
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Reinforcement Learning for
Multicarrier Energy
Management:
A Computationally Efficient Solution for TU
Delft's Green Village

SET3901: Graduation Project
Víctor Andrés Rodríguez de Trío

Reinforcement Learning
for Multicarrier Energy

Management:
A Computationally Efficient Solution

for TU Delft's Green Village

by

Víctor Andrés Rodríguez de Trío

Student Surname Student Number

Andrés Rodríguez de Trío 5608368

Supervisor (Main): Dr. Gautham Ram Chandra Mouli
Supervisor: Dr. Pedro Vergara Barrios
Daily Supervisor: Darío Slaifstein
Project Duration: December, 2023 - January, 2025
Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

Cover: House in the Westfjords Region (Iceland) by Luke Stackpoole
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

Thank you to everyone who patiently walked with me in 2024, and especially to those who invited me
on walks.

Víctor Andrés Rodríguez de Trío
Delft, January 2025

i

Abstract

Decarbonisation and efforts to reduce living expenses are driving interest in multicarrier energy systems
(MCES) that integrate electricity, heat and e-mobility. These integrated networks require sophisticated
energy management strategies to address uncertainties in energy supply, demand, and weather con-
ditions.

This thesis seeks to develop a reinforcement learning (RL)-based energy management system
(EMS) for a multicarrier residential building at TU Delft’s Green Village. The case study household inte-
grates photovoltaic and solar thermal systems, an electric vehicle (EV), lithium-ion battery, heat pump,
and thermal storage. Current management uses white-box model predictive control (MPC) which, while
effective, demands significant computational resources. In addition, its implementation requires exper-
tise in optimal control and physics-based modelling.

The developed RL-based EMS provides a computationally efficient alternative, leveraging data-
driven methods to learn system dynamics. The RL approach was benchmarked against the existing
Expert, a day-ahead MPC planner. Performance was evaluated in terms of operational safety, grid
energy exchange costs, and satisfaction of EV state of charge (SoC) demands.

The RL agent achieved performance comparable to that of the Expert in managing the MCES,
while improving accessibility for developers lacking control theory expertise. The RL agent displayed
consistent and near-optimal performance, resulting in only a 4% increase in grid exchange costs while
improving both EV charging compliance and safety constraint adherence.

A literature review of RL applications for residential EMS is presented alongside an investigation of
advanced policy update algorithms, deep neural network architectures, temporal feature engineering,
and reward shaping strategies to analyse their impact on EMS performance.

The implemented RL-based control solution has been shown to manage electrical and thermal
subsystems while maintaining safety and minimising costs. The computational efficiency and reduced
modelling requirements of an RL agent highlight its suitability for small-scale MCES applications, such
as residential or office buildings, where MPC may not be practical.

Keywords: Reinforcement Learning, Energy Management System, Multi-Carrier Residential En-
ergy System, Computational Efficiency, Low-Cost Optimization, MPC Benchmark, Hybrid Energy Stor-
age, Proximal Policy Optimization (PPO), Multi-Objective Optimization, Julia Programming

Code Repository
The complete source code employed to address the research objectives is accessible at:
https://github.com/Victor-Andres-RdeTrio/RL4MCES

ii

https://github.com/Victor-Andres-RdeTrio/RL4MCES

Summary

The problem tackled in this Master Thesis is the development of an RL-based energy management
system (EMS) for a multicarrier energy system (MCES) situated in the Green Village of Delft University
of Technology. The household integrates various energy resources, including PV and solar thermal
systems, an electric vehicle (EV), a battery energy storage system (BESS), a heat pump (HP), and a
thermal energy storage system (TESS). These assets interact dynamically through a power electronic
interface, which provides flexibility to the system and, most importantly, grid connectivity.

A day-ahead planner white-box Model Predictive Control (MPC), known as the Expert, serves as
the benchmark EMS for the current MCES, while also being frequently used in other energy systems
for balancing energy use, operational safety, and economic considerations. However, MPC’s reliance
on specialised expertise in control theory and physics-based modelling, coupled with its high computa-
tional demands, limits its accessibility for widespread residential deployment.

This thesis investigates reinforcement learning (RL) as a computationally efficient alternative to
MPC, while addressing some of the gaps found in current research. These include the unexplored
potential of RL in hybrid energy storage systems, challenges in multi-objective reward function design
and the underutilisation of advanced policy gradient algorithms like Proximal Policy Optimization (PPO).
The work seeks to answer a central question: To what extent can RL enable non-experts in control
theory to manage MCESs efficiently while maintaining safety and performance comparable to MPC?

The developed RL agent is tasked with minimising a multi-objective function that incorporates grid
energy costs, penalties for unmet EV state of charge (SoC) requirements, and penalties for constraint
violations. The MCES consists of interdependent components and is affected by uncertain exogenous
information, all of which should be considered when making decisions. In the electrical subsystem,
the agent must manage bidirectional power flows between the grid, the BESS, and the EV battery,
while accounting for energy production from PV panels. In the thermal subsystem, the agent must
allocate energy between heating demands and storage, by directing the HP and leveraging the buffering
capacity of the TESS.

The process to reach the final RL agent presented in this thesis is built upon different reward func-
tions, feature vectors, and deep neural network (DNN) architectures, which are treated as hyperpa-
rameters to optimise. Systematically exploring these options allowed the discovery of high-performing
configurations.

Reward formulations were designed to reflect the multi-objective nature of the sequential deci-
sion problem (SDP). Eight distinct reward combinations were selected, arising from combining two
approaches for grid cost reduction, two EV penalty methods, safety violation penalties and an optional
margin reward component (which discourages moving towards out-of-bounds states). The combina-
tions were chosen to prioritise significant paradigm shifts, with adjustable weights treated as hyperpa-
rameters to fine-tune the importance of each objective.

To further enhance the RL agent’s adaptability to the uncertain future, a correlation study was con-
ducted on the Expert EMS, which revealed meaningful time lags and relationships between state vari-
ables and decisions. What was learned became the foundation for various feature vector configurations,
each offering the agent different past information about the state variables. For contrast, configurations
relying on periodic patterns or randomised time lags were also included. This expansion of the feature
space provided the agent with a broader range of possible inputs, thus reducing reliance on trial-and-
error in feature selection.

The standard DNN design featured separate Multi-Layer Perceptrons (MLPs) for the Actor and
Critic, each with two hidden layers of uniform width, employing Tanh activation functions and orthogo-

iii

iv

nal weight initialisation. Eleven additional architectures were introduced, including variations in depth,
width, parallelisation and neuron interconnectivity, aiming to uncover configurations capable of greater
abstraction and improved learning efficiency, potentially with lower computational demands.

To evaluate the proposed hyperparameter configurations, three stochastic policy gradient algo-
rithms –Vanilla Policy Gradient with Critic (VPG-C), Advantage Actor-Critic with generalized advantage
estimation (A2CGAE), and PPO– were implemented, representing a range of algorithmic complexity.
This comprehensive evaluation framework enabled thorough testing of the reward functions, feature
vectors, and neural network designs, ultimately facilitating the development of a lightweight and high-
performing RL-based EMS.

The performance metric serves as the foundation of the hyperparameter optimisation process, en-
suring alignment with the system’s objectives by integrating three essential components: grid opera-
tional cost, EV charging satisfaction, and safety constraints. These elements are combined into a com-
prehensive metric that prioritises safety above all, followed by EV charging requirements, and, only
when these are satisfied, grid cost reductions. This approach helps evaluate RL agents and guides
computational resource allocation during optimisation. The metric’s non-linear design ensures small
behavioural differences translate to meaningful results.

The hyperparameter optimisation unfolds in two stages: a basic and an extended phase. The basic
optimisation explores common parameters, identifying the best performing hyperparameter configura-
tions (known as profiles) for each of the three policy gradient algorithms (VPG-C, A2CGAE, and PPO).
The extended optimisation expands this process by incorporating additional parameters, the most rel-
evant of which are those discussed above: neural network architectures, reward formulations, and
feature vector configurations. Both phases rely on the BOHB algorithm, which iteratively samples the
search space, trains agents using these configurations, and evaluates them based on the performance
metric. Multiple agents are trained per configuration to account for randomisation effects, with the
hyperparameter profiles selected based on averaged outcomes.

Key insights emerged during optimisation. The inclusion of the margin reward proved to be a crucial
development, substantially improving performance consistency while delivering remarkable enhance-
ments in both median and peak performance metrics. Regarding DNN architectures, the 3CW actor
architecture, consisting of three parallel branches of uniform width (one per decision), showed promis-
ing results. High-performing outliers suggest that specific hyperparameter configurations may be able
to leverage the more complex design. The critic architecture analysis revealed a different pattern, with
both Bottleneck and Residual architectures presenting notable improvements in performance.

Surprisingly, simpler feature vectors –that only consider the last timestep– outperformed more com-
plex alternatives, likely due to their robustness against overfitting. PPO exhibited the highest median
performance and algorithmic robustness, while VPG-C, unexpectedly, achieved remarkable results
through outlier configurations.

The pipeline culminates in the identification of the top RL agent (TRLA), derived from the extended
optimisation phase. This agent implements the 3CW actor architecture and a bottleneck critic. Its
reward structure incorporates the margin reward, which proved pivotal for stability and success. While
its grid cost is slightly higher than other candidates, its superior handling of EV charging demands
solidifies its position as the most balanced and effective EMS.

The performance of the TRLA was validated through a comprehensive comparison with the Ex-
pert, using metrics from the latter’s objective function to ensure a fair evaluation. Despite the inherent
stochasticity of its decision-making, the TRLA demonstrated consistency across the testing dataset.
While the Expert optimised grid exchange costs more effectively, this was sometimes achieved at the
expense of penalties for unmet EV SoC requirements. Temporal analyses confirmed the TRLA’s ability
to deliver reliable outcomes, with aggregate performance aligning with the Expert’s, even though they
made different decisions at each step.

In terms of safety, the TRLA benefitted from the integration of the safe projectionmechanism, which
dynamically adjusts action limits at each timestep based on system component constraints. This ap-
proach ensured any infractions remained negligible and within acceptable limits, thus protecting the

v

integrity of the MCES. Moreover, the TRLA showed better safety performance than the Expert in cer-
tain areas.

The TRLA’s overall behaviour shows its capacity to balance conflicting long-term objectives. In the
electrical subsystem, the TRLA achieved comparable outcomes to the Expert, effectively balancing
loads and ensuring optimal EV SoC before departure. Within the thermal domain, the agent success-
fully managed resources while respecting TESS constraints and minimising grid energy costs. These
results show that the TRLA is ready for deployment, where its efficiency and safety should be further
tested.

The research validates RL as an effective tool for non-experts to manage MCESs, achieving perfor-
mance comparable to MPC while maintaining safety and significantly reducing computational require-
ments during deployment.

Code Repository
The complete source code employed to address the research objectives is accessible at:
https://github.com/Victor-Andres-RdeTrio/RL4MCES

The author may be reached by email: vandres.trio@proton.me

https://github.com/Victor-Andres-RdeTrio/RL4MCES

Contents

Preface i

Abstract ii

Summary iii

1 Introduction 1

1.1 Problem Definition . 2

1.2 Research Goal . 2

1.3 Main Contribution . 3

1.4 Statement of Research Questions . 3

1.5 Structure of the Thesis . 3

2 Literature Review 5

2.1 Introduction . 5

2.2 Overview of Sequential Decision Problems . 5

2.3 Policies . 6

2.3.1 Policy Search . 6

2.3.2 Lookahead Policies . 7

2.4 Introduction to Reinforcement Learning . 7

2.4.1 Modelling Framework . 7

2.4.2 Towards a Definition . 8

2.4.3 Learning . 8

2.4.4 On or Off Policy . 8

2.5 Is a model useful? . 9

2.5.1 Model-Free . 9

2.5.2 Model-Based . 10

2.6 Defining a Model-Free Algorithm . 10

2.6.1 Class Selection: Actor-Critic . 10

2.6.2 Stochastic Policy Gradient . 11

2.7 Updating the Agent . 12

2.7.1 Rewards . 12

vi

Contents vii

2.7.2 Actor loss . 15

2.7.3 Critic loss . 16

2.7.4 Loss Gradients . 17

2.8 Activation Functions . 20

2.9 RL in Energy Management Systems . 23

2.9.1 Strengths . 23

2.9.2 Weaknesses . 23

2.9.3 Residential Buildings . 24

2.9.4 PPO in practice . 25

2.9.5 MCES Modelling . 26

2.9.6 Direct Deployment in MCES: Safe Learning . 26

2.10 Research Gaps . 27

2.11 Research Questions . 28

3 Energy Management System 29

3.1 Introduction . 29

3.2 System Components . 29

3.3 Sequential Decision Problem . 30

3.3.1 Objective function . 30

3.3.2 State variable . 32

3.3.3 Decision variable . 33

3.3.4 Exogenous information . 34

3.3.5 Transition function . 34

3.4 Safe Behaviour . 36

3.4.1 Safety Projection . 36

3.4.2 Safety during training . 38

3.4.3 Safety after deployment . 38

3.5 Expert EMS . 38

3.6 Data: Training and Testing . 39

3.6.1 Expanding the Data . 40

4 RL Agent Construction 42

4.1 Introduction . 42

4.2 Reward Functions . 42

4.2.1 Grid Cost . 43

Contents viii

4.2.2 EV Penalty at Departure . 44

4.2.3 Projection Penalty . 45

4.2.4 Margin Reward . 46

4.2.5 Final Reward . 47

4.3 Feature vector . 49

4.4 Neural Network Design . 51

4.4.1 Dimensions of the Deep Neural Network . 51

4.4.2 Policy Output . 52

4.4.3 Weight Initialisation . 52

4.4.4 Architecture . 53

4.5 Implementation of Policy Gradient Algorithms . 57

4.5.1 Vanilla Policy Gradient with Critic (VPG-C) . 57

4.5.2 Advantage Actor Critic with Generalized Advantage Estimation (A2CGAE) 58

4.5.3 Proximal Policy Optimization (PPO) . 59

4.6 Data Collection . 60

5 Hyperparameter Optimisation and Agent Evaluation 62

5.1 Introduction . 62

5.2 Performance Metrics . 62

5.2.1 Grid Cost Metric . 63

5.2.2 EV Penalty Metric . 64

5.2.3 Projection Penalty Metric . 64

5.2.4 Final Metric . 64

5.3 Hyperparameter Optimisation . 65

5.3.1 Hyperparameter Set . 66

5.3.2 Basic Range . 68

5.3.3 Extended Range . 68

5.3.4 Procedure . 69

5.3.5 Results . 71

5.4 Finding a Near-Optimal Policy . 75

5.4.1 Hyperparameter Profile Performance Analysis 75

5.4.2 Comparison of Best Agents . 76

6 RL EMS Validation and Conclusions 78

6.1 Introduction . 78

Contents ix

6.2 Comparison with Expert . 78

6.2.1 Objective Function Metrics . 79

6.2.2 Agent Behaviour . 79

6.2.3 Safety Performance . 84

6.2.4 Validation . 85

6.3 Conclusions . 85

6.3.1 Further Work . 88

References 89

A Safety, Data Augmentation and Exploding Gradients 93

A.1 Exploding Gradients . 93

A.2 Safety Projection Model . 93

A.2.1 Objective Function . 94

A.2.2 Equality constraints: . 94

A.2.3 Variables and Bound Constraints . 95

A.2.4 Constants . 96

A.2.5 Safety Projection Details . 97

A.2.6 Safety Projection in Operation . 97

A.3 Synthetic Expansion of Training Data . 98

B Hyperparameter Optimisation: Extra Information 100

B.1 Finding the Best Hyperparameters: BOHB Algorithm . 100

B.2 Auxiliary Hyperparameter Ranges . 101

B.2.1 Feature Vectors . 101

B.2.2 Reward Functions . 104

B.2.3 Reward Weights . 104

B.2.4 Neural Network Architectures . 104

B.3 Supplementary Hyperparameter Optimisation Results 106

B.3.1 Architectures Comparison . 107

B.3.2 Feature Vectors Comparison . 108

B.4 System Specifications for Training RL Agents . 109

B.5 Working with Julia’s RL Package . 110

B.5.1 Code Repository . 110

List of Acronyms

3CW 3 Constant Width Branches. 56, 71, 74, 80
3PYR 3 Pyramid Branches. 56, 71, 74

A2C Advantage Actor-Critic. 9, 11, 15, 25, 26, 58, 59
A2CGAE Advantage Actor-Critic with generalized advantage estimation. iv, 25, 42, 58–60, 62, 69,

71–73, 75–77
A3C Asynchronous Advantage Actor-Critic. 58
ACKTR Actor-Critic using Kronecker-Factored Trust Region. 25
AD automatic differentiation. 17, 18
ADP Approximate Dynamic Programming. 7

BESS battery energy storage system. iii, 29, 32–37, 39, 47, 48, 52, 80–84, 87
BOHB Bayesian Optimisation and Hyperband. iv, 62, 66, 68–71, 86, 100, 101

COP coefficient of performance. 35
CW Constant Width. 53, 56, 69, 71, 74, 86

DCW Deep Constant Width. 71, 74, 87
DDPG Deep Deterministic Policy Gradient. 11
DLA direct lookahead approximation. 38
DNN deep neural network. iii, iv, 3, 6, 9, 10, 12–15, 17–22, 25, 28, 36–38, 42, 43, 48–58, 66–68, 74,

86, 87, 93, 104, 106–109
DPG Deterministic Policy Gradient. 9

EMA exponential moving average. 20
EMS energy management system. iii, iv, 1–3, 5, 23–28, 30, 31, 38
EV electric vehicle. iii–v, 2, 3, 24, 25, 27, 29, 31–36, 39, 40, 44, 45, 47, 48, 52, 62–65, 72–74, 77,

79–85, 87

GAE generalized advantage estimation. 3, 14–17, 28, 58–60, 66, 86

HP heat pump. iii, 29, 33, 35, 36

MCES multicarrier energy system. iii, v, 1–3, 5, 26, 29–31, 34–39, 41–43, 45–48, 64, 68, 73, 78,
83–88

MDP Markov decision process. 5, 7, 8, 30
MILP Mixed-Integer Linear Programming. 25
MIQCP Mixed-Integer Quadratically Constrained Program. 39
MPC Model Predictive Control. iii, v, 1–3, 5, 8, 10, 23, 27, 28, 38, 39, 78, 86–88
MSE mean squared error. 16, 17, 58

NN neural network. 10–12, 16, 19, 55, 56, 60

PEI Power Electronic Interface. 29, 33
PFA policy function approximation. 6, 9

x

List of Acronyms xi

PPO Proximal Policy Optimization. iii, iv, 9, 11, 13, 15, 25–28, 42, 59, 60, 62, 67, 69, 71–73, 75–77,
86

PV photovoltaic. iii, 24, 26, 29, 34, 39

RL reinforcement learning. iii–v, 1–5, 7–12, 15, 22–33, 36, 38–43, 45, 47, 51, 52, 56–58, 62, 64, 66,
75–79, 84–88, 109, 110

RMSE root mean squared error. 79
RNG random number generator. 41

SAC Soft Actor-Critic. 11, 25, 26
SDP sequential decision problem. iii, 3, 5, 6, 8, 10, 12, 29, 30, 33, 34, 37, 39, 42, 62
SGD stochastic gradient descent. 18–20
SoC state of charge. iii–v, 3, 31, 32, 34–37, 42, 44, 47, 64, 72, 78–80, 82, 83, 85, 87
ST solar thermal. iii, 29, 79

TD3 Twin Delayed Deep Deterministic Policy Gradient. 11, 25, 26
TESS thermal energy storage system. iii, v, 29, 31–33, 35, 36, 38, 39, 47, 77, 79, 82–85, 87
TRLA top RL agent. iv, v, 12, 62, 76–85, 87
TRPO Trust Region Policy Optimization. 9, 11, 59, 60

VFA value function approximation. 7–9
VPG Vanilla Policy Gradient. 11, 25, 57, 58
VPG-C Vanilla Policy Gradient with Critic. iv, 25, 42, 58, 59, 62, 66, 67, 69, 71–73, 75–77, 86

1
Introduction

The global push toward decarbonisation, coupled with efforts to reduce living expenses, has acceler-
ated the integration of diverse energy systems, where electricity, mobility, and heat converge. Known
as multicarrier energy systems (MCES), they require coordinated resource management over daily,
monthly, and annual timescales. Beyond cost savings, they commonly demand resilience, sustainabil-
ity, and energy autonomy, all of which call for the development of sophisticated strategies that can
address forecast uncertainties in energy supply, demand, and weather conditions.

The incorporation of diverse energy generation and storage methods, such as electric and ther-
mal systems, along with electric vehicles that allow bidirectional energy flow, adds another layer of
complexity. Despite this, a locally implemented energy management system (EMS) can harness the
potential of these intertwined energy resources to satisfy the needs of the residents.

The conventional approach of Model Predictive Control (MPC) excels in managing an MCES by
modelling dynamic transition functions to predict future states and optimise control actions. It can
account for the relationships among energy resources and integrate forecasts for demand, local gen-
eration, and market prices, which would provide a robust framework to handle uncertainties.

However, designing an effective MPC-based EMS requires significant expertise to accurately
capture the complexities of the MCES while ensuring computational feasibility. Furthermore, the iter-
ative nature of its optimisation process demands substantial computational resources, particularly in
light of the expanding interconnected energy infrastructures prevalent in modern urban environments.
For small-scale MCES, such as residential or office buildings, the adoption of conventional MPCs re-
mains unrealistic. This limitation suggests a compelling case for more accessible and cost-effective
alternatives to be explored and implemented.

Reinforcement Learning (RL) appears to be a promising alternative for operating energy systems
[41], characterised by lower computational costs and reduced dependence on specialised expertise
compared to MPC. By learning system dynamics directly from data, RL eliminates the need for detailed
a priori models, minimising the technical undertaking specific to each project. Additionally, this method
demonstrates enhanced adaptability to complex state spaces and changing environments [12, 57].

While RL is likely surpassed by someMPCdesigns, its performance can be near-optimal, and clearly
superior to traditional rule-based control. The cost-efficiency and flexibility of RL make it attractive for
small-scale practical applications. However, achieving robust and safe operation, both in the training
phase and during real-world implementation, represents an ongoing challenge [57].

1

1.1. Problem Definition 2

1.1. Problem Definition
The problem central to this MSc thesis is the development of an energy management system based
on reinforcement learning for a multicarrier electrified residential building located in the Green Village
of Delft University of Technology.

The household under consideration is part of the FLEXINet project. It functions as a multicarrier
energy system that integrates photovoltaic and solar thermal energy, an electric vehicle (EV), a lithium-
ion battery, a heat pump, and a thermal storage system. These assets are dynamically managed by a
power electronic interface, enabling flexible interaction with the electrical grid.

Figure 1.1: Schematic diagram of the MCES from the research by Slaifstein et al.[55]. The arrow points indicate the directions
in which energy can flow through the system.

At present, a white-box MPC Expert is used to manage the MCES. The EMS designed in this
thesis will aim to achieve a near-optimal policy by optimising the same objective as the Expert, which
will serve as the performance benchmark. The project seeks to establish a computationally viable
alternative suitable for household deployment. The resulting EMS will also allow an assessment
of the performance that can be achieved without relying on specialised expertise in optimal control or
physics-based modelling.

To accomplish this task, a literature study on reinforcement learning and its application in residential
EMSs will be undertaken. In light of potential future interactions between the RL and Expert agents,
the algorithms were encouraged to be developed in Julia or Python. The Julia Programming Language
[8] will be selected due to its superior computational efficiency.

1.2. Research Goal
Assess the potential of reinforcement learning for non-experts in control theory by building a computa-
tionally efficient alternative to MPC for managing a multicarrier urban energy system.

1.3. Main Contribution 3

1.3. Main Contribution
The main contribution of this thesis lies in the development of a computationally efficient reinforcement
learning (RL)-based EMS for managing a multicarrier urban energy system at TU Delft’s Green Village.
This work demonstrates performance comparable to traditional MPC methods, while maintaining op-
erational safety and allowing real time operation. Additionally, RL is shown to be an effective tool for
practitioners without deep knowledge of optimal control theory or physics-based modelling.

A literature review is provided, exploring the theoretical foundations and practical applications of RL
in EMS, with a focus on multicarrier energy system (MCES) in residential buildings.

This thesis provides insights into the impact on performance of advanced RL policy update algo-
rithms, sophisticated DNN architectures, temporal feature engineering, and reward component shap-
ing.

Furthermore, a direct comparison between MPC and RL is presented, offering an evaluation of their
performance in terms of operational safety, grid exchange costs, and EV SoC demand satisfaction.

1.4. Statement of Research Questions
This thesis is centred on one overarching research question, which is further explored through three
sub-questions. To provide clarity and context, these questions will be discussed in greater depth in
Section 2.11, where their alignment with the research gaps outlined in Section 2.10 is elaborated.

Main Research Question

In themanagement of multicarrier urban energy systems, to what extent can practitioners without
expertise in optimal control theory and physics-based modelling leverage reinforcement learning
to create a computationally efficient alternative to model predictive control, while maintaining
comparable safety and performance?

Sub-Research Question 1

How do progressively advanced policy update algorithms (from basic advantage estimation to
GAE to trust region constraints) contribute to achieving near optimal performance?

Sub-Research Question 2

What is the impact of DNN architecture sophistication, temporal feature engineering, and reward
component shaping for RL algorithms in achieving performance that is close to optimal?

Sub-Research Question 3

How do the RL and MPC approaches compare in terms of operational safety, energy storage
use, and economic performance?

1.5. Structure of the Thesis
This thesis is organized to guide the reader from foundational concepts to the final validation of the
proposed RL agent for energy management. The chapters are structured as follows:

• Chapter 2: Provides a comprehensive review of the theoretical principles and current state of RL
in energy management systems, identifying research gaps that shape this work.

• Chapter 3: Formally defines the sequential decision problem for a multicarrier electrified residen-

1.5. Structure of the Thesis 4

tial building, introduces the Expert, and discusses data preparation techniques.

• Chapter 4: Focuses on constructing the RL agent, including reward design, feature vector con-
figurations, neural network architectures, and the implementation of policy gradient algorithms.

• Chapter 5: Addresses hyperparameter optimisation in two stages using a systematic pipeline
and evaluates the performance of candidate agents.

• Chapter 6: Validates the top-performing RL agent by comparing its performance to the Expert
and concludes with a discussion of research findings and potential future work.

2
Literature Review

2.1. Introduction
This literature review explores the theoretical foundations and practical applications of RL in EMS.
The mathematical framework required for understanding RL applications is first established through an
exploration of sequential decision problems and policy formulation. The review progresses through key
aspects of RL, examining both model-free andmodel-based approaches, before focusing on actor-critic
architectures and stochastic policy gradient methods.

A detailed examination of the technical implementation literature addresses key topics such as
agent updating algorithms, loss functions, reward design and processing, and activation functions. A
firm grasp of these components is crucial for understanding the algorithms’ degree of complexity and
to devise a computationally efficient alternative to MPC.

The review concludes by examining the current state of RL in EMS, with a focus on MCES in
residential buildings. Research gaps are identified after an analysis of the strengths and weaknesses
of RL-based approaches. Additionally, the modelling of a MCES to create a virtual environment is
discussed. These gaps inform the research questions that will guide the thesis’ development of an
EMS for a multicarrier electrified residential building.

2.2. Overview of Sequential Decision Problems
Energy Management Systems seek to optimise the use of energy resources by responding to changes
in demand and supply conditions. This interaction requires an agent to make appropriate decisions
based on the current known information, which will then be translated into cumulative or final rewards.
This is a simple description of a sequential decision problem (SDP), which in even simpler terms
involves a succession of decision-making and gathering of information, followed by another step of
decision-making.

Warren B. Powell [45] has created a concise and universal framework for dealing with these prob-
lems, which includes RL and MPC, along with a broad range of disciplines such as optimal control,
Markov decision processes (MDPs), stochastic or robust optimisation, approximate dynamic program-
ming, and others. The difference between his framework and the rest is that the problem is modelled
first and the policy is found afterwards, since all the policy types can be useful for producing sequential
decisions. To provide a basic introduction, according to Powell, there are five fundamental elements in
any SDP:

• The state variable Sn captures the information or beliefs after n observations. It is the informa-
tion needed for making decisions and modelling the problem, nothing more. The initial state S0

5

2.3. Policies 6

encompasses not just deterministic parameters but also may incorporate the initial distributions
of uncertain parameters.

• The decision variable xn is determined through the policy Xπ(Sn) and will be performed in the
environment by the agent or controller. The policy is a function, likely with tunable parameters,
that maps the states to decisions, either in a deterministic or a stochastic manner.

• Exogenous informationWn+1. It will arrive after the decision xn.
• The transition function allows for the evolution of the environment; it contains the necessary
information such that, given a state, a decision, and the exogenous information, the next state can
be obtained. Sn+1 = SM (Sn, xn,Wn+1) describes the transition, and includes all the dynamics
of the system.

• The objective function. Each step will produce a reward (or cost), named C(Sn, xn). There are
various ways to consider the performance of the agent, but a common one is to maximise the
cumulative reward, described as: maxπ E

{∑N
n=1 C(S

n, Xπ(Sn)) | S0
}
. Sometimes, only final

rewards will be considered. Any SDP will aim to maximise the objective function over policies.

The indexing can also be done with t for time. It is a very useful terminology because everything is
indexed following what the agent knows in the timestep t. Uncertainty in state variables or exogenous in-
formation is common and usually needs to be modelled. Once the basic elements have been described,
the information process of an SDP can bewritten as:

(
S0, x0,W 1, S1, x1,W 2, . . . , Sn, xn,Wn+1, . . . , SN

)
[45]. With the objective function established, the search for the optimal policy begins.

2.3. Policies
Powell’s contributions [45] are particularly relevant because, according to his research, the complete
body of knowledge that addresses decision-making under uncertainty can be categorised into two over-
arching strategies for formulating policies: policy searching and looking ahead.

This approach makes the distinction between fields (like active learning, approximate dynamic pro-
gramming, decision trees...) a matter of choosing a style of policy. The fundamental four policies (de-
tailed below) resulting from these strategies can also be combined into hybrid policies, showing how
varied the methods to solve a problem can become. All four policy classes may result in an optimal
policy [45].

2.3.1. Policy Search
This class encompasses searching over functions or tunable parameters, and it is divided into two
subclasses [45]:

Policy Function Approximations (PFAs)

Analytical functions that map a state to a decision. For discrete states and actions, they may be repre-
sented as a lookup table. Alternatively, these functions can be parametrized, such as through (Artificial)
Neural Networks. Additionally, locally linear approximations and other non-parametric methods, such
as deep neural networks, are also included. These approaches are highly adaptable in terms of their
structure and the number of parameters, enabling them to capture complex non-linear relationships
within the data.

Cost Function Approximations (CFAs)

Parametrized optimisation models, usually deterministic, they are very relevant in industry but usually
ignored by the SDP researchers, Powell [45] introduces them as a fundamental policy class. The main
difference from policy function approximation (PFA)s is that there is an embedded optimisation that
requires solving for each decision to be made.

2.4. Introduction to Reinforcement Learning 7

2.3.2. Lookahead Policies
The aim of these policies is to make a good decision by considering the effect they will have on the
predicted future of the system. There are again two major subclasses to consider [45]:

Value Function Approximations (VFAs)

Each state is given a value that represents the expected contribution (reward) or cost of being in that
state if the agent follows a particular policy. This is the foundational approach of dynamic programming.
The policy determines which action will maximise the sum of the immediate reward (or minimise the
cost) and the value of the next state. For clarity, this formulation from [45] is presented:

XV FA
t (St) = argmax

xt

(
C(St, xt) + EWt+1 {Vt+1(St+1) | St}

)
(2.1)

This approach is often impractical due to the curse of dimensionality, as any expansion in the state
or action space would result in exponentially higher computational demands. To address this challenge,
fields like approximate dynamic programming or RL have developed the idea of approximating the value
function Vt+1 (e.g., Q-learning), usually by means of machine learning.

Direct Lookahead Approximations (DLAs)

At the current state, the next decisions are planned ahead, considering their downstream effects. This
sequence of orchestrated actions is optimised to increase both immediate and predicted rewards, re-
sulting in the optimal decision in the present state. Typically, this computation will be performed at
each step. In order to look ahead into the future of the system, an approximate lookahead model is cre-
ated, which may be deterministic or stochastic, escalating considerably the complexity of the problem
at hand.

2.4. Introduction to Reinforcement Learning
To delve into RL first it becomes necessary to define what it is, and this is no simple task. According
to Sutton and Barto [59], RL embodies a problem, a class of solution methods that work well on said
problem, and the field that studies both. However, the question arises: What are the problems, and
what are the solution methods to employ? This becomes harder to answer as RL has exploded in
popularity – with 50, 000 new citations from 2015 to 2020. While RL arose as a community that many
would identify as using Approximate Dynamic Programming (ADP), the field now encompasses too
many problems for one set of solution methods [46].

RL started with a similar idea to ADP: approximating the value of being in a state. However, instead
of focusing on learning the state value function V (s), the paradigm shifted to learning the state-action
value function Q(s, a), which indicates the expected contributions from being in a state s, taking an
action a and then following the policy [45]. This approach, known as Q-learning, stood at the core of
RL during the 1990s. Sutton and Barto [59] affirm that such value functions are one of the fundamental
subelements of RL, but they are just a method, one class of policy [46], and other methods are used
even in their own work. RL has grown beyond VFAs with the adoption of all four classes of policies
(see Section 2.3).

2.4.1. Modelling Framework
Since its origins, the community of RL has used the modelling framework of Markov Decision Pro-
cesses (MDPs) [45]:

• State Space: Set of states denoted by s that the system may occupy.
• Actions: Set of actions denoted by a that the agent can perform.

2.4. Introduction to Reinforcement Learning 8

• Transition matrix: The one-step state transition matrix, with P (s′ | s, a) representing the prob-
ability of transitioning to state St+1 = s′ given the current state St = s and action a, follows the
Markov property. This guarantees that the next state depends on the current state and the action
taken, not on the past.

• Reward Function: r(s, a) gives the immediate reward obtained after taking action a in state s.
• The transition matrix and reward function are usually contained in an abstraction called environ-
ment, where everything that cannot be changed arbitrarily by the agent resides [7].

Powell [45] contends that while the mathematical elegance of Markov decision process (MDP)
frameworks is apparent, it lacks practical utility in real-world applications. Despite the theoretical util-
ity of abstract state and action spaces, in Powell’s modelling framework (inspired by Optimal Control)
state and action variables are used, which provide concrete, measurable quantities that can be directly
coded. Additionally, he highlights the limitation of the one-step transition matrix, which is often not
computable. The transition function, he argues, is a more potent and versatile tool. Moreover, Powell
emphasises thinking of accumulated rewards over time, as opposed to focusing on rewards obtained
in a single step. As can be seen when presenting the SDP in Section 3.3, the modelling framework
provided by Powell is used [45].

2.4.2. Towards a Definition
According to Sutton and Barto [59] any method appropriate for solving an MDP, is a reinforcement
learning method. So, if a method is suitable, but it does not involve learning, like MPC, is it RL? [46].

Reinforcement Learning extends beyond the scope of MDP, as this is simply a framework for making
decisions. RL methods have surpassed value function approximation (VFA), and learning may not be
necessary under widely recognised definitions of the field. There is a lot of uncertainty around the topic,
but these statements from Powell may bring some clarity [46]:

• RL problems are just SDP, and the MDP framework may be used to define them.
• RL methods can be categorised as policies, which are grouped into four main classes. However,
in order for the term learning to have any meaning, one must assume that RL methods involve
learning.

