
CoA R E P O R T AERO No. 203

üELFT

mm

THE COLLEGE OF AERONAUTICS

CRANFIELD

DESCRIPTION OF THE ALGOL VERSION OF THE

"TURBOCODE" SCHEME FOR THE PROGRAMMING O F

THERMODYNAMIC CYCLE CALCULATIONS ON AN

ELECTRONIC DIGITAL COMPUTER

by

J. R. P a l m e r and Sq. Ldr . K. P . Annand

CoA Report Aero No. 203
March, 1968

THE COLLEGE OF AERONAUTICS

CRANFIELD

Description of the Algol Version of the "Turbocode"
Scheme for the Programming of Thermodynamic

Cycle Calculations on an Electronic Digital Computer

by

J. R. Palmer, M. A. , C. Eng. , F. R. Ae. S. and
Sq. Ldr. K. P. Annand, B. A. , D. C. Ae. , R. A. F.

SUMMARY

The "Turbocode" Scheme for programming thermodynamic cycle calc­
ulations on an electronic digital computer was described in detail in an earl ier
Report (ref. 1) in terms of the Ferranti "Pegasus" version. The present
Report describes a version, coded in Algol 60, which has been implemented
on an 1. C. T. 1905 computer. In view of the widespread understanding and
use of Algol, the Scheme in its present form may be of considerably wider
applicability than the original, subject only to variations in hardware repres ­
entations, and a full listing of the Scheme is therefore presented, together
with flow diagrams and additional descriptive and explanatory material.

CONTENTS

Page

1. Introduction 1

2. Brief Resume' of Basic Concepts 1

3. Alterations Necessitated by Re-Coding in Algol 3
3. 1 Preliminary Considerations 3
3. 2 The Scheme Structure Adopted 5

4. Proposed Future Developments 6

5. Conclusions 7

Acknowledgement 7

References 7

Appendix 1 Notes on the I. C. T. 1900 Series Implementation of
Algol 60 8

A, 1. 1 Hardware Representation 8
A . 1 . 2 Library Procedures 9

A. 1. 2. 1 Implicitly Declared Procedures 9
A. 1. 2. 2 Explicitly Declared Procedures 10

Appendix 2 General Observations on the Details of the Scheme 12
A. 2, 1 Layout of the Scheme 12
A. 2. 2 The Global Variables 12
A, 2. 3. Restrictions on Master Programs 13

Appendix 3 Notes on Codeword Input, Codeword Obey and
Optional PrintiJig 14

A. 3. 1 Codeword Input, with Er ror Sequence 14
A. 3. 2 Codeword Obey 15
A. 3. 3 E r ro r Tracing Facilities 15

A. 3. 3. 1 Trace Printing during Normal Rimning 15
A. 3. 3. 2 Printing of Part ial Results in the Event of

Program Failure 15
A. 3. 4 Suppression of Station Vector Output 16

Appendix 4 Improvements in Certain Subroutines and Bricks 17
A. 4. 1 Elimination of Superfluous Subroutines 17
A. 4. 2 Rearrangement of Other Subroutines 17
A, 4, 3 Grouping of Bricks with Common Features 18

Appendix 5 Requirements for New Bricks 19

Appendix 6 Notes on the Flow Diagrams 20

CONTENTS continued

Page

Appendix 7 Compilation and Execution Procedure for I. C. T. 1900
Series Computers 22

A. 7. 1 Compilation 22
A. 7. 2 Execution 23
A. 7. 3 Operating Instructions for the Turbocode Scheme 23

Figures 1 - 2 4

Complete Listing of the Turbocode Scheme

- 1 -

1. Introduction

An earl ier Report (ref. 1) described the Turbocode Scheme developed in
the Propulsion Department of the College of Aeronautics for the programming
of thermodynamic cycle calculations on an electronic digital computer. The
original scheme described therein was programmed for the Ferranti "Pegasus"
but it was stated that a follow-up Report on an Algol version, suitable for
most of the larger present-day computers, would be issued as soon as
possible. The present Report describes this version, as programmed for an
I. C. T. 1900 Series Computer (specifically a 1905 with 32K core storage),
and a full listing of the Scheme in the hardware representation of that machine
is given, together with flow diagrams of the major elements of the Scheme,
and descriptions of points of difference between the "Pegasus" and 1900
versions.

The descriptions and specifications of the various Functions, Subroutines
and Bricks are not repeated here, and the reader should refer to ref. 1 for
this information.

2. Brief Resume of Basic Concepts

Although it is intended that the reader should refer to ref. 1 for a
fuller description of the detailed action of the Scheme, it is desirable that
the present report be self-contained as regards its description of the basic
scheme of operation of Turbocode. To this end, the following brief notes
are given to define the principal concepts, even though they appear also in
ref. 1.

Each major portion of the Scheme, concerned with such operations as
Data Input, Results Output and calculation of conditions at exit from a part­
icular type of component, is known as a Brick. Most Bricks deal with a
single component or process, and it is convenient to think of a Brick as a
kind of operator which, operating on the given gas state at inlet to the
process, calculates the gas state at outlet. By standardising the layout of
gas state information in the various Bricks, a "common interface" approach
becomes possible, and the thermodynamic Bricks can be thought of as being
"plugged in" to one another in the sequence dictated by the Master Program.

The array of quantities defining the gas state at any station within the
cycle is known as the Station Vector of that station, and consists of the
following eight quantities:-

fuel-air ratio ALPHA (dimensionless)

mass flow rate W (Ib/s)

static pressure PSTATIC (Ibf/in^abs)

total pressure PTOTAL (Ibf/in^abs)

static temperature TSTATIC (°K)

total temperature TTOTAL (°K)

flow velocity VELOCITY (ft/s)

flow area AREA (ft^)

This is in fact a redundant set, but it is convenient to have rather
more than the minimal set of five items (ALPHA, one of PSTATIC and
PTOTAL, one of TSTATIC and TTOTAL, and any two of W. VELOCITY
and AREA), to give maximum flexibility.

The Station Vectors alone seldom completely define the action of a
Brick, however: normally additional information is needed, such as efficiencies,
loss factors, pressure ratios, etc. and these items constitute the Brick Data.
Each Brick has its own particular requirements as to Brick Data, described
in its specification, and it is the Turbocode programmer's responsibility to
ensure that the items of Brick Data are listed and made available as required
by his own program.

Similarly, certain results are produced which are different in kind from
the Station Vectors, e. g. thrust and specific fuel consumption: these are
known collectively as the Engine Vector, and again its composition is controlled
by the Turbocode programmer, using the relevant Brick Specifications.
Certain Bricks use, as data, items generated in the Engine Vector by previous
Bricks.

Provision is therefore made for the input of (partial) Station Vectors
(Brick 15) and of Brick Data (Brick 16), and for the output of Station Vectors
(Brick 31) and of the Engine Vector (Brick 32). The latter Brick also
provides for resetting the Station Vectors, after they have been printed, to
the values prevailing at the start of the current calculation, thereby avoiding
the necessity of providing new data except where this differs from that of the
preceding calculation. A further Brick (Brick 22) provides for arithmetic
manipulation of Engine Vector Items (e. g. adding of thrusts and fuel flows of
different components), and for the transfer of items in either direction between
the Engine Vector, the Station Vectors and the Brick Data.

Since the actual operations required for a cycle calculation are fully
programmed in the Turbocode Scheme itself, the Turbocode Master Program
written by the user consists merely of instructions to link the requisite
Bricks in the desired order, together with cross references to the Station
Vector, Brick Data and Engine Vector items required. To make this as
simple as possible, each Turbocode instruction takes the form of a Codeword,
having a maximum of seven items consisting of unsigned integers, separated
by commas, and each written on a separate line. Few Bricks require all

- 3 -

seven items, in which case arbitrary integers (usually zeros) can be used to
complete the Codeword, though it is preferable to omit any right-hand zeros
since the Codeword Input sequence can automatically fill the gaps with zeros.
The meanings of the seven items are normally as follows:-

"Pegasus" notation 1900 Notation
while in store

1900 Notation
while being obeyed

NEXTBRICK

A

B

C

D

E

F

Meaning

No. of brick
required

Inlet Station
Vector No.

Outlet Station
Vector No.

First Brick Data
Item No.

First Engine
Vector Results
Item No.

First Engine
Vector Data
Item No.

Jump Codeword
No.

n CW [K, 0]

a CW [K. 1]

b CW [K, 2]

c CW (K, 3]

d CW [K, 4]

e CW [K, 5]

f CW [K, 6]

Each Codeword in the Master Program is numbered from zero, though
this number does not appear in the Codeword as written. In the above table,
K is the number of the Codeword currently being obeyed, and F is the number
of the Codeword to be obeyed next, if this is not the next in Sequence. A
typical Codeword is

4, 9, 10, 31, 4, 2, 30

which means "use Brick 4 (Single Turbine) with Inlet Station Vector 9, Outlet
Station Vector 10, First Brick Data Item No. 31, Firs t Engine Vector Result
Item No. 4, First Engine Vector Data Item No. 2 and Jump Codeword Number
30". When using this particular Brick, a Jump occurs only if the given exit
area is too small for the given inlet conditions.

3. Alterations Necessitaled by Re-Coding in Algol

3. 1 Preliminary Considerations

The form of the "Pegasus" version of the Scheme was In part dictated
by certain features peculiar to that computer viz:-

(a) The storage capacity was limited to 7K words, which was insufficient

to accommodate all Bricks simultaneously. It was therefore necessary to
employ selective assembly of Bricks from a library tape in accordance with
the requirements of each particular Master Program: since many of the
Bricks are mutually exclusive, and since no cycle could be envisaged which
would require more than about half the total brick storage space, this intro­
duced no operational limitations, but it did involve a rather tinae-consuming
process of program input.

(b) Owing to lack of programming personnel, it was never possible to
realise the original intention of coding the entire scheme in "Pegasus"
machine code: in fact, only the Codeword Input, Assembly, Codeword Obey
and Error Tracing facilities were so coded, together with the four fundamental
routines for calculating specific heat, enthalpy, temperature-dependent entropy
and combustion fuel-air ratio. All the Bricks, and the Subroutines employed
by them, were coded in "Pegasus" Autocode.

The interpretive nature of this Autocode, together with the necessity
for its performing floating-point arithmetic on a fixed-point computer by soft­
ware, imposed severe restrictions (by a factor of the order of 20) on the
already modest operating speed of the "Pegasus", and on the available storage
space, since the Autocode Scheme itself occupied 890 words.

(c) The above shortcomings inherent in the computer system employed
were partially offset by the ease with which programs, whether in machine
code or Autocode, could be segmented and subsequently assembled.

In considering the adaptation of the Turbocode Scheme to a more
modern computer, of far greater speed and storage capacity (in fact an
1. C. T. 1905), three considerations were paramount:

(1) From the user ' s point of view, the method of using the Bricks,
and writing the Master Program and Data, should be identical with that
of the "Pegasus" version.

(2) The coding should be in one of the widely used "universal"
languages: this limited the choice to Algol or to Fortran, since Extended
Mercury Autocode was regarded as insufficiently powerful or general,
while the properties and availability of P L / l were not known at the time
the work was started.

Since it has always been a fundamental requirement that the
Scheme could be augmented by additional Bricks whenever necessary, it
was desirable that this should be accomplished using a source language
widely used within the College, and since a policy decision had already
been taken to make instruction in Algol available to all College personnel,
this language seemed the obvicus choice.

(3) In view of the greatly increased storage capacity available
(initially 32K words of core store, subsequently to be augmented by
magnetic tape and disc storage), it would be possible to store the
entire Scheme, compiled in machine code form, within the computer:
this would greatly simplify and speed up the program input phase even

while paper tape input remained n e c e s s a r y , while eventually the whole
Scheme would be pe rmanen t ly s to red on magnet ic tape o r d i s c s . In
any ca se , the block s t r u c t u r e of the Algol 60 Reference Language does
not allow for segmentat ion of p r o g r a m s , though pa r t i cu l a r ha rdware
r ep resen ta t ions (of which the 1900 Se r i e s vers ion is one) may pe rmi t it.

3. 2 The Scheme St ruc ture Adopted

The development of the Algol ve r s ion of the Scheme was c a r r i e d out in
advance of the instal la t ion of the I. C. T. 1905 computer , and consequently a
va r ie ty of other mach ines was used (specifically the F e r r a n t i " P e g a s u s " , the
El l iot t 803 and two Ell iot t 4100 Ser ies machines) . In m o s t c a s e s , p r o g r a m
segmentat ion was not poss ib le , so as the Scheme was built up Brick by
Br ick the s to rage r e q u i r e m e n t s during the compilation and /o r running phases
outgrew the capaci t ies of the s m a l l e r machines employed, and compilation
became excess ive ly slow. The f i r s t definitive Algol ve r s ion was the re fore
developed as a single segment , albeit of considerable length, and is descr ibed
in th is form in this Repor t : p rospec t ive u s e r s might need to segment it in
accordance with the capac i t ies and conventions of the i r own ins ta l la t ions . It
i s intended in future to make use of this apparent r e s t r i c t i on to collect the
Br icks into a l ibrary , but as this facility is not available to all compi l e r s ,
and has not been fully studied as to i ts feasibil i ty in the p r e s e n t context, it
is not proposed to de sc r ibe this aspect , e i ther now or in subsequent work.
Should this r eve r s ion to the pa t te rn of the " P e g a s u s " Scheme be implemented,
it would avoid the need to recompi le al l o r pa r t of the Scheme whenever a
new Brick was added: fu r the rmore , the 1900 Ser ies compi le r s for var ious
languages a r e designed to be compatible in that they produce semi -compi led
output in a s tandard form, making it poss ib le to consolidate a p r o g r a m such
as this Scheme from segments wr i t ten in a var ie ty of source languages.
Fu tu re additions to the Scheme a r e not there fore cons t ra ined to be wr i t ten in
Algol.

The decision to wr i t e the Scheme as a single p r o g r a m (whether s e g ­
mented or not) entai led one bas ic change in p rog ram s t r u c t u r e .

In the " P e g a s u s " Scheme, the mode of operat ion w a s : -

(a) Mas t e r P r o g r a m read in and s to red by Codeword Input, which l is ted
the Br icks requ i red .

(b) Br i cks se lec ted from L i b r a r y by Assembly ; and

(c) Codewords decoded and obeyed by Codeword Obey (employing the
appropr ia te Br i cks as subrout ines , which in turn cal led up the
Subroutines p rope r and Funct ions as requi red) .

In the Algol Scheme, r ega rded as the " d r i v e r " p r o g r a m , the M a s t e r
P r o g r a m becomes a spec ies of Data. The Codewords of the M a s t e r P r o g r a m
a r e read in by Codeword Input and s to red as e lements of a two-dimensional
a r r a y CW, each " row" cor responding to one codeword, and each "column" to
one of the seven e lements of the s tandard form of codeword. Codeword
Obey then u se s these a r r a y e lements as pa rame t e r s for the Br icks which it

- 6 -

calls up, which are written as distinct blocks. It must be emphasized that
the Bricks are not written as Algol procedures, since their inputs and outputs
(Station Vectors, Engine Vector and Brick Data) are global in nature. Never­
theless, in effect, each Brick with its associated codeword behaves like a
procedure, of which the codeword elements are the actual parameters in the
strict Algol sense.

It will be seen from the appended listing and flow diagrams that Code­
word Obey utilises a switch designator called BRICK to call up the individual
bricks, its elements being the labels Bl, B2, etc. , corresponding to Brick 1,
Brick 2, etc. The subscript of this switch designator is called NEXTBRICK,
which is set equal to the first element (i. e. the required Brick Number) of
the codeword currently being obeyed. Labels corresponding to non-existent
Bricks cause output of an appropriate diagnostic message, followed by a
search for another Master Program.

The Subroutines are written as procedures, with identifiers of the form
Sn, where n is the Subroutine number, while the Functions are written as
function procedures with the same identifiers (SPHT. ENTH and PRES) as
were used in the "Pegasus" version. (The omission of the FUEL function is
explained in Appendix 4). Those Standard 1900 Series procedures which are
used are described in Appendix 1.

