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A conservative sequential fully implicit method is derived for compositional reservoir 
simulation. Multi-phase flow in porous media comprises coupled complex processes: 
i.e. elliptic flow equation, hyperbolic transport equation and highly nonlinear phase 
equilibrium equation. These processes contain very different mathematical characteristics 
that cannot be efficiently solved by one numerical method. As a result, the fully implicit 
method may become numerically complex and inefficient because the Jacobian includes 
the derivatives w.r.t. the variables from all of the different processes involved.
Jenny et al. (2004) [12] and Lee et al. (2015) [20] demonstrated that flow (pressure) and 
transport (saturation) for multi-phase flow without compositional effect can be efficiently 
solved by a sequential fully implicit method. However, the characteristics of the phase 
equilibrium equations are very different from those of the transport equations. This 
paper proposes an iterative method that solves the flow, transport and phase equilibrium 
equations in a sequential manner. The transport of hydrocarbons through porous media 
is governed by the multi-phase Darcy’s equation, which is used to compute the phase 
velocities. The hydrocarbon components belonging to the same phase are transported with 
the same phase velocity. Upon arrival in the destination grid cell, these components are 
redistributed via a phase equilibrium calculation. This observation leads to simplification 
of the governing equations by reducing primary variables to four (i.e., pressure and three 
phase saturations). The nonlinear solution scheme composed of the stages outlined above 
is proven to preserve mass conservation, while a new degree of freedom, “thermodynamic 
flux”, is introduced to ensure volume conservation. The sequential algorithm is solved 
iteratively until pressure, saturation, and phase composition are fully converged.
It is well-known that sequential solution schemes may require many iterations or fail to 
converge if the phase equilibrium calculation involves phase transition with a large volume 
change. This indicates that the current governing equations may not adequately describe 
fluid flux during rapid phase transition. With numerical examples we demonstrate that 
such numerical difficulties are successfully resolved via the thermodynamic flux term.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Complex physical processes in porous media (e.g. gas injection, miscible flooding, enhanced oil recovery, thermal recov-
ery of heavy oil, etc.) can be effectively modeled by compositional reservoir simulation. Commercial reservoir simulators 
commonly adapt the governing equations in compositional formulation. This makes numerical simulation of compositional 
reservoir models an important practical tool in the management and production optimization of hydrocarbon reservoirs.

Commercial simulators usually employ an Equation of State (EoS) to calculate phase equilibrium. The equations of state, 
however, are highly nonlinear [35,34] and the convergence of numerical schemes designed to solve them is strongly depen-
dent on the initial guess of the equilibrium factors (the ratio of gas and liquid mole fractions for each component) [24]. 
The cubic EoS, e.g. Peng-Robinson and Soave-Redlich-Kwong, often yields a trivial or non-convergent solution near a critical 
point or from an inaccurate initial guess. It used to be a challenge to identify the phase state, i.e., single or multi-phase, 
before Michelsen’s [23] derivation of an important stability criterion that minimizes Gibbs free energy, thus, making the 
phase equilibrium calculation more stable and efficient. Many algorithms have been proposed in optimizing these calcula-
tions, e.g., successive substitution with a Newton method [25], reduced variables method [33], tie-line method [40], etc. The 
phase equilibrium with phase transition is, as a result, solved efficiently in commercial reservoir simulators.

Michelsen [25] proposed a generalized phase equilibrium calculation under various constraints for the thermodynamic 
state variables (e.g., isentropic, isenthalpic, and fixed volumetric flash computations). In the fully implicit compositional for-
mulation with natural variables, the thermodynamic equilibrium condition is commonly included as an equality constraint 
of phase fugacities, while the total volume conservation is honored through the saturation constraint. All such algorithms 
require an accurate identification of phase state for numerical convergence. If a time-step involves phase transition, it 
becomes challenging to estimate accurate phase state and equilibrium constants. The nonlinear system of equations for 
primary variables is iteratively solved by a Newton method. Ina sequential fully implicit formulation, the pressure and 
transport equations, coupled with thermodynamic equilibrium are solved in sequence [27,30]. Traditional sequential meth-
ods cannot exactly honor the volume or mass conservation. As a result, the fluid volume does not exactly satisfy the volume 
constraints, particularly in phase transition with a large volume change. This paper examines phase behavior in a confined 
space (porous media) that can be suitably used in compositional simulation. The flash calculation with fixed volume and 
temperature (VT-flash) is explored and compared with the traditional flash with fixed pressure and temperature (PT-flash). 
In addition, an unsteady “thermodynamic flux” is introduced to capture the effect of phase equilibrium in the pore space.

Many commercial reservoir models exhibit numerical instabilities during simulation that have not been fully understood 
and analyzed [46,42]. Even though the Fully Implicit Method (FIM) is numerically more dispersive than the Implicit Pressure 
and Explicit Saturation (IMPES) scheme, the former is widely used in practical applications because of its superior numer-
ical stability. Unfortunately, since all the primary variables are coupled in FIM, it becomes increasingly difficult to extend 
conventional reservoir simulators to include new physics (surfactants, thermal effect, geomechanics, etc.). Furthermore, the 
complexity of mathematical structure, makes it challenging to analyze the numerical instability with such extensions.

The development of Multiscale Finite Volume Methods [11,12,21,22], has renewed interest in sequential fully implicit 
methods (SFI). A sequential algorithm can employ a modular programming design and provide natural physical interpre-
tation [43]. Nevertheless, as the numerical stability becomes a daunting challenge for the complex multi-component fluid 
flow with nonlinear phase equilibrium computation, most commercial compositional simulators adapt FIM [3,45,4].

Lee et al. [20,18,19] and Hamon et al. [9,8,7] demonstrated numerical instability in multiphase flow often occurs due to 
discontinuities introduced by the conventional phase-potential based upwinding scheme. This simple fact was not obvious to 
simulation engineers and mathematicians for many years because of the complex structure of the fully-coupled large matrix 
system arising from the fully implicit formulation. In a sequential method, it becomes rather straightforward to examine 
numerical instabilities. Lee et al. [20] designed a hybrid upwinding scheme, which was shown to improve numerical stability 
significantly.

Recently Moncorgé et al. [27,28] and Møyner and Moncorgé [30] derived stable, convergent sequential fully implicit 
schemes for compositional multi-scale algorithms. Hajibeygi and Tchelepi [6] derived a compositional multiscale formulation 
based on overall composition, in which the phase equilibrium calculation was not included. Moncorgé et al. [27] employed 
the pressure equation based on total mass and divided the domain between FIM and SFI for a desired accuracy. In many 
cases, however, the subdomain allocated to FIM becomes dominant to make the algorithm expensive. Moncorgé et al. 
[28] also derived a two-step sequential method for compositional simulation: first, the pressure equation is constructed 
and solved, and then the solution of the coupled species transport equation follows. Later, Møyner and Moncorgé [30]
derived another two-step sequential method for compositional simulation in which the whole system is first solved by a 
sequential method and then an additional post-processing of local transport iterations is applied in the non-convergent 
local domains. These researchers also found that the sequential algorithm cannot satisfy all the governing equations and 
constraints [28]. To mitigate the model inconsistency and numerical difficulties, the volume constraints needed to be relaxed. 
This clearly indicates an inconsistency in the governing equations for phase equilibrium and volume and mass conservation. 
This paper will examine this inconsistency closely and will introduce an additional degree of freedom to improve numerical 
convergence.