2.4.3. Learning
There are two common meanings for learning in the machine learning (ML) community, which are
often a source of confusion. Offline learning is commonly seen in supervised learning scenarios,
where a batch optimisation takes place, that is, all the available data is used at once to fit a usu-
ally parametrised model [45]. On the other hand, reinforcement learning frequently involves online
learning, where the data arrives sequentially, so the model parameters are updated as the informa-
tion arrives. Of course, there are hybrid approaches, such as imitating an expert policy with offline
learning before fine-tuning parameters in an online fashion.

2.4.4. On or Off Policy
The online learning nature of RLmeans that information acquisition is shaped by the explorationmethod
followed by the agent, which defines how the next state in the simulation is reached –a crucial consid-
eration for problems employing VFA policies.

If the agent is following the latest policy for decision-making (often referred to as the implementation
policy [45]) to guide its way through the state space, it is defined as on policy learning. Otherwise,
if the policy for exploring (that is, the learning policy) is different from the implementation policy (e.g.
epsilon-greedy approaches) it is labelled as off policy learning [45].

2.5. Is a model useful? 9

2.5. Is a model useful?
When learning from an environment, an agent may just use the rewards received to update its policy,
be it by policy search or value function approximations. The agent might also consider a different
strategy, to store all the available information (such as the current state, action, new state, reward...)
and approximate the transition and reward functions, which will be used to plan ahead. This is the most
basic difference betweenmodel-free andmodel-based approaches, respectively. The former acts, and
the latter plans before acting.

Ground-truth models are nowhere to be found in real-world problems, so if the agent wants to model
the environment, it must learn through experience, which creates considerable challenges. A very
concerning one is that bias in the model will likely be exploited by the policy, so even if the agent excels
at the simulation, it will likely behave suboptimally in the real world [1]. Learning models can provide
numerous benefits that will be detailed later, but it is fundamentally difficult. The ease of implementation
and tuning has resulted in model-free algorithms attracting many researchers and becoming more
popular [1].

2.5.1. Model-Free
All main classes of policies have now been employed in some form to solve RL problems [45], but there
were two classes in the spotlight, especially in model-free RL, until a hybrid of both was developed to
hopefully use their best qualities.

• Actor-Only Methods [31]:

– Work with PFA.
– Estimate the gradient of performance with respect to the Actor’s DNN parameters directly
by simulation. The simplest representation of such a loss function can be seen in Equation
2.12.

– May have large variance in gradient estimators and lack continuous learning, since new
gradients are estimated as the policy changes that do not include past information.

– Examples: REINFORCE, Deterministic Policy Gradient (DPG)

• Critic-Only Methods [31]:

– Rely exclusively on VFA.
– Aim to learn an approximate solution to the Bellman equation, hoping to shape a near-optimal
policy.

– Success in constructing a good VFAmay not guarantee near-optimality of the resulting policy.
More details on the equations behind value function estimation can be seen in Section 2.7.3.

– Examples: Deep Q-Networks (DQN)

• Actor-Critic Methods [31]:

– Combine the strengths of Actor-only and Critic-only methods.
– The value function learned by the Critic updates the Actor’s policy parameters, aiming for
performance improvement. A loss function that captures this approach can be found in
Equation 4.22. Convergence is typically easier to achieve with gradient-based methods,
and there is often little guarantee that the VFA will converge.

– Examples: Advantage Actor-Critic (Advantage Actor-Critic (A2C)), Trust Region Policy Op-
timization (TRPO), Proximal Policy Optimization (PPO)

The computational effort of these algorithms takes place mainly before deployment in real world sce-
narios, and even simple systems require large amounts of computation [5].

2.6. Defining a Model-Free Algorithm 10

2.5.2. Model-Based
There are two main reasons for learning a model: sample efficiency and generalisation. Sampling
efficiency refers to the ability of an agent to acquire a useful policy through a minimal number of interac-
tions with the environment [5]. Generalisation, on the other hand, distinguishes model-based methods
from model-free approaches by enabling agents to learn the underlying dynamics of an environment
and plan ahead in uncertain territories [32].

Learning within model-based frameworks involves approximating an imagined model of the environ-
ment by estimating transition and objective functions. This allows predicting future negative rewards
and destructive pathways [32]. NNs are commonly employed for these approximations, as they im-
pose no restrictions on model complexity and do not require an analytical approach [5]. However, this
flexibility comes at the cost of explainability, which remains a significant drawback in such systems.

To improve the accuracy of the learned dynamics, researchers often adopt techniques that minimise
bias and variance. Plaat et al. [44] identify three main strategies used for this purpose: probabilistic
inference, ensemble models, and latent models.

Planning, another key component, uses the learned system dynamics to guide the agent toward
optimal decision-making. A common approach is to train model-free algorithms within simulated envi-
ronments, where vast amounts of synthetic data are available. This is particularly useful when sampling
from the actual environment is costly or impractical. Despite potential inaccuracies in the model, plan-
ning aims to produce effective policies. While brute-force methods like value iteration are sometimes
used, lookahead methods such as trajectory rollouts or MPC are often preferred, especially for high-
variance or complex transition models [44].

Some advanced methodologies incorporate planning into the deep learning process itself. By em-
ploying differentiable algorithms, these end-to-end approaches backpropagate rewards across all com-
ponents, from actions to observations [44].

Despite its versatility and efficiency, the model-based paradigm faces notable challenges. DNNs,
although powerful, often require large datasets to avoid overfitting due to their abundant degrees of
freedom. Thus, a challenge of deep model-based RL is to find accurate transition models without
many samples [44]. Additionally, model inaccuracies can accumulate when predicting various steps
ahead, leading to unreliable policies [41]. Other challenges include the inability to account for diverse
potential future outcomes and excessively confident predictions beyond the data used for training [32].

2.6. Defining a Model-Free Algorithm
In Section 2.5 two different approaches were presented: model-free and model-based. Before contin-
uing with the Literature Review, due to the depth of both fields, a choice must be made to further the
research. For this thesis, the model-free approach is selected.

In pursuit of the simplest possible policy that can rival MPC performance, addressing Sub-Research
Question 1 (Section 2.11), the relative simplicity and well-documented implementation of model-free
algorithms make them more appropriate than model-based approaches for this study.

The model-free approach is further supported for three reasons. First, the availability of a virtual
environment for agent interaction, presented in Chapter 3, mitigates the sample efficiency concerns
that typically favour model-based methods. Second, robust agent selection, discussed in Section 5.4,
addresses generalisation requirements. Third, the use of algorithms implemented in the Julia Language
[8] enables fast and cost-effective retraining when needed.

2.6.1. Class Selection: Actor-Critic
The SDP that will be addressed in this thesis (detailed in Chapter 3) will be defined in continuous
state and action spaces, which presents unique challenges, therefore some thought must go into

2.6. Defining a Model-Free Algorithm 11

choosing the appropriate class of model-free algorithm (from among those defined in Section 2.5.1).
For a continuous action output, the use of policies based only on value function approximations (e.g.
Q-learning) is problematic because they will discretise the action space, leading to a loss in precision.

Discretising introduces the curse of dimensionality, so that for every increase in the number of
possible actions, there will be an exponential cost of computation and a reduction in sample efficiency.
Exploration in high-dimensional spaces becomes difficult, and suboptimal policies may be reached. A
good solution to this problem, mentioned in Section 2.3 is to approximate the value function V with a
neural network (NN). However, once it is approximated, a new problem emerges: Finding the maximum
value action for the current state from a continuous action space is computationally very expensive.

The Actor-Critic class addresses this new problem in various ways, but in most cases the value
function is used as the Critic, as a bias to reduce the variance of the policy gradient estimates and thus
stabilise the updates of the Actor, which take place without the need for discretisation. In addition, the
Actor-Critic configuration improves upon the Actor-only, and provides versatility and stability. In their
comprehensive review, Fu et al. [18] examine the emerging applications of RL techniques to optimise
energy efficiency in buildings, and for scenarios involving continuous action domains, they specifically
recommend the use of Actor-Critic algorithms.

2.6.2. Stochastic Policy Gradient
Actor-critic methods are essentially Policy Gradient algorithms since their updates require computing
gradients of the expected reward with respect to the policy parameters. The policy is represented
by the Actor, and the Critic will enhance gradient computation. However, there are two main types of
Policy Gradient (PG) algorithms:

• Stochastic PG: In continuous action spaces it outputs the parameters of a distribution, com-
monly the mean and the standard deviation of a Gaussian, from which actions are sampled. This
randomness promotes exploration, and reduces the risk of overfitting or getting trapped in local
maxima of the reward landscape. These methods are generally more robust to hyperparameter
settings and can take into consideration the uncertainties of the environment. Some examples
are: TRPO, Soft Actor-Critic (SAC), A2C and Proximal Policy Optimization (PPO).

• Deterministic PG: Outputs an action directly, it was conceived for continuous action spaces. Al-
though it avoids sampling, which increases efficiency, noise must be added to force exploration.
They heavily rely on the Critic’s accuracy for policy updating, with errors in value estimation lead-
ing to unstable updates. Does not naturally include entropy in the objective, as it does not operate
over a distribution. If regularisation is needed, it must be introduced through other means. Deter-
ministic at deployment, producing consistent actions for the same input states. Some examples
are: Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy
Gradient (TD3).

With this comparison in mind, the Stochastic Policy Gradient was chosen for the project, and three
algorithms of increasing complexity will be explored. The most basic is the Vanilla Policy Gradient [60],
then the more sophisticated Advantage Actor-Critic [39] and finally the Proximal Policy Optimization
[51]. These algorithms are also referred throughout the thesis as simply Policy Gradient or Policy
Updating Algorithms, and the theory essential to their understanding will be found in Sections 2.7.2,
2.7.3 and 2.7.4.

The progression in algorithm complexity allows for an analysis that starts at the foundational con-
cepts and ends with the more advanced techniques. This approach provides insights into their relative
performance and applicability to the research problem. Detailed explanations of the algorithms’ theory
and implementation are given in Section 4.5.

2.7. Updating the Agent 12

2.7. Updating the Agent
The Actor and the Critic components of the RL agents put forward by this thesis will be implemented
as independent deep neural networks (DNNs), which means the approach qualifies as deep rein-
forcement learning (DRL), though it will be referred to simply as RL. Some architectures use a shared
DNN for both the Actor and the Critic, with only the final layers separating them, however, Andrychowicz
et al. [4] do not recommend this approach.

Throughout the present work, the structure and internal components that make up the agent’s DNNs
will be altered and optimised to achieve the most effective design, identified as the top RL agent in
Section 6.2. However, before this optimal configuration can be reached, the process by which the RL
agent learns from experience must be described and understood.

In the RL framework, the two key components are the agent and the environment. The environment
reflects the external world, allowing the agent to engage with it by observing its state and making
decisions. The impact of these actions is communicated via reward signals, allowing the agent to learn
a good strategy through a process of trial and error [7]. The following Sections will delve into the
theory of reward signals, as well as detailing how their impact moves the agent towards more optimal
policies.

2.7.1. Rewards
Rewards were presented as a fundamental part of any SDP (Section 2.2). Within the framework of re-
inforcement learning, rewards are necessary for guiding the agent to reduce (or increase) the objective
function. The specific reward functions applied to train the RL agents in this project will be discussed
in Section 4.2. The current Section will examine reward design research and the reward processing
techniques used to improve the stability and, when feasible, the speed of learning.

To adhere to the conventions of reinforcement learning and avoid ambiguity, rewards will be rep-
resented by the letter R, rather than the generic C used by Warren Powell for cost. To preserve the
intuition behind the terms, costs and penaltieswill be treated as the opposite of rewards. Thus, negative
rewards will be defined as behaviours to be avoided, aligning with positive costs or penalties.

Reward Design

Rewards in reinforcement learning are often designed by trial and error. In a study by Booth et al. [9],
92% of 24 surveyed RL experts reported adhering to this practice. The authors also mention that their
findings are consistent with other studies in the field. While trial and error can be effective, it falls prey
to myopic strategies that RL practitioners usually favour, such as prioritising immediate state-action
pair rewards rather than thinking of the cumulative reward signal [9], which is responsible for updating
the policy.

Typically, reward functions are crafted separately from the policy updating algorithm and NN design.
A usual approach is: first the reward is decided upon, then various NN architectures, hyperparameters,
and update strategies are explored. If the results are not satisfactory, the reward may be adjusted,
though more often, additional hyperparameter tuning and algorithm modifications are attempted.

Booth et al. [9] explored the consequences of this practice and determined that reward functions
can be overfitted to the chosen hyperparameter set and algorithm. To mitigate this issue, they suggest
defining two reward functions: one will be used as a performance metric, and the other will be treated
as a hyperparameter. In the latter case, multiple rewards should be designed, so that the space of
parameter optimisation is opened up and subject to less bias.

The performance metric should be designed to represent the desired behaviour of the agent, as the
effectiveness of an optimisation algorithm ultimately depends on the quality of the performance metric
it is designed to optimise [30]. Therefore, a policy obtained through RL techniques can only be optimal
if the performance metric is encoded in the reward function.

2.7. Updating the Agent 13

The straightforward approach would be to simply use the function that measures performance as the
reward function itself. However, depending on how it was designed, it might prove to be inadequate for
obtaining optimal results. Whatmust be encoded in the reward function is that which the performance
metric measures. It is worth noting that numerous functions may be valid for encoding this desired
behaviour into the agent’s weights and biases.

When additional rewards are introduced to encourage behaviours that are generally advantageous
but not included in the performance metric, one has entered the realm of reward shaping [30]. This
approach attempts to accelerate convergence by guiding the agent in its path to an optimal policy. One
potential danger of reward shaping is that it can decrease the upper bound on the policy’s performance;
fortunately, there is a field of study on safe reward shaping to ameliorate this issue.

Reward-to-go

At every timestep, the agent receives a reward, but this immediate feedback is not directly applied
by the policy updating algorithms (such as PPO). Instead, the reward is subjected to processing. A
central concept in this processing is the reward-to-go, alternatively referred to as the return-to-go or
simply return. This measure represents the cumulative sum of rewards from a given timestep onwards
in a trajectory (τ). It can be expressed as:

Rt(τ) =
∑
k

rτt+k (2.2)

The reward-to-go can be conceptualised as an empirical estimate of the action state value function
Qπ(St, xt), since an action is also associated with the reward. This function quantifies the expected
return when beginning in state S, taking an arbitrary action x (which may not necessarily conform to
the policy π), and then adhering to policy π for all subsequent actions [1].

The reward-to-go represents a single sample from this value function, leading to higher variance in
estimates. In advanced policy gradient algorithms, instead of relying on empirical estimates, the reward-
to-go is approximated by a deep neural network (DNN) acting as the state-action value function.

To mitigate the high variance associated with using the raw reward-to-go in gradient calculations, a
baseline subtraction technique is often employed. The baseline can be used if it only depends on the
state. This is because, in expectation, the baseline’s impact on the policy loss is zero [1]. This property
allows for the incorporation of baselines without biasing the policy gradient. A common choice for the
baseline is the state value function, i.e., V π(St). This choice, if combined with the reward-to-go leads
to an estimate of the advantage function:

Aπ(St, xt) ≈ Rt − V π(St) (2.3)

In simple terms, the advantage represents how beneficial the last action was compared to the reward
you could expect on average from that state, i.e. from the policy’s default behaviour [50].

Discounted rewards

The idea of discounting rewards is introduced to balance immediate and future rewards. The agent
aims to maximise the expected discounted return, defined as [59]:

Gt(τ) =

∞∑
k

γkrt+k (2.4)

This concept is crucial for two reasons:

2.7. Updating the Agent 14

• Allows for the convergence of rewards in continuing tasks (those without terminal states). The
result of the summation will be bounded because the rewards themselves are bounded.

• Discounting incorporates the uncertainty of the future into the learning process, indicating that
immediate rewards are more certain than future ones. However, it allows for less rewarding
actions that may lead to higher future rewards to be considered.

This perspective of viewing rewards as something that can be delayed for greater overall benefits, a
notion brought forth by the development of society, is represented by the parameter γ. A value close to
0 makes the agent concerned mostly with immediate rewards [59], and γ ≈ 1makes it take into account
the future almost as much as the present. The discount parameter acts as a tool to reduce variance
in the calculation of the rewards, at the cost of adding bias [50] (since it is a systematic deviation from
the true undiscounted return). The value functions are mathematically expressed as follows:

V π,γ(St) := ESt+1:∞,xt:∞

[∞∑
k=0

γkrt+k

]
(2.5)

Qπ,γ(St, xt) := ESt+1:∞,xt+1:∞

[∞∑
k=0

γkrt+k

]
(2.6)

Aπ,γ(St, xt) := Qπ,γ(St, xt)− V π,γ(St) (2.7)

The superscript π denotes that the function is associated with a policy, and the trajectory is obtained
by sampling from the policy xt ∼ π(xt | St).

Generalized Advantage Estimation

Using the advantage as part of the policy gradient update provides nearly the lowest variance that
could be achieved [50], the only problem is that it needs to be estimated, which will be the purpose of
the Critic DNN (via the state value function). The next step is to determine what is a good advantage
estimator; for that, the work from Schulman and colleagues [50] is very useful.

Equation 2.5 presents the expression for V π,γ(St), which is an accurate estimator of the value
function for the discounted reward, since it uses the raw returns in an infinite summation. To use
Schulman’s terminology, V π,γ(St) is a γ-just estimator, since it does not introduce any new bias in the
prediction of the discounted rewards which, to be clear, are already biased by the presence of γ.

In practical terms, it is unlikely to have access to a γ-just value or advantage function. Further-
more, while using a summation of discounted rewards provides unbiased results, it often leads to high
variance. To address this, an approximation must be used, but unless it’s γ-just, it will introduce bias.
On one side, high variance will cause large fluctuations in gradient estimates, slow convergence, and
require more samples to average out the noise. On the other hand, adding bias may cause a failure in
convergence or reach a poor solution [50], regardless of the amount of samples. Attempting to find a
proper balance, Schulman et al. [50] proposed advantage estimators that reduce considerably variance
while keeping bias to a tolerable amount, this approach is called Generalized Advantage Estimation
(GAE).

From the possible γ-just advantage estimators (e.g. Aπ,γ(St, xt)), a particularly useful one for code
level implementation is the Temporal Difference (TD) residual of V π,γ [50], since only an approximation
of the value function is needed:

δV
π,γ

t = rt + γV π,γ(St+1)− V π,γ(St) (2.8)

ESt+1

[
δV

π,γ

t

]
= ESt+1

[Qπ,γ(St, xt)− V π,γ(St)] = Aπ,γ(St, xt) (2.9)

2.7. Updating the Agent 15

Above can be seen that rt + γV π,γ(St+1) is considered equivalent to Qπ,γ(St, xt), since the action
taken is implicit in the immediate reward rt.

Instead of V π,γ(St), only an approximate value function V (St) is available in practice, which as
mentioned before, will introduce bias. However, if a sequence of steps are added together, the impact
of the bias introduced by the approximation diminishes, since more empirical returns are used and the
approximation is preceded by a smaller weight in the sum [50]:

Â
(N)
t :=

N−1∑
k=0

γkδVt+k = −V (St) + rt + γrt+1 + · · ·+ γN−1rt+N−1 + γNV (St+N) (2.10)

For clarity, it is worth noting that the first term of the summation found in Equation 2.10 is not
considered to introduce bias because it is a function of the state sampled before the action xt. In its
current form, Equation 2.10 is equivalent to the N-step advantage estimator, which offers a way to
bridge the gap between TD and Monte Carlo methods, where a number of steps (N) can be used to
mitigate the bias of one-step TD [59].

The main insight of generalized advantage estimation (GAE) comes into play when an exponentially
weighted average of the estimators is obtained by incorporating the parameter λ, as shown below.
This allows for a finer control over the bias-variance trade-off, enabling a better balance between the
accuracy and stability of the advantage estimator [50]:

Â
GAE(γ,λ)
t =

∞∑
k=0

(γλ)kδVt+k (2.11)

The two edge cases of GAE are useful for understanding its purpose:

• For λ = 0 only the immediate TD residual will be used (δVt), which reduces considerably the
variance at the cost of potentially introducing a high bias (if the value function is not γ-just), since
only one step is utilised.

• For λ = 1 is equivalent to just using empirical returns, having high variance and no bias.

The role of λ is then to manipulate the steepness of the descent of the contribution that future step
estimates have on the total summation. In other words, a low λ will reduce the impact of the later
terms that contribute to the summation, and as it progresses further in time, the reduction becomes
exponentially more noticeable. In practice, there are no infinite summations, episodes or batches have
a determined length when estimating the policy gradient and so the approximation of the value for the
last state will be given by V (St), which is why GAE is a useful tool.

It should be pointed out that λ and γ are independent parameters, and will have different ranges
of values [50]. γ influences the scale of the value function V π,γ(St), while λ < 1 reduces the variance
and only adds bias if the value function approximation is inaccurate (not γ-just). GAE will be a crucial
part of the policy updates of advanced algorithms like A2C and PPO.

GAE has been shown to provide superior performance over N-step [4], but there exists another
advantage estimator called V-trace [15]. V-trace is slightly more modern than GAE, and its contribution
is adding importance sampling weights to the summation, to take into account that the policy being
updated may be a bit different from the one that generated the trajectory. However, Andrychowicz et
al. [4] have compared GAE and V-Trace without finding a significant performance difference, which
means that the added complexity of V-trace is not needed to obtain policy updates of similar quality.

2.7.2. Actor loss
The RL agent will be made up of an Actor and a Critic deep neural network, but the one making de-
cisions, and thus considered to represent the policy, is the Actor. In this section, the focus will be

2.7. Updating the Agent 16

placed on how to update the parameters of the Actor Network.

If any learning is going to take place, the loss function must be differentiable with respect to the
Actor’s parameters (θ). This means that the policy (π) must be represented in some way as part of
the loss. The other element that must be present is a way of determining how good or bad the actions
taken by the agent were, and for Actor-Critic algorithms, this task belongs to the Critic.

NNs aim to maximise [50] rewards, but to do so, they can only modify the probability distribution
over their actions.

Stochastic policy gradient algorithms have been chosen for this research, so their loss func-
tion will be analysed, which is fundamentally equivalent across all algorithms of this type. The idea be-
hind the loss function began with the REINFORCE paper written by Ronald J. Williams and colleagues
[65] in 1992. It presented a Monte Carlo method for estimating the policy gradient, which allowed the
update of the policy directly, just making use of past trajectories, without any need for an internal model
of the environment. This function has seen countless alterations, but the basic formulation to estimate
the gradient [50] can be represented by this equation:

g = E

[∞∑
t=0

Rt∇θ logπθ(xt|St)

]
(2.12)

Function Rt is the reward-to-go, described in Section 2.7.1, which has been replaced in newer
versions of the algorithm. The reward-to-go can be discounted, a baseline can be subtracted (to reduce
variance), or it could even be normalised. However, modern implementations often employ GAE as a
more sophisticated advantage estimator. Using the advantage makes intuitive sense in the context of
loss function minimisation. It guides the gradient update of parameters such that better-than-average
(Aπ(St, xt) > 0) actions become more likely, and worse-than-average actions (Aπ(St, xt) < 0) see their
probability reduced.

Another relevant observation about the loss function is that it utilises the natural logarithm of the ac-
tion probabilities, henceforth referred to as ”log probabilities” rather than the probabilities themselves.
This logarithmic transformation offers some advantages:

• Normalization of Impact: it normalises the impact of all actions. Without the natural logarithm,
the more likely actions would have a disproportionate effect on the loss function, since they will
appear more frequently in the trajectory used for updating. Even actions yielding only slightly
above-average rewards would bias the policy towards them.

• Numerical Stability: Multiplying many small probabilities can quickly result in values too small
to be properly represented with floating point precision, resulting in numerical underflow. Using
log probabilities makes it into a summation, avoiding the problem.

2.7.3. Critic loss
The Critic is used to act as a baseline, to reduce the variance of the returns used by the Actor during the
training steps. To be an appropriate baseline, the Critic must depend only on the state, guaranteeing
that no bias will be introduced. Themost common solution in policy gradient algorithms to this constraint
is to make the Critic approximate the state value function. This has the added benefit of providing a
great tool for estimating the advantage, as demonstrated with the summation of TD residuals (computed
via an approximate value function) in Equation 2.10 (Section 2.7.1).

When using an N-step advantage estimator (see Section 2.7.1), which doesn’t rely on the added
parameter of GAE, the Critic will be made to minimise the mean squared error (MSE) loss [33]:

1

|D|
∑
D

((
N−1∑
k=0

γkrt+k + γNVϕ(St+N)

)
− Vϕ(St)

)2

(2.13)

2.7. Updating the Agent 17

Here, D is a batch of transitions that have been gathered by the Actor’s interactions, and ϕ represents
the parameters of the Critic’s DNN. It may seem confusing to some to realise that the loss function
trying to be minimised in Equation 2.13 is basically the advantage estimator shown in Equation 2.10.
However, it serves a different purpose. For advantage estimation, the aim is to compare the estimated
return from taking the action xt in the state St with the estimated return of being in state St.

When the Critic is updated, by using multiple samples, the first term
∑N−1

k=0 γ
krt+k+γ

NVϕ(St+N)will
effectively estimate the average value of states under the current policy, since the actions that produced
the rewards were sampled from the policy. Consequently, the term approximates in expectation the true
value function [33], and it will be treated as independent of ϕ. This process illustrates a relevant concept:
the action value function estimates, when sampled according to the policy, converge in expectation
to a value function estimate.

Other approaches involve the use of the Huber loss, which behaves like MSE for small differences,
but it outputs the absolute error for those that go above a chosen threshold. However, Andrychowicz
and colleagues [4] compared it with MSE and their results were worse for all environments when using
the Huber loss, even when tuning the threshold, so they discourage its use.

In the case of using GAE (Section 2.7.1), the value function will be learned by minimising:

1

|D|
∑
D

((
ÂGAE

t (St, xt) + Vϕ(St)
)
− Vϕ(St)

)2
(2.14)

Here, for the reasons stated above, the first term will also be treated as independent of ϕ.

2.7.4. Loss Gradients
The loss function serves as a quantitative measure of the performance of the model, unique to each
algorithm. It is the direct result of the action distributions generated by the forward propagation of the
input (the state of the environment) through the network’s architecture, which consists of weight ma-
trices, bias vectors, and activation functions. The activation functions (Section 2.8) are conventionally
determined with the network’s initialisation, but the weights and biases are considered tunable param-
eters.

Once the loss is calculated, the updating of the parameters of the DNN may begin. The first step
is called backpropagation, and its purpose is to determine the impact that small variations in each
parameter will have on the final loss; this is, of course, a gradient in parameter space.

However, the raw gradients are not directly applied to update the network parameters. Instead,
some processing is done, with the main objective of aiding convergence and optimisation stability.
After presenting the backpropagation procedure, techniques like gradient clipping and adaptive learning
rate will be explored, which rely on altering the gradients or the learning rates.

Backpropagation

Central to any optimisation approach is minimising the loss function, which may be done by navigating
along some directions of the parameter space. However, there is one direction which is steepest, and
that is determined by the gradient, which may be understood as (the transpose of) the Jacobian matrix
of a scalar-valued function. The gradient of interest connects the loss function directly to the DNN’s
parameters. To efficiently compute this gradient in terms of both memory and time, some approaches
must be discarded, like the use of numerical approximations or more classic symbolic differentiation
algorithms [54]. The most optimised approach is known as automatic differentiation (AD).

Every operation performed during the forward pass of the inputs across the DNN can be fragmented
into smaller operations for which the derivatives are already established and stored in the code. The
sequence of operations are recorded on an evaluation trace and could be ordered on a directed acyclic
graph. Then, leveraging the chain rule, all the derivatives between the loss and the network parameters
can be merged. Thanks to the use of evaluation traces, advanced algorithms can differentiate even

2.7. Updating the Agent 18

when control flow elements are used in the code [54], such as conditionals and loops. Even if there
were many branching paths that could have been followed during the forward pass, only one was taken,
and thus the past is traced.

automatic differentiation (AD) exists in two modes: forward and reverse. For DNNs, the reverse
mode is frequently used because its time complexity is considerably lower when dimensionality of the
output space is significantly smaller than that of the input space. Reverse AD can obtain the gradient of
a scalar loss with respect to all input parameters in a single backward pass (one row of the Jacobian).
Even in reversemode, the forward pass needed for inferencewill still take place, and all the intermediate
variables will be stored, so that they can be used later to obtain the corresponding derivatives.

It will likely become more clear with a simple example. A very common activation function is the
hyperbolic tangent, which will be applied to the output of one layer before it is introduced in the next.
For a function y = tanh(z), the output derivative with respect to the input z is:

dy

dz
= 1− tanh2(z) (2.15)

As can be seen, in this case only the result from the forward pass (the value of tanh(z)) will be
needed to compute the derivative. This process will start at the last layers of the DNN and each
gradient will be passed through a pullback function. The pullback function applies the chain rule, as
will be shown below. In this manner, frequently called backpropagation when applied to DNNs, the
gradient of the final loss will be propagated backwards from the deepest to the shallowest layers. The
pullback functions are an efficient implementation of the Vector Jacobian Product, because there is
usually no need to calculate the whole Jacobian matrix for the task of backpropagation.

To illustrate how the pullback function works for the tanh activation, let us consider how it would affect
a loss function that depends on the output y. The incoming gradient (∂Loss/∂y) would be multiplied by
the local derivative of the tanh function, obtaining therefore the gradient of the loss with respect to z.

∂Loss

∂z
=
∂Loss

∂y
· dy
dz

=
∂Loss

∂y
· (1− tanh2(z)) (2.16)

When it comes to the implementation of AD, efficiency is crucial, particularly because backpropa-
gation is one of the most computationally intensive operations within DNN optimisation. As is often the
case, efficiency is usually traded for generality, and having a considerable amount of both is a signifi-
cant programming challenge [48]. Some libraries attempt this with surprising success, and this thesis
will utilise one such library, Zygote [25], which is implemented by Michael Innes and other contributors
in the Julia programming language [8].

The usefulness and efficiency of Zygote [25] originate from its innovative attempt to improve the
idea of the evaluation trace. When faced with dynamic code, instead of tracing a single path from
the myriad of possible branches, Zygote employs a source code transformation to generate static code
that encompasses all potential branches. The library then traces the branches that are traversed during
execution. This feature reduces uncertainty and essentially avoids unrolling the dynamic parts of the
code [48]. When cleverly implemented, its more static nature enables for low-level optimisation. It
is worth mentioning that DNNs are not heavily reliant on dynamic code, and therefore the advantage
offered by Zygote in this case is that of efficiency and convenience.

Gradient Clipping

There are various gradient-based methods used to try to minimise differentiable non-convex and po-
tentially stochastic functions. The canonical approach is stochastic gradient descent (SGD), which
although simple, manages to achieve great empirical results with theoretical guarantees [67]. As can
be expected, if the function is trying to be maximised, then gradient ascent will be performed. SGD up-
dates the parameters of the Actor or Critic by using a randomly selected subset of transitions from the
environment. For on-policy algorithms these subsets are frequently random subsets of an episode re-
cently finished in the environment. Machine learning has witnessed an evolution in recent years, new

2.7. Updating the Agent 19

methods that improve upon SGD’s results have been designed, and gradient clipping is particularly
successful among them.

The formulas presented in this section will be used to illustrate the main insight behind the method,
while avoiding unnecessary complexity [67].

Gradient Descent:
θk+1 = θk − η∇f(θk) (2.17)

Clipped Gradient Descent:

θk+1 = θk − hc∇f(θk), where hc := min
(
ηc,

γclip · ηc
∥∇f(θk)∥

)
(2.18)

• θk: The current parameter point or vector at iteration k.
• θk+1: The next parameter point or vector at iteration k + 1.
• f : The objective function trying to be minimised.
• η: The fixed step size (learning rate) for ordinary gradient descent.
• ∇f(θk): The gradient of the function f at point θk.
• hc: The step size for clipped gradient descent. It may be considered a constant step (ηc) with an
alteration of the gradient (γ · ∥∇f(θ)∥−1), or an adaptive step size keeping the gradient constant.

• γclip: A constant factor in the clipped gradient descent formula. May be understood as the clipping
limit.

• ∥∇f(θ)∥: The norm (magnitude) of the gradient.

Through the work of Zhang and colleagues [67] it has been proven that gradient clipping (and
normalised gradient) converges arbitrarily faster than gradient descent with a fixed step size. In
addition to accelerating convergence, clipping gradients is effective in dealing with exploding gradi-
ents, an issue often encountered in deep neural networks, and proves fundamental for training complex
models like Recurrent NNs [37].

The phenomenon of exploding gradients is more pervasive than it may initially appear. The research
carried out by Philipp, Song and Carbonell [42] contributes considerably to the understanding and
definition of this problem. They affirm that it is not a simple numerical anomaly, but rather a sign of
a fundamentally complex optimisation problem, limiting the effective depth of DNNs. To further the
understanding of this issue, exploding gradients will be discussed in detail in Appendix A.1.

Adaptive Learning Rate

Beyond altering the gradient for network updates, there are additional techniques that adjust the learn-
ing rate for each parameter. The most popular amongst them is Adam, derived from Adaptive Moment
Estimation, which was introduced by Kingma and Ba in 2014 [29]. It became the standard optimiser,
thanks to its efficiency and ease of implementation. The equations behind Adam are the following.

Moment updates:
mt = β1mt−1 + (1− β1)gt (2.19)
vt = β2vt−1 + (1− β2)g2t (2.20)

Bias correction:
m̂t =

mt

1− βt
1

(2.21)

v̂t =
vt

1− βt
2

(2.22)

Parameter Update:
θt = θt−1 − α

m̂t√
v̂t + ϵ

(2.23)

2.8. Activation Functions 20

• gt: Gradient at time step t
• mt: First moment estimate (mean of gradients)
• vt: Second moment estimate (uncentered variance of gradients)
• β1, β2: Exponential decay rates for moment estimates
• α: Learning rate
• ϵ: Small constant for numerical stability

As can be seen, Adam incorporates momentum, accelerating the convergence to a local minimum
by using the exponential moving average (EMA) of the gradient’s first and second moments. It also
performs bias correction, since the initialisation of the moment estimates as vectors of zeros biases
them, especially during the first timesteps [29]. It is also considered robust, since it is less sensitive to
hyperparameter tuning [67] than other approaches.

Despite these virtues, Adam is not the ideal optimiser, and its limitations have been known for
years, forcing researchers to find better algorithms, and the resulting Adam variants are quite diverse.
AMSGrad dealt with the converge problems of Adam by using the maximum of past squared gradients,
Yogi took into account the size of mini-batches, and RAdam rectifies the variance of adaptive learning
rates [68].

These are just a few of the alternatives developed through the years, but they often fall short in
generalisation performance compared to unaltered SGD for large-scale datasets [68]. Even so, a
promising algorithm was developed by Zhuang et al. [68] in 2020 called AdaBelief, it provides fast
convergence, good generalisation, training stability, and all with the same computational cost of first-
order gradient methods such as Adam. The core insight behind AdaBelief is to use the EMA of the
gradient’s first moment as the prediction (or belief) of the next timestep’s gradient. If the new gradient
deviates significantly, the learning rate is reduced, resulting in smaller steps. AdaBelief differs from
Adam in the calculation of vt and therefore in the parameter update step. The key differences are the
following.