In listing the Scheme, sufficient comment sequences have been incorp­
orated to make much of the Scheme self-explanatory. Further details of the
method of specifying and using each Brick, and of their mode of operation,
are given in ref. 1, and the present Report mentions (in Appendices 2 and 3)
only points of difference between the two versions of the Scheme. Appendix 1
describes features peculiar to the 1900 Series implementation of Algol.

4. Proposed Future Developments

The Turbocode Scheme described in ref. 1 and in the present Report is
intended primarily for design-point calculations, although Bricks 25 (Off-Design
Convergent-Divergent Nozzle), 34 (Determination of Bypass Ratio), 35
(Determination of Off-Design Turbine Inlet Temperature) and 36 (Determination
of Off-Design Intake Mass Flow) permit limited off-design investigations,
assuming constant component efficiencies, and choking of all turbine nozzle
guide vanes and propelling nozzles.

It is obviously desirable to develop a much more comprehensive scheme
for off-design calculations which can deal with the full characteristics of the
various components, and which can cope as efficiently yet generally as possible
with the large-scale iterative processes involved. Such a scheme - tempor­
arily entitled "Characteristic Turbocodc" - is in process of development, and
will be reported on in due course. At present this experimental scheme is
not compatible with the Turbocode Scheme described here in respect of the
format of the Master Program, and it may well be that the present scheme
will require extensive modification if such compatibility is found to be
desirable. Whether or not experience confirms this, much of the material

incorporated in the present Scheme will naturally be incorporated in the new
one.

As has been pointed out earlier, one of the fundamental concepts of
Turbocode is that Bricks should be added to it as and when the need ar ises .
It is not proposed to report on such additions, but copies of them can be
made available to prospective users .

5. Conclusions

The Algol version of the Turbocode Scheme, originally developed for the
"Pegasus" computer, is now available, and is fully described by the present
Report, supplemented by ref. 1. Further information, and copies of the
current version of the Scheme and of future additions to it (in I. C. T. 1900
Series hardware representation on punched cards or 8-channel punched paper
tape) may be obtained from the Department of Aircraft Propulsion of the
College of Aeronautics.

Acknowledgement

The co-operation of International Computers and Tabulators Limited,
in permitting use of the material on which Appendix 1 is based, is gratefully
acknowledged.

References

Palmer, J. R. The "Turbocode" Scheme for the Programming of
Thermodynamic Cycle Calculations on an Electronic
Digital Computer - College of Aeronautics Report
Aero 198 - July 1967.

2. Naur, P. (ed.) Revised report on the algorithmic language ALGOL 60
- International Federation for Information Processing
- 1962.

3. 1900 Series Algol Manual - International Computers
and Tabulators Limited - 1967.

8 -

Appendix 1 - Notes on the I. C. T. 1900 Se r i e s Implementat ion of Algol 60

(The following notes a r e based, with pe rmis s ion , on ref. 3.)

A. 1. 1 Hardware Representa t ion

Two modes of r ep resen ta t ion a r e available - t he "Fu l l " Mode incorporat ing
lower ca se l e t t e r s , and available only on paper tape, and the "Normal" Mode,
which i s available on both paper tape and punched ca rds . Only the Normal
Mode will be descr ibed and used h e r e . The basic symbols which have differ­
ent r ep re sen ta t i ons in the Algol 60 Reference Language and in the Normal
Mode a r e : -

Algol 60 Reference Language

Upper Case L e t t e r s

Lower Case L e t t e r s

Underl ined, o r Heavy Type,
De l imi t e r s (e. g. t rue , beg in .
f o r , e tc .)

X (multiplication sign)

A

V

10

f

Normal Mode

(not r epresen ted)

Corresponding Upper Case Le t t e r s

Corresponding words enclosed by
single apost rophes (e. g. 'TRUE' ,
'BEGIN', 'FOR' , etc .)

* (as ter isk)

' / '

'GE'

'LE '

=#= o r 'NE'

'NOT'

'AND'

•OR'

'IMPL'

•EQUIV'

& or '10'

% or ' - '

•(•

•)'

In addition, ce r t a in further Underlined (Heavy Type) De l imi te r s a r e
used, of which only ex te rna l ('EXTERNAL') is employed h e r e to r e p r e s e n t
the body of a p rocedure which is in the 1900 Algol L ib ra ry , but which
r e q u i r e s explicit declara t ion .

A. 1. 2 Library Procedures

The 1900 Algol Library contains a large number of standard procedures,
rhost of which require no declaration (Implicitly Declared Procedures), while
others (Explicitly Declared Procedures) must be declared using a particular
procedure heading in standard form, with the symbol external as procedure
body. The following brief notes describe only those procedures actually
employed in the Turbocode Scheme, and are intended merely to indicate
their main, features as an aid to understanding the listing. Fuller details
are given in ref. 3.

A. 1. 2. 1 Implicitly Declared Procedures

In addition to the 9 function procedures defined in the Algol Report
(ref. 2) - viz. : SIN, COS, ARCTAN, SQRT, LN, EXP, ABS, SIGN and
ENTIER - many other procedures of this type are provided, mainly for
input and output purposes. Those employed here are : -

(a) real procedure READ

Reads next number from input. Acceptable terminators are :
double space, comma, semicolon and newline (or new card).

(b) procedure PRINT (QUANTITY. M. N)

Outputs the real variable QUANTITY in a format determined by
the integer variables M and N.

If M = 0 and N =/ 0, floating point output is used, with an

argument d of (N + 1) significant digits in the range 1 < d < 10,

and a two-digit exponent.

li M f= 0 and N /= 0, fixed point output is used, with M digits

before the decimal point and N digits after it.

If M /= 0 and N = 0, integer fixed point output is used, with

M significant digits.

(c) procedure SPACE (N)

Outputs N spaces

(d) procedure NEWLINE (N)

Outputs N newlines

(e) procedure PAPERTHROW

Outputs a paperthrow to the head of a new page on the line printer

I

I

- 10 -

(f) procedure WRITETEXT C^STRING^

Outputs the given string STRING. Layout characters, enclosed
between ineer string quotes, may be employed thus:-

nS output n spaces

nC output n newlines

nP output n paperthrows

(g) integer procedure READCH

Reads a single character and gives it an internal integer code
value,

(h) integer procedure CODE (^CH^)

Generates the internal integer code value of the string CH. CH
is normally a single character, but the following symbols are also used:-

EL end-of-line code (i. e. newline or end-of-card)
SS space symbol code (i .e. string spacei i or %)

(i) procedure PRINTCH (I)

Outputs a single character whose internal integer code value has
previously been assigned to I by a READCH or CODE call.

(i) procedure SELECTINPUT (N)

Selects input channel N

(k) procedure SELECTOUTPUT (N*)

Selects output channel N

(1) procedure COPYTEXT (N)

Copies characters from input to output until the string N is
encountered: N itself is not copied.

(m) procedure PAUSE (N)

Halts the program and outputs the message HALTED:- N to the
console typewriter, where N is an integer. The operator can restart the
program if desired.

A. 1. 2. 2 Explicitly Declared Procedures

(a) Boolean procedure TEST (X); value X; integer X; external;

Assigns the value true to TEST if sense switch number X is on,

- 11 -

or false if it is off. This switch is set by the operator (though it is also
possible to program this). The Switch is off when program execution s tar ts .

(b) procedure TIMENOW; external;

Outputs time in form HH(hours)/ MM(minutes)/SS(seconds)

(c) procedure DATENOW; external;

Outputs date in form DD(day)/MM(month)/ YY(year)

- 12 -

Appendix 2 - General Observations on the Details of the Scheme

A. 2. 1 Layout of the Scheme

As the listing shows in more detail, the Scheme is laid out in the
following order :-

(1) Global Type, Array and Switch Declarations

(2) Procedure Declarations for Explicitly-Declared Library Procedures
DATENOW, TIMENOW and TEST

(3) Function Procedure Declarations for the Functions SPHT, ENTH and
PRES

(4) Procedure Declarations for the Subroutines S2, S5, S9, SIO, S16 and
S111217.

(5) Start of the Program Proper, concerned with initialising certain
variables, and arrays , selecting and setting up the peripherals and
printing the Scheme title and the date.

(6) Codeword Input (starting at the label INPUT)

(7) Codeword Obey

(8) Er ro r sequence used if a codeword is improperly formed, or if there
are too many codewords (starting at the label NEXTPROGRAMME).

This sequence also bears those labels which have no associated Bricks.

(9) The Bricks

A. 2. 2 The Global Variables

The real variables TWOGCJ, GC and R are self-explanatory. CONST
is used for various temporary constants, LCV for the Lower Calorific Value
of the Fuel, and QS for its stoichiometric fuel-air ratio. All of these
quantities are constants, and were given identifiers merely for ease of
writing the program.

The integer variables are used as follows:- I is 1 greater than the
serial number of the last codeword in the program (0 being the first) and
is therefore equal to the total number of codewords in the program, K is
the serial number of the codeword currently being obeyed, and NEXTBRICK,
A, B, C, D, E, P are the seven items of this codeword. AA, BB. CC, DD and
EE are copies of the second to sixth codeword items of Brick 26, which is
used in conjunction with Brick 27 or Brick 34 to extend the number of code­
word items available, (see ref. 1).

The real arrays are as follows:- ALPHA, W, PSTATIC, PTOTAL,
TSTATIC. TTOTAL. VELOCITY and AREA are the station vector elements,
while XALPHA. XW. XPSTATIC. XPTOTAL. XTSTATIC. XTTOTAL.

- 13 -

XVELOCITY and XAREA are copies of the initial values of these elements,
used by Brick 32 for resetting at the end of each calculation. BRICKDATA
and ENGINEVECTOR are self-explanatory, while Al and A2 are polynomial
coefficients for SPHT, Dl and D2 for ENTH, and CI and C2 for PRES.

The integer arrays are CW, the codeword elements, and CD, the
internal integer codes for the characters 0 to 9, end-of-line symbol, comma
and right parenthesis, which are the only characters that are meaningful to
Codeword Input.

The Boolean Variables are :- FIRST, which is true before execution of
the Master Program has started, and false thereafter; CHECK, which is set
true (by sense switch 1) if e r ro r tracing printout is to be used; and SENSE,
which is set true by sense switch 2 if diagnostic printout of the Station Vectors
and Engine Vector is required after a program failure.

A. 2. 3 Restrictions on Master Programs

Because of the limited sizes of the relevant arrays (which could,
however, be altered very readily). Master Programs are subject to the
following restrictions :-

(1) Number of Codewords must not exceed 51 (serial nos. 0-50 inclusive).

(2) Number of Station Vectors must not exceed 21 (serial nos. 0-20 inclusive).

(3) Number of Brick Data Items must not exceed 101 (serial nos. 0-100
inclusive).

(4) Number of Engine Vector Items must not exceed 51 (serial nos. 0-50
inclusive).
Also in the Scheme as listed here ,

(5) Brick Numbers outside the limits 1 to 40 inclusive, and also Brick
Numbers 7, l l , 13, 14, 17 to 21 inclusive and 28 are not allowed
(since Bricks bearing these numbers do not at present exist). The
addition of further Bricks may well modify this limitation in the future.
but in no case may a Brick Number less than 1 be used (otherwise a
zero or negative subscript to the switch designator BRICK would be
generated). The label B40. which appears in the Codeword Obey
sequence, is the remnant of Brick 40. which was originally used to
set the value of the Boolean variable CHECK alternately true and
false; this function has now been taken over by the use of Sense Switch
1, but the label B40 has been retained to permit use of Master Programs
written with B40 incorporated.

- 14 -,

Appendix 3 - Notes on Codeword Input, Codeword Obey and Optional Printing

A. 3. 1 Codeword Input, with Er ror Sequence (See Flow Diagram in Fig. 6)

This sequence is normally entered at the start of a run, as soon as
initialisation of the global variables and selection of the peripherals has been
completed, but is also entered if the Master Program has too many codewords.
or contains a codeword having more than seven elements, or if a non-existent
Brick is called for. In these latter cases, a new Master Program can be
input if available.

On entry. FIRST is set to true . denoting that execution of the Master
Program has not yet started. The program title is then read and copied to
output, being terminated by the String £$. and the codeword serial number I
is set to zero. For each codeword in turn. NEW is set to true (denoting the
start of a new codeword) and the item number J is set to zero. For each
item, the item sum K is set to zero.

As each character is read in (to the variable S). its internal integer
code value is compared with those already stored in the array CD (corres­
ponding to the digits 0 to 9. end-of-line. comma and right parenthesis
respectively). If the character is not one of this set, it is ignored and the
next character is read in.

On reading any of the digits 0 to 9. NEW is set to false (denoting that
significant information has been read), and the new digit is added to ten
times the previous partial item sum K to form a new partial item sum, and
the next character is read.

On reading "newline" or "end of card" it is ignored if NEW is true
(thereby permitting extra newlines between codewords), otherwise the item
sum K is assigned to element CW [I. J] of the codeword array, the
remaining elements (if any) of the codeword are put equal to zero, the code­
word serial number I is increased by 1 and the next codeword is sought.
This makes it unnecessary to incorporate extra zeros at the right-hand end of
a codeword merely to make the number of items up to seven.

On reading "comma", K is assigned to CW [I, J], the item nmnber J
is increased by 1, and the next item is sought.

On reading a right parenthesis (indicating that the preceding integer is
the entry codeword number K), control is transferred to Codeword Obey.

If the number of codewords exceeds 51 or if the number of elements in
a codeword exceeds 7 (NOTE: this will occur if the seventh item is followed
by a comma), an appropriate diagnostic message is printed, followed by the
messages LOAD MORE CODEWORDS IF AVAILABLE on the output and
HALTED:- 40 on the console typewriter. The computer then halts, permitting
the operator to load and execute a further Turbocode Master Program if
desired.

This latter sequence is also entered, after printing the message

- 15 -

BRICK n NOT AVAILABLE, if any non-existent brick (no. n) is called for.

A. 3. 2 Codeword Obey (See Flow Diagram in Fig. 7)

If this routine is entered from Codeword Input (at label OBEY), CHECK
is set to true or false according as Sense Switch 1 is on or off. The
elements of the codeword are then assigned to NEXT BRICK, A, B, C, D,
E, F respectively, and provided that the Brick Number NEXT BRICK is in
the range 1 to 40 inclusive, control is transferred by the switch designator
BRICK [NEXT BRICK] to the required Brick. Otherwise, the e r ror sequence
for non-existent Bricks described in A, 3. 1 above is entered. However,
Codeword Obey is normally entered after the previous Codeword has been
obeyed. At the entry print NORMAL (used when the codeword to be obeyed
follows immediately after that just obeyed), the current codeword serial
number K is increased by 1. At the entry point JUMP (used when item F
of the codeword just obeyed specifies a jump to a codeword other than the
one next in sequence), F is assigned to K. In either case, if the new value
of K is not in the range 0 < K < I, where (I - 1) is the serial number of the
last codeword, the illegal-program sequence is entered (see A. 3. 1 above):
otherwise. Codeword Obey is continued as on initial entry from Codeword
Input.

A. 3. 3 Er ror Tracing Facilities

A. 3. 3. 1 Trace Printing during Normal Running

At first entry to the Scheme at the start of a new Master Program, and
thereafter at every entry to Codeword Obey, the Boolean variable CHECK is
set to true or false according as Sense Switch 1 is currently ON or OFF -
the operator can change this setting at any time. While CHECK is true, at
every entry to each Brick, an abbreviated title of that Brick will be printed
out. This facility is very useful in tracing the course of a calculation,
especially when a program er ror is suspected, since the diagnostic facilities
built into the Algol compiler relate to the Algol source program - whose
details are not normally known to the user - rather than to the Turbocode
Scheme as such, and are therefore difficult to interpret unless the user is
thoroughly familiar with the details of the Scheme. However, such printing
naturally slows up the calculation very markedly, and so should be used
sparingly.

A. 3. 3. 2 Printing of Partial Results in the Event of Program
Failure

If a program stops unaccountably, or if it appears to have entered a
loop, the operator can halt the program, put Sense Switch 2 ON and
re-enter the Scheme from the beginning. This will cause the Boolean
variable SENSE to be set to t rue , resulting in entry to the penultimate
codeword of the Master program, which is assumed to correspond to Briok
31 (Station Vector Output). After obeying this codeword, the final codeword
is obeyed - assumed to correspond to Brick 32 (Engine Vector Output and
Station Vector Reset) - after which the program is halted with the message
HALTED:- 32 output to the console typewriter. At this point the operator

- 16 -

can suspend the program, the programmer now having a full printout of all
results calculated up to the point of failure, which helps to locate the e r ro r :
alternatively, the calculation of the next data point can be attempted.

