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Summary 
 
This report investigates the relation between the spatial configuration of the street network and the vehicular 
movement patterns in the city of Rotterdam. The space syntax approach is used to measure the closeness and 
betweenness centrality of individual street segments in relation to all others with different spatial scales and 
means of distance. The closeness centrality captures the relative to-movement by measuring to what extent a 
street segment is close to all the other street segment along the shortest paths of the network. The betweenness 
centrality captures the relative through-movement by counting how often the street segment is traversed by all 
shortest paths between all sets of segment pairs. (S. Porta et. al, 2009) The network centrality measures have 
been statistically compared with predicted traffic loads from a traditional four-step macroscopic traffic model by 
a simple linear regression analysis. The network centrality maps are used to identify which streets are more 
likely to generate movement by the urban structure without any ‘special magnets of attraction’. The linear 
regression analysis with the sum of the closeness and betweenness centrality confirms the hypothesis that the 
relative total movement of a street segment is a function of both measures. In other words, the total amount of 
movement is the combined efforts of movement from trips at their destination (e.g. shops at accessible location) 
or at their origin (e.g. residential area at less accessible location), and movement from pass-by trips (e.g. arterial 
roads). The theory and derivation of network centrality measures are explained in the theoretical framework and 
demonstrated by means of a toy street network.  

Moreover there is also an attempt to validate space syntax as a traffic assessment tool at urban scale by applying 
weighting functions based on road characteristics such as segment length, speed limit and road capacity. 
Weighting functions can add real life complexity and attractiveness to use a particular road. More research such 
as a multiple regression analysis should be done to see what other variables in urban areas contribute to a 
stronger linear relationship. Hence it may be possible to use location-based density and differentiation (e.g. 
spatial density and functions of nearby buildings and public space) as weighting functions. The same approach 
can also be applied for pedestrians and cyclist movement patterns with smaller spatial scales. By understanding 
the evolving human patterns as a result of spatial layout of urban areas; space syntax can become a powerful tool 
to organise a city’s complexity and growth with architectural interventions in context with other fields of 
discipline.  
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1.  Introduction 
 

1.1 Problem Statement  
 

Traditional four-step traffic models provide a reliable and powerful tool for estimating traffic conditions with 
different mobility patterns, modal shares, land-uses and network configurations. The implementation can be 
time-consuming and relatively costly because they rely on huge production and attraction data of traffic users 
between distinct areas as shown in chapter 1.5 in this report. In times of extensive urban development there is a 
need for modelling traffic loads and accessibility at urban scale using more generic data collection. 

The space syntax approach defines that the structure of the urban grid has ‘independent and systematic effects on 
movement patterns.’ (B. Hillier, 2002) The analysis of spatial configurations are based on mathematical graph 
theory and network theory. Space syntax was originated by B. Hillier and J. Hanson from Barnett School, UCL 
in the late 1970’s. Space syntax techniques can be used as a supporting tool to identify structural problems in 
cities and investigate the potential social-effects of development options. Research on network centrality 
provides not only better understanding of cities but it can also help shaping its growth. (S. Porta et. al, 2009) The 
configurational models are more frequently used to preliminary assess potential vehicular and pedestrian 
movement at urban scale but they still lack sufficient validation.  

 

1.2 Research Goal  
 

The research goal can be explained as two-fold. Primarily the research aims to show to what extent vehicular 
movement is affected by the configuration of the street network and by the different parts of the complex system 
that are related to the each other. There are three hypotheses to be confirmed. The first hypothesis is that 
closeness centrality captures the relative to-movement whereas betweenness centrality is a measure for relative 
through-movement of vehicles. The second hypothesis is that the total vehicular movement can be captured by 
the sum of betweenness and closeness centrality. Furthermore the research attempts to validate space syntax as a 
traffic assessment tool. Weighting functions are added to the individual and combined network centralities 
measures to achieve stronger correlation with the predicted traffic loads from the macroscopic traffic model in 
the simple linear regression analysis. 
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1.3 Theoretical Framework 
 

Space Syntax as an Urban Model 

The space syntax approach contains a set of theories and techniques for analysing the relation between spatial 
configuration and human activity patterns. (UCL Space Syntax, 2019) A toy street network will be used to 
explain these theories and techniques in a stepwise manner. Space syntax allows a creation of an urban model 
that is principally constructed based on a gravity model with central variables; distance and attraction, and a form 
of representation of urban space. (Wilson, 2000, L. Marcus et. al, 2017) A road centre line map of the street 
network can be used as the input data for investigating movement patterns in urban areas (see figure 1). A road 
centre line map is a representation of the street network where ‘geometric features are polylines representing 
street segments which span between junctions’. (G. Stavroulaki et. al, 2017) Each street segment is represented 
by a node at its centroid in order to allocate its relative position within the street network according to the graph 
theory (see figure 2). 

 

 

Network Centrality Measures 

The two main measures in space syntax are network centrality measures which are used to examine the two 
primary all-to-all relations (all street segments to all others) (A. Van Nes, 2014): 

• Closeness centrality (or ‘integration’ as it is called in space syntax) 
• Betweenness centrality (or ‘choice’ as it is called in space syntax) 

 

Closeness centrality captures the to-movement and the notion of accessibility of a location. It measures ‘to what 
extent a node (segment) is close to all the other nodes along the shortest paths of the network’ (see figures 3 and 
5). (S. Porta et. al, 2009) The closeness centrality value for a particular node (street segment) can be 
mathematically defined as the inverse of the average distance from all other nodes (origins) to this given node 
(destination) along the shortest paths. The betweenness centrality captures the through-movement of each street 
segment. It does not capture the origin or destination for trips. A ‘node is more central when it is traversed by a 
larger number of the shortest paths connecting all couples of nodes in the network’. (S. Porta et. al, 2009) The 
betweenness centrality for a particular node is calculated by counting how often this given node is traversed by 
all shortest paths (see figure 4). In chapter 1.3 you can find example calculations with the formulas and 
complementary visuals. 

 

 

Figure 1, Road Centre Line Map of Toy Street Network Figure 2, Graph notation of Road Centre Line Map 
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Figure 3, (Angular) Closeness Centrality Map Toy Street Network – To-Movement  

 

 

 

 

Figure 4, (Angular) Betweenness Centrality Map Toy Street Network – Through-Movement  
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For calculating the network centrality measures, the shortest paths need to be computed. The shortest path 
between an origin node and a destination node can be weighted by using three different definitions of distance; 
metric distance (see figure 6), topological distance (see figure 7) and angular distance (see figure 8). (B. Hillier 
& S. Lida, 2005) The shortest path shown in figure 5 happens to be the same for all three distance measures. This 
may not always be the case for other (more complex) spatial configurations. The urban space is regarded as a 
network based on ‘human affordances of visibility and accessibility’. (Gibson, 1979, L. Marcus et. al, 2018) The 
topological and angular distance have the ability to capture human perceptions; ‘how much can I see?’. The 
fewest turn path is based on the topological distance by counting each change of direction as one topological step 
even though the angle between 2 segments is close to 0 degrees (straight). In many Dutch cities the long main 
streets are curved. Using topological steps without angular weighting has a vast effect on the centrality values. 
(A. Van Nes, 2014) The Least Angle Change Path with angular distance is used as the default shortest path for 
this research (see spatial analysis methodology on page 26). The angular distance is an effective way of 
expressing the cost-benefit of choosing a particular path. The angular distance is quantified by dividing the angle 
change at each topological step by 90° (e.g. straight on are 0 steps, a 90° turn is 1 step and a U-turn are 2 steps). 
A route with many curves and turns at junctions will slow down the wayfinding through cities for pedestrians, 
cyclists and car drivers. (N. Dalton, 2001)  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6, Least Length Path : 
metric distance, dji = 535 metres 

