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Abstract. Genetic programming is an often-used technique for sym-
bolic regression: finding symbolic expressions that match data from an
unknown function. To make the symbolic regression more efficient, one
can also use dimensionally-aware genetic programming that constrains
the physical units of the equation. Nevertheless, there is no formal analy-
sis of how much dimensionality awareness helps in the regression process.
In this paper, we conduct a fitness landscape analysis of dimensionally-
aware genetic programming search spaces on a subset of equations from
Richard Feynman’s well-known lectures. We define an initialisation pro-
cedure and an accompanying set of neighbourhood operators for conduct-
ing the local search within the physical unit constraints. Our experiments
show that the added information about the variable dimensionality can
efficiently guide the search algorithm. Still, further analysis of the differ-
ences between the dimensionally-aware and standard genetic program-
ming landscapes is needed to help in the design of efficient evolutionary
operators to be used in a dimensionally-aware regression.

Keywords: Genetic programming · Dimensionally-Aware GP · Fitness
landscape · Local optima network

1 Introduction

Symbolic regression is a unique and very general type of multivariate regres-
sion analysis. In this analysis the task is to find the mathematical expression
that links a number of variables in a domain with an unknown target function
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that would fit a dataset S = {(x(i), y(i))}, i.e., a set of pairs of an unknown
multivariate target function f : Rn → R. With more than a quarter of a cen-
tury of research in the field, the results obtained attracted the interests of many
researchers to work in this area. A large number of applications of symbolic
regression is both impressive, and it is also constantly expanding. For instance,
symbolic regression has helped to extract physical laws using experimental data
of chaotic dynamical systems without any knowledge of Newtonian mechan-
ics [16]. Others have used it to design more efficient antennas [10] and to analyse
satellite data [6]. Symbolic regression via Genetic Programming (GP) implemen-
tations has been used to model mechanisms of drug response in cancer cell lines
using genomics and experimental data [4], to discover hidden relationships in
astronomical datasets [7], to predict wind farm output from weather data [20],
to generate computer game scenes [5], and for many other scenarios.

In some sense, Evolutionary Computation (EC) methods for symbolic regres-
sion (most commonly employing GP-based implementations) somewhat “com-
pete” with other strategies like support vector regression and artificial neural
networks. However, many researchers prefer to use symbolic regression since
they tend to produce models with a significantly smaller number of variables,
leading to solutions in a form amenable to downstream studies (e.g., uncertainty
propagation and sensitivity analysis) and more “explainable” outcomes.

Although symbolic regression methods – and in particular GP-based methods
– are popular, the research often does not use problem-domain information, and
even commercial products like Eureqa [16] do not make use of it. With this paper,
we propose to revisit the idea of Dimensionally-Aware Genetic Programming [9]
and to analyse the impact of design decisions using modern fitness landscape
analysis tools. To this end, we take a recent benchmark suite of symbolic regres-
sion problems [17], which also includes information about the dimensionality of
input variables and the resulting model outputs. Taking this information into
account, we devise and employ a deterministic local search algorithm which at all
times satisfies the imposed dimensionality constraints. Using the local search, a
complete network of local optima is built, considering given neighbourhood oper-
ators. After the local optima network (LON) is obtained, information from the
search is used to infer characteristics of the underlying fitness landscape. At the
same time, a comparison is made with the regular GP that does not restrict
the dimensionality of the variables, to estimate the problem difficulty and the
potential effectiveness of this approach.

2 Background

2.1 Feynman’s Equations

We will apply our methods to “rediscover” the fundamental physical laws. We
consider equations from Feynman Lectures on Physics [3], covering topics like
classical mechanics, electromagnetism, and quantum mechanics. Here, we follow
the equation selection from Udrescu and Tegmark [17]. The authors listed 100
equations that do not contain derivatives or integrals and have between one



FLA of DAGP Featuring Feynman Equations 113

Table 1. Feynman equations considered in this article; the units column shows the
number of different physical units of the corresponding variables.