A. 3. 4 Suppression of Station Vector Output

The output of the full Station Vectors is relatively time-consuming, and
frequently only the flow areas within the cycle are of interest. Provision
is therefore made within Brick 31 to suppress Station Vector Output, by use
of Sense Switch 3. The Boolean variable SUPPRESS is set to true or false
according as this sense switch is on or off: suppression occurs when
SUPPRESS is true , when Station Vector printing is restricted to the Station
Vector numbers and areas of these stations whose areas have been computed,
This facility can be switched on or off by the operator at any time.

- 17 -

Appendix 4 - Improvements in Certain Subroutines and Bricks

Since the original "Pegasus" version of the Scheme was developed over
a considerable period, and since a number of Subroutines and Bricks were
produced at short notice for particular problems, a considerable number of
storage- and time-consuming redundancies had crept into the coding. In
the course of re-coding the Scheme, the opportunity has been taken to elim­
inate these redendancies as far as possible. This has been done in three
main ways:-

A. 4. 1 Elimination of Superfluous Subroutines

In the transition from a low-level to a high level language, certain of
the Subroutines degenerated into single Algol statements, which no longer
justified writing them as separate procedures. The calls of these Subroutine
procedures have therefore been replaced by their single-statement procedure
bodies: the Subroutines thus eliminated are : -

Sl (calculates Ah from a. . t . and t ,)
in in out

S4 (calculates p j . / p • (isentropic) from o, , t . and t ,) ^ ^ out "̂ ^ in * ^ ' in m out

S7 (calculates V from W, p, t and A)

514 (calculates A from W, p, t and V)

515 (calculates W from p, t, V and A)

A. 4. 2 Rearrangement of Other Subroutines

In the earlier Scheme, Subroutines S l l (calculates critical p, t, V and
A from a, W, P and T), S12 (calculates supersonic p, t and V from a. W,
P, T and A) and S17 (as S12, but subsonic) formed a single sequence of
instructions with alternative entry points: S l l was used by both SI2 and S17
to check that the given area is not less than the critical area, in which case
no solution is possible and the given mass flow requires scaling down.

The block structure of Algol does not permit alternative entry points to
a given procedure body, but this difficulty has been circumvented by using
the single procedure Sl l 1217 (A, B, TYPE) in which the parameter A
specifies the relevant Station Vector, B specifies the highest numbered
Station Vector whose mass flow value requires scaling if the given area is
inadequate, and TYPE indicates whether the erstwhile S l l (TYPE = 0),
S12 (TYPE = +1) or S17 (TYPE = -1) is required. In addition. Brick 25
used S12 and S17 in circumstances in which the given area is known to
exceed the critical value, so that the S l l area check and associated mass
flow scaling is unnecessary. This is achieved by setting TYPE equal to
+2 for S12 and to -2 for S17.

The other alteration in this category is the introduction of a new
Subroutine called SIO (A, B, C), which solves the frictionless parallel-flow
momentum equation for two inlet streams (Station Vectors A and B) and a

- 18 -

single outlet stream (Station Vector C). If there is only a single inlet stream,
B is given a negative value (usually -1). The introduction of this Subroutine materially
shortens Bricks 5 (Mixing), 6 (Constant Pressure Heating with Fundamental
Pressure Loss) and 25 (Off-Design Convergent-Divergent Nozzle).

A. 4. 3 Grouping of Bricks with Common Features

A nunaber of Bricks perform closely similar tasks, and consequently
have a substantial part of their coding in common. Advantage was taken of
this in the original Scheme to use a common sequence of instructions for
Bricks 10 (Compression, given Temperature Rise) and 12 (Compression,
given Work Input). This process has now been carried further by including
Brick 2 (Compression, given Pressure Ratio) in the same group, and also
the rather unnecessary Brick 3 (Calculate Work Done). This reorganisation
has been carried out in such a manner that programs calling specifically for
Brick 3 can still be used, provided that the codeword for Brick 3 immediately
follows that for the associated Brick 2.

Pursuing this policy further. Bricks 8 (Optimum Convergent Nozzle) and
23 (Optimum Convergent-Divergent Nozzle) have been coalesced. Bricks 6
(Constant Pressure Heating with Fundamental Loss), 29 (Constant Pressure
Heating without Fundamental Loss) and 39 (Constant Volume Heating) have
also been combined, and since Bricks 6 and 29 were the only ones using
the Fxmction FUEL, its statements have been incorporated into the new
combined Brick, and it no longer exists as a separate Function.

- 19 -

Appendix 5 - Requirements for New Bricks

The structure of the Turbocode Scheme is such that it is a relatively
simple matter for anyone acquainted with Algol programming to write new
Bricks. In so doing, it is important to bear the following points in mind:-

1. The Codeword system described in Section 2 of the main body of the
Report must be rigidly adhered to. and as far as possible the standard
meanings of the various Codeword elements should be retained. Where
the Brick Data and Engine Vector requirements cannot be fitted into a
single Codeword. Brick 26 (Auxiliary Codeword Brick) can be employed
to provide extra Codeword elements, as is already done in the cases of
Bricks 27 and 34.

2. The available Global Variables, Functions and Subroutines are described
in Appendix 2.

3. A Brick should be written as a Block, bearing a label of the type Bn:
(where n must obviously be chosen from among the Brick Numbers not
already in use). This same label number must also be deleted from
those at the head of the Er ro r Sequence.

4. If all available spare Brick Numbers have been used up, further
numbers beyond 40 may be employed. In this case, the requisite extra
elements must be added to the switch BRICK at the start of the Scheme
and the statement

'IF' 'NEXT BRICK 'LE' 40 'AND' NEXT BRICK > 0 'THEN'
'GO TO' BRICK [NEXT BRICK] 'ELSE' 'GO TO' B7

in Codeword Obey must be amended accordingly.

5. To preserve the checking facility, the first statement of the Brick
should be

'IF' CHECK 'THEN' WRITE TEXT ('(' 2C') 'Bn')').

6. Normally, exit from a Brick is to the label NORMAL, but a jump exit
(to a Codeword specified by element f of the Codeword of the current
Brick) may be employed, exiting to the label JUMP.

20 -

Appendix 6 - Notes on the Flow Diag rams

The previous Repor t (ref. 1) did not give flow d i a g r a m s of the va r ious
e l emen t s of the Scheme. This omiss ion has now been remedied in
F igu re s 1 - 24.

The following points should be noted:-

1. The s t ruc tu re of ce r t a in p a r t s of the Scheme is so s imple that the
provis ion of flow d i a g r a m s for them is unnecessary . This applies to
the Functions SPHT, ENTH and PRES, the Subroutine S9 and the Br icks
1, 5, 9, 24, 26, 33 and 40.

2. In the In te res t s of brevi ty, the counting and tes t ing Operations associa ted
with for s t a t ements (except those incorporat ing while e lements) a r e not
given in full: instead the box enclosing the controlled s ta tement(s) shows
a path looping back to i ts ent ry point, annotated with the name and
range of va lues of the control led var iab le in the form I = 1 (1) 50.
In mos t c a s e s , a single exit path is shown from the box, which is
followed when the for l i s t is exhausted, but where a go to s ta tement
is included among the control led s t a t emen t s , two exit paths a r e given,
annotated "go to" and "exh" respec t ive ly .

3. As an aid to c r o s s - r e f e r e n c e s between the l ist ing and the flow d i ag rams ,
al l labels occur r ing a r e wr i t ten alongside the box to which they re fe r .

4. Since the Br icks al l use s i m i l a r sequences , controlled by the Boolean
va r i ab le CHECK, to act ivate t r a c e printing of the name of the Brick
concerned, th i s sequence is omitted from the flow d i a g r a m s .

5. S imi lar ly , many Br icks end by employing Subroutine S16 to calculate
s ta t ic conditions and a r e a from the total conditions, if the velocity is
given, or Subroutine S l l 1217 to calculate stat ic conditions and
(subsonic) velocity from the total conditions, if the a r e a is given.
This sequence i s a lso omitted from mos t of the flow d i ag rams .

6. The following abbrevia ted notation is employed:-

Notation in List ing Notation in Flow Diag rams

ALPHA [A] , XALPHA [A] a ^ , X o ^

W [A] , XW [A] W^, XW^

PSTATIC [A] , XPSTATIC [A] p ^ , X p ^

PTOTAL [A] , XPTOTAL [A] P ^ , X P ^

TSTATIC [A] , XTSTATIC [A] t ^ , X t^

TTOTAL [A] , XTTOTAL [A] T ^ , X T ^

- 21 -

Notation in List ing contd. Notation in Flow Diag rams contd.

VELOCITY [A] . XVELOCITY [A] V . . XV.
A A

AREA [A] . XAREA [A] A XA
A. A

GAMMA y

TWO GCJ 2g J
c

GC g
"^c

SPHT (ALPHA. T) C {a, t)

ENTH (ALPHA. T) h(a, t)

PRES (ALPHA, T) TT (a , t)

SQRT (X) JX

LN (X) log X

E X P (X) exp X

ABS (X) | x l

X t Y X ^

X * Y XxY

1400. 69 J

4633.056 144xgc

0.0685582 R / J

0.666808 R/144

2.54671 J /550

BRICK DATA [C] BD^^

ENGINE VECTOR [D] EV

- 22 -

Appendix 7 - Compilation and Execution Procedure for I. C. T. 1900 Series
Computers

A. 7. 1 Compilation

In the I. C. T. 1900 Series implementation of Algol, of which =#= XALP
is the paper tape version and =f^ XALM the magnetic tape version, compilation
occurs in two stages. In the first stage a conaplete program, or segments of
it, is read from punched cards (entry point 20) or from 8-channel punched
paper tape (entry point 21). If no e r ro r s are detected, a "semi-conapiled"
output tape is produced, followed by a "general purpose loader" tape. As
compilation proceeds, a full or abbreviated listing of the Algol program may
be output on a line printer or tape punch, in which each statement is allocated
a number. If a syntax e r ro r is detected, an appropriate diagnostic message
is output, immediately following the erroneous statement, while diagnostic
messages relating to semantic e r r o r s are output at the end of the input
phase. Once an e r ro r has been detected, compilation ceases, but the source
program continues to be read until twenty e r ro r s have been found; if this
should occur, the program is too much at fault to justify further compiler
action and the attempted compilation is abandoned. The listing terminates
with the symbol EC if compilation has been completed (preceded by a state­
ment of the core storage requirement), or with ZZ if an e r ror has been
found.

On successful completion of the first stage of compilation, the second
(consolidation) stage can take place. The general purpose loader is input,
followed by the senai-compiled tape(s) of the program and/or segments,
followed by the Algol l ibrary tape, frona which those procedures which the
program has called for are read. When this stage has been completed the
program is "consolidated" into a viable object program, and it is possible to
dump the entire object program on to paper tape or magnetics: it is obviously
desirable to produce such a "binary dump" for any program which is to be
used repeatedly, since much time and effort is thereby saved on program
input for subsequent runs.

Compilation from other source languages, such as Fortran, Extended
Mercury Autocode or PLAN, is carried out in a similar manner, and results
in semi-compiled output which is of the same form in all cases : thus, subject
to certain compatibility restrictions (see ref, 3). semi-compiled segments
originating in different source languages can be consolidated into a single
object program,

In the case of Turbocode, only the binary dump version is normally
used for day-to-day running, A master source program is maintained on
punched cards, however, and in the event of any alteration or addition to the
Scheme cards are altered, added or removed and a new compilation is made.
Where segmentation is employed, those segments which have not been altered
can be retained in semi-compiled form, and incorporated with the new
material during the consolidation stage.

- 23 -

A. 7. 2 - Execution

Once consolidation has taken p l ace , o r the b inary dump v e r s i o n of a
p r o g r a m has been loaded, the method of execution i s the s ame r e g a r d l e s s of
the or ig ina l source language: the ope ra to r types the m e s s a g e GO "jf^ (P r o g r a m
Name) (Number) to ini t iate progrema execution at the en t ry point designated by
the Number . In Turbocode, the P r o g r a m Name is R 001, and the n o r m a l
en t ry point number is 20, causing the p r o g r a m to be obeyed from the s t a r t .
If a run stops in the middle of the p r o g r a m for any r eason , a s i m i l a r m e s s a g e
omitt ing the ent ry point number c a u s e s the p r o g r a m to continue from the point
at which it stopped.

In in t e rp re t ing the following opera t ing ins t ruc t ions for Turbocode, it i s
n e c e s s a r y to r e m e m b e r that

a) the M a s t e r P r o g r a m is viewed by the Scheme as a spec ies of data;

b) the M a s t e r P r o g r a m mus t have a t i t le , t e rmina t ed by the s t r ing £ $;

c) the Data p r o p e r m u s t follow the M a s t e r P r o g r a m , and mus t have a
t i t le , t e rmina t ed by £ $;

d) every tape m u s t t e rmina t e with the TC (End of Tape) c h a r a c t e r , to

cause input to stop. If c a r d s a r e used, input will stop automat ical ly
when the c a r d pack is exhausted.

In o r d e r to simplify the input p r o c e s s , and bear ing in mind that a
Mas t e r P r o g r a m cons i s t s of 51 s even -e l emen t codewords at mos t , it has been
foimd des i r ab l e to punch a copy of the M a s t e r P r o g r a m , with i ts t i t l e , at the
head of each Data tape .

A. 7. 3 - Operat ing Ins t ruc t ions for the Turbocode Scheme

A. Norma l Operat ion, o r if Computer Stops "HALTED:- E E " (Execution
E r r o r)

If s e v e r a l M a s t e r P r o g r a m / D a t a Tapes a r e to be p r o c e s s e d during the
s a m e run , the compute r mus t always be r e s t a r t e d from the beginning of the
Scheme.

B. If Computer Stops "HALTED:- 40" (due to excess ive number of
Codewords , excess ive number of e lements in a Codeword, o r to a
ca l l for a Non-Exis tent Brick)

Load next M a s t e r P r o g r a m / D a t a Tape and proceed as at A above.

C. If a Loop Stop or o ther F a i l u r e o c c u r s , not leading to "HALTED:- E E "
o r "HALTED:- 40"

(1) Stop Computer

(2) Put Sense Switch 2 on to act ivate specia l diagnost ic pr int ing

- 24 -

(see Appendix 3, Section A. 3. 3. 2)

(3) R e s t a r t computer from the beginning of the Scheme without
moving the Data Tape.

(4) When diagnost ic print ing ends with "HALTED:- 32", put Sense
Switch 2 off.

(5) Load next M a s t e r P r o g r a m / D a t a Tape and proceed as at A
above.

D. To Pick up in the Middle of a Data Tape

(1) R e s t a r t computer from the beginning of the Scheme

(2) As soon as output s t a r t s , s top computer

(3) Move tape along to des i r ed point

(4) R e s t a r t computer from the point of in ter rupt ion of the Scheme

E. Other Sense Switch Sett ings

These a r e used only when specif ical ly called for : -

(1) Sense Switch 1 c a u s e s spec ia l t r a c e pr int ing while on
(see Appendix 3, Section A. 3. 3. 1).

(2) Sense Switch 3 s u p p r e s s e s mos t of the Station Vector output
while on (see Appendix 3, Section A. 3. 4).

ENTHALPY = h (ö , t,) + DELTAH
in

TEST = 0.0001 X ENTHALPY

t , = ENTHALPY/C (a, t.)
out P in

HCALC = h (a , t J
out

HCALC-ENTHALPY > TEST?

^' yes

no

t , = t ^ - (HCALC-ENTHALPY)/C (« , t J
out out ' ' p ' ' out

(oUTJ

FIGURE 1 - Subroutine S2 (Find T e m p e r a t u r e from Enthalpy Change)

P I 2 = TK». t ^) X RATIO

TEST = 0.0001 X P I 2

t , = 1000 X (P I2)^ / ' ^ ^ '^p^' ' - W
out

PICALC = n(a. t^^^)

P ICALC-PI2I > TEST?
no

N/yes

t ^ = t V [1 - R / J X C^(a , t _ .)
out out ^ ' p out

X (1 - P12 /PICALC)]

(OUTJ

FIGURE 2 - Subroutine S5 (Find T e m p e r a t u r e from Isentropic P r e s s u r e Ratio)

yes
- / B < o?

