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1. Introduction 
 

1.1. Background 

 

Floods are considered the most common natural hazard and third most damaging 

globally after storms and earthquakes (Wilby & Keenan, 2012) they are defined 

as a temporary covering of water outside its normal confines (FLOODsite-

Consortium, 2005; cf.Munich Reinsurance Company, 1997) and can be classified 

according to the event that causes it, for example: Winter rainfall floods, summer 

convectional storm induced floods, snow-melt floods, sea surge and tidal floods, 

tsunamis, rising ground water floods, dam break, urban sewer floods or reservoir 

control floods (Schanze, 2007). In this research attention will be given only to 

floods in rivers. 

A flood is characterized by its water depth, flow velocity, matter fluxes and 

temporal and spatial dynamics and is considered a threat when it occurs in 

catchments that are greatly used and often influenced by man by land use, river 

training, etc. (Schanze, 2007). Then, given a flood scenario, is possible to quantify 

the damage that such flood will cause at certain location, this is mostly known as: 

Estimation of flood hazard, and it means that some elements at the study location 

will be damaged and others will not (FLOODsite-Consortium, 2005) in other 

words, this is defined as the occurrence of a potentially damaging flood (Schanze, 

2007). The damage produced on the elements is characterized by their 

vulnerability (Schanze, 2007). Vulnerability can be classified in three categories 

depending on its principle of sustainability: social and cultural, economic and 

ecological (Sarewitz, 2003). Finally, the concept of flood risk arises, as it is defined 

as the probability of negative consequences due to floods and depends on the 

exposure of elements at risk to flood hazard (Schanze, 2007). Flood risk is an 

incorporation of the concepts of flood hazard and flood vulnerability (WBGU, 1998) 

and according to Kron (2005) flood risk can also be defined as the product of 

exposure (E) which refers to the population and economic assets affected by 

flooding, hazard (H) and vulnerability (V).  

R=H*E*V 

Flood risk analysis makes use of models based on physical processes and 

systems and of social responses and impacts (Schanze, 2007), in engineering  

projects, the use of probabilistic methodologies comes together with certain level 

of uncertainty so the estimation of risk analysis requires a high understanding of 

the fundamental probabilistic concepts by the professionals (Schanze, 2007). 

Additionally, flood risk analysis requires many sources of information, in which the 

source and quality of the data contributes to uncertainty.  
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Risk analysis is important given that can provide a plan for making decisions under 

uncertainty for future conditions over scenario analysis (Schanze, 2007). This 

research aims to characterize floods in rivers by using statistical tools, in which 

the relationship between several climate and geographical variables have been 

considered. Such relation is described by the method proposed by Paprotny & 

Morales-Nápoles (2017) based on Bayesian networks (BNs). 

Bayesian Networks (BNs) is a graphical probabilistic model (Pearl, 1988; 

Kurowicka & Cooke, 2006) for dependent random variables from which is possible 

to describe the joint distribution of extreme discharges in rivers and variables of 

the geographical characteristics of a catchment (Paprotny & Morales-Napoles, 

2017). River discharges are conditioned by climate and geographical 

characteristics.  

1.2. Problem statement 

 

Ecuador is a country located in South America with an interesting position within 

the globe; it is located in the Intertropical Convergence Zone (ITCZ) that consists 

of a “belt” of low pressures along the equator, therefore it is an area that is 

constantly threatened by hydro-meteorological conditions such as draughts, 

floods or the effects of “El Niño” phenomenon (FAO, 2010). 

Ecuadorian cities that are located near banks of rivers or near the sea and that 

have low elevation respect to sea level are more exposed to floods (MIDUVI, 

2015). This research will focus on the study of the Guayas river basin, which 

encloses the city of Guayaquil, the most populated city of the country with 

2’578.201 inhabitants where 993.123 inhabitants live in flood prone areas (INEC, 

2010) that can be translated as the 46.2% of the population of the city. 

As most of developing countries, Ecuador does not have much climate information 

available and the existing measurements hold voids or errors. Additionally, there 

are places with no measurements at all or entire datasets are not reliable. This 

reduces the number of locations in which hydrologic and/or hydraulic studies can 

be performed.  

This research aims to apply the Bayesian Network model proposed by Paprotny 

& Morales-Nápoles (2017) in the Guayas river basin, and to observe how this 

model performs in catchments like the ones in Ecuador by comparing it to the 

previous application in Europe. Other applications of the model (with their 

corresponding adjustments) were performed in the US and in Colombia, therefore 

this study can be used as a first step in order to develop a model for Ecuador. 
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1.3. Objectives 

 Evaluation of BN method in the Guayas catchment in estimating extreme 

annual maxima river discharges. 

 Compare the performance of the BN method applied in the Guayas Basin 

with the previous application of the BN model in Europe. 

1.4. Research questions 

 How does the BN model perform in a catchment in the Guayas Basin in 

estimating annual maxima river discharges? 

 How does the model perform in small catchments? 

 How does the model perform compared with other applications? What are 

the main differences and similarities between the studies? 

1.5. Contribution of this study 

Until now in Ecuador some studies have used BN models to predict draught 

events or to estimate ecological water quality, among few others. However, 

extreme river discharges have not been estimated using this tool, therefore the 

contribution of this research is the application of Bayesian Networks to estimate 

maximum discharges in the Guayas River Basin. 

As mentioned in previous sections, climate information in Ecuador is limited, in 

this way the BN model and its application can be used as a guideline to similar 

studies in other regions of the country where the European model can be adjusted 

to such different conditions. Moreover, calibration of the model could be achieved 

by comparing the results of such adjustments with similar catchments in 

neighboring countries like the study case presented by Nasr (2017) in Colombia, 

this analysis can be used as the first step in developing a BN model for Ecuador 

and later on used as an example to start a model for South America. 

