
Delft University of Technology
Master of Science Thesis in Embedded Systems

Validating Hue Bridge firmware with Device
Virtualization and Kubernetes

Siyuan Fang

Networked Systems

Validating Hue Bridge firmware with Device
Virtualization and Kubernetes

Master of Science Thesis in Embedded Systems

Embedded Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

Siyuan Fang

2023-06-18

mailto:S.FANG-1@student.tudelft.nl

Author
Siyuan Fang

Title
Validating Hue Bridge firmware with Device Virtualization and Kubernetes

MSc Presentation Date

2023-06-28

Graduation Committee
dr. Marco Antonio Zúñiga Zamalloa (chairman) Delft University of Technology
dr. Guohao Lan Delft University of Technology
ir. Dmitry Korolev Signify

Abstract

In recent years, with the rapid expansion of IoT (Internet of Things) devices,
more and more research and commercial projects have focused on various ap-
plication areas of IoT. Signify, as a leading player in the smart home industry,
has been deeply involved in this field for many years, particularly focusing on
smart lighting for smart homes and providing consumers with a whole-house
smart lighting solution (Hue System). The Hue System consists of several IoT
devices, such as the Hue Bridge, Hue Bulbs, and Hue Accessories. This research
paper specifically targets the IoT field and aims to reduce the firmware update
cycle of the Hue Bridge.
The Hue Bridge, which serves as a central device in the Philips Hue internet-

connected lighting system, connects users with other Hue devices. However, the
Hue Bridge faces the challenge of inefficient firmware updates, which require
validation engineers to wait for 6-8 weeks to ensure firmware reliability. To ad-
dress this issue, this paper proposes a virtual system solution that improves the
virtualization procedure of the Hue Bridge devices and utilizes Kubernetes for
large-scale deployment to accelerate the generation of diagnostic data. Further-
more, a Use Case Model is established based on users’ daily data, and a model
based on Frequent Pattern Mining is applied to simulate users’ daily behaviors
in the Kubernetes Deployment.
To validate our virtual system, we designed validation experiments from mul-

tiple perspectives, including validation of the use case model and automated
feedback. Our validation results demonstrate that this system enables more
efficient and convenient acquisition of automated feedback (issues/bugs), while
significantly enhancing the generation of diagnostic data in the firmware update
cycle. Moreover, it offers advantages such as high availability, convenience, and
cost-effectiveness in deployment. This research provides valuable references and
insights for firmware update-related studies in the IoT domain.

iv

“Everything that can be automated will be automated.“
−− Robert Cannon

vi

Preface

Embedded systems and the Internet of Things (IoT) are the driving forces be-
hind my choice to pursue a Master’s degree in Embedded Systems at Delft Uni-
versity of Technology. Fueled by my interest in smart homes, I have constantly
challenged and pushed myself by engaging in various embedded systems-related
projects. It is my great honor to have been invited by Signify to participate in
the embedded development of the Hue Bridge during my graduate thesis.

At the very begining, I would like to express my gratitude to the many indi-
viduals who have supported me throughout this year. Firstly, I am most grateful
to my industry mentor, Dmitry Korolev, and my academic mentor, Prof. Marco,
for their patient guidance on a weekly basis. Without their assistance and en-
couragement, each step of my research would have been incredibly challenging.
It is through their support that I have been able to achieve the expected project
outcomes. Similarly, I would like to thank every member of the Signify IoT
team who patiently answered my questions and provided invaluable technical
assistance, allowing me to acquire in-depth knowledge of the Hue System.
I would also like to express my gratitude to Dmitry and Sonny, who attended

my thesis meetings every Tuesday. They attentively listened to my progress
reports and consistently provided accurate corrections and valuable suggestions.
Their presence made me feel that I was not alone in my exploration. Prof. Marco
was my professor during my first year of study, and I was deeply impressed by his
lectures. As a result, I proactively approached him to be my thesis supervisor.
Throughout the guidance of my thesis, Prof. Marco has always been prompt in
responding to my inquiries and has consistently guided me in the most logical
and correct direction.
I would also like to thank Prof. Guohao for serving as a Committee Member.

Thank you for your time!
Finally, I would like to express my gratitude to myself for not giving up. The

journey from Delft to Eindhoven for my thesis was destined to be a solitary one,
and I am thankful that I persevered and did not give up.

Siyuan Fang

Eindhoven, The Netherlands
21st June 2023

vii

viii

Contents

Preface vii

1 Introduction 1
1.1 Hue System Introduction . 1
1.2 Motivation . 3
1.3 Contributions . 5
1.4 Project roadmap . 5
1.5 Thesis Outline . 6

2 Related work 7
2.1 Firmware updates . 7

2.1.1 DevOps . 7
2.1.2 Blockchain . 8
2.1.3 Virtualization . 9
2.1.4 Methodology . 10

2.2 IoT device user behavior analysis 11

3 Hue Bridge Device Virtualization 13
3.1 Methodology . 13

3.1.1 Hue Bridge . 14
3.1.2 Firmware Update Cycle 15
3.1.3 Virtualization Solution Design 17

3.2 Advancements in the Dockerize Hue Bridge 19

4 Use Case Model 23
4.1 Hue Bridge user behaviours . 23
4.2 Method . 24

4.2.1 Use Case . 25
4.2.2 Frequent Pattern Mining 26

4.3 Use Case Modeling Process . 28
4.3.1 State message Dataset and its pre-processing 28
4.3.2 Experiments . 30

5 Model Implementation and Kubernetes Deployment 39
5.1 Model Implementation . 39

5.1.1 Hue Command Architecture 40
5.1.2 Random Hue Commands Generator 40

5.2 Kubernetes Deployment . 45

ix

5.2.1 Deployment and Scaling Architecture 45
5.2.2 Pod Components and their functions 46
5.2.3 Deployment Procedures and Strategies 47

6 System Validation 51
6.1 Use Case Model Validation . 52
6.2 Automated Feedback Validation 55

7 Conclusions 69

8 Future Work 71

x

Chapter 1

Introduction

With the rapid expansion of IoT (Internet of Things) devices and the con-
tinuous development of IoT technology, more and more IoT devices are being
widely used in various industries, ranging from smart homes to smart cities,
from industrial automation to smart agriculture, and from remote medical care
to smart lighting. IoT devices work together and developers regularly update
the device firmware according to user demands to build reliable device networks
for these application scenarios. In these application scenarios, the accuracy and
stability of IoT device firmware are particularly important for the reliability of
device networks. Therefore, the R&D teams of devices typically test and verify
firmware during every release to enhance user experience and discover and solve
potential firmware issues.

However, due to the diversity of hardware and software environments in IoT
devices, coupled with the usual lack of coordination or sync between software
and hardware development, firmware testing and verification for IoT devices
can be exceptionally complex and time-consuming, resulting in a significantly
extended release cycle. Therefore, improving the efficiency of firmware testing
and verification to accelerate the release cycle has become an important research
topic in the IoT field.

This paper focuses on the field of smart lighting and the device we investigate
is the Hue Bridge in the Philips Hue system. Philips Hue is a smart lighting
solution for home scenarios proposed by Signify (formerly known as Philips
Lighting), consisting of five main components: Hue Light, Hue Bridge, Hue
Accessories, Hue App, and Hue Cloud. The Hue Bridge is the heart of the
Philips Hue system, connecting users’ devices to smart lamps and providing
a Zigbee gateway service and rich automated lighting control for the entire
home[28].

1.1 Hue System Introduction

This project is completed in Signify. Signify is a technology company special-
izing in the field of lighting. Signify was formerly known as Philips Lighting,
and in 2018, Philips Lighting changed its name to Signify. As a pioneer in the
lighting industry, Signify has rich industry experience and patented technologies
in LED, smart lighting control, bulb design, and other fields, and is committed

1

to providing people with sustainable, energy-efficient, environmentally friendly,
and intelligent lighting experiences.
Signify provides innovative lighting solutions covering the consumer sector,

commercial lighting sector, and professional lighting sector. As a lighting sys-
tem designed specifically for consumers by Signify, the Hue system provides a
connected and intelligent lighting ecosystem for consumers based on the Zigbee
network protocol.
The Hue System focuses on consumer home lighting and provides the con-

sumer with a wide range of lighting products, lamps, light strips, floor lamps
and many other products. The Hue system consists of five core components, In
Figure 1.1 shown the relationship of the components:

• Hue Bulb: A hue bulb is a connected LED bulb. This means a hue bulb
is always ”on” or in ”standby”

• Hue Bridge: Hue bridge is a smart gateway that serves as the central
device in the lighting system, it connects users with other Hue devices.
The Hue Bridge also serves as a central hub for your smart lighting setup,
providing a more comprehensive smart home experience.

• Hue Accessories: Accessories include sensors, switches, smart buttons,
etc.

• Hue App: The user interface of the system is the Hue app. Via the
Hue app users can extend the system with new hue compatible lights and
devices:

• Hue Cloud: Hue Cloud enables users to control their devices when they
are not at home.

Figure 1.1: Hue system overview

Hue System is an smart home lighting solution that offers a wide range of
features and applications. The following are the main applications and functions
of the Hue system:

2

1. Light Control: The Philips Hue system allows users to control lights,
adjust brightness, color temperature, and colors through the Hue app or
switches. Users can control their lights anytime, anywhere, create cus-
tom scenes and presets to meet different needs and create desired lighting
atmospheres.

2. Color Lighting Effects: Hue bulbs support 16 million colors, allow-
ing users to choose different colors according to personal preferences and
needs, creating unique lighting effects. For example, users can choose soft
warm white for relaxation and reading or vibrant colored lights for parties
and entertainment[28].

3. Rule Engine: The Hue system can be integrated with other smart
devices, creating a more intelligent home experience. For example, users
can set the lights to automatically turn on when the motion sensor detects
someone at the door, or have the lights flash when receiving a phone call.

4. Automation Schedules: With the automation feature provided by the
Hue Bridge, the Hue system can automatically adjust the lighting based on
sunrise and sunset times. This eliminates the need for manual operation as
the system adapts to the changing lighting needs throughout the day[27].

5. Remote Control: Users can remotely control their lights over the inter-
net, regardless of their geographic location. This means that even when
users are not at home, they can ensure that the lights are in the desired
state, enhancing convenience and security[28].

6. Voice Control: The Hue system is compatible with third-party voice
assistants such as Amazon Alexa, Google Assistant, and Apple Siri. Users
can use voice commands to control all the lights in their homes, adding
convenience to their lighting control experience[28].

Among these components, there is an important device that serves as the
central device in the lighting system, it connects users and devices. It connects
the whole system like a bridge, so we call it Hue Bridge.The Hue Bridge let
users control their devices through applications. Signify chose Zigbee as their
default communication protocol to connect to the lighting devices. The Hue
Bridge also allows partner integrations, users can also use Alexa, and HomeKit
to control their Hue devices. In this paper, the Hue Bridge is classified as an
IoT device and will be the focus of our research.

1.2 Motivation

Philips Hue is an Internet-connected lighting system designed to transform the
way users experience light inside their homes. It is one of the leading and largest
home IoT products in the world. I belong to the IoT team of the Hue Bridge,
which is responsible for the IoT services based on the bridge and cloud com-
ponents. These services serve as the engine of the connected lighting system,
improving security, latency, and availability for home-cloud connectivity world-
wide. Our team ensures that the lighting system can be updated and provides
an analytics and diagnostics infrastructure.

3

Signify follows the common firmware release cycle, which typically consists
of several phases including planning, development, testing, deployment, and
maintenance. Each phase involves specific activities and deliverables aimed at
ensuring that the firmware is of high quality, meets customer requirements, and
is delivered on time and within budget. Effective management of the firmware
release cycle is essential for successful firmware development projects. Each
development team completes the process of developing, testing, delivering, and
releasing the new firmware for Hue Bridge in accordance with the prescribed
steps and specifications.

Figure 1.2: Hue Bridge’s firmware release cycle

However, as the system’s features continue to increase, the development team
has found that the deployment efficiency of Hue Bridge cannot keep up with the
growing user demand. The current deployment cycles for bridge firmware take
around 6-8 weeks, which is too long to receive useful data/feedback from the field
regarding reliability and availability, making it difficult to initiate improvements
based on this data/feedback.

At the beginning of Chapter 1, we discussed the efficiency issues commonly
encountered in firmware verification and updates in the field of IoT. These
issues also exist in the development process of Hue Bridge devices. Due to the
longer update cycles, the efficiency of firmware updates and the release schedule
of new features for bridge devices are affected. In the rapidly changing IoT
market, efficient and concise firmware release cycles are crucial to meet growing
user demand and maintain the product’s market competitiveness.

Therefore, Signify proposes to analyze the existing bridge device release cycles
to find ways to improve update efficiency. This is also the research direction
and core objective of this thesis. The Goals of this proposal are described as
follows:

• Reduce feedback cycle time for IoT components from weeks to hours

4

• Improve the deployment architecture of Hue Bridge and make it more
portable

• The deployment of firmware should be fast enough to make it part of the
CI/CD(continuous integration and continuous delivery/continuous deployment[30])
pipeline

1.3 Contributions

The main contribution of this research is to propose a method for using virtual-
ization technology to shorten the firmware release cycle of Hue Bridge devices.
Specifically, we use Docker technology to create a virtual Bridge device and
simulate user behavior and instructions using a use case model. Additionally,
we use Kubernetes technology to deploy virtual containers on a large scale to
supplement or replace beta test devices during the firmware release cycle. Our
method can significantly reduce the time and resources required for the beta
test phase in the firmware release cycle, thereby improving the efficiency and
quality of software development. Our contributions include the following:

• Proposing a method for shortening the firmware release cycle of Hue
Bridge devices based on virtualization technology. Compared to tradi-
tional beta test devices, our virtualization method can more flexibly sim-
ulate user behavior and instructions, thereby accurately testing the func-
tionality and performance of the firmware.

• Using a use case model to simulate user behavior and instructions, which
better simulates real-world usage scenarios and improves the accuracy and
reliability of testing.

• Using Kubernetes technology to deploy virtual containers on a large scale,
enabling the testing of multiple virtual Bridge devices simultaneously,
thereby improving testing efficiency and coverage.

• Through experimentation, we demonstrate that our method significantly
reduces the time and resources required for the beta test phase in the
firmware release cycle, thereby improving the efficiency and quality of
firmware development.

In conclusion, our research proposes an innovative method that can significantly
shorten the time and resources required for the beta test phase in the firmware
development cycle of Hue Bridge devices, thereby improving the efficiency and
quality of firmware development. Our approach has significant reference value
for manufacturers of household appliances in the IoT field, especially those with
fixed firmware update cycles.

1.4 Project roadmap

We formulated five main stages for the . The following figure shows the Roadmap
of this project.

5

Figure 1.3: Project roadmap

1.5 Thesis Outline

The chapters of the thesis are organized as follows: Chapter 2 introduces the
literature related to the work presented in this paper and its methodology.
Chapter 3 presents the proposed solution and steps for virtualizing the Hue
Bridge. Chapter 4 introduces and applies the Use Case Model and Frequent
Pattern Mining algorithm in the Hue system. In Chapter 5, the implementation
of the Use Case Model and the large-scale deployment of virtual bridges are
discussed, and the validation results of real bridge devices are compared and
analyzed. Finally, Chapter 6 discusses the conclusions, existing problems, and
suggestions for future work.

6

Chapter 2

Related work

This chapter is structured as follows: Firstly, we introduce recent research and
work related to IoT device firmware release and analyze the methods and short-
comings to improve the IoT device release cycle. Meanwhile, we conducted
sufficient research on user behavior analysis of IoT devices in Section 2.2, ex-
ploring relevant work on device behavior analysis and simulation in the IoT
field.

2.1 Firmware updates

Firmware updating for IoT devices has become a crucial part of maintaining
IoT systems in recent years [14]. IoT device updating involves modifying or
updating firmware, configuration, or other relevant information on IoT devices
to maintain system operation, functional integrity, security, and compatibility.
However, updating firmware for IoT devices is not an easy task due to various
challenges and difficulties, as defined in [14, 20], such as update time, managing
a large number of distributed devices, security risks, version control, and de-
pendency management. These challenges affect the user experience and device
stability at various levels. In Section 1.2, we mention the challenges faced by the
development team of the Hue Bridge: as the deployment cycle for Hue Bridge
firmware accumulates with functionality and firmware patches, it becomes longer
and significantly affects the timely handling of user feedback or bugs, greatly
increasing the time and resource costs of firmware updating. Therefore, the
challenge faced by this study belongs to the ”Update time” challenge defined in
[14], focusing on device update efficiency and update cycle.

In recent years, many related works have gradually focused on and attempted
to address these challenges to improve firmware update efficiency and update
cycles. These works mainly fall into three directions: introducing the DevOps (a
combination of software development and operations) methodology, blockchain
technology, and device containerization technology.

2.1.1 DevOps

DevOps methodology is the most important code development model in soft-
ware development teams in recent years, greatly improving team collaboration

7

efficiency and efficiently handling exceptions and bugs after software/firmware
deployment, and is suitable for the development of most software programs and
hardware firmware. Before DevOps, software teams proposed the Waterfall pro-
cess to address the lack of review and trade-off considerations in the development
workflow. The Waterfall process originated from the manufacturing field and is
a linear, sequential process where all project development stages, such as soft-
ware design, development and testing, are completed once within the waterfall
model[22]. However, the Waterfall model has a drawback in that the project
value is only realized at the end of the process, leading to many projects failing
to persevere until the end. As a result, teams gradually transitioned from the
waterfall process to agile development. Compared to the rigid and fixed process
of the Waterfall model, agile development focuses on responding to changes[1].
It addresses the issues in Waterfall by abandoning complete project planning
and dynamically adapting to uncertainty. Agile development has been around
for over 20 years, and in recent years, the introduction of DevOps has further
improved the agile development process. The two development method are very
similar, with the main difference lying in the acquisition of feedback after soft-
ware deployment. Agile development obtains feedback from clients/users, while
DevOps introduces the operational phase after deployment to receive feedback
internally[1]. Therefore, DevOps has a faster release cycle and quicker feed-
back. For development teams, all members participate in the process, where
development is operations and operations is development[32].
[21, 18] focus on the low-power distributed mode in IoT devices, where IoT

devices typically return sensing data, and firmware functions are mainly to mon-
itor the environment and send data. DevOps methodology is applied to device
monitoring and fault detection in [18], where the author proposes the ”fast and
continuous monitoring feedback of system availability” activity (F&CF avail-
ability) and embeds it in infrastructure (IoT sensing devices) in the form of
components. DevOps teams can quickly deploy the latest firmware and monitor
availability anomalies and faults caused by firmware in real-time. The bene-
fits of using DevOps in IoT systems are summarized in [20], where 11 papers
classify the benefits of applying DevOps to IoT systems as ”DevOps framework
proposals for IoT,” which solves the problem of phased pipelines in IoT devel-
opment. In addition, some literature attributes the benefits to the combination
of cloud development technology or containerization technology with DevOps
methodology, greatly improving code development efficiency.

2.1.2 Blockchain

Blockchain technology has been widely used in firmware updates of IoT devices
in recent years. In [26], the authors explored how to solve the scalability chal-
lenges of firmware updates through a blockchain-based firmware update archi-
tecture, achieving efficient and secure firmware updates for IoT devices. [34]
proposed a blockchain-based method for updating IoT device firmware, focusing
on the security and integrity of device updates and avoiding the risks and single
points of failure brought by centralized management. To address the vulnerab-
ilities of firmware updates in previous blockchain-based IoT device firmware up-
date solutions, such as system consensus attacks, centralized firmware storage,
and large storage space requirements, [34] defined firmware update vulnerabil-
ities and proposed a protection mechanism based on blockchain technology and

8

a distributed network storage mechanism, verifying the practical feasibility of
blockchain technology in improving system security and firmware transmission
integrity through comparison with existing work.

