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ABSTRACT

The increasing interest for high repetition rate global optical measurement techniques such as Time-Resolved Particle  
Image Velocimetry (TR-PIV) raises a number of questions concerning their ability to provide relevant statistical and  
spectral quantities. In an effort to address this issue, complementary TR-PIV and Laser Doppler Velocimetry (LDV)  
measurements have been carried out. An application to the analysis of the detached flow over a NACA 0015 airfoil at a 
Reynolds number Re=105 in a water tunnel is proposed.

INTRODUCTION

The rapid emergence of  PIV as a reliable solution for global diagnostics of fluid flows has raised this technique to a  
high level  of  accuracy  combined with an  always  increasing  resolution and  growing repetition rates.  For any  PIV  
experiment, the eduction of converged statistical quantities is possible as long as an appropriate, i.e. sufficient, number  
of mutually independent velocity fields is obtained, as illustrated by the practical analysis proposed in [1]. So-called 
classical, dual frame, PIV setups capable of maximum repetition rates of the order of 10Hz are generally used for that  
purpose. In most applications, this type of apparatus cannot natively provide time-resolved data, for which TR-PIV 
solutions are then needed. However, time-resolved systems comprise high repetition rate lasers which cannot always be 
efficiently used at both high and low frequencies, thus prohibiting the use of a single TR-PIV system for acquiring both  
time-resolved and non time-resolved images series. Moreover, and since TR-PIV cameras depend on limited on-board 
memory, the statistic and temporal analyses are limited to several thousands of samples, which may limit their ability to  
fully describe unsteady and turbulent flows.
Additionally, considerable effort is put on the development of specific TR-PIV algorithms, which rely on the analysis of  
more than two consecutive images for enhancing the accuracy of the computed velocity fields [2,3,4]. Hence, TR-PIV 
experiments shall be designed to ensure that  both instantaneous and averaged quantities are obtained with the best  
possible accuracy.

1-EXPERIMENTAL SETUP

In  order  to  assess  how TR-PIV experiments  may  best  combine  accuracy,  statistical  relevance  and  high  temporal  
resolution, independent series of multi-block TR-PIV experiments have been conducted and completed by separate 
LDV measurements. An application to the fully detached flow around a NACA 0015 airfoil of chord c=80mm at an 
angle of attack α=30° and a Reynold number Re=105 is described (Figs.1 and 2), for which an analysis of the statistical  
and spectral relevance of the experimental datasets is proposed.

Figure 1 Experimental 2D2C TR-PIV (left) and 2C LDV (right) setups.

The TR-PIV series were acquired using two 10242 pixels Photron FASTCAM SA-1.1 cameras operated in tandem  at a 
rate fPIV=1500fps. The Region Of Interest (ROI) covered by the cameras is 4,65 chords long and 2,34 chords high, with  
a 2.6mm wide overlapping strip in the measurement plane (see Figure 2) . VESTOSINT polyamide particles were used 
for seeding and a double sided illumination was provided by two Nd:YAG lasers (Quantronix Darwin Duo, New-Wave  
Research Pegasus). 
The  32GB  cameras'  on-board  memory  allow  recordings  of  21841  images.  The  baseline  series  of  measurements  
comprises a single block of 21841 images. A first set of multi-block image series containing 78 blocks of 280 images 



was recorded following four duty cycles: 50%, 25%, 10% and 1%. A second set of multi-block image series containing 
910 blocks  of  24  images  was  recorded  following three  duty  cycles:  8.5%,  3% and 1%.  The chosen  duty  cycles  
correspond to equivalent time lags between TR-PIV blocks and are respectively based on 1, 3, 9 and 99 (78×281 set 
only) vortex shedding periods.
 
A multi-threaded TR-PIV Multi-Frame Pyramid Correlation Algorithm [3] coded in C++ [4, 5] and using blocks of 6 
successive images was used to evaluate the velocity fields.