Additionally, the results from the proposed BN model can be used to obtain the 

maximum discharge for different return periods and such information could be 

used as boundary conditions for projects involving hydraulic structures. After good 

calibration of the model is achieved, this method can be used to predict river 

discharges in areas of the country were no measures are available. 

However, in this project, the adjustments and calibration of the European model 

to Ecuador conditions are not performed but the application of such model into the 

Guayas Basin will be carried out. In this way, the author shows the performance 

of the European model in Ecuador and will assess if adjustments are needed or 

not, in this way sets the first step into developing a model for Ecuador.  
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2. Literature review 
 

2.1. Theoretical background 

 

The purpose of this research is to apply a model based on Bayesian Networks to 

estimate the annual maxima river discharges at the Guayas River Basin, therefore 

a literature review was carried out in this topic.  

In a Bayesian Network, random variables are represented as nodes in a graph 

and the dependencies are represented as arcs with a defined direction (Morales 

Nápoles et al., 2013), in that case directed acyclic graphs (DAGs) are used to 

represent the joint distribution of a number of variables. A DAG consists of a set 

of nodes that represent random variables (discrete and/or continuous) and a set 

of arcs such that no directed cycle is created; therefore, a certain order of variables 

could be established (Morales Nápoles et al., 2013). A Bayesian network consists 

of a directed acyclic graph and a set of conditional distributions. 

The absence of arcs guarantees a set of conditional independence facts (Hanea, 

Morales Napoles, & Ababei, 2015), the direct predecessors of a node are called 

parents and the direct successors of a node are called children. A marginal 

distribution is specified for each node with no parents, and a conditional 

distribution is associated with each child node (Hanea, Morales Napoles, & 

Ababei, 2015). 

The relatively simple visualization of the complicated relationships between the 

random variables is one of the most appealing features of a BN model (Hanea, 

Morales Napoles, & Ababei, 2015), they are commonly used to update 

distributions given observations. This is referred as inference in BNs. 

Non-parametric Bayesian Networks (NPBNs) associate nodes with random 

variables for which no marginal distribution assumption is made, and arcs with 

one-parameter conditional copulae (Joe, 1997), parametrized by Spearman’s rank 

correlations. The main result of NPBNs states that a particular choice of 

conditional copulae together with the one-dimensional marginal distributions and 

the conditional independence statements implied by the graph uniquely determine 

the joint distribution (Hanea, Kurowicka, & Cooke, 2006). Zero correlation entails 

the independent copula (Hanea, Morales Napoles, & Ababei, 2015). 

To estimate the variable of interest the identification of the factors that contribute 

to its computation has to be defined. Additionally, previous knowledge of how 

these factors are related or influence each other is required in order to establish a 

cause and effect relationship that will finally result in the estimation of the annual 

maxima river discharges. 
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In this project the determination of the involved variables and its relationship is 

already set in the same way as in the work of Paprotny & Morales-Napoles, (2017) 

see Figure 1. The nodes are presented as histograms where the numbers indicate 

the mean and standard deviation of each variable, the arcs and the values on 

them represent the conditional rank correlation coefficients.  

This model, initially constructed for Europe, will be applied in the Guayas Basin. 

However; the datasets for each variable will correspond to the case study basin. 

 

Figure 1 Bayesian network for river discharges in Europe. 
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3. Area of Study 
 

This chapter presents a description of the area of study of this project.  

 

3.1. Description of The Area of Study 

 

3.1.1. Geographical position 

 

Ecuador is American country located in South America. It limits in the north with 

Colombia and in the South and East with Peru, and to the West with the Pacific 

Ocean. The Andes mountain range divides the territory from North to South.  

The country is classified in four different regions: Coast, The Galapagos Islands, 

the east Amazon basin and a central belt called “Sierra” which includes the Andes 

Mountain System. Ecuador is located in the Intertropical Convergence Zone 

(ITCZ) that consists of a “belt” of low pressures along the equator, therefore is an 

area that is constantly threatened by hydro-meteorological conditions such as 

draughts, floods or the effects of “El Niño” phenomenon (FAO, 2010). 

Ecuador has an area of 283,561km2 (Oratlas, 2017) and is the 4th smallest country 

in the subcontinent. Is the 10th most populated country in America with 

approximately 16 million habitants and the most densely populated of South 

America.  

The Guayas river basin is located in the coastal region of the country (Figure 2). 

To the north it limits with a spur of the Andes mountain range that extends to the 

west. To the east, the water divisor line of the western Andes mountain range.  

This basin has a maximum height of 6310 m.a.s.l. and flows at sea level into the 

Pacific Ocean. Its geographic position extents between the parallels 00o14’ S, 

02o27’ S and the meridians 78o36’ W, 80o36’W.  
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Figure 2 Guayas River Basin 

The reason this catchment is chosen is due to its importance relative to the 

country’s population and economy. With an area of 40000km2 approximately, the 

Guayas basin encloses the city of Guayaquil, which is the biggest city within the 

catchment and in the country, where 993.126 inhabitants are located in zones that 

are susceptible to flooding, corresponding to 46,2% of the population of the city 

(MIDUVI, 2015).  

3.1.2. Physical, biological and social characteristics 

 

One of the highlighted environments in Guayas river basin is the Gulf of Guayaquil 

which is the zone of more artisanal and industrial fishing production of Ecuador 

(Montaño Armijos & Sanfeliu Montolío, 2008). 

