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Mean Field Game for Strategic Bidding of Energy Consumers in
Congested Distribution Networks

Amirreza Silani, Simon H. Tindemans

Abstract— The proliferation of batteries, photovoltaic cells
and Electric Vehicles (EVs) in electric power networks can
result in network congestion. A redispatch market that allows
the Distribution System Operators (DSOs) to relieve congested
networks by asking the energy consumers to adjust their
scheduled consumption is an alternative to upgrading network
capacity. However, energy consumers can strategically increase
their bids on the day-ahead market in anticipation of payouts
from the redispatch market. This behaviour, which is called
increase-decrease gaming, can aggravate congestion and allow
the energy consumers to extract windfall profits from the DSO.
In this paper, we model the increase-decrease game for large
populations of energy consumers in power networks using a
mean field game approach. The agents (energy consumers)
maximize their individual welfare on the day-ahead market
with anticipation of the redispatch market, coupled via the
electricity price. We show that there exists a Nash equilibrium
for this game and use an algorithm that converges to the Nash
equilibrium for the infinite population case.

I. INTRODUCTION

Nowadays, the number of distributed energy resources
such as batteries, photovoltaic cells and Electric Vehicles
(EVs) connected to the power network is increasing. The
advantage of these resources is the decarbonization of the
energy system. However, they bring new challenges for
power networks that is network congestion. One way to
address this problem is using Local Flexibility Markets
(LFMs) [1], [2]. Typically, LFM proposals consider energy
consumption schedules after closure of the day-ahead market.
If the consumption schedules of flexible loads and inflexible
loads result in congestion, then the Distribution System
Operator (DSO) asks the energy consumers to redispatch
their consumption schedules in the LFM, which is also called
the redispatch market [3]. The energy consumers who reduce
their consumptions on the redispatch market will be paid
by the DSO. However, the energy consumers can anticipate
the redipatch market and bid strategically on the day-ahead
market to maximize their individual welfare. This is called
the increase-decrease game [4]. The increase-decrease game
can aggravate congestion and allow the energy consumers
to extract windfall profits from the DSO. Modeling and
analyzing the increase-decrease game in the electrical energy
markets are recently attracting much research attention (see
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[3]–[6]). In [3], different types of market failures are intro-
duced and demonstrated in a toy model. In [4], it is shown
that combining a regional with a locational market leads
to opportunities that rational firms exploit and the increase-
decrease game is possible even in absence of market power.
A two-stage game is proposed in [5] to analyze imperfect
competition of producers in zonal power markets with a real-
time and a day-ahead market. A profit decomposition method
to evaluate the impacts of bidding strategies on the payoffs
and an index to quantify market power are presented in
[6]. Although, these papers investigate the increase-decrease
game in different electrical energy markets, to the best
of our knowledge, there exists no work in the literature
providing a suitable model and Nash equilibrium analysis for
the increase-decrease game applied to distribution network
congestion. Moreover, in [7]–[9], the mean field game theory
is used to solve the constrained charging control of large
populations of EVs. Thus, the mean field game theory can
also be exploited for modeling and analyzing the increase-
decrease game. The case, explored in this paper, considers
a large population of energy consumers that do not have
market power (individually).

In this paper, we model the increase-decrease game for
large populations of energy consumers using a mean field
game approach. The energy consumers maximize their in-
dividual welfare on the day-ahead market with anticipation
of the redispatch market, coupled via the electricity price.
Then, we show that there exists a Nash equilibrium for this
game. Finally, we use an iterative algorithm that converges
to the Nash equilibrium for the infinite population case. The
contributions of the paper can then be listed as follows:
(i) the increase-decrease game for large populations of energy
consumers in power networks is modeled using a mean
field game approach; (ii) the existence and the uniqueness
of the Nash equilibrium for this game are theoretically
proved; (iii) an iterative algorithm that converges to the Nash
equilibrium for the infinite population case is used.

II. MODELING AND PROBLEM FORMULATION

In this section, we describe the role of energy consumers
and DSO on the day-ahead and redispatch market. Then, we
model the increase-decrease game for large populations of
energy consumers using a mean field game approach.

A. Problem formulation

We consider the problem of energy consumption for a
population of n energy consumers (agents) with flexible
loads. We consider the set of agents N := {1, 2, . . . , n}.