 

Figure 7, Fewest Turns Path: topological 
distance, dji = 4 topological steps 

 

Figure 8, Least Angle Change Path: 
angular distance (weighted 
topological distance), dji = 196° = 
196/90 = 2.18 topological steps 

 

Figure 5, The shortest 
path from origin node (j) 
to destination node (i) 
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The closeness centrality and betweenness centrality measures can be performed on different spatial scales; the 
degree in which a node is integrated or segregated from a system as a whole (global) or as a partial (local). The 
maximum travelling (walking) distance from each node can be limited by applying a metric radius. Hereby you 
can test configurations that are ideal for different modes of transport using the road network. (See Appendix A1) 
Studies have shown that local scales (radius < 2500 m, see figure 9) are likely to highlight streets that are 
attractive for pedestrians and cyclists. Intermediate and global scales (radius > 2500 m, see figure 10) correspond 
better with the movement of motorized vehicles such as cars and buses. (B. Hillier et. al, 1998, A. Van Nes, 
2005, D. Koch et. al, 2009) Some streets might just be local, others are local and global, and others are just 
global. Many cities consist of several centres whereas a global measure often only highlights one centre. By 
comparing local and global centrality maps you can observe how well local centres are integrated to the so called 
‘supergrid’. In other words; how well main routes connect neighbourhoods with each other. (A. Van Nes, 2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9, Local (Angular) Betweenness Centrality of Rotterdam (radius = 1000 m) 

 

Figure 10, Global (Angular) Betweenness Centrality of Rotterdam (radius = 30 km) 
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The role of spatial configuration in the ‘Circle of Wegener’  

In order to understand how movement (vehicular movement in this particular case) is affected by the 
configuration of the street network, it is fundamental to be aware of how the different parts of the complex urban 
system are related to each other. The circle of Wegener (M. Wegener & F. Fürst, 1999) in figure 11 explains how 
the components of transport systems, accessibility, land-use and activities are related and form a ‘dynamic’ 
feedback cycle. This cycle is not completely closed due to influence of some other external factors as shown by 
L. Bertolini (2012) in the appendix A2.   

The space syntax approach can indirectly capture the circle of Wegener by solely looking at the spatial lay-out of 
urban areas. (See figure 12)  Studies by S. Porta (2009) confirm the hypothesis that street centrality has a crucial 
role in shaping the formation of urban structure and land uses. Network centrality measures can be used to 
predict social, cultural and economic processes of a location as centrality influences its attractiveness. For 
example, ‘commercial activities seem to take place in the most globally integrated (most accessible) urban streets 
whereas dwelling areas are most located in segregated (less accessible) areas’. (B. Hillier, 1993, A. Van Nes, 
2014)  

 

The evolving space organization with physical and social boundaries and differentiation leads to a reciprocal 
relation between attraction and movement; so called the ‘movement economy’. (Peponis, 2001) The urban 
structure determines the ‘natural movement’; the proportion of movement that is determined by the urban fabric 
and not by ‘special magnets’ such as certain shops, services and activities. (B. Hillier, 2007) Central streets 
generate more ‘natural movement’ but the related functionality can lead to additional attraction and 
intensification of a certain distribution pattern; trip generations between origins and an attractive destination. 
When an originally less accessible location has ‘special magnets’ due to other external factors (see Appendix 
A2), the surrounding street network infrastructure will slowly be upgraded in order to improve its accessibility 
and thus generating more natural movement to attract more people.  

Figure 11, Simplified adapted Circle of Wegener (M. Wegener & F. Fürst, 1999) with effect of spatial configuration  
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For the scope of this research the transport system is limited to different transport modes using the road network 
by selecting ideal maximum travelling distances (spatial scale). The link loads and accessibility for a location can 
be captured by respectively betweenness centrality and closeness centrality (see figure 13). Both centrality 
measures are calculated by computing the route choices according to the shortest path from origin to destination. 
Accessibility has been previously defined as ‘the amount and diversity of places that can be reached within a 
given travel time and/or cost’ by L. Bertolini, F. le Clercq and L. Kapoen (2005). The closeness centrality 
measure with least-angle-change-paths reflects most accurately the ‘spatial’ accessibility; the travel cost of 
overcoming spatial separations between places with population and activities. The link loads (betweenness 
centrality) do not affect the captured accessibility (closeness centrality). However in practice it does; traffic 
congestions will influence the travel time and route choice. The computed shortest paths based on the spatial 
configuration do not take into account rerouting due to traffic flow intensity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12, Detailed Circle of Wegener (M. Wegener & F. Fürst, 1999) with effect of spatial configuration  

 

Figure 13, Relation between Network Centrality Measures and Circle of Wegener (M. Wegener & F. Fürst, 1999)  
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1.4  Network Centrality Measures on Toy Street Network 
 

The toy street network is used again to explicitly demonstrate how the closeness centrality and betweenness 
centrality is calculated for a particular street segment (node). The total number of nodes (N) in the network is 20. 
Each node is given a unique reference number (see figure 14). For calculating the network centrality value of 
every single node in the network, the shortest paths between all possible combinations of segment pairs need to 
be computed beforehand.  

 

 
The street segment with number 12 is selected as the destination node, for instance. The shortest paths can be 
computed with three different definitions of distance (see page 12). The least-angle-change-paths (angular) from 
all other nodes to node 12 is shown in figure 15 below. The Fewest Turns Paths (topological) and Least Length 
Paths (metric) can be found in the appendix A3.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure X, Least Angle Change Paths from all origins (j) to destination (i = node 12) 

 

Figure 14, Graph notation of road centre line map toy street network with node reference numbers 

 

Figure 15, Least Angle Change Paths from origins (j) to destination node (i = 12) 
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Closeness Centrality 

The closeness centrality value, Cc for a given node (destination) is calculated by the inverse of the average 
distance from all other nodes (origins) to this node. The distance (dij) between an origin node (j) and destination 
node (i) is also known as the step depth (D). The total distance and average distance from all origin nodes to a 
destination node are known as the total depth (TD) and the mean depth (MD). The derivation of the closeness 
centrality calculation is shown below. (S. Porta et. al, 2009) 

 
 
Cci =

𝑁𝑁 − 1

� 𝑑𝑑ji   
𝑁𝑁

𝑗𝑗=1;𝑗𝑗≠𝑖𝑖

   = 𝑁𝑁  − 1

� 𝐷𝐷ji   
𝑁𝑁

𝑗𝑗=1;𝑗𝑗≠𝑖𝑖

= 𝑁𝑁−1
TD

 = 1
MD

   , 

 

Where N is the total number of nodes (segments) in the network and dij is the shortest distance between nodes j 
(origins) and i (destination).  
 
The application of the inverse calculation is known as the ‘method of relativization’. (B.Hillier & J. Hanson, 
1984, Kruger, 1989) Relativization is also known as ‘normalization’. Hence the angular closeness centrality is 
called Normalized Angular Integration (NAIN). The closeness centrality should be calculated for the entire 
network where each time another node is chosen as the destination node (i). The angular step depth from all 
origins to destination node 12 along the least-angle-change-paths are shown in figure 16 below. The metric and 
topological step depth values can also be found in the appendix A3.   