Second moment update:
st = β2st−1 + (1− β2)(gt −mt)

2 + ϵ (2.24)

Bias correction for st:
ŝt =

st
1− βt

2

(2.25)

Parameter update:
θt = θt−1 − α

m̂t√
ŝt + ϵ

(2.26)

AdaBelief scales the update in proportion to the change in the gradient, which relates to the Hes-
sian [68], and thus approximate curvature information is introduced in a first-order method, leading to
better performance than Adam. A clear example that shows AdaBelief taking advantage of curvature
knowledge is this: If the current gradient is large, and the difference with the previous gradient is small,
then ideally the step should be large, because although it’s a steep slope of the loss function, it’s not
noticeably close to the minimum, since its curvature is small. In this case, Adam would make a short
step, whereas AdaBelief would make a large step [68].

Another relevant improvement from AdaBelief is that it does not ignore the sign of the gradient in
the second moment estimate. If the gradient is changing direction frequently while having a similar
magnitude, the learning rate will be small for both Adam and AdaBelief, but if the gradient sign is
constant, then Adam will still perform a small update while AdaBelief will not.

2.8. Activation Functions
The architecture of DNNs consists of an input and output layer and various hidden layers between. At
its core, each layer performs a linear transformation, represented mathematically as a matrix multipli-

2.8. Activation Functions 21

cation between a weight matrix and the output vector from the previous layer. This cascade of linear
transformations is inherently limited in the data that can be represented. To increase the complexity of
the patterns that the DNN can approximate, non-linearity has to be introduced in the form of activation
functions.

Activation functions are applied at the end of each hidden layer, and sometimes after the last layer
as well, possibly with the purpose of normalising the output or simply bounding it. Even though they
are usually simple operations, they can differ in their main properties, some are bounded and zero-
centred, and others are not. However, the most used ones are commonly nonlinear, differentiable, and
continuous [20].

There are three main problems that affect the decision about the possible activation functions: van-
ishing or exploding gradients and dead neurons [20]. When activation functions, such as the sig-
moid (shown in Figure 2.1 as σ(x)), have a very limited output range, all the inputs (i.e. pre-activations)
that fall on the saturated regions of the function will be compressed and the respective gradient will
become close to zero. If enough gradients are small, they might vanish exponentially during back-
propagation. The opposite case, that of exploding gradients, is discussed in Appendix A.1.

Figure 2.1: Most used activation functions. List from article: [26].

Dead neurons are those that are permanently inactive, the input is not crossing all the layers, and
so no update of its weights may take place. The Rectified Linear Unit (ReLU) function shown in Figure
2.1 provides a good example, if the weights are adjusted during backpropagation in such a way that the
input to the function remains negative, then there will be no activation of the neuron, and its gradient
will also remain null.

While various activation functions have been developed for specific use cases, those commonly
depicted in literature (shown in Figure 2.1) remain the most widely used. However, choosing these
functions does not guarantee optimal learning, as numerous factors, including loss magnitude and
network depth, influence performance. This situation has encouraged the research for a universally
effective function that outperforms the rest in common benchmarks [49].

Arguably, the most widely used in DNN is ReLU, which has almost no computational cost and,
thanks to its piecewise linear nature, offers a seamless flow for the gradients during backpropagation
(when the input to ReLU was positive), this eases the optimisation process [49]. To mitigate the dead
neuron problem associated with ReLU, variants like Leaky ReLU have been introduced.

2.8. Activation Functions 22

A recent empirical study, by Andrychowicz et al. [4], provided insights into the performance of var-
ious activation functions in the context of on-policy RL for continuous control tasks. They tested the
following activation functions: ELU, Leaky ReLU, ReLU, Sigmoid, Swish, and Tanh. Their final rec-
ommendation is to use the hyperbolic tangent (Tanh), challenging the conventional adoption of ReLU,
which had the worst results. However, they note that Tanh should be used with caution in deeper
networks to avoid significant impacts on gradient propagation.

Although vanishing gradients may be a problem with Tanh in certain conditions, it has some great
properties. Dead neurons are not likely a concern, and it is zero-centred, which aids considerably in the
optimisation dynamics, leading to less epochs of training [20]. Furthermore, the bounded output of Tanh
(-1 to 1) can provide a form of implicit regularisation, preventing overfitting and so potentially enhancing
the DNN’s robustness to input perturbations. Tanh is computationally more expensive than ReLU, but
thanks to the efficiency of new backpropagation algorithms, a faster convergence often outweighs the
marginal increase in computational cost.

Mish(x) = x · tanh(softplus(x)) (2.27)

Mish, created by Diganta Misra [38], presents a novel non-monotonic activation function that has
recently gained attention due to several advantageous characteristics. Mish shares some properties
with Swish [49], but it was not tested against Tanh by Andrychowicz et al. [4], and it has been shown
to outperform Swish, ReLU, and Leaky ReLU [38]. One relevant change from Tanh is that Mish avoids
saturation by being unbounded above, reducing the likelihood of vanishing gradients [38]. In addition,
its non-monotonic nature makes the relation between input and output less predictable for the DNN,
since the reduction of an input signal may cause a larger activation. When this property is effectively
utilised during training, it can help extract more complex patterns from the input features. Lastly, Mish
has been shown to improve the generalisation capabilities of DNNs, particularly in computer vision
benchmarks [38].

2.9. RL in Energy Management Systems 23

2.9. RL in Energy Management Systems
Research by Alanne et al. [2] highlights the remarkable growth in RL-based studies for building EMS,
which began to accelerate after 2017. Fu et al. [18] argue that the use of RL within intelligent buildings
is an ”inevitable trend in the future” and Pinthurat et al. [43] express that RL-based approaches hold
”great promise for energy management” when discussing smart homes equipped with energy storage
systems.

2.9.1. Strengths
After analysing a range of discussions, surveys, overviews, and state-of-the-art applications of RL in
EMS, several recurring arguments have been identified that highlight the growing relevance of these
algorithms. The following are among the most notable ones:

• Data-driven solution to a complex problem: The data provided by buildings is on the rise,
as well as the complexity of the control problems they provide. RL, and similar data-driven ap-
proaches, use this information to abstract patterns, making them effective in dealing with energy-
related problems in complex state and action spaces [18, 41, 57].

• Increased computing resources: Advances in computational power reduce the training periods
of RL agents, improving the feasibility of their use [18].

• Interaction demands learning: While supervised and unsupervised methods prove effective for
analysing and predicting patterns, they are often inadequate for managing dynamic interactions.
In these situations, RL proves to be a more suitable choice [2].

• Handling uncertainty: RL is effective in managing the uncertainties inherent to energy demand,
grid behaviour, market fluctuations, or renewable energy generation [41]. Fu et al. [18] also con-
firm that RL can outperform traditional methods when handling data with significant uncertainties.

• Validated EMS: RL is already a proven approach as a highly adaptive EMS. Leveraging real-time
data, RL-based systems efficiently optimise energy use, integrate renewable sources, minimise
grid dependence, and reduce energy costs for residents [43].

• Efficient and near optimal: Even when RL is outperformed by MPC algorithms, its performance
is considered close to optimal, with reduced computational requirements. It also provides a sig-
nificant improvement over widely used rule-based controls [57].

• Cheaper models: The cost of modelling system dynamics is replaced by the cost of acquiring
quality data, which requires less engineering labour. The RL agent’s ability to explore and exploit
enables it to navigate a large decision space with minimal knowledge of the system’s underlying
physics [18, 41].

• Implicit prediction capabilities: The RL methodology integrates predictive capabilities into its
learning process, enabling it to achieve superior forecasting performance compared to supervised
approaches without the complexity of explicit prediction modules [53, 47].

2.9.2. Weaknesses
An overview of RL would be incomplete if only its strengths were considered. As a rapidly evolving
field attracting considerable attention, its limitations are being discovered, explored and in many cases,
addressed through continuous innovation.

One of the main obstacles in the current state of RL is its sample inefficiency, demanding large
datasets that are costly to collect [43]. In real-world applications, the data requirements of RL agents
often result in extended training durations, potentially spanning months or years [40, 57]. To mitigate
this issue, the use of simulated environments has become a common practice, as detailed in Section
2.9.5.

2.9. RL in Energy Management Systems 24

Navigating high-dimensional spaces presents a significant challenge for RL, requiring advanced
techniques for function approximation. The fundamental trade-off between exploration and exploita-
tion adds another layer of complexity to effective learning [43]. Moreover, reinforcement learning algo-
rithms are critically sensitive to hyperparameter tuning, where minor changes can significantly impact
performance.

Safety remains an ongoing challenge, with researchers working to develop mechanisms that guar-
antee predictable behaviour during both training and deployment, especially in critical applications.
Ethical concerns may also emerge, particularly in contexts involving data collection, human interac-
tion, or the deployment of agents without established safety guarantees. Building EMSs often demand
sensitive data, including occupancy patterns and the specific times of appliance usage, which poses
challenges for open sourcing [41]. Furthermore, the lack of explainability inherent to black-box algo-
rithms undermines the trust that EMS developers may have in their outcomes.

Ongoing research focuses on mitigating the current limitations of RL, such as by developing strate-
gies to improve sample efficiency and refine hyperparameter optimisation techniques [43]. In EMS
applications, safety must be prioritised to prevent equipment damage or dangerous indoor conditions.
The use of fallback controllers as backups or the implementation of safety layers to shield the EMS from
unsafe RL actions are crucial measures [40]. The field’s transformative potential hinges on overcoming
these technical barriers, with researchers aiming to expand RL’s applicability and performance across
various domains [43].

2.9.3. Residential Buildings
The focus of the literature review will now be placed on residential buildings, as they are the main con-
cern of this project and represent a key focus area within EMS. The need for building-specific research
originates in the distinct operational, structural, and energy consumption characteristics inherent to
each building category, which is especially relevant for data-driven algorithms. Such a targeted ap-
proach allows for the identification of the limitations and opportunities of each kind of energy system.
To establish a structured framework, Shaqour et al. [53] identified five building types: residential, office,
university campus/school, data centres, and other commercial buildings.

The residential sector is, in fact, critical for energy research due to its substantial energy consump-
tion and environmental impact. As of 2020, residential buildings represented 22% of global energy
demand, considerably more than the 8% contribution of non-residential buildings [53]. Smart buildings
are transitioning from passive energy consumers to active, adaptive grid participants, which becomes
especially relevant with the incorporation of intermittent renewable energy generation in their energy
systems [53].

In their 2022 systematic review, Shaqour et al. [53] identified 470 studies addressing reinforce-
ment learning (RL) for building energy management, 105 of which targeted residential buildings. After
screening for quality, clarity, and high relevance for the RL EMS, 31 papers remained. Similarly, 52
papers that targeted non-residential systems withstood the filtering. Perera and Kamalaruban [41] con-
ducted another review in 2021, examining 89 relevant papers. These reviews, while not exhaustive,
offer a relevant perspective on the field’s recent direction.

In addition to the reviews discussed above, the following review articles, including some from 2024,
are recommended to the interested reader [2, 18, 43, 66]. These reviews have been studied, and some
of their relevant findings are reflected in the current work.

Technological Scope of the EMS

Shaqour et al. [53] found that 74% of the energy management systems in residential buildings targeted
HVAC systems, which echoes the findings of Perera and Kamalaruban [41]. This focus is unsurprising
as HVAC systems are often the most energy-intensive components in buildings. Additionally, 19% of
the studies explored integrating electric vehicles (EV), and 77% considered demand response strate-
gies. Most importantly to this thesis, only 11 studies examined the integration of photovoltaic (PV)

2.9. RL in Energy Management Systems 25

generation and energy storage, and just 3 extended this combination to include EVs.

Alanne et al. [2] highlighted that most research fails to consider the potential availability of rooftop
PV generation, despite being increasingly deployed. Finally, only 3.2% of the papers reviewed by
Perera et al. [41] addressed the integration of vehicle-to-grid and energy dispatch (i.e. generation and
storage).

While residential EMS are typically designed to enhance comfort and reduce energy use and costs,
they may also address factors like CO2 levels or peak demand [53]. However, balancing conflicting
objectives, such as minimising energy costs, maximising self-consumption, and ensuring occupant
comfort, can complicate efforts to achieve optimal outcomes [41].

The inclusion of energy storage within residential energy systems provides opportunities for RL
algorithms to improve battery performance. These agents respond to dynamic factors, such as elec-
tricity prices, energy demand, and renewable energy forecasts, in real time. These methods improve
self-sufficiency and outperform rule-based approaches in terms of cost reductions [43]. Furthermore,
Stoffel et al. [57] confirmed that RL algorithms are an effective and scalable solution for achieving
near-optimal EV charging.

Predominant Algorithms

According to Shaqour et al. [53], DQN emerges as the most widely applied algorithm for residen-
tial buildings. Other algorithms, such as DDQN and DDPG, also appear frequently, and comparative
evaluations of multiple algorithms are common in the literature. Perera and Kamalaruban [41] report
similar observations, highlighting the prevalent reliance on Q-learning. In addition, the default function
approximators, as noted by Shaqour and colleagues, are DNNs [53].

Actor-Critic algorithms, such as SAC, A2C, and Actor-Critic using Kronecker-Factored Trust Re-
gion (ACKTR), have been adopted by 42% of residential studies reviewed by Shaqour et al. [53],
although PPO is notably absent in these cases. Perera and Kamalaruban [41] report lower adoption
rates for Actor-Critic algorithms in residential EMS and also note the absence of PPO. However, in
non-residential settings, Actor-Critic methods were employed more frequently, with PPO accounting
for 19% of these studies [53].

Since these reviews, more advanced algorithms such as PPO and TD3 have been increasingly
applied to residential building research. For instance, Kang et al. [27] compare A2C, PPO, TD3, and
SAC with an Mixed-Integer Linear Programming (MILP) optimisation approach. Similarly, Pinthurat et
al. [43] identify three residential studies, among 33 reviewed articles, employing PPO.

2.9.4. PPO in practice
Among the RL algorithms compared in this thesis, PPO [51] represents the most advanced, with VPG-
C being the least advanced, and A2CGAE occupying a middle ground. The theory and implementation
details behind PPO will be provided in Section 4.5, and its impact on RL agents is displayed in Section
5.3.5. Currently the focus will be placed on how PPO performs in the residential EMS literature, along
with its practical advantages and disadvantages.

Andrychowicz et al.[4] recommend using PPO above all the other policy loss functions they tested
(AWR, VPG, RPA, V-MPO, and V-Trace), due to its superior performance in four out of five environments
used in their study. PPO appears to be less sensitive to hyperparameter variations and provides a
consistent high performance on almost all conditions. The robustness to hyperparameter fluctuations
is echoed by the findings of Pinthurat et al. [43] and Yu et al. [66].

PPO offers other notable benefits, including stability, efficient use of samples, scalability, broad
adaptability to various tasks, and straightforward implementation. Nonetheless, it has drawbacks such
as difficulty balancing exploration and exploitation, occasional slow convergence, a tendency to settle
in local optima, and inconsistent performance across different runs [43, 66].

2.9. RL in Energy Management Systems 26

Section 2.9.3 highlighted the sparse use of PPO in residential EMS, underscoring its potential as an
area for deeper investigation, as Perera and Kamalaruban [41] have suggested. One notable example
addressing this gap is Kang et al. [27], who presented the Pareto front that emerges when balancing
self-sufficiency and the minimisation of peak loads.

Kang and colleagues [27] consider a complex EMS, with batteries, PV generation and a connection
to the grid. After comparing the A2C, PPO, TD3, and SAC algorithms, they conclude that A2C and
PPO achieved stable learning with improving rewards, while PPO excelled at balancing competing
objectives by considering optimisation weights. Conversely, TD3 and SAC displayed erratic behaviour
and struggled to converge. However, this is just one example, other studies have reported successful
applications of all these algorithms, such as Stoffel et al. with SAC [57].

Within the 2024 review by Pinthurat et al. [43], three additional papers have been found that apply
PPO to a residential EMS. These studies report the successful application of PPO to energy systems
incorporating battery storage and PV generation, with some verifying PPO’s performance through sim-
ulations on real-world data or assessing its reliability through robustness evaluations.

2.9.5. MCES Modelling
The implementation of a reinforcement learning agent in an MCES may be done directly, or after using
a simulation of the MCES to perform the training. While direct deployment in physical systems can
provide real-world data, it presents significant challenges including possible equipment damage, added
operational costs, and safety concerns [18], as well as potentially long training times [40]. Though safe
learning can offer an alternative path, that will be explored in Section 2.9.6, there has been a widespread
adoption of simulation-based approaches for development and testing.

For MCES applications focused purely on power demand management and energy storage, without
consideration for detailed building physics or occupant behaviour, simplified modelling approaches may
be enough. The key is striking a balance betweenmodel fidelity, development costs, and computational
requirements. Although more sophisticated models offer greater precision, marginal benefits may not
justify the added complexity and resource requirements.

Models can be developed through data-driven black-box models or physics-based building emu-
lators of varying fidelity, including digital twins on the high end. Some studies have compared these
approaches, and they suggest that simulation-based methods outperform purely data-driven ones. Fur-
thermore, simulation models allow for predicting system behaviour under previously unobserved con-
ditions [2].

Digital twins represent a promising direction, as they reflect current building conditions. Although
agents trained in such environments show high potential for successful deployment in the real coun-
terpart, the computational cost of high-fidelity digital twins remains a challenge. Future research could
focus on determining the optimal level of fidelity needed for appropriate generalisation to real environ-
ments [2].

2.9.6. Direct Deployment in MCES: Safe Learning
When deploying an RL agent in a real-world MCES, safety considerations are crucial to prevent equip-
ment damage and maintain user comfort. While direct training in the urban MCES was not an option
for this thesis, it is of interest to briefly examine some methods for safe learning.

Three main approaches to safety in RL have emerged over time. The first type begins with an
approximate model of system dynamics and gradually refines the understanding of the system and
the control policy. The second category implements safety through reward penalties, though without
explicit safety guarantees. Finally, the third approach enhances the agent’s reliability by providing
safety certificates based on real-world dynamic models developed separately [11].

For instance, one technique creates data-driven barrier certificates by incorporating physical laws

2.10. Research Gaps 27

into the learning process, defining a set of safe states that restrict exploration during both the training
and deployment phases [7].

As another example, Ceusters et al. [11] developed a model-free approach that combines hard-
constraint satisfaction with policy optimisation while maintaining independence from the core RL formu-
lation.

2.10. Research Gaps
While the primary focus of this work is the development of an RL energy management system for a mul-
ticarrier electrified residential building (as detailed in Section 1.1), the literature review has uncovered
several secondary research opportunities that align with and enrich the main objective:

1. Comprehensive Multicarrier Energy System: Substantial research has been conducted on
standalone components within residential energy systems. However, the current literature lacks
sufficient exploration of RL-based EMS solutions that simultaneously manage multiple types of
energy storage, thermal systems, renewable generation, and EV integration is understudied in
the current literature [41, 53, 2].

2. PPO Underutilisation: While Actor-Critic methods are widely adopted in residential EMS, the
application of PPO algorithms remains notably limited in this context, despite their successful
implementation in non-residential settings [53, 41].

3. Hybrid Energy Storage Systems: The application of RL-based EMS for controlling hybrid en-
ergy storage systems in residential energy optimisation remains under explored [43].

4. Multi-objectiveOptimisation: The development of well-defined reward functions formulti-objective
scenarios remains a persistent challenge in RL applications for energy management [7].

5. Limited Comparative Analysis: While RL shows promising results over simple control strate-
gies, comparisons with advanced methods such as MPC are scarce [41, 2], leaving uncertainty
about relative performance benefits.

Beyond the research gaps addressed in this thesis, the literature review has revealed other promis-
ing opportunities for RL-based EMSs that, while falling outside the scope of this work, are worthy of
note.

Multi-agent RL is frequently identified in the literature as a compelling research direction [53, 2,
43], with some studies demonstrating its superior control efficiency compared to a single agent [18].
This approach shows promise in community-level applications, enabling coordination of distributed en-
ergy resources and vehicle-to-grid systems for peer-to-peer energy trading [53]. Another gap appears
with the integration of emerging technologies, where advances in 5G networks, edge computing, and
blockchain technology could improve device connectivity, enable local decision-making, and secure
energy exchanges [43].

A fundamental challenge remains in bridging the gap between theory and practice as, according to
Yu et al. [66], only a fifth of studies have validated their findings in real-world settings beyond simu-
lated environments. Physics Informed RL proves to be a promising direction for tackling the curse of
dimensionality and reducing the distance between simulation and reality [7].

Current safe RL methods for safety-critical applications are too expensive and impractical, leading
to the use of simulated environments. This underscores the need for new solutions that guarantee
safety throughout the learning process and use existing data effectively to reduce exploration risks in
real environments [58].

The field faces additional technical hurdles that require attention: developingmethods for automated
hyperparameter optimisation to reduce computational burden [66]; creating algorithms that can scale
with increasing system complexity [43]; enhancing the interpretability of control decisions [57]; and
establishing robust frameworks for data privacy in residential energy systems [43].

2.11. Research Questions 28

2.11. Research Questions
This thesis is driven by one central research question, which is further explored through three distinct
sub-questions. These inquiries have been formulated to address the gaps in the literature described
in Section 2.10.

Main Research Question

In themanagement of multicarrier urban energy systems, to what extent can practitioners without
expertise in optimal control theory and physics-based modelling leverage reinforcement learning
to create a computationally efficient alternative to model predictive control, while maintaining
comparable safety and performance?

Even though the Main Research Question is broad, it reflects the first and last research gaps
quite clearly. The second gap, concerning the underutilisation of PPO, is addressed by the first Sub-
Research Question. This gap may stem from the delayed adoption of more advanced stochastic policy
gradient algorithms within the research community. It is also plausible that simpler algorithms have
been sufficient to achieve results close to optimal in the EMSs studied so far. For this reason, the
following question is asked:

Sub-Research Question 1

How do progressively advanced policy update algorithms (from basic advantage estimation to
GAE to trust region constraints) contribute to achieving near optimal performance?

Performance in RL algorithms can significantly fluctuate based on changes to the DNN architecture
or reward formulations [41]. As referenced by the fourth research gap, this challenge is further amplified
by the difficulty of crafting effective reward functions for multi-objective scenarios.

Sub-Research Question 2

What is the impact of DNN architecture sophistication, temporal feature engineering, and reward
component shaping for RL algorithms in achieving performance that is close to optimal?

This work seeks to address the fifth research gap by providing a comparative study of RL and MPC.
Among the areas examined is the operation of hybrid energy storage systems, which the third research
gap identifies as a promising domain for RL-based EMS. This motivates the following research question:

Sub-Research Question 3

How do the RL and MPC approaches compare in terms of operational safety, energy storage
use, and economic performance?

3
Energy Management System

3.1. Introduction
The sequential decision problem that will be tackled in this thesis is the energy management of a
multicarrier electrified residential building located in the Green Village of Delft University of Technology.

The household under consideration is part of the FLEXINet project. The research by Slaifstein et
al.[55] will provide the basis for the equations and problem formulation of this thesis. They also created
the Expert that serves as a reference benchmark for performance evaluation.

This chapter presents a description of the SDP –that concerns this thesis– by formally defining
its objective function, state and decision variables, exogenous information, and transition functions.
Afterwards, the chapter addresses safe behaviour considerations, mainly the algorithms devised to
project the agent’s actions across training and deployment phases.

The Expert system, used for validating the RL agent’s decisions, is introduced in the following sec-
tion. The discussion then moves to data preparation, exploring both training and testing datasets, with
emphasis on the techniques used for synthetic data expansion.

3.2. System Components
The MCES of the building under study integrates thermal and electrical subsystems to meet the resi-
dents’ heat and electricity requirements (load). A diagram illustrating this configuration is presented in
Figure 3.1.

In the thermal subsystem, heat is generated by the heat pump (HP) and the solar thermal (ST)
system, consumed by the loads, and stored within the thermal energy storage system (TESS). The
inclusion of the TESS enables temporal decoupling of heat production and demand, improving the
flexibility of the system.

The electrical subsystem has various elements that allow for bidirectional energy flow: the power
grid (grid), the EV battery, and the battery energy storage system (BESS) installed in the building.
Within this framework, the HP functions only as a consumer of electrical energy, converting it into heat,
while the PV panels act as a source of electrical power.

The subscripts [PV, ST, grid, load,HP,EV,BESS, TESS] will be used to refer to the described
elements of the MCES. Additionally, superscripts [e, th] will specify whether they belong to the electrical
or thermal subsystems, respectively. The Power Electronic Interface (PEI) will act as a central node
to manage the energy distribution, allowing for high optimisation of the system by permitting complete
interactivity between the components.

29

3.3. Sequential Decision Problem 30

Figure 3.1: Schematic diagram of the MCES from Slaifstein et al.[55]. The arrow points indicate the directions in which energy
can flow through the system.

3.3. Sequential Decision Problem
The problem will not be framed as an MDP; instead, it will follow the unified modelling framework
proposed by Powell [45], outlined in Section 2.2, and represented in Figure 3.2. Although challenging
slightly traditions of RL, this approach appears to present the problemmore clearly, making a distinction
between the state information available to the decision maker at time t and the exogenous information
that will arrive before the next action is taken (Section 3.3.4). Also, the reward should not need to
depend just on the current state of the system St.

Crucial to the success of any RL algorithm is the development of a working environment where the
agent may learn a correct policy. The closer the environment is to reality, the more transferable the
agent’s knowledge during deployment.

In the following sections, the core components of the SDP to be solved by the EMS (i.e., RL agent
or Expert) will be formulated. The equations described in these sections will be implemented in the
Julia Language [8] as a dynamic RL environment, representing the MCES. This process begins with
the definition of a structured type that contains the state variable, which inherits from the abstract envi-
ronment type –AbstractEnv– of the ReinforcementLearning.jl framework [61]. The MCES components
outlined in Section 3.2 are integrated as independent structured types within this environment. A tran-
sition function is used to update the state of each component, taking into account both agent decisions
and exogenous information.

3.3.1. Objective function
The objective function of the RL agent will be based upon that of the Expert (presented in Section 3.5),
accommodating for the fundamental differences between the two approaches. The Expert’s objective

3.3. Sequential Decision Problem 31

can be represented as follows:

min
xt

EW [Cgrid + pSoCDep +AuxTESS] (3.1)

The optimisation seeks to minimise the expected value with respect to the exogenous variable W
(representing the uncertainty) for the sum of three primary components: net grid energy costs (Cgrid),
a penalty for not charging the EV to the desired state of charge (SoC∗

dep) at the time of departure (tdep),
and the constraint violations of the thermal energy storage system (represented by the auxiliary term
AuxTESS).

Cgrid = wexp
grid

T∑
t=1

(
λbuy,t · P+

grid,t + λsell,t · P−
grid,t

)
·∆t (3.2)

pSoCDep = wexp
SoCDep

∑
t∈Tdep

(ξSoCDep,t)
2 (3.3)

AuxTESS = wexp
TESS

T∑
t=1

max
(
0,SoCTESS,t − SoCmax

TESS
)
·∆t (3.4)

Where:

P+
grid,t : Positive value of grid power (energy goes from the grid into the PEI)

P−
grid,t : Negative value of grid power (energy is extracted from the PEI and sold to the grid)

λbuy,t : Buying price of electricity from the grid at time t
λsell,t : Selling price of electricity to the grid at time t
∆t : Time step duration

wexp
grid : Weight used by the Expert for the grid objective

wexp
SoCDep : Weight used by the Expert for the state of charge (SoC) objective

wexp
TESS : Weight used by the Expert for the TESS auxiliary objective
Tdep : Set of all departure times tdep

ξSoCDep,t = SoC∗
dep − SoCEV,t

Difference between the desired SoC and the actual SoC of the EV at time t
SoCmax

TESS : Maximum SoC of the TESS
SoCTESS,t : State of Charge of the TESS at time t

It may be noted that charging the EV above SoC∗
dep will also increase the objective, as the battery

should be used as much as possible within the system, and overcharging the vehicle would contradict
this aim.

It is also relevant to address the weights used for each component of the objective function. The
expert system utilises specific weights tailored to its non-linear optimisation routine at each timestep.
These coefficients do not represent any physical quantity, they are calibrated to ensure satisfactory
system behaviour (e.g., not overcharging the TESS). This abstraction from physical quantities allows
for a more flexible control strategy. The performance evaluation between the RL agent and Expert
EMSs will analyse each objective component separately (Section 6.2.1).

The inclusion of AuxTESS transforms a hard constraint into a soft one, preventing optimisation in-
feasibility. Section 3.4.1 provides additional context regarding this slack variable, since an analogous
implementation in the RL agent’s safe projection mechanism was introduced.

The RL agent, unlike the Expert, requires explicit training to learn and respect operational con-
straints, since it starts with no prior knowledge of the MCES component’s limitations. Therefore, the

3.3. Sequential Decision Problem 32

auxiliary TESS term (AuxTESS) is replaced by a more comprehensive projection penalty term (pproj),
which accounts for all potential constraint violations. The RL agent’s objective function thus becomes:

min
xt

EW [Cgrid + pSoCDep + pproj] (3.5)

The projection term is defined as:

pproj = wproj · (ξSoCBESS + ξSoCEV + ξSoCTESS + ξpgrid + ξpTESS + ξpBESS + ξpEV + ξpHP) (3.6)

There are two types of projections: initial verify that actions proposed by the agent are within bounds
before implementation in the environment, while operational projections adjust state variables post-
transition to maintain system constraints. For a description of the projection methodology and its im-
plementation, the reader is referred to Section 3.4.1.

wproj : Weight for the projection penalty in objective function.

Initial Projection (Action Validation):

ξpBESS : Violation of BESS power constraints by RL agent’s decision PBESS

ξpEV : Violation of EV power constraints by RL agent’s decision PEV

ξpHP : Violation of heat pump power constraints by RL agent’s decision P e
HP

Operational Projection (State Constraints):

ξSoCBESS : Violation of BESS SoC constraints
ξSoCEV : Violation of EV SoC constraints
ξSoCTESS : Violation of TESS SoC constraints
ξpgrid : Violation of grid power exchange constraints

ξpTESS : Violation of TESS power constraints

3.3.2. State variable
The state is, by convention, considered to contain variables that evolve over time. The state vector can
be further subdivided into physical state information, other deterministic information, and beliefs about
the system [45]. Given that beliefs are not an explicit part of the RL framework, and considering that
all state information in this problem happens to be physical, state information will be classified under a
single class.

Ssa,t = [SoCsa, vsa, isa, OCVsa]t (3.7)

STESS,t = [SoCTESS, PTESS]t (3.8)

SP,t =
[
Pgrid, PST, P

th
HP
]
t

(3.9)

3.3. Sequential Decision Problem 33

subscript sa : Follows the notation by Slaifstein et al. [55]
indicating storage assets (BESS and EV battery)

SoCsa,t : State of charge of the storage asset at time step t
OCVsa,t : Open Circuit Voltage of the storage asset at time step t

isa,t : Current going through the cell of the storage asset at time step t
vsa,t : Voltage of the storage asset at time step t

SoCTESS,t : State of charge of the TESS at time step t
PTESS,t : Average power of the TESS during time step t
Pgrid,t : Average power flow with the grid during time step t
PST,t : Average thermal power provided by the Solar Thermal unit during time step t
P th
HP,t : Average thermal power produced by the heat pump during time step t

Proportional to P e
HP

Another relevant parameter to consider in this modelling framework is the initial state (S0), which
includes the initial values of state variables (or distributions of beliefs about them) and deterministic
parameters that remain unchanged. It is worth noting that the PEI, while serving as the central com-
munication node between components, is not represented in the state variable, as it merely facilitates
the exchange of power flows.

Figure 3.2: This diagram represents the main elements of the SDP addressed by the Expert or RL agent. The notation aligns
with that used in Section 3.3 to formulate the sequential decision problem. Dashed lines indicate that data transformations

occur between the connected nodes.

3.3.3. Decision variable
The decision variable xt is a vector containing three continuous power setpoints, associated with the
EV battery, BESS, and HP, all within the electrical subsystem:

xt = Xπ
t (St) = [PEV, PBESS, P

e
HP]t (3.10)

Xπ
t is the policy function at timestep t, the subscript is relevant as the policy will be modified frequently

during training. The decision for the EV battery and the BESS will be positive when energy flows into
the PEI and negative if the agent decides to recharge the storage assets.

Decisions are usually subject to constraints, and in this case they will be determined by the tech-
nical limitations of the affected system components. The process of projecting the decision onto a safe
space is described in detail in Section 3.4.1.

3.3. Sequential Decision Problem 34

It is worth noting that the decisions are discrete power setpoints for a whole timestep, in this case
with a duration of 15 minutes (although this value can be modified). Therefore, there must be an
underlying mechanism for continuously minimising the difference between the chosen set point and
the measured state of the system. Error handling of this manner is usually performed by proportional–
integral–derivative (PID) controllers.

3.3.4. Exogenous information
After the agent has made a decision, new exogenous information is received, moving the environment
to a new state. The exogenous information is represented by the variableW , following Powell’s notation
[45], and the subscript t indicates that the information becomes available to the agent at the specified
timestep, i.e., it can affect the decisions of that timestep. The elements contained in Wt are average
values during the time in between t − 1 and t. This means that the agent will only have access to
exogenous past information when making a decision. Then, when the next batch arrives (Wt+1), the
transition function is used to update the state variable (as will be described in Section 3.3.5).

W =
[
P e
load, P

th
load, PPV, λsell, λbuy, γEV, P

drive
EV

]
(3.11)

P e
load : Electrical load
P th
load : Thermal load
PPV : Power generated by PV panels
λsell : Price of selling energy to the grid
λbuy : Price of buying energy from the grid
γEV : Binary variable, equal to 1 if the EV is present in the environment

P drive
EV : Power used by the EV when not connected to the MCES

3.3.5. Transition function
The functions that update the state variable receive the current state (Sa,t), the agent’s decisions xa,t
and the exogenous informationWt+1 (Section 3.3.4) as inputs. The subscript a shown in the equations
below represents any of the assets described in Section 3.2. The reader is referred to Figure 3.2 for a
simplified representation of the SDP.

Sa,t+1 = SM
a (Sa,t, xa,t,Wt+1) (3.12)

The equations of the transition function can be grouped into electrical or thermal. To ensure safety, two
projection stages (as shown in Figure 3.3) are implemented: an initial projection before the transition
function and an operational projection afterward. All details concerning this safety measures can be
found in Section 3.4.1.

Electrical Subsystem

The main equation on the electrical side is the balance of all electrical energy assets with the grid.

Pgrid,t = P e
load,t + P e

HP,t − PPV,t − PBESS,t − γEV,t · PEV,t (3.13)

The EV battery and the BESS will have a SoC that needs to be updated as well. The value of γEV,t
will determine how the EV battery is updated, since the EV needs to be present for its battery to be
useful for the MCES. If the EV is absent (γEV,t = 0), the agent’s decision PEV,t will be replaced by the
exogenous information P drive

EV, t+1 for the transition.

3.3. Sequential Decision Problem 35

The basic equations for modifying the SoC are:

SoCsa,t+1 = SoCsa,t −
∆t

Qsa · 3600
· ηc · isa,t (3.14)

isa,t =
Psa,t

vsa,t ·Ns,sa ·Np,sa
(3.15)

OCVsa,t = aOCV,sa + bOCV,sa · SoCsa,t (3.16)

vsa,t = OCVsa,t (3.17)

All the coefficients and values used within the transition function that are not part of the state, deci-
sions or exogenous information are considered parameters of the transition function. The main
parameters are shown below:

∆t : time step duration
Qsa : cell capacity of the storage asset (Ah)
ηc : Coulombic efficiency

Ns,sa : number of cells in series for asset sa
Np,sa : number of cells in parallel for asset sa

aOCV,sa, bOCV,sa : parameters for the Open Circuit Voltage of asset sa

The Coulombic efficiency ηc represents the ratio between the charge extracted from the battery and
the charge used to restore its original capacity [34], which applies to both the EV battery and the BESS.
However, using the formulas as presented above poses a slight problem when the agent demands
power from the storage assets. The Coulombic efficiency is not 1, which means there will be an energy
loss, and the actual current that the battery outputs will be ηc · isa. To satisfy the agent’s power setpoint,
a higher current needs to be demanded. Therefore, the modified equation is:

isa,t =
Psa,t

vsa,t ·Ns,sa ·Np,sa · ηc
(3.18)

Another consequence of this change is that, when updating the SoC –only for current extraction– there
will be no need to apply ηc again, since the storage asset will indeed lose the charge proportional to
the increased isa,t. When injecting current into the storage asset, the whole process is reversed, and
Equations 3.14 and 3.15 may be used normally. It is worth noting that the same measures will apply
when updating SoCTESS (Equation 3.23).