/ no

«C ^ " A

W^ = W ^

^C = "^A

^ C = ^ A

K = L = 0

W^ = W ^ + W 3

^ c = ^ A ^ ^ B

PC = ^^^±1^ , ^B X ''B
1 + a,

FC

1 + a ,

' C Wj, - FC

HC =
^A^ > ^ < ° A - V ^ ^ B X ^ ' ' " B - V

DELTAH = HC - h (o T^)

S2 ca lcula tes T^

K = Pg X A g

L = Wg X V 3

TERM 1 =

TERM 2 =

P ^ X A ^ + K W^ X V ^ + L

144 X g^ X A ^

W,

144 X g^ X A ^

V^ = 1000

AGAIN-. VC = V ,

DELTAH = -VC / 2 g J ' c

S2 ca lcu la tes t .

p = TERM 1 - TERM 2 X VC

V^ = R X Wj, X tj^/(144 X Pj , X A^)

yes
<< VC V I > 0. 0001 X VC? P ^ = Pj, X ^(a^.T^)/n(a^.t^) - ^—(OUT

FIGURE 3 - Subroutine 10 (Solve Momentum Equation for F r i c t i on l e s s P a r a l l e l Flow)

S2 calculates t ,

PA = ^A^ '^<VV/'^(VV

yes \ A V. = O?

no

^A ^ ̂ ^ "̂ A ^ V^^^^ ^ PA ^ ̂ Â

OUT

FIGURE 4 - Subroutine S16 (Find Static Conditions and Area.

given Total Conditions and Velocity)

FUEL = a,

ENTHALPY = h(FUEL, T ,

I T Y P E I = 2? y» y e s > (B B) (Fig. 5b)

T = T . - 0 .01
A

VSQ = 2g Jx (ENTHALPY -h (FUEL. T »

C = C (FUEL, T)
P P

y = Cp/ (Cp - R / j)

ASQ = g X T X R X T

TCALC = T

T = T - (VSQ - ASQ) X 2/(2g J X C X (->-+ 1))
c p

_y < x l v S Q - A S Q I > 0.0001 X V S Q ?
yes X L_

no

p = P ^ X 5r(PUEL, TCALC)/)r(FUEL. T^)

V^ = JVSQ

CALCAREA = R X W ^ X TCALC/(144 X p ^ X V^)

<^TYPE = Q?)>Ho > (A A J (Fig. 5b)

I yes

FIGURE 5a - Subroutine S111217 (Find Cr i t i ca l Conditions a n d / o r

ERROR:

JUMP:

AA) (Fig. 5a) (Fig. 5a)

-̂ —< A < CALCAREA ?

yes no

XWQ= W Q = W Q X 0. 999X A^/CALCAREA

XAo = Ao=-l

^L= -1

T

L = 1(1)B

WRITE TEXT ('AREA <CRITICAL
IN BRICïO

PRINT (NEXTBRICK)

TOUT j

SKIP: CONST = R X W^ X 7r(FUEL, T ^) /

I

A

'A

144 X P ,

TEST = 0.0001 X A,

<
TYPE < 0 ?

y e s

T = T . - 0 .01 A T = 200

VSQ = 2g J X (ENTHALPY -h (FUEL, T))

C = C (FUEL, T)
P P

T = C p / (C p - R / j)

CALCAREA = CONST X T/(;r(FUEL, T) X

,/VSQ

TCALC = T

T = T - (1 - A y CALCAREA)/(J X C X

(g^/VSQ - 1 / (Y X R X T)))

y ^
I CALCAREA - A . I > TEST ? \

/

^'no

p ^ = P ^ X 7r(FUEL, TCALC)/ r r (FUEL,T^)

t . = TCALC

V^= 7VSQ

FIGURE 5b - Subroutine S111217 (contd.)

INPUT:
">

B7: :B28:

1 i
FIRST = t rue

NEWLINE (5)

COPYTEXT ('£$ ')

I = 0(1)50
^

WRITE TEXT ('BRICK')

PRINT (NEXTBRICK)

WRITE TEXT ('NOT AVAILABLE')

NEW = t rue

J = 0(1)6

^

exh

K = 0
I WRITE TEXT ('TOO MANY
[_ CODEWORDS LOADED')

e x n \ ^

AGAIN: S = READCH

T = 0(1)12

WRITE TEXT ('CODEWORD
TOO LONG')

\/

\/

NEXTPROGRAMME:

S = C D [T] ? > - g -

WRITE TEXT ('LOAD MORE
CODEWORDS I F AVAILABLE')

/ ^ / \ / i

exh, no

DIGIT:

•t omma

COMMA:
newline

CW [I, J] = K EL^X^NEW = t r u e ? ^ OBEY:

no
CW [I, J] = K

II = J + 1(1)6

CW [i , n] = 0

NOMORE:

exh

FIGURE 6 - Codeword Input, with E r r o r Sequence

lOUT)

J U M P : NORMAL: B40: (^m)
v_y

K = F

COMMON: < K ^ I ? >

OBEY: <

1 no

K < 0 ?

no

CHECK = TEST (1)

NEXTBRICK = CW [K, 0]

A = CW [K, 1]

B = CW [K, 2]

C = CW [K, 3]

D = CW [K , 4]

E = CW [K, 5]

F = CW [K, 6]

• ^

NEXTBRICK ^ 40 ?
>

yes

yes

NEXTPROGRAMME: (OUT

yes no

<^ NEXTBRICK > 0 ? ^

\ ^ ^ ^ y e s no

BRICK [NEXTBRICK]: ^ f O U T j B7:

v-y

B28: foUTJ

FIGURE 7 - Codeword Obey

B2: BIO: B12:

" B ^ ' ^ A

W B = ^ A

/ NEXTBRICK = 2 ? \

yes no

P B = ^A >< ^ ° C
/ NEXTBRICK = 10 ?N ^

yes

S5 calculates T.,

LAST:

no

'^B = ^ A ^ ^ ° C

EFFICIENCY = BD C+1

S2 calculates T B

EFFICIENCY = BD,

X
EFFICIENCY

S16 calculates p ^ . t ^ and A^ if Vg is given.

or S111217 calculates p , t and V (subsonic)

if A^ Is given
X3

B3: I N H ^ CW [K + 1. 0] = 3?

no yes

EVj3 = W ^ x l M a ^ . T g) -Ha^.T^)]

NORMAL:

FIGURE 8 - Bricks 2. 10 and 12 (Compression) and 3 (Work Done)

B4: IN

'̂ B = ' ' A

^ B = ^ A

DELTAH = - (E V g + BD^^)/W^

S2 ca lcu la tes T
B

DELTAH = D E L T A H / B D ^ ^ ^

S2 ca lcu la tes TB (isentropic)

P „ = P . X
^(a^. TB)

B A '^(a^.Ty

OUT

FIGURE 9 - Br ick 4 (Single Turbine)

B6: B29: B39:

DUM = h (a ^ . T g) - h (o ^ , T ^

ECV = LCV + h(0, T) / a - h(a T) X (1 + l / « _)
B " " S S' B '

< NEXTBRICK = 39 ? L>
yes 1 no

I D U M = DUM - (T „ - T .) X R / J 1
A 1

ECV = ECV + T g X R / J

1 /
|Q2 = DUM/ECV 1

ttg = a ^ + Q2 X (1 + a^)

F = W ^ X . ^ / (B D ^ X (1 + « y

E V „ = 3600 X F

W g = W ^ + F

\ '

<(NEXTBRICK = 6 T~)> ?-

i no yes

-,î <̂ NEXTBRICK = 29 ^
y e s I

A) (Fig. 10b)

no

^ B = ^ A >< ^ B / ' ^ A

X ^ B > " ^ >
yes

no

S111217 ca lcu la tes PT:,,t_ and V^ (subsonic)
B B a

NORMAL: l O U T

FIGURE 10a - Br i cks 6, 29 and 39 (Heating)

(Fig. 10a)

CHOKING:

CALCCRIT:
"f

yes

^ B = ^ A

IMPULSE = P ^ + W^ X V y (1 4 4 X g^ X A^)

t = T
^B A

y = Cp/ (Cp - R / j)

p = IMPULSE/(1 + y)

V „ = R X W ^ X t „ / (1 4 4 X p „ X A_,)
B B

S9 ca lcu la tes MB

810 ca lcu la tes SV

NORMAL: (oUTJ

-/

S O N l C j x ^ t g > 1850 ? \

/ ^ e s ^' no

DELTAH = V ^ / 2 g J
Jj c

<>

S2 ca lcu la tes TSTAR

f

/ T S T A R > T ? \

yes no

WRITE TEXT (THERMAL CHOKING)

J U M P : OUT

FIGURE 10b - Br i cks 6, 29 and 39 (contd.)

B 8 : B23 : (IN

1

CONDI:
— > —

P A < P O ^

N = B

" N '- " A

^ N ^ ^ A

P = P
N A

^ N ^ ' ^ A

yes

WRITE TEXT (JET VELOCITY IMAGINARY)

1~
/'

JUMP: (OUTJ

< N > B ?

yes

S5 ca lcu la tes t^

Vg - J2g^J X(h(«3.T3)

S9 ca lcu la tes MB

NEXTBRICK = 8 7

yes

MB > 1 ?

P B = Po

CALCEXIT:

V = *B

^ N = VB

^ N = ^ B

CHOKED: S l l ca lcu la tes c r i t i c a l

P B ' * B ' ^ B ^"'^ ^ B

A g = R X W g X t g / (1 4 4 X Pg X Vg)

I FINISH:

yes

NEXTBRICK = 8 ?)>

1' I

^B = ^ B / ^ ° C

EV. J, = BD^. ^ ^ X (W3 X V g / g ^ +

144 X A g X (P3 - p^))

<^ NEXTBRICK = 8 ? ^ ?-

10 yes

y e s

N = B + 1

f

MB > 1 ?

s no
> PRINT (N)

WKllH; TiL

*• 1

- IGNORE STATION) ^

FIGURE 11 - B r i c k s 8 (Convergent Nozzle) and

23 Con-Di Nozzle)

B15:

NEWLINE (5)

TIMENOW

NEWLINE (5)

X FIRST = t rue ?

1 = 0(1)20

>
yes

a , = W. = p, = P . =
i l i l

t^ = T^ = V^ = A j = -1

3^ exh

COPYTEXT (£$)

FIRST = false

READSTATION: STATION = READ

STATION = -1 ? >

NUMBER = READ

NUMBER
. =0 a,= READ

Wj= READ

p,= READ

Pj= READ

tj= READ

- -V Tj= READ

Vj= READ

yes

ex

-'
f-

X . ^ = a^

XW = w

Xp^ = Xpj

XP^ = P j

xt̂ = \

XTj = T '

xv^ = v̂

XA^ = A^

h \

>

i = 0(1)20

NORMAL:

Aj= READ

(oUTJ

* Note: "STATION" is denoted by
" j " when used a s a suffix

FIGURE 12 - Br ick 15 (Station Vector Input)

B16:

START: NUMBER = READ

<
NUMBER = -1 ? >

no yes v '

BRICKDATA [NUMBER] = READ

-«r-

NORMAL:

FIGURE 13 - Brick 16 (Engine Vector Input)

B22:

/

"ü^

e ^ O ? V -

yes

C ^ 8 ? ~ \

yes

EVTIMESEV: EVj3 = E V ^ X E V g

EVDIVEV; E V ^ = E V .
D A / ^ ^ B (^

EVPLUSEV: E V ^ ^ E V ^ h E V g ^

EVMINUSEV: ^

MINUSEV;

BDTOEV:

EVTOBD:

EVTOSV:

BV^ - E V ^ - E V g ->

E V ^ = - E V ,
D A

SVTOEV: 7 >

WRITE TEXT (WRONG VALUE ï'OR
C IN CODEWORD)

PRINT (K)

NEXTPROGRAMME: foUTJ

' EO:
>̂

B =

^^D = "A

^^^ M^^D^^AM

E2: ^^D = PA

E3: ^^D = ̂ A H

E4: ^^D - *A

E5: ^^D = ̂ A H

E6: 6
^^D = ̂ A M

I' /^

NORMAL

8

SO:;, O -̂ A = ̂ ^D ->

SI: ^A = ̂ ^D

S2; , PA = ̂ ^D -̂

S3: ^A = ̂ ^D

^̂ > ' V - ^%

S5: ̂ 5 ̂ A = E^D

S6: ̂ 6 ̂ A-^^D

S7: ^A = ̂ ^D

NORMAL:

FIGURE 14 - Br ick 22 (Ari thmetic on Engine Vector .

Station Vec to r s and Br ick Data)

B25: (IN

\ A ^0 '

no yes

RATIOGIVEN = false

" B + I ^ ' ^ A

W = w
^ B + 1 A
P = P

B -I- 1 A
T = T

B + 1 A

WRITE TEXT (JET VELOCITY
IMAGINARY)

JUMP:

S111217 ca lcu la tes p ^ , t ^ & V ^

(cri t ical)

^ B + l < « ^

y e s no

RATIOGIVEN = t rue

^B + 1 = V ^ ° C

t

A B > A g ^ ^ ?

yes

S l l 1217 ca lcu la tes p „ ^ . ,

*B + 1 *̂ ^ B + 1 (^^bsonic)

WRITE TEXT (GIVEN EXIT AREA <

REQUIRED THROAT AREA)

JUMP: OUT

WRITE TEXT (GIVEN AREA REQUIRES
EXIT PRESSURE BELOW AMBIENT)

SI 11217 ca lcula tes

^B+l 'Wl^ '̂ B+l
(supersonic)

(Fig. 15b)

JUMP: m U T j B j (Fig, 15b)

FIGURE 15a - Brick 25 (Off-Design Convergent-

Divergent Nozzle)

(V)(Fig. 15a)

SlO ca lcu la tes SV
B + 2 SUBSONIC:

@ (F i g . 15a)

P B + 1 = Po

\ .
P B + 2 ^ P 0 •

^' no yes

P B + 2 = Po

A B P l = A,
B + 1

TEST -• 0. 0001 X A B P l

^B + I = T B - M / ^ - « 3

SHOCKINDIV: DELTAH = h (a 3 ^ ^ . Tg^^)

V B + 1 = j 2 g ^ J X DELTAH

^ B + 1 = ^ X Wg^^ X W i / B+1'

(144 X Pg^^ X Vg^^)

± S5 ca lcula tes t
B + 1

D E L T A H = h (a 3 ^ ^ . T g ^ ^) -

^ (' ^ B + r ^ B + i)

V „ , = 7 2g J X DELTAH
t> + i ' c

^ B + l = ï ^ X W B . . l X t B + l /

(1 4 4 X p 3 ^ ^ X V g ^ ^)

^ B = ^ B + l X ^ ° C

S111217 ca lcula tes p _ . t „
D B

& V (subsonic)

A.„^ , - A B P l I > TEST ?
rJ+J. no

y e s

V l = "^B+l - (^B+l - W l) "^ (S+l/ABPl)2 N ' '

P B + 1 = P B + 1 ^ '^(«'B+r'^B+l^/ '^^'^B+l'^B+l)

FINISH: ^B+l=^B+l /^°C+l

^ ^ D = (^B+1 "" ^ B + l / ^ c - 1^^ X ^B+1 ^ (P B + 1 " PQ^

X BDc+2

NORMAL: m U T j

FIGURE 15b - Brick 25 (continued)

B27: IN

FUEL - « 3 ^ ^ = « B = «A

^ B + 1 == ^ B = ^ A

P B + 1 = P A

S5 ca lcu la tes T S B P l

D E L T A l = h (FUEL, TSBPl) - h (FUEL, T .)