For notational simplicity, we consider the problem for one
time slot, but the model is trivially applied to multiple
(non-coupled) time slots. For each i ∈ N , let Ed

i be the
consumption schedule on the day-ahead market and Er

i

be the anticipated consumption reduction on the redispatch
market (when congestion occurs) for its flexible loads, ui

be the utility (i.e., the agents would like to use energy) and
Emax

i is the maximum consumption.
The DSO investigates the schedules on the day-ahead

market and asks the agents to reduce their consumptions on
the redispatch market if a congestion problem is detected.
The agents who reduce their consumptions on the redispatch
market will be paid by the DSO.

Let Einflx be the total inflexible load and cap be the
total capacity of generation. Also, let fd(·) and f r(·) be
the electricity supply price functions on the day-ahead and
redispatch market, respectively. We note that in many elec-
tricity markets, the pay-as-cleared pricing rule is used [4].
Now, we consider the following assumption on the supply
price functions.

Assumption 1: (Pay-as-cleared pricing rule). The pay-
as-cleared pricing rule is used on the day-ahead and
redispatch market. The day-ahead and redispatch supply
price functions fd(·) and f r(·) are continuous and given
by fd

(
1

cap (
∑

i∈N Ed
i + Einflx)

)
= fd

(
1
cn (

1
n

∑
i∈N Ed

i +

dn)
)

and f r
(

1
cap (

∑
i∈N Ed

i −
∑

i∈N Er
i + Einflx)

)
=

f r
(

1
cn (

1
n

∑
i∈N Ed

i − 1
n

∑
i∈N Er

i + dn)
)
, where cn = cap

n

and dn = Einflx

n . Moreover, there exist positive values of
c̄ := limn→∞ cn and d̄ := limn→∞ dn.

Assumption 1 implicitly defines supply functions for a
market-based clearing mechanism, which is used in [7]–[9].

B. Increase-decrease game

The agents can anticipate the redispatch market with some
degree of accuracy (e.g. using the historical data of load) and
bid strategically on the day-ahead market to maximize their
individual welfare. This is called the increase-decrease game.
Indeed, the agents can anticipate when the congestion may
occur in the network. Then, they modify their schedules on
the day-ahead market such that they will be paid by the DSO
to reduce it on the redispatch market.

Let Ēd,n = 1
n

∑
i∈N Ed

i , Ēr,n = 1
n

∑
i∈N Er

i be the
mean values of the consumption schedules on the day-ahead
market and the anticipated consumption reduction on the
redispatch market, respectively. Each agent i ∈ N maxi-
mizes its individual welfare (utility minus day-ahead costs,
plus anticipated redispatch revenue) Ji(E

d
i , E

r
i ;E

d
−i, E

r
−i)

by solving the optimization problem

max
Ed

i ,E
r
i

Ji(E
d
i , E

r
i ;E

d
−i, E

r
−i)

s.t. 0 ≤ Ed
i ≤ Emax

i , 0 ≤ Er
i ≤ Ed

i ,
(1)

where Ji(E
d
i , E

r
i ;E

d
−i, E

r
−i) =

(
ui − fd

(
1
cn (Ē

d,n +
dn)

))
Ed

i +
(
f r
(

1
cn (Ē

d,n− Ēr,n+dn)
)
−ui

)
Er

i and Ed
−i :={

Ed
j |j ∈ N − {i}

}
, Er

−i :=
{
Er

j |j ∈ N − {i}
}

are the
strategies of all other agents.

We note that the individual welfare of i-th agent depends
on the strategies Ed

i , E
r
i of the agent i and the strategies

Ed
−i, E

r
−i of all the other agents. Then, a set of agents’

strategies is stable if each agent cannot make more welfare
by changing its own strategies when the strategies of other
agents are fixed. Following [8, Definition 3.1], this concept
is called Nash equilibrium and is defined as follows.

