Chengjing Wang. A krylov-based proper or-
thogonal decomposition method for elastodynamics problems with isogeometric analysis.
Engineering Analysis with Boundary Elements, 133:71–83, 2021.

[5] Heiko KF Panzer. Model order reduction by Krylov subspace methods with global error
bounds and automatic choice of parameters. PhD thesis, Technische Universität München,
2014.

[6] Saifon Chaturantabut and Danny C Sorensen. Nonlinear model reduction via discrete
empirical interpolation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

[7] Cyril Touzé and Attilio Frangi. Model Order Reduction for Design, Analysis and Control
of Nonlinear Vibratory Systems, volume 614. Springer Nature, 2025.

[8] George Haller and Sten Ponsioen. Nonlinear normal modes and spectral submanifolds:
existence, uniqueness and use in model reduction. Nonlinear dynamics, 86:1493–1534, 2016.

[9] Hongming Liang, Shobhit Jain, and Mingwu Li. Bifurcation analysis of quasi-periodic orbits
of mechanical systems with 1: 2 internal resonance via spectral submanifolds. Nonlinear
Dynamics, 113(11):12609–12640, 2025.

[10] Thomas Breunung and George Haller. Explicit backbone curves from spectral submani-
folds of forced-damped nonlinear mechanical systems. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 474(2213):20180083, 2018.

[11] Gerben Izaak Beintema. Data–driven learning of nonlinear dynamic systems: A deep neural
state–space approach. 2024.

[12] Anthony Gruber, Max Gunzburger, Lili Ju, and Zhu Wang. A comparison of neural net-
work architectures for data-driven reduced-order modeling. Computer Methods in Applied
Mechanics and Engineering, 393:114764, 2022.

[13] Hans van Malsen. Convolutional autoencoder based reduced order modelling for physics
problems-master thesis report. 2022.

72

Bibliography Bibliography

[14] Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders.
Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

[15] JJ van Steen, RHB Fey, L Iapichino, B Besselink, MLJ Verhees, and AM Steenhoek. Com-
parison of model order reduction techniques for interface dynamics. 2019.

[16] Nina Bagchus. Gitlab snippet: Code reduced order modeling for spatially varying radiative
interfaces. https://gitlab.tudelft.nl/-/snippets/375, 2025. TU Delft, accessed on
2025-09-16.

[17] John R Howell, M Pinar Mengüç, Kyle Daun, and Robert Siegel. Thermal radiation heat
transfer. CRC press, 2020.

[18] Frank P Incropera, David P DeWitt, Theodore L Bergman, Adrienne S Lavine, et al.
Fundamentals of heat and mass transfer, volume 6. Wiley New York, 1996.

[19] Michael F Modest and Sandip Mazumder. Radiative heat transfer. Academic press, 2021.

[20] Sabrina Kelbij Star, Joris Degroote, Jan Vierendeels, Gert Van den Eynde, and Francesco
Belloni. Reduced order modelling using a pod-based identification method for parameterized
pdes. In 7th European Conference on Computational Fluid Dynamics, 2018.

[21] Denis Sipp, Miguel Fosas de Pando, and Peter J Schmid. Nonlinear model reduction: a
comparison between pod-galerkin and pod-deim methods. Computers & Fluids, 208:104628,
2020.

[22] Christian Soize and S Mziou. Dynamic substructuring in the medium-frequency range.
AIAA journal, 41(6):1113–1118, 2003.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[24] Anthony T Patera, Gianluigi Rozza, et al. Reduced basis approximation and a posteriori
error estimation for parametrized partial differential equations, 2007.

[25] Bernard Haasdonk. Reduced basis methods for parametrized pdes–a tutorial introduction
for stationary and instationary problems. Model reduction and approximation: theory and
algorithms, 15:65, 2017.

[26] Thomas Thurnher, George Haller, and Shobhit Jain. Nonautonomous spectral submanifolds
for model reduction of nonlinear mechanical systems under parametric resonance. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 34(7), 2024.