The weather in this region is influenced by 3 factors that modify the weather in a 

seasonal way during the whole year: 

 Atmospheric continental circulation identified by the trend winds of the SE. 

 The Pacific Ocean as permanent generator of the humid air mases that 

summed with the effects of the maritime currents (Humboldt and El Niño) 

are the biggest regulators of the seasonal effects of the weather. 

 The Andean foothills that with their height, relieve, and orientation channel 

the humid masses. 
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Due to this factors the littoral-coastal zone has a distinguished seasonality that 

causes an imbalance of the precipitation. From January to May is the wet season 

or rainfall season where flooding through large periods. From June to December 

is the dry season characterized by the lack of rain during the months of September 

and October. 

The land use in this catchment is mainly agricultural (Highly technified intensive 

agricultural systems), the principal activities carried are bananas, rice, coffee, 

cacao, corn, African palm, tropical fruits as mango, oranges, melon, sugar cane 

etc.  
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4. Methodology 
 

4.1. General Methodology 

 

This chapter shows an overview of the methodology carried out in order to 

estimate the river discharges from the BN model. In the following chart, the main 

steps are described and later a brief explanation of each is given. 

 

 

Figure 3 Chart of General Methodology  
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A literature review is presented in chapter 2 in order to set the background 

knowledge for the methods applied in this project. Then, a description of the case 

study area is presented in Chapter 3. 

Explanation about the methodology used for data collection is presented in section 

4.2 and the results of the arrangement and analysis of the information is presented 

in chapter 5 and a description of the methodology used for the setting up the BN 

model is presented in section 4.3. 

The results from the BN model and the measurements are fitted to parametric 

distributions following the methodology described in section 4.4, together with the 

procedure to obtain return periods. The validation of the model is presented in 

section 4.5. 

Chapter 5 presents the analysis and comparison of results; the methodology to 

perform this task is presented in section 4.6. Finally, Chapter 6 contains 

conclusions and recommendations. 

4.2. Methodology for Data Gathering and Processing 

 

Before the model is ready to be used, different types of data are required. The 

reason for the selection of the variables and the sources from which the 

information was obtained was set in such way to maintain similarity with the 

studies of Paprotny & Morales-Nápoles (2017), Couasnon (2017) and Nasr 

(2017). In this section, a description of the procedure for obtaining the required 

data is presented. 

The variables considered are depicted in the following table: 

Name Description Units 

Area Area of the Catchment Km2 

MaxEvent Annual Maximum of daily precipitation and snowmelt mm/day 

RunoffCoeff Maximum runoff coefficient of the catchment - 

Steepness Catchment Steepness m/km 

Marsh Area of the Catchment covered by marshes % 

Lake Area of the Catchment covered by lakes % 

Builtup Area of the Catchment covered by built-up % 

MaxDischarge Annual Maximum of daily River Discharges m3/s 

Table 1 Name and description of the variables 

The variable MaxDischarge is assumed to be linked with all the other remaining 

variables from Table 1; by calculating these variables at catchment level is 

possible to predict MaxDicharge. Each variable represents a node in the BN (See 

Figure 1). 
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4.2.1. Measurements of River Discharge 

 

River discharge measurements are very important for the model; validation of the 

model can be performed by making use of this information. The data for river 

discharge measurements was obtained from The Global Runoff Data Centre 

(GRDC) which is an international data Centre operating under the auspices of the 

World Meteorological Organization (WMO). 

The locations of the chosen stations within the catchment are also of great 

important because they define the extent of the sub-catchments upon their 

position and with them the area and steepness of the catchment are defined.  

The GRDC has nineteen stations in Ecuador from which only five belong to the 

Guayas Basin: Quevedo, La Capilla, Vinces-DCP, Catarama, Lechugal (See 

Figure 5). To have access to this information the GRDC request a form where the 

required stations have to be specified and some other documents.  

The measurements are presented as daily time series accompanied by other 

characteristics proper of each station.  It was found that each station considers 

different time periods and therefore the number of measurements varied from 

station to station.  

River discharge measurements were also available from the national data bases 

from Ecuador, however, they were not used in order to keep similarity with the 

projects mentioned in the previous section.  

As the boundaries for the stations were not provided, the catchments had to be 

delineated using computer software. The Guayas Basin was divided in five sub-

basins using the stations available from GRDC. The delineation of the catchments 

was obtained through QGIS and GRASS by creating a flow accumulation raster 

map, a drainage direction raster map, and an outlet point that corresponds to the 

location of the stations. The areas resulting from this procedure are in accordance 

with the data provided by the GRDC.  

Later, the datasets were analyzed and processed for each station and given that 

the data was measured daily, the maximum annual discharge (Qmax) could be 

computed. This was done using a Matlab script. 

The Qmax values were used later to be compared with the results from the BN 

model and to validate its performance. 
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4.2.2. Geographical Information and Terrain 

 

Geographical and terrain information is available from Ecuador’s national 

databases like the Military Geographical Institute (IGM by its acronym in Spanish) 

in a scale of 1:50000. However, as with river measurements, other sources were 

considered to keep compatibility with the work of Paprotny and Morales (2017).  

Terrain information was obtained from the USGS database, specifically through 

HydroSHEDS (Lehner, Verdin, & Jarvis, 2006), these products provides a DEM 

(Digital Elevation Model) from the Shuttle Radar Topography Mission (SRTM) void 

filled at 3 arc-second (~90m) spatial resolution.  