2.1.3 Virtualization

Virtualization is a mechanism to share hardware resources(Kernel, CPU, memory)
among virtual machine instances on the same machine[23]. Before Containeriz-
ation was proposed, development teams wanting to virtualize IoT devices typ-
ically had to use techniques such as full virtualization, hybrid virtualization,
or paravirtualization[23]. These virtualization techniques provided developers
with an environment to run applications in virtual machines. However, to em-
phasize the isolation between virtual machines, these virtualization technologies
allocated a separate kernel for each virtual machine, making deployment and
management complex and slow. Additionally, deploying a large number of vir-
tual machines would be costly, and hardware resources would not be efficiently
utilized. The emergence of containerization technologies addresses these issues.
Containerization can be seen as a form of operating system-level virtualiza-

tion, where containers share resources (kernel) to provide high availability and
portable deployment. Unlike traditional virtual machines, containers do not re-
quire a separate operating system instance for each container, resulting in faster
startup times, lower resource overhead, and easier management. Containeriz-
ation provides a lightweight and efficient approach to virtualization, allowing
multiple containers to run on a single host machine and utilize hardware re-
sources more effectively[23].
With the rapid development of container technology, more and more IoT

devices are beginning to attempt Containerization to improve convenience and
deployment efficiency [15]. Compared with the first two technological solutions,
Containerization will detach from the IoT device hardware layer and virtual-
ize the device hardware to solve the testing and verification difficulties that
existed before firmware release, realizing the efficiency of testing and verifying
firmware. Regarding updating IoT devices, researchers have proposed a new
solution. Among them, [5, 15] discussed the feasibility and advantages of us-
ing containerization technology and Kubernetes container orchestration engine
to update IoT devices. They believe that using container technology and con-
tainer orchestration can easily update software and firmware on devices, while
also improving system stability and maintainability. The combination of cloud
computing and IoT device virtualization is a common IoT device solution after
many cloud computing vendors have lowered service fees [5]. With the rapid
progress of container technology, IoT device virtualization is gradually upgrad-
ing from management program-based virtualization, such as Virtual Machine
Monitor (VMM), to container-based virtualization. Container-based virtualiza-
tion is more lightweight and efficient, supporting Single Board Computer (SBC)
devices and Microcontroller Unit (MCU), as well as Linux Container Virtual-
ization (LVC) layer. LVC is an operating system-level virtualization paradigm
that allows the same operating system to share the kernel in the user space and
can have many different instances [5]. Container virtualization can significantly
improve efficiency when dealing with small-scale devices, but it becomes more
challenging when facing a certain scale of IoT devices. In [31], the authors
introduced Kubernetes technology and applied it to a publish/subscribe-based

9

IoT system to explore the impact of Kubernetes on the efficiency and scalability
of the system. Kubernetes is a container orchestration management technology
that can automate the management and operation of large-scale virtualization
containers.

2.1.4 Methodology

In addition to the three techniques mentioned above, there are also some latest
technologies applied to address the efficiency issues of firmware upgrades in the
IoT field. For instance, Celesti et al. explored the adaptability and resilience
of software updates in large-scale IoT devices in [5]. They proposed a swarm
intelligence-based update scheme that can achieve adaptive update strategies
according to the device status and network load, thus improving the success
rate and efficiency of updates.
Now let’s take a look back at the issues faced by the Signify development team

in firmware updates and explore the feasibility of applying these technologies to
the Hue System. Instead of a direct comparative analysis of the strengths and
weaknesses of these three technologies in IoT systems, we are more focused on
their respective emphases when applied to IoT devices.
Firstly, DevOps focuses on quickly addressing faults and bugs in IoT firmware,

aiming to improve the efficiency of problem feedback and code development for
the development team. Currently, DevOps is being applied in various teams
within the Signify development team. However, while DevOps emphasizes post-
deployment operations and rapid feedback compared to the waterfall model, it
does not necessarily reduce the time taken for firmware updates. As mentioned
in Section 1.2, the development team needs to wait for users to use the Hue
System to generate sufficient analysis and diagnostic data. The role of DevOps
in this context is mainly in task allocation and operations, and it does not
directly accelerate the generation of user data or improve validation efficiency.
Therefore, the application of DevOps in this project does not directly address
the problem.
Blockchain has the characteristics of distribution and high availability. The

feasibility of using Blockchain to enhance system security and firmware trans-
mission integrity in IoT systems has been verified in [34]. Similarly, contain-
erization and Kubernetes also have the advantages of distribution and high
availability. The main difference between these two lies in the fact that Block-
chain enhances deployment security and distributed deployment efficiency by
improving the security and high availability of communication transmission, fo-
cusing on firmware security. On the other hand, containerization optimizes the
process of firmware deployment cycle by virtualizing IoT devices, focusing on
improving the efficiency of firmware updates. Through containerization, devel-
opment teams can deploy the latest firmware in containerized IoT devices in
the cloud or locally before releasing firmware updates. When combined with
Kubernetes, automated management and diagnosis of the feedback and user
data on the latest firmware in containers can be achieved. Based on our ana-
lysis of the project requirements, we have chosen a containerization solution
(Docker+Kubernetes) that focuses more on update efficiency rather than de-
ployment security. Therefore, the research question we need to investigate in
this thesis is whether containerization can truly be applied to the Hue Bridge
to improve firmware deployment efficiency.

10

2.2 IoT device user behavior analysis

It is mentioned earlier that Signify faces challenges in firmware release effi-
ciency, which can be addressed with Containerization technologies. However,
simply virtualizing the devices is not sufficient to accelerate the generation of
user data. We also need to simulate user behavior. In Section 1.2, we introduced
the firmware release cycle consisting of several phases, including planning, de-
velopment, testing, deployment, and maintenance. During the testing phase,
developers usually design automated tests for various components to test new
features. The purpose of these tests is to identify firmware issues before releas-
ing the latest firmware to customers and address them based on the diagnostic
data obtained from the tests. The basic logic behind these automated tests is
to simulate a large volume of machine-readable instructions representing user
actions with IoT devices, enabling the identification of issues prior to firmware
deployment. Therefore, a complete solution requires a combination of analyz-
ing/simulating user behavior with respect to the Hue Bridge and containerizing
the Bridge devices.
With the geometric growth of IoT device data and the popularity of AI al-

gorithms, analysis of IoT device user behavior has gradually become a focus
of device manufacturers in recent years. In our search for relevant work, we
found that many works use data mining or machine learning techniques to ana-
lyze perception-type data generated by sensor-type IoT devices and establish
data models for them [17, 33]. However, there are few published results for
user interaction-type IoT devices, especially highly integrated gateway-type IoT
devices like the Hue Bridge, which are usually developed by IoT companies with
tens of millions of users (such as Cisco, TP-Link, Xiaomi, etc.). Analysis of user
behavior for these devices is often not shared. Therefore, we need to start from
some existing work that is relatively close and find a suitable solution for the
Hue Bridge.
In order to provide consumers with a better control experience, many com-

mercial IoT devices are accompanied by mobile applications (Apps). In [29], the
authors invented a tool called ”IoT App Privacy Inspector” to identify and dis-
tinguish user interaction-type data packets in communication data between the
App and the device, and automatically infer the corresponding user behavior
of the data packet from network data generated by user interaction behaviors
(such as login, device on/off, input of identity information, verification code,
etc.). Although the ultimate goal of this work is to improve the privacy of IoT
device users, it does not analyze specific control-type user behaviors, but it does
provide some ideas that can be explored. Compared to traditional algorithms
that analyze and predict perception-type data generated by users, this work
uses state data of IoT devices such as network traffic to infer user behavior in
reverse. For the Hue Smart Lighting System, the state data collected is the
status data returned by the lights when the user controls home lighting, which
help us infer the user’s behavior habits when using the Hue System.
In terms of algorithm selection, we chose frequent pattern mining algorithm,

where a frequent pattern is a pattern which occurs in comparatively more trans-
actions [10]. In Chapter 4, we explained in detail the reasons for choosing fre-
quent pattern mining instead of machine learning or deep learning algorithms.
Frequent pattern mining is a popular data mining technique [13, 6], commonly
used in many real-life applications such as market basket analysis, clustering,

11

series analysis, decision making, object mining, etc [10]. After the authors
of [2] proposed the Apriori and AprioriHybrid algorithms in 1994, more and
more researchers began to pay attention to the field of frequent pattern mining
and proposed many more efficient algorithms, among which the most common
three algorithms are Apriori, Eclat, and FP-Growth [13]. Apriori algorithm
is the most classic and general frequent pattern mining algorithm, but it has
scalability issues and exhausts computer memory much faster than other al-
gorithms [13]. Eclat and FP-Growth have similar performance on itemset and
transaction size indicators, but Eclat is based on a depth-first search algorithm,
while FP-Growth is a tree-based algorithm designed by Han et al. in 2000 [12].
The performance and output results of frequent pattern mining algorithms are
closely related to the type of dataset and data preprocessing. In Chapter 4,
we will experimentally demonstrate the feasibility of applying frequent pattern
mining algorithms to Hue Bridge user behavior analysis by applying common
algorithms to Hue Bridge user state data.
In this chapter, we conducted a literature review on two research directions in

the field of IoT: firmware updates and user behavior. We analyzed the problems
encountered by Signify Firmware update and their corresponding solutions. A
more detailed examination of the Hue System and the firmware update cycle will
be presented in Chapter 3.

12

Chapter 3

Hue Bridge Device
Virtualization

The focus of this work is the efficiency issue in the Hue Bridge firmware update.
Therefore, let us narrow down our scope to the Bridge device and its Firmware
Update cycle. In Chapter 2, we analyzed the solutions proposed by scholars
in the IoT field for improving the efficiency and security of the firmware cycle.
We concluded that virtualization technology of IoT devices is theoretically most
suitable for the Hue Bridge. However, to return from theory to reality, we need
to answer a question: if we design a virtualized Hue Bridge, how can it improve
efficiency in firmware release? To answer this question, this chapter first presents
the existing methodology and firmware update cycle of the Hue System to help
readers further understand the Hue Bridge. Secondly, we introduce the process
of virtualizing the Hue Bridge and conduct functional verification of the virtual
bridge.

3.1 Methodology

In Section 1.1, we introduced the composition of the Hue System and emphas-
ized the central role of the Hue Bridge device in the Hue System. In Section
1.2, we introduced the motivation of this project, which mentioned that ”the
current deployment cycles for bridge firmware take around 6-8 weeks, which
is too long to receive useful data/feedback from the field regarding reliability
and availability.” At this point, readers may have a general framework for the
concepts of the Hue Bridge and its Firmware Update Cycle, but may still have
some incomplete understanding of the details of these concepts. Therefore, in
this section, we will help readers understand and analyze the software and hard-
ware composition of the Hue Bridge, and how the Firmware Update Cycle of the
Hue Bridge works as an IoT device. We will also explain why the development
team needs to spend so much time updating the firmware. Finally, based on
Signify’s previous virtualization projects, we will seek inspiration and propose
our containerization solution.

13

3.1.1 Hue Bridge

Hue System is a Home lighting system[28]. Why does it need a device like the
Hue Bridge (Shown in Figure 3.1)? Compared to traditional lighting systems,
Hue System has rich home automation functions (such as setting schedules for
turning on/off lights, setting rules for automatically turning on lights when
motion sensors detect users, etc.). In addition, compared to traditional wired
communication protocols, Hue System supports Zigbee/BLE wireless commu-
nication protocols. The Hue Bridge is the fundamental driving force that em-
powers these intelligent experiences of Hue System[28].

Figure 3.1: The Hue Bridge

The main functions of the Hue Bridge can be summarized as follows:

• Offering features such as automation, scene control, schedules, dynamic
light effects

• Providing whole-home connectivity, enabling user to connect their lighting-
related devices and processing user control messages.

• Serve an easy way to use internet API for every connected device proxied
behind the bridge.

• Devices in the smart home are always connected, user can control their
devices even if they are not in the home

• Guarantee user data security and privacy, providing local Zigbee network
services

To virtualize IoT devices, we first need to understand how the internal soft-
ware and hardware of the device are constructed. Let’s analyze the composition
of the Hue Bridge from a developer’s perspective. Table 3.1 lists some technical
parameters of the Hue Bridge device. The Hue Bridge is based on OpenWrt
Operating system, which is an open-source Linux-based operating system com-
monly used for IoT embedded device development. The Hue Bridge processor
selected is the NXP Semiconductors i.MX 6SoloLite processor, which integrates
Zigbee/Ethernet/Wi-Fi/BLE/MQTT communication interfaces, providing the

14

Table 3.1: The Hue Bridge: Device Information

Device name Hue Bridge

Operating System OpenWrt
Protocols Zigbee/Ethernet/Wi-Fi/BLE/MQTT
Functional process Daemon per function

Hue Bridge with rich network functionality. Based on OpenWrt and the in-
terfaces provided by NXP, the developers of the Hue Bridge have implemented
rich functional development such as automation, scene control, schedules, and
dynamic light effects.

Figure 3.2: The Hue Bridge: Software Architecture

Figure 3.2 shows the top-level architecture of the Hue Bridge software. Within
the bridge, each Bridge function runs continuously 24/7 in the form of a daemon
(a background program). For example, the Fluent-bit (open source) daemon
allows for real-time forwarding and collection of diagnostic messages or logs from
Hue Bridge devices, processes them, and delivers them to different backends[9].
These daemons serve as the core software components of the Hue Bridge. Hue
Bridge provides a public interface called Hue-API, which enables developers to
use the functionality of the bridge and interact with Hue System resources by
calling the Hue-API.

3.1.2 Firmware Update Cycle

In this section, we will introduce another core concept: the Firmware Up-
date Cycle in Hue System. In the development process of the Hue Bridge,
the Firmware Update follows the standardized steps of planning, development,
testing, deployment, and maintenance, in which the planning and maintenance
stages require flexible time planning according to actual situations (there is a
lot of uncertainty). Therefore, this project will focus on the fixed period of
development-testing-deployment Release Cycle. In the DevOps development of
the Hue Bridge, each formal firmware update corresponds to a PI Planning
(Program Increment Planning, with a total duration of eight weeks)[25].
Each Program Increment (PI) is composed of four firmware Release Can-

15

didates (RC), which have slight differences but are all part of a larger version
update. Typically, Signify selects two of these RCs for deployment in beta test-
ing. In Figure 3.3, we demonstrate the timeline for the first RC selected for
beta deployment in a PI, which begins on the first day of Sprint 1 and ends on
the first Wednesday of Sprint 3, totaling 23 working days.

Figure 3.3: The Hue Bridge: Firmware Update Cycle (The focused
stages are highlighted)

After clarifying the timeline concept, we will divide the steps development-
testing-deployment into nine specific stages:

• Create Sprint Release: First, developers will package the firmware that
needs to be updated, create firmware with a specific version number, and
create the first Sprint Release corresponding to that version number.

• Deploy to Alpha: The alpha test is a deployment test within Signify,
where around 50 dev-bridges will be deployed with the firmware.

• Validation by each team: Each development team will conduct the
first round of validation on the daemon they are responsible for based on
the results of the Alpha test.

• Full Beta deploy: The beta test is a deployment test within the end-
users (users who are willing to participate in the beta test), where around
8k bridges will be deployed with the firmware.

• Beta testing/Collect analytics: Each development team will collect
and analyze user diagnostic data generated during the beta test period.

• Release Meeting: Validation engineers and team leaders will summarize
and troubleshoot the beta test analysis, generate a beta report, and discuss
whether the firmware can pass the test at the release meeting.

• Deploy Phase 1 (Region1): The firmware approved by the meeting
will be deployed in stages to all bridge devices in Region1.

• Deploy Phase 2 (Region2): The firmware approved by the meeting
will be deployed in stages to all bridge devices in Region2.

• Deploy Phase 3 (Region3): The firmware approved by the meeting
will be deployed in stages to all bridge devices in Region3.

16

After communicating with the responsible person of the Update cycle and
validation engineers, we clarified the actual situation of the nine steps. In terms
of timeline, the days of Create Sprint Release and Release Meeting are fixed and
cannot be further optimized, as the team needs to develop a plan and discuss
it in the meeting. After firmware review and validation at the Release Meeting,
the three stages of deploying firmware to the field (a total of nine working
days) are being planned to be merged to shorten the time, which is expected to
reduce by 1-2 days. None of these steps can be participated in by this thesis,
and the three stages that can be optimized are Deploy to Alpha, Full Beta
deploy, Beta testing/Collect analytics. The deployment and testing process
for Alpha/Beta are: Engineers deploy firmware Release Candidates (RC) to
Alpha/Beta testers’ bridges, and these Bridges collect analysis and diagnostic
data after RC deployment and forward it to the Hue cloud database. Although
this data is sent to the cloud in real-time, Validation Engineers need to wait for
a period of time (Alpha 4 days, Beta 10 days) to collect enough analysis and
diagnostic data, and generate the Validation Report for each team based on the
analysis results before the Release Meeting.
Based on the analysis of the Release Cycle above, we can focus the research

scope of this project from the complete Firmware Update Cycle to the Deploy
and Test stages of Alpha/Beta, which is highlighted in figure 3.3. At the same
time, based on the analysis of the pain points of the Firmware Update Cycle in
Section 1.2 and the literature review on improving Firmware Update Cycle effi-
ciency in Chapter 2, we propose the first and most important research question
of this project:
To shortening the firmware Update Cycle, can we partially elimin-

ate the role of Alpha/Beta testers in the firmware update cycle by
gathering diagnostic data and feedback from virtual bridge?
Virtual bridges can continuously execute instructions through automated pro-

grams without waiting for users to generate enough diagnostic data by using
the Hue System. We will explore and validate the feasibility of virtualization
technology in this project in subsequent chapters.

3.1.3 Virtualization Solution Design

In the early stages of the project, we conducted a comprehensive literature re-
view in the IoT field to explore related work. At the same time, we also did a
lot of reading and code learning from Signify’s previous projects. After identi-
fying virtualization as the direction to pursue, we immediately began searching
for previous attempts by engineers to virtualize the Bridge. After reviewing
these projects, we finally selected one that best matched our needs, which we
call the Hue System Emulator (HSE). As its name suggests, HSE is not only
designed to simulate the Hue Bridge device but also to simulate the complete
Hue System, including Hue Bridge, Zigbee devices (lights, sensors, accessories),
etc. The dashboard of HSE is shown in the Figure 3.4, which demonstrates
that HSE can simulate various types of Hue devices and support developers to
control these devices. HSE is an emulator project based on the Ubuntu sys-
tem and C# (a Programming Language), which can be used for both virtual
machines and embedded devices. Many teams and individual developers have
already been using HSE to test the performance of new devices and the stability
of new features. Additionally, while simulating the Hue Bridge, HSE embeds

17

Figure 3.4: Hue System Emulator: Device Dashboard

some of the Hue Bridge daemons, which can simulate many of the commonly
used functions of the Hue Bridge, despite being implemented in different syntax
and based on a different platform.

We aim to eliminate the role of beta testers in the firmware update cycle
through the use of virtual bridge devices. To achieve this, the virtual bridge
needs to meet the basic requirement of being functionally similar to a real device.
After a period of evaluating and testing with HSE, we found that although it
provides the core drivers of the Hue Bridge (such as various daemons) and a
similar experience to the common features of the bridge (such as light control,
scene switching, and schedule adding), there are several issues:

1. System Compatibility: HSE is based on the Ubuntu system, and many
dependencies and programs are based on the Ubuntu underlying logic.
However, the Hue Bridge is based on Openwrt, which leads to significant
deviations in the underlying code for the entire functionality.

2. Dameons insufficient: HSE includes some daemons, but many of the
daemons responsible for communicating with the cloud are not integrated,
which prevents us from directly obtaining diagnostic data from the cloud.

3. Portable Issue: The overall size of the HSE project is not portable,
making it difficult to deploy and manage a large scale of virtual devices.

After sorting out the issues mentioned above, we immediately thought of the
solution proposed by [15, 31] in Section 2.1, which uses Docker and Kuber-
netes technology to improve the efficiency of firmware updates. Although these
works are completely different from our actual situation, their advantages can
to some extent avoid the shortcomings of the HSE. Docker, as the latest virtu-
alization technology, has the greatest advantage of being portable and system
compatible (users can specify the system at will). Kubernetes (automating
deployment, scaling of containerized applications[36]), is most suitable for the
deployment and management of large-scale virtual devices. The containerized
(Docker) bridge device will contain all the Daemons embedded in the current

18

(a) Architecture: Containerized Hue System

(b) Architecture: Kubernetes Scaling

Figure 3.5: Virtualization Solution based on Docker and Kubernetes.

firmware, while Docker provides rich network services and container manage-
ment methods.

Therefore, we propose a virtualization solution based on Kubernetes, while
retaining the advantages of Dockerize Hue Bridge and HSE simulating Zigbee
devices, to build a complete virtual Hue System. The architecture of the solu-
tion is shown in Figure 3.5, where in Figure 3.5(a), the containerized HSE is
responsible for providing virtual Zigbee devices (lights, sensors), and the virtual
bridge container is responsible for stable operation of various daemons. The
connection between the two containers will be established by the daemon re-
sponsible for Zigbee communication, and completing device authorization and
pairing (simulating the user’s search for surrounding devices). In Figure 3.5(b),
we use Kubernetes technology to deploy the containers on a large scale, and en-
sure the uniqueness of each container by allocating different user configurations
during the deployment process. Besides, Docker can pull and load OpenWrt OS
(Open Source Image) as the base image, allowing us to quickly adapt to changes
even if the Hue Bridge changes its OS version or is ported to other OS.

