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Acquisition Geometry-aware Focal Deblending
A. Kontakis* (Delft University of Technology), S. Wu (Delft University of
Technology) & D.J. Verschuur (Delft University of Technology)

SUMMARY
The applicability of a deblending method is directly related to acquisition parameters, such as source and
detector locations. We formulate focal deblending in two alternative ways. In the first case, the double
focal transform is used, which relies on a well-sampled source and detector dimension. In the second case,
the single-sided focal transform is used, which does not depend on a well-sampled source dimension.
Comparing the deblending results, we find that although the double focal transform is superior, blending
noise can be significantly attenuated using the single-sided focal transform, which allows application to
more practical acquisition geometries. By combining with shot repetition, the deblending result can be
further improved.
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 Introduction

Simultaneous shooting, also known as blending, has been proposed as a method for speeding up seismic

acquisition and/or sampling the seismic wavefield more comprehensively, see e.g. Berkhout (2008). This

is achieved by allowing the wavefields generated by each source to overlap, the overlap being controlled

by a chosen code – the blending code. The price one has to pay for realizing the benefits of blending, is

the need for source wavefield separation, alternatively referred to as deblending. This has to be of high

enough quality such that subsequent processesing is not harmed.

Separating the interfering source wavefields is a challenging process, because of the inherent underde-

termined nature of the problem. There is a wealth of methods that have been proposed to attack the

problem. These range from coherency-based FK filtering (Mahdad et al., 2011), median-based filtering

(Huo et al., 2012; Gan et al., 2015; Zhan et al., 2015), to sparsity-based methods using Radon transforms

(Ayeni et al., 2011; Haacke et al., 2015; Ibrahim and Sacchi, 2013), curvelets (Lin and Herrmann, 2009;

Wason et al., 2011) and seislets (Chen, 2015). Another approach is to use rank-reduction techniques

(Wason et al., 2014; Cheng and Sacchi, 2015), exploiting the fact that blending increases the rank of

certain data subsets.

Kontakis and Verschuur (2014) proposed a sparsity-based method for deblending, which used the double

focal transform, utilizing prior knowledge about the subsurface, in the form of an approximate velocity

model, in order to constrain the deblending inversion. A downside of the double focal transform is its

requirement of dense source and detector sampling. Therefore, an interesting question is how the focal

transform can be modified to accomodate for challenging geometries e.g. in cases where the source

dimension is not sampled densely enough, or in subsets of a big 3D survey. Therefore, we examine two

different ways to implement the focal transform, each one with different requirements when it comes to

source sampling. Another question that we aim to address is whether focal deblending can be effectively

combined with shot repetition (Wu et al., 2015) in order to enhance the quality of the deblending result.

Method and Theory

For the following discussion, we assume that an uppercase bold letter denotes a monochromatic fre-

quency slice of a dataset or operator, following the notation found in Berkhout (1982). Then, the de-

blending problem can be posed as follows: given a blended dataset Pbl and a blending operator ΓΓΓ, find

the unblended dataset P that satisfies

min
P

{

∑
ω

||Pbl −PΓΓΓ||2F

}

, (1)

subject to any desired additional constraints on P. We use ||X||2F = ∑m ∑n |Xmn|
2 to denote the squared

Frobenius norm of matrix X, Xmn being its (m,n)-th element. Placing additional contraints on (1) is a

necessity, because ΓΓΓ is a tall matrix, which makes the deblending problem underdetermined. Without

additional constraints (1) has no unique solution.

Our approach to constraining (1) is to use prior knowledge about the subsurface in the form of an approx-

imate velocity model and a number of depth levels, where the strongest reflectors lie. This approximate

information is often available, e.g. in timelapse acquisition, and it can be used to provide a sparse repre-

sentation of P. The expected sparsity can be used to effectively constrain (1). The vehicle for achieving

this sparse representation of P is the multi-level focal transform, assuming that P is compressed in the

focal domain.

The focal transform can be defined in different ways, depending on what suits better the acquisition

geometry. When the source and receiver dimension are well sampled, it is possible to use the double

focal transform (Berkhout and Verschuur, 2010; Kutscha et al., 2010; Kutscha and Verschuur, 2012).

In this case, K pairs of wavefield extrapolation operators W+
k and W−

k are created, using the velocity

model. W+
k extrapolates a wavefield the surface to depth level zk. W−

k does the reverse operation, which

is to extrapolate a wavefield from a depth level zk to the surface. Each pair of operators defines a focal

subdomain, δXk, which contains “compressed” information about reflection events originating from zk

and its vicinity. The relationship between P and δXk is given by

P =
K

∑
k=1

W−
k δXkW+

k . (2)
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 Equation (2) is the inverse double focal transform. Using (2) it is possible to recover the wavefield

recorded at the surface from the focal subdomains. The adjoint operation takes the surface data P and

focuses it at depth level zk:

δXk ≈ W−
k

H
PW+

k

H
, k = 1, . . . ,K. (3)

Here WH denotes the conjugate transpose of W. It can be easily seen that operators W+
k and W−

k act

on both source and detector dimension in order to focus the data. In 3D acquisition scenarios, achieving

good sampling of both x and y dimensions for sources and detectors can be very challenging. It is

therefore useful to investigate alternative formulations that can provide focusing, without having to act

on both source and detector dimensions. A way to accomplish this is to work with “two-way” operators