73 73

https://gitlab.tudelft.nl/-/snippets/375
http://www.deeplearningbook.org

Appendix A

Computational Complexity of the
Neural Network

Let rA ∈ RN and rB ∈ RM be reduced-temperature inputs. Define the concatenated temperature
input

Nin =
[
rA

rB

]
∈ RN+M ,

and a location input loc ∈ RD (typically D = 2 for 2D).

Network architecture We use two different towers (temperature and position) followed by
the head:

Temp: Nin → Ht1 → Ht2,

Pos : D → Hp1 → Hp2,

Fusion: (Ht2+Hp2) → H3 → H4 → Nout.

Each layer computes

Z = Wx + b, H = ReLU(Z) = max(0, Z),

and the max(0, ·) activation is not counted as FLOPs.

Weight shapes
Wt1 ∈ RHt1×Nin , Wt2 ∈ RHt2×Ht1 ,

Wp1 ∈ RHp1×Dp , Wp2 ∈ RHp2×Hp1 ,

W3 ∈ RH3×(Ht2+Hp2), W4 ∈ RH4×H3 ,

Wout ∈ RNout×H4 .

FLOP model for a dense layer For a single layer with W ∈ Rdout×din , x ∈ Rdin , z = Wx+b
costs

FLOPs(Wx) ≈ 2 dout din, FLOPs(+b) ≈ dout.

74

Appendix A. Computational Complexity of the Neural Network

FLOPs per forward pass Summing the layers:

FLOPsfwd ≈ (2Ht1Nin + Ht1)︸ ︷︷ ︸
Wt1

+ (2Ht2Ht1 + Ht2)︸ ︷︷ ︸
Wt2

+ (2Hp1Dp + Hp1)︸ ︷︷ ︸
Wp1

+ (2Hp2Hp1 + Hp2)︸ ︷︷ ︸
Wp2

+ (2H3(Ht2 + Hp2) + H3)︸ ︷︷ ︸
W3

+ (2H4H3 + H4)︸ ︷︷ ︸
W4

+ (2NoutH4 + Nout)︸ ︷︷ ︸
Wout

.

Most of these parameters are fixed numbers. Only Nin = Nout can vary with the mesh and
model. It will grow linearly, i.e.

O(N + M).

75 75

Appendix B

Radiation Code

Listing B.1: Python script for FEM radiation term
def radiation_bc_with_connectionU (U, W, num_nodes_U , num_nodes_W ,

radiation_edges_U , radiation_edges_W , nodes_U , nodes_W , sigma ,
epsilon , VF , ne_u , ne_w):
"""
Compute the nonlinear vector R(U,W) for geometry A(!!).

Parameters :
- U: solution vector
- num_nodes : include the numbers of nodes for the corresponding

geometry
- radiation_edges : nodes of the edges which have radiation ([n1 , n2

])
- nodes: nodes of the corresponding geometry

Returns :
- R: Nonlinear residual vector (R+C)
- J_nonlinear : The Jacobian of R_1 with respect to u
- J_nonlinear_2 : The Jacobian of C_1 with respect to w
"""
R = np.zeros(num_nodes_U) # Initialize vector
J_nonlinear = np.zeros ((num_nodes_U , num_nodes_U))
J_nonlinear_2 = np.zeros ((num_nodes_U , num_nodes_W))

1D linear shape functions in reference space (for edge with two
nodes)

def shape_functions_1D (xi):
return np.array ([(1 - xi) / 2, (1 + xi) / 2])

loop over elements on geometry 1 with U
for elem1 , edge1 in enumerate (radiation_edges_U):

n1 , n2 = edge1 # Get global node indices for this boundary edge
x1 , y1 = nodes_U [n1]
x2 , y2 = nodes_U [n2]

Compute 1D Jacobian (edge length in physical space)
J_edge = 0.5 * np.sqrt ((x2 - x1) ** 2 + (y2 - y1) ** 2)

Extract local U values
U_local = np.array ([U[n1], U[n2]])

76

Appendix B. Radiation Code

#print(U_local)
Initialize local residual contribution
R_e = np.zeros (2)
J_nonlinear_e = np.zeros ((2 ,2))

Perform quadrature integration over the boundary edge
for q, w in enumerate (quadrature_weights1d):

xi_q = quadrature_points1d [q] # Quadrature point in
reference space

phi = shape_functions_1D (xi_q) # Evaluate shape functions
at quadrature point

#print(phi)