ID Feynman eq. Equation Variables Units

1 I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2 4 1
2 I.12.1 F = μNn 2 3
3 I.12.2 F = q1q2

4πεr2 4 4
4 I.12.5 F = q2Ef 2 4
5 I.13.4 K = 1

2
m(v2 + u2 + w2) 4 3

6 I.14.3 U = mgz 3 3

7 I.14.4 U =
kspringx2

2
2 3

8 I.18.4 r = m1r1+m2r2
m1+m2

4 2
9 I.24.6 E = 1

4
m(ω2 + ω2

0)x
2 4 3

10 I.25.13 Ve = q
C

2 4
11 I.27.6 ff = 1

1
d1

+ n
d2

3 1

12 I.29.4 k = ω
c

2 2
13 I.32.5 P = q2a2

6πεc3
4 4

14 I.34.8 ω = qvB
p

4 4
15 I.39.1 En = 3

2
pV 2 3

16 I.39.22 PF = nkbT
V

4 4
17 I.43.16 v = μqVe

d
4 4

18 I.43.31 D = μekbT 3 4
19 II.2.42 P = κ(T2−T1)A

d
5 4

20 II.8.31 Eden =
εE2

f

2
2 4

21 II.11.3 x =
qEf

m(ω2
0−ω2)

5 4

22 II.15.4 E = −μMB cos(θ) 3 4
23 II.34.2 μM = qvr

2
3 4

24 II.34.29b E = gμMBJz
h

5 4
25 II.38.3 F = Y Ax

d
4 3

26 III.13.18 v = 2Ed2k
h

4 3
27 III.15.14 m = h2

2Ed2 3 3

and nine independent variables. The same authors also provide the Feynman
Symbolic Regression Database [18], where for each equation, there is a data
table whose rows are of the form x1, x2, . . . y, where y = f(x1, x2, . . .). Table 1
contains the 27 equations that we consider in the present paper. This subset was
selected to involve equations with a varying number of variables, different types
of operators, varying degrees of complexity, and a different number of physical
units. For the sake of readability, we will refer to these as the Feynman equations
from now on.
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2.2 Fitness Landscape Analysis

Fitness landscapes illustrate the correlation between the search and fitness
space [12,13,15], and are commonly used to describe or predict the performance
of a heuristic search. Fitness landscape analysis can help predict the performance
of heuristics by using search cost models. Local Optima Network (LON) is a fit-
ness landscape model proposed in [14] for combinatorial landscapes, considering
that the number and distribution of local optima in a search space represents an
important impact on the performance of heuristic search algorithms [2]. In this
network model, the nodes are the local optima of a given optimisation problem,
and the edges represent transitions among them using a neighbourhood operator
[19]. Therefore, the fitness landscape is represented as a graph of connected local
optima.

In general, a local search heuristic LS maps the solution space S to the
set of locally optimal solutions S∗. A solution i in the solution space S is a
local optimum given a neighbourhood operator N if F (i) ≥ F (s),∀s ∈ N (i).
Each local optima i has an associated basin of attraction corresponding to the
set composed of all the solutions that, after applying the local search heuristic
starting from each of them, the procedure returns i. Therefore, the basin of
attraction associated to a local optima i is the set Bi = {s ∈ S|LS(s) = i}
whose size is the cardinality of Bi. In this paper, a connection (undirected) edge
between two basins is created if at least one solution in one basin has a neighbour
solution in the other basin, given a neighbourhood operator. This approach was
also used in other works (e.g., [14,22]).

3 Technical Details

3.1 Dimensionally-Aware Genetic Programming

The Dimensionally-Aware GP, first introduced by Keijzer and Babovic [9], can
only be applied if there is information about the physical units of the model
variables. In [18], the authors provide the unit table that specifies the physical
units of the input and output variables for all Feynman equations. There are five
different physical units appearing in all the equations: length [m], time [s], mass
[kg], temperature [K], and potential [V ]. For every equation and each variable,
the exact unit signature is given. For instance, a variable denoting the distance
is expressed in meters, and the corresponding signature would be [1, 0, 0, 0, 0];
a variable denoting acceleration is expressed in meters per second squared, and
its signature can be presented with [1,−2, 0, 0, 0]. Using the same notation, the
result of each equation will have a corresponding target signature. Following
the dimensionally-aware paradigm, the local search algorithm we employ will
always conform to the given target signature. In other words, at all times, we
only consider those candidate expressions that result in the desired signature.
Furthermore, when including the arithmetic operators in the expression, we fol-
low the simple rules illustrated in Table 2: multiplication and division operators
simply add or subtract the exponent values in the signature, while addition and
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Table 2. Effect of operations.