 
 

 

 

 

 

The total angular step depth (TD) is expressed as the cumulative amount of angle change between all adjacent 
segments along the least-angle-change-paths. As previously explained on page 7 each change of direction is 
calculated as topological step with angular weighting. (N. Dalton, 2001) The angle deviation in degrees is 
divided by 90. This means that a straight line with 0 degrees gives 0 topological steps. An angle of 45 degrees 
costs 0.5 steps. An angle of 90 degrees costs 1 topological step and a U-turn of 180 degrees gives 2 topological 
steps. The weighting between these values varies depending on the number of bins; the angular precision used in 
the analysis. The number of bins used for this research is 1024. The angular closeness centrality for node 12 is 
given below. 

 

ACc12 = 20  − 1

� 𝑑𝑑₁₂ⱼ   
20

𝑗𝑗=1;𝑗𝑗≠12

 = 20  − 1
27 .69

=  1
1 .29

= 0.78 

The angular closeness centrality map for the entire toy network can be found on page 6 and please refer to 
Appendix A3 for the metric and topological closeness centrality maps.   

Figure 16, Angular Step Depth from origins (j) to destination (i = node 12) 
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Betweenness Centrality 

The betweenness centrality value, CB for a given node is calculated by the number of shortest paths between all 
possible couples of other nodes that contain this node. The derivation of the betweenness centrality calculation is 
shown below. (S. Porta et. al, 2009) 

 

CBk = 1
(𝑁𝑁−1)(𝑁𝑁−2)

� 𝑛𝑛ji(k) 
𝑛𝑛ji

  
𝑁𝑁

𝑗𝑗=1;𝑖𝑖=1; 𝑗𝑗≠𝑖𝑖≠𝑘𝑘
, 

 

Where N is the total number of nodes in the network. 𝑛𝑛ji is the number of shortest paths between nodes j 
(origins) and i (destination) and 𝑛𝑛ji (k) is the number of these shortest paths that pass-through node k.   
 
Unlike the closeness centrality calculation of node number 12, all shortest paths need to be known rather than 
only from the origins to one destination node. The betweenness centrality can also be measured with different 
means of distance. The angular betweenness centrality (AC) for node 12 is given below. 
 

ACB12 = 1
(20−1)(20−2)

� 𝑛𝑛ji(12) 
𝑛𝑛ji

  
20

𝑗𝑗=1;𝑖𝑖=1; 𝑗𝑗≠𝑖𝑖≠12
 = 160 

 

The angular betweenness centrality map for the entire toy network can be found on page 6 and please refer to 
Appendix A3 for the metric and topological betweenness centrality maps.   

 
 

Normalized Betweenness Centrality 

Normalizing the betweenness centrality is the potential solution to the paradox that complex segregated (low 
closeness centrality) grids add more total and average choice to the system than integrated (high closeness 
centrality) ones. Research by B. Hillier, T. Yang and A. Turner (2012) shows that segregated grids have fewer 
route choice (shortest path) options and were therefore predicting overall higher rates of movement than 
integrated grids. The normalized betweenness centrality is calculated by simply dividing the total betweenness 
by the total depth for each segment in the system. The more segregated street segments will have a more reduced 
choice value. The derivation of the angular betweenness centrality (or ‘Normalized Least Angle Choice’ 
(NACH) as it is called in space syntax) calculation is shown below. (Systematica, 2018) 

 

NACHk =
log  (∑  𝑁𝑁

𝑖𝑖=1 ∑  𝑁𝑁
𝑗𝑗=1 𝜎𝜎 (𝑖𝑖,𝑘𝑘 ,𝑗𝑗)+1)

log  (∑  𝑁𝑁
𝑖𝑖=1 dθ(𝑖𝑖,𝑘𝑘)+3)

  (i ≠ 𝑘𝑘 ≠ 𝑗𝑗), 

 

Where N is the total number of nodes (segments) in the network and (i, k, ,j) = 1 if the shortest path from i to j 
passes through node k and 0 otherwise. 
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1.5 Space Syntax vs Four Step Macroscopic Traffic Model  
 

For the scope of this research the network centrality measures of the urban area of the city Rotterdam are 
compared to the predicted traffic loads from a traditional four-step macroscopic model (see chapter 4 for results). 
These predicted traffic loads are the benchmark as there is insufficient observed traffic count data available to do 
a comprehensive validation. Before comparing numerical values it is evident to distinguish the principal 
differences between the two modelling approaches. This chapter is a systematical comparison between both 
approaches.  

 

Four-Step Macroscopic Traffic Model 

A four-step macroscopic model is an instrument to support decisions when planning and designing transportation 
systems. It can be applied for different scales such as urban, regional but also long distance forecasting and 
assignments. (Systematica, 2018) The traditional traffic model is mainly constituted by trip generation and trip 
assignment between discrete areas; origins (i) and destinations (j). The four steps in macroscopic traffic 
modelling can be defined as the following (A. van Werken, 2018): 

 

1. Trip generation  

Origin (i) – destination (j) matrices are determined for different 
travelling motives within given time periods (morning peak, evening 
peak and rest of the day) with all required socio-economic and 
demographic input data (Land-use, Population, Jobs, Students, etc.). 
The matrices contain the amount of production and attraction of 
passengers (sums of matrix rows and columns). There is no distinction 
made between mode choices yet. 

 

 

2. Distribution 

The distribution model completes the matrices by quantifying the number 
of trips (Tij) between a particular origin (departments) and destination 
(arrivals). It works as a gravity model; the greater the resistance between 
two points, the smaller the number of displacements between these points. 
The resistance or quality of accessibility are dependent on the travelling 
time (cost per motive), distance (different costs per travelling mode), 
optional penalty costs (parking or interchange costs) and travel behavior.  

3. Mode choice  

The mode choice model splits the travel choices. It divides the total 
displacement by different travelling modes such as private car (Tijm1), 
Public Transport (Tijm2), cycling and walking. 

 4. Trip Assignment  

The last step, trip assignment predicts the actual route taken given an 
origin, destination and a mode of transport. By computing all possible trip 
assignments for a given time period (e.g. morning peak) it is then possible 
to calculate the link loads; the number of passengers or vehicles passing 
through each street segment. When the link loads exceed the road capacity 
the traffic flow decreases. Congestion and slower driving speed increases 
the resistance of moving between areas and choosing a particular route. 
Feedback and multiple iterations are included to the distribution model 
(step 2) to re-distribute the number of trips. 

 

Figures 17, 18, 19 and 20 (From top to 
bottom), Principle diagrams of Four Step 
Macroscopic Traffic Model  
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Space Syntax and Weighting Functions  

As previously mentioned in the theoretical framework the space syntax approach is based on two central 
variables; distance and attraction. The closeness and betweenness centrality measures show respectively the 
potential to-movement and through-movement of each street segment in the road network. The total movement 
can also be interpreted as the sum of to-movement and through-movement. The ‘links’ known in a macroscopic 
traffic model are not aggregated in zones (to limit dataset) but all trips are illustrated on an axial or a segment 
map. An axial line is defined as ‘the longest straight line representing the maximum extension of a point of 
space’. A segment map is constructed from an axial map by breaking its lines at the intersections. A. Turner 
(2007) confirms that road-centre line maps can produce comparable correlation results for vehicular flow as 
segment map (given that road centre lines are also broken at intersections). Both centrality measures are simply a 
function of the defined distances and shortest paths between segment pairs (nodes). There is no input variable of 
production of a location. Higher street centrality suggests greater attractiveness for intensive land-use and more 
activities and movement. In practice, this may not always be a one-on-one relationship.  