3.2 Advancements in the Dockerize Hue Bridge

In this section, we will introduce the specific steps to improve the Dockerize
Hue Bridge. In the field of containerization, there are two core keywords, one
is Container and the other is Image. A container is a standard unit of software

19

that packages up code and all its dependencies [7]. A docker image is a execut-
able package of software that includes dependencies files needed: code, uboot
environment, packages, tools, libraries and configs[7]. In short, the image is the
package of the application, and the container is the object after the image is
instantiated. Therefore, we need to create an image for the software part of
Hue Bridge and run the container based on the image. We create the image
through DockerFile (Document that used to contains commands to assemble an
image[8]), each commands in the Dockerfile corresponds to a mirror layer, and
the mirror layer relies on a series of underlying technologies, such as filesystems,
union mounts, copy-on-write, etc[8].
Our system has made the following improvements and advancements to Hue

Bridge virtualization, which are divided into five aspects:

1. Establishing Hue cloud connectivity

Previous virtualized Hue Systems simulated the software functionality of
the Hue Bridge but lacked communication with the Hue Cloud. During
the Beta Test, diagnostic data generated during user product usage will be
sent to the Hue Cloud in real-time as messages. These diagnostic data are
crucial user data during the validation stage, enabling engineers to identify
and promptly address firmware issues. Therefore, we establish communic-
ation between the virtual bridge and the Hue Cloud using the MQTT
protocol, allowing diagnostic data generated after firmware deployment
on the virtual bridge to be sent to the Hue Cloud via the MQTT protocol.

2. Create a Dockerfile and rebuild the dockerize bridge image

Based on the previous work, we create a new Dockerfile and specify Scratch
(empty image) as the base image with the FROM keyword. Scratch is a
commonly used base image[7]. Each command in the Dockerfile corres-
ponds to a mirror layer. Therefore, scratch will serve as the base image
layer, and the subsequent image layers will be accumulated based on this
layer. First, we add the Openwrt image produced in step 1. Secondly, we
add the remaining image layers required by the Hue Bridge in the Dock-
file, including the environmental variable configuration component of the
bridge device, the initialization configuration component of the bridge
device when it starts, the uboot of the bridge device, the software de-
pendencies and libraries of various bridge components, some binary files
required for initialization, and the preinit execution script, etc. When
everything is ready, use the docker build − t command to build the image
and generate the image. It should be noted that each image needs to add
a tag during creation, and the tag corresponds to the version number of
the current Hue Bridge packaged firmware.

3. Setup a Private Docker Registry and push the image

We need to upload the image so that any authorized device can use the
image. The place where the image is stored is called the Docker Registry,
which is divided into Private Registry and Public Registry. In order to
ensure the security and privacy of the project, we use a Private Registry
and set SSL Certificate and Login Credentials. The benefit of this setting is
that only designated users with sufficient privileges can obtain our virtual
bridge image.

20

4. Migrate bridge configuration file to the virtual bridge container

After completing the third step, we can pull the image from the registry
and create a container instance. Before running the virtual bridge, we
need to perform an additional initialization step. In the Hue Bridge, be-
sides the initial configuration file (containing device ID, device type, initial
token, etc.), we refer to the user-specific configuration file as Full Config,
which includes the device configurations (lights/sensors) added by the
user during the use of the Hue Bridge, lighting area configuration, auto-
mation rules/schedules configuration, network configuration, third-party
device connection configuration, etc. If the bridge device has a complete
Full Config, it means that the device has been configured and officially
used by the user, rather than being in a factory-formatted state as a brand
new bridge device.

In Section 3.1, we propose to use containerization of the bridge to simulate
the solution of beta testers’ bridge devices during the beta test. Therefore,
the containerized virtual bridge containers need to migrate beta testers’
Full Config to restore the beta testers’ test environment and lay the
foundation for the subsequent project verification and large-scale deploy-
ment.

5. Validate daemons running in the virtual bridge container

Next, we formally start the virtual bridge container. When starting, it is
important to allocate and expose specific published ports (such as HTTP
80:80) for the container. Through port mapping, ports inside the con-
tainer can access services outside Docker (such as connecting to cloud
services). By using the docker run and docker exec − it commands, we
start the container and enter the internal Linux (OpenWrt) environment
of the container. In this environment, we can execute Linux commands to
complete the verification work. First, we need to verify that Docker has
assigned a Docker network to the container and established the correct
port mapping.

Secondly, we need to sequentially verify that the daemons responsible for
each team in the Hue Bridge are configured correctly and running stably.
In the user’s Hue Bridge, daemons may reset, which can lead to complex
reset situations (due to improper user behavior, firmware updates, etc.).
Therefore, after starting the container, we need to ensure that our contain-
erized bridge does not have any daemon that will automatically reset or
crash. Considering data security, we anonymously demonstrate the func-
tions of the four daemons and the corresponding verification methods of
the daemons in Table 3.2 (annonmymized, for reference only). According
to our testing and validation, all Daemons, except for the one responsible
for firmware updates, are functioning properly after our adjustments and
fixes. As each different image corresponds to a different firmware ver-
sion, we do not need the Daemon responsible for updates to update the
firmware.

21

Table 3.2: Containerization Bridge: Daemon Validation Example (an-
onymized)

Daemon
Name

Function Validating Bash
Commands

Supposed Response

Daemon A Provide Mosquitto
MQTT protocol

log -e mosquitto the mosquitto config-
uration was success-
fully written

Daemon B Create link between
Cloud server and
Bridge

[[-f <urls.json>]] &&
echo ”Urls file exists!”

Urls file exists!

Daemon C Manage Zigbee net-
work

cat
/root/hse/emulator.log

Emulator connection
established

Daemon D Process and for-
ward logging and
metrics

log -e logging logging has been for-
warded

6. Validate virtual bridge’s functions via Hue App

Finally, we place the virtual bridge container in a public network and use
a mobile device in the same network environment to open the Hue App
and search for the IP address corresponding to the virtual bridge using
the ”Find device using IP address” function. As shown in Figure 3.6, the
Hue App successfully connects to the virtual bridge, and we can add real
Zigbee devices to the Hue System. As shown in the figure, the added light
devices can be controlled for brightness, color temperature, scene, etc.

(a) Virtual Bridge: Group Control (b) Virtual Bridge: Lights Control

Figure 3.6: Virtual Bridge Functional Validation via Hue App

Following the containerization procedure, we have successfully containerized
the Hue Bridge device and verified the Daemons. In the following chapters, we
will explore how to use the containerized Hue Bridge to complete the tasks of
test bridges in the Alpha/Beta stages as much as possible.

22

Chapter 4

Use Case Model

In the bridge virtualization process, we want to simulate the bridge functionality
as realistically as possible and to simulate the behaviour patterns and habits
of Hue users to the maximum extent possible. In the previous chapters, we
have made much progress in simulating the functionality of the Hue Bridge,
but the simulation of user behaviour is another challenging problem. In Section
2.2, we indicated that the main reason for the slow update cycle of the Hue
Bridge firmware is that the diagnostic data generated by user behavior needs
to wait for a certain period of time. The advantage of virtualized containers is
that we can run automated tests or perform simulated user behavior without
interruption and with high frequency.Therefore, high-frequency simulation of
bridge user behavior may be able to solve the efficiency problem in firmware
update.

The analysis and simulation of user behaviour of IoT devices are very im-
portant for designing and developing new features of IoT devices. By studying
the user behaviour of IoT devices, we can gain insight into user habits and be-
haviour patterns. It helps to improve the user experience and satisfaction with
IoT devices, thus enhancing the market competitiveness of products.

This section will focus on the analysis and simulation methods of Hue Bridge
user behaviour and propose Use Case Model to build a complete virtual bridge
system based on containerization technology.

4.1 Hue Bridge user behaviours

This project aims to accelerate the generation and collection of analytics and
diagnostic data by containerizing the bridge device to complement the role of
beta testers in the Release Cycle. The primary prerequisite for the bridge devices
to generate this data is that the beta testers interact sufficiently with the bridge
devices during the beta phase.

We can divide the interactions between IoT devices and users into perceptual
and control behaviours. Perceptual behaviour is when the IoT device collects
data from the external environment and transmits it to the user for observation
and analysis, for example, user monitor the air quality and temperature in home.
Control behaviours are those where the user controls the external environment
through the IoT device, for example. user use switch to turn on the light.

23

Figure 4.1: Common User behaviours in Hue System

In the Hue System, user behaviour is mainly control behaviour (light control),
supplemented by perception behaviour. Control behaviour refers to using the
Hue Bridge to control the home luminaire, such as switching on and off the lights,
adjusting the brightness and color temperature, setting the lighting scenes, etc.
Sensing behaviour refers to the ability of Hue Bridge to sense. It provides
feedback on the home environment by interconnecting with other sensors and
smart devices, such as adding a rule engine to the bedroom by linking with the
motion sensor to automatically turn on a pre-set lighting scheme when entering
the bedroom.

Users can send control commands to the Hue Bridge via the Hue App or Hue
Accessories (Smart Button, Dimmer Switch). The Hue Bridge is a hub that
will mobilize the back-end programs to process these commands and ultimately
achieve the desired lighting effect.

4.2 Method

After sorting out the behavioural categories and behavioural logic of Hue Bridge
users, we need to find a suitable method for modelling user behaviour for Hue
Bridge that meets the following requirements:

• A model that provides credible support for subsequent simulations of user
behaviour, maximising the commands sequence of users using the bridge
device.

• Intuitively reflect the user’s interaction with the Signify smart device

• The ability to link to bridge’s full config to provide device and scenario
information about user behaviour

24

Figure 4.2: Hue System: Use Case Example via XML

4.2.1 Use Case

This project synthesises a large body of academic work on user behaviour mod-
elling for IoT devices, combining the characteristics of the bridge device line
as a primary control class with a secondary perception class of behaviour, and
chooses to use the Use Case approach to investigate the user behaviour of the
Hue Bridge. The use case approach is widely used to analyse system require-
ments and user interactions in software development projects. In this study, we
use the use case approach to identify the critical scenarios and tasks involved in
using the Hue Bridge product by users.
First, look at user use cases in Signify’s intelligent world. As a typical ex-

ample, when the user comes home, and it is dark, the user finds his Hue dimmer
switch, presses the control button on the switch, and the Hue Birdge receives
the command and turns on the lights in the whole living room via Zigbee. This
use case is widespread and fundamental, and the interaction’s logic is drawn in
UML in Figure 4.2. The Hue system is very rich in functionality, and the use
case is the best way to simulate the natural behaviour of a user for our virtual
bridge.
We designed four steps for analyzing use cases by combining the product

characteristics of Hue Bridge and the bridge functional design document:
Identifying roles: The Use case analysis begins by identifying the interac-

tion roles, i.e. the users and other devices or objects that interact with the Hue
Bridge product. We identified three personas: the end user, the Hue Bridge
device and the Hue application.
Identifying scenarios and defining use cases: We generalised the inter-

action scenarios for Hue Bridge users. This definition of scenarios also divides
the use cases of Hue Bridge into categories based on scenarios. We identified
five use case scenarios: lighting control, scene creation, rules engine and lighting
ambience. (Lights, Groups, Rules, Schedules, Scenes). We will also define use
cases in each scenario based on the results of the user behaviour analysis.
Describe the use case: For each use case in the previous steps, describe the

purpose and actions that the user performs when interacting with Hue Bridge.
For example, in the lighting control use case, the user would turn the lights on

25

or off, adjust the brightness or change the colour.
Analyse user behaviour: Analyse past user behaviour/data to find pat-

terns and preferences in past data about how users use the Hue bridge. This
step will validate and refine the user use cases and uncover user behaviour that
humans cannot analyse, summarising the user’s habits of using the Hue Bridge
product.

4.2.2 Frequent Pattern Mining

The first three steps in the Use Case method are manual analysis and summary,
while the fourth step, analyzing user behavior, requires the use of past data to
identify patterns and validate and refine the results of the use case analysis. In
this section, we describe the method used to analyze and summarize past user
behavior data for Hue Bridge.
The user data collected by Signify does not directly include user control com-

mands or HTTP request records. The bridge user data best suited for analyzing
user behavior is the State message data, which collects device status change val-
ues generated by users while using the Hue Lighting System, such as the on/off
status of lights, light brightness and color temperature, and motion sensor pres-
ence status. We chose State message as our primary dataset for analyzing user
behavior because the data recorded in State message are the most common state
information for users when customizing their smart home systems using the app
or accessories. By tracking changes in state information, we can intuitively de-
termine users’ specific behavior.

Table 4.1: State message Example: 10 Messages in Lights sub-tables

Source hue sat xy ct colormode bri on

zigbee 59086 232 [0.4925, 0.2309] 428 xy
zigbee 14956 140 [0.4571, 0.4097] 366 ct
system FALSE
homekit 175 TRUE
rules 8418 140 [0.1467, 0.2153] 366 xy
zigbee 99
clip FALSE
zigbee 366 ct 254 TRUE
clip 62622 200 [0.5584, 0.2904] 500 hs

After identifying the dataset, we needed to find suitable algorithms to ana-
lyze the State message dataset. In the IoT field, the main research directions
involve using pattern learning or machine learning models to classify and predict
perceptual behavior data generated by users[17, 13, 29]. Both pattern learning
and machine learning seem suitable for our project, but each has its advantages
and disadvantages.We compared pattern mining and machine learning as two
different approaches for modeling use cases from incremental messages. Pattern
mining is a rule-based approach that relies on extracting patterns from incre-
mental messages and using them to create rules for identifying use cases. This
method has a simple algorithmic logic and does not require a large amount of
labeled data. However, it may not be able to handle complex patterns and may

26

require manual translation to refine rules. On the other hand, machine learn-
ing is a data-driven approach that relies on training models on labeled data
to identify use cases. This method can handle complex patterns and can learn
from a large amount of data. However, it requires a large amount of labeled
data for training, and the results often have situations that cannot be explained
or described by humans.
The State message dataset mainly consists of status values for lights and

sensors (such as motion sensors), an example of State message is shown in
Table 4.1. If we use machine learning to study user behavior, we would be
more concerned with predicting users’ preferences and habits regarding these
status values (for example, predicting the brightness and color temperature val-
ues set by users). However, for Hue Bridge, which focuses on control-based user
behavior, we are more interested in analyzing the behavior of users changing
status information itself, rather than the distribution and prediction of these
status values. Therefore, we chose to use pattern mining (also known as fre-
quent pattern mining) as our method for analyzing user behavior. In frequent
pattern mining, frequent patterns typically refer to itemsets/subsets that ap-
pear frequently in the dataset and have a frequency higher than a set threshold.
By analyzing and mining these frequent patterns or frequent itemsets, we can
identify the association rules and frequency of all items in the dataset.
Frequent pattern mining is a technique used to find frequently occurring pat-

terns in a dataset. These patterns can help us understand the relationships
between State message data and identify meaningful features. The main ob-
jective of frequent pattern mining is to discover itemsets that occur frequently,
which can be used to build association rules and help us understand the cor-
relation between data. In this process, we need to calculate metrics of frequent
itemsets to determine their statistical significance. The metrics for the various
designs are evaluated using the following:

1. Itemset:
Set of items X. A State message D contains an itemset X if X ⊆ D. Each
itemset X is associated with a set of State messages DX = {D ∈ M | D ⊇
X} which is the set of State messages which contain the itemset X, M is
a set of n State messages M = {D1, D2, . . . , Dn} [35]

2. Association Rule:
Frequent itemsets that appear together frequently

3. Consequent & Antecedent: An antecedent is an itemset that first
found in the data and Consequent is an itemset that can be found after
we found the antecedent.

4. Support:
supp(X) of an itemset X is the ratio of transactions in which an itemset
appears to the total number of State messages[35]

support(X) =
|{D ∈ M ;X ⊆ D}|

|M |
(4.1)

5. Confidence:
The confidence of a rule X → Y is the probability of seeing the consequent

27

in a State message given that it also contains the antecedent[24].

confidence (X → Y) =
support(X → Y)

support(X)
(4.2)

6. Lift:
The lift is a measure of importance of a specific association rule[4].

lift (X → Y) =
confidence(X → Y)

confidence(X)
(4.3)

4.3 Use Case Modeling Process

To validate the feasibility of applying the Frequent Pattern Mining algorithm
mentioned in the Method section to Delta Message, we conducted several pro-
gressive comparative experiments to find the optimal model for the Hue Bridge
use case. In the experimental section, we first introduced the dataset and pre-
processing steps. After preparing the data, experiments were designed based
on different combinations of sub-tables in the dataset, and algorithm improve-
ments were proposed to adapt to the user behavior of Hue Bridge as issues were
encountered during the experiments.The general steps of the experiments are
designed as follows:
Data preprocessing: We will first preprocess the Delta messages, including

deduplication, filtering, and conversion, etc. This will help improve data quality
and usability and provide support for subsequent analysis and mining.
Pattern mining: We will use the Frequent Pattern Mining technique to

mine frequent patterns in Delta messages. Specifically, we will use classic fre-
quent pattern mining algorithms such as the Apriori algorithm to discover user
behavior patterns and usage scenarios. This will help us better understand user
needs and habits and provide a basis for device optimization and intelligence.

Pattern analysis and validation: We will analyze and validate the mined
frequent patterns to ensure that these patterns are true and trustworthy. Spe-
cifically, we will use statistical analysis and visualization tools to discover and
explain these patterns and verify their degree of conformity with actual usage
scenarios.

4.3.1 State message Dataset and its pre-processing

In Section 4.2.2, we chosen the State message as the dataset. In this section,
we will provide a detailed description of this dataset and perform data prepro-
cessing before model building. State message collects device state change values
generated by users while using the Hue Lighting System, such as the on/off state
of lights, the brightness and color temperature of lights, and the presence status
of motion sensors. The changes in these state values fully reflect the user’s in-
teraction behavior with the Hue Bridge when using the Hue system. By mining
the association rules and frequent items of the state values in the dataset, we
can verify and improve the Use Case.
Signify used the Cloud SQL tool to collect and store State message, which

means that we can use general SQL syntax to query large-scale data for better
analysis and comparison. Considering the size of the dataset, in this section

28

on the application of frequent pattern mining algorithms, we queried a week’s
worth of State message data from Bridge production users as the experimental
dataset. In the Implementation section, we will query datasets of one year or
more according to actual needs.
In the complete dataset, there are a total of seven sub-tables strongly related

to user behavior. These sub-tables record the numerical values and timestamps
of devices’ state changes in the Hue Bridge system. These sub-tables are:

1. Lights: All the info about the bulbs, eg type of light, current state(on/off,
colormode, hue), the brightness level

2. Group: Group can be a zone info, like the id of lights in that zone/ group
if all/any lights in the zone are turned on or off

3. Config : Has all the info about the bridge like ip address, model id etc

4. Rules: Integrate sensors and lights, user-defined rule engine, if the condi-
tion is triggered, the action specified by the action will be executed, and
State message records the trigger record of user rules over time

5. Schedules: Collection of input to test web app.

6. Scene: has info of what scene/ light recipe the lights are set to

7. Sensor: if bridge is connected to any sensor like motion detection, outdoor
sensor or etc, info collected from these sensors is saved in this table.

In Section 4.2, we discussed using pattern learning methods to find patterns
in the Hue Bridge device State message, in order to analyze the Use Cases
of bridge users. In order to preprocess the data in practice, we followed the
following steps:
Data reading and cleaning: We sequentially read the raw data of each

sub-table, and then clean the data, including removing irrelevant columns, re-
moving rows with null values, removing duplicate rows caused by MQTT data
transmission problems, etc.
Data transformation: When processing the data, there are some columns

of string type(such as the Source columns in the Lights sub-table) that we want
to include all their possible values as itemsets for pattern mining. To accomplish
it, we transform each possible string value in the target column into a binary
boolean value.

Create encoded transaction: In order to standardize the data set format,
common frequent pattern mining algorithms use the TransactionEncoder method
to encode and format the original data set, in order to obtain a standardized
array format suitable for the algorithm. For our data set, on the basis of Trans-
actionEncoder, we use all the column names of each sub-table as frequent items.
The status data of each row is converted based on whether there is a value (for
all numerical types). Considering the memory efficiency of processing large-scale
data, we convert numerical values into binary boolean values based on whether
they have values. This way, we transform the input data set into a one-hot
encoded boolean array that is standardized for model training.
Data concatenation: In order to mine more detailed and accurate Use

Cases, we can arrange and combine the data in the seven sub-tables, and com-
bine them with Hue Bridge’s Full config data to obtain more detailed frequent
item information.

29

Table 4.2: Data transformation and Encoded Transaction example(T
is True, F is False)

hue sat xy ct cm bri on zigbee system homekit rules clip
T T T T T F F T F F F F
T T T T T F F T F F F F
F F F F F F T F T F F F
F F F F F T T T F T F F
T T T T T F F F F F T F
F F F F F T F T F F F F
F F F F F F T F F F F T
F F F T T T T T F F F F
T T T T T F F F F F F T

Table 4.3: Apriori Algorithm Parameters

Algorithm Apriori

Objective Lights sub-table
Mnimum support threshold 0.095
Mnimum lift threshold 3.2
Total amount of Messages 100,000,000

In Table 4.2, we performed data transformation and encoded transaction on
10 messages from Table 4.1, and obtained the following results.