DELTA2 V2g J
B+1 • "c

DELTA3 = DELTAl + DELTA2

DELTA4 = DELTA3 X BD
C+1

2: S2 ca lcula tes T D B P l

3 P = PR4.1 X 7r(FUEL, TDBPl)/TT (FUEL, TSBPl)
B+1 ^B+1

2: S2 ca lcu la tes T B+1

± S16 ca lcu la tes P g + ^ . t g ^ ^ & A ^ ^ ^

< 'BB = 1 ? > -

no •-'
yes

DELTA7 = E V „ + BD^
E C

<^BB = 2 ? ^

no

yes

DELTA7 = 0

DELTA5 = -(EV^g + BD^^)/W^

DELTA6 = DELTA5/BD^^^^

±

WRITE TEXT (INCORRECT
TURBINE TYPE NUMBER)

NEXTPROGRAMME:

S2 ca lcula tes T ,

3 P g = P ^ X 7r(FUEL, Tg) /7r (FUEL, T^)

(Fig. 16b)

FIGURE 16a - Brick 27 (Two Turb ines in Ser ies)

(T\ (Fig. 16a)

+
32 calcxüates T B

< ^ B < » ^ >
no

yes

S16 calculates p„ , t ^ & A^

DELTA8 = DELTAS - DELTA4

DELTA9 = DELTA8 X W ^

DELTAO = DELTA9 - DELTA7

EV^^ = - DELTA5/T

EVj^ = DELTAS/Tg

EV = DELTAO X J/550

NORMAL:

S111217 calculates

P B ' * B ^ ^B

(subsonic)

FIGURE* 16b - Brick 27 (continued)

B30:

WPSNK:

< " W ^ > O ?
- ^es

no
< PA > ° ^ >

S2 calculates t
A

P A - ^ A X ' ^ ^ V V /

W ^ = 1 4 4 X p ^ X A ^ X W y

(RX tA)

-.'

ALLCALC;

yes

PSK:
i
WA = 1 4 4 X p ^ X A ^ X V ^ /

(R X tA) 1

W K : < ^ p ^ > 0 ? \ ^

'yes

< A , >0 ?
N

WPSK: v^ = o?
•y no

A^ = R X W ^ X t ^ /

(144 X p ^ X V^)

PSAK:

S2 calculates T,

X

yes

/ ^ = R X W ^ X t ^ /

(144 X p ^ X A^)

A p ^ X 7 r (a ^ . T ^) /

7r(a^,t^)

<5r>ö^

PSANK:

>
yes

no

S16 calculates

P A ' ^ A ^ ^ A

S111217 calculates

P A ' ^ A ^ ^ A

NORMAL:

FIGURE 17 - Brick 30 (Filllng-in Station Vector)

B31:

SUPPRESS = TEST(3)

<^ SUPPRESS = t r u e ? \

no

yes

WRITE TEXT ("5C'STATION '2C')

J = 0

I = A(1)B

WRITE TEXT ("5C"2S'STATION PTOTAL')

» < J :»5 ? ^ - ^

no
yes

NEWLINE(l)

J = 0

- < v ^
no -' yes

PRINT(l)

SPACE(3)

PRINT (A^)

J = J+1

NORMAL:

I = A(1)B

—> NEWLlNE(l)

SPACE(3)

PRINT (I)

SPACE(3)

PRINT (Oj)

SPACE(6)

PRINT (W)

SPACE(6)

PRINT (pj)

SPACE(6)

PRINT(P)

exh

WRITE TEXT ("2C"2S'STATION AREA')

I = A(1)B NEWLINE(l)

SPACE(3)

PRINT(I)

SPACE(3)

PRINT (t)

SPACE(7)

PRINT(T)

SPACE(6)

PRINT(V)

SPACE(6)

PRINT(Aj)

^/

exh

NORMAL :

FIGURE 18 - Br ick 31 (Station Vector Output)

J = C(1)D

^

SAME:

yes

J = A(1)B

>—

B32:

JUMP:

WRITE TEXT ("5C"2S 'ENGINE VECTOR'2C")

IK = 0

PRINT(EV)
J

IK = lK+1

IK < 4 ?

no

NEWLINE(2)

IK = 0

exh

« J =

^ =

PJ =

P j =

*J = ^

^J =

V j =

^J =

^ " J 1
XW 1

1
^ P j

^ P j

"'J

^'^J

^ ^ J

^ ^ J

exh

SENSE = t rue ?

yes

PAUSE(32)

V

OUT

no

FIGURE 19 - Brick 32 (Engine Vector Output and

Station Vector Rese t

B34:

'^B+l = '^B

W W,
B+1 " B

RATIO = p ^ / P g

S2 ca lcu la tes TSIDEAL

n
D E L T A l = h(a TSIDEAL) - h (a ^ , T „)

B

DELTATS = Vg^ /2g J

DELTA2 = DELTAl + DELTATS

B'

S2 ca lcu la tes TTIDEAL

RATIO = «(ttg, TTIDEAL)/7r(ag, Tg)

P ^ ,, = P B X RATIO
B+1

DELTA3 = DELTA2 X BD
E+1

S2 ca lcu la tes T
B+1

31 DELTACOMP = - W „ X DELTAS - BD„
B E

S16 ca lcu la tes p ^ ^ ^ , t^^^ & A^^^

LAMDAB = BD^ X EV /DELTACOMP

<^LAMDAB > 1 ? ^

yes
no

LAMDAB < O ?
>

yes
-' no

0 (Fig. 20b) WRITE TEXT (BYPASS RATIO OUTSIDE
LIMITS)

J U M P :

FIGURE 20a - Brick 34 (Find Bypass Ratio)

(Fig. 20a)

n = AA(1)B-1

NORMAL:

LAMDAA = 1-LAMDAB

EV = LAMDAA/LAMDAB

^ ^ D D + l = - D E L T A 3 / T g

RATIO = LAMDAB/BD

W
II

W X RATIO

A =A X RATIO

exh

E V g g = E V g g X RATIO

RATIO = LAMDAA/BD

EV = EV EE ^EE

CC

X RATIO

W^ = W . X RATIO
A A

A , = A« X RATIO
A A

BD = LAMDAA

BD = LAMDAB

(OUT)

FIGURE 20b Br ick 34 (continued)

B35: IN

TA = (BD^^ + E V g) / (W ^ X BD^^^)

<^ | T ^ - TA U 0. 0001 X TA ? > > .

no

T^ = XT^ = TA
A A

yes

NORMAL:

J U M P : OUT

foUTJ

FIGURE 21 - Br ick 35 (Find Turbojet Turbine
E n t r y T e m p e r a t u r e)

NN = 1(1)B

B36:

lA^ - BD^l < 0.0001 X BD_, ?

y e s
N'no

X W Q = W ^ = W Q X B D ^ / A ^

XA„ = A „ = -1
0 0

'<
^Z±-

- ^

^NN = -'

J U M P :

exh

FIGURE 22 - Br ick 36 (Find Turbojet Inlet
M a s s Flow)

NORMAL: OUT

B37:

**A+1 = " A

W = W
" ' A + 1 " ' A

^A+1 " ^ A

^ A + l = ^ ° C >< ^A • • ^°C+1

r

^^0+3 < ° ^
no

yes

DELTAH = BD X[h(a T) - h (a ^ , T^)]

S2 ca lcu la t e s T
A+1

T = T
B+1 B

I no

y e s

S111217 ca lcu la tes P« , i . t . , , & V
(subsonic) A+1 ^+^ ^^^

NORMAL:

FIGURE 23 - Br ick 37 (Heat Exchanger - Cold Side)

<C'^B - T B J > 0. 0001 X Tg ? ~ ^
I yes

no

BD C+1 -BD C+1

" B + I ^ ' ' B

^ B + l = ^ B

^B+1 = ^ B

^B+l = ^°C+1 "" ^B - ^°C+2

DELTAH = W^ x { h (a ^ , T ^) - h(or^, T^^^)]

S2 calculates T B+1

<c B+1
> O ? \ ^

no
yes

JUMP: TOUT j

SI 11217 calculates P B + I ' * B + 1 ^ ^B+1 (subsonic)

NORMAL:

FIGURE 24 - Brick 38 (Heat Exchanger - Hot Side)

0 9 / 0 7 / 6 8 14 /S1 /0«

fiO «XA IP 21
' L I S T ' (I P)
• P R 0 6 R A H ' (R O O D
' I N P U T ' 1»TR0
•OUTPUT' 2 * I P 0

' B E G I N ' ' R E A L ' TWOGCJ.GC.R>CONST.LCV>QS:
' I N T E G E R ' I , K , N E X T B R I C K , A , B / C , D . E , F . A A , B B , C C . D D > E E ;
'ARRAY' ALPHA,XALPHA.W,XW,PSTATIC,XPSTATIC,PTOTAL,XPTOTAL,TSTATIC.
XTSTATIC,TTOTAL,XTTOTAL,VELOCITY,XVELOCITY,AREA,XAREAtO:20),
BRICKDATA(0:100],Al,A2,C1,C2[2:S],01,02(2:6],ENGINEVECTORCO:50};
•INTEGER' 'ARRAY' CW(O:50,O:63, C0[0:12];
'BOOLEAN' FIRST,CHECK,SENSE;
' SWITCH' BRICK:=B1,B2,B3,B4,BS,B6,B7,B8,B9,B10,B11.B12,B13,Bn.B1S>
B16.B17,B18,B19,B20,B21,B22,B23,B24,B2S,B26,B27,628,B29,B30,B31,
B32,B33,B34,B3S,B36,B37,638,839,840;

'PROCEDURE' D A T E N O W ;

' E X T E R N A L ' ;

'PROCEDURE' TIHENOW;
•EXTERNAL';

'BOOLEAN' 'PROCEDURE' TEST(X):
'VALUE' x;
•INTEGER' X;
'EXTERNAL';

'COMHENT'****»*THE REAL PROCEDURES USE A FOURTH ORDER POLYNOMIAL
APPROXIMATION FOR CP AS A FUNCTION OF T.AND DERIVATIONS FROM
THIS FOR ENTHALPY AND TEMP. DEPENDENT ENTROPY.COEF F IC1ENTS
FOR THE POLYNOMIAL AND ITS DERIVATIONS ARE STORED AS A1,A2,
FOR CP,D1.D2 FOR H AND C1,C2 FOR JSO/R,WHERE 1 REFERS TO
AIR AND 2 TO THE DIFFERENCE BETWEEN VALUES FOR AIR AND
STOICHIOMETRIC PRODUCTS,WHICH ARE PREHULTI PL I ED BY (1+QS)/QS
WHERE OS=STOICHIOHETRIC FUEL/AIR RATIO******:

•REAL' 'PROCEDURE' SPHT(e,T);
'VALUE' O,T;
'REAL' 9,T;

'BEGIN' • C 0 H M E N T ' * * * * * * S P H T (Q , T) CALCULATES AS SPHT THE CP OF A
MIXTURE FUEL/AIR RATIO 0 AT TEMPERATURE T******;
'REAL' CPA.CPD.X;

'INTEGER' I:
X:«(T-1100.0>/900.0:
CPA:=0.01455924;
CPD:«-0.072127082:
'FOR' I:=2 'STEP' 1 "UNTIL" 5 '00'

•BEGIN' CPA:=CPA*X*A1tn;
CPD:=CP0*X*A2(n
'END' :

SPHT:=CPA*0/(1.0+Q>*CPD
•END^ S P H T ;

'REAL' 'PROCEDURE' ENTH(Q,T);
'VALUE' Q , T ;
•REAL' 0,T;

'BEGIN' •COHMENT'******ENTH(Q.T) CALCULATES AS ENTH THE ENTHALPY OF
A MIXTURE FUEL/AIR RATIO Q AT TEHP. T******!
'REAL' HA ,HD,X;
'INTEGER' l:
X:=<T-1100.0)/900.0;
HA:=2.62066319;
H0:=-12.9828749;
'FOR' I:=2 'STEP' 1 'UNTIL' 6 'DO'

'BEGIN' HA:=KA*X + Dlf n ;
HD:=HD*Xt02tIl
'END';

ENTH:=HAtQ/(1.OtQ)*HD
'END' E N T H ;

'REAL' 'PROCEDURE' PRES(Q,T);
•VALUE' Q , T ;
'REAL' <J,T;

'BEGIN' ' C 0 M H E N T ' * * * * * * P R E S < 0 , T) CALCULATES AS PRES THE P! FUNCTION
(«ÏXP(JS0/R)) OF A MIXTURE FUEL/AIR RATIO 0 AT TEHP. T****;
'REAL' SOA,SOD.X;
'INTEGER' l:
X:»(T-1100.0)/900.0:
SOA:=0.053096219;
500:^-0.263040882;
'FOR' I:=2 'STEP' 1 'UNTIL' 5 '00'

•BEGIN' S0A:=S0A»X*C1Cn;
S0D:=S00*X + C2[n
'END';

S0A:=S0A+3.56639099*LN(T);
S00:=S0D-0.785475254*LN(T>;
PRES:=EXP<SOA+e/<1.0*a>*SOC>
•END' PRES;

•PROCEDURE^ S2(ALPHA,TIN,DELTAH,TOUT);
•VALUE' ALPHA,TIN,DELTAH;
'REAL' ALPHA,TIN,DELTAH,TOUT;

'BEGIN' 'C0MMENT'******S2,WHERE DELTAH IS ADDED BETWEEN TIN AND
TOUT,CALCULATES TOUT,GIVEN ALPHA,TIN,OELTAH******;
'REAL' ENTHALPY,HCALC,TEST;
E N T H A L P Y : ' E N T H (A L P H A . T I N > * D E L T A H ;
T E S T : = 0 . 0 0 0 1 * E N T H A L P Y ;
TOUT:=ENTHALPY/SPHT<ALPHA,TIN);
'FOR'' H C A L C : = E N T H (A L P H A , T 0 U T) 'WHILE' ABS (HCALC-ENTMALP¥)>TEST *00"
TOUT:«TOUT-(HCALC-ENTHALPY)/SPHT(ALPHA.TOUT)

•END' S2;

• PROCEDURE• S5<AIPHA,RATI0,T0UT.TIN);
•VALUE' ALPHA,RATIO,TIN:
'REAL' ALPHA,RATIO,TOUT,TIN;

'BEGIN' 'COMMENT'******SS.GIVEN ALPHA.RATI0(<P2I0EAL/P1) AND TIN
CALCULATES TOUT FOR ISENTROPIC PROCESS******;
'REAL' PI2,TEST,PICALC;
PI2:»PRES(ALPHA,TIN)*RATI0;
TEST:=0.0001*PI2;
TOUT:=1000.0*PI2t(0.0685582/SPHT<ALPHA,TIN));
•FOR' PICALC:=PRES(ALPHA,TOUT> •WHILE' ABS(PICALC-PI2)>TEST •DO'
TOUT;'TOUT*(1 .0-<0.0685582/SPHT(ALPHA.TOUT))*(1.0-P12/PICALC))
'END' S5;

•PROCEDURE' S9(A,MA);
'VALUE' A;
'REAL' MA;
'INTEGER' A;

'BEGIN' ' C 0 M M E N T ' * * * * * S 9 GIVEN A IF ALPHA(
AREKNOWN,CALCULATES THE MACH NUMBER (MA)**
'REAL' CPT,GAMMA;
CPT:»SPHT(ALPHA(A],TSTATICtA]);
GAMMA;»CPT/(CPT-0.0685582):
MA:=VEL0CITYCA]/S8RT(3089.36*6AMMA*TSTATIC
'END' S9;

'PROCEDURE' S10(A,B,C);
'VALUE' A,B,C:
•INTEGER' A,B,C;

'BEGIN' •COMHENT'******S10,GIVEN ALPHA, W,PSTATIC,TTOTAL,VELOC ITY AND
AAREA AT S.V.EAl AND [B],CALCULATES S.V.tC] FOR FRICTIONLESS PARALLEL
FLOW. IF B IS NEGATIVE,THERE IS A SINGLE INLET FLOW DEFINED BY S.V.
lA),WHILE IF B IS POSITIVE OR ZERO,MIXING OF THE TWO FLOWS DEFINED
BY S.V.tA] AND S.V.[8] OCCURS******;
'REAL' FCHC,DELTAH,K,L,TERM1,TERM2,VC;
'IF' B<0 'THEN'

'BEGIN' ALPHAtCl:=ALPHAtA]:
W(C]:-W(A];
TTOTAL[C]:«TTOTAL[A];
AREA{C]:cAREAtA]:
K:=L:=0.0
'END'