Weighting functions can be applied as specific location-based qualities and road characteristics (see figure 21) of 
the network infrastructure may influence movement patterns for a given scale/travelling distance. In other words 
the street segments are given additional attractiveness; some network centrality values become relatively larger 
while others are decreased. Without weighting functions all street segments are treated equally. With the recently 
developed Place Syntax Tool (A. Ståhle, 2012) for QGIS (Geographic Information System Software), the 
betweenness and closeness centrality measures can be combined with geographic accessibility data. Aggregated 
location-based density and differentiation (e.g. population density, building floor space index and functions) can 
be assigned as a weighting to their nearest located street segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21, Weighted (Angular) 
Betweenness Centrality map by the 
number of lanes per street segment 
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Space Syntax Limitations 

The application of space syntax for vehicular movement prediction still has many limitations to be addressed. 
The network centrality measures are based on a static network with no dynamic or time dimensions. Time 
dependent and dynamic weighting functions should be added but this would require a lot more data management 
and availability. Although the more required data collection, the closer it will become to an alternative 
macroscopic traffic model. Before analysing the movement pattern of one particular mode choice (e.g. vehicular 
movement), non-accessible roads in the network need to be erased. Some road centre line map data contain all 
road categories; motorized, non-motorized and shared roads. Junctions, tunnels and fly-overs between 
intersecting street segments need be indicated if not already considered by the road centre line data source. This 
can be manually done by joining or breaking the lines. At the moment, there is also no solution for one-way 
traffic streets. All these infrastructural characteristics are necessary to be incorporated in the space syntax model 
as they will influence the computation of the desired shortest paths (route choice). 

 

Data Collection and Processing Comparison 

A simpler modelling technique and data collection makes it more likely that the model will be used in practice 
and will be transferable to other disciplines such as urban planning and environmental policy-making. It keeps 
the model as well as the results very transparent, since everyone can follow the result production. The data 
collection and the processing time can vary according to the study area and availability of resources. For exact 
comparison between space syntax (see figure 23) and a four step macroscopic traffic model (see figure 24), big 
data performance models can be used to see how much input data each method requires to produce accurate and 
reliable output data.  

 

Figure 23, Space Syntax Data and Approach 

 

Figure 22, Four Step Macroscopic Traffic Model Data and Approach 
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2. Methodology 

 
The research of this report consists of an analytical comparison between unweighted and weighted network 
centrality measures from the space syntax approach, and the predicted traffic loads from a four step macroscopic 
traffic model for the city of Rotterdam. The methodology in this chapter describes the approach and the required 
steps (see appendix A10 for manual steps). The methodology can be subdivided by the following three stages: 

1. Study area and data preparation   
2. Spatial Analysis 
3. Statistical Analysis    

 

1. Study area and data preparation 

 

Study area 

The study area is the urban area of the city of Rotterdam (red boundary zone). Rotterdam is located in the 
western part of The Netherlands in the province of South-Holland (blue boundary zone) (see figures 24, 25 and 
26). The domain of the urban area of Rotterdam is selected by aggregating the urban districts from the zonation 
in QGIS (geographic information system software). The study area covers 325.8 km² and has an estimated 
population size of 638,712 (CBS StatLine, 2018). The study area does not include the western harbour front 
which is also part of the administrative municipal area of Rotterdam. Nearby cities in South-Holland include 
Delft, Leiden and The Hague. 

The city of Rotterdam has a very dynamic character. The infrastructure and economy have been constantly 
changing throughout time. The river Maas divides the North and South of Rotterdam and plays a crucial role in 
shaping the city’s growth. (See figure 26) Each new tunnel or bridge across the river is a huge step forward in 
uniting the city’s social, cultural and economic processes. The ‘wederopbouw’ (reconstruction) of Rotterdam 
after the Second World War bombing in May 1940 has left an evident mark on the city’s urban structure. 
Historically the waterfronts in the study area used to be identified by intensive harbour industry. However since 
the 1950’s the harbour has gradually shifted to the western front. The previously occupied harbour basins and 
neighbourhoods are nowadays subject to redevelopment with new housing and job opportunities. The road 
network and public transport network form together the backbone of the city, on top of the original polder and 
harbour landscape. It is therefore essential that the alterations and expansion of the spatial lay-out are carefully 
considered.  

Figure 24, 25 and 26 (Left to Right), Geographic maps of location study area within The Netherlands and South-Holland (Open 
Street Map Data, 2019) 
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The research involves a considerable amount of data management. The required data management can be 
categorized by the extracting and modifying of the road centre line map data and the macroscopic traffic model 
dataset, and matching the street segments from both datasets for the statistical analysis.    

Spatial analysis dataset 

Prior to the spatial analysis of the study area’s street network, the road centre line map data needs be extracted 
and modified. (See Appendix A5 for detailed steps) It is important that the lines are broken at the junctions to 
capture the change of direction between consecutive street segments. In this research the dutch ‘Nationaal 
Wegenbestand’ (NWB) from 2018 is used as the import data. The road centre lines are selected by location using 
a buffer area of 30 km from the boundary edges of the study area. (See figure 27) This makes it possible to use 
spatial scales up to 30 km for the network centrality measures. By knowing the size of the study area we know 
what exact metric radii we have to apply to avoid edge effects; ‘the distortion that lowers network centrality 
values near the edge of a network’. (A. Turner, 2007) These distortions have a considerable effect for centrality 
measures on highly fragmented networks. The total number of individual street segments in dataset is 415,041 
(see figure 28). 

 

 

 

 

 

 

Macroscopic traffic model dataset 

The four-step macroscopic traffic model that is used for the purpose of this research is the V-MRDH 2.0 
omniTRANS model made by Goudappel Coffeng. The permission has been granted by the V-MRDH traffic 
model administrator from the Metroolpoolregio Rotterdam Den Haag (MRDH) in April 2019. The extracted data 
is from 2016 and includes the predicted average hourly motorized traffic load specified in number of vehicles per 
hour and road attributes such as the capacity and driving speed per direction (see figure 31) for the given link 
numbers. These road attributes are used as weighting functions. The network centrality measures cannot capture 
movement per driving direction, therefore the sum of both driving directions for total predicted traffic load (see 
figure 29) and road capacity (figure 30) is used. (E.g. Total Link Load = LoadAB + LoadBA) 

 

 

 

 

 

 

Figure 27 and 28 (Left to Right), 
30 km buffer zone from (red) 
boundary edges of study area  

 

Figure 29, Predicted average hourly 
traffic load map of Rotterdam 
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Matching street segments from both datasets  

The individual street segments from both datasets need to be matched at the same geographic 
location/coordinates. The macroscopic model does not contain all streets and some links used in the macroscopic 
traffic model are not as accurately located as in the road centre line map. Therefore, only matching data is 
compared to each other. The road centre lines are selected that lie within a 5 m buffer from the macroscopic 
model links by using a spatial query in QGIS (see figure 32). The number of matching street segments selected 
in the study area is 17124. 

 

 

 

 

 

 

 

Figure 30, Road capacity map of 
Rotterdam 

 

Figure 31, Speed Limit map of 
Rotterdam 

 

Figure 32, Matching road segments 
study area 
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2. Spatial Analysis  

 
The road centre line map of the study area undergoes a spatial analysis with local, intermediate and global scales. 
(See page 8 about spatial scales)  The applied metric radii are 1km, 2.5km, 5km, 7.5km, 10km, 15km, 20km to 
30km (equivalent to global scale due to selected buffer area). The shortest paths will be weighted by the least 
angle change. Previous measures from angular segment analysis algorithms have proven to produce the best 
correlations with observed pedestrian and vehicular movement. (B. Hillier & S. Lida, 2005, T. Yang et. al, 2012) 
The spatial analysis measures consist of the angular closeness centrality (or normalized angular integration 
(NAIN) as known in space syntax), angular betweenness centrality (or angular choice (AC)) and normalized 
angular betweenness (or normalized angular choice (NACH)). The spatial analysis is run by the Place Syntax 
Tool Plug-In on QGIS software. The results of the spatial analysis can be found in chapter 3 of the report. 