4.3.2 Experiments

Experiment 1: How Apriori Algorithm applies to Delta Messages
The aim of this experiment is to verify whether Frequent Pattern Mining tech-

nology can be used to mine frequent patterns in Delta messages, and whether
the idea of converting these patterns into use cases is feasible. We applied the
Apriori algorithm to the Lights sub-table of the Delta messages to conduct fre-
quent pattern mining experiments and verified the feasibility of converting the
mined frequent patterns into use cases.
For this experiment, we selected one week’s worth of data from the Lights

sub-table, which contains all the information changes of the user’s home lighting
fixtures (e.g. saturation, on/off, color mode, hue, and brightness level), and is
the most fundamental and important sub-table in the Delta messages, making
it suitable as the dataset for this experiment. The parameter design of this
experiment is shown in Table 4.3. We set the minimum support threshold to
0.195, which means that the frequent itemsets must appear in the dataset with
a probability of at least 9.5%. The minimum lift value was set to 3.2, which
means that we only consider those itemsets whose association rules have a lift
value greater than or equal to 3.2.
During the experiment, we performed data validation on the preprocessed

lights sub-table data. After confirming the correctness of the data, we applied
the Apriori algorithm to the dataset. According to the Apriori algorithm, the
model first scans the entire dataset to count the support of each item and fil-
ter out the frequent 1-itemsets. Based on the frequent 1-itemsets[2], candidate

30

itemsets are constructed and the support of each candidate itemset is counted
to filter out frequent itemsets. Then, based on the frequent itemsets, the con-
fidence of each itemset is calculated to filter out association rules that meet the
requirements and return the frequent itemsets and association rules that meet
the requirements[2].

Table 4.4: Experiments 1 Results: Top 20 Frequent itemsets and Rules

antecedents consequents support lift

[zigbee, sat] [xy] 0.2568 3.89408
[xy] [zigbee, sat] 0.2568 3.89408
[rules, sat , colormode] [xy] 0.213 3.87412
[zigbee, xy , colormode] [sat] 0.2014 3.87411
[clip, sat] [xy , colormode] 0.1725 3.87411
[clip, xy] [sat , colormode] 0.172 3.82412
[rules, hue] [sat] 0.182 3.81111
[rules, hue , xy] [sat] 0.181 3.81014
[clip, xy , colormode] [hue , sat] 0.177 3.65432
[clip, hue , sat] [xy , colormode] 0.154 3.65432
[hue , xy] [system, sat , colormode] 0.1421 3.423
[zigbee, sat , xy] [hue , colormode] 0.1431 3.42143
[zigbee, hue] [xy , sat , colormode] 0.1214 3.4134
[zigbee, sat] [hue , xy , colormode] 0.1211 3.39132
[rules, xy] [hue , sat , colormode] 0.1198 3.392315
[sat , ct] [clip, xy] 0.1198 3.391408
[xy , ct] [homekit, sat] 0.1052 3.31042
[clip, sat] [xy , ct] 0.1024 3.31042
[zigbee, xy] [sat , ct] 0.1011 3.30495
[colormode , sat , ct] [rules, xy] 0.1010 3.30412

In Table 4.4, the results of the Apriori algorithm for association rules are
presented, including antecedents, consequents, support and lift. It can be seen
from the results that there are strong associations between hue and sat, hue
and xy, and sat and xy, with confidence and lift values close to 1, indicating a
strong correlation between these attributes in the dataset. In addition, it can be
observed that there are also strong associations between different combinations
of attributes, such as hue and sat, hue and ct, hue and colormode, and xy,
with lift values higher than 3.2, indicating statistically significant correlations
between these attribute combinations. Overall, these association rules suggest
that there are strong correlations between these attributes and that they can
be used to build data mining models.
During the experiment, we needed to convert the mined frequent patterns into

use cases for better understanding and analysis of user behavior. The association
rules we discovered in this experiment are combination itemsets of user status
information, corresponding to the most direct and single light control operation
of the user. Therefore, we can compare them one by one with the light control
function area in the Hue App. For example, if we find a frequent pattern with
antecedents ”clip” and consequents ”bri”, it corresponds to the user frequently
adjusting the brightness of the lights in the Hue App, and its association degree

31

is the highest among all the patterns.
The experimental results in Table 4.4indicate that frequent pattern mining

technology can effectively extract frequent patterns in Delta messages, and these
frequent patterns can be transformed into use cases. This provides an effective
method for better understanding and analyzing user behavior. Therefore, we
conclude that frequent pattern mining technology can be used for frequent pat-
tern mining in Hue Bridge Delta messages, and these frequent patterns can be
transformed into use cases.
Experiment 2: How Apriori Algorithm applies to Delta Messages
In Experiment 1, we have verified the feasibility of applying frequent mining

algorithms to the data message. In this experiment, we will explore how to
improve the completeness of Use Case information. In the previous validation
experiments, we applied algorithms to the Lights, which is the most important
sub-table, and obtained the relevant rules of the Hue Light status attribute.
These rules indicate the user’s preference for controlling the light attributes.
However, a complete control use case not only needs to know which attributes
the user prefers to change but also wants to understand the user’s way and
goal of controlling the behavior. For example, we already know that users tend
to change both the color temperature and brightness of the light. Based on
this, we also want to know whether the user performed this operation through
the Hue app or the Dimmer switch and which type of light the user controlled
specifically. In the Hue system, different types of lights support different status
attributes. Some lights only support changing the brightness of the light, while
others can change all status attributes such as the color temperature, Hue, and
Sat. Therefore, this experiment aims to investigate a solution to improve the
control use case of the lights.
Firstly, we need to clarify which information in the bridge device’s configur-

ation file can be used to determine the user’s way and goal of controlling the
light. After consulting the complete configuration documentation of the Hue
Bridge, we filtered out multiple database query solutions and finally chose the
following scheme:

• Control method: Source = Clip or Zigbee

• Control target: Light type = Extended color light, Color light, On/Off
light, Color temperature light, On/off plug-in unit, Dimmable light

• Light attributes: hue, sat, xy, ct, colormode, bri, on

Regarding the control method, we selected the Source data in the delta mes-
sage and filtered out the data with Source as Clip and Zigbee. Clip stands for
”Connected Lighting for Interaction and Presence,” which is a component of
the Hue system used to provide developers with the authority to control Hue
devices using RESTful APIs and WebSockets. For users, Source is usually Clip,
which represents that the user used the Hue app or a third-party app to con-
trol the smart light. The Clip component plays the role of middleware in this
process. On the other hand, if the Source is Zigbee, it means that the delta
message is communicated through the Zigbee protocol. This represents that
the user used a Zigbee switch supporting the ZigBee Light Link (ZLL) protocol
and the ZigBee 3.0 protocol to control the smart light. It should be noted that
these Zigbee switches are the ones that users already have before purchasing

32

Hue products, not the Hue Dimmer switch. The case of controlling the light
with the Hue Dimmer switch belongs to the perception use case, corresponding
to the rules sub-table in the delta message.
Based on the scheme, we designed the following SQL statement to obtain the

dataset required for this experiment from the database:

start_date='2023-03-11'

end_date = '2023-04-25'

in_date_range = dt >= start_date and dt < end_date

in_source_range = source IN ('clip', 'zigbee')

SELECT *

FROM (SELECT bridge_token, source, SPLIT_PART(address, '/', 4)AS id, hue, sat,

xy, ct, colormode, bri, on↪→

FROM delta_messages_test.lights

WHERE in_source_range

AND in_date_range

AND (hue IS NOT NULL OR sat IS NOT NULL OR xy IS NOT NULL

OR ct IS NOT NULL OR colormode IS NOT NULL OR bri IS NOT NULL

OR on IS NOT NULL)

) delta_lights

INNER JOIN (SELECT bridge_token, id, type FROM full_config_test_lights WHERE dt

= end_date) config_lights↪→

USING(bridge_token, id)

LIMIT 20000000

By this statement, we obtained integrated data within a certain time range,
which includes parameter preferences of Light Control Behavior, specific meth-
ods of control behavior, and types of lights. Following the steps of frequent
pattern mining defined in Section 4.3, we applied the algorithm to this dataset
and obtained the results in Table 4.5.

33

T
ab

le
4
.5
:
E
x
p
e
ri
m
e
n
t
R
e
su

lt
s:

F
re

q
u
e
n
t
it
e
m
se
ts

a
n
d

U
se

c
a
se
s

S
u
p
p
o
rt

F
re

q
u
e
n
t
it
e
m
se
ts

U
se

C
a
se
s
[T

ra
n
sl
a
te
d

b
y
b
ri
d
g
e
e
x
p
e
rt
s]

0.
20
22

[z
ig
b
ee
,
h
u
e,

sa
t,
x
y,

ct
,
co
lo
rm

o
d
e,

E
x
te
n
d
ed

co
lo
r
li
g
h
t]

U
se

li
g
h
t
sw

it
ch

to
co
n
tr
o
l
th
e
co
lo
r(
h
u
e,

sa
t,

ct
)
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
19
21

[z
ig
b
ee
,
b
ri
,
E
x
te
n
d
ed

co
lo
r
li
gh

t]
U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
08
79

[z
ig
b
ee
,
b
ri
,
D
im

m
ab

le
li
gh

t]
U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
D
im

m
a
b
le

li
g
h
t#

id
0.
07
74

[z
ig
b
ee
,
h
u
e,

sa
t,
x
y,

ct
,
co
lo
rm

o
d
e,

b
ri
,
E
x
te
n
d
ed

co
lo
r
li
g
h
t]

U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
07
08

[c
li
p
,
b
ri
,
E
x
te
n
d
ed

co
lo
r
li
gh

t]
U
se

H
u
e
A
p
p
to

m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
05
74

[z
ig
b
ee
,
b
ri
,
C
ol
or

te
m
p
er
at
u
re

li
gh

t]
U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
C
o
lo
r
te
m
p
er
a
tu
re

li
g
h
t#

id
0.
05
58

[c
li
p
,
h
u
e,

sa
t,
x
y,

ct
,
co
lo
rm

o
d
e,

E
x
te
n
d
ed

co
lo
r
li
g
h
t]

U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
03
47

[z
ig
b
ee
,
ct
,
co
lo
rm

o
d
e,

C
ol
or

te
m
p
er
a
tu
re

li
g
h
t]

U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
C
o
lo
r
te
m
p
er
a
tu
re

li
g
h
t#

id
0.
02
32

[c
li
p
,
h
u
e,

sa
t,
x
y,

ct
,
co
lo
rm

o
d
e,

b
ri
,
E
x
te
n
d
ed

co
lo
r
li
g
h
t]

U
se

H
u
e
A
p
p
to

m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
02
11

[c
li
p
,
off

,
E
x
te
n
d
ed

co
lo
r
li
gh

t]
U
se

H
u
e
A
p
p
to

m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
01
36

[c
li
p
,
on

,
E
x
te
n
d
ed

co
lo
r
li
gh

t]
U
se

H
u
e
A
p
p
to

m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
01
25

[z
ig
b
ee
,
ct
,
co
lo
rm

o
d
e,

b
ri
,
C
ol
or

te
m
p
er
a
tu
re

li
g
h
t]

U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
C
o
lo
r
te
m
p
er
a
tu
re

li
g
h
t#

id
0.
01
12

[z
ig
b
ee
,
off

,
E
x
te
n
d
ed

co
lo
r
li
gh

t]
U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
01
08

[c
li
p
,
off

,
D
im

m
ab

le
li
gh

t]
U
se

H
u
e
A
p
p
to

m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
D
im

m
a
b
le

li
g
h
t#

id
0.
00
82

[c
li
p
,
on

,
D
im

m
ab

le
li
gh

t]
U
se

H
u
e
A
p
p
to

m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
D
im

m
a
b
le

li
g
h
t#

id
0.
00
81

[z
ig
b
ee
,
on

,
E
x
te
n
d
ed

co
lo
r
li
gh

t]
U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
00
8

[c
li
p
,
off

,
C
ol
or

te
m
p
er
at
u
re

li
gh

t]
U
se

H
u
e
A
p
p
to

m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
C
o
lo
r
te
m
p
er
a
tu
re

li
g
h
t#

id
0.
00
68

[z
ig
b
ee
,
h
u
e,

sa
t,
x
y,

ct
,
co
lo
rm

o
d
e,

b
ri
,
o
n
,
E
x
te
n
d
ed

co
lo
r
li
g
h
t]

U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
E
x
te
n
d
ed

co
lo
r
li
g
h
t#

id
0.
00
65

[z
ig
b
ee
,
h
u
e,

sa
t,
x
y,

co
lo
rm

o
d
e,

C
o
lo
r
li
g
h
t]

U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
C
o
lo
r
li
g
h
t#

id
0.
00
59

[c
li
p
,
b
ri
,
C
ol
or

li
gh

t]
U
se

H
u
e
A
p
p
to

m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
C
o
lo
r
te
m
p
er
a
tu
re

li
g
h
t#

id
0.
00
58

[z
ig
b
ee
,
off

,
C
ol
or

te
m
p
er
at
u
re

li
gh

t]
U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
C
o
lo
r
te
m
p
er
a
tu
re

li
g
h
t#

id
0.
00
54

[c
li
p
,
on

,
C
ol
or

te
m
p
er
at
u
re

li
gh

t]
U
se

H
u
e
A
p
p
to

m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
C
o
lo
r
te
m
p
er
a
tu
re

li
g
h
t#

id
0.
00
53

[z
ig
b
ee
,
off

,
D
im

m
ab

le
li
gh

t]
U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
D
im

m
a
b
le

li
g
h
t#

id
0.
00
51

[z
ig
b
ee
,
b
ri
,
C
ol
or

li
gh

t]
U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
C
o
lo
r
li
g
h
t#

id
0.
00
49

[z
ig
b
ee
,
on

,
D
im

m
ab

le
li
gh

t]
U
se

li
g
h
t
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
D
im

m
a
b
le

li
g
h
t#

id

34

Based on the results, we found that compared to the results in Experiment
1, we assigned complete meanings to each mined frequent itemset. With these
mined itemsets, experts can easily transform itemsets into exclusive Use Cases
of the Hue system. This experiment validated that the proposed approach in
the experiment can improve the Light Control type Use Cases and enhance their
usability in virtualized containers.
Experiment 3: How Use Case Model applies to other sub-tables
In Experiments 1 and 2, we used the lights sub-table in State message as

the experimental object. In this experiment, we aim to explore the use cases
corresponding to the other sub-tables and filter out the final use cases that can
be applied in virtual containers and are effective. In addition to providing basic
light control, the Hue bridge also provides rich functionality. The data generated
by these functions is recorded in various sub-tables, such as the Groups sub-
table, which records data on users’ control of all lights in a room using the Hue
App or Dimmer Switch. The Scene sub-table records the state data of users
setting lighting scenes for different areas of the home (such as soft ambient
lighting, reading lighting, party mode, etc.). The Sensor sub-table records the
status data changes of all sensors used by the user (such as when the Motion
Sensor is triggered or when the Dimmer Switch is used).
First, we focus on the Groups sub-table, which has a data structure similar to

the Lights Control(Table 4.1). Following the method and steps of experiment
2, we designed the following scheme for the Groups sub-table:

• Control method: Source = Clip or Zigbee

• Control target: Group Class = Living, room, Bedroom, Hallway, TV,
Kitchen, Other, Bathroom, Downstairs, Staircase, Office, Dining, Free,
Front, door, Toilet, Home, Kids, bedroom, Upstairs, Garden, Laundry,
room, Closet, Garage, Lounge, Storage, Computer, Recreation, Driveway,
Man, cave, Terrace, Porch, Nursery, Studi, Carport, Guest, room, Top,
floor, Music, Attic, Balcony, Reading, Gym, Barbecue, Pool

• Light attributes: all on, any on, alert, hue, sat, xy, ct, bri

According to the scheme, we performed data preprocessing, concatenation,
and algorithm application on the Groups table. We selected 45 days of Groups
Control data from the bridge user (a total of 20 million messages), and the
model results are output in descending order of Support, as shown in Table 4.6.
(Due to space limitations, we only list some of the mined itemsets in the main
text.)

35

T
ab

le
4.
6:

E
x
p
e
ri
m
e
n
t
3
R
e
su

lt
s:

F
re

q
u
e
n
t
it
e
m
se
ts

a
n
d

U
se

c
a
se
s
fo
r
G
ro

u
p
s
su

b
-t
a
b
le

S
u
p
p
o
rt

F
re

q
u
e
n
t
it
e
m
se
ts

G
ro

u
p

C
o
n
tr
o
l
U
se

C
a
se

0.
15
95
52

(’
zi
gb

ee
’,

’L
iv
in
g

ro
om

’,
’m

es
sa
g
e
a
ll
o
n
’,

’m
es
-

sa
ge

an
y
on

’)
U
se

th
e
sw

it
ch

to
tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
L
iv
in
g
R
o
o
m

(g
ro
u
p
#
id
)

0.
14
89
12

(’
zi
gb

ee
’,
’H

al
lw
ay

’,
’m

es
sa
ge

al
l
on

’,
’m

es
sa
g
e
a
n
y
o
n
’)

U
se

th
e
sw

it
ch

to
tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
H
a
ll
w
ay

(g
ro
u
p
#
id
)

0.
13
62

(’
cl
ip
’,
’L
iv
in
g
ro
om

’,
’m

es
sa
ge

al
l
o
ff
’,
’m

es
sa
g
e
a
n
y
o
ff
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
ff
a
ll
th
e
li
g
h
ts

in
th
e
L
iv
in
g
R
o
o
m

(g
ro
u
p
#
id
)

0.
13
42
92

(’
cl
ip
’,
’L
iv
in
g
ro
om

’,
’m

es
sa
ge

off
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
ff
o
n
e
li
g
h
t
in

th
e
L
iv
in
g
R
o
o
m

(g
ro
u
p
#
id
)

0.
11
9

(’
cl
ip
’,
’L
iv
in
g
ro
om

’,
’m

es
sa
ge

al
l
o
n
’,
’m

es
sa
g
e
a
n
y
o
n
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
L
iv
in
g
R
o
o
m

(g
ro
u
p
#
id
)

0.
08
10
6

(’
cl
ip
’,
’B
ed
ro
om

’,
’m

es
sa
ge

al
l
off

’,
’m

es
sa
g
e
a
n
y
o
ff
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
B
ed
ro
o
m

(g
ro
u
p
#
id
)

0.
07
20
52

(’
cl
ip
’,
’B
ed
ro
om

’,
’m

es
sa
ge

off
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
B
ed
ro
o
m

(g
ro
u
p
#
id
)

0.
06
93
44

(’
cl
ip
’,
’B
ed
ro
om

’,
’m

es
sa
ge

al
l
on

’,
’m

es
sa
g
e
a
n
y
o
n
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
B
ed
ro
o
m

(g
ro
u
p
#
id
)

0.
06
31
84

(’
cl
ip
’,
’L
iv
in
g
ro
om

’,
’m

es
sa
ge

on
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
n
o
n
e
li
g
h
t
in

th
e
L
iv
in
g
ro
o
m

(g
ro
u
p
#
id
)

0.
06
29
8

(’
zi
gb

ee
’,
’B
ed
ro
om

’,
’m

es
sa
ge

al
l
o
n
’,
’m

es
sa
g
e
a
n
y
o
n
’)

U
se

th
e
sw

it
ch

to
tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
B
ed
ro
o
m

(g
ro
u
p
#
id
)

0.
06
04
28

(’
zi
gb

ee
’,
’H

al
lw
ay

’,
’m

es
sa
ge

b
ri
’)

U
se

th
e

sw
it
ch

to
m
o
d
if
y

th
e

b
ri
g
h
tn
es
s
o
f
a
ll

th
e

li
g
h
ts

in
th
e

H
a
ll
w
ay

(g
ro
u
p
#
id
)

0.
05
37

(’
zi
gb

ee
’,
’O

th
er
’,
’m

es
sa
ge

al
l
on

’,
’m

es
sa
g
e
a
n
y
o
n
’)

U
se

th
e
sw

it
ch

to
tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
o
th
er

ro
o
m

(g
ro
u
p
#
id
)

0.
05
03
04

(’
zi
gb

ee
’,
’L
iv
in
g
ro
om

’,
’m

es
sa
ge

b
ri
’)

U
se

th
e
sw

it
ch

to
m
o
d
if
y
th
e
b
ri
g
h
tn
es
s
o
f
a
ll
th
e
li
g
h
ts

in
th
e
L
iv
in
g
R
o
o
m

(g
ro
u
p
#
id
)

0.
04
78
12

(’
cl
ip
’,
’T
V
’,
’m

es
sa
ge

al
l
off

’,
’m

es
sa
g
e
a
n
y
o
ff
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
ff
a
ll
th
e
li
g
h
ts

in
th
e
T
V

ro
o
m

(g
ro
u
p
#
id
)

0.
04
41
36

(’
cl
ip
’,
’T
V
’,
’m

es
sa
ge

al
l
on

’,
’m

es
sa
g
e
a
n
y
o
n
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
T
V

ro
o
m

(g
ro
u
p
#
id
)