In the conventional compositional formulation, the transport equations are derived for each component, coupled with 
the phase equilibrium equation of state [1,45,4]. Instantaneous phase equilibrium is generally assumed. The number of 
independent variables becomes larger as the number of hydrocarbon components (Nc ) increases (i.e., Gibbs’ phase rule: 
2
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2 + Nc − Np , where Np represents the number of phases). This also makes the optimal selection of primary and secondary 
variables complex and system-dependent [41]. This paper leverages the simple physical observation that all the components 
in a phase move with the same phase velocity. Consequently, a multi-component system can be described by one transport 
equation for each phase, rather than each component. Once the phase velocity is computed, its composition can be derived 
from the component balance for each cell. Thus, the phase saturation becomes a primary variable, while the mole fractions 
can be back-calculated from the velocities and compositions of the fluid streams passing through the interfaces of each grid 
cell. Furthermore, as in the black oil formulation [21], a linear combination of the transport equations yields the pressure 
equation. This leads to a sequential formulation, where pressure is solved first, followed by the computation of total velocity, 
which is fixed during transport computation to give the phase saturations. The phase velocity and saturation are used 
to determine the phase compositions. Thermodynamic equilibrium is finally imposed, where the flash calculation yields 
the new compositions and saturations for each phase. This process is iterated until pressure, saturations and compositions 
converge. Clearly this sequential algorithm is described in natural variables and it becomes a black oil formulation by simply 
replacing the phase equilibrium calculation with the solution gas formulation. More importantly, this new formulation 
allows us to interpret the complex physical processes through porous media in a simple and natural way.

The paper is organized as follows. In section 2, the governing equations for three-phase transport are described and ma-
nipulated to yield one pressure equation and three saturation equations. The saturation equations are formulated in terms of 
total velocity and fractional flow. The discretized formulation for the equations is also derived and it is shown that compo-
sitions can be straightforwardly calculated from the component balance equation. In section 3, phase equilibrium methods 
are reviewed and “thermodynamic flux” is introduced to resolve non-convergence issue related to phase transition. In sec-
tion 4, the compositional sequential fully implicit method is formulated, while the mathematical structure of compositional 
simulation is examined in section 5. The new sequential algorithms are summarized in section 6. Numerical examples are 
presented in section 7. Finally, the concluding remarks and discussion on future research directions follow in section 8.

2. Governing equations and discretized formulation

The many variables in compositional formulation are normally categorized as primary and secondary variables. The 
primary variables are solved from the conservation equations, while the secondary ones are back-calculated afterwards. 
Each choice for this partition has a significant impact on the convergence rate of algorithm and the structure of the Jacobian 
matrix that is constructed in the Newton iterative method [41]. Since the flow and transport equations are governed by the 
extended Darcy’s law for multi-phase flow, the natural variables (e.g. pressure and saturations) form an optimal choice as 
primary variables for transport calculation. Molar component fractions, on the other hand, are the optimal choice as primary 
variables for the phase equilibrium computation. The belief that the fully implicit method provides the most stable solution 
is strongly ingrained in the reservoir simulation community [41] and consequently, the same set of primary variables are 
chosen both for transport and phase equilibrium computations [4,45,32]. By examining the governing equations, however, 
it is immediately apparent that the characteristics of transport and phase equilibrium equations are so different that their 
implicit simultaneous solution does not constitute an optimal algorithm. In [13] and [20], a sequentially coupled algorithm 
for pressure and saturation can be solved efficiently by an under-relaxation scheme facilitated by a trust region and hybrid 
upwinding methods. They showed that the sequential fully implicit method makes construction of the Jacobian simple and 
compact.

In compositional simulation, it is commonly accepted that the phase equilibrium is attained instantaneously, solely de-
pendent on state variables, pressure, temperature and the mole fractions of the hydrocarbon components. Furthermore, the 
equations of state are widely adapted to provide a consistent phase equilibrium calculation. As mentioned earlier, a single 
numerical method is likely inefficient to solve two coupled physical processes with different nonlinearity and characteristics. 
We thus need to develop an efficient sequential algorithm that can be optimized for each physical process.

Towards developing a sequential fully implicit method for compositional simulation, we employ an iterative method in 
which all the major stages of computation (e.g. pressure, saturation, component transport, and phase equilibrium) are solved 
sequentially. The algorithm, as a result, enables us to select pressure and saturations (4 variables) as primary variables. All 
the other variables (e.g., capillary pressure, phase compositions, etc.) become secondary, since they can be computed by 
correlations, simple algebraic relations and component balance equations. An equation of state (e.g., Peng-Robinson EoS) 
is solved at the end of iteration to update the new state variables in thermodynamic equilibrium. If the solution changes 
among the primary variables do not lie below a specified error tolerance, the sequential algorithm is iterated until fully 
converged.

The governing equations for three-phase flow in a heterogeneous domain are given by

∂

∂t
(φρw S w) = ∇ · (ρwλw · (∇pw + gρw∇H)) − qw , (1)

∂

∂t
(φρo So) = ∇ · (ρoλo · (∇po + gρo∇H)) − qo + Eo, (2)

∂ (
φρg S g

) = ∇ · (ρgλg · (∇pg + gρg∇H
)) − qg + E g, (3)
∂t

3
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in the domain �, with boundary conditions on ∂�. Here, λα = kkr,α/μα is the mobility of phase α, where α = w, o, g (i.e., 
water, oil and gas). Sα , kr,α , μα , and ρα denote, respectively, the saturation, relative permeability, viscosity, and density 
of phase α. The tensor k describes the permeability field, which is usually represented as a complex spatial multi-scale 
function that tends to be highly discontinuous in discrete representations. Porosity is denoted by φ, pα is phase pressure, 
g is gravitational acceleration, and H denotes reservoir height. In general, μα , ρα , and φ are functions of pressure, while 
the relative permeabilities, kr,α , are strong functions of saturation. In the right-hand side of equations, qα denotes the 
source/sink due to well production and injection.

Note that the governing equations include two additional terms, Eo and E g , that represent mass transfer between the 
hydrocarbon phases (oil and gas) as required to satisfy phase equilibrium. It is generally computed either by the equation 
of state or via correlations.

Saturations are constrained by:

S w + So + S g = 1. (4)

The phase pressures are related to the reference pressure by capillary pressures:

pα = pref + pc,α. (5)

The capillary pressures are often measured for oil-water and oil-gas systems. If pw is chosen as the reference pressure, then

po = pw + pc,ow , (6)

pg = pw + pc,g w = pw + pc,go + pc,ow . (7)

The phase fluxes are given by Darcy’s law,

uα = −λα · (∇pα + gρα∇H) . (8)

The mass conservation in phase equilibrium calculation entails

Eo + E g = 0. (9)

In the compositional formulation, the phase density is the mass averaged density of each phase:

ρo =
∑

mcxc

vo
, (10)

ρg =
∑

mc yc

v g
. (11)

Here, xc and yc denote the mole fraction of component c in oil and gas phases, respectively. vo and v g are the molar 
volumes for oil and gas phases and mc is the molecular weight for component c. For simplicity, the phase equilibrium is 
only studied between the hydrocarbon phases. It is thus assumed that the system contains no water-soluble components. 
In addition, v w denotes the molar volume of water.

If the mole fractions of water, oil and gas phases are given by Mw , Mo and Mg , respectively, the phase saturations can 
be expressed as

S w = Mw v w

Vt
, So = Mo vo

Vt
, and , S g = Mg v g

Vt
, (12)

where the molar volume of the multi-phase fluid, Vt , is given by

Vt = Mo vo + Mg v g + Mw v w . (13)

The discretized component balance equation for each cell can be derived as

V p(Mo + Mg)

�tVt
(zn+1

c − zn
c ) = ∇ ·

(
uo

vo
xc + ug

v g
yc

)
. (14)

Here, �t is the time step size, superscripts n and n + 1 denote the previous and current time levels, respectively. V p is the 
pore volume and zc is the total mole fraction for component c.