Definition 1: (Nash equilibrium). Let the set of admis-
sible strategies Ξi for each agent i ∈ N be defined as
Ξi := {(Ed

i , E
r
i )| 0 ≤ Ed

i ≤ Emax
i , 0 ≤ Er

i ≤ Ed
i }. Then,

a set of strategies {Ed∗
i , Er∗

i }i∈N is a Nash equilibrium if
for all (Ed

i , E
r
i ) ∈ Ξi and i ∈ N

Ji(E
d∗
i , Er∗

i ;Ed∗
−i, E

r∗
−i) ≥ Ji(E

d
i , E

r
i ;E

d∗
−i, E

r∗
−i). (2)

If we assume that Ēd,n and Ēr,n are fixed references,
then (1) leads to a linear program in Ed

i and Er
i , whose

optimal solution is discontinuous in these fixed references.
Therefore, in analogy with [7], [8], we consider the following
optimization problem for each agent i ∈ N :

max
Ed

i ,E
r
i

Jσi(E
d
i , E

r
i ;E

d
−i, E

r
−i)

s.t. 0 ≤ Ed
i ≤ Emax

i , 0 ≤ Er
i ≤ Ed

i ,
(3)

where Jσi(E
d
i , E

r
i ;E

d
−i, E

r
−i) =

(
ui − fd

(
1
cn (Ē

d,n +
dn)

))
Ed

i +
(
f r
(

1
cn (Ē

d,n − Ēr,n + dn)
)
−ui

)
Er

i −σ
(
(Ed

i −
Ēd,n)2+(Er

i − Ēr,n)2
)
, with σ ∈ R≥0. The additional term

in (3) regularizes the problem and can in practice be made
arbitrarily small by choosing σ sufficiently small.

The solution to (3) depends on Ēd,n and Ēr,n, i.e., the
population averages. Thus, the optimization problems (3)
are coupled and finding the optimal solution is complex. To
address this issue, we consider the fixed references zd and
zr instead of Ēd,n and Ēr,n, respectively. Then, each agent
i ∈ N solves the following optimization problem:

max
Ed

i ,E
r
i

Jσi(E
d
i , E

r
i ; z

d, zr)

s.t. 0 ≤ Ed
i ≤ Emax

i , 0 ≤ Er
i ≤ Ed

i ,
(4)

where Jσi(E
d
i , E

r
i ; z

d, zr) =
(
ui − fd

(
1
cn (z

d + dn)
))
Ed

i +(
f r
(

1
cn (z

d−zr+dn)
)
−ui

)
Er

i−σ
(
(Ed

i −zd)2+(Er
i−zr)2

)
.

Now, suppose that the population size of the agents is
large. Then, we can assume that the population size is infinity
to approximate the optimization problem (3). Indeed, Ēd =
limn→∞ Ēd,n and Ēr = limn→∞ Ēr,n exist and are finite
and for the infinite population case, the optimization problem
(3) becomes

max
Ed

i ,E
r
i

J∞
σi (E

d
i , E

r
i ;E

d
−i, E

r
−i)

s.t. 0 ≤ Ed
i ≤ Emax

i , 0 ≤ Er
i ≤ Ed

i ,
(5)

where J∞
σi (E

d
i , E

r
i ;E

d
−i, E

r
−i) =

(
ui−fd

(
1
c̄ (Ē

d+d̄)
))
Ed

i +(
f r
(
1
c̄ (Ē

d−Ēr+d̄)
)
−ui

)
Er

i−σ
(
(Ed

i −Ēd)2+(Er
i−Ēr)2

)
.

Similar to (4), the welfare function J∞
σi (E

d
i , E

r
i ; z

d, zr) and
the optimization problem for the infinite population case with
fixed references zd and zr can be defined.

In the following assumption, we consider the restrictive
conditions for σ based on the derivatives of the day-ahead
and redispatch supply price functions.



Assumption 2: (Restrictive conditions for σ). The func-
tions fd(·) and f r(·) are strictly increasing and continuously
differentiable. For the infinite population case, there exists
γ2 > γ1 > 0 such that 1

2c̄ maxxd∈[
¯
xd,x̄d]

∂fd(xd)
∂xd ≤ σ ≤

γ1

c̄ minxd∈[
¯
xd,x̄d]

∂fd(xd)
∂xd , 1

2c̄ maxxr∈[
¯
xr,x̄r]

∂fr(xr)
∂xr ≤ σ ≤

γ2

c̄ minxr∈[
¯
xr,x̄r]

∂fr(xr)
∂xr and 1

2 < max(γ2,
γ1γ2

γ2−γ1
) < 1,

where
¯
xy and x̄y are the minimum and maximum possible

xy, with y = d, r subject to the constraints of (4). For
the finite population case, these inequalities hold with Ēd,n,
Ēr,n, dn and cn.