0.
04
13
12

(’
zi
gb

ee
’,
’K

it
ch
en
’,
’m

es
sa
ge

al
l
on

’,
’m

es
sa
g
e
a
n
y
o
n
’)

U
se

th
e
sw

it
ch

to
tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
k
it
ch
en

(g
ro
u
p
#
id
)

0.
04
11
72

(’
zi
gb

ee
’,
’B
at
h
ro
om

’,
’m

es
sa
ge

al
l
o
n
’,
’m

es
sa
g
e
a
n
y
o
n
’)

U
se

th
e
sw

it
ch

to
tu
rn

o
n
a
n
y
li
g
h
t
in

th
e
b
a
th
ro
o
m

(g
ro
u
p
#
id
)

0.
03
95
72

(’
zi
gb

ee
’,
’L
iv
in
g
ro
om

’,
’m

es
sa
ge

a
n
y
o
n
’)

U
se

th
e
sw

it
ch

to
tu
rn

o
n
a
n
y
li
g
h
t
in

th
e
L
iv
in
g
ro
o
m

(g
ro
u
p
#
id
)

0.
03
91
76

(’
zi
gb

ee
’,
’S
ta
ir
ca
se
’,
’m

es
sa
ge

al
l
o
n
’,
’m

es
sa
g
e
a
n
y
o
n
’)

U
se

th
e
sw

it
ch

to
tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
S
ta
ir
ca
se

(g
ro
u
p
#
id
)

0.
03
60
52

(’
cl
ip
’,
’B
ed
ro
om

’,
’m

es
sa
ge

on
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
n
a
ll
th
e
li
g
h
ts

in
th
e
B
ed
ro
o
m

(g
ro
u
p
#
id
)

0.
03
60
24

(’
cl
ip
’,
’L
iv
in
g
ro
om

’,
’m

es
sa
ge

an
y
o
ff
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
ff
a
n
y
li
g
h
t
in

th
e
L
iv
in
g
ro
o
m

(g
ro
u
p
#
id
)

0.
02
99
88

(’
cl
ip
’,
’L
iv
in
g
ro
om

’,
’m

es
sa
ge

on
’,
’m

es
sa
g
e
b
ri
’)

U
se

th
e

H
u
e

A
p
p

to
m
o
d
if
y

th
e

b
ri
g
h
tn
es
s
o
f
li
g
h
ts

in
th
e

L
iv
in
g

ro
o
m

(g
ro
u
p
#
id
)

0.
02
97
52

(’
cl
ip
’,
’L
iv
in
g
ro
om

’,
’m

es
sa
ge

an
y
o
n
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
n
a
n
y
li
g
h
t
in

th
e
L
iv
in
g
ro
o
m

(g
ro
u
p
#
id
)

0.
02
88
16

(’
cl
ip
’,
’K

it
ch
en
’,
’m

es
sa
ge

al
l
off

’,
’m

es
sa
g
e
a
n
y
o
ff
’)

U
se

th
e
H
u
e
A
p
p
to

tu
rn

o
ff
a
ll
th
e
li
g
h
ts

in
th
e
K
it
ch
en

(g
ro
u
p
#
id
)

0.
02
85
6

(’
zi
gb

ee
’,

’L
iv
in
g

ro
om

’,
’m

es
sa
g
e
a
ll
o
ff
’,

’m
es
-

sa
ge

an
y
off

’)
U
se

th
e
sw

it
ch

to
tu
rn

o
ff
a
ll
th
e
li
g
h
ts

in
th
e
L
iv
in
g
R
o
o
m

(g
ro
u
p
#
id
)

36

According to the results in Table 4.6, we can see that each itemset corresponds
to a source and a group class. For example, the first rule corresponds to the
Zigbee protocol and the Living Room group class. These two items make up
the control method and target of this use case, which is to use a switch based on
the Zigbee protocol to control certain properties (message all on, message bri)
in the Living Room. Due to space limitations, only the top 25 itemsets by
support are listed in the table. It can be observed that the majority of itemsets
correspond to use cases where users control the lights in a room (primarily
Living Room and Bedroom) using the app and switch, such as turning the
lights on/off, changing the scene, and adjusting brightness. This conclusion is
consistent with the user habit of using the Hue Bridge to control the lights in
a room/area, and theoretically validates that our model analyzes user behavior
habits in the Hue system to some extent. In Chapter ??, we will conduct
experiments deploying the model to a virtual bridge to verify that the model
also simulates user behavior habits to some extent in engineering.
The Lights and Groups sub-tables are used by users to control home smart

lighting using Hue devices. Therefore, the Use Case results obtained from min-
ing these sub-tables are similar, but differ in the target of control and the dif-
ference between individual and group lighting. In this experiment, we selected
another important feature of the Hue system, the rule engine, as the result
demonstration. Compared with the user-initiated actions in the previous two
sub-tables, the rule engine triggers actions passively based on the trigger con-
ditions set by the user in advance. For example, if a user sets a rule that the
bedroom light should be turned on when the motion sensor near the bed de-
tects human movement and it is not nighttime, the rule engine will trigger this
action if all the conditions are met. In the Hue system, users can set up to eight
conditions and actions for each rule. Rules are a commonly used feature in the
Hue system. The Rules sub-table in the delta message stores the state records
of rules triggered by users, while the rules sub-table in the full config contains
detailed configurations of user rules, including conditions and actions.
Based on the above information, we designed the following scheme and applied

it to preprocessed and transformed rule data. We collected a total of 372,437
rules data for March 2023, with a total of 43,301,615 triggers. The frequent
itemsets obtained by the frequent pattern mining algorithm and the use cases
transformed through expert collaboration are shown in Table 4.7.

• Condition Objects: Sensor name or Sensor type of each condition =
Hue dimmer switch, Hue Smart button, CLIPGenericStatus, Daylight,
Hue outdoor light sensor, etc.

• Condition Event: Event = buttonevent, presence, any on, daylight,
lightlevel, expectedrotation, Status, dark, flag, etc.

• Action target: groups action, light, sensors, storelightstate, groups scene,
etc.

In this chapter, we designed multiple experiments to analyze the feasibility of
frequent pattern mining algorithms on the State message dataset. Based on the
algorithm results, we proposed a Use Case Model to analyze the user behavior
of the Hue Bridge. We obtained a list of use cases belonging to Lights con-
trol/Group Control/Rules Triggered, which will be applied to the containerized
virtual bridge in Chapter 5.

37

T
ab

le
4.
7:

E
x
p
e
ri
m
e
n
t
3
R
e
su

lt
s:

F
re

q
u
e
n
t
it
e
m
se
ts

a
n
d

U
se

c
a
se
s
fo
r
R
u
le
s
su

b
-t
a
b
le

S
u
p
p
o
rt

F
re

q
u
e
n
t
it
e
m
se
ts

R
u
le
s
T
ri
g
g
e
re

d
U
se

C
a
se

0.
46
46
97
23
8

[H
u
e
d
im

m
er

sw
it
ch

b
u
tt
on

ev
en
t,

se
n
so
rs

st
a
te

st
a
tu
s]

W
h
en

th
e
u
se
r
p
re
ss

th
e
H
u
e
d
im

m
er

sw
it
ch
,
m
o
d
if
y
th
e
st
a
te

o
f
se
n
so
r#

id
0.
02
28
94
53
4

[H
u
e
w
al
l
sw

it
ch

m
o
d
u
le

b
u
tt
on

ev
en
t,
g
ro
u
p
s
a
ct
io
n
sc
en
e]

W
h
en

th
e
u
se
r
p
re
ss

th
e
H
u
e
w
a
ll
sw

it
ch

m
o
d
u
le
,
a
lt
er

th
e
sc
en
e
o
f
g
ro
u
p
s#

id
0.
01
74
54
01
4

[H
u
e
m
ot
io
n
se
n
so
r
p
re
se
n
ce
,
st
o
re
li
g
h
ts
ta
te
]

W
h
en

th
e
H
u
e
m
o
ti
o
n
se
n
so
r
d
et
ec
ts

p
re
se
n
ce
,
st
o
re

th
e
st
a
te

va
lu
e
o
f
li
g
h
t#

id
0.
01
55
76
44
4

[H
u
e
S
m
ar
t
b
u
tt
on

b
u
tt
on

ev
en
t,

se
n
so
rs

st
a
te

st
a
tu
s]

W
h
en

th
e
u
se
r
p
re
ss

th
e
H
u
e
S
m
a
rt

b
u
tt
o
n
,
m
o
d
if
y
th
e
st
a
te

o
f
se
n
so
r#

id
0.
00
44
70
68
8

[C
L
IP

G
en
er
ic
S
ta
tu
s
st
at
u
s,

gr
ou

p
s
a
ct
io
n
sc
en
e]

W
h
en

C
li
p
G
n
er
ic

S
en
so
r
b
ee
n
tr
ig
g
er
ed
,
a
lt
er

th
e
sc
en
e
o
f
g
ro
u
p
s#

id
0.
00
34
41
72

[H
u
e

d
im

m
er

sw
it
ch

b
u
tt
o
n
ev
en
t,

L
u
tr
o
n

A
u
-

ro
ra

ex
p
ec
te
d
ro
ta
ti
on

,
se
n
so
rs

st
a
te

st
a
tu
s]

W
h
en

th
e
u
se
r
p
re
ss

th
e
H
u
e
d
im

m
er

sw
it
ch

a
n
d
L
u
tr
o
n
A
u
ro
ra

S
en
so
r
ro
ta
te
,

m
o
d
if
y
th
e
st
a
te

o
f
se
n
so
r#

id
0.
00
30
83
94
7

[Z
L
L
S
w
it
ch

b
u
tt
on

ev
en
t,

se
n
so
rs

st
a
te

st
a
tu
s]

W
h
en

th
e
u
se
r
p
re
ss

th
e
Z
L
L
sw

it
ch
,
m
o
d
if
y
th
e
st
a
te

o
f
se
n
so
r#

id
0.
00
26
31
55
6

[H
u
e
ou

td
o
or

m
ot
io
n
se
n
so
r
p
re
se
n
ce
,
st
o
re
li
g
h
ts
ta
te
]

W
h
en

th
e
H
u
e
o
u
td
o
o
r
m
o
ti
o
n
se
n
so
r
d
et
ec
ts

p
re
se
n
ce
,
st
o
re
s
th
e
st
a
te

va
lu
e

o
f
li
g
h
t#

id
0.
00
20
40
19
5

[H
u
e
m
ot
io
n
se
n
so
r
p
re
se
n
ce
,
gr
o
u
p
s
a
ct
io
n
o
n
]

W
h
en

th
e
H
u
e
m
o
ti
o
n
se
n
so
r
d
et
ec
t
p
re
se
n
ce
,
tu
rn

o
n
th
e
li
g
h
ts

o
f
g
ro
u
p
#
id

0.
00
19
95
84
3

H
u
e
m
ot
io
n
se
n
so
r
p
re
se
n
ce
,
se
n
so
rs

st
a
te

st
a
tu
s]

W
h
en

th
e
H
u
e
m
o
ti
o
n
se
n
so
r
d
et
ec
t
p
re
se
n
ce
,
st
o
re

th
e
st
a
te

va
lu
e
o
f
li
g
h
t#

id
0.
00
18
12
52
1

[C
L
IP

G
en
er
ic
S
ta
tu
s
st
at
u
s,

se
n
so
rs

st
a
te

st
a
tu
s]

W
h
en

C
li
p
G
n
er
ic

S
en
so
r
b
ee
n
tr
ig
g
er
ed
,
m
o
d
if
y
th
e
st
a
te

o
f
se
n
so
r#

id
0.
00
15
10
92
7

[D
ay
li
gh

t
d
ay
li
gh

t,
se
n
so
rs

st
at
e
st
a
tu
s]

W
h
en

d
ay
li
g
h
t
se
n
so
r
b
e
tr
ig
g
er
ed
,
m
o
d
if
y
th
e
st
a
te

o
f
se
n
so
r#

id
0.
00
11
47
24

[H
u
e
m
ot
io
n
se
n
so
r
p
re
se
n
ce
,
gr
o
u
p
s
a
ct
io
n
sc
en
e]

W
h
en

th
e
H
u
e
m
o
ti
o
n
se
n
so
r
d
et
ec
t
p
re
se
n
ce
,
al
te
r
th
e
sc
en
e
o
f
g
ro
u
p
s#

id
0.
00
11
41
32
6

[F
ri
en
d
s
of

H
u
e
S
w
it
ch

b
u
tt
on

ev
en
t,

g
ro
u
p
s
a
ct
io
n
sc
en
e]

W
h
en

u
se
r
p
re
ss

th
e
F
ri
en
d
s
o
f
H
u
e
sw

it
ch
,
a
lt
er

th
e
sc
en
e
o
f
g
ro
u
p
s#

id
0.
00
09
87
57
3

[H
u
e
w
al
l
sw

it
ch

m
o
d
u
le

b
u
tt
on

ev
en
t,

g
ro
u
p
s
a
ct
io
n
o
n
]

W
h
en

th
e
u
se
r
p
re
ss

th
e
b
u
tt
o
n
o
f
H
u
e
W
a
ll
sw

it
ch

m
o
d
u
le

,
tu
rn

o
n
th
e
li
g
h
ts

o
f
g
ro
u
p
#
id

0.
00
05
94
31
8

[F
ri
en
d
s
of

H
u
e
S
w
it
ch

b
u
tt
on

ev
en
t,

g
ro
u
p
s
a
ct
io
n
o
n
]

W
h
en

u
se
r
p
re
ss

th
e
F
ri
en
d
s
o
f
H
u
e
sw

it
ch
,
tu
rn

o
n
th
e
li
g
h
ts

o
f
g
ro
u
p
#
id

0.
00
03
28
20
5

[H
u
e

w
al
l

sw
it
ch

m
o
d
u
le

b
u
tt
o
n
ev
en
t,

L
u
tr
o
n

A
u
-

ro
ra

ex
p
ec
te
d
ro
ta
ti
on

,
gr
ou

p
s
a
ct
io
n
sc
en
e]

W
h
en

th
e
u
se
r
p
re
ss

th
e
H
u
e
w
a
ll
sw

it
ch

a
n
d
L
u
tr
o
n
A
u
ro
ra

S
en
so
r
ro
ta
te
,

a
lt
er

th
e
sc
en
e
o
f
g
ro
u
p
s#

id
0.
00
03
22
29
2

[H
u
e
ou

td
o
or

m
ot
io
n
se
n
so
r
p
re
se
n
ce
,
g
ro
u
p
s
a
ct
io
n
o
n
]

W
h
en

th
e
H
u
e
o
u
td
o
o
r
m
o
ti
o
n
se
n
so
r
d
et
ec
ts

p
re
se
n
ce
,
tu
rn

o
n
th
e
li
g
h
ts

o
f

g
ro
u
p
#
id

0.
00
02
98
63
7

[H
u
e

w
al
l

sw
it
ch

m
o
d
u
le

b
u
tt
o
n
ev
en
t,

L
u
tr
o
n

A
u
-

ro
ra

ex
p
ec
te
d
ro
ta
ti
on

,
gr
ou

p
s
a
ct
io
n
sc
en
e]

W
h
en

th
e
u
se
r
p
re
ss

th
e
H
u
e
w
a
ll
sw

it
ch

a
n
d
L
u
tr
o
n
A
u
ro
ra

S
en
so
r
ro
ta
te
,

a
lt
er

th
e
sc
en
e
o
f
g
ro
u
p
s#

id
0.
00
02
30
63
1

[H
u
e
m
ot
io
n
se
n
so
r
p
re
se
n
ce
,
se
n
so
rs

co
n
fi
g
o
n
]

W
h
en

th
e
H
u
e
m
o
ti
o
n
se
n
so
r
d
et
ec
t
p
re
se
n
ce
,
tu
rn

o
n
th
e
co
n
fi
g
o
f
se
n
so
r#

id
0.
00
02
12
89

[H
u
e

d
im

m
er

sw
it
ch

b
u
tt
on

ev
en
t,

H
u
e

a
m
b
ie
n
t

li
g
h
t

se
n
so
r
li
gh

tl
ev
el
,
se
n
so
rs

st
at
e
st
a
tu
s]

W
h
en

th
e
u
se
r
p
re
ss

th
e
d
im

m
er

sw
it
ch

a
n
d
a
m
b
ie
n
t
li
g
h
t
se
n
so
r
a
ch
ie
ve

sp
ec
ifi
c

b
ri
g
h
tn
es
s,

m
o
d
if
y
th
e
st
a
te

o
f
se
n
so
r#

id
0.
00
02
04
01
9

[H
u
e
d
im

m
er

sw
it
ch

b
u
tt
on

ev
en
t,

g
ro
u
p
s
a
ct
io
n
sc
en
e]

W
h
en

th
e
u
se
r
p
re
ss

th
e
H
u
e
d
im

m
er

sw
it
ch

a
n
d
L
u
tr
o
n
A
u
ro
ra

S
en
so
r
ro
ta
te
,

a
lt
er

th
e
sc
en
e
o
f
g
ro
u
p
s#

id
0.
00
01
89
23
5

[H
u
e
ta
p
sw

it
ch

b
u
tt
on

ev
en
t,

gr
o
u
p
s
a
ct
io
n
o
n
]

W
h
en

th
e
u
se
r
p
re
ss

th
e
H
u
e
ta
p
sw

it
ch
,
tu
rn

on
th
e
li
g
h
ts

o
f
g
ro
u
p
#
id

0.
00
01
77
40
8

[H
u
e
ou

td
o
or

m
ot
io
n
se
n
so
r
p
re
se
n
ce
,
g
ro
u
p
s
a
ct
io
n
sc
en
e]

W
h
en

th
e
H
u
e
o
u
td
o
o
r
m
o
ti
o
n

se
n
so
r
d
et
ec
ts

p
re
se
n
ce
,
a
lt
er

th
e
sc
en
e
o
f

g
ro
u
p
s#

id
0.
00
01
50
79
7

[C
L
IP

G
en
er
ic
S
ta
tu
s
st
at
u
s,

gr
ou

p
s
a
ct
io
n
o
n
]

W
h
en

C
li
p
G
n
er
ic

S
en
so
r
b
ee
n
tr
ig
g
er
ed
,
tu
rn

o
n
th
e
li
g
h
ts

o
f
g
ro
u
p
#
id

38

Chapter 5

Model Implementation and
Kubernetes Deployment

In the field of IoT, device virtualization is a common technique [15] that simu-
lates the interfaces, protocols, components of IoT devices to achieve simulation
and testing of IoT device functionality. In Chapter 3, we successfully use Docker
to virtualize the Hue Bridge device and verify its daemons, achieving the func-
tional virtualization of Hue Bridge devices. In Chapter 4, we proposed a Use
Case Model to analyze the behavior patterns of bridge users and applied fre-
quent pattern mining algorithms to simulate Hue Bridge user behavior.

In this chapter, based on the results of two previous chapters, we use Kuber-
netes to scale up the virtualized bridge containers on a large scale. Kubernetes
is a container cluster management and orchestration system based on Docker
[16], developers use Kubernetes for automating software deployment, scaling,
and Management [36]. The advantage of container technology is that it can eas-
ily deploy and manage applications in different environments, and Kubernetes
provides automated management, file mounting, load balancing, high scalabil-
ity, and other functions for these virtual bridges. Using Kubernetes can help us
quickly create and manage a large number of virtualized devices, and provide
each device with an independent network environment to better simulate scen-
arios in the real environment. In our experimental environment, we use the
automatic scaling feature of Kubernetes to scale up the virtualized Hue Bridge
devices, to simulate a more realistic firmware release scenario for bridge devices.

5.1 Model Implementation

In the bridge device, user commands are implemented through HTTP requests,
which is a client-server protocol used for transmitting hypertext content. The
Hue Bridge will parse and execute the command, thereby controlling the smart
device. In this section, we will transform the Use Case Model from theoretical
results into engineering achievements and apply it to the containerized virtual
bridge. We also designed the Random Hue Commands Generator to simulate
and emulate users’ daily behaviors.

39

5.1.1 Hue Command Architecture

For the convenience of the readers, we define the HTTP Request API that can
be parsed and executed by Hue Bridge as Hue Command throughout this paper.
This section will introduce the structure of a Hue Command. Users can control
smart devices in the Hue system through Hue commands. The architecture of
Hue command is shown in Figure 5.1.A Hue Command consists of four parts
which are sent as an HTTP packet:

Figure 5.1: Hue Command Architecture

Command address: This is the address of the resource(lights/sensors)
within the Hue System which the user would like to interact with. In the ad-
dress, the keyword Username is an ASCII string unique for a registered client.
Command method: This is the method of the HTTP packet which indicates

the action to be performed on the resource.
Headers: The HTTP header allow the client to pass additional information

about the request to the server
Command body: The command body contains all data required for modi-

fication of the resources when using the methods PUT or POST. Command
body is formatted in Javascript Object Notation (JSON) format. Using the
body specific parameters of the resources can be given new values[27]. In Fig-
ure 5.1: “device type”:”Virtual bridge” refers to the device type parameter of
the resource and assigns it a new value of “virtual bridge”.