The LDV measurements  were  carried  out  within the TR-PIV ROI over  a  24×11 cartesian  grid of  step 11.7 mm, 
corresponding to 64 pixels in the TR-PIV images  (see Figure  2), so that the velocity components can be evaluated 
coincidentally  in  both  systems.  A  two-components  Dantec  (FiberFlow ;  BSA-F80  ;  BSA Flow-Software)  system 
equipped  with  Spectra-Physics  Beamlok  2060  lasers  and  operating  in  coincident  mode  was  used,  providing  5mn 
recordings with mean datarates ranging from 1.6kHz to 6kHz.

Figure 2 Distribution of averaged velocities on superimposed TR-PIV and LDV measurement domains.

2-THEORY

2.1 Expected value and variance of sample estimates

The influence of the data acquisition procedure (sample size, data rate, ...) on the flow diagnostics via the intricacy of 
statistical (mean and rms values, probability density functions) and temporal (auto-correlation functions)  quantities can 
be derived from classical signal processing concepts.

Given N observations of a random variable x, any quantity of interest s characterizing x may be evaluated using the  
available sampled values (xi)i=0...N-1 of x using a chosen estimator ŝ. The quality of the estimator may be estimated using 
its expected value E[ŝ] and variance V[ŝ] from which its bias B[ŝ] and mean squared error MSE[ŝ] can be derived:

MSE [ ŝ]=E [ ( ŝ−s )
2]=V [ ŝ ]+B [ ŝ ]

2 (1)

with

B [ ŝ ]=E [ ŝ]−s  and V [ ŝ ]=E [ ( ŝ−E [ ŝ])
2]=E [ ŝ2

]−E [ ŝ]2 . (2)

The quantity s may be classically evaluated from a single series  (xi)i=0...N-1 of N sampled values of x or from multiple 
series, using separated blocks of data.
We shall also consider here that (xLk+i)k=0...M-1;i=0...Bk-1 represents M blocks of length Bk separated by intervals Lk. For 
comparison purposes, N may represent the maximum number of available samples of x, so that ΣBk≤N, or, for blocks of 
unique size B, M×B≤N. The case of a single series of data corresponds to M=1; B0=B=N.

The  estimator  ŝ is  then  defined  from  M  estimators  ŝk arranged  with  convenient  arithmetics.  For  most  statistical 
quantities,  ŝ will be defined as the arithmetic mean of  (ŝk)k=0...M-1:

ŝ=
1
M

∑
k=0

M−1

ŝk , (3)



yielding:

E [ ŝ]=
1
M

∑
k=0

M −1

E [ ŝk ]  and V [ ŝ ]=
1

M 2 ∑
k=0

M−1

V [ ŝk]+
1

M 2 ∑
k=0

M−1

∑
l=0
l≠k

M−1

E [( ŝ k−E [ ŝ])( ŝl−E [ ŝ]) ] . (4)

Similarly,

B [ ŝ ]=
1
M

∑
k=0

M−1

B [ ŝ k]  and MSE [ ŝ]=
1

M 2 ∑
k=0

M−1

MSE [ ŝk ]+
1

M 2 ∑
k=0

M−1

∑
l=0
l≠k

M−1

E [( ŝk−s)( ŝl−s) ] . (5)

In other terms, multi-block acquisitions logically average, and may mostly preserve, the expected value and bias of the 
estimator, whereas its variance and MSE are altered accordingly to the covariance terms within the ŝk series. Depending 
on how each individual MSE evolves and on how related are the ŝk series, multiple data blocks will exhibit different 
behaviors.
For an application to our recorded data and comparison purposes, we restrict our approach to blocks of equal length B 
regularly separated by interval L. All the estimators ŝk then exhibit identical characteristics so that:

∀ k , E [ ŝ k ]=EB ; V [ ŝ k]=V B ; B [ ŝk]=BB ; MSE [ ŝk]=MSEB . (6)

The above forms become:

 E [ ŝ]=E B  and B [ ŝ ]=BB , (7)

whereas

V [ ŝ ]=
1
M

V B+
1

M 2 ∑
k=0

M−1

∑
l=0
l≠k

M−1

E [( ŝk−E [ ŝ])( ŝl−E [ ŝ]) ] (8)

and

MSE [ ŝ]=
1
M

MSE B+
1

M 2 ∑
k=0

M−1

∑
l=0
l≠k

M−1

E [( ŝk−s)( ŝl−s) ] . (9)

The block length B explicitly conditions all these terms, and the interval length essentially appears in cross products.  
However, depending on the order of the estimated quantity s, both parameters will implicitly appear in all these forms.