III. MEAN FIELD GAME APPROACH

In this section, we investigate the existence and uniqueness
of the Nash equilibrium for the increase-decrease game
modeled usings a mean field game approach. Then, we use
an iterative algorithm converging to the Nash equilibrium.

Let Ēd∗ = limn→∞ Ēd,n∗ and Ēr∗ = limn→∞ Ēr,n∗,
with Ēd,n∗ = 1

n

∑
i∈N Ed∗

i , Ēr,n∗ = 1
n

∑
i∈N Er∗

i and z =
(zd, zr). Also, consider the definition of the Nash equilibrium
given in Definition 1 and the welfare function given in (5) for
each agent i ∈ N . Then, in the following theorem, we show
for the infinite population case the conditions that govern a
Nash equilibrium.

Theorem 1: (Conditions for a Nash equilibrium). Let
Assumption 1 hold. Then, a set of strategies {Ed∗

i , Er∗
i }i∈N

is a Nash equilibrium for the infinite population case if
a. Ed∗

i (z) and Er∗
i (z) solve the optimization problem (4) for

the infinite population case and with fixed zd and zr for
all i ∈ N .

b. zd = Ēd∗ and zr = Ēr∗, implying that zd and zr can be
obtained by averaging the optimal strategies of all agents.

Proof: Consider the set of strategies {Ed∗
i , Er∗

i }i∈N
solving the optimization (4) for the infinite population case
(i.e., with J∞

σi (E
d
i , E

r
i ; z

d, zr)) and with fixed z∗, where
z∗ = (zd∗, zr∗) = (Ēd∗, Ēr∗). For the infinite population
case, i.e., when n → ∞, each agent’s strategies Ed

i and
Er

i has ignorable effect on the population averages Ēd

and Ēr. Thus, for all i ∈ N , we have limn→∞
1
n

(
Ed

i +∑
j∈N−{i} E

d∗
j

)
= limn→∞

1
n

∑
j∈N Ed∗

j = Ēd∗ =

zd∗ and limn→∞
1
n

(
Er

i +
∑

j∈N−{i} E
r∗
j

)
=

limn→∞
1
n

∑
j∈N Er∗

j = Ēr∗ = zr∗. Then, for each
agent i ∈ N , we have J∞

σi (E
d
i , E

r
i ;E

d∗
−i, E

r∗
−i) =(

ui − fd
(
1
c̄ (Ē

d∗ + d̄)
))
Ed

i +
(
f r
(
1
c̄ (Ē

d∗ − Ēr∗ +
d̄)
)
− ui

))
Er

i − σ
(
(Ed

i − Ēd∗)2 + (Er
i − Ēr∗)2

)
=

J∞
σi (E

d
i , E

r
i ; z

d∗, zr∗). Hence, each Ed∗
i and Er∗

i maximize
J∞
σi (E

d
i , E

r
i ; z

d∗, zr∗) and also J∞
σi (E

d
i , E

r
i ;E

d∗
−i, E

r∗
−i)

with respect to the constraints of (5). Thus, following
Definition 1, {Ed∗

i , Er∗
i }i∈N is a Nash equilibrium for the

infinite population case.
According to the mean field game theory, each agent

does not consider the individual strategies of other agents to
maximize its welfare, but each agent is affected by the mass
average trajectories Ēd and Ēr [8]. We note that Theorem 1
provides the conditions that govern a Nash equilibrium and
is different from the Nash equilibrium definition. Let the
saturation function sat[c1,c2](·) be defined as sat[c1,c2](s) :=

c1 if s ≤ c1, c2 if s ≥ c2, s otherwise. Then, in the following
lemma, we obtain the unique solution to the problem (4).

Lemma 1: (Optimal solution to (4)). Let Assumption 1
hold and consider the optimization problem (4). Then, its
optimal solution is unique and given by

Ed∗
i = gd(B∗, z) =sat[0,Emax

i ]

(
1
2σ

(
ui − fd

(
1
cn (z

d + dn)
)

+ 2σzd +B∗(z)
))

Er∗
i = gr(B∗, z) =sat[0,Emax

i ]

(
1
2σ

(
f r
(

1
cn (z

d − zr + dn)
)

− ui + 2σzr −B∗(z)
))
, (6)

where B∗(z) = minB∈R≥0
{B : gr(B, z) ≤ gd(B, z)}.