5.1.2 Random Hue Commands Generator

After clarifying the structure of Hue Command, we need to fully apply the Use
Case Model to the containerized bridge in order to simulate the daily behaviors
of real users (i.e. the control commands sent to Hue Bridge). To achieve this, we
have designed the Random Hue Commands Generator based on the Use Case
Model, aiming to continuously send Hue Commands to the specified address of
the virtual bridge container through an automated program.
Before designing the generator, we need to preprocess and transform the

use case lists obtained in Chapter 4 into machine-readable components of Hue
Commands (mainly command body and method). We manually completed
this task, combining multiple documents including the Commands Specification
document of the Hue system, the bridge system design manual, and the Hue

40

lamps design document. We also invited several bridge development experts
to review our Use Case list and finally obtained the following transformation
results.

Table 5.1: Transformated Results: Use Case ->Hue Commands

Use Case Meth
od

Command
URL

Command body

Use Accessories to modify the brightness
of light#id

PUT /sensors/#id/
state

{”bri”: 200}’

Use Accessories to turn off the lights#id PUT /sensors/#id/
state

{”on”: False}’

User set the rule to modify the scene of
lights#id

POST /rules/<n>
/light-
states/id

{
“on”:true,”ct”:200}

User set the rule to modify the brightness
of lights#id

POST /rules/#id/ {”bri”: 200}’

User set the rule to turn off the lights#id POST /rules/#id/ {”on”: False}’
Use Accessories to modify the scene and
brightness of light#id

PUT /sensors/#id/
state

{”scene”:”<scene
id>”}

Use Hue apps to modify the brightness of
light#id

PUT /lights/#id/
state

{”bri”: 200}’

Use Hue apps to modify the scene of
light#id

PUT /lights/#id/
state

{”scene”:”<scene
id>”}

Use Hue apps to turn off the light of
light#id

PUT /lights/#id/
state

{”on”: False}’

User set the rule to turn on the light#id
and modify the scene and brightness of
light#id

POST /rules/#id/ {”on”: True, ”ct”:
200, ”bri”:200}’

As shown in Table 5.1, we can see that the JSON format values in the body
have allocated the upper limit of each parameter as the initial value. Initially,
our idea was to randomly select a value for each parameter from its scope when
running the automation script, for example, we could randomly select an integer
from 1 to 255 for brightness. However, we quickly dismissed this idea because,
from the perspective of simulating user behavior rigorously, not only do we need
to simulate users’ actions, but their preferences for parameters are also equally
important.

(a) bri distribution (b) ct distribution (c) hue distribution

Figure 5.2: Delta Message: Distribution of Parameters (Part A)

41

(a) sat distribution (b) xy distribution

Figure 5.3: Delta Message: Distribution of Parameters (Part B)

Therefore, before designing the Random Hue Commands Generator, we used
EDA (Exploratory Data Analysis) methods from statistics to analyze the dis-
tribution of numerical type parameters (brightness, Hue, Sat, xy, color temper-
ature) in the delta message dataset. We selected three months of user data, and
the results were grouped by resource type, as shown in Figure 5.2and 5.3:
In Figure 5.2and 5.3, we demonstrate the distribution of the status paramet-

ers of the Lights sub-table. Based on the distribution data, we generated a
normal distribution list for each parameter. These lists record the probability
distribution of each parameter. We set boundaries and intervals for each prob-
ability distribution and used the np.random.choice function from the Numpy
library. We input these lists as the probabilities parameter (-p) of the function.
We need to design an automated program that can read a list of Hue com-

mands and send them randomly. The program needs to meet the following
requirements:

1. Automatically create users and obtain command addresses and usernames.

2. Select resources (lights/groups/rules) based on the full config of each bridge,
rather than randomly assigning resources.

3. Use the distribution of light state parameters as input and allocate para-
meters in accordance with the data distribution.

4. Have a protection mechanism to prevent the program from exiting due to
accessing invalid resources.

5. Comply with Hue Command restrictions to ensure a success rate of at
least 95% for command execution. or meaning of the original text.

According to the program design specifications and requirements, we have
designed a multi-threaded Random Hue Commands Generator. The program’s
design flowchart is shown in Figure 5.4. The program’s threads consist of a main
thread and three looping threads. Before randomly sending Hue Commands, we
need to complete User Authentication and Remoteless Commissioning for the
virtual bridge. User Authentication simulates the process of the user authorizing
and creating a new user by pressing the Bridge device center button, and returns
the current user’s username (an ASCII string unique for a registered client) to

42

the program. We store the current virtual bridge’s IP address and username in
a Hashmap for later process calling. Remoteless Commissioning is the default
commissioning method of the Hue Bridge. After the user completes the Au-
thentication process, the bridge device needs to actively discover connectable
devices in the surrounding area. Therefore, before executing the instructions,
we also need to make the virtual bridge actively search for and connect to the
lights and sensors simulated by HSE. Meanwhile, the main thread will read in
the Lights, Groups, and Rules Use Case converted to Hue Commands list from
the database.

Figure 5.4: Sequence Diagram: Random Commands Generator

43

After completing these tasks, the main thread will check whether the above
tasks have been completed. If they are not, the process will restart. If they
have been completed, the random command generator thread will be allowed to
start executing. The random command generator consists of three threads:

• Light Control Process: used to simulate user-controlled light control
behavior.

• Group Control Process: used to simulate user-controlled behavior of
all Lights in a room/Group.

• Rules Trigger Process: used to simulate user behavior of controlling
lighting devices triggered by sensors or switches. The basic logic of trig-
gering is to simulate the sensor trigger status through Hue Commands to
meet the conditions of the bridge full config rule, and finally trigger the
rule.

In these three threads, to avoid the program from exiting due to accessing
invalid resources and to improve the success rate of command sending, we de-
signed a feedback mechanism. Taking the Light Control Process as an example,
we first obtain the light resource of the bridge corresponding to the current IP
address through a GET command, which includes the total number of lights,
the types of lights, and the status information of the lights. Based on this in-
formation, we define the scope of the Commands supported by these resources,
and then we select a subset from the Hue Commands Dataset based on the
scope. This subset contains all the supported Hue Commands in the scope,
unique to the current Virtual bridge. The advantage of doing this is to avoid
random command access to invalid resources or attempting to change unsup-
ported parameters while maximizing the individuality and independence of the
virtual bridge.
Next, the Light Control Process will randomly select a Light from the subset

and randomly select a Hue Command supported by that Light. At the same
time, according to the body part of the Command, we randomly generate the
parameter values of each attribute from the distributed light attributes in the
database as needed (the random process strictly follows the distribution data).
Finally, since the Light Control mainly changes the state of the light, the Com-
mand Method is mainly PUT. This way, we obtain a complete Light Control
command. The thread will randomly send the Hue Command to the specified
virtual bridge at a certain frequency, the dashboard of Hue devices is shown
in Figure 5.5, We can see that this bridge has changed the status of the Hue
Devices it manages through Hue Commands.
It should be noted that, according to the bridge design document’s limita-

tions, the frequency of sending Light control commands should be less than 10
commands per second, and the frequency of Group/Rules commands should be
less than 1 command per second.
In this section, we apply the generated Use Case model to the containerized

bridge and design a random command generator to continuously send commands
to the bridge. The generator randomly generates HTTP request commands to
simulate the behavior patterns of Hue Bridge users. These commands include
Light Control and Sensor Simulation, which can more realistically simulate user
operations. Next, we will design large-scale deployment of containers and apply

44

Figure 5.5: Hue Dashboard: Random Commands Generator Demo

the random command generator to Kubernetes to achieve batch user behavior
simulation for large-scale Virtual Bridges.

5.2 Kubernetes Deployment

In Section 5.1.2, we applied the use case model to the virtual bridge container,
combined with the distribution of light state data, to implement a Hue Bridge
random control command generator based on HTTP requests. In this section,
we will provide a detailed technical introduction to the design of the Kubernetes
large-scale deployment and scaling architecture, the architecture of Kubernetes,
and the types and functions of each component in the Kubernetes architecture.
At the same time, we will test the stability and command success rate of the
Use Case Model and random control command generator after Kubernetes (con-
tainer scaling) deployment to comprehensively verify the feasibility of the use
case model in the Hue Bridge. In this chapter, we will also test the stability
of the virtual bridge in functional and cloud diagnostic data transmission after
deploying it using Kubernetes.

5.2.1 Deployment and Scaling Architecture

Before formal deployment, we first introduce some Kubernetes operation objects
involved in this project. We will use these operation objects to construct the
project architecture:

• Pod: A Pod is a container group consisting of multiple containers, which
share the same IP, port, and volume, and is the smallest controllable unit
in the deployment aspect of Kubernetes.

• Service: A Kubernetes service is a high-level abstraction of a container
group’s logic, which also provides port-based services to the outside world
to provide access policies for the container group [16].

• StatefulSet: A StatefulSet is used to manage and scale a set of Pods, and
can assign numbers and uniqueness guarantees to these Pods. Compared

45

Figure 5.6: Kubernetes: Deployment Architecture Overview

with the traditional container orchestration form Deployment, StatefulSet
is more suitable for managing stateful applications (applications with un-
equal relationships between instances and dependencies on external data)
of the workload API object.

• Volume: A storage mount, used to store data or configuration files that
need to be used before the Pod is running.

• ClusterRole: Assign specific permissions to specific objects through
Role-Based Access Control (RBAC).

• Init-Container: The Init container is started before the regular contain-
ers in a Pod and is responsible for performing initialization tasks. Init
containers support all the features and fields of regular containers, and
they automatically exit once their job is done.

The deployment architecture is shown in Figure 5.6, the core logic of the ar-
chitecture is that the Virtual Bridge and HSE each correspond to a StatefulSet,
which are connected through a load-balanced type of service to establish a local
network and connect Zigbee communication. At the same time, the Control
Pods are responsible for running the random command generator, which has
permission to access and execute other pods. Within each pod of the Stateful-
Set, the Init-container is responsible for distributing configurations and adaptive
initialization.

5.2.2 Pod Components and their functions

46

Table 5.2: Kubernetes: Components function and replicates

Name Type Function Repli
cate

Statefulset
Virtual
bridge
Pod

Stateful
set

Generate a containerized Hue Bridge Pod with a spe-
cified firmware version and a specified number of replic-
ates. Each Pod will contain a virtual bridge container
and an init container.

30

Statefulset
HSE Pod

Stateful
set

Generate Hue System Emulator (HSE) with specified
firmware version and the specified number of replicates.
Each pod contains an HSE container and an init con-
tainer.

30

Control
Pod

Pod As the control center of the entire deployment, it is used
to send kubectl commands to pods in batches and start
Random Commands Generators.

1

Virtual
bridge
Service

Service Responsible for providing LoadBalancer type port map-
ping services, allowing processes within the container to
use designated ports.

1

HSE Ser-
vice

Service Responsible for providing LoadBalancer type port map-
ping services, allowing processes within the container to
use designated ports.

1

kubectl
control
role

Cluster
Role

To define access permissions for resources within the
cluster scope, including read/write and exec permissions
for Pods, to grant Control Pod the permission to send
instructions to other pods.

1

kubectl
control
rolebind-
ing

Cluster
Role
Binding

Bind the kubectl control role with the ServiceAccount
(default).

1

vb claim0 Persistent
Volume
Claim

The Volume used in Kubernetes to store configuration
files, with a capacity of 100Mi.

1

Table 5.2 lists the name, type, function and replicate of all components in the
system (amount of replica components[16]).

5.2.3 Deployment Procedures and Strategies

In section 5.2.2, we introduced the components and their functions in a Kuber-
netes deployment. In this section, we will discuss the deployment process and
strategy of Kubernetes. The entire deployment process is divided into three
stages: the pre-deployment preparation stage, the component verification stage,
and the service running stage.
Pre-deployment preparation stage: In the pre-deployment preparation

stage, before starting the containers, we first need to create the resources and
tokens required by each component. We write the configuration files (in YAML
format) for each Kubernetes component according to the project requirements
and Kubernetes orchestration specifications, and choose to use Minikube (a
lightweight local Kubernetes cluster) to create each component. The configur-
ation files for each component must meet the following requirements:

47

1. The uboot configuration mount is shared between the containers in the
Statefulset Virtual bridge Pod, and the enable virtual is read and pro-
grammed into the assigned uboot env file before the container init.

2. The full config configuration file for the bridge is shared between the con-
tainers in the Statefulset HSE Pod. A command is set up so that the
HSE container loads full config immediately after startup and runs the
HSE Zigbee device simulator according to full config, while waiting for
the Virtual Bridge to connect.

3. The Cluster Role grants Control Pod read/write and exec permissions for
other Pods, and assigns a token to the Control Pod.

4. The HSE and Virtual Bridge containers pull images with the same firm-
ware version number, and different version numbers will be used for project
verification

Components verification stage: After creating the components, we need
to verify their functionality and stability. First, we need to verify that the
Init-container has completed its initialization work in each Pod and that the
configuration files and initial commands have been completed. For other com-
ponents, we need to check the mapping of each port and the service components
to verify that the Control Pod has been authorized to read and write to other
pods. The Virtual Bridge and HSE containers need to burn their corresponding
uboot and configuration files when they start up. We enter these containers one
by one to check whether the configuration files have been successfully loaded
and applied to the containers. The Dashboard status of Minikube is shown in
Figure 5.7, we can see that all the Pods that need to be deployed have pulled the
images, completed the init phase, and successfully run the services in a stable
manner.

Figure 5.7: Minikube: Deployment Dashboard Overview

Service running stage: After everything is ready, we enter the service run-
ning stage, where we will officially implement the Use Case Model and Random
Hue Commands Generator into the Kubernetes architecture. First, we enter
the Control Pod, which contains automation scripts that will send kubectl com-
mands to all Virtual Bridge Pods, with three specific functions:

48

• First, run the initialization script to assign the IP address of the HSE Pod
to each Virtual Bridge in turn and establish communication through the
ZigBee daemon to complete the one-to-one pairing of the HSE and Virtual
Bridges.

• Start MQTT communication with the cloud. Before simulating user beha-
vior with Hue Commands, we need to establish communication with the
cloud database to ensure that the Virtual Bridge’s analysis and diagnostic
data can be fully synchronized with the cloud. In the Beta stage, this dia-
gnostic data is the core data used to verify whether firmware has reached
the release standard. Therefore, we need to ensure that the diagnostic
and analysis data generated by the virtual bridge can also be synchron-
ized with the cloud and that the Validation Engineers can use this data
for device diagnosis.

• Finally, we start the Random Hue Commands Generator designed in Sec-
tion 5.1.2. Following the design process, the Generator will create new
users for all virtual bridges and complete the RLC (Remoteless Commis-
sion) for the new devices, and start three threads to send random Hue
Commands at a regular frequency.

Figure 5.8: Deployed Kubernetes System Dashboard

In Figure 5.8, we demonstrate the dashboard of the virtual bridge in the Kuber-
netes deployed pods. It can be seen that each pod corresponds to a virtual Hue
system (virtual bridge + HSE), which changes its status according to the in-
structions generated by the random command generator, as shown in the demo
video of this project. In this section, we designed a random command generator
based on the Use Case Model and the architecture for the large-scale deployment
of virtual Hue systems using Kubernetes. We also introduced the functions of
each component in the architecture. Additionally, we listed the steps for actual
large-scale deployment and ultimately achieved deployment, scaling, and user
behavior simulation for the containerized Hue System (Bridge).

49

50

Chapter 6

System Validation

In Chapter 2, we presented the research direction and research problem of this
paper: Whether containerization can truly be applied to the Hue System to
improve firmware deployment efficiency and provide valuable feedback as Beta
Testers? Based on this question, we explored and designed solutions for the
firmware update issue of the Hue Bridge, and now it is time to validate the
feasibility of the final solution.
This thesis aims to enhance the efficiency of software deployment for bridge

devices and reduce the deployment cycle. After completing the simulation of
bridge device functionality and user behavior, as well as the large-scale deploy-
ment using Kubernetes, we need to design comparative experiments to validate
the feasibility of virtual bridge devices in the software release cycle and the re-
liability of generating device diagnostic data. Similar to the Hue Bridge used
by Beta testers, the virtual bridge will forward the analysis and diagnostic data
generated during the operation of virtual bridges to the cloud database after de-
ployment. The analysis data corresponds to the Delta Message Dataset used to
analyze the Use Case Model in Chapter 4, while the diagnostic data corresponds
to the Beta Diagnostic Dataset.
The Beta Diagnostic database is used to store software/hardware diagnostic

data sent by the Hue Bridge devices to the cloud (forwarded via the MQTT pro-
tocol). These diagnostic data include the Reset reason sub-table, which records
daemons reset logs, the Bridge zigbee log sub-table, which records Zigbee device
logs, and the Iot conectivity stats sub-table, which records the communication
status of IoT devices. In total, there are 53 sub-tables. Table 6.1 presents the
information and examples of the Beta Diagnostic Dataset’s sub-tables. The data
among the sub-tables are independent and each sub-table represents a specific

Table 6.1: Diagnostic Dataset illustration

Name Beta Diagnostics

Description Collected Hue Bridge device diagnostic and log data
Sub-tables Total 35 Subtables (Independent with each other)

Example
Resetreason: Daemon Reset Reasons

component reason bridge id software version dt
Daemon A Exit Code 1 AE024GH 1957147030 2023/5/20

51

type of diagnostic data. Some sub-tables record data continuously in real-time,
while others record data when events occur. The example in Table 6.1 belongs
to the event recording type and records a reset event of Daemon A that occurred
on May 20, 2023, with the reset reason being Exit Code 1.
In this chapter, we will divide the validation process into two parts: validation

of the Use Case Model and validation of Kubernetes Deployment. In Section
6.1, we aims to validate whether the Use Case Model, when applied to the
Kubernetes-based large-scale container deployment, can generate analysis data
and use cases similar to that of the Beta testers. In Section 6.2, we aims to
validate whether the feedback and diagnostic data generated by the virtual
containers, deployed and managed using Kubernetes, exhibit similar behavior
to that of the Beta testers. More important, we want to validate whether the
virtual system accelerate the generation of user data after firmware deployment.
We referenced ideas and specifications for firmware validation from [11, 3, 19]

in our experimental design guidelines.

6.1 Use Case Model Validation

In Chapter 4, we designed the Use Case Model and analyzed the user behavior
patterns of the Hue Bridge devices using the frequent pattern mining algorithm.
Based on the obtained Use Case Model, we developed the Random Command
Generator and applied it to Kubernetes Deployment. In this chapter, we will
design experiments to validate the Use Case Model.
Validation Experiment 1: Will virtual bridges generate similar analysis

data (Delta Messages) when the Use Case Model is applied to Kubernetes De-
ployment?
First, we need to verify whether the Use Case Model can simulate the user

behavior of the Hue Bridge. After deploying virtual bridges using Kubernetes,
we can collect the analysis dataset (Delta Messages) from the virtual bridges.
We have previously described this dataset in detail, but let’s recap. The Delta
Messages store the changes in status data of the devices within the Hue system,
such as the brightness, switch state, and color temperature of the lights. These
status information are generated when users send Hue Commands to the Hue
Bridge. Therefore, when we apply the Use Case Model (Random Command
Generator) to the virtual bridges, the virtual bridges should also generate and
collect Delta Messages. To validate our hypothesis, we have designed the fol-
lowing experiment:

• Experimental Object: 30 virtual bridges

• Experimental Objective: To validate that virtual bridges can generate
analysis data and have consistent data distribution with the beta dataset.

• Experimental Duration: 5 days

• Experimental Tools: Minikube, Docker, Hue SQL Tool

We proceed with the experiment. On the first day, we prepare specific versions
of the Hue Bridge firmware image and HSE image in the private registry. This
allows us to pull the images from the private registry when Kubernetes is started.
Next, we start the Kubernetes service (Minikube Start) and deploy 30 virtual

52

bridge pods and the HSE pods following the Kubernetes deployment steps in
Chapter 5. We establish Zigbee communication for each virtual bridge. Each
virtual bridge has a different configuration file, bridge id, and associated devices.
After checking the status of each daemon and data communication with the
cloud, we start the random command generator, and the 30 virtual bridges
begin their operation.
Note: This experimental initialization process is applicable to subsequent ex-

periments. The difference lies in the selection of generated data and the analysis
methods used. Therefore, the subsequent experiments will not repeat the detailed
description.

Table 6.2: Delta Message: Config sub-table Example (collected from
virtual bridges)

fw version timestamp bridge id address source linkbutton

1957200040 2023-05-19T21:31:54 6HFDUI98JH api/0/config system TRUE
1957200040 2023-05-19T18:39:41 678DFJHXC api/0/config system FALSE
1957147030 2023-04-25T12:09:45 9DFNKJC78 api/0/config system FALSE
1957147030 2023-05-02T09:16:01 7D9F8GJVS api/0/config system TRUE
1957147030 2023-05-01T12:25:10 89CVJF8SD api/0/config system TRUE

After reaching the designated termination time, we organized and analyzed
the experimental data. Based on the data analysis, we discovered that the vir-
tual bridge and the bridge device were consistent and generated Delta Message
data for seven sub-tables. The data types and formats were identical. In Table
6.2, we took the Config sub-table as an example. This example illustrates the
link button status data collected from virtual bridges. It indicates that at that
moment, we simulated the action of pressing the bridge button to create a new
user (True indicates a press, False indicates a release), and this behavior was
recorded in its entirety.