 

3. Statistical Analysis  

In the statistical analysis the unweighted and weighted network centrality measures with various spatial scales 
are compared with the predicted traffic loads from the macroscopic traffic model. The network centrality 
measures of each street segment are weighted by being multiplied with its corresponding road characteristics; 
segment length, speed limit and road capacity. A simple linear regression analysis is used to evaluate the linear 
relationship between two variables. The independent variables (X) are the unweighted and weighted centrality 
measures. The dependent variable (Y) is the predicted hourly (day average) traffic load by the macroscopic 
traffic model (veh/hour). The sum of both network centrality measures is also used to validate the hypothesis that 
the total movement can be defined by combined efforts of to-movement and through-movement. The output 
values are the Pearson correlation coefficient, r and the coefficient of determination, R2. The results of the 
statistical analysis can be found in chapter 4 of the report. 

The Pearson correlation coefficient, r measures the measure the strength and direction of the linear correlation 
between two variables X and Y. The formula and interpretation of r (table 1) are given below where N are the 
number of observations.                                                                             

 

 

𝑟𝑟 =
N(ΣXiYi) − (ΣXi)(ΣYi)

√[NΣXi2 − (ΣXi) 2][NΣYi2 − (ΣYi)2]
 

 

 

 

The coefficient of determination, R2 is the proportion of the variance in the dependent variable that is predictable 
from the independent variable(s). The formula of R2 is simply the squared value of the Pearson correlation 
coefficient, r and can’t be negative. The interpretation of R2 is given in table 2 below. 

 

 

𝑅𝑅2 = 𝑟𝑟2 

 

 

 

Pearson correlation 
coefficient, r 

Level of linear dependence of X & Y 

0 - 0.3  Weak positive 
0.3 – 0.7 Moderate positive 
0.7 – 1.0 Strong positive 

Coefficient of determination, R2 Level of predictability of Y 

0 Y cannot be predicted by X 
E.g. 0.2 E.g. 20 % of Y is predictable by X 
> 0.7 Statistically significant 
1.0 Y can be predicted by X without error 

Table 1, Interpretation of Pearson correlation coefficient, r 

 

Table 2, Interpretation of coefficient of determination, R2 
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3. Spatial Analysis  
 

This chapter demonstrates the unweighted network centrality measures of the study area with one local (radius = 
1 km) and one global spatial scale (radius = 30 km). The measures are presented on maps with classic graduated 
space syntax colour coding. The centrality maps of the other spatial scales can be found in the appendix A6. The 
colour classes are based quantile ranges (equal count) of the centrality values. The analysis of the network 
centrality maps make it possible to visually identify which streets in Rotterdam are more likely to generate 
movement within the given radius. The red colour indicate the highest network centrality and thus more relative 
to-movement or/and through-movement. The blue colour indicates less movement. The theory and derivation of 
the measures can be found in the chapters 1.2 and 1.3.  

 

3.1 Closeness Centrality Measures 

 
The local angular closeness centrality map in figure 34 below illustrates the streets that are most accessible for a 
maximum travelling distance of 1000 metres. The spatial scale is ideal to identify urban pedestrian movement 
patterns. Certain ring road segments are also shown in red, especially the interchanges although they cannot be 
accessed by pedestrians and cyclists. The map also highlights multiple local centres (neighbourhoods in both 
north and south of Rotterdam). These central streets are more likely to have clusters of commercial activities and 
retail services within walkable reach.  

  

 

 

 

 
 

The global angular closeness centrality map in figure 34 on the following page shows the streets in the study area 
that are in closest proximity to (nearly) all other segments in the entire street network dataset (see figure 28). 
This global measure incorporates large distance displacements up to 30 km. These distances are typically 
covered by motorized vehicles. The ring roads are the most centrally located (red). The yellow and orange 
coloured streets show the urban roads that are most integrated for car drivers. Therefore (visitor) car parking may 
also be located along these streets in vicinity of the local centres (figure 33). The darker (blue) colours indicate 
the globally segregated streets and thus more likely to be related with residential land-use or harbour industry 
that is connected to another transport network such as the waterway.  

Figure 33, Local Angular Closeness Centrality (radius = 1000 m) 
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3.2 Betweenness Centrality Measures 

 
The local angular betweenness centrality map in figure 35 shows which street segments are potentially used for 
pass-through movement in walkable trips (1 km) between their origin (e.g. home) to their local destination (e.g. 
local supermarket). These in-between routes are frequently related to retail activities such as bars and restaurants. 
They are often located on the (urban) routes that are traversed by many pedestrians and cyclists.  

 

 

 
 
 
 
 

 

Figure 35, Local Angular Betweenness Centrality (radius = 1000 m) map 

 

Figure 34, Global Angular Closeness Centrality (radius = 30 km) map 
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The global angular betweenness centrality map in figure 36 shows the streets that attract the most through-
movement for all possible displacements between origins and destinations within a 30 km radius. Unlike all 
previous network centrality maps, the global betweenness centrality map demonstrates an evident (global) 
structure and spatial hierarchy of the city’s street network. The ring road and arterial roads are clearly visible in 
red. These main urban routes have potential to be vital city boulevards when they are well integrated with local 
centres and routes. If not, these routes may contribute to spatial and socio-economic segregation between 
neighbourhoods. Spatial segregation in urban areas are often associated with higher crime rates and poverty. (H. 
Andersen, 2002) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36, Global Angular Betweenness Centrality (radius = 30 km) map 
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3.3 Normalized Betweenness Centrality Measures 
 

The normalized angular betweenness centrality maps in figures 37 and 38 are similar to the angular betweenness 
centrality maps however, the betweenness centrality values of the more segregated streets (lower closeness 
centrality) are lowered compared to the more integrated streets (higher closeness centrality). The largest relative 
changes are most visible in the local scale centrality maps consists of multiple small spatial grids/centers. The 
normalization of the betweenness centrality values makes it possible to combine with the closeness centrality 
values (see figure 40).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 38, Global Normalized Angular Betweenness Centrality (radius = 30 km) map 

 

Figure 37, Local Normalized Angular Betweenness Centrality (radius = 1000 m) map 
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4. Statistical Analysis  
 

In this chapter the simple linear regression analysis is performed twice for the set of matching street segments: in 
the unweighted and the weighted case to measure the impact of the weights by road characteristics. The results 
are presented in tables with the Pearson correlation coefficient, r and coefficient of determination, R2. The 
independent variables (X) are the unweighted and weighted centrality measures at various spatial scales. The 
dependent variable (Y) is the predicted hourly traffic load by the macroscopic traffic model (vehicles/hour). The 
statistical dataset consists of 17124 matching street segments (observations). The scatterplots between the two 
variables show all individual observations. 

 

4.1 Unweighted Simple Linear Regression Analysis 

 
The results from the simple linear regression analysis for the unweighted network centralities at different spatial 
scales are shown in table 3 below. Without weighting functions all street segments are treated equally. The 
scatterplots with the most correlating individual network centrality measures can be found in the appendix A7.  
 

 

The resulting correlation coefficients show a reasonable positive linear relationship between the individual 
angular betweenness centrality and angular closeness centrality measures, and the predicted traffic loads from the 
V-MRDH OmniTRANS traffic model. The network centrality measures with spatial scales with radii ranging 
between 15 km and 30 km (global scale) provide the highest correlation coefficients. The unweighted angular 
betweenness with radius 20 km gives an r coefficient of 0.63.  This can be logically explained as the average 
daily travelling distance by car in The Netherlands for 2017 was 29.11 km. (CBS StatLine, 2017) The average 
displacement distance in Rotterdam is expected to be lower due to its extensive public transport network and 
cycling infrastructure.  