Proof: We form the Lagrangian function for the
optimization problem (4) as Li(E

d
i , E

r
i , µ1, µ2, ν1, ν2) =

−Jσi(E
d
i , E

r
i ; z

d, zr) + µ1(E
d
i −Emax

i )− ν1E
d
i + µ2(E

r
i −

Ed
i )−ν2E

r
i . Now, we apply the Karush–Kuhn–Tucker (KKT)

conditions

∂Li

∂Ed
i

= fd
(

1
cn (z

d + dn)
)
− ui + 2σ(Ed∗

i − zd) + µ∗
1

− ν∗1 − µ∗
2 = 0 (7)

∂Li

∂Er
i
= ui − f r

(
1
cn (z

d − zr + dn)
)
+ 2σ(Er∗

i − zr)

+ µ∗
2 − ν∗2 = 0 (8)

0 ≤ Ed∗
i ≤ Emax

i , 0 ≤ Er∗
i ≤ Ed∗

i (9)
µ∗
1, µ∗

2, ν∗1 , ν∗2 ≥ 0 (10)

µ∗
1(E

d∗
i − Emax

i ) = µ∗
2(E

r∗
i − Ed∗

i ) = ν∗1E
d∗
i

= ν∗2E
r∗
i = 0. (11)

Then, we investigate the following possible cases:
1. Ed∗

i = 0. By the complementary slackness condition
(11) and dual feasibility condition (10), µ∗

1 = 0 and
ν∗1 ≥ 0. By the primal feasibility condition (9), Er∗

i = 0.
Then, by the complementary slackness condition (11) and
dual feasibility condition (10), µ∗

2, ν
∗
2 ≥ 0. Then, by the

stationary conditions (7), (8), we have fd
(

1
cn (z

d+dn)
)
≥

ui +
(
f r
(

1
cn (z

d − zr + dn)
)
−ui

)
+2σ(zd + zr) and also

1
2σ

(
ui − fd

(
1
cn (z

d + dn)
)
+ 2σzd + µ∗

2

)
= − 1

2σν
∗
1 ≤ 0,

1
2σ

(
f r
(

1
cn (z

d−zr+dn)
)
−ui+2σzr−µ∗

2

)
= − 1

2σν
∗
2 ≤ 0.

2. 0 < Ed∗
i < Emax

i . By the complementary slackness
condition (11), µ∗

1 = ν∗1 = 0. Now, we investigate the
following possible cases:
a. Er∗

i = 0. By the complementary slackness condition
(11), µ∗

2 = 0 and ν∗2 ≥ 0. Then, by the stationary
conditions (7), (8), we have Ed∗

i = 1
2σ

(
ui−fd

(
1
cn (z

d+
dn)

)
+ 2σzd

)
and 1

2σ

(
f r
(

1
cn (z

d − zr + dn)
)
− ui +

2σzr
)
= − 1

2σν
∗
2 ≤ 0.

b. 0 < Er∗
i < Ed∗

i . By the complementary slackness
condition (11), µ∗

2 = ν∗2 = 0. Then, by the stationary
conditions (7), (8), we have Ed∗

i = 1
2σ

(
ui−fd

(
1
cn (z

d+
dn)

)
+ 2σzd

)
and Er∗

i = 1
2σ

(
f r
(

1
cn (z

d − zr + dn)
)
−

ui + 2σzr
)
.

c. Er∗
i = Ed∗

i . By the complementary slackness condition
(11) and dual feasibility condition (10), µ∗

2 ≥ 0 and
ν∗2 = 0. Then, by the stationary conditions (7), (8), we
have Ed∗

i = Er∗
i = 1

2σ

(
ui−fd

(
1
cn (z

d+dn)
)
+2σzd+

µ∗
2

)
= 1

2σ

(
f r
(

1
cn (z

d− zr+dn)
)
−ui+2σzr−µ∗

2

)
and



µ∗
2 = 1

2

(
fd

(
1
cn (z

d + dn)
)
+ f r

(
1
cn (z

d − zr + dn)
)
−

2ui + 2σ(zr − zd)
)
≥ 0.