For given pressure, temperature and total fluid composition, the EoS (e.g., Peng-Robinbson) yields the density, volume, 
and composition for each phase:

E : {p, T , zc} → {L, xc, yc,ρo,ρg, vo, v g}, (15)

where L is the mole fraction of the oil phase.
4
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For the numerical examples, the water phase pressure, p = pw , is chosen as primary variable. The following semi-discrete 
form of the equations is obtained:

φn+1ρn+1
w Sn+1

w − φnρn
w Sn

w

�t
= ∇ · (ρwλw · (∇p + gρw∇H))n+1 − qn+1

w , (16)

φn+1ρn+1
o Sn+1

o − φnρn
o Sn

o

�t
= ∇ · (ρoλo · (∇(p + pcow) + gρo∇H))n+1 − qn+1

o + En+1
o , (17)

φn+1ρn+1
g Sn+1

g − φnρn
g Sn

g

�t
= ∇ · (ρgλg · (∇(p + pcg w) + gρg∇H

))n+1 − qn+1
g + En+1

g . (18)

Multiplication of Eqs. (16) to (18) with

ωw = 1

ρn+1
w

, ωo = 1

ρn+1
o

, and ωg = 1

ρn+1
g

, (19)

respectively, and summation of the resulting equations yields

φn+1

�t
− φn

�t

⎛⎝ ∑

∈{w,o,g}

ωn+1

 ρn


 Sn



⎞⎠ = R, (20)

where R = ωw(rhs of Eq. (16) ) + ωo(rhs of Eq. (17)) + ωg(rhs of Eq. (18)). Eq. (20) is the overall mass balance equation, 
in which saturations at the current time-level, n + 1, do not appear explicitly. To simplify the nonlinearities of parameters 
in the pressure equation, the coefficients in the convective terms (i.e., ω’s, mobilities, and formation volume factors on 
the right-hand side of Eq. (20)) are lagged by one Newton iteration. However, the pressure dependent coefficients in the 
accumulation term (e.g., φn+1 and ωn+1) as well as the source/sink terms (ωn+1qn+1) are linearized w.r.t. pressure. After 
rearrangement, the following equation is obtained:

C
(pν+1 − pν)

�t
− ωw∇ · (λ′ν

w · ∇pν+1) − ωo∇ · (λ′ν
o · ∇pν+1) − ωg∇ · (λ′ν

g · ∇pν+1)
= R H S1, (21)

with

C = ∂φ

∂ p

∣∣∣ν − φn
(

∂ωw

∂ p

∣∣∣νρn
w Sn

w + ∂ωo

∂ p

∣∣∣νρn
o Sn

o + ∂ωg

∂ p

∣∣∣νρn
g Sn

g

)
+ �t

(
∂ωwqw

∂ p

∣∣∣ν + ∂ωoqo

∂ p

∣∣∣ν + ∂ωgqg

∂ p

∣∣∣ν − ∂ωo Eo

∂ p

∣∣∣ν − ∂ωg E g

∂ p

∣∣∣ν)
, (22)

R H S1 = φn

�t

(
ωwρn

w Sn
w + ωoρ

n
o Sn

o + ωgρ
n
g Sn

g

) − φν

�t
− (

ωwqν
w + ωoqν

o + ωgqν
g

)
+ (

ωo Eν
o + ωg Eν

g

) + ωw∇ · (gρwλ′ν
w · ∇H

) + ωo∇ · (gρoλ
′ν
o · ∇H

)
+ ωg∇ · (gρgλ

′ν
g · ∇H

) + ωo∇ · (λ′ν
o · ∇pcow

) + ωg∇ · (λ′ν
g · ∇pcg w

)
, (23)

and

λ′ν
o = ρν

o λν
o , λ′ν

w = ρν
wλν

w , and λ′ν
g = ρν

g λν
g . (24)

In these expressions, ν and ν + 1 denote the previous and current Newton iteration levels, respectively.
Eq. (21) is solved iteratively for pν+1, and the updated pressure is then used to derive the linearized transport equations:

φν+1ρα Sν+1
α − φnρn

α Sn
α

�t
=

∇ ·
[
ρν+1

α

(
λν
α +

∑

∈{w,o,g}

∂λα

∂ S


∣∣∣ν(Sν+1

 − Sν


 )
) · (∇pν+1 + gρν+1

α ∇H)
]

(25)

−(qα − Eα)
∣∣

pν+1 −
∑


=∈{w,o,g}

(
∂qα

∂ S


− ∂ Eα

∂ S


)∣∣∣
pν+1,Sν

(
Sν+1


 − Sν



)
,

where α ∈ {w, o, g}. In common practice, only two out of the three equations, Eq. (25), are solved; and the saturation of 
the third phase is obtained from Eq. (4). Møyner and Moncorgé [29] found that three saturation solutions from Eq. (25)
yield better convergence by relaxing the volume constraint that the pore volume and fluid volume are equal in the iterative 
process. Note that the states at ν , ν + 1, and n + 1 are identical when the Newton-Raphson process is converged.
5
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Eqs. (21) and (25) are solved for pν+1 and Sν+1
α , respectively. In solving the saturation equations, we employ the fixed 

total velocity and fractional flow formulation [11,21], described in the following subsections 2.1 and 2.3. The density, ρν+1
α , 

is updated using the new pressure while the other secondary variables, {xν+1
c }, {yν+1

c }, and {zν+1
c } will be straightforwardly 

computed from the component balance equation, as described in subsection 2.4. Using the phase equilibrium calculation, 
Eq. (15), the state variables are updated:

E : {pν+1, T , {zν+1
c }} → {ρ•,ν+1

α , {x•,ν+1
c }, {y•,ν+1

c }, v•,ν+1
α }, where α ∈ {w,o, g}. (26)

The superscript • indicates a state variable in thermodynamic equilibrium. The updated variables in Eq. (26) readily yield 
the new saturations, S•,ν+1

α , which are consistent with EoS.

2.1. Conservative total velocity field

Equation (21) is solved with appropriate Dirichlet or Neumann boundary conditions, as dictated by the controls of the 
wells present in the reservoir. The resulting pressure solution is then used to compute locally conservative fine-scale phase 
velocities, which are necessary for accurate transport computations (i.e. solving the saturation equations);

uT = uw + uo + ug

= −λw · ∇(p + ρw g H) − λo · ∇(p + pcow + ρo g H) − λg · ∇(p + pcg w + ρg g H). (27)

Trangenstein and Bell [38] observed that the pressure and saturation of incompressible flow are decoupled by fixing the 
total velocity, uT , which is defined as the sum of the phase velocities. An ideal algorithm for incompressible flow is thus a 
numerical scheme that sequentially couples pressure and saturations with fixed total velocity. In this paper, the transport 
equations with total velocity and fractional flow formulation [14,21] are extended to compositional simulation.

2.2. Saturation solution

Using the conservative phase velocity field, Eq. (25) can be written as

φν+1ρν+1
α Sν+1

α − φnρn
α Sn

α

�t
= ρν+1

α ∇ ·
(

uν+1
α

(
1 + 1

λν
α

∑



∂λα

∂ S


∣∣∣ν(Sν+1

 − Sν


 )
))

−
(

(qα − Eα)
∣∣

pν+1,Sν +
∑




(
∂qα

∂ S


− ∂ Eα

∂ S


)

∣∣∣
pν+1,Sν

(
Sν+1


 − Sν



))
. (28)

The phase velocity in the right-hand side of Eq. (28) can be further expressed in terms of the total velocity and gravitational 
and capillary velocities:

uν+1
α = λα

λT

(
uν+1

T −
∑
β

λβ(ρβ g − ρα g)∇H −
∑
β

λβ(∇pcβw − ∇pcαw)
)
, (29)

where λT ≡ ∑
λl and pcβw = 0 for β = w . With the total velocity fixed, Eqs. (28) and (29) are solved for saturations at the 

new iteration level, Sν+1
α .

2.3. Fractional flow equations

The phase velocity in Eq. (29) can be rewritten in a concise form:

uα = f U
α (S)uT +

∑
β

f G
α,β(S)C G

α,β +
∑
β

f C
α,β(S)C C

α,β . (30)

The fractional-flow functions are derived as:

f U
α = m̃αkrα∑


 m̃
kr

, (31)

f G
α,β = f C

α,β = m̃αm̃βkrαkrβ∑

 m̃
kr


. (32)

Here, m̃α (= μw/μα ) is the inverse viscosity ratio with respect to the viscosity of water phase. Note that 
∑

α f U
α = 1. 