Thermal Subsystem

The heat pump will convert electrical energy to thermal, thus connecting both subsystems. The con-
version is modelled by a simple scaling where the coefficient ηHP represents the HP’s coefficient of
performance (COP):

P th
HP = ηHP · P e

HP (3.19)

The thermal energy storage system (TESS) is fundamental for the balancing of the thermal demand
with the sources. When PTESS > 0, the TESS is providing energy to the building (i.e. the MCES).QTESS
indicates the thermal energy storage capacity and ηTESS is the thermal transfer efficiency.

3.4. Safe Behaviour 36

PST,t = PPV,t · ηST (3.20)

Subject to PST,t ≤ Pmax
ST (3.21)

PTESS,t = P th
load,t − PST,t − P th

HP,t (3.22)

SoCTESS,t+1 = SoCTESS,t −
∆t

QTESS · 3600
· ηTESS · PTESS,t (3.23)

3.4. Safe Behaviour
When training agents with RL, the constraints must be learned, which means that safety cannot be
ensured during the training process [13]. In this work, the training takes place within a simulated version
of the actual MCES, as explained in Section 3.3. As a result, any violation of constraints will only have
real consequences after deployment.

The virtual environment will be used by the RL agent to learn the constraints of the MCES. However,
even when the agent appears to adhere to all boundaries, a safe projectionmechanism is implemented
after deployment to minimise the risk of unsafe states.

The safety approach after deployment relies on the known system dynamics to estimate the effects
of the agent’s actions on the following timestep. Although more advanced methods are found in the
literature, as noted in Section 2.9.6, they proved unnecessary for the current project, since the safe
projection layer delivered safety performance comparable with the Expert’s (presented in Section 3.5).
Further details on the comparison of safety performance are provided in Section 6.2.3.

The upcoming sections present a comprehensive explanation of the safety measures applied in this
study. Section 3.4.2 addresses training safety, Section 3.4.1 covers the safety projection mechanism,
and Section 3.4.3 examines the safety considerations of deployment.

3.4.1. Safety Projection
Before describing the approach taken to address safety during training or after deployment, two relevant
terms need to be introduced. The constraint-enforcing projections are categorised into two types: initial
and operational. The initial projection is applied on the actions that are proposed by the agent (which
are obtained by sampling the Actor DNN, as detailed in Section 4.4.2) prior to their implementation
within the RL virtual environment. The operational projections will take place after the transition
function has been used, i.e. after advancing to the next timestep. This projection will act upon the state
variables of the environment, modifying them if any constraint has been exceeded.

The primary constraints of the MCES originate from the limitations imposed by system components,
such as the maximum current output of a battery cell, the HP’s power limit or the minimum acceptable
SoC of the BESS, TESS, and EV. A list of all the variables that keep track of possible projections can
be found in Section 3.3.1.

Initial projection implementation can be accomplished through either a simple or complex method.
The straightforward approach involves restricting the agent’s decisions to their predetermined limits
(e.g. −12.5kW ≤ PEV ≤ 12.5kW). However, this solution proves unsatisfactory, as it fails to account
for the boundaries of system components directly impacted by these decisions. As an illustration, PEV
may be within its limits while demanding power from an EV battery currently at its minimum allowed SoC
(SoCEV = SoCmin

EV). This approach, referred to as simple projection, inevitably leads to a considerable
number of operational projections.

The more refined approach to safety is to use an initial projection that aims to minimise (and ideally
eliminate) the need for operational projections, which will be henceforth referred to as safe projection.
With this approach, the limits on the agent’s actions will become dynamic, changing with every

3.4. Safe Behaviour 37

Figure 3.3: This diagram demonstrates the initial and operational projections as part of the sequential decision problem. As
shown, the output from the Actor DNN can only be submitted to either the simple or the safe initial projection. Dashed lines

indicate that data transformations occur between the connected nodes.

timestep to accommodate the constraints of system components that will be affected by them.

To be clear, two types of initial projections have been described: simple or safe. A diagram rep-
resenting both options, as well as how initial and operational projections are part of the sequential
decision problem, can be seen in Figure 3.3.

Safe projection as an optimisation problem

Reducing operational projections through the initial safe projection constitutes an optimisation problem,
one that aims at achieving the minimal projection necessary of the agent’s decisions to satisfy all the
physical system constraints.

The optimisation problem needs to be turned into amodel, which in this case specifically refers to the
mathematical programming formulation that abstracts the real physical system into a set of variables,
an objective function, and constraints. Therefore, the model contains all the safety-relevant equations
that are within the transition function of the SDP. A comprehensive description of the utilised model,
including all the equations that will be mentioned in this Section, is provided in Appendix A.2.

The model’s objective function focuses on minimising two distinct components: the squared devia-
tion from the reference power setpoints and the constraint violations (through slack variables). These
setpoints are selected by the agent at each timestep. The mathematical optimisation is performed us-
ing Ipopt (Interior Point OPTimizer) [63], an established open source nonlinear solver accessible via
Julia’s wrapper interface (Ipopt.jl). The reason behind using a nonlinear solver can be found as well in
Appendix A.2.

Themodel faces two principal limitations: the absence of future knowledge and the lack of guar-
anteed feasibility. The challenge of operating without future knowledge arises because decisions
must be made in real-time, and so their impact on the environment can at most be estimated. Hence,
safe projection actually produces actions that are only safe with a high probability. The impact of this
limitation can be lessened in various ways, such as by training an agent that –through its implicit under-
standing of the future– will produce safe actions, or incorporating explicit estimators of the exogenous
information (see Section 3.3.4). The second approach is at the core of Model Predictive Control.

In this thesis, the agents will be trained to avoid operational projections (as will be detailed below),
and a safety margin will be used to constrain the model more than necessary, therefore incurring a
potential loss in the optimality of the solutions, in order to enhance safety levels.

Certain MCES components maintain independence from exogenous information (i.e., unknown to
the agent at the time of making a decision), such as the BESS SoC, and therefore can be guaranteed
to be within bounds for subsequent timesteps. However, variables like grid power exchange (Pgrid)
are partially determined by the exogenous information, which may result in presenting the solver with
an unfeasible problem. A practical example occurs when excess thermal energy encounters a fully

3.5. Expert EMS 38

charged TESS, the energy will have nowhere to go. This situation could be ameliorated by creating
a more realistic transition function that accounts for natural thermal absorption by buildings and air.
The second limitation, that of possible infeasibilities, is therefore closely linked to the first. To ensure
solution convergence, slack variables are introduced for grid and TESS components, with significant
penalties for non-zero deviations in the model’s objective function.

3.4.2. Safety during training
The agent will be rewarded for its adherence to system constraints. When an action undergoes pro-
jection, the projection distance–the difference between initial and final vectors–feeds into the reward
function, guiding the agent towards safer behaviour. If the safe projection (described in Section 3.4.1)
is used, the operational projections will be negligible, and so the whole projection distance can be
passed at once to the reward function. Alternatively, one might employ simple projection, measure the
projection distance, and maintain a record of all operational projections.

The safe projection approach, while more straightforward, is considerably less efficient, due to its
requirement for nonlinear optimisation at each timestep. To provide some reference values, safe pro-
jection consumes approximately 6.7 ms per timestep, whereas without it, processing time reduces to
0.04ms, which represents a 151x speed up. Since both approaches train the agent to avoid constraint
violations, the fastest was chosen, as it enables more comprehensive hyperparameter optimisation
within the same computational time (see Section 5.3), allowing a wider exploration of the parameter
space. Figure 4.1 displays the training of the Actor DNN in some detail, indicating the use of the simple
initial projection.

3.4.3. Safety after deployment
Once training is over, all the learned patterns and safe behaviours have been encoded in the black
box that is the Actor’s DNN. All the costly computations have been performed, and now a very simple
forward pass over the DNN (i.e. inference) is all it takes to make a decision for the next timestep.

In the system considered for this thesis, each timestep represents 15 minutes of real time, rendering
the 6.7ms inference time with safe projection insignificant. More importantly, it is of utmost importance
to minimise operational projections in a real-world setting, where recovering the system from an
unsafe state is not as trivial as in virtual environments. For these reasons, even though the agent may
have converged to a safe policy, the safe projection is always used after deployment, as well as for
any test that estimates post-deployment performance. A visualisation of the safe projection in operation
can be found in Appendix A.2.6.

Model bias must be recognised as an ever-present possibility, causing actions that have been
deemed safe by the safe projection to result in real-world constraint violations. Even when beginning
with an accurate model, system changes such as battery degradation will introduce bias over time. To
address these concerns, clear warning thresholds must be established for potential model bias, and
post-deployment validation of the RL agent must be conducted to ensure the MCES operates within
acceptable bounds. In system components where high model uncertainty is identified, projections can
be adjusted to be more conservative through automated safety margin correction.

3.5. Expert EMS
The Expert EMS operates within a Model Predictive Control framework, a clear example of direct looka-
head approximation. This approach is widely recognised for its efficacy in handling complex processes
under constraints. The Expert is implemented as a day-ahead planner, featuring a 48-hour predic-
tion horizon and 24-hour control steps. This approach differs from more common MPC applications,
which usually operate at shorter intervals, such as 15-minute steps, while keeping similar prediction
horizons. Although this higher-frequency execution represents a more refined control approach, the
Expert’s formulation retains the essential characteristics of MPC and will be categorized as such. The

3.6. Data: Training and Testing 39

SDP modelled by the Expert aligns directly with the one discussed in Section 3.3.

MPC relies on frequent replanning within a predictive horizon, leveraging the approximate linear-
ity of non-linear systems within narrow ranges [44]. The quality of the solution depends heavily on
how accurately the transition function is modelled, though simplifications are often applied to balance
computational efficiency with stability and feasibility [5]. The Expert uses a white-box model, which is
grounded in physical principles to accurately represent system dynamics [41].

Despite their high accuracy and performance, white-box models demand extensive domain exper-
tise and development costs. Furthermore, their lack of adaptability means that changes in boundary
conditions and system periphery cannot be automatically taken into account [57]. The optimisation
challenge faced by the Expert is expressed as a Mixed-Integer Quadratically Constrained Program
(MIQCP), incorporating a degradation-free battery model as described by Slaifstein et al.[55].

The MIQCP involves 32 variables per 15-minute timestep, including derivatives representing the
states of charge of the EV battery, BESS, and TESS. The model is subject to six quadratic or non-
linear equality constraints, 22 linear constraints, 29 variable bounds, and four binary variables. With a
predictive horizon spanning two days, 192 steps of the MIQCP are linked via derivative constraints,
transforming the problem into a large-scale optimisation task. For instance, the total variables consid-
ered amount to 32 × 192 = 6144. When the optimal solution is reached, the first day’s decisions
are implemented, and the predictive window is shifted forward accordingly. Equation 3.24 succinctly
formulates the optimisation problem solved by the expert, with J̃ indicating that the objective function
relies on approximations (as the future states are predictions).

Xexp
t (Sa,t) = arg min

P exp
a,t

J̃exp (3.24a)

s.t. Eqs. 3.13 - 3.23 (3.24b)

Given the scale and complexity, solving this model requires advanced computational techniques.
The problem is tackled using a heuristic branch-and-bound method, which evaluates combinations
of binary variables to explore feasible solutions. Continuous variables are optimised for each binary
configuration, with convexity ensuring convergence to an optimal solution within these configurations.

3.6. Data: Training and Testing
The information needed to train and test the reinforcement learning agents was obtained from the
research by Slaifstein et al.[55], and for the sake of completeness, some of the sources they used will be
mentioned in this Section. The provided data covers all the exogenous information (see Section 3.3.4)
that affects directly the MCES, including electrical load (P e

load), thermal load (P th
load), power generated by

photovoltaic panels (PPV), energy prices (λsell, λbuy), electric vehicle presence (γEV), and power used
by the electric vehicle when not connected to the MCES (P drive

EV).

• The electrical load was obtained directly from the residential building in the Green Village (of Delft
University of Technology) from the year 2021 to 2023. This is the building that is modelled by the
MCES.

• The thermal load data was provided by Joel Alpízar-Castillo, who used it to analyse the thermal
and electrical performance in Dutch homes of four distinct configurations of PV-thermal, BESS,
TESS and heat pump technologies [3].

• The solar energy profiles for the Green Village were constructed using models from the book on
Solar Energy by Smets et al. [56].

• The electricity prices for the Netherlands were obtained from the European Power Exchange
(EPEX) [16], in particular for the year 2022.

3.6. Data: Training and Testing 40

• The ElaadNL Research Centre [14] provides some open source statistics about the arrival times
of EV users, as well as the expected duration of their stay. This information was used to construct
the models that generate samples for γEV and P drive

EV .

The data covers one year and was formatted into 15 minute timesteps. To obtain the test set (91
days), one day was extracted from every four, leaving behind what will be called the training set (274
days). Therefore, the training and test sets are completely separated.

3.6.1. Expanding the Data
By making use of the training set, which encompasses 274 days, three synthetic datasets have been
generated. First will be described the creation of the expanded training set, followed by the two valida-
tion sets.

It was decided to extend the original training set’s duration of 274 days to a full year of training data
for the RL agent, therefore 91 days must be synthesized. The methodology is straightforward, and
has been thoroughly outlined in Algorithm 1. The main benefit of expanding the training set in such a
manner is the cost-effective increase in data diversity. In addition, this expansion allows rare scenarios
to become more prevalent, potentially improving the agent’s ability to generalise. However, there is the
risk of creating data that moves beyond real-world situations, hampering the agent’s deployment. To
mitigate this possibility, the test set is made exclusively of real data.

Algorithm 1 Synthetic Data Generation for Expanded Training Set

Require: Training set of D = 274 days, each day containing T = 96 timesteps of 15 min, where Xd,t

is the value at day d and timestep t

1: Initialize S = 91 (number of synthetic days to create)
2: for d = 1 to D − 4 with step 3 do
3: for each timestep t = 1, . . . , T do
4: Calculate mean at timestep t across the 3 days:

µ3,t =
1

3

2∑
i=0

Xd+i,t

5: Sample synthetic value for timestep t from normal distribution:

Xsyn,t ∼ N
(
µ3,t,

µ3,t

6

)

6: Restrict Xsyn,t within the minimum and maximum values of the original dataset:

Xsyn,t ← max(Xmin,min(Xsyn,t, Xmax))

7: end for

8: Store Xsyn as a new synthetic day

9: end for
10: return Full training set with D + S = 365 days.

Note: N (µ, σ) denotes a normal distribution with mean µ and standard deviation σ.

The validation set will be fundamental for optimising the model’s hyperparameters. Its creation
follows a similar procedure to the expanded training set, as detailed in Algorithm 2 (found in Appendix

3.6. Data: Training and Testing 41

A.3). The primary modifications include doubling the standard deviation and generating only a 91-day
set to match the test set duration. As expected, the seed for the random number generator (RNG) used
to sample the synthetic values is different from the expanded training set.

Synthetic data generation algorithms were not applied to the electric vehicle parameters (γEV and
P drive
EV), because they are produced through sampling from distributions that model their real-world be-

haviour.

To enhance the generalisation capabilities of the RL agent, the robust validation set has been de-
veloped. While its creation mirrors the validation set, it presents more challenging scenarios for the
agent and utilises a unique RNG seed value. For instance, there is considerably less solar radiation
and a higher electrical load, as well as a higher power demand of the electric vehicle when outside the
MCES. The alterations upon the validation set creation methodology are simple and thus not merit a
detailed explanation. Here is a list of the main changes:

• Increased the average value of: λbuy, P e
load, P th

load, and P drive
EV .

• Reduced the average value of: λsell, PPV.
• Increased standard deviation of: λbuy, λsell,P e

load, P th
load, PPV.

• Reduced standard deviation of: Pdrive, EV

4
RL Agent Construction

4.1. Introduction
This chapter introduces the building blocks of the RL agent designed to manage the MCES. Some
of these components, such as rewards, DNN architectures, and feature vector configurations, are
treated in this thesis as hyperparameters, each with their own range of possible values, that will
be systematically optimised in Chapter 5. The reward formulation combines independently designed
elements that address the demands of the SDP: minimising grid exchange costs, EV SoC requirements,
safety considerations, and boundary margins. These elements are combined to create distinct versions
of the final reward.

Various feature vector configurations are developed to expand the space of achievable policies
during hyperparameter optimisation. Neural network design is examined through several lenses, with
architecture emerging as a crucial hyperparameter, complemented by comments on the dimensionality
of the network, output processing, and weight initialisation strategies.

Three policy gradient algorithms are presented in order of increasing complexity: Vanilla Policy
Gradient with Critic (VPG-C), Advantage Actor-Critic with generalized advantage estimation (A2CGAE),
and PPO, with a clear documentation of implementation details that, while often overlooked in the
literature, are crucial for reproducibility. Finally, the data collection technique utilised during the agent’s
training in the simulated environment is described.

4.2. Reward Functions
The objective function presented in Section 3.3.1 establishes clear minimisation goals, and the per-
formance metric used to discern clearly between good and bad policies is based upon it (Section 5.2.
Following all the conclusions presented in Section 2.7.1, any reward function that is created to train the
agent must ultimately encode this same objective. In addition, various rewards can be formulated to
achieve the same outcome, to later allow hyperparameter optimisation to reveal which one is better at
maximising performance.

It is worth noting, for clarity, that all reward functions will present an opposite sign to the costs
or penalties they are trying to reduce (as mentioned in Section 2.7.1). The terms penalty and cost
are utilised interchangeably, serving as antonyms to reward. Rewards may be negative, and would
therefore relate to actions leading to higher costs. Figure 4.1 provides a simplified visual representation
of the components that make up the final reward function, which will be detailed below.

42

4.2. Reward Functions 43

Figure 4.1: The diagram illustrates how the RL agent interacts during training with the MCES, which encapsulates the
transition function. The notation aligns with that used in Section 3.3 to formulate the sequential decision problem. Other

relevant symbols include R, denoting the reward function (refer to Section 4.2), and Z, which represents the feature vector
(refer to Section 4.3). The figure consolidates some of the project’s core components, framing their relationships. Dashed lines

indicate that data transformations occur between the connected nodes.

4.2.1. Grid Cost
The initial component of the final reward function attempts to reduce the grid cost term Cgrid within
the objective function. The first implementation computed the reward signal at each timestep t as the
negative value of energy exchange costs with the grid.

rgrid,t = −
(
λbuy,t · P+

grid,t + λsell,t · P−
grid,t

)
·∆t (4.1)

This methodology proved unsuccessful in practice. A potential explanation may be found in the
long-term nature of grid costs, which accumulate over daily or multi-day periods. Optimal results might
require more extended time horizons, since present sacrifices may be needed for superior long-term
outcomes. It is likely that the reward discounting mechanism was insufficient to indicate to the updating
algorithm which timesteps contained the decisions that led to minimised overall grid costs.

The next approach was designed to encode a long-term objective into the agent by computing the
average grid cost over multiple episodes. For any episode e, the reward is non-zero only at the final
timestep:

rΣgrid,e = −
1

x

e∑
i=e−x+1

T∑
t=1

(
λibuy,t · P

i,+
grid,t + λisell,t · P

i,−
grid,t

)
·∆t (4.2)

Where x = 2 was chosen to match the expert’s optimisation horizon. This approach provided
better results in the preliminary tests, as it allowed the agent to learn from the cumulative impact of
its decisions. The sparse reward proved effective through the discounting, advantage estimation, and
normalisation processes applied before the weight updates of the DNN, as explained in Section 2.7.1.
The subscript e is used for clarity, to indicate that it is computed only once per episode.

In an effort to create a denser reward function while maintaining long-term perspective, an arbitrage-

4.2. Reward Functions 44

based approach was developed. This reward signal is computed as:

rarbgrid,t = st ·

{
(λ̄buy − λbuy,t)/λ̄buy if Pgrid,t > 0

(λsell,t − λ̄sell)/λ̄sell if Pgrid,t ≤ 0
(4.3)

Where:

st =
|Pgrid,t|

max(¯|Pgrid|, ϵ)
: Scaling factor based on relative power magnitude

λ̄buy : Mean buying price over a 2-day window
λ̄sell : Mean selling price over a 2-day window
¯|Pgrid| : Mean absolute grid power over a 2-day window
ϵ : Small constant to prevent division by zero (10−1)

This reward function provides immediate feedback, encouraging the agent to buy power when prices
are below average and sell when they are above. The reward is scaled based on the relative magnitude
of the power exchange. Following the same reasoning as for the function rΣgrid,e, the window is defined
to be 2 days.

The arbitrage-based reward (Equation 4.3) would fall under the category of reward shaping (as
defined in Section 2.7.1). The reward signal will encourage the agent to maximise the price differences
between the trading operations and their corresponding 48-hour averages. Although this approach
potentially accelerates policy convergence, it may introduce theoretical constraints on reaching global
optimality. The ultimate proof of its usefulness will be found in the results of the hyperparameter opti-
misation.

4.2.2. EV Penalty at Departure
The second reward component addresses the SoC requirements for the electric vehicle at departure
times. Two distinct reward formulations were developed. The initial approach utilises:

rabsEV,t = −|ξSoCDep,t| = −|SoCEV,t − SoC∗
dep| (4.4)

The value of all EV-focused rewards become non-zero exclusively at departure instances t ∈ Tdep.
While the objective function utilises a quadratic penalty term (ξSoCDep,t)

2, the initial implementation
makes use of an absolute value function. This choice was motivated by the permissive nature of the
quadratic function in the lower range of ξSoCDep,t, since there seems to be a low incentive (i.e. a low
gradient) to exactly match the desired SoC∗

dep.

To follow this line of reasoning, a sigmoid-based reward function was developed to heavily penalise
high values of ξSoCDep,t while providing a steep gradient in the intermediate range. A variety of steep-
ness values and inflection points were considered, trying to balance a steep gradient with too severe
penalties for the agent (which might prevent proper learning). The final coefficients reached are dis-
played below:

rσEV,t =
v(|ξSoCDep,t|)− v(xmax)

v(0)− v(xmax)
− 1 (4.5)

where v(x) is the sigmoid function:
v(x) =

1

1 + ek(x−xmid)
(4.6)

with parameters:

k = 15 : Steepness of the sigmoid curve

xmid = 0.1 : Inflection point.

xmax = SoC∗
dep − SoCmin

EV : Maximum considered |ξSoCDep,t|

4.2. Reward Functions 45

A comparative visualisation is presented in Figure 4.2, showing the characteristics and providing
insight into the possible impact that each EV-focused reward could present. Their values have been
normalised for a fair comparison, as the relative changes across |ξSoCDep,t| carry more significance
than absolute values (which may be modified with specific reward weights). It is worth noting that the
performance metric (Section 5.2) uses the same sigmoid function to evaluate the capacity of the agent
to satisfy the EV charging requirements (Equation 5.2). The sigmoid is used for the same reason in
both cases, to clearly discern between good and bad performances. This similarity could potentially
benefit the agents trained with rσEV,t as a reward, nevertheless, the sigmoid might prove too severe as
a guide to the optimal policy, preventing convergence.

Figure 4.2: Comparison of normalised EV rewards. It becomes clear that the sigmoid is relatively the most severe, focusing on
pushing the agent’s behaviour to the minimum possible |ξSoCDep,t|. xmax = 0.65.

4.2.3. Projection Penalty
The objective function incorporates a penalty term that quantifies necessary projections onto the fea-
sible action space. As elaborated in Section 3.3.1, the projection term of RL will differ from classical
control approaches, where physical constraints are explicitly embedded in the mathematical formula-
tion of the program.

As was detailed in Section 3.4.1, two types of projection mechanisms safeguard the MCES environ-
ment: initial projections verify the action proposed by the agent is within bounds before implementation,
while operational projections adjust state variables post-transition to maintain system constraints.

In Section 3.4.2, the rationale for not utilising safe projection during training was presented. As a
result, both initial and operational projections will take place during training. and by monitoring their
projection distances, a reward function may be constructed. The variables mentioned in the following
functions can all be found in Section 3.3.1.

The reward function addressing projections is separated into two components, one focusing on initial
projections and another on operational projections. In practical terms, this separation simply indicates
that distinct weights are applied when all rewards are combined at each timestep (see Section 4.2.5).
The mathematical formulation of the first reward function is:

4.2. Reward Functions 46

rinitproj,t = −
√
(ξpEV,t)

2 + (ξpBESS,t)
2 + (ξpHP,t)

2 (4.7)

Here, the Euclidean norm of the initial projection distance provides a measure of how far the agent’s
proposed actions deviate from the feasible space. The operational projection reward is formulated as:

ropproj,t = −
1

5

5∑
i=1

βi · ξi,t (4.8)

{βi} = {βBESS, βEV, βTESS, βgrid, βpTESS},

{ξi} = {ξSoCBESS, ξ
SoC
EV , ξSoCTESSξ

p
grid, ξ

p
TESS}

βi represents the normalising weight for each projection term, and the negative sign ensures that
the minimisation of constraints maximises the reward. The final value is computed as the mean of all
terms.

4.2.4. Margin Reward
With the aim of discouraging the agent to approach out-of-bounds states, a new reward was conceived
that penalises decisions that move state variables towards their limits. As defined in Section 2.7.1,
this is a clear case of reward shaping, since the objective function is not influenced by the proximity of
variables to their boundaries. However, it was considered useful to include –as a part of the hyperpa-
rameter optimisation– a margin reward to optionally complement the operational projection reward
described in Equation 4.8. Here is the mathematical formulation:

rmargin = rBESSmargin + rTESSmargin + rEVmargin + rgridmargin (4.9)

Each term represents the margin reward for a specific MCES system component, with the funda-
mental building block for these penalties defined by the function rborder:

rborder(x, xsafe, xlimit, α) =

α ·
1− e4·x̂

e4 − 1
if 0 < d · x̂ < 1,

0 otherwise.
(4.10)

The normalised state x̂ is given by:

x̂ =
x− xsafe
|xlimit − xsafe|

(4.11)

The direction d indicates is defined as:

d = sign(xlimit − xsafe) (4.12)

and:

x : State variable being evaluated
xlimit : Undesirable boundary or constraint threshold
xsafe : Desirable, safe threshold
α : Maximum penalty coefficient

4.2. Reward Functions 47

The directional parameter d is assigned +1 when xlimit constitutes an upper boundary, that is, x
would need to increase from the safe threshold to reach the undesirable threshold. The parameter
assumes −1 for lower boundaries. This configuration enables the function rborder to be used for the
upper and lower bounds.

The function rborder(x) computes a smooth exponential reward as the state variable x approaches
an undesirable boundary xlimit from a desirable state xsafe. This reward diminishes gradually as x nears
the unsafe threshold. Notably, when x resides outside the interval [xsafe, xlimit], no penalty is incurred.

The component-specific margin rewards are defined as follows:

rBESSmargin = rborder(SoCBESS, 1.25 · SoCmin
BESS, 0.95 · SoCmin

BESS, 0.35) +

rborder(SoCBESS, 0.95 · SoCmax
BESS, 1.05 · SoCmax

BESS, 0.35) (4.13)

rTESSmargin = rborder(SoCTESS, 1.25 · SoCmin
TESS, 0.95 · SoCmin

TESS, 0.25) +

rborder(SoCTESS, 0.95 · SoCmax
TESS, 1.05 · SoCmax

TESS, 0.25) +

rborder(|PTESS|, 0.90 · Pmax
TESS, 1.05 · Pmax

TESS, 0.25) (4.14)

rEVmargin = γEV · [rborder(SoCEV, 1.03 · SoCdep, 0.95 · SoCmin
EV , 1.0) +

rborder(SoCEV, 0.97 · SoCmax
EV , 1.05 · SoCmax

EV , 1.0)] (4.15)

rgridmargin = rborder(|Pgrid|, 0.90 · Pmax
grid , 1.05 · Pmax

grid , 1.25) (4.16)

The maximum penalty coefficients (α) are calibrated to balance respect of the boundary with the
danger of over constraining (and thus underutilising) the asset. For example, Pgrid presents a high
margin penalty because it disposes of a considerable range of operation, so margin rewards will be
infrequent. However, approaching the boundary is highly discouraged as Pgrid is dependent on exoge-
nous information and therefore its safety is not guaranteed (see Section 3.4.1 for a deeper explanation).

The EV margin reward is only applied when the vehicle is connected to the MCES, since there is
nothing the agent can do otherwise, this is implemented via the γEV term. As can be seen, the margin
is considering xsafe = 1.03 · SoCdep, that is, the agent will be trained not only to keep the EV battery
within limits, but to keep it near SoCdep. This signal works alongside rσEV,t or rabsEV,t to provide denser
feedback.

The BESS and TESS components’ SoC penalties were kept low to prevent underutilisation. Figure
4.3 displays the BESS margin reward, demonstrating how the signal extends beyond SoCmax

BESS and
SoCmin

BESS. While evident from Equation 4.13, this design choice deserves an explanation: it offers
a smoother gradient for the RL optimisation to follow, and maintains reward consistency across the
boundary regions. Furthermore, these margin rewards contribute to the operational projection rewards
(see Equation 4.8), which are not shaped.

4.2.5. Final Reward
A unified reward is essential for the policy update mechanism (Section 2.7). Therefore, the final reward
must be a combination of all the reward functions previously described in Section 4.2. Since various
functions have been developed to minimise the same term of the objective function (Section 3.3.1),
this will result in diverse variations of the final reward based on different combinations. Here is the
mathematical formulation:

4.2. Reward Functions 48

Figure 4.3: Margin reward for the BESS component of the MCES. Visualisation of Equation 4.13.

rfinal,t = b
(
wgrid · (rΣgrid,e or rarbgrid,t)

+ wEV · (rabsEV,t or rσEV,t)

+ winit
proj · rinitproj,t

+ wop
proj · (r

op
proj,t + (rmargin or 0))

)
where :

b(x) =

−50, if x < −50

x, if − 50 ≤ x ≤ 50

50, if x > 50

(4.17)

Eight distinct final rewards (rfinal,t) have been formulated, arising from the combination of two options
for lowering grid costs, two EV penalty approaches, and the optional inclusion of margin rewards (see
Appendix B.2.2 for full list of combinations). Though additional reward functions were conceived dur-
ing development, computational limitations and the extensive hyperparameter space (including DNN
architectures) made testing of 16 or 32 final reward versions impractical. Hence, all rewards functions
were carefully examined and those that offered the greatest paradigm shift were retained.

From the eight final rewards, two will present no reward shaping, as it was defined in Section 2.7.1:

rfinal,t = b
(
wgrid · rΣgrid,e + wEV · rabsEV,t + winit

proj · rinitproj,t + wop
proj · r

op
proj,t

)
(4.18)

rfinal,t = b
(
wgrid · rΣgrid,e + wEV · rσEV,t + winit

proj · rinitproj,t + wop
proj · r

op
proj,t

)
(4.19)

Boundaries have been established for all final rewards to avoid extreme values from destabilising
the updating procedure, encouraging thus more consistent policy updates. Weights have been intro-
duced to adjust the relative importance of each reward, with various value sets being tested during

4.3. Feature vector 49

hyperparameter tuning (Appendix B.2.3). These weights are different from those utilised in the expert’s
objective function (Section 3.3.1). Additional studies investigating the impact of steepness in Equation
4.5, maximum penalties in margin rewards, or nonlinear versions of Equation 4.8 could prove valuable,
if the computational resources allow to further expand the hyperparameter search space.

4.3. Feature vector
The inputs to the DNNs that constitute the agent are referred to as features. It is likely that these
features will have some overlap with the state variable described in the problem formulation (Section
3.3.2), but this is not a requirement. As long as the agent’s decision is nearly optimal, the features
may be any information considered useful to arrive at that decision. Therefore, selecting the feature
vector introduces significant uncertainty for researchers, and trial and error is a common approach to
the problem. As part of Sub-research Question 2 2.11, this section will explore the creation of feature
vector configurations with access to longer temporal patterns, i.e., state information further in the past.

Figure 4.4: Cross-correlation coefficients for the PEV with the variables shown in the legend.

It seems reasonable to provide the agent with the variables that human experts would use to solve
the problem in a classical manner, or by providing features that are directly related to the objective
function. These decisions may succeed, but it is not guaranteed. Providing only one version of the
feature vector to the DNNs will constrain the space of policies that can be achieved. Although this may
not be the primary limiting factor preventing the agent from learning desirable behaviour, the impact
of a particular feature vector is a priori unknown. To reduce the dependence on trial an error, and
attempting to enhance the basic optimisation results (Section 5.3.2), the approach that was followed
expanding the feature vector configurations available to the hyperparameter optimisation algo-
rithm. Computational power will be used in Section 5.3 to evaluate hundreds of samples and observe
which feature vectors are most effective in allowing the DNNs to abstract useful patterns from the data.

From all the state variable components, 14 are decided to be of possible usefulness to the agent,
which are displayed in Table 4.1. For each of these variables, different time lags are available. Given
that there are 96 timesteps in a day (with 15-minute intervals), the number of possible combinations is
remarkably high, particularly if more than one day of delay is made available. In an attempt to identify

4.3. Feature vector 50

Figure 4.5: Cross-correlation coefficients for the PBESS with the variables shown in the legend.

the most useful time delays, it was decided to conduct a correlation study on the Expert (Section
3.5. This study involved testing the cross-correlation of all 14 variables with the three decisions made
by the expert at each timestep, as well as the auto-correlations of the decisions themselves.

Figures 4.4 and 4.5 are examples of the results obtained from the analysis. It can be noticed
that certain variables exhibit significantly higher correlations than others, with a distinct daily pattern
emerging. The variable P drive

EV , which represents the power demanded by the electric vehicle when
outside the EMS, shows almost no correlation, which is not surprising since the agent’s decisions when
P drive
EV is in effect cannot alter the behaviour of the electric vehicle. The correlation patterns demonstrate

periodic recurrence at approximately 24-hour intervals, even when examining lags exceeding two days.
In order to simplify the feature vector, a maximum lag of one day has been deemed sufficient for the
agent. The combinations of variables P th

load − PST and P e
load − PPV have shown very similar correlations

to P th
load and P e

load, respectively, and will thus be omitted. The variable λsell shows the same cross-
correlations as λbuy because it was synthesised from it, by adding noise and a constant down-scaling.

Table 4.1 shows the time lags exhibiting the highest cross-correlation coefficients. The variable tep
represents the timestep within the episode, normalised to the range 0− 1. All variables will be passed
to the DNNs after the application of z-score normalisation, as recommended by Andrychowicz et al.[4].
To avoid confusion with the state variable (St), the feature vector will be denoted as Zt.

Configuration 2, as shown in Table B.1, represents a feature vector that incorporates all 14 variables
at the final timestep. This simple feature vector is used for the basic hyperparameter optimisation
described in Section 5.3.2. A reduced form of this vector, where the agent’s final decisions and Pgrid
are omitted, is designated as Configuration 1.