 

 

 

Spatial Scale (max. 
travelling distance) 

Angular Betweenness 
Centrality (AC) 

Normalized Angular 
Betweenness 

Centrality (NACH) 

Angular Closeness 
Centrality (NAIN) 

Radius (m) r R2 r R2 r R2 

1000 -0.19 0.04 -0.15 0.02 0.34 0.12 
2500 -0.06 0.00 0.00 0.00 0.39 0.15 
5000 0.18 0.03 0.21 0.05 0.47 0.22 
7500 0.34 0.11 0.23 0.12 0.56 0.31 
10000 0.45 0.21 0.04 0.16 0.59 0.35 
15000 0.59 0.35 0.47 0.23 0.60 0.35 

20000 0.63 0.39 0.51 0.26 0.61 0.37 

30000 0.61 0.38 0.53 0.28 0.60 0.36 

Table 3, r and R2 values with unweighted Angular Network Centrality measures  
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Combined Angular Closeness Centrality and Normalized Angular Betweenness Centrality  

According the hypothesis mentioned in the introduction, the sum of the closeness centrality and betweenness 
centrality captures the total movement by combining the relative through-movement and to-movement. The 
network centrality measures with radii 20 km and 30 km are re-used and shown in table 4 below as they produce 
the highest r and R2 values.  

 

 

The sum of the unweighted angular closeness and the normalized angular betweenness with radii 20 km and 30 
km give the highest correlation coefficient as well as the highest coefficient of determination. The individual 
independent and dependent variable observations are shown in the scatterplot in figure 39. The red line is the line 
of best fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The combined network centrality map and the predicted traffic loads map are shown in figures 40 and 41 on the 
next two pages. The centrality map (figure 40) shows the streets that are potentially more travelled by the 
collective to-movement and through-movement based on spatial configuration of the urban grid. See the spatial 
analysis chapter and appendix A6 for the individual network centrality maps.  

 

Normalized Angular Betweenness (NACH) 
+ Angular Closeness Centrality (NAIN) r R2 

NACH (radius = 20 km) + NAIN (radius = 20 km) 0.66 0.44 
NACH (radius = 30 km) + NAIN (radius = 30 km) 0.65 0.43 
NACH (radius = 20 km) + NAIN (radius = 30 km) 0.65 0.41 
NACH (radius = 30 km) + NAIN (radius = 20 km) 0.67 0.44 

Figure 39, scatterplot with the sum of unweighted NAIN (radius = 20 km) and NACH (radius = 20 km) 

 

Table 4, r and R2 values with combined Angular Closeness and Normalized Betweenness Centrality measures  
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4.1 Weighted Simple Linear Regression Analysis 

 
In the weighted simple linear regression analysis the network centrality measures of each street segment are 
multiplied by its road characteristics; segment length, speed limit and road capacity. The r and R2 of each road 
characteristic with the predicted traffic loads are also calculated separately to see their contribution when applied 
as an independent weighting function (see table 5). The simple linear regression analysis is again conducted for a 
various range of spatial scales (see tables 6, 7 and 8).  

 

 

 

 

 

Table 6, r and R2 values with weighted Angular Betweenness Centrality measures  

Road Characteristics Weighting r R2 

Segment Length 0.20 0.04 
Speed Limit 0.72 0.52 

Road Capacity 0.84 0.70 

Spatial Scale 
Angular Betweenness 

(AC) 
x Segment Length 

Angular Betweenness 
(AC) 

x Speed Limit 

Angular Betweenness 
(AC) 

x Road Capacity 
Radius (m) r R2 r R2 r R2 

1000 -0.13 0.02 0.01 0.00 -0.04 0.00 
2500 -0.02 0.00 0.14 0.02 0.14 0.02 
5000 0.20 0.04 0.37 0.14 0.40 0.16 
7500 0.30 0.09 0.48 0.23 0.51 0.26 

10000 0.37 0.13 0.57 0.33 0.59 0.35 

15000 0.43 0.19 0.65 0.42 0.67 0.45 
20000 0.43 0.19 0.64 0.41 0.67 0.45 

30000 0.43 0.18 0.62 0.38 0.64 0.41 

Spatial Scale 
Normalized Angular 

Betweenness (NACH) 
x Segment Length 

Normalized Angular 
Betweenness (NACH) 

x Speed Limit 

Normalized Angular 
Betweenness (NACH) 

x Road Capacity 
Radius (m) r R2 r R2 r R2 

1000 0.17 0.03 0.68 0.46 0.78 0.61 
2500 0.20 0.04 0.71 0.51 0.81 0.65 

5000 0.23 0.05 0.74 0.54 0.82 0.68 
7500 0.25 0.06 0.75 0.57 0.84 0.70 
10000 0.26 0.07 0.76 0.58 0.85 0.72 
15000 0.27 0.08 0.78 0.60 0.86 0.73 

20000 0.28 0.08 0.78 0.61 0.86 0.74 
30000 0.29 0.08 0.79 0.62 0.86 0.74 

Table 7, r and R2 values with weighted Normalized Angular Betweenness Centrality measures  

 

Table 5, r and R2 values with individual road characteristics and predicted traffic loads 
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The application of road capacity as a weighting function leads to the largest increase of the r and R2 compared to 
the unweighted simple lineair regression analysis. The segment length is an unsuitable weighting function due to 
its adverse effect on the correlation with predicted traffic load. The combined angular closeness and normalized 
angular betweenness centrality measures do not significant change the results (see table 9). The scatterplot of the 
weighted NAIN (radius = 20 km) + NACH (radius = 30 km) is shown in the figure 42 below. 

 

 

 

 

 

  

  

 

 
 

Spatial Scale 
Angular Closeness 

(NAIN) 
x Segment Length 

Angular Closeness 
(NAIN) 

x Speed Limit 

Angular Closeness 
(NAIN) 

x Road Capacity 
Radius (m) r R2 r R2 r R2 

1000 0.28 0.08 0.68 0.46 0.75 0.56 
2500 0.28 0.08 0.76 0.58 0.84 0.70 
5000 0.30 0.09 0.78 0.61 0.86 0.73 
7500 0.32 0.10 0.78 0.61 0.87 0.75 
10000 0.32 0.10 0.78 0.60 0.87 0.76 
15000 0.31 0.10 0.77 0.60 0.88 0.77 

20000 0.31 0.10 0.78 0.61 0.88 0.78 
30000 0.30 0.09 0.77 0.60 0.88 0.78 

[Normalized Angular Betweenness (NACH) 
+ Angular Closeness Centrality (NAIN)] x Road Characteristics r R2 

NACH (radius = 30km) + NAIN (radius = 20km) 0.67 0.44 

[NACH (radius = 30km) + NAIN (radius = 20km)] x Segment Length 0.30 0.09 
[NACH (radius = 30km) + NAIN (radius = 20km)] x Speed 0.79 0.62 

[NACH (radius = 30km) + NAIN (radius = 20km)] x Road Capacity 0.88 0.77 

Figure 42, scatterplot with the sum of weighted NAIN (radius = 20 km) and NACH (radius = 20 km) by road capacity 

 

Table 8, r and R2 values with weighted Angular Closeness Centrality measures  

 

Table 9, r and R2 values with weighted NAIN (radius = 20 km) + NACH (radius = 30 km) 
  

 