2.2 Estimation of first and second order moments

The first quantities of interest are generally the mean, variance and covariance. Given N equally spaced observations of 
a random variable x of mean value μ and standard deviation σ, the sample arithmetic mean is simply expressed as:

m=
1
N

∑
n=0

N−1

x(n) , (10)

the covariance as

∀ l ,∀ i ,C (l )=E [(x i−μ)(x i+∣l∣−μ) ] , (11)

and the sample covariance as

∀ l , c(l )=
1

N −∣l∣ ∑
i=0

N−∣l∣−1

(x i−m)(xi+∣l∣−m) . (12)

Not that depending on how one needs to handle both bias and MSE, the denominator N-|l| may be replaced by N, N-1 or  
N-|l|-1.
The variance σ2=C(0) of x is then expressed as

s2
=c (0)=

1
N ∑

i=0

N −∣l∣−1

(x i−m)
2  or s2

=c (0)=
1

N−1 ∑
i=0

N −∣l∣−1

(x i−m)
2 . (13 ,14)

It is well established that m is an unbiased estimator of μ that exhibits a variance:

V [m ]=MSE [m ]=σ2

N [1+2 ∑
l=1

N−1

(1−
l
N )ρ(l )] , (15)

in which ρ(l) is the auto-correlation, the normalized auto-covariance C(l)/σ2, of x [6] .
This expression indicates that the estimation of μ from discrete samples of x does not follow the well-known behavior 
V[m]=σ2/N encountered for identically and independently distributed (iid) data as soon as the samples of  x are not 
mutually independent.  The increase of  V[m] corresponding to positive values of  ρ(l), as it  is encountered in time-
resolved flow velocity measurements, that contain lags smaller than the integral time scale of the signal, may easily be 



compensated by increasing N accordingly. Additionally, oscillations of ρ(l) corresponding to periodical components of 
the flow can significantly alter V[m] depending on the length of the recording, the time scales and temporal coherence 
of these components.

Note that Eqs. (15), (4) and (5) are built the exact same way, illustrating how the variance, and MSE, of an averaged  
multi-block estimator are comparable to those of the sample mean.
Equation  (15) also demonstrates that, for sufficiently large N and integrable ρ, the variance of m is altered by a discrete 
approximation of the integral time scale of x, which, in continuous form, formally writes [7]:

τ̄ x=∫
l=0

∞

ρx(l)dl . (16)

 Similarly, the estimation of c(l) exhibits a variance in which fourth order moments are involved. Bartlett [8] has shown 
that for normally distributed variables:

V [c(l )]=σ4

N ∑
k=−N +∣l∣+1

N −∣l∣−1

(ρ2
(k )+ρ(k+l )ρ(k−l ))−4ρ(l )ρ(k)ρ(k−l)+2ρ

2
(l )ρ2

(k ) , (17)

in which the cross products of ρ illustrate how these estimates become less accurate as mutually correlated samples are 
used. 

2.3 Multi-block estimators

As shown in Eqs. (4) and (8), the variance of a multi-block estimator is governed by two types of terms: an average of 
individual variances and a sum of covariances. If statistically independent blocks are recorded, the covariance terms  
vanish, otherwise, they can contribute significantly to the formulation.  It is quite straightforward to obtain the variance  
of the sample multi-block mean defined for equally long and spaced blocks as:

m=
1

MB
∑
k=0

M−1

∑
i=0

B−1

xkL+ i=
1

MB
∑
k=0

M−1

mk (18)

Leading to

V [m ]= σ
2

MB [1+2∑
l=1

B−1

(1−
l
B )ρ(l )+

1

M 2 ∑
i=0

M−1

∑
j=0
j≠k

M−1

Cov [mi(l ) ,m j (l ) ]] , (19)

which results in summing up correlations along larger blocks lags.
For the auto-covariance estimator c(l):

c (l )=
1

M (B−∣l∣)
∑
k=0

M−1

∑
i=0

B−∣l∣−1

(xkL+ i−m)(xkL+i+ l−m)=
1

M (B−∣l∣)
∑
k=0

M−1

ck (l ) , (20)

obtaining the variance is more tedious without strong assumptions, but a starting formulation is:

V [ ĉ(l )]= σ4

MB ∑
k=−N +∣l∣+1

N−∣l∣−1

(ρ2
(k )+ρ(k+l)ρ(k−l)−4ρ(l )ρ(k)ρ(k−l )+2ρ

2
(l )ρ2

(k ))

+
1

M 2 ∑
i=0

M−1

∑
j=0
j≠k

M−1

Cov [c i(l ) ,c j (l) ]

, (21)

which can be further developed using Bartlett's [8] formulae.

3-RESULTS

The behaviors of multi-block estimators are benchmarked against conventional estimates from random distributions of 
points using a bootstrap method [9] applied to the LDV data.

Fig. 3 shows the evolution of V[m] and V[s2] for increasing sample sizes when estimators m and s2 are applied to the 
streamwise  component  u  of  the  velocity  measured  1.5  chords  downstream  of  the  leading  edge  of  the  airfoil. 
Bootstrapped   random samples,  which,  if  totally  iid,  should  verify  V[m]=σ2/N and V[s2]=2σ4/N,  are  compared  to 
bootstrapped blocks to illustrate the possible deviation of these quantities from the theory.
The  theoretical  variances  of  the  estimators  are  computed  assuming  that  all  blocks  of  data  are  independent,  and 
superimposed to the plot, showing how their quality may be predicted;
The theoretical behavior of V[m] perfectly agrees with the bootstrap simulation up to 104 samples per block. Beyond 
this value, the few millions of available LDV points cannot ensure that all the bootstrapped blocks are sufficiently  



independent to validate the comparison. Comparatively, the approximated estimates of V[s2] poorly compares to the 
bootstrapped results beyond approximately 100 samples/blocks. This discrepancy may be also due to the quality of the 
bootstrap method applied to s2, as the bootstrapped results for random samples also largely deviate from theory.

Figure 3  Estimation (bootstrap) and prediction of the variance of estimator m (10)  and s2  (14) applied to the 
longitudinal velocity measured by LDV 1.5 chords downstream of the leading edge of the NACA0015 airfoil. 

Figure 4 presents the ratio of  variance V[mu] on its theoretical value for iid variables, and estimated over the full LDV 
measurement domain for the three block sizes used in the TR-PIV experiment. These plots demonstrate how the choice  
of the length of measurement blocks can alter the evaluation of averaged quantities, as this ratio is also a measure of the  
equivalent number of samples needed to reach the statistical relevance of iid data. Larger time-resolved block sizes, 
while offering an improved view of the spatio-temporal features of the flow, tend to fully integrate the correlation  
functions,  resulting  in  a  degraded  relevance  of  the  statistical  quantities.  On the  other  hand,  smaller  sample  sizes 
integrating a limited part of the correlation functions restrict this effect, but need advanced post-processing tools to  
allow spatio-temporal analyses of the flow. A rough compromise can be found in limiting the blocks sizes so that they  
comply with the dominant frequencies encountered in the flow, especially for flows with large integral time scales.

CONCLUSION

A study of the statistical relevance of limited, auto-correlated, datasets is conducted in order to assess how TR-PIV 
experiments may be designed to improve the estimation of averaged quantities. LDV measurements have been taken for 
reference  to  extract  the  expected  values  and  variances  of  single  and  multi-block  estimators,  demonstrating  their  
sensitivity to the distribution of data samples.
Similar analyses focused on the other statistical and spectral quantities classically estimated from PIV or TR-PIV may 
be usefully carried out. For this purpose, a full range of time-series analysis tools is available, from which the quality of  
parametric and non parametric analysis methods may be qualified.
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Figure 4 Ratio of  variance V[mu] on its theoretical value for iid variables as a function of the sample size, and 
estimated over the full LDV measurement domain: a) maximum block size (2184 images); b)  One vortex shedding 
period equivalent (280 images); c) reduced block size (24 images)