The velocities due to buoyancy and capillary forces [20,18,19] are characterized by the following dimensionless gravity and 
capillary numbers, respectively:
6
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C G
α,β = kg(ρβ − ρα)

μw uc
∇H, (33)

C C
α,β = k(∇pβ

c − ∇pα
c )

μw uc
, (34)

where uc is a characteristic velocity. Note that the velocities uT and uα in Eq. (30) are normalized with respect to uc . From 
here on, all the quantities are normalized w.r.t. characteristic variables, lc , uc , tc(= lc/uc), and pc(= uclcμw/k).

In a discretized model, the one-point upwinding scheme based on the phase velocity is commonly applied for fractional 
flow [2]. Lee et al. [20,18,19] observed that many numerical instabilities are caused by the flip-flopping of phase upwind 
direction. They proposed a hybrid upwinding method that greatly enhances numerical stability of multi-phase flow in the 
presence of gravity and capillary forces. Similar hybrid upwind schemes can be found in [9,7]. From Eqs. (30)–(34) it is 
apparent that the flux functions from gravity and capillary forces have a similar functional form: in the former the driving 
force is the difference of phase densities, while in the latter, that of capillary pressure gradients. Note that the fractional 
flows, f G

α,β and f C
α,β are identical in Eq. (32).

2.4. Component balance equation

In the formulation presented in this paper, the phase mixing (component transfer between phases) is not involved in 
the solution of the saturation equations. This approximation renders the algorithm simple, allowing the separation of each 
process into a dedicated sequential step. The component balance equation, as a result, can be straightforwardly solved, given 
component compositions from the previous time-step and the phase velocities between cells. Note that all the components 
in a phase move with the same phase velocity between two neighboring cells. The mass fraction of components is solved 
from the component transport equation and then it will be converted into the mole fraction of components. The mass 
fraction of component c of phase α in cell i, can be readily computed from the mole fraction:

ξα
c,i = xα

c,imc∑

 xα


,im


. (35)

Here, xα
c,i and ξα

c,i denote the mole fraction and mass fraction of component c in phase α of cell i, respectively, and mc is 
the molecular weight of component c.

The component balance equation for component c in cell i can thus be written as:

1

�t
(V n+1

α,i ρn+1
α,i ξ

α,n+1
c,i − V n

α,iρ
n
α,iξ

α,n
c,i ) =

∑
j∈ℵi

ρn+1
α,i j un+1

α,i j ξ
α,n+1
c,i j , (36)

where j ∈ ℵi denotes the neighboring cells connected to cell i and the subscript i j indicates the properties at the cell 
interface of i and j. Vα,i is the α-phase volume in cell i. As in the conventional upwinding method, the mole fraction of 
component c at the cell interface is determined by the phase velocity at the interface:

xα,n+1
c,i j = xα,n+1

c,i , if un+1
α,i j ≥ 0,

= xα,n+1
c, j , if un+1

α,i j < 0. (37)

The phase density ρn+1
α,i j at the cell interface can be similarly specified as a one-point upwind value. Note that for given 

phase velocities between cells, the system of linear equations, Eq. (36), can be directly solved. The mass fraction can be 
converted to the mole fraction:

xα
c,i = ξα

c,i/mc∑

 ξα


,i/m


. (38)

3. Phase equilibrium calculation

The phase equilibrium calculation of hydrocarbons is highly non-linear and entails special algorithms to ensure numerical 
convergence [23,24]. The equation of state is a cubic equation with two parameters that can only converge with good initial 
estimates of the equilibrium factors. Before the pioneering work of Michelsen [23], it was challenging to identify the number 
of stable phases. Since a reservoir simulation includes many phase equilibrium computations, it is crucial to optimize the 
algorithm to be numerically efficient and robust. In commercial reservoir simulation, the Peng-Robinson Equation of State 
(PREoS) [35] is exclusively used. The numerical examples presented in this paper also use PREoS for phase equilibrium 
calculation.

In compositional simulation, it is often assumed that phase equilibrium is attained instantaneously for given pressure 
and temperature (PT-flash) in a finite volume cell [4,45]. This commonly accepted assumption is not rigorous or accurate 
due to incomplete mixing in a heterogeneous grid block and the large scale of grids [37]. There have been several studies 
7
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to address this non-equilibrium phase behavior [10,31,36]. It is apparent that phase equilibrium in porous media cannot 
be described by a simple fugacity equality with given pressure and temperature. It involves ambiguity and complexity due 
to the non-equilibrium thermodynamics, the diffusion process between phases, pore volume constraint, scale difference 
in pores and simulation grids, etc. Especially, if the pores are small (e.g., nano pores), other physical phenomena play an 
important role in the thermodynamics equilibrium [5].

Clearly the equilibrium condition of PT-flash is not suited for fluid in porous media because of the strong pore volume 
constraint, which may be violated if the phase equilibrium calculation induces a large fluid volume change. It is thus impor-
tant to explore different flash calculations based on state functions. For instance, the phase equilibrium computation with 
specified volume and temperature (VT-flash) may provide a more relevant condition in porous media. The flash calculation 
algorithm for PT and VT flashes is described next and a modified PT-flash with a volume constraint, obtained by adjust-
ing fluid densities, is also proposed. The modified PT-flash entails a simpler computation than the VT-flash and conserves 
the volume during phase transition. As the phase equilibrium is a volumetrically averaged variable with large uncertainties 
and complexity, it can be a practical alternative that is simple to compute and also provides the conservation of mass and 
volume.

This modified version of PT-flash is designed to conserve the total fluid volume by compressing or expanding the gas 
volume. As discussed before, a sudden volume change in phase transition creates numerical difficulties in compositional 
simulation. In a constant composition expansion, the liquid volume monotonically increases as pressure decreases, but the 
total fluid volume increases quickly as the gas comes out when the pressure drops below the bubble point. Even though the 
mass in the gas phase is small, the gas volume is so disproportionally large that the sum of saturations becomes bigger than 
one. This cannot be modeled easily by the current multi-phase Darcy’s equation. To address this, either an infinitesimally 
small time-step size needs to be employed, with which the multi-phase Darcy’s equation is asymptotically still valid, or an 
intermediate stage is required to conserve mass/volume. The latter can be achieved via a simple modification of the phase 
equilibrium that allows a transient gas phase to honor total volume and mass of hydrocarbons. The phase split is still based 
on PT-flash.

Finally, we introduce a new degree of freedom, “thermodynamic flux”, that allows an additional fluid flux to satisfy 
the volume constraint. In porous media, a fluid cannot achieve phase equilibrium instantaneously at given pressure and 
temperature. The extra volume (positive or negative) needs a relaxation time to dissipate through the neighboring cells. 
This extra flux is physically induced by the volume change from phase equilibrium. This new concept is carefully examined 
in this section.

3.1. PT-Flash

There are two major algorithms to solve the equation of state: (1) Direct successive substitution and (2) Newton’s method 
for linearized equations. To expedite computation, Michelsen [25] also proposed a mixed strategy of successive substitution 
and Newton’s method.

Successive Substitution
The initial guess of the equilibrium constant for component c is generally provided by Wilson’s equation:

ln K 0
c = ln

pc
C

p
+ 5.373(1 + ωc)

(
1 − T c

C

T

)
. (39)

Here, T c
C pc

C , and ωc are the critical temperature, critical pressure, and acentric factor for component c, respectively. From 
the initial guess of the equilibrium constants, the fugacity can be computed as shown in [35]. The equilibrium constant is 
iteratively updated to convergence:

K ν+1
c = f o,ν

c (p, T , {xi})
f g,ν
c (p, T , {yi})

. (40)

Newton Method
The set of equations to solve for phase equilibrium is

fc(K ) =
(

ln(vc/Mg) + lnφV
c

)
−

(
ln(lc/Mo) + lnφL

c

)
= 0, (41)

where vc and lc are the number of moles of component c in the gas and oil phases for one mole of the gas and oil mixture, 
respectively. Mg and Mo denote the mole fractions of the gas and oil phases, and φV

c and φL
c are the fugacity coefficients 

for component c in gas and oil. Eq. (41) can be iteratively solved by a Newton-Raphson method [24].