38 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

5. Conclusion 

  
The research has proven that the spatial configuration of the street network has a considerable effect on the 
movement patterns of motorized vehicles. All individual angular network centrality measures have a moderate 
positive correlation with the predicted traffic loads at spatial scales with radii greater than 15 km. These spatial 
scales relate the average daily travelling distance of 29.1 km by cars in The Netherlands. (CBS Stateline, 2017) 
The sum of the angular betweenness centrality and angular closeness centrality increases both the Pearson 
correlation coefficient, r and coefficient of determination, R2. This confirms the hypothesis that the total 
movement can be regarded is a summation or at least a function of the to-movement and through-movement. The 
combined angular betweenness centrality (NACH) and normalized angular closeness centrality (NAIN) with 
radii 30 km and 20 km respectively give the highest unweighted r of 0.67 and R2 of 0.44. A Pearson correlation 
coefficient, r above 0.70 can be considered as strong positive. This indicates that the traffic loads, the dependent 
variable can be explained for 44 % by the spatial configuration of the street network of Rotterdam. This also 
means that the street network of Rotterdam is still predominately driven by traffic needs. The R2 value is below 
0.70 meaning that the linear relationship is not statistically significant for accurately predicting the traffic loads. 
Besides that the spatial analysis is done on a static network there are multiple other independent variables that 
may contribute to the degree of traffic flow through individual street segments. A multiple linear regression 
analysis in combination with a principal component analysis (PCA) is required to understand the percentage 
contribution to explanation of the traffic load (dependent variable, Y) by multiple underlying components 
(independent variables, X). A set of independent variables can also be inter-dependent to each other. Although 
the correlation analysis is not able directly capture the non-directive characteristics of the street network of 
Rotterdam; the policy makers, traffic planners and engineers, and spatial planners that are responsible for the 
infrastructural changes.  

Weighting functions need to be incorporated in the network centrality measures in order to potentially use space 
syntax as a valid traffic assessment tool. The application of road characteristics; segment length, speed limit and 
road capacity as weighting functions have a vast effect on the simple linear regression analysis. The network 
centrality measures weighted by the road capacity result in the largest increase of the coefficients of 
determination, R2 with much smaller variances with the predicted traffic loads. The weighted NAIN with radii 
20km and 30 km give the most promising r of 0.88 and a R2 of 0.78. The weighted combination of NAIN (radius 
= 20 km) and NACH (radius = 30 km) produces identical results with an r of 0.88 and a R2 of 0.77. Ideally the R2 
should be as close to 1 as possible although the predicted traffic load measures from the four step macroscopic 
traffic model may also not be fully corresponding with real life traffic count observations. As mentioned before, 
traffic loads and movement patterns can only be captured to a certain degree and will remain very dynamic just 
as the relations shown in the adapted circle of Wegener (see Appendix A2). 
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6. Recommendations and Future Research 

 
Multiple Regression Analysis and Principal Component Analysis 

As mentioned in the conclusion, there must be done more research to discover how the spatial configuration of 
the street network but also the spatial morphology of buildings and public space affect movement patterns in the 
city of Rotterdam. A multiple regression analysis in combination with principle component analysis (PCA) can 
be used to measure the linear inter-dependence between different variables and how much they individually 
contribute to predicting the level of movement by different modes of transport using the street network (e.g. 
pedestrians, cyclist and motorized vehicles). The PCA shows how many of the independent variables are needed 
to explain the predicted traffic loads. This method allows a dimension reduction. The independent variables that 
contribute the most (high correlation coefficient and low variances) besides the betweenness and closeness 
centrality measures can be used a weighting functions to validate space syntax as a traffic assessment tool. The 
suggested independent variables are attraction variables based on (GIS) location-based density and 
differentiation (L. Marcus et. al, 2017); the intensity of different land-uses, population density and spatial density 
of buildings. Kernel density estimation (KDE) can be used for comparing the data of land-use intensity and 
population density with the network centrality measures from space syntax and the predicted traffic loads. KDE 
is a non-parametric way to estimate the probability density function of a random variable. (S. Porta et. al, 2009) 
In QGIS you can create KDE heat maps (see appendix A8) within a given (metric) radius to aggregate the 
density so that both datasets can be matched and statistically compared. Furthermore, the spatial density is 
quantified by the measures of floor space index (FSI = Gross floor Area/ Aggregated Plot Area) and Ground 
Space Index (GSI = Building Footprint Area/Aggregated Plot Area) using Spacematrix analysis. It measures the 
spatial capacity of buildings to differentiate functions and host mixed-uses (residential, amenities and working). 
(Van Nes et. al, 2012)  

Data Preparation for Spatial Analysis  

In order to improve the unweighted spatial analysis, the road centre line map should be filtered by different road 
categories. Street segments that are inaccessible for motorized vehicles should be removed from the dataset. Vice 
versa for the spatial analysis of urban pedestrian and/or cyclist movement patterns. It may occur that the road 
centre line dataset contains mistakes. The techniques of automatic snapping and breaking of lines at the exact 
geographic location of junctions, tunnels and bridges should be further developed to guarantee that the shortest 
paths are realistic route choices.   

Observed Traffic Counts 

Moreover the links in the macroscopic traffic model are sometimes aggregated in zones and not available for all 
streets in the network, especially for the lower categorized streets in urban neighbourhoods. There are also many 
links in the macroscopic traffic model that do not geographically match with the road centre lines as shown in 
figure 32. Therefore it also suggested to compare the network centrality measures with a large number of 
observed traffic count. As additional research the Spearman’s rank correlation and scatterplot for the network 
centrality measures and the daily observed traffic count at 34 locations in Rotterdam North can be found in 
appendix A9. However, the number of observation are insufficient to state valid conclusions.   
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Appendix 

A1: Spatial Scale and Mode Choices 
 

The average travelling distance per mode choice for the Netherlands can be found in the CBS StatLine Database 
(2017): Personenmobiliteit in Nederland; vervoerwijzen en reismotieven, regio's  

R = 500m: ‘very small scale, highlight streets and particular junctions that are ideal for community services, 
small local businesses that require high pedestrian footfall’ (Systematica, 2018) 

R = 1000m: ‘Ideal distance everyone is willing to walk on foot. The distance that walking is more convenient 
than all other modes. The spatial analysis shows potential area for being the centre of neighbourhood activities’ 
(Systematica, 2018) 

 

 

 

 

 

 

 

R = 2500m: ‘The most convenient routes for bicycles and other small electric vehicles’ (Systematica, 2018) 

 

 

 

 

 

 

 

 

R > 2500: Routes used to ‘preliminary identify convenient routes for long distance movements, most likely by 
car or bus at urban scale’ (Systematica, 2018) 
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A2: Adapted circle of Wegener with external factors  

 

 

(M. Wegener & F. Fürst, 1999; adapted by L. Bertolini, 2012) 
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A3: Metric and Topological Network Centrality Measures of Toy 
Street Network 

  
  Least Length Path (Metric)                                                         Metric Step Depth 

 

                                                                    

Metric Step Depth from all origins (j) to destination node (i = 12) 

 

Least Length Paths from all origins (j) to destination node (i = 12) 

 

Fewest Turns Paths from all origins (j) to destination node (i = 12) 

 

Topological (Axial) Step Depth from all origins (j) to destination (i = node 12) 

Metric Closeness Centrality (or Network Integration 
as known in space syntax community) 

Metric Betweenness Centrality (or Network 
Betweenness as known in space syntax community) 

Low 

High 

Fewest Turns Path (Topological)   Topological Step Depth (or axial step depth as 
known in space syntax community) 

Topological Closeness Centrality (or Axial 
Integration as known in space syntax community) 

Topological Betweenness Centrality (or Axial 
Betweenness as known in space syntax community) 

Low 

High 
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A4: Previous Case Studies  
 

Previous case studies on using the space syntax approach for correlation analysis with vehicular movement are 
very valuable sources. The case studies should reach a level of consistency so that the research is reproducible 
for new test cases. The new findings and recommendations of the following two case studies have been used to 
improve and adjust the methodology of this research.  