Figure 6.1: Number of Delta messages per sub-table(Virtual Bridges)

Due to the large volume of data, it is not feasible to fully demonstrate the
data in this thesis. Therefore, we conducted statistics on the data from various

53

sub-tables, and the statistical results are shown in Figure 6.1. During the ex-
perimental period, the Hue cloud database collected delta messages generated
by virtual bridges. The figure demonstrates the data totals for three sub-tables
(lights, rules, groups), which correspond to the three threads of the Random
Commands Generator. It can be observed that the delta messages for the three
sub-tables showed a significant increase on the day of deployment, followed by
a uniform distribution over time. Our research findings indicate that virtual
bridges, like Beta Testers’ Bridges, are capable of generating analytical data
(delta messages). This result supports our hypothesis.

Validation Experiment 2: Will applying the Frequent Pattern Mining al-
gorithm to Delta Messages generated by Virtual bridges result in the same Use
Case?

In Chapter 4, the Use Case Model is generated based on the Delta Messages
dataset, combined with the Full Config dataset to enhance the completeness
and objectives of the Use Case. In Experiment 1, we have already verified
that Virtual Bridges, when applied with the Use Case Model, can generate user
data similar to that of Beta Testers (same sub-tables, similar data distribution).
Based on the validation results from Experiment 1, we couldn’t help but have a
further idea: How does the similarity and coverage of the Use Cases generated
by the model compare to the Beta Testers’ Cases if we follow the Use Case
Modeling Process (Data preprocessing, Pattern Mining, Pattern analysis, and
Validation) described in Chapter 4?

Table 6.3: Number of Use Cases (Frequent itemsets) derived by Beta
Testers and Virtual Bridges

Beta Testers Virtual Bridges Coverage %

Lights Control 76 51 67.1%
Groups Control 159 140 88.1%
Rules Triggered 280 185 66.1%
Other Case 15 5 33.3%
Total Case 530 381 71.9%
Filtered Total Case 461 381 82.6%

To validate our hypothesis, we selected the Delta Messages data (generated
by Virtual Bridges) with a duration of two weeks for comparative experiments.
Taking the Rules Triggered Use Case as an example, the comparison results
are shown in Table 6.4. The Table lists the results of the Rules Triggered Use
Case from the chapter (part of the Use Cases is extracted due to paper length
constraints) and the identical Use Cases discovered by Virtual Bridges in this
part. The identical portions are highlighted in orange. Based on the results,
we found a high degree of similarity between the two. The statistical results of
each sub-table are shown in Table 6.3, and the overall Use Case coverage reached
71.9% (381/530), with the results from Virtual Bridges being a subset of the
Beta Testers’ results. Through our analysis of Delta Messages, we discovered
that the reason why some Use Cases could not be generated in Virtual Bridges
is mainly due to certain sensor types that cannot be simulated through the HSE
(Hue System Emulator), such as daylight sensors and ClipGeneric Sensors. The
Random Command Generator attempts to send corresponding Hue commands,

54

but the Sever cannot find the object and return error Response. If we filtered
these Use Cases, the overall Use Case coverage can reach 82.6% (381/461).
Based on the experiments in this section, we have verified two hypothetical

questions regarding the Use Case Model. It has been confirmed that after apply-
ing the Use Case Model in the form of a Random Command Generator to the
system deployment of Kubernetes, it can generate analysis data and correspond-
ing Use Cases. Although the coverage is not 100% (82.6%), given the current
available resources, it successfully simulates the real behavior of Beta users to
the maximum extent possible.

6.2 Automated Feedback Validation

In Section 6.1, we validated the effectiveness of the Use Case Model in improv-
ing firmware update efficiency through focused analysis and diagnostic data. In
this section, we further validate the system. For validation engineers, discover-
ing feedback from diagnostic data is an important validation step. Automated
feedback is a generic term for issues and bugs discovered through diagnostic data
in software development (as opposed to user feedback actively sent to developers
through feedback portals). Developers analyze the validation data and compare
it horizontally with previously released firmware data to identify anomalies in
the current firmware. In this section, we will follow the validation engineer’s
process of analyzing firmware to validate if virtual bridges perform similarly to
beta testers in discovering feedback. Compared with the experiment in Section
6.1, the most essential difference between the verification experiment in this
Section is the difference in the target dataset. The data set in Section 6.1 is the
Analysis dataset (Delta Message) of Hue Bridge, and the corresponding dataset
in this Section is the Diagnostic dataset (Diagnostic Messages) of Hue Bridge,
the diagnostic dataset is the final object of the entire Beta Test stage.
To validate our hypothesis, we designed the following experiment setup (Ap-

plies to all experiments in this section):

• Experimental Objects: 30 virtual bridges (run 24 hours per day, man-
aged by Kubernetes)

• Experimental Purpose: To verify the consistency or similarity between
the visualization results of diagnostic data during the operation of virtual
bridges and the historical results of beta testers.

• Experimental Duration: 1 weeks to 4 weeks (Beta Testers use histor-
ical Diagnostic data, and the Virtual Bridges’ date corresponds to the
experimental date, so the Duration is the same but the date is different.)

• Experimental Tools: Minikube, Docker, Kubectl, Hue SQL Tool

• Use Case Model: The Use Case Model was applied in this experiment.

Validation Experiment1: Does the user diagnostic result obtained after
deploying a specific firmware version to the virtual bridge resemble that of the
Beta Testers?
This experiment aims to compare the analysis results of diagnostic data

(Automated Feedback) between virtual bridges and beta testers under the same

55

Table 6.4: Comparison Use Case Results between Beta Testers and
Virtual Bridges (Identical use cases is displayed in orange)

Rules Triggered Use Case (via Beta
Testers)

Validation Use Case (via Virtual
bridges)

When the user press the Hue dimmer switch,
modify the state of sensor#id

When the user press the Hue dimmer switch,
modify the state of sensor#id

When the user press the Hue wall switch mod-
ule, alter the scene of groups#id

When the Hue motion sensor detect presence,
store the state value of light#id

When the Hue motion sensor detects presence,
store the state value of light#id

When the Hue motion sensor detects presence,
turn on the light of#id

When the user press the Hue Smart button,
modify the state of sensor#id

When the user press the Hue Smart button,
modify the state of sensor#id

When ClipGneric Sensor been triggered, alter
the scene of groups#id

When the user press the Hue dimmer switch
and ambient light sensor achieve specific
brightness level, modify the state of sensor#id

When the user press the Hue dimmer switch
and Lutron Aurora Sensor rotate, modify the
state of sensor#id

When the user press the Hue dimmer switch
and ambient light sensor achieve specific
brightness level, modify the state of sensor#id

When the user press the ZLL switch, modify
the state of sensor#id

When the Hue outdoor motion sensor detects
presence, stores the state value of light#id

When the Hue outdoor motion sensor detects
presence, stores the state value of light#id

When the user press the Hue tap switch, turn
on the lights of group#id

When the Hue motion sensor detect presence,
turn on the lights of group#id

When the Hue outdoor motion sensor detects
presence, alter the scene of groups#id

When the Hue motion sensor detect presence,
store the state value of light#id

When the user press the Hue tap switch, turn
on the lights of group#id

When ClipGneric Sensor been triggered,
modify the state of sensor#id

When ClipGneric Sensor been triggered,
modify the state of sensor#id

When daylight sensor be triggered, modify the
state of sensor#id

When the Hue motion sensor detect presence,
turn on the lights of group#id

When the Hue motion sensor detect presence,
alter the scene of groups#id

When the Hue motion sensor detect presence,
alter the scene of groups#id

When user press the Friends of Hue switch,
alter the scene of groups#id

When user press the Friends of Hue switch,
turn on the lights of group#id

When the user press the button of Hue Wall
switch module , turn on the lights of group#id

When the user press the Hue Tap switch, turn
on the lights of group#id

When user press the Friends of Hue switch,
turn on the lights of group#id

When the user press the Hue wall switch mod-
ule, alter the scene of groups#id

When the user press the Hue wall switch and
Lutron Aurora Sensor rotate, alter the scene
of groups#id
When the Hue outdoor motion sensor detects
presence, turn on the lights of group#id
When the user press the Hue wall switch and
Lutron Aurora Sensor rotate, alter the scene
of groups#id
When the Hue motion sensor detect presence,
turn on the config of sensor#id
When the user press the Hue tap switch, turn
on the lights of group#id

56

firmware. Prior to the experiment, we conducted research on the process of
validation engineers obtaining automated feedback. After collecting diagnostic
data from beta testers, validation engineers visualize the data using the Dash-
board feature of the Hue Data Management Platform. The diagnostic data
is grouped and demonstrated based on various dimensions such as time, firm-
ware version, error type, reset reason, and reconnection, according to valida-
tion requirements. By visualizing the diagnostic data and comparing it with
past diagnostic data, anomalies in the current firmware can be more intuitively
identified, which is the main source of automated feedback. According to our
hypothesis, after deploying the same firmware, virtual bridges and beta testers
should have similar or identical results in the visualization of diagnostic data.
In this experiment, we will select representative feedback types for comparat-

ive analysis. The control group consists of the validation results of Beta users in
the specified firmware version phase. Firstly, we conducted experiments on the
Automated Feedback corresponding to the ”Daemon Reset Reason” sub-table.
Typically, validation engineers would gather and compare the occurrences of
frequent daemon resets among the current version’s Beta Testers. Each dia-
gnostic data contains a ”ResetCode” for presenting the specific reasons for the
daemon reset, such as user restart or memory errors. By observing the change
curve/bar of the total number of Daemon Resets (Resets per day of all Beta
Testers), verification engineers can intuitively judge the stability of the Daemon
in the currently deployed firmware version. If there is a noticeable increase in
the number of resets during the test, it indicates an anomaly. Engineers will
investigate the specific cause of the reset and release an update in subsequent
firmware versions to solve the problem.
Following the diagnostic data analysis process, we created a ”Reset Reason

Dashboard” for Virtual Bridges. The dashboard uses the same SQL logic to
visually present the reset reasons for each daemon. As a comparative experi-
ment, we also queried the historical dashboard of Beta Tests within a specified
time period for comparison. Taking the Daemon A as an example, Figure 6.2
shows the reset situation of the daemonA during a certain firmware version’s
Beta Test period. The image displays the data grouped by Reset Reason/Code
and stacked mode.

Figure 6.2: Beta Testers: All daemonA reset reasons (Grouped by
ResetCode)

Figure 6.3 shows the results obtained by querying the Virtual Bridges data
using the same method. In May 25th and May 26th (shown in Figure 6.2), which

57

Figure 6.3: Virtual Bridges: All daemonA reset reasons (Grouped by
ResetCode)

are the Beta Deploy days in the firmware cycle, there were a large number of
daemonA resets caused by firmware updates (green corresponding to Code) and
bridge restarts (purple corresponding to Code). However, during the rest of the
time, excluding the Deploy days, the daily average number of daemonA resets for
Beta Testers (about 6000) is 210, of which more than 90% are caused by restarts.
As for virtual bridges, there were no resets or interruptions due to container
restarts or other reasons during the experimental period. Therefore, we did not
collect any daemonA reset messages on non-Deploy days. Figure 6.3 records
all instances of daemonA occurrences throughout May during our experimental
period. After verification, we found that all these dates correspond to the dates
when we switched firmware versions, which are the deploy days in the Beta
Test. Furthermore, there were no instances of any Daemon Resets during the
remaining time, indicating that daemonA operated stably and normally. This
is consistent with the analysis results of this version regarding daemonA.

Next, we selected MQTT andWebSocket protocols as the second set of control
experiment objects.The MQTT and Websocket protocols are the core protocols
for the communication between Hue Bridge and Hue Cloud/Hue App. The con-
ncetivity of communication directly affects the user experience and the stability
of cloud data forwarding. Therefore, we choose to demonstrate the comparat-
ive experiment of these two protocols.We conducted a comparative analysis of
the MQTT and WebSocket communication conditions between virtual bridges
and beta testers under the same firmware conditions. The visualization of this
data was used to analyze whether firmware updates would result in frequent
disconnections in the Hue Bridge’s MQTT/WebSocket communication. In the
commercial communication field, the communication connection rate (statist-
ical average of large-scale IoT devices) for these protocols typically focuses on
the range of 95% to 100%, with particular emphasis on achieving incremental
improvements in the 99% to 100% range every 0.1%. Figure 6.4 shows the
WebSocket percentage connected during the experimental period, with different
colors representing the WebSocket communication performance of beta testers
using different firmware versions. It can be observed that different versions have
some impact on communication stability within a range of 1%.

58

Figure 6.4: Beta Testers: WebSocket Percentage connected per soft-
ware version

We selected two firmware versions, as shown in Figure 6.5, and deployed these
firmware versions on virtual bridges. Firmware 1 (1956046020/1956046040)
was deployed on virtual bridges from 2023-05-20 to 2023-05-24, and firmware 2
(1957200040) was deployed from 2023-05-24 to 2023-05-28. The experimental
results are shown in Figure 6.6. The green bars correspond to Firmware Version
1, and the percentage is noticeably lower by approximately 0.3-0.4% compared
to the blue bars, which is consistent with the difference observed during beta
testing. From a statistical perspective, the mean percentage of WebSocket con-
nectivity in beta testing was 99.1995% (Version 1)/99.8025% (Version 2), while
the mean percentage for virtual bridges was 99.1918% (Version 1)/99.7674%
(Version 2). Version 1 had a difference of 0.0077%, while Version 2 had a dif-
ference of 0.0351%. After verifying and cross-checking the data with validation
engineers, we can conclude that this experimental result provides verification
for WebSocket connectivity as a single factor.

Figure 6.5: Beta Testers: WebSocket Percentage connected per soft-
ware version (filtered)

59

Figure 6.6: Virtual Bridges: WebSocket Percentage connected per soft-
ware version

For MQTT Connectivity, the diagnostic data includes the Hue Bridge MQTT
disconnected time and connected time. Therefore, when verifying MQTT Con-
nectivity, the MQTT average connection time per day percentage visualization
graph is obtained based on these two times. Figure 6.7 demonstrates the MQTT
status during the Beta Test phase, grouped according to firmware. It can be
observed that the percentage is distributed in the range of 98% to 100%. With
the exception of a few firmware versions, the majority are within 99.5%.

Figure 6.7: Beta Testers: MQTT average connection time per day
percentage(per SW version

We deployed two firmware versions to the Virtual Bridges to validate Web-
Socket Connectivity, and we deloyed these two version for MQTT Connectivity
validation as well. The MQTT average connection time percentage for these
two versions is shown in Figure 6.8. The average percentage for Version 1 is
99.9124%, and for Version 2 it is 99.9243%. Both percentages are within 99.9%
and consistent with the data from the Beta Testers. After verification and
cross-checking of the data with the validation engineer, we can conclude that
the experimental results validate the MQTT Connectivity in this aspect.

60

Figure 6.8: Virtual Bridges: MQTT average connection time per day
percentage

In this experiment, we conducted a comparative validation of the Reset reasons
and Mqtt/Websocket Connectivity in the diagnostic data of the Hue Bridge.
Our experimental results indicate that when we deploy firmware to the virtual
bridge, the user diagnostics obtained have the same results as the Beta Testers.

Validation Experiment2: Can we identify the existing bugs and some ab-
normal situations in the current firmware after deploying a specific version of
the firmware to the virtual bridge?

In Experiment 1 of this section, we conducted a comparative analysis of the
visualization results of partial diagnostic data between Virtual bridges and Beta
Testers. These results provide evidence of the reference value and significance
of the diagnostic data from Virtual bridges. However, most of the visualiz-
ations compared in Experiment 1 were in a stable state, and no issues were
discovered from them (as the selected firmware versions were relatively new and
bug-free). Now, if we deploy a firmware version that has already been found
to have bugs, can Virtual bridges also detect this bug? To answer this ques-
tion, we carefully screened the DevOps Issues repository and ultimately selected
the bug discovered in the open-source Daemon FluentBit in Firmware Version
(1949107040).

• Bug Name: A big increase in FluentBit reset Reasons (Exit Code 139,
which means segmentation fault)

• Caused Reason: FluentBit software update

• Firmware Version: 1949107040

• Fixed Version: 1949203000

• Priority: Major

• Related Daemon: Fluent-Bit Daemon

• Description: In beta there is a clear big increase in fluentbit reset reas-
ons. The exitcode 139 was linked to the software update which causes a
restart of the bridge. On average there are around 4 exitcodes 139 per
bridges.

61

Figure 6.9: Beta Testers: Number of total Fluent-Bit Reset Resaons
per day (group by reset reasons)

Figure 6.10 presents the visualization of FluentBit reset reasons during the
Beta testing period for Firmware Version (1949107040). On Dec-14th, the Beta
Tester Bridges deployed this version of the firmware, and it can be observed
that there was a sudden increase in the number of exit code: 139 (represented
by the blue bars in the graph) in what was originally a stable Reset Reason.
Normally, during the Beta, FluentBit resets occur in the tens, so encountering
more than 1000 resets during Beta testing is considered highly abnormal.

Following the deployment process, we proceeded with the virtual bridge test-
ing. We deployed this bugged Firmware Version to the Virtual Bridges and
monitored the reset status of the FluentBit Daemon through a cloud-based data-
base. We discovered that after deploying this firmware to the Virtual Bridges,
upon reading the real-time log inside the Virtual Bridge Container, we observed
that FluentBit encountered an abnormal exit with an exit reason of Code 139.
This exit reason aligns with the bug identified during the Beta testing phase.
Similarly, to verify if the remaining Virtual Bridges would also encounter such
situations, we visualized the Reset Reason subtable from the cloud-based data-
base, specifically filtering for reset messages from the FluentBit daemon. The
result is shown in Figure 6.10:

Figure 6.10: Virtual Bridges: Number of total Fluent-Bit Reset Reas-
ons per day (group by reset reasons)

62

Our experimental results demonstrate that when using Virtual Bridges to per-
form the tasks conducted by Beta Testers during the Beta Test, we consistently
discovered the same Automated Feedback (Bugs/Issues). This outcome strongly
confirms the value of Virtual Bridges in obtaining Automated Feedback.

In addition to the previous FluentBit bug, we also conducted tests on other
types of bugs. However, due to privacy concerns, the detailed presentation of
these tests is not included in the paper. To further support our conclusions,
we made new attempts in this experiment. While the previous bug was based
on known issues in historical firmware versions, we explored the possibility of
detecting a manually injected bug in the diagnostic data visualization charts by
deploying a bug-free firmware version to the Virtual Bridges.

To validate our hypothesis, we designed the following bug:

• Bug Name: Increase in WebSocket nr of Disconnect in %

• Caused Reason: Manually Cut the WebSocket Connection

• Firmware Version: 1957200040

• Related Daemon: WebSocketd Daemon

• Description: We send Kubectl Commands to all the virtual bridges to
manually cut the WebSocket Connection

The Validation Engineer keeps track of the daily WebSocket reconnection
count of Bridge devices, classified into four categories based on the count. Under
normal circumstances, during Beta testing, over 95% of Bridges reconnect only
once per day. If there is a widespread occurrence of two or more reconnections,
it indicates frequent disconnections of WebSocket.

Based on this pattern, we introduced a bug on May 22nd and May 23rd. On
May 22nd, we selected five out of thirty Virtual Bridges to inject this bug, while
on May 23rd, we forcefully restarted the WebSocket daemon for all thirty Virtual
Bridges to inject this bug. The results are shown in Figure 6.11, where we can
observe the following: prior to injecting the bug, the WebSocket disconnection
count remained consistently at one (indicated by the green color), whereas after
injecting the bug, the reconnection percentage on May 22nd reached nearly 50%,
and on May 23rd, it exceeded 100% with reconnections greater than two times.
After verifying and cross-checking the data with the Validation Engineer, we
can conclude that this experimental result provides validation specifically on
the WebSocket number of disconnects.

63

Figure 6.11: Virtual Bridges: Number of WebSockets disconnection in
% per day (group by disconnect times)

Validation Experiment 3: After applying the Use Case Model to Our
Kubernetes Deployment, can the virtual bridges obtain diagnostic data more
quickly?
We followed the experimental design (time and method) of Experiment 1

and narrowed down the experimental dataset to the ”raw” sub-table of the
Diagnostic Dataset. The ”raw” sub-table records the raw diagnostic data sent
to the cloud (the cloud further splits the ”raw” sub-table into other sub-tables
based on the data type). The purpose of our experiment was to observe and
compare the total amount of diagnostic data. Therefore, we first needed to
preprocess the data for the experimental subjects. The ”raw” sub-table mainly
consists of fields such as message type, sw version, bridge id, message, and date.
The message type corresponds to different sub-table names, and the total count
of messages represents the total amount of diagnostic data for the current bridge
after deploying a specific version of the firmware (counted by date). Therefore,
our query logic for data retrieval is to limit the start and end times and the
firmware version, and then use the COUNT keyword to calculate the total count
of messages. We separately counted the total number of messages collected from
the Virtual Bridges (without the Use Case Model), the Virtual Bridges (with
the Use Case Model applied), and the Beta Testers’ Bridges within the specified
time period. The comparative experimental results are shown in Table 6.5.