'ELSE'
'BEGIN' UCC]::W[A]*W[B];
AREA[C]:-AREA[A]*AREA[B];
FC:=W(A]*ALPHAtAl/(1.0 + ALPHA[A J)•WEB)«ALPHAtB]/(1.0 + ALPHAtB]);
ALPHACC3:=FC/(WtC)-FC);
HC:*(WCA]*ENTH(ALPHA(A].TTOTALtA])+WtBl*ENTH(ALPHA[B],TTOTALtB]))
/WCCl;
DELTAH:=HC-ENTH(ALPHA[C3,TT0TALtA]);
S2(ALPHAtC],TTOTAL(A),DELTAH,TTOTAL(C]);
K::PSTATIC(Bl*AREA(Bl;
L : « W t B] * V E L O C I T Y t B]
' E N D ' ;

TERM1 : = (P S T A T I C t A l * A R E A t A l + K) / A R E A t C] + (W [A) * V E L O C I T Y t A] * L) /
(4 6 3 3 . 0 S 6 * A R E A [C]) ;

A) , T S T A T I C (A) , V E L O C I T Y (A)
*****;

C A D

T E R M 2 : 3 W (C] / (4 6 3 3 . 0 S 6 * A R E A : C]) :
V E L O C I T Y C C] : * 1 0 0 0 . 0 ;
A G A I N : V C : : V E L O C I T Y (C] :
DELTAH:=-VCt2/TW0GCj;
S2(ALPHAtCl,TTOTALtC],DElTAH,TSTATICtC));
PSTATICtC]:=TERM1-TERM2*Vt;
VELOCITYtC]:«0.666808*WtCl*TSTATICtCl/(PSrATICtC]*AREAtC]);
'IF' ABS(VC-VELOCITYIC])>0.0001*VC 'THEN' '60 TO' AGAIN;
PTOTALtCl:=PSTATICtCl*PRES(ALPHAtC],TTOTALtCJ>/PRES(ALPHAtCl,
TSTATICtCl)
'END' SIO;

'PROCEDURE' S16(A):
'VALUE' A;
'INTEGER' A;

'BEGIN' 'C0HHENT'******S16.GIVEN A .IF ALPHA(A).U(A),PTOTAL(A).
TTOTAL(A),VELOCITY(A) ARE KNOWN,CALCULATES PSTATIC(A),
TSTATIC(A) AND AREA(A)******;
S2(ALPHAtA],TTOTALtA),-VELOCITY IAlt2/TWOGCJ,TSTATICtAl);
PSTATICtA]:=PTOTALtA]*PRES(ALPHAtA],TSTATICtA])/PRES(ALPHAtAl,
TTOTALtAl);
•IF' VELOCITYtA]#0 'THEN'
AREAtA]:=0.666808*WtA]*TSTAT!CtA]/(PSTATICtA]*VELOCITYtAl)
'END' S16;

'PROCEDURE' S111217(A,B,TYPE);
•VALUE' A,B,TYPE;
•INTEGER' A,B,TYPE;

'BEGIN' 'C0MHENT'******S111217,GIVEN A,B AND TYPE, IF ALPHAtAl.WtAl,
PTOTALCA] AND TTOTALtA] ARE KNOWN, CALCULATES CRITICAL VALUES OF
PSTATICtA3,TSTATICtA],VEL0CITYtA] AND AREAtA], PROVIDED THAT TYPE#-2
OR 2. IF TYPE=0 THIS IS ALL. IF TYPE=-2 OR -1 AND AREAtA] IS GIVEN,
IT CALCULATES PST AT ICtA),TSTAT ICtA) AND VELOC ITYtA 1(SUBSONIC). OR
SUPERSONIC IF TYPE=1 OR 2. IF TYPE=-1 OR 1 AND GIVEN AREA IS LESS
THAN THE CRITICAL VALUE,WtO] IS SCALED DOWN
APPROPRIATELY, AND AREAtO] AND VELOC ITIES111 TO tBl INCLUSIVE ARE
MARKED UNKNOWN.A JUMP THEN OCCURS TO THE START OF THE MASTER PROGRAM;

'REAL' ENTHALPY, VSO, ASa,CP,GAHMA,T, TCALC, CALC AREA, FUEL, TEST, C O N S T ;
'INTEGER' L;
FUEL:=ALPHAtAl;
ENTHALPY;=ENTH(FUEL,TTOTALtAl);
'IF' ABS(TYPE)=2 'THEN' 'GO TO' SKIP;
'FOR' T:=TTOTALCAl-0.01,Tt(VSa-ASQ)*2.0/(TWOGCJ*CP*(GAMHA*1.0))
'WHILE' ABS(VSa-ASQ)>0.0001*VSQ 'DO'

'BEGIN' VSO:=TWOGCJ*(ENTHALPY-ENTH<FUEL,T)):
CP:»SPHT(FUEl,T):
GAMMA:=CP/(CP-0.0685582);
ASQ:=GC*GAMHA*R*T;
TCALC:=T
' E N D ' C R I T I C A L LOOP;

P S T A T I C t A] : = P T O T A L t A l * P R E S (F U E L , T C A L C) / P R E S (F U E L , T T O T A L t A l) :
V E L 0 C I T Y t A 3 : = S Q R T (V s a > ;
C A L C A R E A : = > 0 . 6 6 6 8 0 8 * W t A] » T C A L C / (P S T A T I C t A] * V E L O C I T Y t A]) :
' I F ' TYPE=0 ' T H E N '

' B E G I N ' T S T A T I C t A l : « T C A L C :
AREAtA] : :CALCAREA;
'GO TO' F I N I S H

'END';
•IF' AREAtAKCALCAREA 'THEN' 'GO TO' ERROR:
SKIP:CONST:=0.666808*WtAl*PRES(FUEL.TTOTALtAl)/PTOTALtA):
TESr;°0.0001*AREAtA]:
•FOR^ T;«'IF' TYPE<0 'THEN' TTOTALtAl-0.01 'ELSE' 200.0.
T-(1.0-AREAf A]/CALCAREA)/(1400.69*CP*(GC.'VSa-1.0/(GAHHA*R*T>))
'WHILE' ABS(CALCAREA-AREAtAl)>TE$T 'DO'
•BEGIN' VSQ:«TW06CJ*(ENTHALPY-ENTH(FUEL.T));
CP;«SPMT(FUEl.T) ;
GAMMA:>:CP/(CP-0.0635582) ;
CALCAREA:'!C0NST*T/(PRES(FUEL.T)*SQRT(VS8));
TCALC:=T
•END' FINAL LOOP;

PSTATICtA]:=PTOTALtAl*PRES(FUEL.TCALC)/PRES(FUEL.TTOTAlIAl):
TSTATICtAl:=TCALC:
VELOCITYtAl:«SeRT(VS«);
•GO TO^ FINISH;
ERROR:XW101::W[01 :<WC01*0.999*AREACA1/CALCAREA:
XAREA(0}:cAREAtO]:c-1.0:
'FOR' L:«1 'STEP' 1 'UNTIL' B 'DO^ VELOCITYtLl:»-1.0:
WRITE TEXT(^(^'('2C')'AREA<CRITICALXINXBRICK')');
PRINT(NEXTBRICK,2,0):
•GO TO^ JUMP;
FINISH:
•END^ S111217;

•C0NMENT'******HERE STARTS THE PROGRAMME PROPER******:

SENSE:«TEST(2):
•IF' SENSE 'THEN'
'BEGIN' K:«I-2;
•60 TO" COMMON
'END^;

CMECK:«TEST(1):
SELECT INPUT(I);
SELECT 0UTPUT(2);
PAPERTHROW;
NEWLINE(2);
WRITE TEXT('(^R00UTURBOCOOE'{'5C')")'):
DATENOW:
NEWLINE(5):
TWOGCJ:>90131.6:
6C:«32.174;
R:'96.0204;
LCV:>10400.0:
aS:c0.06823:
AU21:»-0.008914491:
A1t3]:»-0.02253222:
A1t4]:'0.03906451:
A115]:*0.2768212:
A2t2]:»0.049318373:
A2[31:«-0.028102521:
A2t41:«0.195281359;
A2t5]:»0.477810178:
D1t21:»-2.00576047:
DU3]:*-6.69966599:

D1t41:«17.5790296;
D1t5l:s'249.139080:
D1t6];«277.32:
D2I21:=11.0966339:
02C31:=-8.43075621:
D2t4]:«87.87661170:
D2t5]:=430.02916:
D2t6]:<323.766085:
C1t21:=-0.129874284:
C1t33:=0.07521572:
C1t41:«0.38599815:
C1t51:=-19.8581411:
C2f21:-0.6684720140:
C2t31:=-1.43050668:
C2t4]:«6.34548724:
C2f5}:'11.4669278:
C0t01:=CODE(^(^0^)'):
C0t11:=C0DE(^(^V)^):
CDt2]:»CODE(^(^2^)^):
CDt3];=CO0E('('3")'):
CDt4):«C0DE(^(^4^)^):
CDt51:«CODE('(*5^)^):
C0I61:=C0DE(^('6^)^):
CDt7]:'=C0DE('('7')^):
C0t81:=C0DE(^(^8^)'):
CDt9]:*C0DE(^(^9')^):
CDI101:=CODE(^('EL^)'):
CDt11):=C0DEC(^.^)'):
CDt12]:=C0DE('(')')'):

INPUT:FIRST:='TRUE^;
'BEGIN"COMMENT'******CODEWORDS ARE STORED AS A 2-DIMENSIONAL
ARRAY CWtO:50,0:61.THE FIRST DIMENSION INDICATES THE SEQUENCE
ORDER OF THE CODEWORD,THE SECOND REPRESENTS N,A.B.C.D.E>

F. THUS EACH CODEWORD OCCUPIES ONE LINE IN THE ARRAY. K IS

THENUMBER OF THE FIRST CODEWORD TO BE OBEYED.I IS THE NUMBER
OF THE LAST CODEWORD>PLUS ONE******:
•INTEGER' J.II.S.I:
'BOOLEAN' NEW:
'SWITCH' CS:'DI6IT.DIGIT.DI6IT.DIGIT.DI6IT.DIGIT.DI6IT.
DI6IT.DI6IT.DIGIT.EL.C0MHA.0BEY;
NEWLINE(5):
COPYTEXTCCES')');
'FOR' I:iO 'STEP' 1 'UNTIL' 50 'DO'
•BEGIN' NEW:s'TRUE':
•FOR' J:=0 •STEP' 1 'UNTIL^ 6 •DO'

•BEGIN^ K:«0:
AGAIN:S:=READ CH:
'FOR' T:sO 'STEP' 1 'UNTIL' 12 '00^
• IF^ S = CDtTrTHEN"60T0^ C S t T t l l :
•GOTO^ AGAIN:
DIGIT:NEW:s'FALSE':
K:«10*K*T;
'60T0' AGAIN;

EL:'IF^ NEW •THEN"60T0' AGAIN:
CWtI.Jl:.K:
'FOR' II:.J*1 'STEP' 1 'UNTIL' 6 'DO'

http://DI6IT.DI6IT.DIGIT.EL.C0MHA.0BEY

CWtI,II]:*0;
'GOTO' N O M O R E ;
COMMA:CWtI,J]:*K
'END' LOOP CONTROLLED BY J:

WRITE TEXT ('("('2C')'C0DEW0R0XT00XL0NG')'):
•GOTO' NEXTPROGRAMME;
NOMORE:
'END' LOOP CONTROLLED BY I:

WRITE TEXT ('("('2C')'TOOXMANYXCOOEWOROSXLOADED')'):
'GOTO' NEXTPROGRAMME
'END' CODEWORD INPUT;

'COMMENT'******CODEWORO OBEY-CONTROL IS TRANSFERRED TO A BLOCK APPRO­
PRIATE TO THE BRICK SPECIFIED BY CW(K,0).THE BRICK WILL
NORMALLY RETURN TO AN INSTRUCTION INCREASING K BY 1,
BUT A JUMP EXIT WILL SET K IN THE BRICK.IF K EXCEEDS THE
TOTAL NUMBER OF CODE WORDS,THE OPERATOR IS REQUESTED TO LOAD
THE NEXT TURBOCODE PROGRAMME.OTHE RW I SE THE CYCLE IS REPEATED.***
THE FORMER BRICK 40 IS ALSO INCORPORATED, WHICH SETS OR CANCELS
THE CHECKING FACILITY. THE FIRST ENTRY WILL CAUSE A PRINT OF
THE ABBREVIATED BRICK OR PROCEDURE NAME FOR EACH SUBSEQUENT BRICK
OR PROCEDURE CALL. A SECOND CALL OF BRICK 40 WILL CANCEL THE
PRINTING, A THIRD WILL RESET IT. ETC., BUT IF SENSE SWITCH
1 IS OFF, NO CHECK PRINTING WILL OCCUR AT ALL******:
J U M P : K : = F ;

•GO TO' COMMON;
B40:N0RMAL:K:=K'>1 ;
COMM0N:'IF' K 'GE' I 'OR' K<0 'THEN'
'GO TO' NEXTPROGRAMME;
0BEY:CHECK:=TEST(1);
NEXT6RICK:=CW(K,0];
A::CWfK,1];
B:«CWfK,2];
C:=CWtK,31;
0:<CWtK,4];
E:=CWtK,51;
F:=CWtK,6];
'IF' NEXTBRICK 'LE' 40 'AND' NEXTBRICK>0 'THEN' 'GO TO'
BRICKtNEXTBRICKl;

B7:B11:B13:B14:B17:B18:B19:B20:B21:B28:
WRITE TEXT ('(" (' 2C ') " ('2S')'BR ICK') ') ;
PRINT(NEXTBRICK,2,0);
WRITE TEXT ('("('2S')'NOTXAVAILABLE')');

NEXTPROGRAMME:WRITE TEXT('(''('2C')'LOAOXMOREXCODEUORDSXIFX
AVAILABLE')');
PAUSE(40):
'GO TO' INPUT:

Bl ;
'BEGIIJ' *COMMENT'*****»»BHCK 1-TRANS FORMAT I ON . LAHBOAW , DE L TAW
LAMBDAP AND DELTAP ARE STORED AS C-TH AND SUBSEQUENT
ELEMENTS IN BRICKDATA**»***;
'IF' CHECK 'THEN' WRITE TEXT ('("('2C')'Bl')') ;
ALPHAtB]:=ALPHAtA];
TTOTALtB]:=TTOTALtA];

WtB]:3WtA]*BRICK0ATAtCl-BRICK0ATAtC*11:
PTOTALtB]::PTOTALtAl*BRICKDATAtC*2]-BRICKDATA{C*3]:
'IF' VELOCITYIB] > 0 'THEN' S16(B) 'ELSE' 'IE' AREAIB] > 0 'THEN'
S111217(B.B.-1);
'GO TO' NORMAL
'END' BRICK 1;

B2:B10:B12:
'BEGIN'
•COMMENT'******BRICK-COMPRESSION GIVEN PRESSURE RATlO-REOUIRES PRESS

-URE RATIO AND POLYTROPIC EFFICIENCY AS BRICKDATAtCl AND tC+11.
BRICK ID-COMPRESSION GIVEN TEMPERATURE RISE-REQUIRES TEMPERATURE
RISE AND POLYTROPIC EFFICIENCY AS BRlCKOATAtC] AND tC+11. BRICK 12-
COHPRESSION GIVEN WORK INPUT-REQUIRES WORK INPUT AS ENG INEVECTOR IE1
AND POLYTROPIC EFFICIENCY AS BRlCKOATAtC]. ALL THREE BRICKS.
GIVEN ALSO STATION VECTORtA], CALCULATE STATION VECTORtBl AND ALSO
WORK INPUT AS ENGINEVECTORtD]******:
'REAL' E F F I C I E N C Y ;
'IF' CHECK 'THEN'

'BEGIN' WRITE TEXT('("('2C')'B')'):
PRINT(NEXTBRICK,2.0)
'END';

ALPHAtB]:=ALPHAtA];
WCB1:=W(A1;
'IF' NEXTBRICK=2 'THEN'

'BEGIN' PTOTALtB):=PTOTALtAl*BRICKDATAtCl5
S5(ALPHAtBl.BRICKOATAtCIt(1.0/BRICKDATACC«1]>.TTOTAL[8].TTOTAL{A]>:
'GO TO' LAST
'END'

'ELSE' 'IF' NEXTBRICK=10 'THEN'
'BEGIN' TTOTALtB]:=TTOTALtA]*BRICKDATAtCl:
EFFICIENCY:=BRICK0ATAtC*11
'END'

'ELSE'
'BEGIN' S2(ALPHAtA],TT0TALtA],ENGINEVECT0RtE]/WtAl.TT0TALtBJ):
EFFICIENCY:=BRICKOATAtC]
'END';

PTOTALtB]:=PTOTALtAl*(PRES(ALPHAtA].TTOTAL(Bl)/
PRES(ALPHAtA],TTOTALtAl))tEFFICIENCY;
LAST:'IF' VELOC ITYtB]>0 'THEN' S16(B) 'ELSE' 'IF' AREAtBl>0 'THEN*
S111217(B,B,-1);
'IF' CWtK+1,0]=3 'THEN' 'GO TO' NORMAL
'END' BRICKS 2,10 AND 12;

B3:
'BEGIN' 'COMMENT'******BRI
TOTAL ENTHALPIES AT A AND
STORED IN ENGINEVECTOR(D)*
'IF' CHECK 'THEN' WRITE TE
ENGINEVECTORtD] :=WtA]*(ENT
TTOTALtAl)) :
'GO TO' N O R M A L ;

'END' BRICK 3;

'BEGIN' •COMMENT'******BRICK 4-SINGLE TURBINE.