Function Operations dimensionality

Addition [v, w, x, y, z], [v, w, x, y, z] → [v, w, x, y, z]

Subtraction [v, w, x, y, z], [v, w, x, y, z] → [v, w, x, y, z]

Multiplication [v, w, x, y, z], [v, w, x, y, z] → [v + v, w + w, x + x, y + y, z + z]

Division [v, w, x, y, z], [v, w, x, y, z] → [v − v, w − w, x − x, y − y, z − z]

subtraction can only be applied to expressions with the commensurate signature,
and the resulting signature remains unchanged.

3.2 Initialisation Procedure

The goal of the initialisation procedure is to generate expressions whose result
conforms to the target unit signature. This is achieved by using all of the available
variables and only multiplication and division operators. In such an expression
(e.g. x1y−2z0), each variable can be represented only by its exponent, which is
an integer value. In initialisation, we consider exponents in the range [−3, . . . , 3];
if r is the cardinality of the range and if an equation has p variables, this makes
rp combinations to test. In the end, all combinations that yield the correct sig-
nature define the set of all possible initial solutions. For instance, if the available
variables represent time t and distance d, and the target signature requires speed,
the correct initial expressions would be (t−1d1), (t−2d2), etc. Note, in the case
where the chosen exponent range is not expressive enough to generate a sin-
gle valid expression, the maximum exponent values can be increased and the
initialisation simply restarted (this was not needed in our experiments).

3.3 Neighbourhood Operators

For our variation operators, we consider custom operators designed to be
dimensionally-aware, i.e., their application does not change the signature of the
overall expression encoded as a tree.

– Replacement operator. Select a subtree t with a signature st =
[v, w, x, y, z] from the tree T and replace it with a subtree t̂ that has a com-
mensurate signature, i.e., st = st̂.

– Multiplication with integer. Select a subtree t with a signature st =
[v, w, x, y, z] from the tree T and replace it with a tree t̂ where the root is
multiplication, one child is t and the other one is integer (dimensionless) in the
range [−3, . . . , 3] (not dependent on the max exponent value). The signatures
of t and t̂ are the same.

– Divison with integer. Same as the previous one, except the two subtrees
are connected with the division operator.
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– Addition with a commensurate value. Select a subtree t with a signature
st = [v, w, x, y, z] from the tree T and replace it with a tree t̂ where the root
is addition, one child is t and the other one is q that has the same signature
as t, i.e., st = sq.

– Subtraction with a commensurate value. Same as the previous one,
except the two subtrees are connected with the subtraction operator.

In all of the above operators, the new subtree is generated by following
the same approach as in the initialisation procedure, enumerating all subtrees
with the appropriate signature where the variable exponents are in the range
[−3, . . . , 3]. This set of operators can produce expressions with only the four
basic arithmetic operations; while executing the operations, the signatures of
each subtree are updated according to the rules in Table 2. In the local search
procedure, we use all the neighbourhood operators to generate all possible neigh-
bours, and only the one with the best fitness measure is retained. This procedure
is deterministic since it considers all possible variations and is in this regard sim-
ilar to deterministic symbolic regression methods such as [11] and [21]. However,
these approaches do not consider the dimensionality constraints as employed in
the above operators. In the implementation, the maximum tree size is limited to
42 nodes, since with the repeated application of the same operator the expres-
sions can bloat, i.e. achieve slightly smaller error values while the number of
nodes becomes arbitrarily large.1

Since the Feynman equations also contain constants in multiplication or addi-
tion operations, we additionally employ the linear scaling technique [8]. With lin-
ear scaling, the original expression encoded as a tree T is evaluated as (a + b · T );
the coefficients a and b are determined by a simple linear regression where the
sum of squared errors between the desired output and (a + b · T ) is minimised.

3.4 Local Search Procedure

The local search used in our study is described in Algorithm 1, where N (.) rep-
resents the neighbourhood of the given solution. The algorithm is deterministic;
if there are multiple solutions with the same fitness value within the neighbour-
hood, the algorithm will retain the first one that it encounters. The local search
is started using all initial solutions obtained with initialisation to generate a
LON for every considered equation.

As the local search fitness measure, we use the mean squared error (MSE )
of the expression; a strict improvement is required for a new solution to be
accepted. The described local search with operators conforming to the dimen-
sional constraints will be denoted as “DAGP” in the remainder of the text.