A DEM is very important for this study because several variables of the BN are 

calculated from it, which are: catchment area, runoff coefficient and steepness 

(slope). The latter determine if a terrain is flat or hilly and it was calculated using 

the following equation: 

max minH H
Steepness

A


  

Where: 

 maxH : Maximum elevation of the catchment [m]. 

 minH : Minimum elevation of the catchment [m]. 

 A: Area of the catchment [km2]. 

Finally, a terrain classification (land cover) is needed, this variable is also 

computed using the DEM; three classes are considered in this study: Built-up, 

lakes and marshes. The information was obtained from The Global Lakes and 

Wetlands Database (GLWD) which has a combination of sources for lakes and 

wetlands on global scale (1:1 to 1:3 million resolution) from which the result is a 

database that focuses in three levels (Lehner B. a., 2004): 

1. Large lakes and reservoirs (GLWD-1): Comprises polygons –shapefiles-

large lakes with area larger or equal to 50 km2 and reservoirs with storage 

capacity larger or equal to 0.5 km3. Spatial resolution of 1:1 to 1:3 million, 

in geographic projection degrees’ latitude and longitude. 

2. Smaller water bodies (GLWD-2): Comprises polygons of permanent open 

water bodies with surface area larger or equal to 0.1 km2 excluding the 

water bodies form level 1. Spatial resolution of 1:1 to 1:3 million, in 

geographic projection degrees’ latitude and longitude. 

3. Wetlands. (GLWD-3) comprises lakes reservoirs rivers and different 

wetland types in a form of raster map. Of 30 seconds resolution (~900m). 
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This information together with the sub-basin delineations allows to estimate the 

coverage per catchment relative to the area of the catchment expressed as 

percentage.  

4.2.3. Climate Data  

 

One of the most important variables for the BN model are defined by climate data. 

Those variables are precipitation, runoff and snowmelt. For this project only 

historical data was considered; the information was obtained from the WRCP 

CORDEX data base through the ESGF (Earth System Grid Federation) at the 

DKRZ website (German Climate Computing Center). 

The data sets at the DKRZ are available through regions, for the case of the 

Guayas basin, the data corresponds to the South American region. The 

corresponding domain is SAM-CORDEX that uses the SMHI-RCA4 regional 

climate model with realization r12i1p1. A domain is the name assigned to each 

CORDEX regions (14 regions in total). The historical time line dates from 1950 

until 2005 in daily time frequency.  

This source was chosen because CORDEX information was also used by 

Paprotny & Morales-Napoles; Couasnon and Nasr (2017). The variables are 

represented by abbreviations,for precipitation (pr), snowmelt (snm) and for runoff 

(mrro). The information is downloaded as NCDF files and on a 0.44o rotated grid 

(spatial resolution of 50km approximately). 

One of the biggest challenges in this project was to obtain the information from 

the NetCDF files that later was extracted using Matlab scripts. The maximum per 

year per catchment was calculated for each variable and finally the snowmelt and 

precipitation were added together to form the MaxEvent node of the BN model. In 

the Guayas Basin there is almost no presence of snowmelt however, it was still 

included in this study to keep concordance with the other applications mentioned 

through this document.  

As the data that first was extracted from the files corresponded to the entire South 

American domain the area was reduced just to the points that fell into the sub-

basins of the Guayas River basin. To visualize the data, the grid and the points of 

each grid cell were plotted in QGIS, using Thiessen polygons. 

Next, the maximum value per year per catchment for each variable was computed 

using Matlab scripts. From this data processing procedure, the MaxEvent and run 

off are stored. Finally, the runoff coefficient is calculated as follows: 

RunoffCoeff=Maximum Runoff/MaxEvent. 
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4.2.4. Summary of Data Gathering 

 

As shown in the previous sections, the information for the variables involved in the 

BN model come from different sources, all of them requiring different approaches 

for its visualization, gathering, analysis and processing. In the following table a 

summary of the variables and its corresponding source is shown: 

Data Node Source Timeline Resolution 

Annual Maximum Daily 
discharge per year per 
station 

MaxDischarge GRDC 1962-2005 
(Varies per basin) 

- 

Area of the Catchments Area GRDC & Catchment 
Delineation 

    

Steepness       

Digital Elevation Model 
(DEM) 

Area SRTM 2008 3 arc second (~90m) 

Steepness       

Land Use (Land cover) Buildup WWF   1:1 to 1:3million 

Lakes   30 arc second (~900m) 

Marshes       

Precipitation MaxEvent WRCP   0.44o (~50km ) 

Snowmelt RunoffCoef CORDEX   

Total Runoff         

Table 2 Summary of sources for the variables of the BN model. 

 

In section 4.2.1 was mentioned that each river discharge station had different 

number of measurements, additionally, the climate variables had a different 

amount of measurements from the river discharges. The following table provides 

an overview: 

Station River Discharge Measurements Precipitation, Run Off and Snowmelt 

Quevedo 1962-1977;1979-2005 1950-2005 

 
La Capilla 1970-1980;1982; 1984-2005 

1950-2005 

 
Vinces-DCP 1964-1998; 2000-2005 

1950-2005 

 
Catarama 1982-1997; 2001 

1950-2005 

 
Lechugal 

 
1974; 1976-1977; 1979-1997; 2002-2005 

1950-2005 

Table 3 Data available for the variables of the BN model 
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The following table shows a summary the operations performed in each variable. 