3.2. VT-Flash

Nested Minimization
The VT-flash can be straightforwardly implemented by applying a nested minimization method with an inner loop of PT-
flash. The outer loop will find the pressure which satisfies constant volume [25,26]. As PT-flash is well established, this 
nested method can be easily implemented and is robust; however, it may not be computationally efficient.
8
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Newton Method
An efficient computation of phase equilibrium can be obtained by a Newton-Raphson method [25].(

Mij gp

gT
p E pp

)
+

(
�V

� ln p

)
+

(
g

rp

)
= 0, (42)

where

gi = ln yi + ln φi(y, T , p) − ln xi − lnφi(x, T , p), (43)

Mij = ∂ gi

∂v j
, (44)

gp,i = p

(
∂ lnφi(y, T , p)

∂ p
− ∂ lnφi(x, T , p)

∂ p

)
, for i = 1, Nc, (45)

E pp = p2

RT

∂V

∂ p
. (46)

3.3. Modified PT-Flash

Considering the ambiguity and uncertainty associated with phase equilibrium in porous media, a modified PT phase 
equilibrium is proposed. It honors volume and mass conservation, by modifying the fluid density computation to conserve 
volume. The main advantage of this modified phase equilibrium lies in the reduction of numerical instabilities due to the 
sudden increase of the total volume during phase transition.

From the constant composition expansion, the liquid density does not change much as pressure decreases, but the gas 
density is much more sensitive to pressure change. Furthermore, the first small amount of gas coming out from the fluid is 
likely entrapped in pores by the capillary pressure. It is thus a reasonable assumption that gas may have a different pressure 
from oil. As a result, if the volumes and densities of gas and oil are given by PT-flash as V g, Vo, ρo , and ρg , respectively, 
the meta-stable gas volume and density can be employed:

V ∗
g = V 0 − Vo, (47)

ρ∗
g = ρg

V g

V ∗
g
. (48)

Here, V 0 is the total hydrocarbon volume before the flash calculation. For the case with no gas phase (near a dew point) 
after the flash calculation, the oil density can be adjusted to satisfy the volume constraint:

V ∗
o = V 0, (49)

ρ∗
o = ρo

Vo

V ∗
o
. (50)

3.4. Thermodynamic flux

The VT-flash entails an additional degree of freedom, thermodynamic pressure, pthm , to satisfy the volume constraint, 
whereas the dynamic pressure, pdyn , from the transport equation is employed in PT-flash, without strictly honoring the vol-
ume constraint. If the total volume does not change much in phase equilibrium calculation, pthm ∼ pdyn . In phase transition, 
these two pressures can be substantially different. Clearly the conventional governing equations may not accurately describe 
the transient phenomena. It is important to understand the actual physical path that a fluid may follow in reaching a phase 
equilibrium in porous media.

If VT-flash is applied, the transport equation becomes easy to solve without volume balance error, but a noticeable 
discrepancy between thermodynamic and dynamic pressures remains. An additional model to describe the flux due to the 
non-equilibrium pressure (= pthm − pdyn) is needed. We propose that a thermodynamic flux between two adjacent cells i
and j is proportional to the difference of non-equilibrium pressures:

qthm
ij = Tij(pthm

i − pdyn
i − pthm

j + pdyn
j ). (51)

This additional flux will reduce the difference of the two pressures to reach a true phase equilibrium. Nonetheless, 
solving Eq. (51) can be expensive as it may require a global solution. Moncorgé et al. [28] and Møyner and Moncorgé [29]
noted that the phase transition domain is very localized and it does not affect the global solution significantly. It mainly 
impacts the local convergence around the phase transition domain.

In this paper, instead of solving Eq. (51) rigorously, a simple approximation to estimate the thermodynamic flux is 
derived by computing the difference between fluid volume and pore volume. A fluid volume increase accompanied in phase 
9
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transition from a sole liquid phase to the two phase regime (oil and gas), the extra fluid volume is allowed to move 
out of the host cell to the downstream cell (or toward the production well). In the case of fluid volume shrinkage, often 
encountered in miscible flooding, the neighboring fluid enters the cell to fill the void created by the phase transition. With 
this mechanism in place, the sequential algorithm is iterated to achieve numerical convergence. This simple approximation 
algorithm is used for the numerical examples in section 7.

4. Sequential fully implicit scheme

Since the transport equation of multi-phase flow and phase equilibrium equations are derived for distinctly different 
processes, it is desirable to develop a sequential algorithm that employs a modular programming design and provides 
natural interpretation of physical process [43].

Ács et al. [1] derived a direct sequential IMPES method, and Watts [43] derived an implicit sequential method to improve 
numerical convergence and stability over the IMPES method. Nevertheless, the numerical stability is a daunting challenge 
for the complex multi-component fluid flow with nonlinear phase equilibrium computation, and, as a result, the industry 
mostly adapts the Fully Implicit Method in commercial compositional simulators [3,45,4].

Recently stable and convergent sequential fully implicit schemes were actively investigated [28,27,30]. Developers of 
SFI algorithms for compositional simulation noted that it was not possible to derive an algorithm that exactly satisfies 
the governing equations and constraints [28]. Some inconsistencies are tolerated to provide a convergent solution within 
an acceptable error tolerance. This might indicate that the pressure, saturation, and phase behavior are strongly coupled 
and, as a result, the sequential algorithm may not model correctly strongly coupled terms. It was noted that the numerical 
inconsistencies are localized around a domain where a large volume change occurs due to phase transition. This observation, 
however, may also indicate that the governing equation may not accurately describe the process in which the total fluid 
volume is significantly different from the pore volume. It may violate the fundamental assumption of Darcy’s equation 
for multi-phase flow. Simulators often adapt rescaling or chopping variables that lie outside of the physical boundary. The 
mathematical implication of rescaling or chopping variables in such highly nonlinear problems is not fully understood. It 
is quite possible that the fully implicit algorithm may allow a solution that is not consistent or convergent for a highly 
nonlinear, coupled problem. To shed light on these difficult nonlinearity issues, the consistency and convergence of the fully 
implicit scheme will be examined in a forthcoming paper.

4.1. Reordering saturation equations

It is well-known that the convergence of hyperbolic saturation equations can be improved significantly if the variables 
are reordered, based on their potential values [17] or upwind directions [16]. Let P be the permutation matrix that reorders 
cells from natural order to upwind-direction based order. The linearized saturation equation, Eq. (28), is first expressed in a 
compact matrix form:

A S = R (52)

where S is the saturation vector 
[

Sν+1
w , Sν+1

o , Sν+1
g

]T
and R is the right-hand side vector. Applying the permutation matrix 

P , Eq. (52) is reordered as

Ã S̃ = R̃, (53)

where

Ã = P A P T , S̃ = P S, and R̃ = P R.

Note that the permutation matrix is orthogonal (P P T = I). When the fluid properties at the upwind location change substan-
tially during the phase equilibrium calculation, the reordering scheme can be employed to improve numerical convergence. 
The phase equilibrium operator E will yield

{S•,ν
o j

, S•,ν
g, j , x•,ν

j , y•,ν
j ,ρ•,ν

o, j ,ρ
•,ν
g, j ,μ

•,ν
o, j ,μ

•,ν
g, j } = E({Sν

o j
, Sν

g, j, xν
j , yν

j ,ρ
ν
o, j,ρ

ν
g, j,μ

ν
o, j,μ

ν
g, j}). (54)

In the reordered saturation equation, Eq. (53), cell saturation and phase equilibrium are sequentially combined for each 
cell. They are evaluated in a cell-by-cell basis. This reordered scheme will improve the saturation convergence, especially 
when phase equilibrium significantly alters cell properties (e.g., saturation, phase density, viscosity, etc.).

5. Mathematical structure

The phase equilibrium calculation is very nonlinear and numerical convergence is assured only if the initial estimate 
is close to the final solution. In general, the multi-phase flow is assumed to attain instantaneous phase equilibrium, even 
though there are numerical and physical evidences that the phase equilibrium may entail a relaxation time to reach an 
10
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Algorithm 1 Sequential Fully Implicit Compositional Simulation Method.