Compute Uh at quadrature point
Uh_q = np.dot(U_local , phi) # U_h = sum_j U_j * phi_j
#print(Uh_q)
Compute nonlinear term
nonlinear_termU = (Uh_q ** 4)
#print(nonlinear_termU)
VF_sum = 0

nonlinear term for the jacobian
nonlinear_term_jacU = 4*(Uh_q)**3

for elem2 , edge2 in enumerate (radiation_edges_W):
J_nonlinear_2_e = np.zeros ((2 ,2))
n1_W , n2_W = edge2 # Get global node indices for this

boundary edge

W_local = np.array ([W[n1_W], W[n2_W]])
Wh_q = np.dot(W_local , phi)
#print(Wh_q)
nonlinear_termW = (Wh_q ** 4)

derivative wrt w
nonlinear_term_jacW = 4*(Wh_q **3)
J_nonlinear_2_e [:] += -w*sigma * epsilon *

nonlinear_term_jacW * np.outer(phi ,phi) * J_edge * VF[
elem1 ,elem2+ne_u]#*view factor

#print(J_nonlinear_2_e)

if VF[elem1 ,elem2+ne_u] == 0:
print("VF is zero !!")
print(’u: e_u:’, elem1 , ’e_w:’, elem2)

VF_sum += (nonlinear_termU - nonlinear_termW)* VF[elem1 ,
elem2+ne_u]#*view factor

J_nonlinear_e [:] += w*sigma * epsilon *
nonlinear_term_jacU * np.outer(phi ,phi) * J_edge * VF[
elem1 ,elem2+ne_u]

it should be in the rows of the nodes of elements e
and the columns of element l

J_nonlinear_2 [n1 , n1_W] += J_nonlinear_2_e [0, 0]
J_nonlinear_2 [n1 , n2_W] += J_nonlinear_2_e [0, 1]

77 77

Appendix B. Radiation Code

J_nonlinear_2 [n2 , n1_W] += J_nonlinear_2_e [1, 0]
J_nonlinear_2 [n2 , n2_W] += J_nonlinear_2_e [1, 1]

R_e [:] += w * sigma * epsilon * VF_sum * phi [:] * J_edge #
Integral sum

Assemble local residual into global residual vector
R[n1] += R_e [0]
R[n2] += R_e [1]
if 0> elem1 <3:

print(R)
J_nonlinear [n1 , n1] += J_nonlinear_e [0, 0]
J_nonlinear [n1 , n2] += J_nonlinear_e [0, 1]
J_nonlinear [n2 , n1] += J_nonlinear_e [1, 0]
J_nonlinear [n2 , n2] += J_nonlinear_e [1, 1]

return R, J_nonlinear , J_nonlinear_2

def radiation_bc_with_connectionW (W, U, num_nodes_W , num_nodes_U ,
radiation_edges_W , radiation_edges_U , nodes_W , nodes_U , sigma ,
epsilon , VF , ne_u , ne_w):
"""
Compute the nonlinear vector R(U,W) for geometry A(!!).

Parameters :
- U: solution vector
- num_nodes : include the numbers of nodes for the corresponding

geometry
- radiation_edges : nodes of the edges which have radiation ([n1 , n2

])
- nodes: nodes of the corresponding geometry

Returns :
- R: Nonlinear residual vector
- J_nonlinear : The Jacobian of R_2 with respect to w
- J_nonlinear_2 : The Jacobian of C_2 with respect to u
"""
R = np.zeros(num_nodes_W) # Initialize vector
J_nonlinear_Rw = np.zeros ((num_nodes_W , num_nodes_W))
J_nonlinear_Cu = np.zeros ((num_nodes_W , num_nodes_U))

1D linear shape functions in reference space (for edge with two
nodes)

def shape_functions_1D (xi):
return np.array ([(1 - xi) / 2, (1 + xi) / 2])

loop over elements on geometry 1 with U
for elem2 , edge2 in enumerate (radiation_edges_W):

n1 , n2 = edge2 # Get global node indices for this boundary edge
x1 , y1 = nodes_W [n1]
x2 , y2 = nodes_W [n2]