 

Variable Operation 

MaxDischarge None 

Area Area delineation (Software) 

RunoffCoeff Maximum(Total Runoff)/MaxEvent 

MaxEvent Maximum (Rainfall+Snowmelt) 

Steepness [Maximum(Elevation)-Minimum(Elevation)]/sqrt(Area) 

Builtup 100*Area of Builtup/Area 

Lakes 100*Area of Lake/Area 

Marshes 100*Area of Marsh/Area 

    
Table 4 Summary of the operation performed to obtain the variables in the BN model. 

 

4.3. Methodology to Estimate Extreme River Discharges Through the 

BN Model 

In this section the methodology to obtain the extreme rivers discharges using the 

European BN model is explained.  

 

4.3.1. The BN Model 

The BN model is composed by eight variables as shown in Table 1 and aims to 

estimate the annual maxima river discharges at five sub-basins of the Guayas 

Basin. The model used for this research is the European model presented by 

Paprotny & Morales-Napoles (2017) and carried out through a Matlab script which 

has not been altered in any way except the input data. In the following paragraphs, 

a brief description of how the algorithm works is presented. The results of this 

research are expected to show the performance of the model in the Guayas Basin.  

The first step to construct the model is to define the DAG of the BN in which the 

parent-child relation is stablished for all the variables; following Figure 1: 

 Pa(Steepness): None. 

 Pa(Area): Steepness. 

 Pa(MaxEvent): Steepness. 

 Pa (Runoff Coefficient): Steepness. 

 Pa(Lakes): Steepness, Runoff Coefficient. 

 Pa(Marshes): Lakes, Runoff Coefficient. 

 Pa(Built-up): Steepness, Runoff Coefficient, Marshes, Lakes. 

 Pa(Discharge): Area, MaxEvent, Runoff Coefficient, Steepness, Lakes, 

Marshes, Built-up. 

**Pa( ) refers to the “parent” variable. 
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It can be noticed that “Discharge” is child of all the 7 remaining variables, meaning 

that all of them influence in its estimation. 

Then the conditional rank correlation coefficient for each arc is computed, this is 

accomplished by assuming a Gaussian copula (normal copula). The results vary 

between 0 and 1 and are presented as the correlation matrix between all the 

variables, however, another way to visualize the correlation between variables is 

trough scheme ball graphs as shown in the following figure.  

 

Figure 4 Scheme Ball for the Correlation Matrix of the European BN. 

In a schema ball the variables are joined by straight lines or curves. The plot 

includes a color scale that indicates the correlation between the variables defined 

between -1 for negative correlation (cyan) and 1 for positive correlation (magenta), 

0 means no correlation (white), so the correlation matrix of the variables 

determines the shading of the colors in the graph; a brighter color means more 

correlation between the variables (either positive or negative). 

Next, the river discharges are estimated, this procedure is also known as 

inference. This mean that the estimation of discharge is based on information of 

the other variables (nodes), these nodes are conditioned (or forced) to certain 

values that in this case corresponds to the information gathered for the Guayas 

Basin. The aim is to infer values of max discharge using the quantification of the 

European model but at the same time is conditionalized to information of the 

Guayas Basin. 

The maximum discharge sampling is performed from the joint normal distribution 

(copula) and then transformed to its original margins. The distribution of this 

sample can be described by the mean and standard deviation, from this values 

the uncertainty related to the maximum discharges is characterized.  



23 

 

After following these steps the performance of the BN model is evaluated by using 

the (available) measurements and the inferred discharges. To do this, 

performance indicators are used and are depicted in section 4.5. 

4.4. Fitting of Data to Probability Distribution Functions 

 

River discharge measurements can be described as a random process, in order 

to have a good description of the data is necessary to fit the data into a probability 

distribution (for the estimated data and the measurements) this is called 

distribution fitting.  

The key of this procedure is to find the right distribution that will describe best the 

data, so the theoretical data is compared with the empirical data through the 

theoretical cumulative distribution function of several proposed probability 

distribution functions versus the cumulative distribution function (CDF) of the 

empirical data. 

For this project, the following reasoning was considered for the distribution fitting: 

Given the great variety of probability distribution functions, it is important to reduce 

the number of functions that will be used for comparison to finally achieve to one 

function that will fit the data. For this project the distributions considered were: The 

GEV, Gumbel, Weibull, Gamma, Lognormal. 

Is important to remember that for this project the length of the data series of the 

discharge measurements is not equal to the length of the data series of the 

estimations and even tough this not affected the inference, it will influence the 

comparison of the data. To perform the validation, the timeline of the simulations 

has to be reduced to the length of the timeline of the measurements.  

The procedure to compare the theoretical distributions to the empirical data 

followed some steps: First, the parameters of each of the previously mentioned 

distributions were computed using maximum likelihood estimation, then the 

cumulative distribution functions were plotted and finally a goodness of fit test was 

performed in order to attribute a theoretical distribution to the data, 

Once a distribution has been selected then is possible to estimate the return 

periods of the maximum annual discharge for periods that exceed the timeline of 

the actual data, meaning that they were extrapolated to an arbitrary chosen value, 

for this project a return period of 100 years was chosen. Lastly, the cumulative 

distribution functions (corresponding to the fitted distributions) for the estimated 

data are computed and plotted. 
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4.5. Validation of the Model 

 

In previous applications by Paprotny & Morales-Nápoles (2017), Couasnon (2017) 

and Nasr (2017) several measures were employed to assess the validation of the 

results (Pearson’s coefficient of determination, Nash-Sutcliffe Efficiency, 

Standardized mean-square error, Mean Absolute Error and the Relative Error). 

For this project the first two are considered: 

Pearson’s coefficient of determination: (R2) 
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Where: 

 Qi
sim is the ith simulation value of the variable. 

 Qi
obs is the ith observation value of the variable. 