CK 3-WORK DONE .W.O.('DIFFERENCE BETWEEN
B I.E.W(A)*(HB-HA))IS
*****;
XT ('("('2C')'B3')');
H(ALPHAtAl,TTOTALtB])-ENTH(ALPHAtA).

REQUIRED WORK OUTPUT IS ENGINEVECTOR DATA.
-DELTAH/TA IS ENGINEVECTOR RESULT.AUXILIARY WORK
AND ADIA6ATIC EFFICIENCY ARE C-TH AND NEXT BRICKDATA******:
'REAL' DELTAH,TB:
'IF' CHECK 'THEN' WRITE TEXT ('(" (•ZC•)•B4')'> :
ALPHAtBl:=ALPHAtAl;
WfB]:>WtA];
DELTAH::-(ENGINEVECTORtEl*BRICKDATAtCl)/W(A]:
ENGINEVECTORlDl;«-DELTAH/TTOTALtA];
S2(ALPHAtA],TTOTALtAl,DELTAH,TTOTALCBD;
DELTAH:'0ELTAH/BRICK0ATAtC*1];
S2(ALPHAIA1,TTOTALtA],DELTAH,TB);
PTOTALlB]:«PTOTALtAl*PRES(ALPHAtA],TB>/PRES(ALPHAtA],TTOTALtAl);
'IF' VELOCITYtB] > 0 'THEN' S16(B) 'ELSE' 'IF' AREAtBl > 0 'THEN'
S111217(B,B,-1);
'GO TO' NORMAL
•END' BRICK 4;

BS:
'BEGIN' •COMMENT'******BRICK 5-FRICTIONLESS PARALLEL
GIVEN S.V.tA] AND tBl WHERE A AND B ARE THE TWO INLE
CALCULATES S.V.tB*1], THE OUTLET PLANE, ASSUMING NO
AND NO OVERALL CHANGE IN AREA******:
'IF' CHECK 'THEN' WRITE TEXT ('("('2C')'85')') :
S10(A,B,8*1);
'GO TO' NORMAL
'END' BRICK 5;

B6:B29:B39:
'BEGIN' 'C0MMENT'******8RICK 6(FRICTI ONLESS CONSTANT PRESSURE
HEATING WITH FUNDAMENTAL PRESSURE LOSS), BRICK 29{0ITT0 WITHOUT LOSS)
AND BRICK 39(C0NSTANT VOLUME HE AT ING)-GI VEN S.V.tA] AND TTOTALtB],
ALSO COMBUSTION EFFICIENCY AS BRlCKOATAtC], CALCULATES S.V.tB] AND
FUEL FLOW AS ENGINEVECTORtD], TAKING THE LIQUID FUEL ENTHALPY AS
ZERO. FOR BRICK 6 ONLY, THE GIVEN VALUE OF TTOTALtB] MAY EXCEED THAT
REauIRED FOR THERMAL CHOKING, IN WHICH CASE A MESSAGE IS PRINTED AND
A JUMP EXIT OCCURS**»***;
•REAL' DUM,ECV,Q2,F,IMPULSE,CP,GAMMA,MB,DELTAH.TSTAR;
'IF' CHECK 'THEN'

'BEGIN' WRITE TEXT('("('2C')'B')');
PRINT(NEXT8RICK,2,0)
•END';

DUM:»ENTH(ALPHAtA],TTOTALtB])-ENTH(ALPHA(Al,TTOTALtAl):
ECV:»LCV+ENTH(0,TTOTALt81)/aS-ENTH(QS,TT0TALlB])*(1.0+1.0/QS):
'IF'NEXTBRICK»39'THEN'

'BEGIN' DUM:«OUH-0.0685582*(TTOTALtBl-TTOTALtAl);
ECV:«ECVt0.0685582*TTOTALtB]
'END';

a2:«DUM/ECV;
ALPHAtBl:=ALPHAtA3+Q2*(1.0tALPHAtA]);
F:<WfA]*ALPHAtB]/(BRICK0ATAtC]*(1.a*ALPHAtAl));
ENGINEVECTORtO]:=36 00.0*F:
WtB]:=WtAl+F;
'IF' NEXTBRICK'6 'THEN' 'GO TO' CHOKING 'ELSE'
'IF' NEXTBRICK=29 'THEN' PTOTALt8]:»PTOTAL(A]
'ELSE' PTOTALtB]:=PTOTALtA]*TTOTALtB]/TTOTALtAl;
•IF' AREAtBl>0 'THEN' '60 TO' FINAL:

MIXING-
T PLANES
FRICTION

AREACBli'AREAtAl:
'IF' AREAtBl 'LE' 0 'THEN' 'GO TO* NORMAL:
F..INAL:S111217(B,B.-1):
•GO TO^ N O R M A L :
CHOKINGiAREAtBl:«AREAtA]:
IMPULSE:'PSTATICCAl*WtA]*VELOCITY[A]/(4633.056*AREA[B]):
TSTATIClBl:=TTOTALtAl:
CALCCRIT:CP:'SPHT(ALPHAtB].TSTATICtB]);
6AMMA:'CP/(CP-0.0685582):
PSTATICCBl :> IMPULSE/(1.0 + 6AMMA):
VELOCITYtB]:*0.666808*W(B]*TSTATICCB]/(PSTATICCB]*AREA(Bl);
S9(B.MB):
'IF' ABS(MB-I.O) 'LE' 0,0001 'THEN' 'SO TO' SONIC:
TSTATIC(B]:'TSTATICtB]/MBt2:
'IF' TSTATICtBl<2000.0 'THEN' 'GO TO' CALCCRIT:
CALCPRESS:S10(A.-1.B);
'60 TO' N O R M A L :

SONIC:'IF' TSTATICtBl 'GE' 1850.0 'THEN' '60 TO' CALCPRESS:
DELTAH:'VEL0CITYtBlt2/TW06CJ:
S2(ALPHAf8],TSTATICtBl,DELTAH.TSTAR):
'IF' TSTAR 'GE' TTOTALtB] 'THEN' 'GO TO' CALCPRESS:
WRITE TEXT('("('2C')'THERMALXCH0KING')'):
'60 TO' JUMP
•END^ BRICKS 6,29 AND 39;

88:823:
'BEGIN' 'COMMENT'***»**BRICK 8(0PTIMUM CONVERGENT NOZZLE) AND
BRICK 23(OPTIMUM CONVERGENT-DIVERGENT N02ZLE)-6 I VEN S.V.CA],PST AT IC
tOl AND DISCHARGE AND THRUST COEFFICIENTS AS BRICKDATAtCl AND 10*11
CALCULATES S.V.t81(THROAT) AND S.V.tB + 11(EX IT,CON-DI CASE ONLY). ALSO
GROSS THRUST AS ENGINEVECTORtD]. ASSUMING ISENTROPIC EXPANSION. IN
THE CON-DI CASE, IF PRESSURE RATIO IS LESS THAN CRITICAL, A
CONVERGENT NOZZLE IS ASSUMED AND A MESSA6E IS PRINTED INDICATIN6
THAT S.V.t8*1] IS TO BE IGNORED******;
'INTEGER' N :
'REAL' MB;
'IF' CHECK 'THEN'

'BEGIN' WRITE TEXT ('("('2C')'8')') :
PRINT(NEXTBRICK,2.0)
'END';

•IF' PTOTALtA]<PSTATICtO] •THEN'
'BEGIN' WRITE TEXT('("('2C')'JETXVEL0CITVXIMA6INARY')^):
•GO TO^ JUMP
'END';

N : « B ;

CONDI:ALPHAtNl:«ALPHA(Al:
W(N]:<WtA]:
PTOTALtNl:»PTOTALtAl:
TTOTALtN];=TT0TALtAl:
'IF' N>B 'THEN' 'GO TO' CALCEXIT:
S5(ALPHAfB],PSTATICf01/PTOTAL(B],TSTATICtBl,TTOTALtB]):
VELOCITYtBl:'SQRT(TWOGCJ*(ENTH(ALPHA(Bl,TTOTALtB])-
ENTH(ALPHAtB],TSTATICtBl))):
S9(B,M6);
'IF' NEXTBRICK'8 'AND' M8>1 'THEN' •GO TO^ CHOKED:
PSTATICtBl:'PSTATICfO]:
AREAt81:'0.666808*Wt8]*TSTATICCB1/(PSTATICCBl «VELOCITYtB]):

FINISH:AREA(B]:'AREACB]/BRICKDATACCl;
ENGINEVECTORtD]:°BRICKDATA(C+1]*(WfB]*VELOCITYtB]/GC+144.0*AREAfB}*
(PSTATICtBl-PSTATICtOD):
'IF' NEXTBRICK'8 'THEN' 'GO TO' NORHAL:
N:«B+1;
'IF' MB>1 'THEN' 'GO TO' CONDI;
WRITE TEXT('("('2C')'C0NVERGENTXNOZZLE-IGN0REXSTATI0N')'):
PRINT(N,2,0) :
'GO TO' N O R M A L :
CALCEXIT:PSTATICtN]:'PSTATlClB]:
TSTATICtN]:«TSTATICtBl;
VELOCITYtNl;'VELOCITYIBl:
AREAtNl:'AREAt81;
CHOKED:S111217(8,B,0);
'IF' NEXTBRICK'8 'THEN' 'GO TO' FINISH;
AREAtBl:'AREAtB]/BRICKDATAtC];
'GO TO' NORMAL
'END' BRICKS 8 AND 23;

89:
'BEGIN' 'COMMENT'******BRICK 9-CONSTANT AREA DUCT TOTAL PRESSURE
LOSS-GIVEN DELTAP/(PTOTAL-PSTATIC) AS BR ICKOATAtC]AND
S.V.tAlCALCULATES S.V.tB]»*****;
'IF' CHECK 'THEN' WRITE TEXT (' C ' C 2C')'89')') ;
ALPNAtBl:'ALPHAtAl;
Wte]:'W(Al;
TTOTALtB]:'TTOTALtA];
AREAtB]:'AREAtA];
PTOTALt8]:'PTOTALtA]-(PTOTALtA]-PSTATlCtA])*BRICKOATA[Cl:
S111217(B,B,-1);
'GO TO' NORMAL
'END' BRICK 9;

»15:
'BEGIN'
WITHIN
THUS EI
VELOCIT
A OUPLI
'INTEGE
'SWITCH
NEWLINE
TIMENOW
NEWLINE
'IF' CH
'IF' FI

'BEGI
:«PST
:«VEL
COPYT
FIRST
'END'

READSTA
'IF' ST
NUMBER:
'GO TO'
VO:ALPH

•COMMENT'******BRICK 15-STATION VECTOR INPUT. EACH ITEM
A STATION VECTOR IS STORED IN A SEPARATE ARRAY. THERE ARE
GHT ARRAYS:ALPHA,W,PSTATIC,PTOTAL,TSTATIC,TTOTAL,
Y,AREA(0:20).ANY ITEM NOT GIVEN A VALUE IS SET TO - 1 .
CATE SET IS STORED IN XALPHA XAREA******;
R' I . S T A T I O N , N U M B E R ;
' VECTOR:'VO,VI,V,:,V3,V4,V5,V6,V7;
(5) ;

(5) ;
ECK 'THEN' WRITE TEXT ('(''('2C')'815')');
RST 'THEN'
N' 'FOR' I:'0 'STEP' 1 'UNTIL' 20 '00' ALPHA111;'Wt11
ATICtIl:'PTOTALtI]:=TSTATICtI]:'TTOTALtI]
0CITYtI]:'AREAtI):'-1;
E X T C C E J ') ') ;

'FALSE'

TION: S T A T I 0 N : = R E A D ;
ATI0N«-1 'THEN' 'GO TO' FINISH;
'READ;
VECTORtNUMBER+11:

At$TATIONl:<READ;

•GO TO^ READSTATION:
VI :WtSTATIONl:>READ:
•60 TO' READSTATION:
V2:PSTATICtSTATION]:aREAD;
'60 TO' READSTATION:
V3:PT0TALtSTATI0Nl:'READ:
'60 TO' READSTATION:
V4;TSTATICtSTATI0Nl:'READ:
'GO TO' READSTATION:
V5:TT0TALtSTAT10N]:=READ:
'GO TO' READSTATION:
V6:VEL0CITYCSTATION]:'REA0:
'GO TO' READSTATION:
V7:AREACSTATI0N]:'READ:
'GO TO' READSTATION:
FINISH:'FOR" I:«0 'STEP' 1 'UNTIL' 20 'DO'

'BEGIN' XALPHAtIl:'ALPHACI]:
XWCI]:'WtI]:
XPSTATICtIl:»PSTATICtIl:
XPTOTALtI]:«PTOTALCI];
XTSTATICtI]:«TSTATlCtI];
XTTOTALtI]:'TTOTALlI]:
XVELOCITYtI]:'VELOCITYtIl:
XAREAtI]:'AREAtI]
'END' LOOP CONTROLLED BY i:

'GO TO' NORMAL
'END' BRICK 15:

816:
'BEGIN' 'COHMENT'******BRICK 16-8RICK DATA INPUT. BRICK DATA IS
STORED AS ONE ARRAY. BR ICKOATAt0:100};
'INTEGER' N U M B E R :
'IF' CHECK 'THEN' WRITE TEXT ('("('2C')'Bl 6')') :
5 T A R T : N U M B E R : ' R E A D ;
'IF' NUMBER'-1 'THEN' 'GO TO' NORMAL:
BRICKDATAtNUMBER]:<READ:
'GO TO' START
'END' BRICK 16;

822:
'BEGIN' •C0MMENT'******BRICK22-ARITHMETIC ON EV.SV AND BO******:
'SWITCH' EV:»E0,E1,E2,E3,E4,E5.E6.E7:
'SWITCH' SV:=S0,S1,S2,S3,S4,S5,S6,S7:
'SWITCH' FUNCTION:'EVTIMESEV,EVDIVEV,EVPLUSEV.EVMINUSEV.HINUSEV.
BDTOEV.EVTOBO,SVTOEV,EVTOSV:
'IF' CHECK 'THEN' WRITE TEXT ('("(• 2C •)'822 •)') :
'IF' C 'GE' 0 'AND' C 'LE' 8 'THEN' 'GO TO' FUNCTIONtC+11:
WRITE TEXT ('("('2C')'WRONGXVALUEXFORXCXINXCODEWORO')'):
PRINT(K,2,0);
'GO TO' NEXTPROGRAMME;
EVTIMESEV:ENG INEVECTORf 01:'ENGINEVECTORtAl*ENGINEVECTOR(81:
'GO TO' N O R M A L ;

EVDIVEV:ENGINEVECT0RtD]:'ENGINEVECT0RtAl/ENGINEVECT0Rt8];
•GO TO' N O R M A L ;

EVPLUSEV:ENGINEVECTORtO]:'ENGINEVECTORtA]+ENGINEVECTORtBl:
•GO TO' N O R M A L :

EVMINUSEV:ENGINEVECTORtD]:'ENGINEVECTOR(Al-ENGINEVECTORtBl:

'GO TO' N O R M A L :

MINUSEV:ENGINEVECTOR col.-s-ENGINEVECTORtA];
'60 TO' NORMAL;

BDT0EV:EN6INEVECT0R(D]:'BRICKDATAtAl:
'GO TO' NORMAL;

EVT08D:BRICKDATAtAl:'EN6INEVECT0RtDl:
'GO TO' NORMAL;

SVTOEV:'GO TO' EVtB+11;
EO:ENGINEVECTORfO]:'ALPHA(Al;
'SO TO' NORMAL;
E1:EN6INEVECT0RtDl:«WCA];
'GO TO' NORMAL;
E2:ENGINEVECTOR(01:'PSTATICCA]:
'GO TO' NORMAL;
E3:ENGINEVECTORtO]:'PTOTALtAl;
'GO TO' NORMAL;
E4:ENGINEVECT0RtD]:=TSTATICtA];
'GO TO' NORMAL;
E5:ENGINEVECTORt01:'TTOTALtA];
'GO TO' NORMAL;
E6:ENGINEVECT0RtD]:'VEL0CITYtA]:
'GO TO' NORMAL;
E7:ENGINEVECT0Rt0]:'AREAtA];
'60 TO' NORMAL;

EVTOSV:'GO TO' SVIB+Il:
S0:ALPHAtA]:'ENGINEVECTORtD];
'GO TO' NORMAL;

SI:WtA]:'ENGINEVECTORtD];
'GO TO' NORMAL;
S2:PSTATlCtA]:'ENGINEVECT0RtDl;
'GO TO' NORMAL;
S3:PT0TALlAl:'ENGINEVECT0RtDl;
'60 TO' NORMAL;
S4:TSTATICtA]:'ENGINEVECT0RtD];
'GO TO' NORMAL;
S5:TTOTALtA]:'ENGINEVECTORtO];
'GO TO' NORMAL;
S 6 : V E L 0 C n Y t A] : « E N G I N E V E C T 0 R t 0 1 :
•GO TO^ N O R M A L :
S7:AREA(Al:'ENGINEVECT0RtD];
•GO TO' NORMAL
'END' BRICK 22;

824:
'BEGIN' 'COMMENT'»*****BRICK 24-INTAKE MOMENTUM DRAG.PRODUCES INTAKE

MOMENTUM DRAG AS ENGINEVECTORtD]******;
'IF' CHECK 'THEN' WRITE TEXT ('("('2C')'824')');
ENGINEVECT0RtD]:'(WtA]*VEL0CITYtAl)/6C;
'60 TO' NORMAL
'END' BRICK 24;

B25:
'8E6IN' 'COMMENT'»*****BRICK 25-OFF-DES IGN CON-DI NOZZLE-GIVEN
S.V.CAKNOZZLE INLET) OR A MINIMUM OF A LPH A t A] , W t A] , P T OT A L C A] AND
TTOTALtA], ALSO PST AT ICt0](AMBI ENT), EITHER ARE AtB +1](EX IT) OR
AREAtBl/AREAfB + IKTHROAT/EXIT) AS BRICKDATAtCl, AND CO AND CT AS

BRICKDATACC+I] AND CC+21.CALCULATES S.V.tB] AND C8+1]. IF AREA(B+1]
IS SPECIFIED, A JUMP EXIT OCCURS IF THIS IS INCOMPATIBLE WITH GIVEN
INLET CONDITIONS. GROSS THRUST IS CALCULATED AS ENGINEVECTOR(D)*****;
'REAL' DELTAH,ABPl.TEST,MB:
'BOOLEAN' RATI061VEN:
'IF' CHECK 'THEN' WRITE TEXT ('("('2C')• 825 •)•) :
•IF^ PTOTALCAKPSTATICtOl •THEN^

•BE6IN' WRITE T EXT ('("('2C')'J ETXVE LOC ITYXIMA6INARY '
'60 TO' JUMP
' E N D ' ;

R A T I 0 6 I V E N : » ' F A L S E ' ;
A L P H A t B + 1] : ' A L P H A t B l : « A L P H A C A l ;
W t B + 1] : ' W t B] : ' W t A l ;
P T O T A L t 8 + 1 1 : ' P T O T A L t B l : « P T O T A L t A l :
T T 0 T A L t B + 1 1 : « T T 0 T A L t B) ; « T T 0 T A L C A] :
S 1 1 1 2 1 7 (B , 8 , 0) :
• I F ' AREAtB + I K O ' T H E N '

' B E 6 I N ' R A T I 0 6 I V E N : ' ' T R U E ' ;
AREAC 8 + 1 1 : « A R E A C B] / B R I C K D A T A t C l
' E N D '

' E L S E ' ' I F ' AREAtB]>AREAtB+11 ' T H E N '
' B E 6 I N ' WRITE T E X T (' (" (' 2 C ') ' 6 I V E N X E X I T X A R E A < R E Q U I R E B X T H R 0 A T
X A R E A ') ') ;
' 6 0 TO' JUMP
'END';

S111217(B+1,B+1,-2);
'IF' RATIOGIVEN 'THEN'
'CO TO' 'IF' PSTATlCt01>PSTATICt8+11 'THEN' SUBSONIC •ELSE^ SUPER
SONIC;
'IF' PSTATICtO]>PSTATICtB+11 'THEN'

'BE61N' WRITE TEXT('("('2C')'6IVENXEXITXAREAXR£QUIRESXEXITX
PRESSUREXBELOWXAMBIENT')');
'60 TO' JUMP
'END';

SUPERS0NIC:S111217(B+1.8+1,2>;
510(8+1,-1,8+2);
•IF' PSTATIClB+2] 'GE' PSTATICtO] 'THEN' '60 TO' FINISH;
PSTATICtB+1]:'PSTATICC0];
ABPl:'AREAtB+1];
TEST:«0.0001*ABP1;
TSTATICt8+1]:'TTOTALt8+11/1.03;
SHOCKINDIV:DELTAH:'ENTH(ALPHAC8+1].TT0TALt8+1])-
ENTH(ALPHAtB+1],TSTATICtB+1l);
VEL0CITYtB+1]:'SQRT(TW0GCJ*DELTAH);
AREAtB+1]:'0.666808»W[B+11*TSTATICtB+1]/(PSTATICtB+1]*VEL0CITYtB+11);
'IF' ABS(AREAIB+11-ABP1)>TEST 'THEN'

'BEGIN' TSTATICt8+1]:'TTOTALtB+11-(TT0TALtB+1]-TSTATICt8+11)*
(AREAtB+1]/ABP1)t2;
'GO TO' SHOCKINDIV
'END' ;

PT0TALtB+1]:=PSTATICt8+1]*PRES(ALPHAtB+11,TT0TALtB+11)/
PRES(ALPHAt8+11,TSTATICtB+11);
'GO TO' FINISH;
SUBSONIC:PSTATICt8+1]:'PSTATICtOl;
S5(ALPHAtB+11,PSTATICtB+1]/PT0TALtB+1],TSTATICt8+11,TT0TALt8+1]);
0ELTAH:'ENTH(ALPHAtB+1],TTOTALtB+1])-ENTH(ALPHAtB+11.TSTATICt8+11);
VELOCITYt8+11:'SQRT(TW06CJ*DELTAH);

AREACB + 1] : « 0 . 6 6 6 8 0 8 * W C 6 + 1 1 * T S T A T I C C B ' i ' 1] / (P S T A T t C (B * 1] * V E L O C I T Y
C B + l l) :
AREAtB]:'AREAt8+11*BRICKDATAtCl;
S111217(B,e,-2):
FINISH:AREAt8+1]:=AREAtB+1]/BRICKDATACC+11:
EN6INEVECTORtO]:'((WtB+1]*VELOCITYtB+1])/GC*144.0*AR£AtB*11*
(P5TATICtB+1]-PSTATICt01))*BRICK0ATAtC+2];
'60 TO' NORMAL
'END' BRICK 25;

826:
'BEGIN' 'C0MMENT'******8RICK 26-SUPPLEMENTARY CODEWORD-FOR USE
WITH BRICKS 27 OR 34. MEANING OF PARAMETERS IS:-
BRICK 27:-
A'EXIT PRESS. S.V. NO.
B'TYPE NO(SEE BRICK 27)
C'ACCESSORY WORK (HP) 8.0.NO.
D'DH/T(HP) E.V. RESULT NO.
E'COMPRESSOR WORK(HP) E.V. DATA NO.
BRICK 34:-
A'HP COMPRESSOR INLET S.V. NO.
B'FUEL FLOW IN MAIN COMBUSTOR E.V. NO.
C'LAMDAA(ESTIMATEO) B.D.NO.
D'WB/WT(ESTIMATED),THENDH/T8 E.V. NO.
E'FUEL FLOW IN BYPASS DUCT E.V. NO.*******:
'IF' CHECK 'THEN' WRITE TEXT (' (" (' 2 C ') • B26')•) ;
A A : « A ;
B B : « B ;
C C : ' C ;
D0:'0;
E E : ' E ;
'60 TO' NORMAL
'END' BRICK 26:

827:
'BEGIN' 'COMMENT'******BRICK 27-TWO TURBINES IN SERIES-
GIVEN S.V.tA] AND VELOCITYtB+1], ACCESSORY
WORK(L.P.) AND OVERALL ADIABATIC EFFICIENCY AS BRICKDATA
tCl AND tC+1], L.P. COMPRESSOR WORK AS ENGINEVECTORtE],
AUXILIARY C0DEW0RD(BR1CK 26) TO SET AA,88,CC,00,EE,
ACCESSORY WORK(H.P.) AND H.P. ADIABATIC EFFICIENCY AS BRICKDATA
tCC] AND tCC + 1] , THE EXIT PLANE AS AA, TYPE N O . C I FOR TWIN SPOOL.
2 FOR FREE L.PL) AS BB, H.P. COMPRESSOR WORK AS
ENGINEVECTORtEEl, CALCULATES S.V.tB] AND [8+1], DELTAH(HP)/TA AS
EN6INEVECT0Rt0D], DELTAH(LP)/TB AND SHF(LP) AS EN6INEVECT0R
to] AND tO+1]»*****;
'REAL' FUEL,TSBPl,DELTAl,DELTA2,0ELTA3,0ELTA4,DELTAS,
DELTA6,DELTA7,DELTAS,DELTA9,DELTAO,TDBPl,TB;
'IF' CHECK 'THEN' WRITE TEXT('('"('2C')'827')');
FUEL:'ALPHAtB+13:'ALPHA[B]:=ALPHAtA];
W[8+1]:'W[B]:'WtA];
PSTATICtB+1]:'PSTATICIAA];
S5(FUEL,PSTATICtAA]/PT0TALtA],TSBPl,TTOTALtAl);
DELTA1:'ENTH(FUEL,TSBPl)-ENTH(FUEL,TTOTALtAl);
DELTA2:'VEL0CITYtB+1]t2/TW06CJ;
D E L T A 3 : « 0 E L T A 1 + 0 E L T A 2 ;

DELTA4:«DELTA3*BRICK0ATACC+1]:
S 2 (F U E L . T T 0 T A L (A } . D E L T A 3 > T D B P 1) :
PT0TALtB+1]:'PSTATICtB+1]*PRES(FUEL.TDBPl)/PREStFUEL.TSBPl);
S2(FUEL,TT0TALlA].DELTA4.TT0TALtB+1l);
S16(B+1);
'IF' B8'1 'THEN' DELTA7:« EN6INEVECTORtE]+BRICKDATAtC]
'ELSE' 'IF' BB»2 'THEN' DELTA7:«0
'ELSE'

'BEGIN' WRITE TEXT ('("('2C')'INCORRECTXTURBI NEXTYPEX
NUMBER')');
'GO TO' NEXTPROGRAMME
'END';

DELTA5:«-(ENGINEVECT0RtEEl+BRICKDATA{CC]>/WtA];
0ELTA6:'DELTA5/BRICKDATAtCC+1]:
S2(FUEL,TTOTALtAl.BELTA6.TB):
PTOTALt81:'PTOTALtA]*PRES(FUEL.TB)/PRES(FUEL.TTOTALtAl);
S2(FUEL.TTOTALtA],DELTAS.TTOTALtB]):
'IF' VELOCITYtB]>0 'THEN' S16(B) 'ELSE' 'IF' AREAtB]>0 'THEN'
5111217(8.B.-1):
0ELTA8:«DELTA5-0ELTA4;
DELTA9:«DELTA8*Wt8]:
DELTAO:'DELTA9-0ELTA7;
ENGINEVECTORtoo):«-DELTA 5/TTOTALtAl;
EN6INEVECT0Rt0]:«DELTA8/TT0TALt8]:
EN6INEVECTORt0+11:«DELTAO+2.54671;
'60 TO' NORMAL
'END' BRICK 27;

B30:
'BEGIN' 'COMMENT'******BRICK 30-FILLS IN STATION VECTOR.REQUIRES
ONLY STATION NUMBER.A******;
'IF' CHECK 'THEN' WRITE TEXT ('(" ('20')'830')'):
'60 TO' 'IF' WtAl > 0 'THEN' WK 'ELSE' 'IF' PSTATICtA] > 0 'THEN'
PSK 'ELSE' WPSNK;
WPSNK:52(ALPHAtAl.TT0TALtA].-VEL0CITYCAlt2/TW0GCJ.TSTATICfAl):
PSTATICtAl:'PTOTALtA]*PRES(ALPHAtA].TSTATICtAl)/
PRES(ALPHAtA].TTOTALtAl):
WtA]:'PSTATICtA]*AREAtA]*VELOCITYtA]/(0.666808*TSTATICtA]):
'GO TO' N O R M A L ;

WK:'GO TO' 'IF' PSTATICtA] > 0 'AND' AREAtA] > 0 'THEN' PSAK 'ELSE'
'IF' AREAtA]>0 'THEN' AK 'ELSE' 'IF' PSTATICtA]>0 'THEN'
WPSK 'ELSE' PSANK:
PSANK:S16(A):
'60 TO' N O R M A L ;

WPSK:'IF' VELOCITYtAltfO 'THEN^
AREAtA]:'0.666808*WtAl*TSTATICtAl/(PSTATICtA}*VELOCITYfA]):
'60 TO' ALLCALC;
AK:S111217(A,A.-1);
'GO TO' N O R M A L ;

PSAK:VEL0CITYtA];«0.666808*WtA]*TSTATICtAl/(PSTATICtA]*AREACA]);
'GO TO' ALLCALC;
PSK:WtA]:'PSTATICtAl*AREAtA]*VELOCITYtAl/(0.666808*TSTATICtAl):
ALLCALC : S2(ALPHAtAl,TSTATICtAl,VELOCITYtA]t2/TW06CJ,TTOTALtAl):
PT0TALtA];«PSTATICtA]*PRES(ALPHAtA].TT0TALtAl)/PRE5(ALPHAtAl,
TSTATICtAl);
'60 TO' NORMAL
'END' BRICK 30;

CODEWORD F,WHICH MUST BE BRICK 37,IF TTOTALtB] HAS
NOT BEEN CALCULATED CORRECTLY YET,OTHERWI 5 E CALCULATES
S.V.tB + n » * * » * » :
'REAL' DELTAH;
'IF' CHECK 'THEN' WRITE TEXT (' C ' C ZC')'838')') ;
'IF' ABS<TT0TALtB]-TT0TALtB+11) > 0.0001'TTOTALt81 'THEN'
'GO TO' JUMP;
BRICKDATAtC+11:'-BRICKDATA(C+1];
ALPHA!B + 1] :'ALPHAtBl;
WtB+1] I'WIBI;
AREAtB+1]:'AREA[B];
PT0TAll8+13:'BRICKDATAIC+1]»PTOTALtB]-8RICKDATAtC+21;
0ELTAH:'WtA]*(ENTH(ALPHA(A],TT0TALtA])-ENTH(ALPHAtA],TT0TALtA+1]))/
W t B] ;
S2(ALPHA[B),TTOTALtB],DELTAH,TTOTAltB+ll);
'If' AREAtB*1]>0 'THEN' 5111217(8+1,8+1,-1):
'GO TO' NORMAL
'END' BRICK 38;

'END'***»*»******Of TURBOCODE MASTER PROGRAM*•*•*••*****;