 

1. City of Milan Case Study (Systematica, 2018) 

The city of Milan case study by Systematica focused on using angular betweenness (or angular choice as known 
in the space syntax community) and normalized angular betweenness (NACH) to compare it with forecasted 
traffic loads from the CUBE four step macroscopic traffic model. High correlation levels were recorded between 
traffic loads and angular choice values if ‘normalization’ was applied (NACH). Even higher correlation values 
are recorded when NACH values are multiplied by road capacities with a coefficient of determination, R2 of 
0.7129. Other weighting variables such as segment length and speed also improved the results. The spatial scale 
with a radius of 20 km proved to be the best predictor for the macroscopic traffic volumes. Systemtica 
recommended to test their methodology with a different test case and compare the results. The results from the 
Rotterdam test case produces higher R2 values than the Milan case study when road characteristics are used as 
the weighting function which could indicate that the traffic planning may be better organised to meet the city’s 
traffic needs. Furthermore the recommend to carry out additional for different road categories besides urban 
roads and weigh betweenness centrality (choice) values with different parameters such as land use and 
population.  

  

2. City of Cardiff Case Study (J. Patterson, 2016) 

The city of Cardiff case study by J. Patterson indicate when using road weightings based on national road 
classification, the correlation between the different closeness centrality measures (or integration) and the average 
hourly traffic flow are significantly improved. This case study used traffic counts instead of data from a 
macroscopic traffic model. J. Patterson recommends weighting based on road classification to global closeness 
centrality values as the correlation values are the most consistent.  
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A5: Road centre lines extraction and modification steps 
 

 

The road centre line dataset can be extracted from different GIS databases, or axial lines can be manually drawn 
for a small study areas (e.g. local neighbourhood) with autoCAD although it can very time-consuming. After the 
road centre line data (e.g. of the entire national road network) has been extracted and imported in QGIS 
(Geographic Information System Software), the lines within the study area have to be selected plus an additional 
buffer zone depending on the spatial scales for the spatial analysis. There are likely to be disconnected lines at 
the edges of the buffer zone when the map is extracted. These isolated lines have to be removed and can be 
identified by running a node count through an axial analysis for infinite spatial scale (radius  = n) on the 
DepthMapX software. Before doing so, the road centre line map needs to be converted to an axial map. The axial 
analysis will provide a node count for each line; the number of lines that are connected within a system.  

The isolated axial lines will have a much lower. Once the isolated lines are removed you can also unlink lines 
that are not supposed to intersect as a junction or interchange. For this research it is assumed that all lines are 
correctly broken at the junctions and that there are no major mistakes due to the project’s limited time span. 
Snapping and unlinking of lines can be time-consuming at urban/regional scale unless you have the exact 
location of the intersection nodes available on GIS. In order to do an angular segment analysis for the angular 
network centrality measures, the axial map has to be converted to a segment map. The segment map should be 
saved as a TAB file so that Place Syntax Tool Plug-In (PST) in QGIS can run the different spatial analysis. With 
the PST is much quicker than the DepthMapX software in producing spatial analysis with manually selected the 
definition of distance and spatial scale radius. Unlike the DepthmapX, the PST does not allow an infinite spatial 
scale (radius = n).  
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A6: Network Centrality Maps of Intermediate Spatial Scales 
 

 

Angular Closeness Centrality Maps 

 

 

 

 

Radius = 2500 m Radius = 5 km 

Radius = 7500 m Radius = 10 km 

Radius = 15 km Radius = 20 km 
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Angular Betweenness Centrality Maps 

 

 

 

 

 

Radius = 2500 m Radius = 5 km 

Radius = 7500 m Radius = 10 km 

Radius = 15 km Radius = 20 km 
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Normalized Angular Betweenness Centrality Maps 

 

 

 

 

 

 

 

Radius = 2500 m Radius = 5 km 

Radius = 7500 m Radius = 10 km 

Radius = 15 km Radius = 20 km 
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A7: Scatterplots of highest correlation individual network centrality 
measures and predicted traffic loads 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Angular Closeness Centrality (radius = 20 km) 

Angular Betweenness Centrality (radius = 20 km) 

Normalized Angular Betweenness Centrality (radius = 30 km) 
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A8: Kernel Density Estimation Heat Maps (radius = 100 m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KDE Heat Map of office buildings 
(Municipality of Rotterdam, 2014) 

 

KDE Heat Map of retail services (Municipality 
of Rotterdam, 2014) 

 

KDE Heat Map of businesses 
(Municipality of Rotterdam, 2014) 

 

KDE Heat Map of population (CBS, 2017) 

 

KDE Heat Map of food and drinks locations 
(Municipality of Rotterdam, 2014) 

 



57 
 

A9: Spearman’s Rank Coefficient Network Centrality Measures and 
Observed Traffic Counts  

 

 

 

 
Spearman’s rank correlation coefficient, r = 0.74  

 

 

 

 

 

 

 

 

 

Spearman’s rank correlation coefficient, r = 0.82 

 

 

Map with 34 traffic count observation locations (red marks) in 
Rotterdam-North. The data contains the average total day 
traffic count (vehicles/day) with daily measures between Mon 
1 June and Sunday 7 June 2015. (Rotterdam Open Data Store, 
2015) 
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A10: Methodology Manual Steps   

 

 

 

*Methodology Steps for Further Research 

 

 

 

Steps Data Source Description Tools/Software 

1. Data 
Preparation 

NWB Road 
Centre Lines 

& 

CBS 2018 
study area 
boundaries 

• Selection of Study Area: Rotterdam urban area  + 30 km buffer 

• Convert Road centre line map to axial map 

• Removal of disconnected/isolated lines  

• Convert to segment map 

QGIS 2.18.16, 
DepthMapX 0.35 

 
Location-based 
density and 
differentiation 
data: CBS 2018 
& Rotterdam  
Municipality 
GIS Plot and 
Building Info* 

• Import shapefile data into QGIS and create Kernel Density Estimation 
(KDE) Heat Maps* (See appendix A9) 

• Match KDE values to road centre line segments* 

 

 
V-MRDH 2.0 
OmniTRANS 
Project 

• Export macroscopic model links as shapefile data with traffic load, 
speed limit and road capacity attribute data and import in QGIS 

• Match with road centre line segments with the same CRS projection 
and within a 5 m buffer 

omniTRANS 8.0 
and  QGIS 
2.18.16 

2. Spatial 
Analysis 

 
• Run Unweighted Angular Segment Analysis (Angular Closeness 

Centrality, Angular Betweenness Centrality and Normalized Angular 
Betweenness Centrality) 

• Apply different spatial scales (radius = 1 km, 2500 m, 5 km, 7500 m, 
10 km, 15 km, 20 km and 30 km) 

QGIS 2.18.16 + 
Place Syntax 
Tool Plug-In 

4. Statistical 
Analysis 

 
• Export QGIS attribute tables with network centrality values as excel 

worksheet 

• Multiply unweighted network centrality measures by road 
characteristics; segment length, speed limit and road capacity 

• Simple Linear Regression Analysis with unweighted and weighted 
network centrality measures 

• Multiple Regression Analysis with multiple independent variables* 

• Principal Component Analysis, PCA (how much is each variable 
contributing to explaining the traffic loads)* 

Excel and Python 
or R statistical 
programming 
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