Table 6.5: Table: Average number of Diagnostic Messages per bridge

Experiment Object Beta Testers’
Bridges

Virtual Bridges
with model

Avg number of Messages
per bridge

170 messages per day 305 messages per day

In Table 6.5, the total number of diagnostic data messages per bridge collected
during the experimental period is presented. With the application of a use case
model, there is a significant increase in diagnostic messages. Compared to beta

64

testers, there is a 79.4% increase. Based on the experimental results, we find
that the application of a use case model leads to a significant improvement in
diagnostic data. It also shows an improvement in mean values compared to the
data generated by beta testers.
Therefore, we approached the engineer responsible for diagnostic data and

consulted with them regarding the generation and forwarding mechanism of
diagnostic data. They informed us that diagnostic data mainly consists of event-
driven and periodic diagnostic types, with a ratio of 4:6. Event-driven diagnostic
data is generated immediately upon the occurrence of predefined events (e.g.,
daemon error/exit/resource create). On the other hand, periodic diagnostic data
involves the Hue Bridge sending analysis reports at regular intervals, typically
once every n hours. For example, the MQTT connection stability report is sent
every eight hours. Even if we apply a use case model, the amount of periodic
diagnostic data will not increase. This explains why the previous experimental
results did not show a significant increase in the total count.
To facilitate a clearer comparison, we categorized and reanalyzed the experi-

mental data. In this analysis, we focused only on event-driven diagnostic data
and selected five sub-tables for horizontal comparison.

Figure 6.12: Number of diagnostic messages per sub-table per bridge

Figure 6.12 displays the daily number of diagnostic messages for five sub-
tables. It is evident that, except for the fifth sub-table, all other tables exhibit
significant improvements after applying the Use Case Model. The Bridgezig-
beelog sub-table represents periodic diagnostic data, where the Hue bridge re-
cords 24 messages per day at hourly intervals, regardless of the application of
the Use Case Model. This indirectly validates our previous hypothesis that the
diagnostic type may not yield noticeable improvements.
According to data analysis, we found significant differences in the performance

of Diagnostic messages across different sub-tables. Some sub-tables are strongly
correlated with user behavior (Use Case Model), such as behaviordaemon and
wserrors shown in Figure 6.12. On the other hand, some sub-tables show only

65

slight changes after applying the Use Case Model, and these sub-tables account
for a small proportion of the total. Experimental results indicate that there
are significant differences in the improvement magnitude among different sub-
tables. Therefore, we do not present the improvement magnitude table for
all sub-tables. However, we can observe that Virtual Bridges can be used to
enhance event-driven diagnostic data, and the periodicity of regular diagnostic
data can be shortened based on testing requirements to expedite the generation
of diagnostic data. Compared to Beta Bridges, Virtual Bridges provide higher
fault tolerance.

Based on the results of this experiment, we can draw the following conclu-
sions: Virtual Bridges can obtain diagnostic data more quickly compared to
Beta Tester, and the improvement magnitude varies significantly depending on
the sub-table category, with a total improvement around 79.4%. The differences
among different firmware versions are within 5%.

Validation Experiment 4: What is the coverage of KPIs and user behavior
when deploying Bridge firmware to a virtual bridge?

In our previous experiments, we compared the visual diagnostic data following
the process of validation engineers and verified the feasibility of Virtual Bridges
in automated feedback discovery. In this experiment, we will complete the final
step of the validation process: KPI analysis. KPI stands for Key Performance
Indicator and serves as the validation standard for the Hue Bridge firmware
established by various research and development teams. These KPIs are divided
based on different teams responsible for specific daemon development. During
the final stage of the Beta Test, validation engineers create a Beta Report based
on the diagnostic data. In the Release Meeting, the engineers determine whether
to release the firmware based on the performance of the KPIs mentioned in the
report. This experiment aims to explore the coverage of Virtual Bridges in KPIs
and discover key indicators for comparison.

We cloned all the Dashboards from the Hue SQL tool used by validation
engineers to analyze diagnostic data. These Dashboards belong to different
development teams and are used to analyze whether different firmware versions
meet the KPIs. By transforming the cloned Dashboards to include only Virtual
Bridges (with limited Bridge IDs), we obtained the Beta Test Dashboards for
Virtual Bridges. We converted and organized these Dashboards one by one and
collected statistics on the coverage of Virtual Bridges in different types of KPIs,
as shown in Table 6.6.

Table 6.6: Virtual Bridges: KPIs Analysis Coverage

Beta Tester Bridges Virtual Bridges

Number of Hue Bridge ∼6k 30
Reset Reason KPIs 17 15
Connectivity KPIs 9 7
Diagnostic Messages KPIs 10 8
Automation KPIs 11 6
Other KPIs 6 1
Total KPIs 53 37
Total KPIs (Except Hardware related) 46 37

66

In Table 6.6, we can see that Virtual Bridges have a certain coverage in various
types of KPI analysis. Most KPIs related to hardware analysis of the Hue
Bridge, such as memory usage and electronic component temperature, cannot
be covered by Virtual Bridges. These are beyond the scope that a virtual
Bridge can cover. The limitation of virtualized devices lies in their inability
to perform diagnostic analysis on these aspects of real IoT devices. Excluding
hardware factors, the overall coverage of Virtual Bridges in KPIs can reach
80.43% (37/46). This coverage meets our expectations for the project results
and has been affirmed by validation engineers.

67

68

Chapter 7

Conclusions

In this paper, we propose a virtualization solution based on containerization and
Kubernetes to address the firmware update cycle efficiency issues of Hue Bridge
devices. The slow firmware updates hinder Signify’s ability to iterate firmware
versions quickly and timely discover and validate automated feedback during the
Alpha and Beta testing phases. Our goal is to use the virtualized Hue System
to perform tasks assigned to beta testers and thereby reduce the time required.
The existing virtualization solutions in Signify have significant deficiencies in
terms of system functionality and scalability. Moreover, the inability to collect
user diagnostic data poses a challenge for validating and analyzing test results
in the current approach.
To address the issues in existing projects, we present the following research

questions for this study:

• Question I: Based on the existing projects, how can we improve the
virtualization of Hue Bridge devices?

• Question II: Can the virtual bridge improve firmware update efficiency
and provide valuable automated feedback?

Regarding Question I, we first establish the transmission of analysis/diagnostic
data between the virtual bridge and Hue Cloud. This diagnostic data is cru-
cial for bridge engineers to verify and test their work, making the collection of
analysis/diagnostic data from the virtual bridge in the cloud a foundation for
project validation. Additionally, to enhance the scalability and convenience of
the existing virtualization projects, we design a Kubernetes deployment solution
for the virtual Hue system based on Kubernetes container management techno-
logy. With our deployment solution, developers can quickly deploy thousands
of virtual Hue systems according to their needs, with the entire deployment
process taking only 5 minutes.
Furthermore, we propose a Use Case Model to analyze the everyday behavior

of real Signify users when using the Hue System, such as light control and
automation scenes. Based on the analysis and modeling of the Delta message
database, we not only analyze the daily interaction patterns between users and
the Hue System but also understand user preferences for advanced light control.
We convert the generated Use Case list from the Use Case Model into machine
commands (Hue Commands) recognizable by the Bridge Daemon. We design a

69

random command generator based on the Use Case Model, which can send Hue
Commands to all deployed virtual bridges at a specified frequency. According
to the verification by bridge experts, the improvements made to the virtual Hue
System and Dockerized Bridge significantly enhance the efficiency of automated
testing and partially simulate real user behavior.
For Question II, regarding the feasibility of virtual bridges in improving firm-

ware update efficiency and providing valuable automated feedback, we gradually
validate the following verification questions:

• Will virtual bridges generate similar analysis data (Delta Messages) when
the Use Case Model is applied to Kubernetes Deployment?

• Will applying the Frequent Pattern Mining algorithm to Delta Messages
generated by virtual bridges result in the same Use case?

• Does the user diagnostic result obtained after deploying a specific firmware
version to the virtual bridge resemble that of the Beta Testers?

• Can we identify the existing bugs and abnormal situations in the current
firmware after deploying a specific version of the firmware to the virtual
bridge?

• After applying the Use Case Model to our Kubernetes Deployment, can
the virtual bridges obtain diagnostic data more quickly?

• What is the coverage of Key Performance Indicators (KPIs) and user
behavior when deploying Bridge firmware to a virtual bridge?

Based on the experimental results in Section 6, we can conclude that the
analysis data collected from virtual bridges aligns with our assumptions about
the Use Case Model. Through visualizing the diagnostic data generated by
the virtual bridges, we obtained diagnostic data analysis results specific to the
virtual bridges. By comparing the results, we found consistent patterns and
outcomes between the virtual bridges and beta testers.
Additionally, according to our results, using our virtual Hue system allows us

to collect automated feedback present in buggy firmware versions. This finding
suggests that engineers can use our virtual Hue system to identify or reproduce
issues in the firmware earlier. The earlier issues are identified and addressed,
the faster

70

Chapter 8

Future Work

In this thesis, the implemented system design demonstrates feasibility in the
Firmware Update Cycle. However, there are aspects where the system could be
further improved and validated. We outline several remaining works that need
to be addressed:

1. Resource limitations of virtual bridges: During the validation phase,
due to resource constraints in the cloud, we were only able to deploy 30
virtual bridges for validation experiments. However, for Beta Testing, the
automated feedback generated by thousands of test bridges is essential
for comprehensive testing. Therefore, we propose resolving the resource
limitations by collecting diagnostic data from thousands of virtual bridges
in the cloud.

2. Enhancement of the Use Case Model: We employed Frequent Pat-
tern Mining to analyze and extract use cases from user data. However,
our model is based on a short period of user data. To obtain a more com-
prehensive user behavior model, it is necessary to have a more complete
dataset covering a longer duration, ideally spanning a year.

3. Limitations of the random command generator: During the valida-
tion of the Use Case Model, we found that the use case coverage generated
by virtual bridges was around 80%. This is mainly due to the inability of
the HSE to simulate certain sensors. Therefore, improving the simulation
of sensors (such as third-party sensors or virtual clip sensors) in the HSE
can enhance the coverage of virtual bridges in terms of user behavior. This
would allow us to cover more scenarios of users using the Hue System and
maximize the likelihood of detecting firmware issues.

4. Evaluating resource utilization: Our project did not analyze and
quantify the software and hardware resources consumed by the large-scale
deployment of virtual Hue Systems. Additionally, we propose conduct-
ing a comparative analysis and cost evaluation between Beta Testers and
Virtual Bridges in terms of time and monetary costs. This analysis will
provide insights into the cost savings for Signify after adopting our virtual
system.

71

72

Bibliography

[1] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta.
Agile software development methods: Review and analysis. arXiv preprint
arXiv:1709.08439, 2017.

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining
association rules. In Proc. 20th int. conf. very large data bases, VLDB,
volume 1215, pages 487–499. Santiago, Chile, 1994.

[3] Sunha Ahn and Sharad Malik. Automated firmware testing using firmware-
hardware interaction patterns. In Proceedings of the 2014 International
Conference on Hardware/Software Codesign and System Synthesis, pages
1–10, 2014.

[4] Sergey Brin, Rajeev Motwani, Jeffrey D Ullman, and Shalom Tsur. Dy-
namic itemset counting and implication rules for market basket data. In
Proceedings of the 1997 ACM SIGMOD international conference on Man-
agement of data, pages 255–264, 1997.

[5] Antonio Celesti, Davide Mulfari, Maria Fazio, Massimo Villari, and Anto-
nio Puliafito. Exploring container virtualization in iot clouds. In 2016 IEEE
international conference on Smart Computing (SMARTCOMP), pages 1–6.
IEEE, 2016.

[6] Hong-Yi Chang, Jia-Chi Lin, Mei-Li Cheng, and Shih-Chang Huang. A
novel incremental data mining algorithm based on fp-growth for big data.
In 2016 International Conference on Networking and Network Applications
(NaNA), pages 375–378. IEEE, 2016.

[7] Docker. Use containers to build, share and run your applications. https:
//www.docker.com/resources/what-container/, 2023. Last accessed:
May. 15, 2023.

[8] Docker docs. About storage drivers. https://docs.docker.com/storage/
storagedriver/, 2023. Last accessed: May. 14, 2023.

[9] Fluentbit. An end to end observability pipeline. https://fluentbit.io/,
2023. Last accessed: May. 15, 2023.

[10] Kanwal Garg and Deepak Kumar. Comparing the performance of frequent
pattern mining algorithms. International Journal of Computer Applica-
tions, 69(25), 2013.

73

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://fluentbit.io/

[11] Jim Grundy. Firmware validation: challenges and opportunities. In FM-
CAD, page 11, 2013.

[12] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. ACM sigmod record, 29(2):1–12, 2000.

[13] Jeff Heaton. Comparing dataset characteristics that favor the apriori, eclat
or fp-growth frequent itemset mining algorithms. In SoutheastCon 2016,
pages 1–7. IEEE, 2016.

[14] José L Hernández-Ramos, Gianmarco Baldini, Sara NMatheu, and Antonio
Skarmeta. Updating iot devices: challenges and potential approaches. In
2020 Global Internet of Things Summit (GIoTS), pages 1–5. IEEE, 2020.

[15] Eric Hitimana, Gaurav Bajpai, Richard Musabe, Louis Sibomana, and
Kayavizhi Jayavel. Containerized architecture performance analysis for iot
framework based on enhanced fire prevention case study: Rwanda. Sensors,
22(17):6462, 2022.

[16] Kang Huaishuai. Docker practice: kubernetes. https://yeasy.gitbook.
io/docker_practice/kubernetes, 2020. Last accessed: May. 10, 2023.

[17] Kostas Kolomvatsos. An intelligent, uncertainty driven management
scheme for software updates in pervasive iot applications. Future gener-
ation computer systems, 83:116–131, 2018.

[18] Miguel A. López-Peña, Jessica Dı́az, Jorge E. Pérez, and Héctor Humanes.
Devops for iot systems: Fast and continuous monitoring feedback of system
availability. IEEE Internet of Things Journa, 7:10695–10707, 2020.

[19] Lucille McMinn and Jonathan Butts. A firmware verification tool for pro-
grammable logic controllers. In Critical Infrastructure Protection VI: 6th
IFIP WG 11.10 International Conference, ICCIP 2012, Washington, DC,
USA, March 19-21, 2012, Revised Selected Papers 6, pages 59–69. Springer,
2012.

[20] Igor Muzetti Pereira, Tiago Carneiro, and Eduardo Figueiredo. A system-
atic review on the use of devops in internet of things software systems. In
Proceedings of the 36th Annual ACM Symposium on Applied Computing,
pages 1569–1571, 2021.

[21] Igor Muzetti Pereira, Tiago Garcia de Senna Carneiro, and Eduardo
Figueiredo. Understanding the context of iot software systems in devops.
In 2021 IEEE/ACM 3rd International Workshop on Software Engineering
Research and Practices for the IoT (SERP4IoT), pages 13–20. IEEE, 2021.

[22] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in
large-scale development. In Product-Focused Software Process Improve-
ment: 10th International Conference, PROFES 2009, Oulu, Finland, June
15-17, 2009. Proceedings 10, pages 386–400. Springer, 2009.

[23] Pranshu Gupta. On virtualization and contain-
ers. https://medium.com/@pranshugupta_61104/

on-virtualization-and-containers-6f9683fea1c1, 2023. Last
accessed: Mar. 18, 2023.

74

https://yeasy.gitbook.io/docker_practice/kubernetes
https://yeasy.gitbook.io/docker_practice/kubernetes
https://medium.com/@pranshugupta_61104/on-virtualization-and-containers-6f9683fea1c1
https://medium.com/@pranshugupta_61104/on-virtualization-and-containers-6f9683fea1c1

[24] Sebastian Raschka. Mlxtend: Providing machine learning and data science
utilities and extensions to python’s scientific computing stack. The Journal
of Open Source Software, 3(24), 2018.

[25] Ruth Hadari. How is pi planning different from sprint planning? https:

//www.goretro.ai/post/pi-planning/, 2023. Last accessed: May. 15,
2023.

[26] Collins Sey, Hang Lei, Weizhong Qian, Xiaoyu Li, Linda Delali Fiasam,
Ruchao Sha, and Zirui He. Firmblock: A scalable blockchain-based
malware-proof firmware update architecture with revocation for iot devices.
In 2021 18th International Computer Conference on Wavelet Active Media
Technology and Information Processing (ICCWAMTIP), pages 134–140.
IEEE, 2021.

[27] Signify. Become a philips hue developer to light up your ideas. https:

//developers.meethue.com, 2023. Last accessed: May. 14, 2023.

[28] Signify NV. Meet the hue. https://www.philips-hue.com/nl-nl, 2023.
Last accessed: Mar. 1, 2023.

[29] Alanoud Subahi and George Theodorakopoulos. Detecting iot user behavior
and sensitive information in encrypted iot-app traffic. Sensors, 19(21),
2019.

[30] Synopsys. Why is ci/cd important? https://www.synopsys.

com/glossary/what-is-cicd.html#:~:text=Definition,and%

20continuous%20delivery%2Fcontinuous%20deployment., 2023. Last
accessed: May. 18, 2023.

[31] Maryam Tavakkoli. Analyzing the applicability of kubernetes for the de-
ployment of an iot publish/subscribe system. Master thesis, Aalto Univer-
sity, 2019.

[32] TechTarget. Comparing waterfall vs. agile vs. devops methodolo-
gies. https://www.techtarget.com/searchsoftwarequality/opinion/

DevOps-vs-waterfall-Can-they-coexist, 2023. Last accessed: Mar. 18,
2023.

[33] Chun-Wei Tsai, Chin-Feng Lai, Ming-Chao Chiang, and Laurence T Yang.
Data mining for internet of things: A survey. IEEE Communications Sur-
veys & Tutorials, 16(1):77–97, 2013.

[34] Woei-Jiunn Tsaur, Jen-Chun Chang, and Chin-Ling Chen. A highly secure
iot firmware update mechanism using blockchain. Sensors, 22(2):530, 2022.

[35] University of Regina. Support measure. http://www2.cs.uregina.ca/

~dbd/cs831/notes/itemsets/support.html, 2012. Last accessed: May.
10, 2023.

[36] Wikipedia. Kubernetes. https://en.wikipedia.org/wiki/Kubernetes,
2014. Last accessed: May. 14, 2023.

75

https://www.goretro.ai/post/pi-planning/
https://www.goretro.ai/post/pi-planning/
https://developers.meethue.com
https://developers.meethue.com
https://www.philips-hue.com/nl-nl
https://www.synopsys.com/glossary/what-is-cicd.html#:~:text=Definition,and%20continuous%20delivery%2Fcontinuous%20deployment.
https://www.synopsys.com/glossary/what-is-cicd.html#:~:text=Definition,and%20continuous%20delivery%2Fcontinuous%20deployment.
https://www.synopsys.com/glossary/what-is-cicd.html#:~:text=Definition,and%20continuous%20delivery%2Fcontinuous%20deployment.
https://www.techtarget.com/searchsoftwarequality/opinion/DevOps-vs-waterfall-Can-they-coexist
https://www.techtarget.com/searchsoftwarequality/opinion/DevOps-vs-waterfall-Can-they-coexist
http://www2.cs.uregina.ca/~dbd/cs831/notes/itemsets/support.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/itemsets/support.html
https://en.wikipedia.org/wiki/Kubernetes

	Preface
	Introduction
	Hue System Introduction
	Motivation
	Contributions
	Project roadmap
	Thesis Outline
	Related work
	Firmware updates
	DevOps
	Blockchain
	Virtualization
	Methodology
	IoT device user behavior analysis
	Hue Bridge Device Virtualization
	Methodology
	Hue Bridge
	Firmware Update Cycle
	Virtualization Solution Design
	Advancements in the Dockerize Hue Bridge
	Use Case Model
	Hue Bridge user behaviours
	Method
	Use Case
	Frequent Pattern Mining
	Use Case Modeling Process
	State_message Dataset and its pre-processing
	Experiments
	Model Implementation and Kubernetes Deployment
	Model Implementation
	Hue Command Architecture
	Random Hue Commands Generator
	Kubernetes Deployment
	Deployment and Scaling Architecture
	Pod Components and their functions
	Deployment Procedures and Strategies
	System Validation
	Use Case Model Validation
	Automated Feedback Validation
	Conclusions
	Future Work