Since the feature vector will be treated as an additional hyperparameter –in the Extended optimisation–
, a diverse array of feature vectors has been constructed, displayed in Appendix B.2.1, primarily by
utilising the time lags derived from the analysis. Some options omit the previous decisions to mitigate
the risk of trapping the agent in a feedback loop, where the past influences the present too strongly.
Other options simply reduce the amount of time lags offered. To assess the relative effectiveness of

4.4. Neural Network Design 51

Variable Time Lags (days)

P e
load 0.0, 0.5, 1.0

P th
load 0.0, 0.5, 1.0

PPV 0.0, 0.5, 0.65, 1.0

λbuy 0.0, 0.1, 0.45, 0.65, 1.0

λsell 0.0, 0.1, 0.45, 0.65, 1.0

γEV 0.0, 1.0

Pgrid 0.0, 0.5, 1.0

PBESS 0.0, 1.0

PEV 0.0, 0.5, 1.0

P e
HP 0.0, 0.5, 1.0

SoCBESS 0.0, 0.15, 0.4, 0.8, 1.0

SoCEV 0.0, 0.25, 0.75, 1.0

SoCTESS 0.0, 0.25, 0.5, 0.75

tep 0.0, 0.3, 0.9

Table 4.1: Most relevant variables for the Expert and the time lags with highest cross-correlation coefficients. Corresponds to
the configuration 3 as described in Appendix B.2.1.

using high cross-correlation time lags, a feature vector with randomised time lags has been included
in the set, described as Configuration 6 in Table B.2. Additionally, a feature vector with periodic time
lags, representing the last timestep, hourly patterns, 6-hour patterns, and a complete day of delay, is
also considered and described as Configuration 7 in Table B.2.

It is worth noting that the higher the number of elements in the feature vector, the wider the first layer
of the DNN will be, and so the comparison between the set of possible feature vectors is not strictly
fair. Nevertheless, the impact is minor and conducting a fair comparison is not the primary aim of this
thesis; finding the best set of hyperparameters is considerably more relevant towards the goal.

4.4. Neural Network Design
4.4.1. Dimensions of the Deep Neural Network
It can be argued that the representational power of DNNs stems from their depth, from their ability to
nest a series of linear and nonlinear transformations. Each layer increases exponentially the complexity
of the representable functions [42]. All these layers are trained together, allowing highly abstract con-
cepts to be learned, usually in a hierarchical fashion, where each layer perceives properties of the data
that grow in complexity with the forward pass of the input. When testing the optimal DNN depths on
RL benchmark environments, such as those provided by OpenAI Gym [10], two hidden layers offered
the best performance for Actor and Critic networks [4], and so this becomes an appropriate reference
from which to start testing architectures.

The width of the network, i.e. the number of neurons on each layer, will increase the information
that can be preserved during the forward pass [35]. Wider networks can handle multiple features and
functions in parallel. In more practical terms, Andrychowicz and colleagues [4] discovered that the
Actor’s DNN width is much more sensitive to each environment than the Critic’s. They propose that
the optimal width of the policy – the Actor’s DNN – depends on the complexity of the problem faced

4.4. Neural Network Design 52

by the agent, and thus should be tuned for each case. In regards to the value function approximation
done by the Critic, they find no downside to wider networks, in some cases even making them wider
than the policy. However, narrower networks sometimes outperform wider ones, while also requiring
significantly fewer computational resources to train.

4.4.2. Policy Output
The policy, represented by the Actor, can be thought to reproduce a Gaussian distribution density
function, and in this case it is implemented using two distinct DNNs. The primary network will be
destined for the inference of themean of the action distribution, while the secondary network generates
the standard deviations. The primary network operates via a conventional feed-forward mechanism:
it ingests the feature vector (detailed in Section 4.3) and processes it throughmultiple layers, performing
matrix multiplications and applying nonlinear activation functions.

The secondary network employs a less intuitive approach. Research by Andrychowicz et al. [4]
suggests that there is no significant performance difference between a standard deviation that is de-
pendent on the feature vector of each timestep and one that is independently obtained. In the interest
of implementation simplicity and computational efficiency, a thin network is utilised to produce a global
standard deviation. Although the parameters of this network are updated along with the Actor, the
standard deviation obtained after training will be constant for all states.

As per the recommendation of Andrychowicz et al. [4], the initial standard deviation will be a tune-
able hyperparameter (see Section 5.3.1), and the output of the standard deviation network will be
passed through the softplus function (see Equation 4.20). A transformation of the output is necessary
since the standard deviation must be above zero. Usually, exponentiation is used, but in their research
it is found to perform slightly worse. To guarantee a minimum value for the standard deviation, 0.01 will
be added to the output of the softplus function. 0.01 showed better performance than higher values in
the research of Andrychowicz et al. [4], although the authors affirm that the exact value is not relevant,
unless it is too high.

softplus(x) = log(ex + 1) (4.20)

4.4.3. Weight Initialisation
Andrychowicz et al. [4] most surprising finding was the relevance of the initialization scheme on the
final performance, particularly because it is rarely mentioned in RL literature. They suggest that to
improve performance, the action distribution at the start of training should have zero mean and be as
independent as possible from the observations. To achieve this, the last layer should be initialised with
considerably smaller weights (e.g. 100x reduction). Additionally, the action standard deviation should
start low, and be tuned for optimal performance. Altering the last layer’s weights is much less relevant
for the Critic DNN.

It is important to note that the environments used by Andrychowicz et al. [4] experiments expected
actions in the range -1 to 1. By initialising the network in this manner, they avoided biasing the agent
before training commenced. This scenario is comparable to the environment used in this thesis, where
the range of decisions for the power delivered by BESS (PBESS) or the EV (PEV) has zeromean, whereas
the power range delivered by the heat pump (P e

HP) is positive. Since using the heat pump will always
increase costs, initialising its value close to zero does not introduce problematic bias.

The researchers also found that the specific initialisation algorithm was less significant. They tested
various schemes including Glorot normal, Glorot uniform, He normal, He uniform, LeCun normal, Le-
Cun uniform, Orthogonal, Orthogonal(gain=1.41). Their results indicated that only the ”He” algorithms
performed notably worse. Given all the other algorithms as choices with equal performance, it is de-
cided to select the algorithm following the recommendations of Philipp et al. [42] to avoid exploding
gradients. They advocate initialising the network as a sequence of orthogonal transformations. This
approach should considerably reduce the growth of gradients, as orthogonal matrices keep the norm
of input vectors.

4.4. Neural Network Design 53

4.4.4. Architecture
As an initial approach to DNN architecture, it has been proposed by Andrychowicz et al. [4] that a simple
Multi-Layer Perceptron (MLP) be utilised for the Actor, and another for the Critic. Eachwill have 2 hidden
layers of uniform width. The input layer is designed to accommodate the dimensions of the feature
vector (Zt), while the output layer corresponds to those of the decision vector (xt). This configuration
will be henceforth referred to as Constant Width (CW). As described in Section 2.8, nonlinearity will be
introduced through the implementation of the Tanh function. The weight initialisation will be performed,
following the reasoning of Section 4.4.3, by the orthogonal algorithm, with the weights of the final layer
in the Actor’s network being scaled down by a factor of 100. These specifications will be the standard
for all other architectures, unless otherwise specified.

Figure 4.6: Diagrams of the Actor (left) and Critic (right) DNNs with Constant Width architecture. The Actor consists of two
distinct DNNs, with the standard deviations produced independently from the feature vector’s Zt input. The Critic is utilised for

value estimation, with one output per feature vector input.

A diagram representing the main features of the CW architecture can be seen in the Actor’s πmean

network, shown in Figure 4.6. The state of the environment St is transformed into a feature vector Zt

(see Section 4.3), which is then normalised with the z-score function (see Equation 4.21). As detailed in
the Section 4.4.2, the DNN πmean is given a substantially greater capacity for abstraction in comparison
to πstd, which is characterised by its independence from the feature vector and its single-layer depth.

z =
x− µ
σ

(4.21)

x : Original value
µ : Mean of the original values
σ : Standard deviation of the original values
z : Normalised value

4.4. Neural Network Design 54

More relevant information can be seen in the diagram (Figure 4.6), for example, the layers that con-
stitute both networks are dense, i.e., each neuron in the layer is connected to every neuron in the
previous layer. In addition, the last layer will not have a Tanh activation, so as not to bound the output.
The means and standard deviations for each of the three possible decisions (as described in Section
3.3.3) define three Gaussian distributions, from which samples are drawn to determine the decision for
the respective timestep.

The schematic representation of the inference process within the Critic network, specifically for the
Constant Width architecture, is illustrated in Figure 4.6. This network is similarly subjected to the Tanh
activation function throughout its layers, with the exception of the final layer. It should be noted that, in
contrast to the Actor’s network, the initial weights of the last layer in the Critic’s network are not scaled
down. The output will be a scalar for each timestep, representing the estimated value of the current
state, which will be crucial when updating the Actor’s DNN parameters.

Architecture as a hyperparameter

For the extended hyperparameter optimisation (Section 5.3.3), to increase the ability of the DNN to ab-
stract patterns from the data, various new configurations, or architectures, were introduced. Andrychow-
icz et al.[4] tested the impact of different widths and depths of the Actor and Critic networks (as well
as sharing an MLP for both), and their recommendations were followed for the basic hyperparameter
optimisation (see Section 5.3.2). However, new configurations may prove useful and better the results
obtained with the Constant Width architecture.

Figure 4.7: Diagram of the Actor DNN with Residual architecture. The output of the first dense layer goes through and around
the residual block, which is made up of two dense layers. Both signals are added before entering the last layer of the network.

The architectures were designed with a focus on simplicity, trying to leverage some common designs
to ascertain whether a notable increase or variation in performance could be achieved. Tables B.5 and
B.6 show compact symbolic representations of all the DNN architectures that were used (found
in Appendix B.2.4). The following paragraphs will elucidate the reasoning behind the inclusion of the

4.4. Neural Network Design 55

new configurations.

The Bottleneck design consists on considerably reducing the width of the middle hidden layers. This
reduction in available neurons forces the network to compress the relevant information for decision-
making into a lower-dimensional representation. This style of architecture is commonly used to com-
press data and extract its relevant features, potentially aiding in noise reduction and enhancing the
agent’s generalisation capabilities. However, various risks are associated with restricting the network’s
representation capacity. For instance, important information might be lost, complex relationships within
the data could be overlooked (such as daily patterns), or the model might be prone to underfitting (i.e.,
not having enough capacity to model the data).

Residual networks, first introduced by He et al. [21], proved to be an effective tool at easing the
training of the increasingly deep NNs used for image recognition. These networks are built from residual
blocks, which divide the flow of input information, so that it travels two distinct paths. One path traverses
dense layers (or convolutional layers), while the other bypasses all layers within the block. Both paths
converge at the end of the residual block, where they are commonly concatenated or summed.

Figure 4.8: A diagram of the Actor DNN with 3 Pyramid Branches architecture is presented. This configuration is also available
to the Critic during hyperparameter optimisation, in which case an extra final layer will be added to combine the output of all

branches into just one value.

As could be expected, most of the benefits of this architecture are found when training very deep
NNs, which is not particularly relevant to this thesis. Nonetheless, it was selected as an option due to the
high correlation between input and decisions (described in Section 4.3), as residual networks afford a
more direct route for the feature vector to reach the final layers. Furthermore, residual blocks enable the
network to augment the data rather than completely transform it, which may prove beneficial during the
initial stages of training. Figure 4.7 illustrates the simple architecture designed to implement the concept
of a residual block. Two additional residual architectures were implemented: Deep Residual utilises
two consecutive residual blocks, while Residual + Bottleneck employs the bottleneck configuration on
a single residual block.

Another straightforward modification to Constant Width was to create two deeper architectures with
a uniform width, referred to asMid Constant Width and Deep Constant Width. The aim of this alteration

4.4. Neural Network Design 56

is to increase the available representational capacity of the DNN used for the basic hyperparameter opti-
misation (Section 5.3.2). As detailed in Section 4.4.2, the research recommendations of Andrychowicz
et al. [4] have been followed by implementing a state-independent NN to determine the standard devi-
ation of the agent’s decisions. However, in the interest of comprehensive hyperparameter optimisation,
the CW + Std architecture will connect the feature vector back to the std network (πstd) and provide it
with as many neurons as the mean network (πmean).

The pyramid structure is also employed for various architectures; in this case, the layer width pro-
gressively decreases from input to output, not as abruptly as in Bottleneck. This gradual decrease in
available neurons may guide the network towards reducing signal noise by naturally compressing the
feature vector information. However, choosing the wrong size for intermediate layers could lead to
underfitting or overfitting (i.e., too much capacity in the early layers to model data). As with Bottleneck,
there is also the potential for the loss of useful information.

The final architecture that will be detailed makes use of parallel branches, in particular, one branch
for each of the three decisions the agent has to make. The objective behind this structure is to force the
Actor to specialise in each of the decisions independently. In an attempt to simplify slightly the agent’s
training, the third layer, associated with the power allocated to the heat pump (P e

HP), will employ ReLu
activation functions, including the final layer, since this is the only decision that cannot be negative. It
is important to note that this architectural choice is highly focused on the problem at hand, and it will
likely impact the agent’s ability to generalise if the type or number of decisions were altered.

The parallel architecture might result in an inefficient use of resources, due to redundant patterns
being learned in each branch. However, as previously mentioned, its aim is to expand the parameter
space and allow the hyperparameter tuning algorithm to find themost optimal configuration (see Section
5.3). With a less constrained RL agent, the final design will be determined solely by the empirical
results. Two versions of this architecture were designed, depending on the internal structure of their
branches, that will be referred to as 3 ConstantWidth Branches (3CW) and 3 Pyramid Branches (3PYR)
(represented in Figure 4.8).

Architecture Scaling

Many of the new architectures developed for the extended hyperparameter optimisation (Section 5.3.3)
are considerably different to CW and therefore the amount of parameters available for the same input
width varies considerably. This situation brings forth a possible issue, if a new architecture outperforms
CW it might be attributed solely to an increase in parameter count. In an effort to avoid conflating
the size of the network with the architecture itself, careful adjustments have been implemented
to ensure that the relation between the input width (w) and the number of parameters remains highly
consistent across all architectures, taking Constant Width as the reference.

The size of each DNN has been made solely dependent on the input width (w), the number of input
features (ns), and the quantity of output values (na). The value of ns is determined by the chosen
feature vector (described in Section 4.3), and na will always be 3 for the Actor and 1 for the Critic. As
will be seen, the impact of small variations of ns or na on the total number of parameters is negligible,
and these values shall be fixed at ns = 30 and na = 3 for the remainder of this Section.

As illustrated in Tables B.5 and B.6, the value w′ represents the adjusted width relative to w. It
should be clarified that the input width (w) and the actual width of the network will only coincide for the
CW architecture, the rest will present an adjusted width w′ that guarantees a very similar number of
parameters to that of CW with width w. The input width w will take values between 16 and 512 during
hyperparameter optimisation, defining the relevant range within which the DNN architectures should
maintain similar sizes.

Figure 4.9 displays the relation between w and the number of parameters of each network archi-
tecture. As can be seen, all networks have been altered to follow the growth of CW. They are not
perfect matches, but still sufficiently close so as to rule out DNN size as the culprit for any observed
variation in performance. To compare the different growths with respect to w, all curves were fitted to
a second-degree polynomial function of the form f(w) = aw2 + bw+ c, where a, b, and c are constants.

4.5. Implementation of Policy Gradient Algorithms 57

Figure 4.9: Parametric scaling characteristics of tested DNN architectures as a function of input width (w). The vertical axis
employs a logarithmic scale (base 10) to accommodate the wide range of parameter values. Note the convergence across

architectures for the displayed w range

This quadratic model was found to provide the best fit for the observed data, capturing the nonlinear
relationship between input width (w) and parameter count. This is an intuitive conclusion, because in
a fully connected (dense) layer, the number of parameters is approximately proportional to the product
of the input and output dimensions, and both scale linearly with w. The layer connecting the feature
vector (size ns) with the next layer (of size w) will therefore be represented in the first degree term of
the approximation, since ns is unrelated to w.

The resulting polynomial approximations and their associated coefficients of determination (R2) for
each DNN architecture are presented in Appendix B.2.4, allowing for a quantitative comparison of the
parameter growth rates.

4.5. Implementation of Policy Gradient Algorithms
reinforcement learning algorithms are often identified by short acronyms referring to specific loss func-
tions or data collection methods, yet these represent only two relevant parts of the implementation.
Unfortunately, the hidden low-level implementation choices may be crucial to the algorithm’s good per-
formance [4].

To investigate such factors, Andrychowicz et al. [4] conducted extensive evaluations of over 50
decisions taken during implementation. Their findings differentiate case-specific decisions from more
stable choices. When implementing the algorithms, the former will be fine-tuned whenever possible
(see Section 5.3), while the latter will be selected based on their recommended values.

4.5.1. Vanilla Policy Gradient with Critic (VPG-C)
The Vanilla Policy Gradient (VPG) algorithm, while often conflated with the REINFORCE algorithm [65]
discussed in Section 2.7.2, represents a broader category of methods with diverse implementations,

4.5. Implementation of Policy Gradient Algorithms 58

yet all usually under the same name. VPG emerged as a practical enhancement to REINFORCE,
addressing the high variance of policy gradient methods, improving learning stability. The particular
approach taken to variance reduction depends on each implementation, but all approaches maintain
the core concept of direct policy optimisation (by following the gradient of expected return).

For this version of Vanilla Policy Gradient (VPG), themost significant addition is the Critic, a DNN
tasked with estimating the value function. The inclusion of the Critic allows the loss function to utilise an
N-step advantage estimator (see Section 2.7.1), assigning weights to guide policy updates rather than
relying on the Reward-to-go of REINFORCE [65]. For the sake of clarity, the current implementation
will be henceforth referred to as VPG with Critic (VPG-C).

Thanks to the theory presented in the literature review (Section 2.7), the equations used to imple-
ment reward processing (Section 2.7.1) have already been discussed. The basis for Actor and Critic
losses has also been presented (Sections 2.7.2 and 2.7.3). Unless mentioned otherwise, the optimal
decisions described in those sections have been implemented (e.g., the Critic loss is always evaluated
using the MSE).

This classic algorithm has been improved by normalising advantages per update batch, which pro-
vides more stability and robustness, although it seems to improve performance only slightly [4]. After
the advantages are estimated for a whole episode, the samples are shuffled and divided into batches.
The data collection process itself, which is independent of VPG-C, can be found in Section 4.6. The
loss function for a batch (size B) is computed as follows:

Lπ(θ) = −
1

B

B∑
i=1

[
ÂN−step

i logπθ(xi|Si)
]

(4.22)

It is worth noting that the logarithm of probabilities is always upper-bounded by zero. Therefore,
when using SGD (see Section 2.7.4) to minimise the loss function, the sign of the log probabilities
must be inverted (as shown in Equation 4.22). This will result in positive advantages being moved
towards zero, by increasing the probability of the actions that led to them. Conversely, the loss associ-
ated with negative advantages can only beminimised if pushed towards−∞, making the corresponding
actions become less likely.

There are dozens of implementation details left, but they are not specific to VPG-C, decisions like the
number of layers (Section 4.4.1), the type of optimiser, or the minimum limit for the standard deviation,
can be altered without interfering with the VPG-C algorithm. Most of these hyperparameters, tunable
or not, can be found in Section 5.3.1.

The implementation is written in the Julia programming language [8], which offers high performance
computing without sacrificing productivity, and the initial structure of the algorithm comes from the RL
Package in Julia [61]. The repository of SpinningUp [1] has also proved useful to connect theory and
code, although the final implementation has suffered some modifications. The complete source code
employed to address the research objectives of this thesis is accessible at: https://github.com/Victor-
Andres-RdeTrio/RL4MCES

4.5.2. Advantage Actor Critic with Generalized Advantage Estimation (A2CGAE)
The research paper by Mnih et al. [39] presented the Asynchronous Advantage Actor-Critic (A3C),
which was later simplified in a synchronous version and termed A2C. The fundamental structure of
A2C bears many similarities to VPG-C, but it incorporates several improvements that merit a distinction
between the two, such as the use of a Generalized Advantage Estimator, gradient clipping, or the
addition of an entropy term to the loss function.

The implementation adopts a Generalized Advantage Estimator instead of the N-step estimator
from the VPG-C (see Section 2.7.1), and given that Mnih et al. [39] only briefly mentioned GAE as a
potential improvement in their original A3C paper, the algorithm needs to be referred to by a different
name: A2CGAE. The decision to implement GAE aligns with the goal of maintaining computational

https://github.com/Victor-Andres-RdeTrio/RL4MCES
https://github.com/Victor-Andres-RdeTrio/RL4MCES

4.5. Implementation of Policy Gradient Algorithms 59

resource efficiency, since GAE values can be computed in linear time for all states within an episode
[4].

Another major addition from A2CGAE when compared to VPG-C is the incorporation of an entropy
term in the loss function to encourage exploration, which prevents premature convergence to subopti-
mal very deterministic policies. The approach is known as entropy regularisation.

Lπ(θ) = −
1

B

B∑
i=1

[
ÂGAE

i logπθ(xi|Si) + wentropy ·H(πθ(Si))
]

(4.23)

Equation 4.23 represents the loss function that will be used to estimate the gradients for the Actor
update; the advantage will also be normalised (see Section 4.5.1). H(πθ(Si)) is the entropy of the
probability distribution provided by the policy πθ for every state Si, which should be reminded, will be
replaced in any practical implementation by the feature vector Zi (see Section 4.3). wentropy is
a hyperparameter controlling the strength of entropy regularisation. As can be seen, the sign of the
entropy is also inverted, since the minimisation of the loss should be aided by the increase in entropy.

Entropy quantifies the expected information content of a distribution, and its basic formula for the
continuous case isH(X) = Ex[I(x)] = −

∫
p(x)·log p(x)dx. Since the output of the policy is a Gaussian

distribution, the operation performed to obtain the entropy is:

H(X) =
1

2
log(2πeσ2) (4.24)

The Critic of A2CGAE is trained to minimise the loss detailed in Equation 2.14, which applies to all
algorithms that use GAE. Unlike in many A2C implementations [19, 64, 23] the Critic update is done
independently from the Actor, this slightly complicates the implementation to improve readability and
modularity in the code, since two loss functions are used. It should also be noted that this is an episodic
implementation of A2C, where all the updating takes place between episodes.

After obtaining the gradients for both the Actor and the Critic, they will be clipped according to the
chosen maximum norm allowed for the gradients. This is another improvement upon VPG-C.

Comments on parallelisation

Apart from the use of GAE, this particular implementation of A2CGAE diverges from the standard A2C
in another significant aspect: it does not utilise parallel environments for agent training. This deviation
could challenge the classification of the algorithm as a true A2C. However, the decision to retain the
name of A2C comes from the considerable resemblance of the code to common A2C implementations
[23, 19].

It was decided not to train with multiple environments for various reasons, although the most crucial
of them was the high consumption of computational resources. Results from Andrychowicz and
colleagues [4] point to the fact that parallelisation leads usually to a marked decrease in performance
across some environments. They attribute this phenomenon to two main factors: firstly, the reduction
in the size of experience chunks used for agent updates, and secondly, the introduction of early value
bootstrapping, which likely adds considerable bias to the learning process.

Andrychowicz et al. affirm that parallel environments accelerate wall clock time at the cost of sam-
ple efficiency [4]. However, parallelisation is a powerful tool and its use should be considered when
resources allow it, since it increases considerably the number of transition samples, providing robust-
ness.

4.5.3. Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO), introduced by Schulman et al. [51], represents a significant ad-
vancement in policy gradient methods. PPO builds upon the foundations laid by the TRPO algorithm

4.6. Data Collection 60

[52], with the aim of simplifying implementation, improving performance, and reducing computational
cost [1]. In particular, the PPO-Clip algorithm is chosen, as it is simpler than PPO-Penalty and much
more widely used.

As in A2CGAE, the advantage will be estimated with GAE and then normalised per update batch.
Entropy regularisation will also play a role in the loss function.

ri(θ, θold) =
πθ(xi|Si)

πθold(xi|Si)
(4.25)

Let ri = ri(θ, θold) and clipi = clip(ri, 1− ϵ, 1 + ϵ):

Lπ(θ) =
1

B

B∑
i=1

[
min

(
ri · ÂGAE

i , clipi · ÂGAE
i

)
− βH(πθ(Si))

]
(4.26)

The ratio ri represents the first-order attempt from PPO to approximate the Kullback-Leibler (KL)
divergence between the new and old policies, which technically would be the expected value of the
log likelihood ratio. A higher ri implies that the action xi has been made more likely when the agent
is faced with Si. The use of a ratio introduces the idea of a relative update, absent in the previous
algorithms. Now, if an action is desirable –produces high positive advantage– its probability will be
compared against the behavioural policy, not in absolute terms. To prevent this idea from creating an
ever diverging policy, the clipping threshold (defined by ϵ) is used, regularising the NN. For optimal
performance, it is recommended by Andrychowicz et al.[4] to tune the clipping threshold, with ϵ = 0.25
being a good starting value.

In developing a Julia implementation of PPO (for the reasons stated in Appendix B.5), the focus
was on incorporating only components with documented performance benefits, avoiding unnecessary
complexity. This approach led to the exclusion of certain PPO features: the value loss clip (i.e. clipping
of the Critic’s loss function) was excluded, as [4] showed it hurt performance for any clipping threshold,
while learning rate decay showed insufficient evidence of consistent benefits.

Other common features, like orthogonal weight initialisation, or mini-batch (subsets of episodic ex-
perience) policy updates, were already included in the previous algorithms (see Section 4.4.3). PPO
can also be used in multiple environments in a synchronous manner, but this part of the implementation
was avoided for the reasons exposed in Section 4.5.2.

As shown in Equation 4.26, the key innovation of PPO lies in its elegant solution to a crucial
challenge in policy gradient methods: what is the correct step size? While earlier approaches made
us of techniques such as adaptive learning rates and gradient clipping to control the magnitude of
the update –techniques that PPO retains– Schulman et al. [51] thought to clip the loss function itself,
limiting it to a trust region.

With this trust region in place, updates cannot move the new policy too far from the behavioural
one (which collected the experience). TRPO [52] addressed this issue using second-order methods,
since it not only calculates the gradient, but an approximation of the Hessian as well, taking curvature
into account. This technique is computationally very costly, so PPO was developed to achieve similar
constraints with first-order methods.

For the interested reader, the current implementation of PPO benefited from Huang and colleagues’
detailed analysis [24], which reveals some implementation decisions omitted from the original PPO
paper [51].

4.6. Data Collection
Each optimisation loop of the policy takes place over a set number of timesteps, which is defined by the
episode length. The duration of each timestep is set before training begins. As noted in [4], the episode

4.6. Data Collection 61

length can have a quite significant impact on performance, so it can also be adjusted before the start
of training (see Section 5.3.1). Going through the entire episode multiple times is very beneficial for
performance and sample complexity, while requiring little extra memory. Each of these passes is
called an epoch.

There are several ways to divide and process the data, but according to Andrychowicz et al. [4],
the best performing method is ”Shuffle transitions (recompute advantage)”. In each epoch, the ad-
vantages will be recomputed, since the Critic is being updated along with the Actor. Then, each
individual transition is randomly assigned to a subdivision of the episode data called a batch. When
the optimisation process goes through all these batches, one epoch is completed. This approach is
implemented across all algorithms in this study.

5
Hyperparameter Optimisation and

Agent Evaluation

5.1. Introduction
The development of effective RL agents for energy management relies on three interconnected compo-
nents: performance metrics, hyperparameter optimisation, and agent selection. The chapter first
introduces comprehensive performance metrics that encompass grid operational costs, EV charging
demands, and safety constraints. These metrics, designed to capture the SDP’s objectives, are crucial
for agent comparison.

The hyperparameter optimisation phase employs these metrics to systematically explore the hy-
perparameter space using the BOHB [17] algorithm. This exploration encompasses both basic and
extended hyperparameter sets: the initial phase examines fundamental algorithm parameters across
three stochastic policy gradient implementations (VPG-C, A2CGAE, and PPO), yielding distinct hy-
perparameter profiles, i.e. highest performing configurations of hyperparameters (κ). The following
phase explores an extended parameter space including neural network architectures, reward function
formulations, and feature vector configurations, resulting in additional profiles (Ω).

The final stage centres on obtaining optimal policies through structured validation. For each policy
gradient algorithm, multiple agents are trained with their respective hyperparameter profiles and distinct
random seeds. The top-performing agents are then evaluated on validation sets that test their gener-
alisation capabilities. This pipeline is represented as a diagram in Figure 5.1. Once the pipeline has
been followed for all policy gradient algorithms, six best RL agents emerge, the final step is to select
the highest performing one (Section 5.4.2), which is defined as the top RL agent (TRLA).

5.2. Performance Metrics
Before exploring hyperparameter optimisation in Section 5.3, it is essential to define the performance
metric, which evaluates and guides the hyperparameter selection process. Algorithms like BOHB [17]
(see Appendix B.1) will use this metric to efficiently allocate computational resources to promising
hyperparameter configurations. As outlined in Section 2.7.1, the performance metric must accurately
capture the core elements of the objective function (see Section 3.3.1) to ensure alignment with the
SDPs goals.

The objective function of the RL agent is made up of three distinct components (see Equation 3.5),
which will be referred to as the grid cost, EV penalty and projection penalty. Although combining
these terms through simple addition might appear straightforward, this approach still requires careful

62

5.2. Performance Metrics 63

Figure 5.1: Simplified diagram representing the pipeline established by Section 5.3.4 and 5.4 to select the best performing
agents for all policy gradient algorithms.

consideration of their relative weights. A significant problem arises from the ambiguous nature of this
metric, as the same value could be achieved through different means. For instance, an agent might
artificially reduce the grid cost by simply avoiding EV charging altogether.

For this reason, the final evaluations of performance will compare the objective function terms indi-
vidually (as in Sections 5.4.2 and 6.2). However, for the purpose of hyperparameter optimisation, the
performance metric must provide one value to each result.

As will be shown in this Section, all the performance metrics come together in the final metricMperf
utilises nonlinear criteria for each of the objective function components. This design choice improves
discrimination between agent performances. In other words, a slight improvement in one of the terms
causes a relatively bigger –nonlinear– impact on the final performance.

5.2.1. Grid Cost Metric
The average daily cost of exchanging energy with the grid (Cgrid, day) will be compared with the daily
average of the Expert. The grid cost performance metric (Mgrid) uses a sigmoid function to normalise
the metric between 0 and 1, where higher values indicate better performance through reduced grid
costs.

Mgrid = 1− 1

1 + e−s(Cgrid, day − m)
(5.1)

with parameters:

s = 1 : slope
m = 14.5 : inflection point

The midpoint was chosen at 14.5 because the expert performs with Cgrid, day ≈ 14, which would
provide a value ofMgrid = 0.6225. The expert’s performance does not correspond toMgrid = 1 because
better results of Cgrid, day may be obtained, although likely at the cost of worse performance in the other
components of the objective function.

5.2. Performance Metrics 64

5.2.2. EV Penalty Metric
The electric vehicle performance metric is based on the deviation from the desired state of charge
(SoC∗

dep) at departure times (tdep). The EV penalty metric (MEV) uses a normalized logistic function to
evaluate these deviations.

MEV =
1

D
∑

t∈Tdep

v(|ξSoCDep,t|) (5.2)

Where Tdep is the set of all departure times, D denotes the total number of days, and ξSoCDep,t repre-
sents the deviation from the desired SoC at departure time t. The function v(x), defined in Equation 4.6,
evaluates each departure event independently. A value ofMEV close to 1 indicates consistent achieve-
ment of desired charging levels, while values approaching 0 are associated with significant failures to
meet SoC∗

dep. A perfect score will be obtained when no penalties are incurred, that is, when ξSoCDep,t
is always zero.

5.2.3. Projection Penalty Metric
The performance metric is always used on agent’s whose output is filtered by the safe projection (de-
fined in Section 3.4.1), as this will be the setup after deployment. Since the aim is to find the RL
agent that optimises real-world performance, the projection distance applied by the safety layer has
been excluded from the performance metric. In other words, projection distance is only relevant during
training (Section 3.4.2), as it helps to reach a final safer policy.

The only concern with regard to projections in real-world performance is that state variables may
exceed their bounds even after the safe projection on the agent’s decisions. Such situations, as ex-
plained in Section 3.4.1, may arise for variables dependent on unknown future (exogenous) information.
Therefore, ξpBESS, ξ

p
EV, ξ

p
HP and ξSoCBESS will always remain null if the safe projection is being used. How-

ever, ξSoCEV may be non-zero due to its dependence on P drive
EV , as the EV’s power consumption outside

the MCES might push its SoC out of bounds. The average magnitude of ξSoCEV will be related toMEV.

To evaluate the severity of the possible operational projections, the metricMproj is defined:

Mproj = min
i∈I

(
e−Ω · ξi,day

)
(5.3)

I = {ξSoCEV , ξSoCTESS, ξ
p
grid, ξ

p
TESS}

Where Ω = 10 is the penalty coefficient, and ξi,day represents the daily average of the constraint viola-
tions. The meaning of each of the components of I can be found in Section 3.3.1.

The exponential form of each component ensures that larger violations are penalized more severely.
By taking the minimum value among all the terms, the metric identifies the most critical violation in the
system.

5.2.4. Final Metric
The three metrics described previously will be combined into a comprehensive final metricMperf. Safety
considerations, represented by the projection metric Mproj, have been established as the first priority.
The motivation is simple, if even after the safe projection, there are significant operational projections,
the agent cannot be deployed in a real-world scenario. The second priority is the satisfaction of the
desired state of charge (SoC∗

dep) for the electric vehicle, as grid cost reductions become irrelevant if the
agent fails to charge the EV to accomplish them.

The first step in obtainingMtotal is multiplyingMproj withMEV, which will force them both to increase
together to obtain a reasonably high product. The base component of the final metric is calculated as:

Mbase =Mproj ·MEV (5.4)

5.3. Hyperparameter Optimisation 65

Figure 5.2 shows a simplified version of Mbase, where the values of ξi,day and ξSoCDep,t are trans-
formed by the underlying functions that defineMproj andMEV. Then, added toMbase will be a variable
dependent on grid cost performance Mgrid, which will only contribute if minimum requirements of the
other metrics are achieved.

If MEV ≥ 0.65 ∧Mproj ≥ 0.6 :

Mbonus = (MEV − 0.65)(1 +Mgrid) +

(Mproj − 0.60)(0.25 +Mgrid)

Otherwise:

Mbonus = 0

The final metric is then computed as:

Mperf =Mbase +Mbonus (5.5)

The bonus term is defined to reward incremental improvements above the chosen thresholds, with
improvements in MEV weighted more heavily than those of Mproj. The relation amongst the weights
emerged from empirical observations in preliminary tests, where it proved considerably easier to in-
creaseMproj thanMEV.

Figure 5.2: Simplified representation of Mbase computation, incorporating a single generic projection component (ξi,day) as
well as one daily EV penalty term (ξSoCDep,t).

5.3. Hyperparameter Optimisation
The effectiveness of deep learning models is heavily dependent upon their internal hyperparameters.
This dependency has been increasing over time, as the growth in computational capabilities has en-
abled the creation of larger models with more adjustable properties and resulted in higher training

5.3. Hyperparameter Optimisation 66

expenses [17]. Even though the training of agents in this thesis is not expensive and can be done with
a simple laptop, the difference in performance that is achieved by a correct selection of hyperparame-
ters is more than remarkable. This fact becomes even more evident when one considers that it is not
only the internal hyperparameters of the updating algorithm that can be adjusted, but also the DNN
architectures, reward functions, and feature vectors.