1: The initial conditions: T , {p0
i }, {S0

α,i} and physical rock and fluid properties
2: Specify well operation conditions (q j )
3: t = 0
4: p = p0, S = S0

5: while t < tend do
6: ν = 1
7: while (max(|δpν |, |δsν |) > ε and ν ≤ νmax) do
8: νp = 1
9: pνp = pν

10: while (|δpνp | > εp and νp ≤ νmax
p ) do

11: Linearize and solve pressure equation (21) for pνp+1

12: ν p ← ν p + 1
13: end while
14: pν+1 = pνp+1

15: νs = 1
16: while |δsνs | > εs and νs ≤ νmax

s do
17: Linearize and solve the saturation equation (28) for Sνs+1

18: νs ← νs + 1
19: end while
20: Sν+1 = Sνs+1

21: Solve component balance equation (36) obtaining xν+1
c , yν+1

c , zν+1
c

22: Solve phase equilibrium equation (3), separately in each cell, to obtain x•,ν+1
c , y•,ν+1

c , z•,ν+1
c

23: Determine saturations from phase equilibrium, S•,ν+1

24: Calculate thermodynamic fluxes and update S•,ν+1

25: Sν+1 = S•,ν+1

26: ν ← ν + 1
27: end while
28: t ← t + δt
29: end while

equilibrium and the complete mixing in a grid block is not assured [37,36,10]. In comparison, the multiphase Darcy’s 
equation is essentially linear with strongly nonlinear physical parameters (e.g., relative permeability and capillary pressure). 
Furthermore, the equation of state (EoS) is described by mass (molar) balance, whereas Darcy’s law is based on volume 
balance with pore volume constraints. It is thus instructive to examine the mathematical structure of the coupled equations 
from two distinctly different physical systems.

Trangenstein and Bell [39] analyzed the mathematical structure of sequential compositional reservoir simulation. The 
pressure equation is parabolic, while the transport equation is hyperbolic. They framed the phase equilibrium computation 
as a constraint minimization problem of Gibbs free energy. The partial molar derivatives of fluid compressibility are em-
ployed in the analysis. They also noted the phase equilibrium cannot be strictly satisfied in a sequential algorithm. The 
phase equilibrium calculation provides the molar distribution among phases and the phase densities. The saturations, com-
puted from the phase densities, do not satisfy the volume constraint. This can cause a severe numerical instability issue in 
compositional simulation because Darcy’s equation requires that the volume constraint (

∑
Sα = 1) is satisfied. It is quite 

possible that for a given time step size, there may not exist a feasible solution that strictly satisfies both Darcy’s transport 
equation and the phase equilibrium equation. Even fully implicit schemes often encounter numerical instability, especially 
in phase transition. To circumvent this numerical difficulty, a different phase equilibrium calculation can be adapted (e.g. 
constant volume and temperature, VT-flash [25]). This new phase equilibrium includes thermodynamic pressure that is dif-
ferent from dynamic pressure in the transport equation. This paper proposes a new degree of freedom, “thermodynamic 
flux” to strictly honor the volume constraint and equalize thermodynamic and dynamic pressures.

If the phase equilibrium only redistributes the molecular components among phases, an efficient, stable sequential algo-
rithm can be easily designed. Note that all the molecular components in a phase move with the same phase velocity. As a 
result, a transport equation for each component is not needed. The conventional natural variable description is followed for 
transport so that pressure and saturations can be solved sequentially. Since molecular components are secondary variables, 
the phase composition can be subsequently updated. With the updated composition, a phase equilibrium calculation is ap-
plied to compute new saturations and compositions. If the volume constraint is not violated during the phase equilibrium 
computation, the sequential algorithm will converge efficiently.

6. Algorithm summary

A sequential algorithm for pressure, saturation, and phase equilibrium calculations is summarized in Algorithm 1. All the 
four major steps of computation are sequentially calculated:

1. Nonlinear pressure equation, Eq. (21), is solved iteratively.
2. Nonlinear saturation equation, Eq. (28), is solved iteratively.
3. Linear component balance equation, Eq. (36), is solved.
11
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Algorithm 2 Potential Reordering for the Saturation and Phase Equilibrium Coupling.
1: Compute permutation matrix P , which reorders the equations based on upwind directions [16].
2: νs = 1
3: while |δsνs | > εs and νs ≤ νmax

s do
4: Linearize and solve the permuted saturation equation (53) for Sνs

5: Solve component balance equation (36) for xνs
c , yνs

c , zνs
c

6: Solve phase equilibrium equation (3), in each cell separately, to obtain x•,νs
c , y•,νs

c , z•,νs
c

7: Determine saturations from phase equilibrium, S•,νs

8: Sνs+1 ← S•,νs

9: νs ← νs + 1
10: end while

4. Phase equilibrium is computed for each cell, as described in Section 3.
5. The outer loop, comprising the stages described in steps 1 - 4, is iterated until converged.

In a practical reservoir model, the phase equilibrium calculation is limited to the three-phase region and phase transition 
cells. These cells can be easily identified because the pressure field is changing smoothly from the injection well to the 
production well. An efficient compositional reservoir simulator employs robust heuristic rules to skip unnecessary phase 
equilibrium computation for most part of the reservoir model, thus achieving high numerical efficiency.

In a model with phase transition around wells, Algorithm 1 is dispersive because the saturation equation moves the fluid 
before the phase equilibrium computation takes place. If a phase change happens in the upwind direction during the phase 
equilibrium computation, the downstream solution results in large dispersive errors in phase equilibrium and components 
balance, due to erroneous upwinding.

By replacing steps 16 - 24 in Algorithm 1 with those described in Algorithm 2, a new SFI scheme is obtained, which 
eliminates these numerical errors. It employs a potential reordering scheme in the saturation equation that exploits its hy-
perbolic nature, i.e., the cell saturation is only dependent on the cell properties in the upwind direction. As this algorithm 
is serial in nature, it can be expensive in modern computer architecture that utilizes memory access efficiency and paral-
lel/vectorized computation. To overcome this, Algorithm 2 can be adaptively applied only at the first iteration in the time 
step and then restricted to the cells in phase transition.

7. Numerical examples

In this section, the convergence and accuracy of the new sequential algorithm, described in section 6, are numerically 
investigated. To make the examples numerically challenging, despite their simple geometries, models with large volume 
changes in phase equilibrium are chosen. In the first case, the primary depletion of a three-component hydrocarbon system 
is studied, which involves a large volume increase as the fluid pressure goes below the bubble point. The second case 
involves gas injection for miscible flooding [15] in a six hydrocarbon system. When the injection gas is in contact with light 
oil, it dissolves, causing the total fluid volume to decrease during phase transition.

With the first case, we examine the phase equilibrium characteristics in constant composition expansion, and then 
primary depletion is investigated with a very simple one-cell model, as well as a one-dimensional ten-cell model with 
one injection and one production is studied. With the second case we closely study phase transition with one cell and 
four-cell models. In addition, a two-dimensional model (10 × 10) with one injection well and one production well, located 
at the corners, is investigated. The latter is studied both with and without gravity effects.

7.1. Example 1 - a one-cell model with primary depletion

The first numerical example consists of a one-cell model perforated by a production well. Even though the model is very 
simple, it includes a fast phase transition that can be numerically challenging for compositional simulation. The initial fluid 
in the cell is composed of three hydrocarbon components and water. The initial saturations are given by S w = 0.1, So = 0.9
and S g = 0 at T = 176 ◦F and p = 1000 psia. The oil molar compositions are C1 H4 = 0.2, C3 H8 = 0.3 and nC10 H22 = 0.5. 
The model dimension is 10m × 10m × 1m in physical space and the cell porosity is 0.2. A constant time-step of �t = 0.1
day is employed.