 Qmean
obs is the mean of the observations. 

This indicator is used to measure the correlation between the observations and 

the simulated data, this can be explained as how many data points fall in the line 

formed by the regression equation. As the coefficient is higher, then higher is the 

percentage of points that falls within the line. So if the coefficient equals one, it 

means that all the data points falls in the regression line. 

Nash-Sutcliffe efficiency (NSE) 
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NSE is used to measure if the model is biased. This indicator ranges between 

minus infinity to 1. If the NSE is equal to 1, it means that there’s no bias between 

the measured and simulated values, if a negative number is obtained then it 

means that the measurements are better estimations than the simulations. 
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4.6. Methodology for Comparison of Results 

 

The comparison of results will be carried out following the same methodology 

employed by Paprotny & Morales-Nápoles (2017). However, in this project some 

clear differences have to be highlighted. 

Paprotny & Morales-Nápoles (2017) presented a catchment classification based 

on the area, in which a basin with an area less than 10000km2 is considered small, 

but in this project all the catchments have areas smaller than such value, so a new 

classification will be considered using the following criteria: 

Classification 
Area Size 

[km2] 

Small 0-3500 

Medium 3500-7000 

Big 7000-10000 

Table 5 Classification of Watershed Areas. 

Next, the values from the results of the model and the measurements are 

compared, this is done by applying the validation indicators presented in the 

previous section. From this results it will be determined if the model performance 

was positive or not. 

Finally, a comparison of the model with other applications will be carried.  

4.7. Inference 

After validation of the model, the last step is to perform simulations in areas of the 

basin measurements are not available. In this project a total of 24 points were 

selected from the southern part of the basin which corresponds to the city of 

Guayaquil  (see Figure 5), this location was preferred based on its importance of 

this city within the country and also to be able to provide values that could be used 

as boundary conditions for future studies related to flood hazard in the city. The 

next chapter contains the results of this procedure. 
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5. Results and Discussion 
 

In this chapter the river discharges from the BN model are compared with the 

measurements from each station. The model is applied following the methodology 

presented in the previous chapter. A discussion of these results is also presented. 

Additionally, the results from data gathering and preparation are showed, then a 

comparison of the model performance for different catchment areas. Finally, the 

estimation of new points for inference around the city of Guayaquil is presented. 

5.1. Results of Data Gathering and Processing 

 

As mentioned in section 4.2, the information of each of the variables of the BN 

model (MaxEvent, Discharge, steepness, area, land cover-built-up, marshes, 

lakes, RunoffCoeff) were obtained from different sources and had different formats 

or units than the ones required by the model. In order to be able to use the 

information in the model, Matlab, Excel and Qgis tools were used. In this section, 

the results from this process are shown. 

5.1.1. River Discharge Measurements: 

 

As mentioned in section 4.2.1, river measurements were obtained from the GRDC. 

A total of 5 stations were considered for testing the model, together, this five 

stations do not cover completely the Guayas Basin, the remaining area is 

considered for inference in the next sections. The sub-basins are presented in the 

following figure: 

 

Figure 5 Configuration of the Guayas Sub-basins. 
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The red dots represent the GRDC discharge stations and the green-shaded areas 

are the sub basins of the Guayas river basin. The following table provides an 

overview of the data: 

                        

Name Code # River 

Coordinates station 

Catchment 
area (km2) 

Units 

Time series 
# 

Year
s 

Latitude 
(dd) 

Longitude 
(dd) 

Initial End 

Month Year Month Year 

Quevedo 3844300 Quevedo 1.0 79.5 3507 m3/s 10 1962 12 2005 43 

La Capilla 3844400 Daule 1.7 80.0 8690 m3/s 12 1970 12 2005 34 

Vinces-DCP 3844450 Vinces 1.6 79.8 4400 m3/s 1 1964 12 2005 41 

Catarama 3844460 Zapotal 1.6 79.5 3720 m3/s 1 1982 12 2001 17 

Lechugal 3844465 Zapotal 1.4 79.4 2980 m3/s 1 1974 12 2005 27 

Table 6 Summary of River Discharge information per station (GRDC). 

 

5.1.2. Terrain Data: 

 

The terrain of the Guayas basin has a maximum height of 4180 m.a.s.l and a 

minimum of zero, this information, together with catchment delineation were used 

to compute the area, steepness and percentage of land cover of the sub-basins 

(See Table 7). 

            

Name Code # Lakes (%) Mashes (%) Build-up (%) Steepness (m/km) 

Quevedo 3844300 0 0 0.35 55.32 

La Capilla 3844400 0 0 0.36 0.81 

Vinces-DCP 3844450 0 0 0.60 48.06 

Catarama 3844460 0.17 0 0.04 71.78 

Lechugal 3844465 0 0 0.06 3.36 

Table 7 Terrain data of the Guayas’ sub-basins. 

5.1.3. Climate Data 

 

The procedure followed to obtain the data for MaxEvent (annual maxima of daily 

precipitation) and RunoffCoeff was explained in section 4.2.3. In the next table the 

range of the values for theses variables is shown. 
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Catchment 
MaxEvent (mm/day) RunoffCoeff (-) 

Maximum Minimum Mean Maximum Minimum Mean 

Quevedo 116.35 79.14 93.39 1.01 0.94 0.99 

La Capilla 85.86 42.76 65.93 0.95 0.85 0.90 

Vinces-DCP 116.35 79.14 93.39 1.01 0.94 0.99 

Catarama 145.97 95.51 113.44 1.01 0.99 1.00 

Lechugal 145.97 95.51 113.44 1.01 0.99 1.00 
Table 8 Statistics for Climate Data. 