To navigate this vast space of possibilities, novel hyperparameter optimisation algorithms needed to
be developed. These algorithms are required to be scalable, robust, highly parallelisable, efficient, and
offer superior performance. A particularly noteworthy example, especially for its simplicity, is the BOHB
algorithm, developed by Falkner et al. [17]. This algorithm was used to find the best combinations of
hyperparameters for all the algorithms used in this thesis, and therefore it will be briefly explained in
Appendix B.1.

In a rather influential paper by Henderson et al. [22], a section is devoted to discussing the influ-
ence of hyperparameters. The authors express concern that their impact, along with other sources of
uncertainty such as random seeds or code implementations, is so significant that it may obscure or
artificially inflate progress in the development of RL algorithms. One of their recommendations, for the
sake of reproducibility, is that researchers should ”report all hyperparameters, implementation details,
experimental setup, and evaluation methods” [22]. This thesis is not trying to push the boundaries of
the RL landscape, but this suggestion will be followed, so that, in combination with the code base, it
becomes perfectly clear how the results were obtained.

In the following subsections, the available hyperparameters will be first described, then they will be
accompanied by the ranges of values allowed during optimisation. Finally, the methodology followed
to reach the best-performing configuration of hyperparameters will be presented in Subsection 5.3.4.

5.3.1. Hyperparameter Set
Hyperparameters are defined prior to training and will influence how the training itself takes place. From
a wealth of possibilities, only a few hyperparameters can be optimised. Even with the use of advanced
algorithms like BOHB [17], the incorporation of additional hyperparameters expands the dimensionality
of the search space, leading to increased demands on computational resources.

A collection of hyperparameters will be referred to as a hyperparameter set. Each element within
this set will have an associated hyperparameter range–a discrete array of possible values that the
parameter may assume. The aggregation of all hyperparameter ranges for a given hyperparameter set
forms the hyperparameter search space. This search space encompasses all possible configurations
of hyperparameters and serves as the domain over which optimisation algorithms operate to identify
an optimal combination of parameter values, which will be referred to as a hyperparameter profile.
In this study, two major types of hyperparameter optimisations are carried out: the basic optimisation
and the extended optimisation. Each optimisation will utilise a distinct hyperparameter set.

Based on the comprehensive large-scale analysis conducted by Andrychowicz and the Google
Brain Team [4] two hyperparameter sets were designed: a basic and an extended one. The extended
set supersedes the basic, exploring new hyperparameters or broadening existing ranges. The rele-
vant information regarding each hyperparameter can be found in their related sections, which will be
referenced below. The extended hyperparameter set elements are listed below, accompanied by brief
descriptions (their ranges will be presented afterwards).

• Discount Factor (γ): A crucial variable that governs the relative importance of future rewards in
the decision-making process. Discussed in Section 2.7.1.

• GAE λ: Controls the trade-off between bias and variance in the Generalized Advantage Estima-
tion. Discussed in detail in Section 2.7.1. This parameter is not used in VPG-C.

• Initial Standard Deviation (σinit): The initial value of the standard deviation for the policy output,
which can have a significant impact on exploration and convergence. See Section 4.4.2

5.3. Hyperparameter Optimisation 67

• Entropy Loss Weight (wentropy): Balances the exploration-exploitation trade-off by encouraging
the policy to increase or decrease the entropy of its output. The implementation of entropy reg-
ularisation was described in Section 4.5.2. Not used in VPG-C. Andrychowicz et al. [4] found
limited benefits from entropy regularisation in their research, suggesting that PPO might make it
unnecessary. However, preliminary tests in this work revealed interesting results - both increasing
and decreasing entropy could enhance performance. Therefore, the entropy loss weight range
includes positive, negative and zero values, to explore all possibilities.

• Actor and Critic Learning Rates (αA, αC): The step sizes for the parameter updates of the
Actor and Critic networks when using the AdaBelief optimisation algorithm. Discussed in Section
2.7.4.

• Clipping Threshold (PPOϵ): Limits the magnitude of policy updates during training, providing
stability. Discussed in detail in Section 4.5.3. Exclusive to the PPO Algorithm.

• Years of training (ny): The number of times that the agent is trained on to the same year of data
(i.e., the expanded training set).

• Update Frequency (υ): The number of policy updates that will take place within each episode,
with higher values resulting in reduced batch sizes per update. Episode subdivision methodology
was outlined in Section 4.6.

• Actor and Critic Architectures (ψA, ψC): Defines what DNN architecture is used for learning the
policy. All the available architectures are defined in Tables B.5 and B.6, with the context provided
by Section 4.4.4.

• Activation Functions (ςA, ςC): The non-linear transformations applied to the network’s hidden
layers. Considering the analysis presented in Section 2.8, Tanh was selected as the activation
function for the Basic Range (see Table 5.1), as it has shown to perform well [4]. However, to
further explore potential performance improvements, Mish will be introduced as an additional
activation function for the Extended Range (see Table 5.2).

• Actor and Critic DNN Width (widthA, widthC): Determines the width of the DNN as defined in
Section 4.4.4.

• Feature Vector (Z): Selects from the range of feature vector configurations. They are described
in Section 4.3, with a comprehensive enumeration in Appendix B.2.1.

• Reward Function (R): The range of possible combinations of the available rewards. The context
for reward design can be found in Section 4.2, with the combinations formalised in Equation 4.17.

• Reward Weights (Rw): The weights assigned to each of the final reward components. The list
of options can be found in Appendix B.2.3.

Following the methodology employed by Andrychowicz et al. [4], the hyperparameter ranges in
this study have been defined as discrete sets rather than continuous intervals. Limited computational
resources also motivated this approach.

Several hyperparameters maintain fixed values throughout the optimisation process, mostly those
found to be uncorrelated with performance improvements [4]. The minimum standard deviation is
maintained at 0.01, as explained in Section 4.4.2. A timestep duration of 15 minutes was selected to
match the highest resolution of real-world data (Section 3.6. Adjustment of episode length was ini-
tially considered significant (Section 4.6), but preliminary experiments showed its variation had minimal

5.3. Hyperparameter Optimisation 68

impact on results despite significantly increasing the hyperparameter search space. Thus, it remains
set at 96 timesteps, representing 1 day in the MCES environment.

The gradient clipping threshold (discussed in Section 2.7.4) is established at 0.5. Andrychowicz et
al. [4] affirm that limiting the gradient norm improves performance, regardless of the specific threshold
used. The authors also recommend going over the collected experience more than once, which has
been implemented by performing 3 epochs over each training episode.

Hyperp. Range

γ 0.6, 0.8, 0.9, 0.95, 0.99, 0.999

λ 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99

σinit 0.1, 0.5, 1.0, 2.0

wentropy -0.01, 0.0, 0.01

αA 3× 10−5, 1× 10−4, 3× 10−4, 1× 10−3, 3× 10−3

αC αA

υ 1, 2, 3

PPOϵ 0.1, 0.2, 0.3, 0.5

widthA 16, 32, 64, 128, 256, 512

widthC 128

ψA, ψC Constant Width

ςA, ςC Tanh

ny 3, 6

Z 2 (Table B.1)

R Equation 4.18

Rw 1 (Table B.4)

Table 5.1: Basic hyperparameter set. See Section 5.3.1 to find context and explanations on all the presented hyperparameters.

5.3.2. Basic Range
Table 5.1 displays the range for all the elements of the basic hyperparameter set. The range for hy-
perparameters that will only be adjustable in the extended hyperparameter set is also provided, with
the intention of delineating the search space permitted to the optimisation algorithm (BOHB [17]). No-
tably, the Critic learning rate (αC) will be the same as that of the Actor, as they are not distinguished
by Andrychowicz et al. [4].

5.3.3. Extended Range
The basic hyperparameter set was expanded for several reasons. Firstly, augmenting the number and
range of hyperparameters allows the model to represent a wider scope of functions or more complex
relationships within the data, mitigating the risk of underfitting. Additionally, a larger search space
that explores DNN architectures, advanced feature engineering, and alternative reward functions may
enable the discovery of higher-performing model configurations. Furthermore, the increased flex-
ibility provided by the extended set can help balance the model’s complexity, such as the number of
parameters or required input features, and its generalisation capabilities, thereby providing a path for
simpler models to achieve competitive performance without overfitting to the validation set.

5.3. Hyperparameter Optimisation 69

Table 5.2 outlines the available ranges for each hyperparameter in the expanded set. As can be
seen, the Critic learning rate (αC) has been made independent of the Actor’s. It should be pointed out
that the CW + STD neural architecture (see Section 4.4.4) is specific to the Actor, as it is meant to test
the effects of connecting the standard deviation network to the feature vector, which is only relevant for
decision-making.

Hyperp. Range

γ 0.6, 0.8, 0.9, 0.95, 0.99, 0.999

λ 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99

σinit 0.1, 0.5, 1.0, 2.0

wentropy -0.01, 0.0, 0.01

αA 3× 10−5, 1× 10−4, 3× 10−4, 1× 10−3

αC 3× 10−5, 1× 10−4, 3× 10−4, 1× 10−3, 3× 10−3

υ 1, 2, 3

PPOϵ 0.1, 0.2, 0.3, 0.5

widthA 16, 32, 64, 128, 256, 512

widthC 16, 32, 64, 128, 256, 512

ψA All architectures (Tables B.5, B.6)

ψC All architectures except CW + STD (Tables B.5, B.6)

ςA Tanh, Mish

ςC Tanh, Mish

ny 3, 6

Z 1 - 9 (Tables B.1, B.2, B.3)

R Equations 4.18,4.19, B.2 - B.7

Rw 1 - 3 (Table B.4)

Table 5.2: Extended hyperparameter set. See Section 5.3.1 to find context and explanations on all the presented
hyperparameters.

5.3.4. Procedure
The hyperparameter optimisation will be conducted in two phases. First, the basic hyperparameter
set (see Section 5.3.2) will be explored with each of the policy gradient algorithms implemented in
Section 4.5 (VPG-C, A2CGAE, and PPO), yielding three distinct hyperparameter profiles (Section
5.3.1), denoted by κ. Subsequently, the extended hyperparameter set (see Section 5.3.3) will be used
as the search space, resulting in an additional three hyperparameter profiles, which will be denoted as
Ω.

The process to determine the hyperparameter profile for each policy gradient algorithm will follow
the following procedure, which can be visualised in Figure 5.3:

1. The hyperparameter set (Section 5.3.1) is defined and serves as the input for the BOHB algorithm
[17] (see Appendix B.1 for more information).

2. BOHB will sample the hyperparameter search space.

3. The sampled values for the hyperparameters are used to train three policies, each with weights

5.3. Hyperparameter Optimisation 70

initialised based on different random seeds.

4. The policies will be trained using the expanded training set (Section 3.6.1) and the simple projec-
tion (as explained in Section 3.4.2).

5. Once the training is completed, all three agents are tested independently with the validation set
(Section 3.6.1). For these tests, the safe projection is used.

6. The validation runs are evaluated according to a specified performance metric (Section 5.2).

7. The average performance of the three policies is stored and used to guide BOHB in its following
hyperparameter sample.

This iterative process of sampling and evaluation will be repeated until a sufficient number of samples
have been tested, afterwards the best performing sample becomes the hyperparameter profile for
that algorithm. To account for the stochasticity in model training that emerges from random weight
initialisation, the policies were evaluated using three distinct random seeds values. Although a more
comprehensive evaluation would ideally employ a larger number of seeds, computational limitations
prevented the analysis of more than three seeds.

Figure 5.3: Visual representation of the hyperparameter optimisation process described in Section 5.3.4. Each sample of the
hyperparameter set produces a hyperparameter configuration denoted in the diagram with λ. The sampling will take place in
parallel threads until the predefined number of samples is reached, information is shared amongst threads. As shown, the

performance metric used is Mperf (Section 5.2). The hyperparameter configuration at the top of the ranking when the
optimisation is finished will be defined as the hyperparameter profile.

The selection of the hyperparameter profile is based on the average policy performance, which
is assumed to serve as a reliable indicator of the hyperparameter set’s capabilities. This heuristic
prioritises robustness, focusing on consistently high-performing hyperparameters. As will be detailed

5.3. Hyperparameter Optimisation 71

in Section 5.4, the best-performing policy is ultimately identified at the extremes of the performance
distribution, implying that the optimal policy may be an outlier. While robust hyperparameter profiles
will reduce the spread of performance among the resulting agents, an intriguing avenue for future
research would be to explore the impact of prioritising hyperparameter profiles with the most distant
performance outliers. Given the limited computational resources available, the decision to prioritise
robustness was a prudent one.

5.3.5. Results
The optimisation procedure laid out in Section 5.3.4 was applied across all the implemented policy
gradient algorithms (Section 4.5). The basic hyperparameter profiles, designated by the subscript
κ in Table 5.3, were derived with the BOHB algorithm from 500 samples of possible configurations.
The extended hyperparameter profiles were found after testing 600 samples by BOHB, and they are
indicated by the subscript Ω, as can be seen in Table 5.3.

Hyperp. VPG-Cκ A2CGAEκ PPOκ VPG-CΩ A2CGAEΩ PPOΩ

γ 0.6 0.99 0.999 0.8 0.99 0.6

λ - 0.9 0.95 - 0.9 0.99

σinit 1.0 0.5 2.0 2.0 2.0 1.0

wentropy - -0.01 0.0 - 0.01 0.0

αA 1× 10−3 3× 10−5 1× 10−4 1× 10−4 3× 10−4 1× 10−3

αC 1× 10−3 3× 10−5 1× 10−4 1× 10−4 1× 10−4 3× 10−4

υ 3 2 3 1 2 3

PPOϵ - - 0.3 - - 0.1

widthA 128 512 256 64 16 64

widthC 128 128 128 64 512 32

ψA CW CW CW 3PYR 3CW 3CW

ψC CW CW CW RES DCW BOT

ςA Tanh Tanh Tanh Mish Mish Mish

ςC Tanh Tanh Tanh Mish Tanh Tanh

ny 6 6 6 6 6 6

Z 2 2 2 2 5 1

R Eq. 4.18 Eq. 4.18 Eq. 4.18 Eq. B.7 Eq. B.6 Eq. B.3

Rw 1 1 1 3 1 3

Table 5.3: Hyperparameter profiles for the policy gradient algorithms VPG-C, A2CGAE, and PPO. The subscripts κ and Ω
indicate the result of an optimisation performed with the Basic (Table 5.1) or the Extended (Table 5.2) Hyperparameter Set,

respectively.

Although the identified hyperparameter profiles represent local optima in the search space, they offer
only a glimpse into the performance landscape across all the available configurations. The following will
be an analysis of the broader patterns that emerged during the search for the extended hyperparameter
profiles, as the extended set supersedes the basic (Sections 5.3.2 and 5.3.3).

As was detailed in Section 5.3.4, each BOHB algorithm sample represents a unique hyperparameter
configuration, which will be evaluated according to the average performancemetric of the agents trained
with that configuration. The analysis must be approached with caution, due to the limited dataset size

5.3. Hyperparameter Optimisation 72

of 600 samples per algorithm (1800 total) and the highly interconnected nature of the samples, since
each hyperparameter value will have an effect on the evaluation. Therefore, no definitive conclusions
can be drawn; instead, some of the more clearly observed patterns will be pointed out.

The following datasets, presented through box plots, demonstrate pronounced skewness, evidenced
by off-centre median positions. This asymmetric behaviour is likely due to the rigorous nature of per-
formance metric (Mperf), outlined in Section 5.2. As a result, all agents with minor safety concerns, or
those that inadequately address the desired EV SoC, are assigned Mperf ≈ 0. Only those agents that
surpassMperf > 0.05 are deemed relevant, and will therefore be represented in Figures (such as 5.4 or
5.5) and analysed. Despite the implementation of this threshold, performance metrics predominantly
cluster toward the lower bounds ofMperf.

Algorithm Comparison

Before commenting on the patterns observed in Figure 5.4 it is worth noting that the displayed perfor-
mance is measured on the validation set, as the test set cannot be used for selecting the hyperparame-
ter profile. The Figure includes only successful agents, defined by a performance above the threshold
of 0.05. Given the stochastic nature of the training process, the count of successful agents can be mod-
elled using a binomial distribution. The distribution –displayed in the legend– captures the total count
of discrete outcomes (success or failure), represented by n, and the underlying probability of success
for each agent (p).

Figure 5.4: Box plot for the performance of the VPG-C, A2CGAE and PPO algorithms when considering all the successful
samples taken during the extended hyperparameter optimisation. Whiskers extend to 1.5 times the interquartile range and dots

represent outliers. The legend includes the binomial distribution parameters B(n,p), indicating the probability of producing
agents above the threshold for each sampled hyperparameter configuration.

Several distinct performance patterns can be seen in Figure 5.4, where a box plot analysis goes
across all policy gradient algorithms. PPO demonstrates superior median performance and success

5.3. Hyperparameter Optimisation 73

probability (37.5%), which may be viewed as a measure of algorithm robustness. The interquartile
range (IQR) is wider for A2CGAE and PPO, although this higher dispersion can be partly attributed to
the non-linear nature of Mperf (Section 5.2), which amplifies performance differences at higher values.
The best performance of all the algorithms is very similar, but A2CGAE, and most notably VPG-C,
achieve their peak performances through outlier configurations, i.e. outside of the 1.5 · IQR range
represented by the whiskers.

Comparing Reward Functions

The extension of the hyperparameter space through various reward functions and their combinations
(making up different versions of the final reward), presented in Section 4.2, will alter the final policy
landscape. Some components of the reward will present shaped alternatives. Observing the results of
the extended optimisation, a few clear insights can be found regarding the effectiveness of the reward
functions.

Figure 5.5: Box plot for the performance of the components that constitute the final reward function (Equation 4.17), when
considering all the successful samples taken during the extended hyperparameter optimisation. Whiskers extend to 1.5 times
the interquartile range and dots represent outliers. The legend includes the binomial distribution parameters B(n,p), indicating

the probability of producing agents above the threshold when trained using the corresponding reward component.

The final reward function (Equation 4.17) is made up of constant and varying components; therefore,
it is only useful to compare the performance of the latter, which address EV SoC requirements (rEV),
grid power exchange costs (rgrid), and the respect for boundaries for all MCES components (rmargin).
This comparison is presented in Figure 5.5, where it is important to keep in mind that the performance
values are obtained from training agents with a combination of rewards, and therefore the results for
each are interconnected. For instance, if a reward component had an incredibly low success rate,
none of the other components’ impacts on performance could be evaluated.

Even when considering the interdependence of all the displayed datasets, a significant performance
disparity exists between agents trained with and without the margin reward (rmargin). The inclusion of
rmargin yields a 3.75x higher success rate and enhanced performancemetrics for the median, disper-
sion, and peak performance. The dual role of rmargin in promoting both safety (i.e., lack of constraints

5.3. Hyperparameter Optimisation 74

violations) and charging EV batteries is probably responsible for the considerable impact on perfor-
mance.

The EV and grid cost reward components show subtle variations in performance patterns. While
rarbgrid and rσEV demonstrate marginally superior medians, they share similar peak performances. How-
ever, it may be said that reward shaping (represented by rarbgrid or rmargin, as described in Section 2.7.1)
demonstrates beneficial effects on average performance and training success without compromising
the upper bound of performance.

The basic hyperparameter set (Table 5.1) utilises a final reward function without the margin reward
component (Equation 4.18). The results observed in Figure 5.5, suggest that this omission hampered
agent training for the basic optimisation, potentially explaining the considerable performance gap be-
tween basic and extended hyperparameter profiles (see Section 5.4.1).

Other Relevant Hyperparameters

The significant impact of policy gradient algorithms and reward functions on the extended hyperparam-
eter optimisation was demonstrated. This Section will shift focus to other hyperparameters, aiming to
identify their potential contribution to the observed improvements over the basic hyperparameter op-
timisation. To avoid extending the main body of the thesis more than necessary, the findings will be
summarised, and those considered of possible interest to the reader will be expanded upon in Appendix
B.3.

• Actor Architecture (ψA): The introduction of alternative architectures to CW appears to have
yielded performance improvements, with an 18.7% increase inmaximumperformance observed
using 3CW. Both 3PYR and Deep Constant Width (DCW) showed superior performance as well,
while DPYR significantly underperformed. High-performing outliers suggest that specific hyper-
parameter configurations may be able to leverage the more complex architectures. The analysis
is expanded upon in Appendix B.3.1.

• Critic Architecture (ψC): The analysis reveals performance patterns clearly distinct from the
Actor’s, with significant improvements observed with Bottleneck and Residual architectures. The
findings are detailed further in Appendix B.3.1.

• Feature Vector (Z): No substantial impact was observed on performance. Configuration 2, used
in basic hyperparameter profiles, shows great and robust results. Surprisingly, more complex
feature vectors often underperformed, likely due to overfitting. The findings are examined further
in Appendix B.3.2.

• Actor Activation Function (ςA): The adoption of the Mish activation function in Actor networks
consistently achieved higher-end performance and improved training robustness.

• Critic Activation Function (ςC): AddingMish as a possible activation function had no discernible
impact on performance.

• Critic DNN Width (widthC): Increasing the width of Critic networks beyond 128 improved the
maximum performance and its consistency. Wider networks demonstrated superior robustness,
validating observations by Andrychowicz et al. [4].

• Reward Weights (Rw): The variation in reward weights did not affect maximum performance,
but configuration 3 shows improved robustness, achieving higher-end performances more con-
sistently, alongside increased training success rates.

5.4. Finding a Near-Optimal Policy 75

5.4. Finding a Near-Optimal Policy
Once the hyperparameter profile has been obtained for each policy gradient algorithm (see Section
5.3.5) the process of finding a nearly optimal policy begins. As presented in Section 5.3 the stochastic
nature of RL asks for a rigorous approach to evaluating and selecting policies. As Henderson et al. [22]
demonstrate, the inherent randomness in RL – brought upon, for instance, by weight initialisation,
environment dynamics, or code implementation– will significantly impact policy performance.

The hyperparameter profile is determined by the average policy performance, as elaborated in
Section 5.3.4. However, due to the inherent randomness, multiple training iterations with different
random seeds are essential to identify the policy closest in performance to the expert. Ideally, with
sufficient epochs of training, all policies would converge to the global optimum; regrettably, this is not
the observed outcome. Even with the same hyperparameter profile, different initialisations are sufficient
to trap agents within local optima, with further training not improving the situation.

Following the presented reasoning, and with the sole objective of obtaining the best performing RL
agent, the process followed to select one final policy will be now described, and can also be found as
part of Figure 5.1:

1. An algorithm (Section 4.5) and the highest-performing configuration of hyperparameters (i.e. the
hyperparameter profile) were selected.

2. 100 agents were trained with distinct random seeds.

3. The agents were evaluated on the validation set (see Section 3.6.1) using the safe projection.

4. The validation runs were assessed according to a specified performance metric (Section 5.2).

5. The results were analysed, and the best 10 agents were identified.

6. To favour the selection of an agent with improved capacity to generalise (and to avoid the risk
of overfitting to the validation set), the top 10 agents were tested with the robust validation set
(Section 3.6.1).

7. The results were analysed, and the optimal agent was selected.

5.4.1. Hyperparameter Profile Performance Analysis
In this Section, further analysis is provided of the validation results after training 100 agents with each
of the available policy gradient algorithms (VPG-C, A2CGAE, and PPO) and their corresponding hyper-
parameter profile. The training process yields agents with a range of behaviours, those that achieve
a validation set performance exceeding 0.05, will be defined as successful agents. This classification
was presented in Section 5.3.5, where the binomial distribution used to model the likelihood of success
is also detailed.

Each algorithm is presented twice, first with the hyperparameter profile obtained from the basic
optimisation (represented by κ, see Section 5.3.2) and then with the resulting hyperparameters from
the extended optimisation, indicated by Ω (see Section 5.3.3). When observing Figure 5.6 the great
difference between the basic and extended hyperparameter optimisations becomes apparent. This
considerable divergence in performance medians suggests that the expansion of the hyperparameter
search space was a good decision. The enhanced consistency in performance also indicates that more
robust hyperparameter configurations have been made available.

The basic optimisation results are the only ones exhibiting failing agents, as evident from the bino-
mial approximations presented in the legend. Notably, VPG-Cκ is highly unlikely to produce a success-
ful agent, while more advanced algorithms present a considerably higher success rate under similar
conditions. Surprisingly, VPG-CΩ presents the greatest median and maximum, showing that even a

5.4. Finding a Near-Optimal Policy 76

Figure 5.6: Comparison of the performance in the validation set (Section 3.6.1) for VPG-C, A2CGAE, and PPO algorithms
when trained with basic (κ) and extended (Ω) hyperparameter profiles (see Section 5.3.1). Box plots show the distribution of
performance metrics for 100 agents, only considering those above the success threshold of 0.05. Whiskers extend to 1.5 times
the interquartile range and dots represent outliers. The legend includes the binomial distribution parameters B(n,p), indicating

the probability of producing agents above the threshold for each hyperparameter profile.

very unsophisticated algorithm can outperform the rest with the proper configuration of hyperparam-
eters. Furthermore, Figure 5.6 demonstrates a strong correlation between the mean and the best
achieved performance, as anticipated within the hyperparameter optimisation framework (see Section
5.3.4). However, it is worth noting that the hyperparameters obtained through such a procedure may
inherently bias the results towards performances grouped closer to the mean.

5.4.2. Comparison of Best Agents
To obtain the six best agents, each policy gradient algorithm is used following the procedure in Section
5.4, utilising the basic (κ) and extended (Ω) hyperparameter profiles. Six RL agents are obtained,
each of which achieves the best validation performance out of 100 trained agents. Further training
might yield higher-performing agents, but this could also lead to overfitting specific to the validation
and robust validation sets. However, the selected agents are regarded as good representatives of their
respective algorithm’s potential under suitable hyperparameter configurations.

The six RL agents will now be compared using results from the robust validation set (Section 3.6.1).
The final evaluation against the Expert relies on specific metrics derived from the terms of its objective
function (Section 3.3.1), termedObjective Metrics (OM). Therefore, these metrics will be used to select
the top RL agent (TRLA) in this final stage. Thesemetrics are assessed independently; thus the weights
used by the Expert’s objective function are not needed.

To obtain the average values for the OM (with confidence intervals) displayed in Table 5.4, a series
of 100 simulations were performed for each of the six agents, utilising the robust validation set. Distinct
random seed values were used for the simulations, altering the policy’s decision sampling (see Section

5.4. Finding a Near-Optimal Policy 77

Cgrid [e] pSoCDep [-] AuxTESS [s]

VPG-Cκ 2363.7 ± 0.0 8.429 ± 0.0 0.0 ± 0.0

A2CGAEκ 2253.1 ± 0.6 0.404 ± 0.003 0.0 ± 0.0

PPOκ 2491.1 ± 2.3 0.542 ± 0.017 0.0 ± 0.0

VPG-CΩ 2226.2 ± 1.1 0.184 ± 0.004 0.0 ± 0.0

A2CGAEΩ 2297.9 ± 1.3 0.297 ± 0.003 0.0 ± 0.0

PPOΩ 2406.7 ± 0.9 0.068 ± 0.002 0.0 ± 0.0

Table 5.4: Comparison for the best six RL agents obtained by using VPG-C, A2CGAE, and PPO with basic (κ) and extended
(Ω) hyperparameter profiles. Results are obtained from the robust validation set, using the Expert’s objective function

components as the evaluation criteria, termed the Objective Metrics (OM). Note: The robust validation set reduced solar
radiation to heighten challenges in grid cost minimisation and EV SoC requirements, making TESS SoC upper bounds unlikely

to be reached, resulting in no AuxTESS.

4.4.2). The 95% confidence interval was obtained through a non-parametric bootstrapping procedure
with 10,000 resamples of the original dataset.

As could be expected from the results displayed in Section 5.4.1, the extended hyperparameter pro-
files have produced the most promising RL agents. In particular, VPG-CΩ achieves a notable reduction
in Cgrid, whereas PPOΩ excels in minimising the EV SoC satisfaction penalty (pSoCDep), as summarised
in Table 5.4. After observing the results, the TRLA is deemed to be that produced by PPOΩ. Al-
though it incurs a higher Cgrid, its substantial reduction in pSoCDep justifies the trade-off, particularly
given the role of EV charging demands in elevating Cgrid.

6
RL EMS Validation and Conclusions

6.1. Introduction
This chapter focuses on validating the policy of the TRLA –obtained in Chapter 5– (TRLA) through a
detailed comparison with the Expert. The discussion begins with an evaluation of key performance
metrics derived from the Expert’s objective function, followed by an in-depth analysis of the differences
found in the decision-making of the agents. Particular attention is given to their impact on grid energy
exchange and the SoC of the storage assets.

Safety considerations also occupy a relevant section in this chapter, measuring the agents’ com-
pliance with the MCES’s established constraints. In addition, a performance comparison synthesis is
made, supporting the validation of TRLA. The chapter concludes by addressing the research ques-
tions, posed at the start of this work (Section 2.11), and provides commentary on some opportunities
for further exploration.

6.2. Comparison with Expert
After successfully training a RL agent to manage the MCES (presented in Section 3.2), the crucial next
step is to validate its performance against an Expert, described in Section 3.5. The RL agent deemed
most successful in Section 5.4.2 will be referred to as the top RL agent (TRLA).

This comparison will be conducted using the TRLA and the Expert under identical simulations with
the test set (Section 3.6), where the reliability, efficiency and robustness of the TRLA will be assessed.
As indicated in Section 3.4.3, the safe projection will always be in place when testing an RL agent. The
initial conditions and the exogenous information will be the same, however, it is relevant to note what
specific information is available to each system for decision-making.

The TRLA generates decisions by processing past states, represented within the feature vector
(Section 4.3). In contrast, the Expert is provided with future exogenous information of the next two
days of simulation. Since the future is essentially unknown, an imperfect prediction module is generally
used to estimate what the future states of the system are likely to be. For this comparison, however, a
perfect predictionmodule was implemented to evaluate the RL agent against themost optimal version
of the MPC adversary.

Unlike the predictable and steady performance of the Expert, which relies on classical optimisation,
the TRLA bases its decisions on sampling distributions. While this difference is evident at individual
timesteps, their aggregate performance may converge when extended over time.

78

6.2. Comparison with Expert 79

6.2.1. Objective Function Metrics
The performance of the TRLA will initially be validated over the long term by analysing results from the
entire test. As specified in Section 3.3.1, the comparison will focus on metrics derived from the Expert’s
objective function (Equation 3.1). These metrics, identified as Objective Metrics in Section 5.4.2, will
be examined for each component individually.

It is important to recall that the test set includes one out of every four days from an entire year,
ensuring all seasons are represented equally (see Section 3.6). This arrangement places the summer
solstice near day 43.

Cgrid [e] pSoCDep [-] AuxTESS [s]

Top RL Agent 1308.2 ± 0.5 0.098 ± 0.002 0.0 ± 0.0

Expert 1258.0 0.489 711.8

Table 6.1: Comparison of the best-performing RL agent (TRLA) and the Expert, evaluated using the the test set with Objective
Metrics (OM). The results for the RL agent are derived from 100 test runs with distinct random seed values. Note: Computed

using Equation 3.4, the temporal dimension of AuxTESS serves to quantify the cumulative duration and severity of TESS
overcharge events.

The experimental outcomes for the top RL agent, as displayed in Table 6.1, were obtained following
the same simulation and statistical analysis procedure described in Section 5.4.2, but utilising the test
set instead of the robust validation set. The Expert’s decision-making approach (Section 3.5) produces
consistent outcomes with minimal random seed variance, making a single simulation’s OM adequate
for comparison.

The results of Table 6.1 provide some interesting insights. The long-term behaviour of the TRLA
proves to be considerably robust to the stochasticity of its decision-making (Section 4.4.2). While the
Expert achieves superior grid exchange cost optimisation, this advantage comes with a significant
trade-off in pSoCDep. The top RL agent, trained using rmargin reward (Section 4.2.4), successfully main-
tains appropriate TESS SoC boundaries, avoiding any overcharging scenarios. Though these average
metrics –with their confidence intervals– provide a useful summary of performance, they offer limited
visibility into the underlying causes.

Figure 6.1 expands the interpretation of OM from Table 6.1 by providing a temporal dimension,
enabling further analysis. The Expert successfully anticipates charging needs and charges the EV
precisely to the target SoC (SoC∗

dep) before departure. However, in a few occasions, the Expert’s
objective function can be minimised further by accepting the pSoCDep penalty to lower Cgrid. This is a
clear example of the compromises involved in adjusting the weights of the objective function. While
TRLA performs consistently, it lacks the precision of the Expert, leading to minor daily penalties.

Overcharging of the TESS by the Expert is confined to the warmer months, as depicted in Figure 6.1.
This behaviour can be attributed to the brief two-day planning horizon coupled with periods of negative
energy prices. Such circumstances result in short-term decision-making that increases immediate heat
production without accounting for upcoming periods of abundant solar thermal generation and reduced
heat demand.

The graph of daily grid exchange costs illustrates the TRLA’s delivery of consistent outcomes
across the complete test set, closely aligning with the Expert’s performance. To provide another quan-
titative index for daily cost comparison, the root mean squared error (RMSE) was calculated, resulting
in a value of 3.03 e . This suggests the existence of a variety of near-optimal solutions, making the
total grid cost at the end of the test set (Table 6.1) a more relevant metric.

6.2.2. Agent Behaviour
After observing the impact of the agents’ decisions on the Objective Metrics (Section 6.2.1), the follow-
ing analysis delves into the decisions themselves and their influence on key state variables.

6.2. Comparison with Expert 80

Figure 6.1: The Objective Metrics for the Expert and the top RL agent are displayed for the test set simulations. One
representative sample is used from the TRLA. The top-left panel depicts the squared distance to the desired SoC at departure

(pSoCDep), with occasional deviations for the Expert and low, stable values for TRLA. The top-right panel presents daily
AuxTESS values, peaking between days 40 and 65. The bottom panel represents total daily grid exchange costs (Cgrid),

including average costs for both policies.

It is worth reminding that the TRLA’s architecture is 3CW (Section 4.4.4), and therefore the standard
deviation used for sampling will be constant, as it was optimised during the training phase. The optimal
values were determined to be σEV = 1.791, σBESS = 0.394, and σeHP = 0.037.

Electrical Power Balance

The agent decisions are all integrated within the electrical subsystem (Section 3.3.5), but this Section
will focus on the power management strategies for the EV battery (PEV) and BESS (PBESS). The sea-
sonal variations are shown in Figure 6.2, through data from day 1 (winter) and day 45 (summer) of
simulation.

Day 1 is of particular interest because both agents start with identical state variables (SoCBESS =
SoCEV = 50%). Under these conditions, there is a similar strategic approach, as both prioritise EV
battery charging to achieve the desired SoC (SoC∗

dep → SoCEV = 85%) before potential departure.
However, even with similar intentions, the specific implemented decisions are quite distinct. These
variations propagate through time, creating divergent state variables and rendering timestep-resolution
analysis ineffective. Even in this situation, the similarity in long-term performance metrics (Section
6.2.1) suggests the existence of multiple near optimal policies.

A closer analysis of Figure 6.2 reveals that the TRLA charges the EV battery when its SoC deviates
significantly from SoCEV = 85%. The behaviour reveals a preference for avoiding pSoCDep penalties
over minimising grid exchange costs. On day 45, this method proves more cost-effective than on day

6.2. Comparison with Expert 81

Figure 6.2: The electrical power balance is shown for day 1 and day 45 in the top and bottom graphs, respectively. The
displayed components are those related more closely to the EV battery and BESS. Both the Expert and the TRLA are

represented, with the grey-shaded regions denoting periods when the EV is absent.