Compute 1D Jacobian (edge length in physical space)
J_edge = 0.5 * np.sqrt ((x2 - x1) ** 2 + (y2 - y1) ** 2)

78 78

Appendix B. Radiation Code

Extract local U values
W_local = np.array ([W[n1], W[n2]])

Initialize local residual contribution
R_e = np.zeros (2)
J_nonlinear_Rw_e = np.zeros ((2 ,2))

Perform quadrature integration over the boundary edge
for q, w in enumerate (quadrature_weights1d):

xi_q = quadrature_points1d [q] # Quadrature point in
reference space

phi = shape_functions_1D (xi_q) # Evaluate shape functions
at quadrature point

#print(phi)

Compute Uh at quadrature point
Wh_q = np.dot(W_local , phi) # U_h = sum_j U_j * phi_j
#print(Wh_q)

Compute nonlinear term
nonlinear_termW = (Wh_q ** 4)
VF_sum = 0

nonlinear term for the jacobian
nonlinear_term_jacW = 4*(Wh_q)**3

for elem1 , edge1 in enumerate (radiation_edges_U):
J_nonlinear_Cu_e = np.zeros ((2 ,2))
n1_U , n2_U = edge1 # Get global node indices for this

boundary edge
U_local = np.array ([U[n1_U], U[n2_U]])
Uh_q = np.dot(U_local , phi)
nonlinear_termU = (Uh_q ** 4)

derivative wrt w
nonlinear_term_jacU = 4*(Uh_q **3)
J_nonlinear_Cu_e [:] += -w*sigma * epsilon *

nonlinear_term_jacU * np.outer(phi ,phi) * J_edge * VF[
elem2+ne_u ,elem1]#*view factor

if VF[elem2+ne_u ,elem1] == 0:
print(’w: e_u:’, elem1 , ’e_w:’, elem2)
print("VF is zero !!")

VF_sum += (nonlinear_termW - nonlinear_termU)* VF[elem2+
ne_u ,elem1]#*view factor

J_nonlinear_Rw_e [:] += w*sigma * epsilon *
nonlinear_term_jacW * np.outer(phi ,phi) * J_edge * VF
[elem2+ne_u ,elem1]

J_nonlinear_Cu [n1 , n1_U] += J_nonlinear_Cu_e [0, 0]
J_nonlinear_Cu [n1 , n2_U] += J_nonlinear_Cu_e [0, 1]

79 79

Appendix B. Radiation Code

J_nonlinear_Cu [n2 , n1_U] += J_nonlinear_Cu_e [1, 0]
J_nonlinear_Cu [n2 , n2_U] += J_nonlinear_Cu_e [1, 1]

Contribution to local residual
#print(w * nonlinear_term * phi * J_edge)
R_e [:] += w * sigma * epsilon * VF_sum * phi [:] * J_edge #

Integral sum

this does not go good yet

it should be in the rows of the nodes of elements e and
the columns of element l

Assemble local residual into global residual vector
R[n1] += R_e [0]
R[n2] += R_e [1]

J_nonlinear_Rw [n1 , n1] += J_nonlinear_Rw_e [0, 0]
J_nonlinear_Rw [n1 , n2] += J_nonlinear_Rw_e [0, 1]
J_nonlinear_Rw [n2 , n1] += J_nonlinear_Rw_e [1, 0]
J_nonlinear_Rw [n2 , n2] += J_nonlinear_Rw_e [1, 1]

#plt. figure (figsize =(6 ,6))
#plt.spy(J_nonlinear_Cu)
#plt.show ()

#plt. figure (figsize =(6 ,6))
#plt.spy(J_nonlinear_Rw)
#plt.show ()

return R, J_nonlinear_Rw , J_nonlinear_Cu

80 80

Appendix C

Code: ANSYS snippets

Listing C.1: Python script for FEM radiation term
import wbjn
dpn = wbjn. ExecuteCommand (ExtAPI , " returnValue (a+ Parameters .