7.1.1. Constant composition expansion
As the cell pressure decreases very rapidly during primary depletion, it is instructive to examine the phase behavior 

of the three-component hydrocarbon system, while disregarding the water component, in constant composition expansion 
[44]. The phase equilibrium state of gas and oil volumes and component compositions are plotted in Fig. 1. Above the 
bubble point pressure, 874.9 psia, the fluid is in single phase and the liquid has a small, positive compressibility. However, 
the fluid goes through a drastic total volume increase as gas evolves from the fluid below the bubble point pressure, as 
clearly shown in Fig. 1. Since the heavy component, nC10 H22, does not vaporize, the gas phase is mostly composed of 
the lighter components, methane and propane. Note that the liquid volume becomes smaller as pressure decreases, but 
the specific gravity increases, because the lighter components move from the liquid phase to the gas phase. This complex 
12
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Fig. 1. Example 1. Phase behavior of a three-component system (C1 H4 = 0.2, C3 H8 = 0.3 and nC10 H22 = 0.5) in constant composition expansion at T =
176 ◦F: (a) volume change, (b) composition distribution in gas (red) and oil (blue). (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Fig. 2. Example 1. A single cell model with initial saturations, S w = 0.1, So = 0.9 and S g = 0. p0 = 1000 psia and pwell = 600 psia. The primary depletion 
process is modeled by VT-Flash and modified PT-Flash. (a) cell pressure, (b) So and S g , (c) well production rate.

phase behavior around the bubble point may cause numerical difficulties in compositional simulation that involves phase 
transitions.

7.1.2. Primary depletion
The sequential algorithm was first applied with �t = 0.1 day and the conventional PT-Flash. At the first outer-loop 

iteration, the simulation run yielded p = 634 psia, S w = 0.101257, So = 0.85229, and S g = 0.3389. Clearly the volume 
constraint was not satisfied due to the phase transition of hydrocarbons from single phase (oil) to two phase (oil and gas). 
In order to honor the multi-phase Darcy’s equation, the hydrocarbon saturations were linearly normalized to So = 0.643026
and S g = 0.2557. We observed it creates a large mass error (20.85%) in linearly normalized saturations and the mass errors 
did not decrease over subsequent iterations. The algorithm failed to converge. These results are very different from those 
from volume constrained methods or the thermodynamic flux method. The approximation of phase behavior can yield 
drastic different results for the initial depletion with a large pressure drop and phase transition with a large volume change.

The same problem was simulated using the sequential algorithm with VT-flash and Modified PT-flash. As mass and 
volume were conserved in both methods, they yielded stable convergence by 1-3 outer loop iterations. In Figs. 2 (a) (b) and 
(c) the cell pressure, oil and gas saturations, and well production rates are plotted for the first 5 time steps, respectively. 
The pressure solutions are very similar, but the saturations show noticeable discrepancies between different phase flash 
approximations. The initial well rates agree in the first time step, but the subsequent declining rates are different in the 
second and third time steps.

The depletion process was also modeled using the thermodynamic flux, described in section 3.4. The pressure, saturations 
and well production with thermodynamic flux are plotted in Fig. 3. Their developments are similar to the results from VT-
flash and modified PT-flash. However, the physical properties of fluids from the VT-flash and modified PT-flash are not in 
thermodynamic equilibrium. Note that the volume is modified to honor the volume constraint. The well production rates 
from the thermodynamic flux method, as a result, are very different from those from the other two methods. An accurate 
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Fig. 3. Example 1. A single cell model as described in Fig. 2. The rapid depletion is modeled by the thermodynamic flux. (a) cell pressure, (b) So and S g , 
(c) well production rate.

Fig. 4. Example 2: A ten-cell model with production and injection wells.

Fig. 5. Example 2. One injection well and one production well with the initial condition, S w = 0.1, So = 0.9, S g = 0, and p = 1000 psia at t = 0. The 
bottom-hole pressures at the injection and production wells are given by 1400 psia and 600 psia, respectively. (a) pressure development, (b) injection rate, 
production rate and thermodynamic flux at early time, (c) injection rate, production rate and thermodynamic flux in simulation.

solution method is the one that follows the physical process with an infinitesimally small time-step size. A single phase 
fluid should be produced before the bubble point pressure is reached and then, the second phase should appear gradually 
at the production. The pore volume constraint will delay gas production. When the thermodynamic flux is added as an 
additional degree of freedom, the physical properties at the computed pressure and temperature can be readily honored.

This simple problem is an extreme test for phase equilibrium because of the large pressure drop (> 450 psia) and phase 
transition in the first time step. Note that the numerical difficulty can be easily resolved if a mass/volume conservative flash 
approximation is applied.

7.2. Example 2: a ten-cell model with production and injection wells

The previous example with three-hydrocarbon components, was recast to a simple 1-d model of linear displacement. 
The model is schematically depicted in Fig. 4, where a water injection well is located in cell i = 10 and a production well 
in cell i = 1. The model was initialized with p = 1000 psia and the bottom hole pressures of the injection and production 
wells are maintained at 1400 and 600 psia, respectively. A constant time step size, �t = 0.1 day, is employed throughout 
the simulation. Despite the sudden initial change in pressure and volume, the application of thermodynamic flux renders 
a stable and convergent numerical solution without time step cuts. In Fig. 5 the pressure developments and the well rates 
and thermodynamic flux are plotted. The thermodynamic flux is needed to compensate sudden pressure change that incurs 
additional production of fluid at the early stages of the simulation. But in the later time, the thermodynamic flux diminishes 
quickly as the system enters a stable operation mode (see Fig. 5(c)).
14
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Fig. 6. Example 2. Saturation distribution. (a) S w , (b) So , (c) S g .

Fig. 7. Example 4. A four cell model with production and injection wells.

The uniform initial pressure quickly redistributes to honor the well constraint and the profile continuously adjusts to 
reflect the total mobility of fluids. Note that the viscosities of water, oil and gas are 1, 0.1695, and 0.00126 cp, respectively, 
at t = 40 days. Fig. 5(a) clearly shows that the pressure gradient reflects the total fluid mobility as the water moves from 
the injection well. In Fig. 6, gas evolves as low pressure propagates from the productions well.

7.3. Example 3: a one-cell model with miscible gas injection

This example employs the six component hydrocarbon fluid of the SPE Fifth Comparative Solution Project [15]. The oil 
composition is C1 = 0.50, C3 = 0.03, C6 = 0.07, C10 = 0.20, C15 = 0.15, and C20 = 0.05, while the injection gas composition 
is C1 = 0.77, C3 = 0.20, and C6 = 0.03. The detailed physical properties of fluids can be found in [15]. When oil and injection 
gas are in contact, they become miscible. Consequently, the total fluid volume may shrink due to phase equilibrium. It is 
thus instructive to examine numerical convergence of the SFI algorithm on a one-cell model with a miscible gas injector.

The cell is initialized with pressure at 2500 psia, temperature 160 ◦F, and phase saturation S w = 0.2, So = 0.7999 and 
S g = 0.0001. The gas injector has a constant bottom-hole pressure 2600 psia. The cell size is 10m × 10m × 1m and the 
porosity is 0.2. A constant time step size of �t = 1 day is employed throughout the simulation. The actual convergence 
path in SFI was:

1. For given initial condition and well operation constraint, the pressure calculation yields the cell pressure p0 =
2599.9044 psia and the amount of injected gas is 8.9778 kg.

2. The saturation computation yields S w = 0.199347, So = 0.798355 and S g = 0.002298. Due to the low compressibility of 
oil, the amount of injected gas is limited, qinj = 8.9778 kg, and the cell pressure approaches the well-bore pressure.

3. The phase equilibrium of hydrocarbons yields So = 0.799772 and S g = 0. The gas phase disappears and the volume 
constraint is not satisfied (S w + So + S g �= 1).

4. The thermodynamic flux is computed to satisfy the volume constraint: qtherm = 5.81615 kg.
5. The second iteration brings p0 = 2599.84556 psia and qinj = 14.7886 kg, which satisfy the mass and volume conserva-

tion of the governing equations.

In this example the new algorithm efficiently yields a consistent solution that satisfies both mass and volume con-
straints. In sequential compositional simulation, the large fluid volume variation in phase transition has been numerically 
challenging. Inclusion of the thermodynamic flux significantly improves numerical convergence for this challenging problem.