1, as charging coincides with periods of high solar radiation. Once the desired SoC has been reached,
the TRLA operates around that state, balancing the electrical load (P e

load) or demanding power.

During themorning of day 45, the behaviour of the TRLA enables net energy sales to the grid, as can
be seen in Figure 6.3. Further analysis of the image reveals that the Expert has a more conservative
approach to grid exchange, tending to purchase less energy rather than selling accumulated reserves.
The TRLA’s output is oscillating, occasionally achieving a reduced cumulative daily cost but eventually
matching or exceeding the Expert’s cost due to poorly timed energy demands from the grid. This
occurs, for example, in the final hours of day 46, when both cumulative costs rapidly converge. Such
oscillations, characterised by pronounced power peaks in either direction, are particularly susceptible
to sharp hourly electricity price changes, which lead to an overall higher cumulative cost in the long
term, as evidenced in Table 6.1.

The Expert charges the EV to exactly SoCEV = 85%, considering both days 1 and 2 during its
planning. In contrast to the more short-sighted approach by the TRLA, the Expert delays charging the
EV after its return, slightly depleting its battery instead. The Expert avoids using the BESS, whereas
the TRLA charges the BESS at night or during EV absence, using it to supply energy after the EV’s

6.2. Comparison with Expert 82

arrival and interact more significantly with the grid.

Figure 6.3: The figure presents the Grid Power Exchange and Cumulative Cost for the Expert and TRLA over 2 consecutive
days. The top graph shows the data for the winter period (days 1-2), while the bottom graph covers the summer period (days

45-46). Negative Pgrid values correspond to selling energy to the grid.

Thermal Power Balance

The heat pump (HP) serves as the primary link between the electrical and thermal subsystems. Its elec-
trical input (P e

HP), which translates directly to thermal power (P th
HP), is the remaining decision to analyse.

Figure 6.4 illustrates the entire thermal balance (described in Section 3.3.5) across two representative
days-—a winter day (day 1) and a summer day (day 45).

The simulation on day 1 begins with SoCTESS = 40% for both the Expert and the TRLA, yet it
becomes evident their strategies diverge. The Expert prioritises filling the TESS, delivering a P th

HP that
exceeds the thermal load demand (P th

load). In contrast, the TRLA opts to deplete the TESS, activating
the heat pump only when forced to do so.

Day 45 begins with the TRLA and the Expert at different states of charge for the TESS: 20% and
95%, respectively. Despite the high SoC, the Expert engages the heat pump to recover any lost en-
ergy, finishing the day at 95%. By contrast, the TRLA relies on available solar radiation and barely
activates the heat pump. While this approach successfully avoids AuxTESS penalties, it incurs the risk
of encountering high electricity prices with a depleted TESS.

States of Charge

The state of charge (SoC) of the EV battery, BESS, and TESS (see Section 3.2) must be examined
across the entire simulation to better understand how the agent’s decisions influence the system. Figure
6.5 will guide this discussion, as it illustrates the performance of the agents during the 90-day simulation,
which is representative of the dynamics of a complete year.

6.2. Comparison with Expert 83

Figure 6.4: The thermal power balance is shown for day 1 and day 45 in the top and bottom graphs, respectively. The graphs
illustrate the distinct strategies employed by the Expert and the top RL agent in managing the thermal energy subsystem, since

they can determine P th
HP.

The patterns observed in Figure 6.5 concerning the EV battery (SoCEV) are similar for both the
Expert and the TRLA. However, the Expert primarily charges the battery to the required SoC, while the
TRLA actively adjusts around this value, significantly engaging in the MCES’s electrical power balance.

The Expert’s strategy for the BESS is characterised by abrupt charging spikes during low electricity
price periods, followed by quick discharges or extended inactivity. This approach makes use of a
significant fraction of the total energy capacity. In contrast, the TRLA uses only about 20% of the total
capacity on average, following shorter cycles. The BESS is generally charged by the TRLA during
the EV’s absence, aligning with high solar radiation hours, and is slowly depleted during the remaining
hours.

The TESS displays the most notable differences in behaviour, as evident from Figure 6.4. The TRLA
relies heavily on the TESS to meet thermal demands, which keeps it near to its minimum SoC during
most of the simulation, only reaching half capacity on warmer days when thermal loads are low, and
solar energy is abundant. The Expert, however, adopts a more conservative strategy, maintaining the
TESS close to full capacity. This approach minimises the need for the heat pump during high electricity
price periods but occasionally leads to overcharging events.

6.2. Comparison with Expert 84

Figure 6.5: Visualisation of the states of charge for the BESS, EV battery and TESS over a 90-day simulation (test set, see
Section 3.6). The Expert’s behaviour is depicted in the upper panel, while the TRLA is shown below. Seasonal variability

across the year is represented. Clear distinctions may be observed in SoCTESS, as well as the narrower charge range utilised
by the TRLA’s BESS.

6.2.3. Safety Performance
Adhering to safety constraints is essential for decision-making agents. Section 3.4.1 provided a com-
prehensive discussion of the safety concerns and the measures designed to address them. A key fact
was that initial projections do not pose a threat to the real MCES, whereas high operational projections
could result in significant issues –if deeper protective mechanisms are absent from system compo-
nents. To address this, the safe projection was introduced. Together with the learned safe behaviours,
the safe projection enhances the adherence of RL agents to safety requirements.

The results presented in Table 6.2 present the sum of all operational projections observed during the
evaluation on the test set. The experimental outcomes for the TRLA were derived from 100 simulations
employing safe projection, only changing the random seed value. The 95% confidence intervals were
computed using the statistical methods outlined in Section 5.4.2.

The Expert incurs more operational projections than TRLA, but considering the test set is 90 days
long, the values for both agents are insignificant. For instance, the Expert misallocated 0.356 kWth,

6.3. Conclusions 85

ξSoCBESS [−] ξSoCEV [−] ξSoCTESS [−] ξpgrid [kW] ξpTESS [kWth]

Top RL Agent 0.0 ± 0.0 0.155 ± 0.011 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Expert 0.040 0.193 0.791 0.0 0.356

Table 6.2: Comparison of the cumulative operational projections incurred by the top RL agent and the Expert, when evaluated
using the test set. The TRLA employed safe projection (Section 3.4.1). The results for the RL agent are derived from 100
simulations with distinct random seed values. Definitions of operational projection terms are detailed in Section 3.3.1.

which amounts to 4 Wth on average per day, for a thermal energy storage capacity of 200 kWh. This
minor discrepancy can be attributed to the feasibility tolerance of the solver, since the solverminimises
the norm (typically the Euclidean norm) of constraint violations across all system constraints. This is a
necessarymeasure for computational efficiency and feasibility, as perfectly satisfying every constraint in
complex optimisation problems is often unattainable within the given time and computational resources.

The TRLA only incurred operational projections of the SoCEV, which are closely linked to the penalty
pSoCDep (Equation 3.3). The energy needed by the electric vehicle outside the MCES is unknown to
the agent and changes daily. Such a projection arises only when the EV leaves the MCES without
achieving its desired SoC (e.g. SoCEV = 85%), and the required energy for driving reduces it below the
minimum allowed threshold (e.g. SoCmin

EV = 20%). From the results of TRLA, it is evident that these
projections are minor, averaging a daily infraction of the SoCmin

EV constraint by 0.17%.

If the reader is interested in the initial projections (performed by the safety layer) required to ensure
the TRLA’s negligible operational projections, see Figure A.2.

6.2.4. Validation
The results analysed in Section 6.2 demonstrate that the TRLA is safe to use and its performance has
been validated across multiple dimensions.

Table 6.1 demonstrates the TRLA’s capacity to balance conflicting long-term objectives. The tem-
poral trends in Figure 6.1 further highlight its effectiveness in minimising grid exchange costs and main-
taining near-optimal EV SoC.

The TRLA’s performance in managing the electrical subsystem shows a close alignment with the
Expert’s behaviour. Both agents prioritise achieving the desired SoC for the EV battery before depar-
ture, and balance the electrical load effectively across different seasons. Despite some differences in
execution, such as the timing and sources of charging, the TRLA achieves comparable outcomes to
the Expert in terms of energy balance and grid interaction.

In the thermal subsystem, the TRLA adopts strategies that differ considerably from the Expert’s.
Nevertheless, the TRLA manages the thermal resources successfully, respects the TESS constraints,
and avoids significant increases in grid energy costs.

Thanks to the safe projection mechanism, the TRLA exhibits negligible operational projections
across all critical components (Table 6.2). Furthermore, these minor infractions are well within tolerable
bounds, preserving the overall integrity of the MCES.

6.3. Conclusions
In this final section, the answer to the central research question is first presented, and then devel-
oped through the findings of three complementary sub-questions, which were chosen to investigate
the research gaps identified in the literature. Section 6.2.4 can be considered a relevant part of this
conclusion, as it validates the RL agent’s performance.

6.3. Conclusions 86

Main Research Question
In the management of multicarrier urban energy systems, to what extent can practitioners without ex-
pertise in optimal control theory and physics-based modelling leverage reinforcement learning to create
a computationally efficient alternative to model predictive control, while maintaining comparable safety
and performance?

Research has shown that RL can be used effectively by practitioners who lack extensive knowledge
of optimal control theory, offering a viable alternative to MPC. Furthermore, the development of suc-
cessful and safe agents can be made more accessible through existing building and system dynamics
simulators, which simplify the physical modelling process. Additionally, a structured approach to hyper-
parameter optimisation can be effectively replicated across different MCESs, reducing implementation
costs.

Although training RL agents requires significant computational resources, their inference during
deployment has a negligible cost, resulting in a significantly more efficient approach than traditional
MPC, even with suboptimal implementations.

Sub-Research Question 1
How do progressively advanced policy update algorithms (from basic advantage estimation to GAE to
trust region constraints) contribute to achieving near optimal performance?

The findings demonstrate that more sophisticated algorithms enhance robustness in the optimisa-
tion process, increasing the likelihood that diverse hyperparameter configurations will converge towards
superior policy performance.

While algorithms such as PPO need additional computational resources (e.g., for storing the pre-
vious version of the policy) and require more processing time per hyperparameter configuration, their
inherent training stability significantly reduces the number of samples required to reach a near-optimal
policy. This stability-sample trade-off, when implemented efficiently, typically results in reduced overall
computational demands.

This conclusion is particularly evident when contrasted with simpler approaches such as VPG-C.
As illustrated in Figure 5.4, whilst VPG-C achieved comparable peak performance, this outcome repre-
sented an extreme outlier configuration, despite the use of sophisticated hyperparameter optimisation
methods such as Bayesian Optimisation and Hyperband (BOHB) to navigate the search space effi-
ciently. These findings underscore the value of advanced policy update algorithms in establishing
more consistent pathways to optimal performance.

Sub-Research Question 2
What is the impact of DNN architecture sophistication, temporal feature engineering, and reward com-
ponent shaping for RL algorithms in achieving performance that is close to optimal?

Impact of DNN Architecture Sophistication:

The considerable variance in performance across hyperparameter configurations, amplified by ran-
dom weight initialisation, highlighted the critical importance of searching for more robust DNN architec-
tures.

The addition of more sophisticated DNN architectures, such as Residual or Three-Branched struc-
tures, to the hyperparameter search space demonstrated significant performance and robustness im-
provement with respect to the CW design. However, the testing of 12 distinct architectures led to a
substantial increase in search space dimensions, revealing a crucial trade-off.

This trade-off is centred on balancing two key aspects: the provision of better and more abundant
local optima through new paths for information abstraction (offered by distinct DNN designs), against

6.3. Conclusions 87

both the expansion of the hyperparameter search space and the cost of implementing new architectures.
The DCW configuration demonstrated both robustness and performance that matched top-performing
architectures, showing that effective results could be achieved by focusing on varying the network
depth rather than altering the structure more substantially. These findings suggest a practical approach:
begin with depth exploration, and only gradually introduce distinct DNN architectures if performance
improvements plateau.

Impact of Temporal Feature Engineering:

The investigation revealed that simpler feature representations outperform complex ones. Fea-
ture vector configurations using only the previous timestep’s state information achieved optimal perfor-
mance, while the expansion of the feature space, guided by cross-correlation analysis between state
variables and Expert decisions, decreased performance.

However, this addition of past data (e.g., 4-hour-old or 1-day-old states) kept robustness at a simi-
lar level, suggesting that the DNN could not effectively utilise these extended temporal patterns. The
simpler approach, focusing on recent temporal information, reduced overfitting and improved generali-
sation, as shown by better validation set performance.

Impact of Reward Component Shaping:

Shaping reward components has shown significant benefits in achieving near-optimal performance.
This approach reduced dependence on trial-and-error methods and minimised reward overfitting risks.

By treating the final reward as a hyperparameter and aligning its components with the agent’s mul-
tiple objectives, the testing of eight distinct reward versions led to notable improvements in both per-
formance and robustness. Within the shaped components, the margin reward proved most effective.
By constraining the set of possible policies into a safer subset, it guided the optimisation of a primary
objective –the respect of safety bounds– and increased robustness.

Sub-Research Question 3
How do the RL and MPC approaches compare in terms of operational safety, energy storage use, and
economic performance?

The top RL agent (TRLA) has been shown to operate safely through a safe projection mechanism,
which resulted in negligible operational projections across all critical components and even outper-
formed the Expert in maintaining certain constraints, particularly the SoC upper bound of the TESS.

With respect to energy storage utilisation, significant differences have been observed amongst the
behaviour of the agents. While both manage the EV battery similarly, the TRLA takes a more active role
in the MCES’s power balance as it makes dynamic adjustments around the required SoC. The BESS
management strategies differ notably, with the TRLA operating within a narrower range (about 20% of
total capacity) and employing shorter cycles compared to the Expert’s approach of deep charging and
discharging. The most pronounced distinction lies in the TESS operation, where the TRLA maintains
lower storage levels to avoid any overcharge, contrasting with the Expert’s conservative approach of
keeping the storage near full capacity.

The economic performance analysis shows that both agents achieved comparable results, with the
TRLA’s daily grid exchange costs being only 4% higher than the Expert’s. Notably, the TRLAmaintained
consistent performance throughout the test set.

Other Relevant Findings:
The development of a comprehensive performance metric helped identify meaningful improvements
among highly variable results. This metric’s ability to identify outliers in the performance distribution was
particularly useful, as these agents often presented the most promising behaviours. When examining
the TESS SoC throughout the year, the TRLA demonstrated superior long-term planning capabilities

6.3. Conclusions 88

through its implicit understanding of the future, whereas the Expert could only optimise within its 2-day
planning horizon.

Though incurring an implementation cost, the synthetic expansion of training data enabled to create
a comprehensive validation set that identified well-generalising agents. The practice of training 100
agents with identical hyperparameter configurations added robustness to the selection process, and
helped increase maximum performance.

6.3.1. Further Work
The research gaps that were not addressed during this study, as discussed in Section 2.10, highlight
promising opportunities for future work. This section, however, focuses on smaller steps forward that
align closely with the contributions of the thesis.

As RL has proven to be an efficient alternative to an MPC framework, various interesting paths
exist regarding the MCES in the Green Village, which was central to this thesis. One such option is
the incorporation of a data-driven approach to support the Expert MPC, which was already considered
within the research of Darío et al. [55].

The developed RL agent could become a backup policy to be activated when the Expert struggles to
solve the nonconvex optimisation problem it is faced with. Another possibility is that the RL agent could
support the Expert solver by supplying a warm start, while requiring negligible additional computational
resources. Another option is to retrain the RL agent –with the same pipeline described in this work–
to operate at the minute or second level, optimising performance at resolutions where MPC becomes
computationally impractical.

Imitation learning could be employed to initialise the RL agents before training them in the MCES
virtual environment. This approach might produce agents whose behaviour is closer to that of the
Expert, creating a more predictable backup policy. However, imitation learning without an additional
RL training phase is not encouraged, as there are no guarantees of good performance in situations not
addressed by the imitation data [28].

To better utilise extended temporal patterns in the feature vector, alternative deep learning archi-
tectures could be tested, taking into account the relationship between their number of parameters and
their effectiveness.

An important area for further investigation involves improving the safety guarantees of the RL
agent. This is particularly critical in scenarios where weather conditions deviate significantly from those
observed in the training data, or when the real-world MCES is expected to behave differently from the
simulated environment.

One possible approach to safety is the method proposed by Wabersich and Zeilinger [62], where an
RL agent’s actions are deemed safe only if a trajectory can be identified that avoids violating constraints
and guides the MCES toward a safe state. If no such feasible solution exists, a backup safe solution is
deployed instead. This approach extends the safe projection employed by this thesis, using knowledge
of the system’s dynamics to predict the long-term effects of the agent’s decisions, rather than limiting
the analysis to a single timestep.

An alternative pathway to safety, as mentioned in Section 2.9.6, is the method recently developed
by Ceusters et al. [11]. This approach integrates hard constraint satisfaction with policy optimisation
and, in principle, can be applied to any RL formulation.

References

[1] Joshua Achiam. “Spinning Up in Deep Reinforcement Learning”. In: OpenAI (2018).
[2] Kari Alanne and Seppo Sierla. “An overview of machine learning applications for smart buildings”.

In: Sustainable Cities and Society 76 (Jan. 2022). ISSN: 22106707. DOI: 10.1016/j.scs.2021.
103445.

[3] Joel Alpízar-Castillo, Laura M. Ramírez-Elizondo, and Pavol Bauer. “Modelling and evaluating
different multi-carrier energy system configurations for a Dutch house”. In: Applied Energy 364
(2024), p. 123197. ISSN: 0306-2619. DOI: https://doi.org/10.1016/j.apenergy.2024.
123197. URL: https://www.sciencedirect.com/science/article/pii/S0306261924005804.

[4] Marcin Andrychowicz et al. “What Matters In On-Policy Reinforcement Learning? A Large-Scale
Empirical Study”. In: CoRR abs/2006.05990 (2020). arXiv: 2006.05990. URL: https://arxiv.
org/abs/2006.05990.

[5] Javier Arroyo et al. “Reinforced model predictive control (RL-MPC) for building energy manage-
ment”. In: Applied Energy 309 (Mar. 2022). ISSN: 03062619. DOI: 10.1016/j.apenergy.2021.
118346.

[6] Fredrik Bagge Carlson. “Hyperopt. jl: Hyperparameter optimization in Julia.” In: (2018). URL: ht
tps://lup.lub.lu.se/search/publication/6ec19989-9b30-448c-be5e-bae4c4257c7b.

[7] Chayan Banerjee et al. “A Survey on Physics Informed Reinforcement Learning: Review and
Open Problems”. In: arXiv preprint arXiv:2309.01909 (Sept. 2023).

[8] Jeff Bezanson et al. “Julia: A fresh approach to numerical computing”. In: SIAM Review 59.1
(2017), pp. 65–98. DOI: 10.1137/141000671. URL: https://epubs.siam.org/doi/10.1137/
141000671.

[9] Serena Booth et al. “The perils of trial-and-error reward design: misdesign through overfitting
and invalid task specifications”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 37. 5. 2023, pp. 5920–5929.

[10] Greg Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG]. URL: https://arxiv.
org/abs/1606.01540.

[11] Glenn Ceusters et al. “An adaptive safety layer with hard constraints for safe reinforcement learn-
ing in multi-energy management systems”. In: Sustainable Energy, Grids and Networks 36 (Dec.
2023), p. 101202. ISSN: 23524677. DOI: 10.1016/j.segan.2023.101202.

[12] Glenn Ceusters et al. “Safe reinforcement learning for multi-energy management systems with
known constraint functions”. In: Energy and AI 12 (2023), pp. 2666–5468. DOI: 10 . 1016 / j .
egyai.2022.100227. URL: https://doi.org/10.1016/j.egyai.2022.100227.

[13] Bingqing Chen, Zicheng Cai, and Mario Bergés. “Gnu-rl: A precocial reinforcement learning solu-
tion for building hvac control using a differentiable mpc policy”. In: Proceedings of the 6th ACM in-
ternational conference on systems for energy-efficient buildings, cities, and transportation. 2019,
pp. 316–325.

[14] ElaadNL. Home - Elaad NL. 2022. URL: https://platform.elaad.io/ (visited on 2024).
[15] Lasse Espeholt et al. IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-

Learner Architectures. 2018. arXiv: 1802.01561 [cs.LG]. URL: https://arxiv.org/abs/1802.
01561.

[16] European Power Exchange (EPEX). EPEX Spot. 2022. URL: https://www.epexspot.com/en/
(visited on 2024).

89

https://doi.org/10.1016/j.scs.2021.103445
https://doi.org/10.1016/j.scs.2021.103445
https://doi.org/https://doi.org/10.1016/j.apenergy.2024.123197
https://doi.org/https://doi.org/10.1016/j.apenergy.2024.123197
https://www.sciencedirect.com/science/article/pii/S0306261924005804
https://arxiv.org/abs/2006.05990
https://arxiv.org/abs/2006.05990
https://arxiv.org/abs/2006.05990
https://doi.org/10.1016/j.apenergy.2021.118346
https://doi.org/10.1016/j.apenergy.2021.118346
https://lup.lub.lu.se/search/publication/6ec19989-9b30-448c-be5e-bae4c4257c7b
https://lup.lub.lu.se/search/publication/6ec19989-9b30-448c-be5e-bae4c4257c7b
https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://doi.org/10.1016/j.segan.2023.101202
https://doi.org/10.1016/j.egyai.2022.100227
https://doi.org/10.1016/j.egyai.2022.100227
https://doi.org/10.1016/j.egyai.2022.100227
https://platform.elaad.io/
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1802.01561
https://www.epexspot.com/en/

References 90

[17] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and Efficient Hyperparameter Op-
timization at Scale. 2018. arXiv: 1807.01774 [cs.LG]. URL: https://arxiv.org/abs/1807.
01774.

[18] Qiming Fu et al. “Applications of reinforcement learning for building energy efficiency control: A
review”. In: Journal of Building Engineering 50 (2022), p. 104165. ISSN: 2352-7102. DOI: https:
//doi.org/10.1016/j.jobe.2022.104165. URL: https://www.sciencedirect.com/science/
article/pii/S2352710222001784.

[19] Satchel Grant. PyTorch-A2C: General implementation of Advantage Actor Critic using Pytorch.
https://github.com/grantsrb/PyTorch-A2C. 2020.

[20] Murilo Gustineli. A survey on recently proposed activation functions for Deep Learning. 2022.
arXiv: 2204.02921 [cs.LG]. URL: https://arxiv.org/abs/2204.02921.

[21] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512 . 03385
[cs.CV]. URL: https://arxiv.org/abs/1512.03385.

[22] Peter Henderson et al. Deep Reinforcement Learning that Matters. 2019. arXiv: 1709.06560
[cs.LG]. URL: https://arxiv.org/abs/1709.06560.

[23] hermesdt. Reinforcement Learning: A2C Implementation. https : / / github . com / hermesdt /
reinforcement-learning/tree/eb69484bb6d5a415633eb6e1fc07e12aa193cbb0/a2c. 2019.

[24] Shengyi Huang et al. “The 37 Implementation Details of Proximal Policy Optimization”. In: ICLR
Blog Track. https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/. 2022. URL:
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/.

[25] Michael Innes.Don’t Unroll Adjoint: Differentiating SSA-FormPrograms. 2019. arXiv: 1810.07951
[cs.PL]. URL: https://arxiv.org/abs/1810.07951.

[26] AI ML – Artificial Intelligence and Machine Learning. Most Used Activation Functions in Neural
Networks. https://ai-artificial-intelligence.webyes.com.br/most-used-activation-
functions-in-neural-networks/. Accessed: 2024-07-17.

[27] Hyuna Kang et al. “Reinforcement learning-based optimal scheduling model of battery energy
storage system at the building level”. In:Renewable and Sustainable Energy Reviews 190 (2024),
p. 114054.

[28] Benjamin Karg and Sergio Lucia. “Reinforced approximate robust nonlinear model predictive
control”. In: Institute of Electrical and Electronics Engineers Inc., June 2021, pp. 149–156. ISBN:
9781665403306. DOI: 10.1109/PC52310.2021.9447448.

[29] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG]. URL: https://arxiv.org/abs/1412.6980.

[30] W. Bradley Knox et al. “Reward (Mis)design for autonomous driving”. In: Artificial Intelligence 316
(2023), p. 103829. ISSN: 0004-3702. DOI: https://doi.org/10.1016/j.artint.2022.103829.
URL: https://www.sciencedirect.com/science/article/pii/S0004370222001692.

[31] Vijay Konda and John Tsitsiklis. “Actor-Critic Algorithms”. In: Advances in Neural Information
Processing Systems. Ed. by S. Solla, T. Leen, and K. Müller. Vol. 12. MIT Press, 1999. URL:
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669b
dd9eb6b76fa-Paper.pdf.

[32] Aristotelis Lazaridis. “Deep Reinforcement Learning: A State-of-the-Art Walkthrough”. In: Journal
of Artificial Intelligence Research 69 (2020), pp. 1421–1471. DOI: 10.1613/jair.1.12412.

[33] Matthias Lehmann. The Definitive Guide to Policy Gradients in Deep Reinforcement Learning:
Theory, Algorithms and Implementations. 2024. arXiv: 2401.13662 [cs.LG]. URL: https://
arxiv.org/abs/2401.13662.

[34] Tianyu Liu. “Coulombic Efficiency, Energy Efficiency and Effective Capacitance”. In: (2019). URL:
https://www.researchgate.net/publication/330238104_Coulombic_Efficiency_Energy_
Efficiency_and_Effective_Capacitance.

[35] Zhou Lu et al. The Expressive Power of Neural Networks: A View from the Width. 2017. arXiv:
1709.02540 [cs.LG]. URL: https://arxiv.org/abs/1709.02540.

https://arxiv.org/abs/1807.01774
https://arxiv.org/abs/1807.01774
https://arxiv.org/abs/1807.01774
https://doi.org/https://doi.org/10.1016/j.jobe.2022.104165
https://doi.org/https://doi.org/10.1016/j.jobe.2022.104165
https://www.sciencedirect.com/science/article/pii/S2352710222001784
https://www.sciencedirect.com/science/article/pii/S2352710222001784
https://github.com/grantsrb/PyTorch-A2C
https://arxiv.org/abs/2204.02921
https://arxiv.org/abs/2204.02921
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://github.com/hermesdt/reinforcement-learning/tree/eb69484bb6d5a415633eb6e1fc07e12aa193cbb0/a2c
https://github.com/hermesdt/reinforcement-learning/tree/eb69484bb6d5a415633eb6e1fc07e12aa193cbb0/a2c
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1810.07951
https://ai-artificial-intelligence.webyes.com.br/most-used-activation-functions-in-neural-networks/
https://ai-artificial-intelligence.webyes.com.br/most-used-activation-functions-in-neural-networks/
https://doi.org/10.1109/PC52310.2021.9447448
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/j.artint.2022.103829
https://www.sciencedirect.com/science/article/pii/S0004370222001692
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1613/jair.1.12412
https://arxiv.org/abs/2401.13662
https://arxiv.org/abs/2401.13662
https://arxiv.org/abs/2401.13662
https://www.researchgate.net/publication/330238104_Coulombic_Efficiency_Energy_Efficiency_and_Effective_Capacitance
https://www.researchgate.net/publication/330238104_Coulombic_Efficiency_Energy_Efficiency_and_Effective_Capacitance
https://arxiv.org/abs/1709.02540
https://arxiv.org/abs/1709.02540

References 91

[36] Miles Lubin et al. “JuMP 1.0: Recent improvements to a modeling language for mathematical
optimization”. In: Mathematical Programming Computation (2023). DOI: 10.1007/s12532-023-
00239-3.

[37] Aditya Krishna Menon et al. “Can gradient clipping mitigate label noise?” In: International Confer-
ence on Learning Representations. 2020.

[38] Diganta Misra. Mish: A Self Regularized Non-Monotonic Activation Function. 2020. arXiv: 1908.
08681 [cs.LG]. URL: https://arxiv.org/abs/1908.08681.

[39] Volodymyr Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. 2016. arXiv:
1602.01783 [cs.LG]. URL: https://arxiv.org/abs/1602.01783.

[40] Zoltan Nagy et al. “Ten questions concerning reinforcement learning for building energy manage-
ment”. In: Building and Environment 241 (2023), p. 110435.

[41] ATD Perera and Parameswaran Kamalaruban. “Applications of reinforcement learning in energy
systems”. In: Renewable and Sustainable Energy Reviews 137 (2021), p. 110618.

[42] George Philipp, Dawn Song, and Jaime G. Carbonell. The exploding gradient problem demys-
tified - definition, prevalence, impact, origin, tradeoffs, and solutions. 2018. arXiv: 1712.05577
[cs.LG]. URL: https://arxiv.org/abs/1712.05577.

[43] Watcharakorn Pinthurat, Tossaporn Surinkaew, and Branislav Hredzak. “An overview of rein-
forcement learning-based approaches for smart home energy management systems with energy
storages”. In: Renewable and Sustainable Energy Reviews 202 (2024), p. 114648.

[44] Aske Plaat, Walter Kosters, and Mike Preuss. “High-accuracy model-based reinforcement learn-
ing, a survey”. In:Artificial IntelligenceReview 56 (9 Sept. 2023), pp. 9541–9573. ISSN: 15737462.
DOI: 10.1007/s10462-022-10335-w.

[45] Warren B Powell. Reinforcement Learning and Stochastic Optimization: A unified framework for
sequential decisions. John Wiley & Sons, 2022.

[46] Warren B Powell. What is Reinforcement Learning. 2022. URL: https://castle.princeton.
edu/what-is-rl/ (visited on 01/14/2024).

[47] Zhaoming Qin et al. “Does Explicit Prediction Matter in Deep Reinforcement Learning-Based
Energy Management?” In: 2021 IEEE International Conference on Energy Internet (ICEI). IEEE.
2021, pp. 13–19.

[48] Christopher Rackauckas. Engineering Trade-Offs in Automatic Differentiation: from TensorFlow
and PyTorch to Jax and Julia. https://www.stochasticlifestyle.com/engineering-trade-
offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/.
Accessed: 2024-06-14. 2021.

[49] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation Functions. 2017.
arXiv: 1710.05941 [cs.NE]. URL: https://arxiv.org/abs/1710.05941.

[50] John Schulman et al. “High-dimensional continuous control using generalized advantage estima-
tion”. In: arXiv preprint arXiv:1506.02438 (2015).

[51] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.06347 [cs.LG].
URL: https://arxiv.org/abs/1707.06347.

[52] John Schulman et al. Trust Region Policy Optimization. 2017. arXiv: 1502.05477 [cs.LG]. URL:
https://arxiv.org/abs/1502.05477.

[53] Ayas Shaqour and Aya Hagishima. “Systematic Review on Deep Reinforcement Learning-Based
Energy Management for Different Building Types”. In: Energies 15 (22 Nov. 2022), p. 8663. ISSN:
1996-1073. DOI: 10.3390/en15228663.

[54] Jingnan Shi. Automatic Differentiation: Forward and Reverse. https://jingnanshi.com/blog/
autodiff.html. Accessed: 2024-08-14. 2023.

[55] Darío Slaifstein et al. “Aging-aware Energy Management for Residential Multi-Carrier Energy”.
In: (2024).

[56] Arno Smets et al. Solar Energy: The physics and engineering of photovoltaic conversion, tech-
nologies and systems. Bloomsbury Publishing, 2016.

https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.1007/s12532-023-00239-3
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1712.05577
https://arxiv.org/abs/1712.05577
https://arxiv.org/abs/1712.05577
https://doi.org/10.1007/s10462-022-10335-w
https://castle.princeton.edu/what-is-rl/
https://castle.princeton.edu/what-is-rl/
https://www.stochasticlifestyle.com/engineering-trade-offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/
https://www.stochasticlifestyle.com/engineering-trade-offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://doi.org/10.3390/en15228663
https://jingnanshi.com/blog/autodiff.html
https://jingnanshi.com/blog/autodiff.html

References 92

[57] Phillip Stoffel et al. “Evaluation of advanced control strategies for building energy systems”. In:
Energy and Buildings 280 (2023), p. 112709.

[58] Tong Su et al. “A review of safe reinforcement learning methods for modern power systems”. In:
arXiv preprint arXiv:2407.00304 (2024).

[59] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
ISBN: 0262352702.

[60] Richard S. Sutton et al. “Policy gradient methods for reinforcement learning with function approx-
imation”. In: Proceedings of the 12th International Conference on Neural Information Processing
Systems. NIPS’99. Denver, CO: MIT Press, 1999, pp. 1057–1063.

[61] Jun Tian and other contributors. ReinforcementLearning.jl: A Reinforcement Learning Package
for the Julia Programming Language. 2020. URL: https://github.com/JuliaReinforcementL
earning/ReinforcementLearning.jl.

[62] Kim P Wabersich and Melanie N Zeilinger. “Safe exploration of nonlinear dynamical systems: A
predictive safety filter for reinforcement learning”. In: arXiv preprint arXiv:1812.05506 (2018).

[63] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming”. In: Mathematical programming 106
(2006), pp. 25–57.

[64] Jiayi Weng et al. “Tianshou: A Highly Modularized Deep Reinforcement Learning Library”. In:
Journal of Machine Learning Research 23.267 (2022), pp. 1–6. URL: http://jmlr.org/papers/
v23/21-1127.html.

[65] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning”. In: Machine learning 8 (1992), pp. 229–256.

[66] Hao Yu, Vivian WY Tam, and Xiaoxiao Xu. “A systematic review of reinforcement learning appli-
cation in building energy-related occupant behavior simulation”. In: Energy and Buildings (2024),
p. 114189.

[67] Jingzhao Zhang et al. Why gradient clipping accelerates training: A theoretical justification for
adaptivity. 2020. arXiv: 1905.11881 [math.OC]. URL: https://arxiv.org/abs/1905.11881.

[68] Juntang Zhuang et al. “AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradi-
ents”. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.
Curran Associates, Inc., 2020, pp. 18795–18806. URL: https://proceedings.neurips.cc/
paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf.

Code Repository
The complete source code employed to address the research objectives is accessible at:
https://github.com/Victor-Andres-RdeTrio/RL4MCES

https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl
https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/1905.11881
https://proceedings.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://github.com/Victor-Andres-RdeTrio/RL4MCES

A
Safety, Data Augmentation and

Exploding Gradients

A.1. Exploding Gradients
Typically, the problem of exploding gradients is understood as an exponential growth in Jacobians
through backpropagation, which complicates training by causing the step size to be excessively large
for some parameters and too small for others. However, they offer a more general definition called the
”gradient scale coefficient” [42]. Although an exploration of the definition will not be provided here, as
it is not directly related to this thesis, further reading is recommended for those interested.

The parts of the research by Philipp et al.[42] that are of interest are their comments on how to
prevent gradients from exploding or simply how to prevent training from being disturbed by the ex-
plosion. To address the different step sizes that would be ideal for each layer (if the gradient scale
coefficient grows with depth), optimisation algorithms such as Adam, RMSprop or their successors
are recommended. Normalisation layers enables a compromise between the representational power
of the network and the increase in gradient magnitude [42]. The use of an orthogonal initial state to the
network’s weights can be very useful (see Section 4.4.3), although there are other effective initialisation
approaches that also claim to reduce gradient growth.

On the path to prevent the explosion of gradients one can find the idea of large entropy reduction,
this may cause a collapsing domain [42], where the latent space in which data points can be represented
is severely reduced. The collapse of the domain may bring about pseudo-linearity, a scenario where
the nonlinearities separating linear layers can be approximated by a linear function. A representative
example of this situation is shown by a ReLU activation that mostly gets fed inputs between 0 and 0.5,
which could be easily approximated by a line with slope 1, as can be seen on the left of Figure A.1. As
it is known, any DNN without nonlinearities has the same capacity to represent data as a network of a
single layer [42], which defeats the purpose of using a deep neural network in the first place. Avoiding
pseudo-linearity is thus crucial, the previously mentioned idea of normalisation layers can be useful,
as well as relying on activation functions that are harder to approximate linearly.