 

5.2. Results of The BN Model 

 

As mentioned in section 4.3.1, the structure of the BN used in this project is the 

same as the European model presented by Paprotny & Morales-Napoles, (2017).  

In order to perform a proper assessment, the time scale of the simulations has to 

be the same as the time scale of the observations; from a total of 275 simulations, 

162 were used.

 

Figure 6 CDF for all the stations (Observed Data)    Figure 7 CDF for all the stations (Simulated Data) 

 

The previous figures show the plot of the empirical cumulative distribution function 

(CDF) of the data of all the stations (observed and simulated) together with the 

theoretical CDFs. For both cases it was found that the data sets adjusted better 

to a GEV (Generalized Extreme Value) distribution function, furthermore the 

shape parameter was analyzed to determine if the GEV corresponded to a type I, 

II or III distribution (Gumbel, Fréchet and Weibull respectively). Both data sets 

fitted to a Weibull distribution. 

This analysis was also carried for each station, given the different characteristics 

in each one of them, however, their fitting, as in the entire data, is subjected to 

uncertainty due to limited amount of information available, nevertheless all of them 
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fitted to a Weibull distribution. The plots for each station are available at Appendix 

A. 

Validation of the model 

The validation of the model was carried for the data of all the stations as a whole 

and also for each station. 

 

(1) Normal scale.                                                       (2) Logarithmic scale 

Figure 8 Plot of the observed vs simulated annual maximum discharge. 

Figure 8 shows the result of the estimation of annual maxima discharge of all five 

stations plotted against the observed annual maxima discharge. Figure 8 (a) -

Normal scale- also shows the values for the coefficient of determination R2 and 

the NSE, the former is a number that is close to zero (0.035) which means that a 

small amount of points of the data falls in the regression, therefore the model 

represents a poor fit of the data, while the NSE coefficient shows a negative value 

(-2.63) which indicates a poor agreement between return periods computed from 

the model and observations. 

The slope of the regression line is another important factor to take into account in 

the analysis, looking at the trend of the line it can be said that estimation values 

increase significantly for small (decreasing) variations in the observations, given 

as result a negative slope, this means that at places where the discharges are the 

smallest, the model is predicting the highest values; the model is overestimating 

the simulations. 

Several reasons can be the cause of such odd behavior, for example, overall, all 

the stations have limited data that cannot represent the basins accurately or the 

information can be doubtful or have errors. Such aspects could affect the quality 

of the results. 
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Return period 

In this section an assessment on the model’s prediction based on values for return 

periods will be carried out.  

In order to obtain the discharge for a given return period, a frequency analysis is 

performed, the parametric distributed used for this procedure is the same as the 

one resulting from the fitting of the data, the Weibull distribution. The following 

graph shows a plot of the return periods for the data of all the stations: 

 

Blue dots: Estimated Annual Maxima Discharge, Red dots: Observed Annual Maximum Discharge Blue 
line: Weibull distribution from simulated data, Red Line: Weibull distribution from simulated data. 

Figure 9 Plot of Return Period (years) versus Discharge (m3/s) for data of all the stations 

 

The same plot was built for each station considering a Weibull distribution: 

 

       Quevedo Station (Code 3844300)                                                     La Capilla Station (Code: 3844400) 
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       Vinces-DCP Station (Code: 3844450)                                       Catarama Station (Code: 3844460) 

 

Lechugal Station (Code: 3844465) 

Figure 10 Plot of Return Period (years) versus Discharge (m3/s) for each station. 

From the previous figure it can be concluded that the best fit correspond to the La 

Capilla Station (Code: 3844400), which is also the one of the stations with the 

longest dataset from all the stations. Additionally, this basin has a bigger area 

compared to the others, lying in the classification of big areas relative to the new 

classification presented in this project. However, it is still important to consider 

calibration of the model for catchments smaller than 10000km2. 
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Comparison with other applications: 

Previously, the BN model was used for Europe and for the USA with positive 

results, as shown in Table 9. The results of calculating the same measures for the 

present study show that the model does not perform good in the Guayas Basin. 

One reason for this difference could be the size of the basin areas, as mentioned 

previously, the biggest area for the Guayas Basin is smaller than the smallest area 

considered for the European model. As presented by Paprotny & Morales-Napoles 

(2017) the area can be considered as the most important factor in the BN model, 

for which the smaller the area the less accurate the results, this can be confirmed 

by looking at Figure 4, where the curve between the discharge and the area is the 

line with the brightest magenta indicating a high positive correlation between those 

variables. 

Indicator Europe U.S.A 
Ecuador (Guayas 

River Basin) 

R2 0.92 0.858 0.035 

NSE 0.92 0.757 -2.63 

Table 9 Indicators for previous applications and the Guayas Basin. 

Moreover, other factor is the amount of information considered for the 

applications, that for the case of Europe and USA the data was abundant and for 

the Guayas Basin, all of the stations have less than 50 years of measurements. 

Number of simulations in the model 

Additionally, the results from the BN were computed considering different 

sampling sizes, for this project 1000,5000,10000 and 50000 samples were 

considered. The following table shows the indicator values for each case: 

Stations 

R2 NSE 

1000 5000 10000 50000 1000 5000 10000 50000 

Quevedo 0.004 0.013 0.012 0.001 -1.337 -1.387 -1.380 -1.370 

La Capilla 0.004 0.031 0.025 0.017 -1.128 -1.060 -1.083 -1.085 

Vinces-DCP 0.002 0.002 0.005 0.001 -32.815 -33.477 -33.924 -33.770 

Catarama 0.002 0.011 0.034 0.015 -2.716 -2.692 -2.572 -2.528 

Lechugal 0.122 0.019 0.018 0.009 -0.756 -0.752 -0.076 -0.075 

Table 10 Indicators value for different sample sizes at each station. 