7.4. Example 4: a four-cell model with miscible-gas injection and production wells

A four cell-model with injection and production wells with the same SPE 5 fluid model which was used in the previous 
example, is studied. The four-cell model is schematically depicted in Fig. 7. It was initialized with p = 2500 psia and 
T = 160 ◦F.
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Fig. 8. Example 4. A four-cell model with injection and production wells with the initial condition, S w = 0.2, So = 0.7999, S g = 0.0001, and p = 2500 psia
at t = 0. The bottom-hole pressures at the injection and production wells are given by 2600 psia and 2400 psia, respectively: (a) gas saturation development, 
(b) saturation distribution, (c) thermodynamic flux at cell 1 during nonlinear iterations of the outer loop.

As discussed in the previous numerical example, the injection gas is dissolved in oil on first contact. The phase transition 
incurs a large volume change. If the saturation equation is solved for all the cells before phase equilibrium calculation, 
the injection gas invades several cells. This will create unnecessary numerical dispersion. In order to control the error, 
the saturation and phase equilibrium of the injection cell are first solved to provide a better estimate of saturations and 
composition. This can be considered as a potential-based reduced Newton algorithm for saturation equation [17]. This 
potential-based Newton algorithm (see Algorithm 2 in section 6) is needed for the cells with large changes of cell properties 
(e.g., saturations and compositions). Algorithm 2 is, thus, employed for the first iteration of the saturation solution loop.

The model is simulated for 10 days with a fixed 1 day time-step size. Convergence is typically achieved after 3-5 outer-
loop iterations. The saturation profiles and the thermodynamic flux are depicted over the course of simulation time in 
Figs. 8 (a), (b) and (c). Note that at the first time step, all the injection gas was dissolved into oil and the fluid volume 
was smaller than the pore volume. A thermodynamic flux of injection gas is introduced to satisfy the volume constraint, as 
shown in Fig. 8 (c). In Fig. 8 (a), the gas saturation in cell 1 builds up gradually, despite the fact that part of the injected gas 
is continuously dissolved into oil. Note that the water saturation hardly changes over the simulation. The thermodynamic 
flux is non-monotonic at the initial time step (1-3), but monotonically decreases afterwards.

7.5. Example 5. A 2-d model with miscible-gas injection well and production wells

A 2-dimensional model is considered to investigate the gravitational effect in multi-phase, compositional flow. The phys-
ical dimension of the model is 100m × 100m × 1m that is uniformly discretized over 10 × 10 × 1 grids. As in Examples 3 
and 4, the 6-component hydrocarbon fluid from the SPE Fifth Comparative Solution Project [15] is employed. The model 
is initialized with So = 1 at p = 2500 psia and T = 160 ◦F. The wells are located at the corners of the domain with con-
stant pressure constraints: the injection well at (1, 1) with pinj

well = 2600 psia and the production well at (10, 10) with 
pprd

well = 2400 psia. To examine multi-phase flow interactions with phase equilibrium and gravity effect, the water phase is 
not included in this example.

The model is first simulated without gravity and the results are shown in Fig. 9: (a) p at t=100 days, (b) S g at 100 
days, and (c) S g at 400 days. Note that the diagonal symmetry of the solution is strictly honored during the simulation. The 
results with gravity are shown in Fig. 10. The pressure and gas saturation distribution in the presence of gravity are very 
different from those without gravity. As the injected gas interacts with oil, the system becomes two phase. The gas phase 
moves preferentially in vertical direction due to buoyancy. Furthermore, it is noted that the gas injection and production 
rates between these two scenarios are very different due to the different potential differences at the well location with 
or without gravity. The density and viscosity of the gas phase are much smaller than those of oil phase. Consequently, 
the buoyancy effect is very visible in Figs. 10 (b) and (c), as the gas phase moves in the vertical direction away from the 
injection well.

In the early stages of simulation, the phase behavior is complex around the well as the gas phase becomes miscible 
with oil. Since Algorithm 2 is numerically more expensive than Algorithm 1, it is, thus, applied only for the injection cell 
(1, 1) and two downstream cells (2, 1) and (1, 2). The thermodynamic flux efficiently stabilizes the numerical calculation, 
allowing a fixed time step of 1 day throughout simulation. For this numerical example, the new algorithm takes 4-6 outer-
loop iterations at each time step before achieving convergence.

8. Concluding remarks

General purpose reservoir simulators commonly adapt the compositional formulation because it can model complex 
physical processes. In addition, the black-oil formulation can be included as a simplified form of the compositional formu-
16
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Fig. 9. Example 5. A 2-d model with no gravity effect: initial saturations are given by So = 1 and S w = S g = 0.0. p0 = 2500 psia, at t = 0, and the well 
pressures are specified by pinj

well = 2600 psia, and pprd
well = 2400 psia. (a) p at t = 100 days, (b) S g at t = 100 days and (c) S g at t = 400 days.

Fig. 10. Example 5. A 2-d model with gravity: the initial and operational conditions are given in the caption of Fig. 9: (a) p at t = 100 days, (b) S g at 
t = 100 days, and (c) S g at t = 400 days.

lation. In general, the time scale for phase equilibrium is assumed to be much smaller than the characteristic time of the 
transport process. The phase equilibrium is computed by the Equation of State (EoS), e.g., Peng-Robinson.

In this paper, observing that components within a phase are displaced with the same velocity at grid cell interfaces, we 
formulate simplified governing equations for compositional flow that are similarly structured to those from the black-oil 
formulation. Since the characteristics of the transport equations and the EoS are distinctly different, a sequential algorithm 
is designed, which separates each process to be tackled by dedicated solution methods. Nonetheless, it has been a real 
challenge to develop a robust and efficient sequential algorithm, which, in contrast to previously published work, would 
strictly satisfy all the governing equations, i.e., mass and volume conservations and phase equilibrium [28]. If the fluid 
goes through a phase transition that involves a large volume change, the sequential algorithm needs many iterations or 
fails to converge. This indicates that the governing equation may not capture the significant volume change associated with 
the phase transition. Based on this observation, a new sequential algorithm was devised, which includes a new degree of 
freedom, “thermodynamic flux”, to represent the phase equilibrium in a confined space.

Two versions of the Sequential Fully Implicit Method for compositional simulation are proposed:

1. In the first algorithm, all the processes are divided into four steps, to be solved in sequence: pressure, saturation, 
components, and phase equilibrium.

2. The second algorithm reorders the cells based on upwind direction, and saturation, component and phase equilibrium 
for each cell are solved in sequence, in serial manner.

Clearly Algorithm 2 can be expensive in modern hardware, that exploits parallel and vector computation. It is, thus, used 
only for cells which experience phase transition at the first iteration of the time step. This ensures numerical stability while 
minimizing numerical dispersion during the computation of the saturation and phase equilibrium.
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The new algorithm was demonstrated on two numerically challenging problems with phase transition accompanied by 
fluid volume changes: (1) rapid primary depletion and (2) miscible gas injection. The first case involved a large volume 
increase, while the second case featured a fluid volume decrease as gas dissolves on contact with oil. The new algorithm 
successfully resolved these challenging phase flow problems. The method was also employed on a 2-dimensional, miscible 
flooding example with and without gravity.

The numerical examples show that the conventional compositional formulation with instantaneous phase equilibrium 
is incomplete in describing the phase transition with a large volume change. This is identified as the prime cause for 
convergence failure during phase transition, experienced using state-of-the-art sequential methods. Finally, the inclusion of 
the thermodynamic flux was shown to accelerate the convergence of the nonlinear iterative scheme.

In future work, the efficiency of the new algorithm in more complex physical models with compressibility, gravity, 
capillary force and three-phase flow, needs to be demonstrated. In addition, the direct applicability of the method to black-
oil models needs to be demonstrated. Finally, the convergence path of a fully implicit method during a phase transition is 
to be studied and compared with that of the proposed algorithm. Most commercial compositional simulators often adapt 
rescaling or chopping of variables that lie outside of the physical boundary. The mathematical implications of such ad-hoc 
treatments in highly nonlinear problems need to be closely examined.
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