1 We have experimented with a range of more open-ended bloat-control mechanism,
e.g., lexicographic optimisation for fitness and size. However, we observed that even
in our rather discrete setting, optimising I.8.14 or I.27.6 would result in trees of a
size of over 256 nodes.
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Algorithm 1. A greedy local search heuristic
1: s ← initial solution
2: while there is an improvement do
3: s∗ = s
4: for each s∗∗ in N (s) do
5: if F (s∗∗) > F (s∗) then
6: s∗ ← s∗∗

7: end if
8: end for
9: s = s∗

10: end while

3.5 Genetic Programming Regression

Apart from the DAGP, we also applied a regular form of GP symbolic regres-
sion to the chosen set of equations. The purpose of these GP experiments is to
estimate the problem difficulty regarding the number of variables and complex
dimensionality relations among the variables. The GP regression is not concerned
with physical units but is guided exclusively with the minimisation of MSE given
the training data. In our experiments, the GP – which is based on the GP pack-
age ECF [1] – uses the same parameters for all considered equations, which are
listed in Table 3. The selection scheme is simple: in each iteration k = 3 individ-
uals are selected at random, and the worst one is eliminated. The remaining two
are recombined to produce one offspring, which is then mutated with given indi-
vidual mutation probability and returned to the population; both the crossover
and the mutation type are chosen randomly in each invocation.

Table 3. Genetic programming parameters.

Parameter Value

Population size 500
Function set +, −, *, /, sin, cos
Individual mutation rate 0.5
Tree max depth 6
Crossover operators Subtree, one point, size fair, uniform, context preserved
Mutation operators Subtree, hoist, node replace, permutation, shrink
Termination criteria 105 evaluations
Number of runs 50

4 Results

In our experiments, we are considering the selected 27 Feynman’s equations and
apply the dimensionally-aware local search (DAGP) and a standard symbolic
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regression GP. The number of data points for each equation was equal to 100,
which were uniformly sampled from the available datasets [17]. The primary
goal of DAGP is the exploration of the dimensionally-aware fitness landscape by
building a corresponding LON for each equation. The second goal is an estimate
of the effort needed to successfully navigate such a landscape, in comparison
with the standard symbolic regression. In addition to the described DAGP con-
figuration, we experimented with the following modifications: (a) reducing the
integer constant range to [−2, . . . , 2] and [−1, . . . , 1]; and (b) different operator
ordering in local search (five permutations). Furthermore, both the GP and all
DAGP configurations were tested with and without the linear scaling.

4.1 Algorithm Efficiency

When considering the efficiency of the search, we define an acceptance criterion
with the MSE < 10−9, i.e., a solution is considered “correct” (a hit) if its MSE
falls below this limit.

Table 4 shows the number of evaluations needed to find a correct solution,
while a dash denotes no such solution was found. In the case of DAGP, these
values are non-volatile since the local search procedure is deterministic. In the
case of GP, the number of evaluations needed is just an estimate; GP is executed
50 times, which either terminate after 100 000 evaluations or when a correct
solution is found. In case a solution is found in at least one run, the estimate
is calculated as the total number of evaluations across all runs, divided by the
number of successful runs (e.g., if each run was successful, this is equivalent to
the average number of evaluations over all runs).

From the table, we can divide the equations into several groups; the first
group are trivial problems, in which the dimensionally-aware approach needed
very few evaluations to construct the correct solution. In most cases, this is
because the unit constraints result with only a single initial solution with the cor-
rect target signature. The second group are the equations which are not trivial,
but the DAGP can construct a correct solution using the local search operators
and linear scaling. For all these, the number of evaluations needed is considerably
smaller than the corresponding GP search.

Finally, the third group includes equations which were not reconstructed;
in some cases, this is because they include operators we have not considered,
such as square root (I.18.14) or trigonometric functions (II.15.4). The rest of
those equations (I.13.4, I.18.4) also presented a challenge to the GP, since it was
successful in a small number of runs requiring a large number of evaluations. For
both GP and DAGP, linear scaling was beneficial and provided improvement of
the model, regardless of the representation. It is also interesting to note that both
DAGP modifications (a) and (b) made no difference in the number of equations
whose solution was found, so we omit those results. As an illustration, we applied
the DAGP local search and GP with scaling to 39 additional equations from the
benchmark (the ones not including trigonometric functions); the DAGP was able
to find a solution for 28 equations, whereas GP succeeded in 29 cases.
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Table 4. Number of evaluations needed to obtain the optimum. A value in brackets
denotes the number of successful GP runs, ‘–’ denotes unsuccessful run.