From the previous table is shown that for different sample sizes there is a variation 

between the values of the indicators, however, such difference is really small. 

Overall, the number of samples does not improve the results of the model. 
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5.2.1. Prediction of Annual Maximum Daily River Discharges 

 

After the validation of the model, the next step is to predict annual maxima 

discharges in a basin with no measurements. In this project the model did not had 

a good performance in estimating the annual maxima discharges, however, 

inference in an ungauged basin will still be carried out.  

 

Figure 11 Basins considered for inference in an ungauged region. 

The selected area consists of 24 small basins around the city of Guayaquil, these 

points were chosen given the importance of the city and that big part of its 

population is threatened by floods (Figure 11). 

Inference in this region will help to set the first flood hazard maps in the region 

based in a BN model. Figure 12 shows the map for 100 year return period of the 

discharge per unit area. 
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Figure 12 Discharge per river catchment area for the basins surrounding the city of Guayaquil. 

From the previous figure it can be appreciated that around the city the basins have 

different values of discharge per km2, ranging from 0-0.08 m3/s per km2 at the 

north, to much higher values ranging from 0.32-0.40 m3/s per km2 at the west, the 

basins at the west are also the basins with the flatter terrain of all which makes 

them more vulnerable under a flood scenario, therefore this type of maps can be 

used as a preliminary and rough assessment for flood risk in the region. However, 

the area of each basin (Figure 13) corresponds with the “small” category of the 

classification of the areas presented for this project, so the results can be greatly 

affected by this fact. 

The catchment delineation was obtained from the National Information System 

(SNI from its acronym in Spanish) of the government of Ecuador and the rest of 

the terrain and climate data were obtained from the same sources presented in 

the methodology section. 

  

Figure 13 Area classification of the ungauged zone. 
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6. Conclusions and Recommendations 
 

Conclusions 

The BN method is a strong tool to estimate data for a variable of interest based 

on the knowledge of other variables. This model allows to visualize the data in a 

simple way while treating with complicated relationships between the random 

variables. 

The model has proven to be effective in Europe and in the United States as shown 

in the previous chapter. For the case of the Guayas river basin the method shows 

low performance as for the entire data and in a station by station analysis. The 

validation over the entire data resulted in a R2 of 0.035 and a NSE of -2.63. When 

the data was analyzed per station, it was also found that the R2 and the NSE 

coefficient had similar results as the analysis of the entire data set, such values 

could be caused for the lack of data in the region (each station has less than 50 

years of measurements), the influence of area size (less than the minimum 

suggested by other applications) in the model or perhaps poor quality of the data. 

In conclusion, the application of the model in the Guayas River basin resulted in 

low performance, the model overestimates the annual maxima discharge. 

The area of the catchment is a decisive variable within the model which in turn 

depends on the quality of the terrain data. Catchment delineation depends on the 

quality of the digital elevation models; for this project national data bases were not 

considered to keep accordance with previous applications of the model, however 

this data bases could have better resolution DEMs and therefor improve the 

quality of the catchment delineation. The same can be said about information 

about built-up, lakes and marshes. Nevertheless, the maps resulting from this 

project are good example of how flood hazard maps help quantify flood risk in a 

region. 

After testing the model for different sample sizes (1000,5000,10000,50000) there 

were no significant differences between the results. In conclusion, the increase of 

sampling does not improve the performance of the model. 
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Recommendations 

As the area of a basin is the most influential variable in the model, it is 

recommended to use areas that resemble the size suggested by previous studies, 

however in Ecuador very few catchments have such size, therefore the model 

needs further calibration for small catchments. 

Land data (percentage of built-up, lakes and marshes) is data that does not 

change over time within the model, however, in reality land cover is constantly 

changing and such changes should be included in the model to improve its 

performance. Additionally, other types of land cover (agriculture land, tropical 

forests, paramo, Andean forests among others) should be included for the case 

of Ecuador, that is a country in which the use of the land changes dramatically in 

relatively short distances. Over the next decades a great number of new 

hydroelectric projects are planned in the country which need to create reservoirs, 

this hydraulic structures affects the behavior of the rivers and moreover the 

discharges, such aspects should also be included in the model. National data 

bases are good sources for this type of information.  

Ecuador is severely affected by el Niño phenomenon which is not included in the 

model, but the maps presented in this project will help to visualize the more 

vulnerable zones and therefore influence the ways these areas can be protected 

during such extreme events.  

Fitting of the data resulted in a Weibull distribution by analyzing the shape 

coefficient of the GEV distribution, but given the big uncertainty surrounding the 

data, the GEV distribution should be considered for further studies in the region. 

To improve the performance of the model, data from neighbor countries could be 

a good option, for example, the application in Colombian rivers presented by Nasr 

(2017) could be applied in Ecuador and the first step into creating a model for 

South America could set in motion.  
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Appendix A 

 

Fitting Distributions for River Discharge Data (Observations and 

Simulations) 

 

 

Quevedo Station- (Left) Observations (Right) Simulations. 

 

La Capilla Station- (Left) Observations (Right) Simulations. 
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Vinces-DCP Station- (Left) Observations (Right) Simulations. 

 

Catarama Station- (Left) Observations (Right) Simulations. 

 

Lechugal Station- (Left) Observations (Right) Simulations. 
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