A.2. Safety Projection Model
This section presents a comprehensive description of the safety projection optimisation problem. To
ensure good decision projection capabilities, the model incorporates most of the environmental state
space and transition functions employed during the RL training phase. Therefore, this section is useful
for completing the understanding of the system presented in Chapter 3.

93

A.2. Safety Projection Model 94

Figure A.1: Example of pseudo-linearity in ReLU and Tanh activation functions. The pre-activation values are sampled from a
Gaussian with µReLU = 0.3 and µTanh = 0 and both with σ = 0.2. The figures have been recreated from examples in the

paper by Philipp et al. [42].

The problem can be described more precisely as follows. A nonlinear program with 15 variables,
10 parameters (externally defined variables), minimising a quadratic objective and subject to 7 equality
constraints (4 nonlinear, 3 linear) and 20 bound constraints.

A.2.1. Objective Function

min (PEV − ϱPEV)
2 + (PBESS − ϱPBESS)

2 + (P e
HP − ϱP e

HP)
2+

107 · (ϵ2grid + ϵ2TESS + ϵ2SoCTESS
)

A.2.2. Equality constraints:
Grid Power Balance:

If Pgrid ≥ 0.0 :

(Pgrid · ηgrid + ϵgrid)− (P e
HP − γEV · PEV − PBESS + P e

load − PPV) = 0

Else:(
Pgrid ·

1

ηgrid
+ ϵgrid

)
− (P e

HP − γEV · PEV − PBESS + P e
load − PPV) = 0

The use of the conditional ifelse statements makes the constraints nonlinear.

BESS Power Balance:

If iBESS ≥ 0.0 :

PBESS −
(
Ns, BESS ·Np, BESS · vBESS · iBESS · ηc,BESS ·

1

1000

)
= 0

Else:

PBESS −
(
Ns, BESS ·Np, BESS · vBESS · iBESS ·

1

ηc,BESS
· 1

1000

)
= 0

A.2. Safety Projection Model 95

EV Power Balance:

If iEV ≥ 0.0 :

PEV −
(
Ns, EV ·Np, EV · vEV · iEV · ηc,EV ·

1

1000

)
= 0

Else:

PEV −
(
Ns, EV ·Np, EV · vEV · iEV ·

1

ηc,EV
· 1

1000

)
= 0

Thermal Storage Balance:

PTESS + ϵTESS − P th
load + PST + ηHP · P e

HP = 0

If PTESS ≥ 0.0 :

(SoCTESS,0 − SoCTESS + ϵSoCTESS)−
(
PTESS ·

∆t

QTESS · 3600
· 1

ηTESS

)
= 0

Else:

(SoCTESS,0 − SoCTESS + ϵSoCTESS)−
(
PTESS ·

∆t

QTESS · 3600
· ηTESS

)
= 0

State of Charge Dynamics:

SoCBESS +
∆t

3600 ·QBESS
· iBESS − SoCBESS,0 = 0

SoCEV +
∆t

3600 ·QEV
· iEV − SoCEV,0 = 0

A.2.3. Variables and Bound Constraints
Power Bounds [kW]:

−Pmax
grid /sf ≤Pgrid ≤ Pmax

grid /sf

0 ≤P e
HP ≤ P

e,max
HP

−Pmax
EV ≤PEV ≤ Pmax

EV

−Pmax
BESS ≤PBESS ≤ Pmax

BESS

−Pmax
TESS/sf ≤PTESS ≤ Pmax

TESS/sf

State of Charge Bounds [-]:

SoCmin
EV ≤SoCEV ≤ SoCmax

EV

SoCmin
BESS ≤SoCBESS ≤ SoCmax

BESS

SoCmin
TESS · sf ≤SoCTESS ≤ SoCmax

TESS/sf

Current Bounds [A]:

−imax
BESS ≤iBESS ≤ imax

BESS

−imax
EV ≤iEV ≤ imax

EV

A.2. Safety Projection Model 96

Slack Variables:

ϵgrid : Electric balance slack

ϵTESS : Thermal balance slack

ϵSoCTESS : TESS SoC slack

A.2.4. Constants
General Constants:

sf = 1.05 [-]

∆t = 900 [s]

Grid Constants:

ηgrid = 0.90 [-]

Pmax
grid = 17.0 [kW]

BESS Constants:

Pmax
BESS = 17.0 [kW]

SoCmin
BESS = 0.20 [-]

SoCmax
BESS = 0.95 [-]

imax
BESS = 7.80 [A]

ηc,BESS = 0.99 [-]

QBESS = 5.20 [Ah/cell]

Np,BESS = 10 [-]

Ns,BESS = 100 [-]

EV Constants:

Pmax
EV = 12.5 [kW]

SoCmin
EV = 0.20 [-]

SoCmax
EV = 0.95 [-]

imax
EV = 7.80 [A]

ηc,EV = 0.99 [-]

γEV = 1.00 [-]

QEV = 5.20 [Ah/cell]

Np,EV = 25 [-]

Ns,EV = 100 [-]

A.2. Safety Projection Model 97

Heat Pump Constants:

P e,max
HP = 4.00 [kW]

ηHP = 4.50 [-]

TESS Constants:

Pmax
TESS = 5.00 [kWth]

SoCmin
TESS = 0.10 [-]

SoCmax
TESS = 0.95 [-]

ηTESS = 0.95 [-]

Parameters

Some variables are defined by JuMP [36] as Parameters, which means that they are constants in the
model optimised for frequent updates. In this case, they are updated at each timestep. Here is the list
of Parameters:

ϱPEV, ϱPBESS, ϱP
e
HP : Decisions proposed by the RL agent [kW] (possibly unsafe)

P e
load, P

th
load : Electrical and thermal loads [kW]

PPV, PST : PV generation and solar thermal generation [kW]

SoCBESS,0,SoCEV,0,SoCTESS,0 : Initial state of charge of storage systems [-]

vBESS, vEV : BESS and EV (Battery) Voltage [V]

A.2.5. Safety Projection Details
Some implementation details of the safety projection mechanism, which were previously omitted in
Section 3.4.1 for conciseness, will now be elaborated upon. As previously established, the safety
projection intercepts the agent’s proposed actions (denoted by ϱ) before they are introduced into the
environment. Therefore, the model does not yet contain exogenous information from the next timestep.
This lack of perfect knowledge of the future is a necessary limitation.

One of the consequences of this limitation, when considering safety constraints, is that the model
cannot know for certain whether the EV will depart or arrive in the next timestep. Not knowing the future
does not compromise the safety of BESS or EV battery dynamics, as these depend solely on agent
decisions. However, Pgrid may go off limits if the next timestep changes considerably past assumptions.

Given the current dataset, the combined electrical load and heat pump requirements cannot exceed
grid limitations, thus leaving PEV, PBESS (the projected decisions) as responsible for maintaining grid
safety. Consequently, the value of γEV has beenmaintained at 1 (or true) throughout all timesteps within
the model. Assuming the EV is always present will limit the power range of the BESS, although this
is undesirable, it presents fewer complications than an unexpected EV arrival with substantial power
requirements. While this approach merely addresses worst-case scenarios, more refined methods
could be developed, such as utilising continuous values for γEV (to show uncertainty) or incorporating
a basic prediction model for EV arrival and departure times.

A.2.6. Safety Projection in Operation
An example of how the safe projection (Section 3.4.1) constrains a Reinforcement Learning agent will
be displayed in this Section. The focus is placed on the Top RL Agent (obtained in Section 5.4.2) and
its performance on the test set. Figure A.2 presents the three components of the projection distance,
corresponding to the decisions required of the agent.

A.3. Synthetic Expansion of Training Data 98

Figure A.2: Visualisation of the safe projection distance affecting the decisions of the Top RL Agent (Section 5.4.2) applied to
the test set. The test set encompasses 90 days, but serves as a representation of an entire year.

A.3. Synthetic Expansion of Training Data
This Section contains the algorithm used for creating the validation set (Algorithm 2), crucial for the
hyperparameter optimisation, as it allows to evaluate the agents –produced by each combination of
hyperparameters– on new data without making use of the test set. All the relevant information regarding
the origin, division and synthetic expansion of the used data can be found in Section 3.6.

A.3. Synthetic Expansion of Training Data 99

Algorithm 2 Synthetic Data Generation for Validation Set

Require: Training set of D = 274 days, each day containing T = 96 timesteps of 15 min, where Xd,t

is the value at day d and timestep t

1: Initialize S = 91 (number of synthetic validation days to create)
2: for d = 1 to D − 4 with step 3 do
3: for each timestep t = 1, . . . , T do
4: Calculate mean at timestep t across the 3 days:

µ3,t =
1

3

2∑
i=0

Xd+i,t

5: Sample synthetic value for timestep t from normal distribution:

Vsyn,t ∼ N
(
µ3,t,

µ3,t

3

)

6: Restrict Vsyn,t within the minimum and maximum values of the original dataset:

Vsyn,t ← max(Xmin,min(Vsyn,t, Xmax))

7: end for

8: Store Vsyn as a new synthetic validation day

9: end for
10: return Validation set of S = 91 synthetic days.

Note: N (µ, σ) denotes a normal distribution with mean µ and standard deviation σ.

B
Hyperparameter Optimisation: Extra

Information

B.1. Finding the Best Hyperparameters: BOHB Algorithm
BOHB is an acronym that stands for Bayesian optimisation and Hyperband, two methods that, al-
though decent on their own, present an even greater synergy. It was developed by Falkner, Klein, and
Hutter [17], who managed to craft a method that is able to surpass both Bayesian optimisation and
Hyperband in numerous problems, including the training of deep reinforcement learning models.

Its effectiveness in optimising a wide range of problems is due to its robustness, a particularly
relevant feature in the noisy world of RL [17]. BOHB is versatile; it can handle categorical, binary,
integer, and continuous variables. The implementation of BOHB in Julia, provided by Fredrik Bagge
Carlson’s Hyperopt.jl package [6], provides an efficient framework for hyperparameter optimisation.
Quite crucial for this thesis is the fact that Hyperopt.jl allows for an easy parallelisation of computational
resources.

Bayesian optimisation works by modelling the objective function to be minimised using available
data points. Traditionally, this has been achieved using Gaussian processes (GPs) to create a distribu-
tion over possible objective functions [17]. GPs naturally provide predictions (from their mean functions)
and uncertainties (from the covariance functions) for any input. However, they face scalability issues in
higher dimensions due to their cubic training complexity relative to the number of data points. In addi-
tion, they lack robustness, relying on good initialisation. For these reasons, Falkner et al. implemented
a Bayesian optimisation method using the Tree Parzen Estimator (TPE) that models the densities [17]:

l(x) = p(y < α|x,D), g(x) = p(y > α|x,D) (B.1)
Where:

x : Input configuration (hyperparameters being optimized)
y : Observed value of the objective function
α : Threshold value separating good and bad performance. E.g. current best performance.
D : Set of observed data points (configurations and their performance)

l(x) : Probability density of configurations performing better than α
g(x) : Probability density of configurations performing worse than α

This approach differs from traditional methods that directly model the objective function. To choose
a new candidate x, the ratio between the two probability densities (l(x)/g(x)) is maximised. Notably,

100

B.2. Auxiliary Hyperparameter Ranges 101

TPE’s computational complexity grows linearly with the dataset size [17], offering the scalability that
GPs cannot.

The other pillar supporting BOHB is Hyperband, an algorithm that samples random hyperparameter
configurations and distributes the available resources to the most promising ones [17]. It operates by
halting the worst performing evaluations, typically half or a third, and redirecting the freed resources to
explore new possibilities. It is a fast, flexible, and well-performing algorithm, scaling easily to higher-
dimensional inputs. However, Hyperband is limited by its reliance on random sampling, as there is
no model of the objective function, no direction to the search [17]. These limitations become more
pronounced in vast configuration spaces, as the combinations increase, the sampler will need expo-
nentially more resources to find quickly the most promising hyperparameters.

Figure B.1: Comparison of 4 methods for hyperparameter optimisation on the Cartpole benchmark with PPO. 8
hyperparameters are being tuned. RS stands for Random Sampler. Hyperband (HB) and BOHB perform similarly at the

beginning, but BOHB manages to converge to a considerably better configuration. Source: [17]

The approach taken by Falkner and colleagues involves using Hyperband’s methodology for re-
source management and budget selection. Additionally, they incorporate a mechanism for storing
hyperparameter configurations and their corresponding performances [17]. This stored information is
then used to build a model using TPE, allowing for informed decisions on the next batch of hyperpa-
rameters. As can be seen in Figure B.1, the balance of exploration and exploitation of this approach
is adequate, allowing it to achieve better final performance than Hyperband or Bayesian optimization
within the same runtime.

B.2. Auxiliary Hyperparameter Ranges
Due to space constraints, the most extensive hyperparameter ranges are presented in this appendix,
with the main body of the thesis focusing on their development and impacts.

B.2.1. Feature Vectors
See Section 4.3 for a detailed explanation of the feature vector’s role and definition. The Tables (B.1,
B.2, B.3) represent the possible configurations of the feature vector, created for the purpose of expand-
ing the hyperparameter search space (see Section 5.3).

B.2. Auxiliary Hyperparameter Ranges 102

Variable Time Lags (days)

1 2 3 4

P e
load 0.0 0.0 0.0, 0.5, 1.0 0.0, 0.5, 1.0

P th
load 0.0 0.0 0.0, 0.5, 1.0 0.0, 0.5, 1.0

PPV 0.0 0.0 0.0, 0.5, 0.65, 1.0 0.0, 0.5, 0.65, 1.0

λbuy 0.0 0.0 0.0, 0.1, 0.45, 0.65, 1.0 0.0, 0.1, 0.45, 0.65, 1.0

λsell 0.0 0.0 0.0, 0.1, 0.45, 0.65, 1.0 -

γEV 0.0 0.0 0.0, 1.0 0.0, 1.0

Pgrid - 0.0 0.0, 0.5, 1.0 0.0, 0.5, 1.0

PBESS - 0.0 0.0, 1.0 -

PEV - 0.0 0.0, 0.5, 1.0 -

P e
HP - 0.0 0.0, 0.5, 1.0 -

SoCBESS 0.0 0.0 0.0, 0.15, 0.4, 0.8, 1.0 0.0, 0.15, 0.4, 0.8, 1.0

SoCEV 0.0 0.0 0.0, 0.25, 0.75, 1.0 0.0, 0.25, 0.75, 1.0

SoCTESS 0.0 0.0 0.0, 0.25, 0.5, 0.75 0.0, 0.25, 0.5, 0.75

tep 0.0 0.0 0.0, 0.3, 0.9 0.0, 0.3, 0.9

Table B.1: Time lag configurations for all variables across 1-4 feature vector configurations.

Variable Time Lags (days)

5 6 7

P e
load 0.0, 0.5, 1.0 0.17, 0.58, 0.92 0.0, 0.04, 0.25, 1.0

P th
load 0.0, 0.5, 1.0 0.03, 0.41, 0.79 0.0, 0.04, 0.25, 1.0

PPV 0.0, 0.25, 0.65 0.22, 0.55, 0.88 0.0, 0.04, 0.25, 1.0

λbuy 0.1, 0.45, 1.0 0.09, 0.36, 0.71 0.0, 0.04, 0.25, 1.0

λsell - 0.14, 0.47, 0.83 -

γEV 0.0, 1.0 0.06, 0.39, 0.75 0.0, 0.25, 1.0

Pgrid 0.0, 0.5, 1.0 0.28, 0.61, 0.95 0.0, 0.04, 0.25, 1.0

PBESS 0.0, 1.0 0.11, 0.44, 0.80 0.0, 0.04, 0.25, 1.0

PEV 0.0, 1.0 0.19, 0.52, 0.87 0.0, 0.04, 0.25, 1.0

P e
HP 0.0, 1.0 0.08, 0.33, 0.69 0.0, 0.04, 0.25, 1.0

SoCBESS 0.1, 0.8 0.25, 0.58, 0.91 0.0, 0.04, 0.25, 1.0

SoCEV 0.0, 0.25, 0.75 0.05, 0.38, 0.72 0.0, 0.25, 1.0

SoCTESS 0.0, 0.25, 0.8 0.31, 0.64, 0.97 0.0, 0.04, 0.25, 1.0

tep 0.0 0.13, 0.45, 0.78 0.0, 0.25

Table B.2: Time lag configurations for all variables across 5-7 feature vector configurations.

B.2. Auxiliary Hyperparameter Ranges 103

Variable Time Lags (days)

8 9

P e
load 0.0, 0.1, 0.5, 0.65, 1.0 0.0, 0.1, 0.5, 0.9

P th
load 0.0, 0.4, 0.5, 0.75, 1.0 0.0, 0.4, 0.75

PPV 0.0, 0.1, 0.25, 0.5, 0.65, 1.0 0.0, 0.25, 0.5, 0.75

λbuy 0.0, 0.04, 0.1, 0.2, 0.45, 0.65, 1.0 0.0, 0.1, 0.4, 0.65

λsell 0.0 0.0

γEV 0.0, 0.25, 1.0 0.0, 1.0

Pgrid 0.0, 0.04, 0.25, 0.5, 1.0 0.0, 0.5, 1.0

PBESS 0.0, 0.04, 0.65, 1.0 0.0, 1.0

PEV 0.0, 0.5, 0.7, 1.0 0.0, 0.5, 1.0

P e
HP 0.0, 0.5, 0.95 0.0, 0.5, 1.0

SoCBESS 0.0, 0.15, 0.25, 0.4, 0.8, 1.0 0.0, 0.1, 0.25, 0.5, 0.8

SoCEV 0.0, 0.04, 0.25, 0.75, 1.0 0.0, 0.25, 0.8

SoCTESS 0.0, 0.25, 0.4, 0.65, 0.8 0.0, 0.2, 0.8

tep 0.0, 0.25, 0.4, 0.9 0.0, 0.25, 0.4

Table B.3: Time lag configurations for all variables across 8-9 feature vector configurations.

B.2. Auxiliary Hyperparameter Ranges 104

B.2.2. Reward Functions
In this Section the reader will find all the available reward functions for the extended hyperparameter
set (see Section 5.3.3), which stem from the possible combinations of reward functions represented
concisely in Equation 4.17. The first two combinations were already described in Section 4.2.5, as
Equations 4.18 and 4.19, and therefore have not been assigned a label below.

rfinal,t = b
(
wgrid · rΣgrid,e + wEV · rabsEV,t + winit

proj · rinitproj,t + wop
proj · r

op
proj,t

)
rfinal,t = b

(
wgrid · rΣgrid,e + wEV · rσEV,t + winit

proj · rinitproj,t + wop
proj · r

op
proj,t

)
rfinal,t = b

(
wgrid · rΣgrid,e + wEV · rabsEV,t + winit

proj · rinitproj,t + wop
proj · (r

op
proj,t + rmargin)

)
(B.2)

rfinal,t = b
(
wgrid · rΣgrid,e + wEV · rσEV,t + winit

proj · rinitproj,t + wop
proj · (r

op
proj,t + rmargin)

)
(B.3)

rfinal,t = b
(
wgrid · rarbgrid,t + wEV · rabsEV,t + winit

proj · rinitproj,t + wop
proj · r

op
proj,t

)
(B.4)

rfinal,t = b
(
wgrid · rarbgrid,t + wEV · rσEV,t + winit

proj · rinitproj,t + wop
proj · r

op
proj,t

)
(B.5)

rfinal,t = b
(
wgrid · rarbgrid,t + wEV · rabsEV,t + winit

proj · rinitproj,t + wop
proj · (r

op
proj,t + rmargin)

)
(B.6)

rfinal,t = b
(
wgrid · rarbgrid,t + wEV · rσEV,t + winit

proj · rinitproj,t + wop
proj · (r

op
proj,t + rmargin)

)
(B.7)

B.2.3. Reward Weights
The Table B.4 represents three distinct arrangements for weighting the final reward (Equation 4.17).
Each of the rewards described in Section 4.2 has a different magnitude. Although normalisation has
been applied to most reward functions, the relative importance assigned to each component is ulti-
mately a decision made prior to optimising, and as such it could prevent certain reward combinations
(see Section 4.2.5) from guiding the agent towards an optimal policy.

Weight Config 1 Config 2 Config 3

wgrid 1.0 1.5 0.75

wEV 3.0 4.0 2.5

winit
proj 1.0 2.0 0.75

wop
proj 3.0 4.0 5.0

Table B.4: Weight configurations for the final reward, as defined in Equation 4.17.

B.2.4. Neural Network Architectures
This Section contains Tables B.5 and B.6, which provide compact symbolic representations of all the
DNN architectures used for the extended hyperparameter optimisation (Section 5.3.3). To aid interpre-
tation, a legend accompanies the Tables, explaining the notation and structure of the symbolic repre-
sentations.

B.2. Auxiliary Hyperparameter Ranges 105

Legend for Tables B.5 and B.6:

ns : number of input features
w : width parameter
na : number of output values
act−−→ : dense layer with activation function ’act’

act: {Tanh,Mish}
id : identity function
br : branch
res : residual connection
par : parallel branches
bot : bottleneck branch
+ : element-wise addition

contract : contraction layer.
If na < 3, a dense layer bridges the output to na width

outi : output of branch i

Name Symbolic Representation

Constant
Width (CW)

ns
act−−→ w

act−−→ w
id−→ na

Mid CW ns
act−−→ w′ act−−→ w′ act−−→ w′ act−−→ w′ id−→ na

(MCW) where w′ = w · 0.58

Deep CW ns
act−−→ w′ act−−→ w′ act−−→ w′ act−−→ w′ act−−→ w′ act−−→ w′ id−→ na

(DCW) where w′ = w · 0.46

CW with πmean : ns
act−−→ w′ act−−→ w′ id−→ na

Standard Dev. πstd : ns
act−−→ w′ act−−→ w′ id−→ na

(CW + STD) where w′ = w ·
√
1/2

Pyramid ns
act−−→ w′ act−−→ w′/2

act−−→ w′/4
id−→ na

(PYR) where w′ = w · 5/4

Deep Pyramid ns
act−−→ w′ act−−→ 5w′/6

act−−→ 2w′/3
act−−→ w′/2

act−−→ w′/3
act−−→

w′/4
act−−→ w′/6

id−→ na

(DPYR) where w′ = w ·
√
1/2

Table B.5: Symbolic Representation of Constant Width and Pyramid Architectures.

B.3. Supplementary Hyperparameter Optimisation Results 106

Name Symbolic Representation

Bottleneck ns
act−−→ w′ act−−→ w′/5

act−−→ w′ id−→ na

(BOT) where w′ = w · 1.55

Residual ns
act−−→ w′ res−−→ w′ id−→ na

(RES) where w′ = w ·
√
1/2

and res = id+ (
act−−→ w′ act−−→ w′)

Deep Residual ns
act−−→ w′ res−−→ w′ res−−→ w′ id−→ na

(DRES) where w′ = w/2

and res = id+ (
act−−→ w′ act−−→ w′)

Residual + ns
act−−→ w′ res+bot−−−−→ w′ id−→ na

Bottleneck where w′ = w · 1.48

(RES + BOT) and res+bot = id+ (
act−−→ w′/5

act−−→ w′/5
act−−→ w′)

3 CW ns
id−→ par contract−−−−→ na

Branches where par = (br1 + br2 + br3)

(3CW) br1,2 : ns
act−−→ w′ act−−→ w′ id−→ out1,2

br3 : ns
relu−−→ w′ relu−−→ w′ relu−−→ out3

where w′ = w · 0.55

3 Pyramid ns
id−→ par contract−−−−→ na

Branches where par = (br1 + br2 + br3)

(3PYR) br1,2 : ns
act−−→ w′ act−−→ w′/2

act−−→ w′/4
id−→ out1,2

br3 : ns
relu−−→ w′ relu−−→ w′/2

relu−−→ w′/4
relu−−→ out3

where w′ = w ·
√
1/2

Table B.6: Symbolic Representation of Bottleneck, Residual, and Multi-Branch Architectures

Quadratic Approximations of Parameter Count

Section 4.4.4 examines the alignment of parameter growth across all tested DNN architectures with
the growth observed in the CW architecture. To enable a quantitative comparison, quadratic approxi-
mations were employed to model the relationship between input width (w) and the number of parame-
ters, capturing the observed nonlinear trends. Table B.7 summarises the fitted polynomial coefficients
and the corresponding coefficients of determination (R2), where values approaching 1 reflect a strong
agreement between the model and parameter count.

B.3. Supplementary Hyperparameter Optimisation Results
The most relevant patterns found when investigating the samples taken during extended hyperparam-
eter optimisation were presented in Section 5.3.5. However, it was considered that additional perfor-
mance patterns observed across other significant hyperparameters merited examination, especially
to ascertain if they contributed to the performance improvement observed in comparison to the basic
optimisation. This Section serves as an extension of Section 5.3.5.

B.3. Supplementary Hyperparameter Optimisation Results 107

Name Quadratic Approximation R²

Constant Width (CW) 1.0w² + 35.0w + 3.0 1.000000

Mid CW 0.9985w² + 21.94w - 27.8581 0.999986

Deep CW 1.0723w² + 17.7601w + 18.5515 0.999978

CW + Std 1.0002w² + 49.4402w + 6.7132 0.999991

Pyramid 0.9766w² + 40.1114w + 2.1263 0.999994

Deep Pyramid 1.0154w² + 22.8946w + 7.1809 0.999985

Bottleneck 0.9602w² + 53.7561w - 16.0052 0.999988

Residual 1.0002w² + 25.3991w + 3.9274 0.999991

Deep Residual 1.0006w² + 18.7598w + 18.5517 0.999972

Residual + Bottleneck 0.9630w² + 51.1769w - 19.0971 0.999985

3 CW Branches 0.8999w² + 54.3184w - 4.9992 0.999985

3 Pyramid Branches 0.9378w² + 66.7416w + 3.4118 0.999982

Table B.7: Quadratic Approximations for Network Architectures

B.3.1. Architectures Comparison

Actor

The extended hyperparameter set encompasses various DNN architectures for the Actor network, ex-
panding beyond the basic CW configuration. As was mentioned in various occasions along Section
5.3.5, dataset size and sample interdependence do not allow for strong conclusions to be drawn. The
methodology focuses on identifying observable tendencies across the architectures, which were de-
tailed in Section 4.4.4.

Performance metrics exhibit consistency across Actor architectures, with a few notable exceptions.
Deep Pyramid (DPYR) demonstrates the lowest median values with reduced variance, as well as the
worst training success rate (p = 0.201). This last result is specially surprising when considering that the
shallower version of the pyramid architecture (PYR) has the second highest probability of successfully
training agents (p = 0.383).

The three-branched configurations display slightly higher median values, but the most notable re-
sult is the high outliers obtained with these two architectures, which led to their selection for extended
hyperparameter profiles (see Section 5.3.5). The presence of high-performing outliers suggests the
existence of specific hyperparameter configurations that can leverage the more complex ar-
chitecture. It is worth noting that the results from Andrychowicz et al. [4] have been experimentally
confirmed (see Section 4.4.2), as there is no significant performance difference between the CW and
CW + STD architectures.

The introduction of alternative architectures to CW appears to have yielded performance improve-
ments, since an 18.7% increase in maximum performance was observed when using 3CW (Mperf =
1.178). Apart from the three-branched outliers, the deeper variant DCW consistently achieves superior
Mperf values, demonstrating as well the highest training success rate at p = 0.387.

Critic

Critic architectures display clearly different patterns compared to their Actor counterparts. The pre-
viously underperforming DPYR appears as a top performer when used as a Critic. Bottleneck and
Residual configurations, which did not stand out with the Actor, demonstrate consistent high perfor-

B.3. Supplementary Hyperparameter Optimisation Results 108

Figure B.2: Validation set performance (Mperf) distribution across DNN architectures for the Actor network. Box plots illustrate
performance metrics for twelve distinct architectures, color-coded by architectural family (green: CW variants, red: pyramid

variants, blue/yellow: residual, bottleneck and their combination, purple: branched architectures). A success threshold of 0.05
was applied. Whiskers extend to 1.5 times the interquartile range, with dots representing outliers. The legend presents

binomial distribution parameters B(n,p), where n indicates sample size (139-168) and p denotes the probability of producing
agents above the threshold for each architecture.

mance, placing them in extended hyperparameter profiles (see Section 5.3.5). The variation in peak
performance between the Actor and the Critic architectures, coupled with the mediocre results obtained
by CW, validate the implementation of diverse architectural configurations.

B.3.2. Feature Vectors Comparison
The feature vector configurations, introduced in Section 4.3, demonstrate in Figure B.4 varying impacts
on agent performance, with configurations 1, 2 and 5 exhibiting significantly higher medians. The
randomised time lags in configuration 6 yield the lowest success rate (p = 0.186), which could be
expected. Configuration 7, which stems from the assumption that patterns of agent behaviour should
be correlated with the last 0,1,6 and 24 hours, presents similar outcomes to configuration 6, albeit with
a higher likelihood of success.

The performance analysis of configurations 3, 4, 5, 8, and 9, which were constructed based on
the expert’s state-action cross-correlation values yields unexpected results. There appears to be an
inverse relationship between information quantity and performance, which suggests potential overfitting
when too many time lags are included. Except for configuration 5 –the simplest– these feature vectors
underperform relative to the straightforward last-timestep approach of configurations 1 and 2.

Configuration 2, employed in the basic optimisation, demonstrates remarkable robustness with a

B.4. System Specifications for Training RL Agents 109

Figure B.3: Validation set performance (Mperf) distribution across DNN architectures for the Critic network. Box plots illustrate
performance metrics for eleven distinct architectures, color-coded by architectural family (green: CW variants, red: pyramid

variants, blue/yellow: residual, bottleneck and their combination, purple: branched architectures). A success threshold of 0.05
was applied. Whiskers extend to 1.5 times the interquartile range, with dots representing outliers. The legend presents

binomial distribution parameters B(n,p), where n indicates sample size (141-181) and p denotes the probability of producing
agents above the threshold for each architecture.

success probability of p = 0.346, and a peak result ofMperf = 1.172. The limited impact of feature vector
range expansion on the extended hyperparameter profiles indicates that performance improvements
stem from other factors.

B.4. System Specifications for Training RL Agents
The following list outlines the hardware and software resources utilised throughout this thesis for training
RL agents and conducting hyperparameter optimisations:

• Model: Asus ProArt StudioBook.
• Processor: 12th Gen Intel(R) Core(TM) i7-12700H, operating at 2300 MHz, featuring 14 cores
and 20 logical processors.

• Memory (RAM): 32.0 GB of physical memory.
• Graphics Card: NVIDIA RTX A3000 Laptop GPU, with 12 GB VRAM.
• Operating System: Windows 11 Pro.

B.5. Working with Julia's RL Package 110

Figure B.4: Validation set performance (Mperf) distribution across feature vector configurations. Box plots illustrate
performance metrics for nine distinct feature combinations, color-coded by feature family (red: last timestep, blue: based upon
expert’s state-action cross-correlation, pink: randomised time lags, green: 0,1,6 and 24 hours of lag). A success threshold of
0.05 was applied. Whiskers extend to 1.5 times the interquartile range, with dots representing outliers. The legend presents
binomial distribution parameters B(n,p), where n indicates sample size (171-221) and p denotes the probability of producing

agents above the threshold for each configuration.

B.5. Working with Julia's RL Package
The RL package in Julia, ReinforcementLearning.jl [61], has proven useful for this thesis by establishing
a basic structure on which to build. It creates abstractions such as agents, environments, policies, and
stages in the run. However, it has been undergoing a refactoring process for a considerable time,
resulting in stable versions that lack many features.

The decision not to give up the incredible performance and efficiency of Julia [8] meant implement-
ing or adapting considerable parts of the policy gradient algorithms described in Section 4.5. In this
circumstances, the decisions were made primarily by adhering to the principle of adding those changes
that have proven to improve performance reliably and substantially.

B.5.1. Code Repository
The complete source code employed to address the research objectives is accessible at: https://github.com/Victor-
Andres-RdeTrio/RL4MCES

https://github.com/Victor-Andres-RdeTrio/RL4MCES
https://github.com/Victor-Andres-RdeTrio/RL4MCES

B.5. Working with Julia's RL Package 111

The author may be reached by email: vandres.trio@proton.me

	Preface
	Abstract
	Summary
	Introduction
	Problem Definition
	Research Goal
	Main Contribution
	Statement of Research Questions
	Structure of the Thesis

	Literature Review
	Introduction
	Overview of Sequential Decision Problems
	Policies
	Policy Search
	Lookahead Policies

	Introduction to Reinforcement Learning
	Modelling Framework
	Towards a Definition
	Learning
	On or Off Policy

	Is a model useful?
	Model-Free
	Model-Based

	Defining a Model-Free Algorithm
	Class Selection: Actor-Critic
	Stochastic Policy Gradient

	Updating the Agent
	Rewards
	Actor loss
	Critic loss
	Loss Gradients

	Activation Functions
	RL in Energy Management Systems
	Strengths
	Weaknesses
	Residential Buildings
	PPO in practice
	MCES Modelling
	Direct Deployment in MCES: Safe Learning

	Research Gaps
	Research Questions

	Energy Management System
	Introduction
	System Components
	Sequential Decision Problem
	Objective function
	State variable
	Decision variable
	Exogenous information
	Transition function

	Safe Behaviour
	Safety Projection
	Safety during training
	Safety after deployment

	Expert EMS
	Data: Training and Testing
	Expanding the Data

	RL Agent Construction
	Introduction
	Reward Functions
	Grid Cost
	EV Penalty at Departure
	Projection Penalty
	Margin Reward
	Final Reward

	Feature vector
	Neural Network Design
	Dimensions of the Deep Neural Network
	Policy Output
	Weight Initialisation
	Architecture

	Implementation of Policy Gradient Algorithms
	Vanilla Policy Gradient with Critic (VPG-C)
	Advantage Actor Critic with Generalized Advantage Estimation (A2CGAE)
	Proximal Policy Optimization (PPO)

	Data Collection

	Hyperparameter Optimisation and Agent Evaluation
	Introduction
	Performance Metrics
	Grid Cost Metric
	EV Penalty Metric
	Projection Penalty Metric
	Final Metric

	Hyperparameter Optimisation
	Hyperparameter Set
	Basic Range
	Extended Range
	Procedure
	Results

	Finding a Near-Optimal Policy
	Hyperparameter Profile Performance Analysis
	Comparison of Best Agents

	RL EMS Validation and Conclusions
	Introduction
	Comparison with Expert
	Objective Function Metrics
	Agent Behaviour
	Safety Performance
	Validation

	Conclusions
	Further Work

	References
	Safety, Data Augmentation and Exploding Gradients
	Exploding Gradients
	Safety Projection Model
	Objective Function
	Equality constraints:
	Variables and Bound Constraints
	Constants
	Safety Projection Details
	Safety Projection in Operation

	Synthetic Expansion of Training Data

	Hyperparameter Optimisation: Extra Information
	Finding the Best Hyperparameters: BOHB Algorithm
	Auxiliary Hyperparameter Ranges
	Feature Vectors
	Reward Functions
	Reward Weights
	Neural Network Architectures

	Supplementary Hyperparameter Optimisation Results
	Architectures Comparison
	Feature Vectors Comparison

	System Specifications for Training RL Agents
	Working with Julia's RL Package
	Code Repository