Eq. label DAGP local search GP
No scaling Scaling No scaling Scaling

I.8.14 – – – –
I.12.1 267 214 680 (50) 620 (50)
I.12.2 – 5 – 1 6750 (46)
I.12.5 1 1 580 (50) 580 (50)
I.13.4 – – – 2 464 750 (2)
I.14.3 1 1 2 060 (50) 2 000 (50)
I.14.4 – 1 908 400 (5) 1 740 (50)
I.18.4 – – 675 785 (7) 1 613 300 (3)
I.24.6 – 2 086 – 2 425 250 (2)
I.25.13 1 1 960 (50) 780 (50)
I.27.6 72 575 2 817 223 735 (17) 740 500 (6)
I.29.4 1 1 950 (50) 840 (50)
I.32.5 – 1 – 33 370 (43)
I.34.8 1 1 20 076 (46) 4 620 (50)
I.39.1 – 1 1 574 500 (3) 560 (50)
I.39.22 517 408 15 904 (47) 4 800 (50)
I.43.16 1 1 21 488 (45) 6 260 (50)
I.43.31 1 1 2 080 (50) 2 110 (50)
II.2.42 19 468 29 556 98 450 (30) 22 500 (48)
II.8.31 – 1 1 155 625 (4) 1 760 (50)
II.11.3 1 000 2 042 4 921 500 (1) 940 000 (5)
II.15.4 – – 43 397 (39) 3 750 (50)
II.34.2 – 1 1 161 875 (4) 1 820 (50)
II.34.29b – 4 355 – 8 400 (50)
II.38.3 120 120 11 030 (49) 4 100 (50)
III.13.18 – 45 – 6 400 (50)
III.15.14 – 1 – 10 950 (48)

4.2 LON Characteristics for DAGP

We expand the analysis extracting LONs from both DAGP landscapes, linear
and no-scaling strategies. The obtained networks can be analysed according
to some general graph metrics useful to understand the landscape behaviour.
Table 5 reports the considered metrics: nv and ne represent the number of
vertices (or nodes) and the number of edges of the generated LON, respec-
tively. C is the average clustering coefficient which measures cliquishness of a
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Table 5. Graph metrics for DAGP local search.

Equation No-scaling Linear-scaling
nv ne C Cr l π S nhits nv ne C Cr l π S nhits

I.8.14 220 1641 0.85 0.07 −1.00 0 17 0 223 1805 0.87 0.07 −1.00 0 6 0

I.12.1 5 4 0.47 0.00 −1.00 0 2 5 3 2 0.00 0.00 1.33 1 1 3

I.12.2 5 6 0.80 0.53 −1.00 0 2 0 5 6 0.80 0.53 −1.00 0 2 5

I.12.5 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.13.4 32 66 0.84 0.15 −1.00 0 6 0 33 67 0.80 0.18 −1.00 0 6 0

I.14.3 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.14.4 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.18.4 41 73 0.77 0.03 −1.00 0 11 0 42 72 0.80 0.06 −1.00 0 11 0

I.24.6 5 10 1.00 1.00 1.00 1 1 0 5 10 1.00 1.00 1.00 1 1 4

I.27.6 39 100 0.61 0.09 −1.00 0 6 3 41 100 0.58 0.10 −1.00 0 8 25

I.29.4 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.32.5 1 0 0.00 0.00 0.00 1 1 0 1 0 0.00 0.00 0.00 1 1 1

I.34.8 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.39.1 1 0 0.00 0.00 0.00 1 1 0 1 0 0.00 0.00 0.00 1 1 1

I.25.13 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.39.22 6 6 1.00 0.44 −1.00 0 2 6 7 9 1.00 0.21 −1.00 0 2 7

I.43.16 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.43.31 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

II.2.42 24 57 0.96 0.14 −1.00 0 4 3 23 49 0.92 0.14 −1.00 0 4 2

II.8.31 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

II.11.3 4 0 0.00 0.00 −1.00 0 4 4 5 1 0.00 0.00 −1.00 0 4 3

II.15.4 7 6 0.86 0.21 −1.00 0 3 0 5 3 0.60 0.00 −1.00 0 3 0

II.34.2 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

II.38.3 13 10 0.64 0.00 −1.00 0 6 12 14 11 0.60 0.00 −1.00 0 6 14

II.34.29b 46 250 0.76 0.24 −1.00 0 3 0 39 238 0.87 0.33 −1.00 0 5 36

III.13.18 6 15 1.00 1.00 1.00 1 1 0 3 3 1.00 1.00 1.00 1 1 3

III.15.14 1 0 0.00 0.00 0.00 1 1 0 1 0 0.00 0.00 0.00 1 1 1

Fig. 1. LON examples of fully-connected networks using no-scaling (left-blue) and
linear scaling (right-red) for I.24.6 and II.13.18. (Color figure online)