Gk (Berkhout and Verschuur, 2006). Then (2) becomes

P =
K

∑
k=1

GkδXk, (4)

which we will refer to as the single-sided focal transform. The content of δXk now can be interpreted as

being the portion of a source wavefield that gets reflected at depth zk and its vicinity. The adjoint now

becomes

δXk ≈ GH
k P, k = 1, . . . ,K. (5)

The focusing operation that takes place in (5) now acts only on the receiver dimension and is also cheaper

to compute, needing half the number of matrix-matrix operations to be computed. A major difference

between (2) and (4) is how blending noise is mapped to the focal domain. When using (5) the blending

noise is also focused, unlike (3), where blending noise does not focus. This makes using (4) more

difficult for high quality deblending. This problem can be, to some extent, mitigated by using weights

in the focal domain.

Focal deblending can also benefit from using more complex blending codes, such as the shot repetition

method discussed in the introduction. When shot repetition is employed in the survey, the source fires

multiple times per shot location, with small time delays. Each element (m,n) of ΓΓΓ is given then by

Γmn =

{

∑
L
l=1 e− jωτmnl , if shot m is blended in the nth blended shot gather

0, if shot m is not blended in the nth blended shot gather,
(6)

where L is the number of shot repetitions, and τmnl the time delays. Note that for L = 1, (6) becomes a

standard random time delay code. As shown in Wu et al. (2015), the shot repetition code for each shot

is designed such that its autocorrelation is spiky and its crosscorrelation with the codes of other shots is

small for every lag. As a result, the signal to be extracted is boosted compared to the blending noise.

This makes blending noise less likely to be part of the deblended result.

Returning to the problem of constraining (1), we can make use of the focal representation of the data and

apply sparsity-promoting regularization there, exploiting the expected sparseness of the solution. This

can be done by inserting (2) in (1), which yields

min
δX̃k

{

∑
ω

||Pbl −
K

∑
k=1

W−
k δXkW+

k ΓΓΓ||2F + ε ∑
t

K

∑
k=1

||δX̃k||V,S

}

, (7)

or,

min
δX̃k

{

∑
ω

||Pbl −
K

∑
k=1

GkδXkΓΓΓ||2F + ε ∑
t

K

∑
k=1

||δX̃k||V,S

}

, (8)

when “two-way” focusing operators are used. δX̃k is the kth focal subdomain in the time domain and

||X||S = ∑m ∑n |VmnXmn|, Vmn > 0, denotes the weighted sum-norm. The vectorized form of (7) and

(8) is essentially a basis pursuit denoising problem, which can be solved by solvers such as SPGL1

(van den Berg and Friedlander, 2007, 2008). It is also possible to combine the focal transform with

other transforms, such as the linear Radon transform, as shown in Kontakis and Verschuur (2015).

Examples

The method is tested using a numerically blended 2D marine line from a North Sea field dataset. The

dataset consists of 151 sources and detectors, with a source/detector spacing of 12.5m. The time sam-

pling interval is 8ms. Interpolation and the reciprocity principle were used in order to reconstruct the
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 near offset data (Kabir and Verschuur, 1995). Surface-related multiples were also removed. The blend-

ing factor used is 2. Thirteen focal operators were used, that were constructed through NMO analysis.

Their zero offset times were where ranging from 0.34s to 1.44s. Both the simple time delay and shot

repetition codes used time delays from 0.1s to 0.5s.
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Figure 1 a) Original field dataset, b) numerically blended data (time delays), c) blended data (shot 
repetition). Deblended result: d) double focal transform, time delays, e) single-sided focal transform, 
time delays, f) single-sided focal transform, shot repetition. Error section: g) double focal transform, 
time delays, h) single-sided focal transform, time delays, i) single-sided focal transform, shot repetition.

The results shown in Figure 1 were calculated for three different cases: i) deblending using the double 
focal transform and a simple random time delay code, ii) using the single-sided focal transform and 
the same simple-random time delay code as the previous example and iii) using the single-sided focal 
transform and shot repetition with each shot repeated 2 times. They are assessed using a quality metric

Q = 10log10(∑t || ideal||
2
F/∑t || ideal − ||2F). Here, ideal and are the ideal, noise-free data and the 

deblended data respectively, in the time domain. For the example shown above and the three cases

examined, Qi) = 18.50 dB, Qii) = 16.46 dB and Qiii) = 18.17 dB.

Using the double focal transform yields better results, however it needs well-sampled source and detector
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 dimensions. Using the single-sided focal transform relaxes the requirement for a well-sampled source

dimension, at the expense of deblending quality, as expected. Still, however, the deblended dataset has

minimal amplitude differences compared to the original noise-free data. Shot repetition improves the

result, due to the ability of the repeated shots to boost the signal-to-noise ratio.

Conclusions

We showed that focal deblending can be redefined in different ways, in order to perform deblending even

in cases where the shot dimension is not well-sampled, which could be difficult to handle with methods

that rely on blending noise incoherency. Also, relaxing the requirement for a fully sampled wavefield

paves the path for the development of focal operators that are tailored to specific acquisition geometries,

which can be useful when handling big 3D blended surveys. When employed, shot repetition proves to

also enhance the separation quality.
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