GetActiveDesignPoint ().Name)", a = "DP")

def after_post (this , solution):# Do not edit this line
"""
Called after post processing .
Keyword Arguments :

this -- the datamodel object instance of the python code object
you are currently editing in the tree

solution -- Solution
"""
export_dir = r"C:\ Users\ nbagchus \ SIMS_DATA_NN "

Get solution result objects
solu = Model. Analyses [0]. Solution # solution
all_results = solu. Children
Time -step result indices

#a = 99

Loop through and export
for i in range (5 ,26):

result = all_results [i]
filename = os.path.join(export_dir , str(i) + " flxA_2 .txt ")
filemame = export_dir + "\\ TEMPA_ " + str(dpn) + "_" + str(i -4) +

".txt"
#print(f" Exporting time step {i} ? { filename }")
result . ExportToTextFile (filemame)

for i in range (26 ,47):
result = all_results [i]
filename = os.path.join(export_dir , str(i) + " flxA_1 .txt ")
filemame = export_dir + "\\ TEMPB_ " + str(dpn) + "_" + str(i -25)

+ ".txt"
#print(f" Exporting time step {i} ? { filename }")
result . ExportToTextFile (filemame)

81

Appendix C. Code: ANSYS snippets

for i in range (47 ,68):
result = all_results [i]
filename = os.path.join(export_dir , str(i) + " flxA_1 .txt ")
filemame = export_dir + "\\ RADA_" + str(dpn) + "_" + str(i -46) +

".txt"
#print(f" Exporting time step {i} ? { filename }")
result . ExportToTextFile (filemame)

for i in range (68 ,89):
result = all_results [i]
filename = os.path.join(export_dir , str(i) + " flxA_1 .txt ")
filemame = export_dir + "\\ RADB_" + str(dpn) + "_" + str(i -67) +

".txt"
#print(f" Exporting time step {i} ? { filename }")
result . ExportToTextFile (filemame)

To access properties created using the Property Provider , please
use the following command .

this. GetCustomPropertyByPath (" your_property_group_name /
your_property_name ")

To access scoping properties use the following to access geometry
scoping and named selection respectively :

this. GetCustomPropertyByPath (" your_property_group_name /
your_property_name / Geometry Selection ")

this. GetCustomPropertyByPath (" your_property_group_name /
your_property_name /Named Selection ")

To access properties created using the Property Provider , please
use the following command .

this. GetCustomPropertyByPath (" your_property_group_name /
your_property_name ")

To access scoping properties use the following to access geometry
scoping and named selection respectively :

this. GetCustomPropertyByPath (" your_property_group_name /
your_property_name / Geometry Selection ")

this. GetCustomPropertyByPath (" your_property_group_name /
your_property_name /Named Selection ")

pass

Listing C.2: APDL snippet changing View Factor
1 /PREP7
2 !the element type number for surf251 /252 generated from radiation bc can

be extracted from checking the input file (ds.dat)
3 et_rsurf = 3
4 keyopt ,et_rsurf ,1,1
5 /SOLU
6 vfup ,define ,on

82 82

	Nomenclature
	Introduction
	Problem Statement
	Background: Reduced Order Modeling
	Research questions
	Outline

	Test Problem
	Radiation
	View Factor
	View Factor Equation in 2D

	Two-dimensional Heat Equation

	Model Reduction: Mathematical Framework
	Projection-Based Model Reduction
	Modal Decomposition
	Proper Orthogonal Decomposition
	DEIM

	Substructuring
	Craig-Bampton
	Neural Network for the Nonlinear Radiative Boundary Term

	Linearization of the nonlinearity
	View Factor Matrix Reduction

	Numerical Results and Analysis
	POD
	Comparison Strategies
	Results POD Strategies

	POD DEIM
	Results DEIM

	Modal Decomposition
	Linearized system
	Modal decomposition for the nonlinear system

	Substructuring
	Internal Reduction: Craig-Bampton
	Interface Reduction: Neural Networks

	Case study in ANSYS: 3D model
	Initializing 3D model
	Collecting Data
	Neural Networks
	Results
	Stationary model
	Moving component

	Computational Complexity

	Discussion
	Sub research aspects:
	Outlook

	Conclusion
	Computational Complexity of the Neural Network
	Radiation Code
	Code: ANSYS snippets