neighbourhood, and it characterises the degree to which nodes in a graph tend
to cluster together; Cr is the average clustering coefficient of corresponding ran-
dom graphs (i.e., random graphs with the same number of vertices and mean
degree). l is the average shortest path length between any two local optima. π is
the connectivity, which indicates if the LON is a connected graph with S being
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Fig. 2. LON examples of dense local clusters using no-scaling (left-blue) and linear
scaling (right-red) for I.13.4 and I.18.4. (Color figure online)

Fig. 3. LON using no-scaling (top-blue) and linear scaling (bottom-red) for particular
equation examples with 2 (I.12.1), 3 (I.27.6), 4 (I.8.14) and 5 (II.34.29b) variables.
(Color figure online)

the number of connected components (sub-graphs). Finally, nhits is the number
of nodes which represent a hit; as before, we consider a solution to be a hit if its
mean square error is MSE < 10−9. Some landscapes (13 of the 27 reported in
Table 5) consist of only a single node. Within the non-scaling experiments, the
optimum appears in seven of these 13 cases; for linear scaling, the optimum is
found in all 13 landscapes with unique nodes.

Analysing the average shortest path lengths (l), some results show that the
network is weakly and sometimes not connected (l = −1). Few reported cases
present l ≥ 1, i.e., any pair of local optima can be connected by traversing at
least other local optima, such as in I.24.6 and III.13.18 l = 1. Besides, in these
examples, π = 1 and S = 1, meaning the network is connected in one entire
component (see Fig. 1 for examples).

We can also observe small-world properties by looking at the clustering coef-
ficients (C, Cr) for some equations. Some LONs show a significantly high degree
of local clustering compared with their corresponding random graphs, meaning
that the local optima are connected in two ways: dense local clusters and sparse
interconnections, which can be challenging to find and exploit (see examples in
Fig. 2 for I.13.4 and I.18.4).
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Fig. 4. Violin plots for each graph metric over all equations. The bar in the center
represents the mean while the extremes denote upper and lower bounds.

In Fig. 3, we highlight particular LON examples with two (I.12.1), three
(I.27.6), four (I.8.14), and five (II.34.29b) variables. Note that the C coefficient
is higher for linear scaling in II.34.29b in comparison with no-scaling. More-
over, I.12.1 and I.27.6 present nhits > 0; this also happens for II.34.29b but only
considering linear scaling nhits = 36.

Figure 4 summarises each metric considering all addressed equations for both
cases no-scaling and linear scaling. We note that with few exceptions (l and nhits),
the metrics present similar distributions for both strategies. Since the two DAGP
modifications (a) and (b) exhibit very similar behaviour, their graph metrics are
not included.

5 Conclusions and Future Work

In many regression problems, only the raw data, obtained with the help of some
measurements, is available to infer the governing model. It is not often the case
that the information about the physical units of the result and the variables are
documented; however, if this information is available, it can significantly improve
regression to the extent that some problems become trivial to solve with the right
approach.

Our experiments on a subset of equations of Richard Feynman’s have shown
that a very simple local search procedure, adhering to the dimensionally-aware
constraints, can efficiently navigate the corresponding landscape and arrive at
the correct solution. However, it must be noted that in real-world situations, a
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certain amount of noise in the data can be expected, which was not present in
this study.

We also have extracted Local Optima Networks (LONs) providing a fit-
ness landscape analysis for the dimensionally-aware genetic programming search
space. The networks presented small-world properties for some equations mean-
ing that the local optima can be connected as dense local clusters but also in
sparse interconnections – and sparse interconnections might make the search
process harder even using strategies such as linear scaling.

We plan to extend the dimensionally-aware local search to cover additional
operators such as square root, exponential and trigonometric functions. Besides
local search, experiments can be performed by incorporating DA constraints
into the standard GP, with appropriate mutation and crossover operators, where
different fitness landscape models can be applied. At the same time, a transition
from the regular GP and DAGP could be achieved with the use of maximum
deviation to the target signature, which could be gradually decreased over the
course of the evolution.
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