3. Ed∗
i = Emax

i . By the complementary slackness condition
(11) and dual feasibility condition (10), µ∗

1 ≥ 0 and ν∗1 =
0. Now, we investigate the following possible cases:
a. Er∗

i = 0. By the complementary slackness condition
(11) and dual feasibility condition (10), µ∗

2 = 0 and
ν∗2 ≥ 0. By the stationary conditions (7), (8), we have
1
2σ

(
ui−fd

(
1
cn (z

d+dn)
)
+2σzd

)
−Emax

i = − 1
2σµ

∗
1 ≤ 0

and 1
2σ

(
f r
(

1
cn (z

d−zr+dn)
)
−ui+2σzr

)
= − 1

2σν
∗
2 ≤

0.
b. 0 < Er∗

i < Ed∗
i . By the complementary slackness con-

dition (11), µ∗
2 = ν∗2 = 0. By the stationary conditions

(7), (8), we have Er∗
i = 1

2σ

(
f r
(

1
cn (z

d−zr+dn)
)
−ui+

2σzr
)

and 1
2σ

(
ui−fd

(
1
cn (z

d+dn)
)
+2σzd

)
−Emax

i =
1
2σµ

∗
1 ≥ 0.

c. Er∗
i = Ed∗

i = Emax
i . By the complementary slackness

condition (11) and dual feasibility condition (10), µ∗
2 ≥

0 and ν∗2 = 0. By the stationary conditions (7), (8), we
have 1

2σ

(
ui−fd

(
1
cn (z

d+dn)
)
+2σzd+µ∗

2

)
−Emax

i =
1
2σµ

∗
1 ≥ 0, 1

2σ

(
f r
(

1
cn (z

d−zr+dn)
)
−ui+2σzr−µ∗

2

)
=

Emax
i and µ∗

2 = f r
(

1
cn (z

d − zr + dn)
)
− ui + 2σ(zr −

Emax
i ).

Therefore, with B = µ∗
2 we have Ed∗

i = sat[0,Emax
i ]

(
1
2σ

(
ui−

fd
(

1
cn (z

d + dn)
)

+ 2σzd + B)
))

and Er∗
i =

sat[0,Emax
i ]

(
1
2σ

(
f r
(

1
cn (z

d − zr + dn)
)
− ui + 2σzr − B

))
,

where B must be chosen such that

gr(B, z) ≤ gd(B, z), (12)

with gd(B, z) and gr(B, z) given in (6). The mapping
gd(B, z) is continuous and non-decreasing and gr(B, z) is
continuous and non-increasing with B. Therefore, according
to the possible cases 1−3, there exists B which satisfies (12).
Moreover, in the possible cases 1−3, we have shown that
Ed∗

i and Er∗
i are unique such that B∗(z) is the smallest

non-negative B fulfilling (12).
Now, in the following lemma, we show that the optimal

solution to the problem (4) is contractive. This result will
be used later to show the existence and uniqueness of the
Nash equilibrium associated with problem (5) for the infinite
population case.

Lemma 2: (Contractiveness of (6)). Let Assumptions 1
and 2 hold and Ed∗

i (z) and Er∗
i (z) be the optimal solution

to the problem (4) for each i ∈ N . Then, the mappings
z 7→ Ēd,n∗(z) = 1

n

∑
i∈N Ed∗

i (z) and z 7→ Ēr,n∗(z) =
1
n

∑
i∈N Er∗

i (z) are continuous and contractive.
Proof: Following Lemma 1, the optimal solution

to the problem (4) is given in (6). Now, we define
the optimal solution with ẑ = (ẑd, ẑr) as Êd∗

i =
sat[0,Emax

i ]

(
1
2σ

(
ui−fd

(
1
cn (ẑ

d+dn)
)
+2σẑd+B∗(ẑ)

))
and

Êr∗
i = sat[0,Emax

i ]

(
1
2σ

(
f r
(

1
cn (ẑ

d − ẑr + dn)
)
− ui + 2σẑr −

B∗(ẑ)
))

and the non-optimal solution with ẑ, but with B∗(z)
as Ld

i = sat[0,Emax
i ]

(
1
2σ

(
ui − fd

(
1
cn (ẑ

d + dn)
)
+ 2σẑd +

B∗(z)
))

and Lr
i = sat[0,Emax

i ]

(
1
2σ

(
f r
(

1
cn (ẑ

d − ẑr + dn)
)
−

ui + 2σẑr −B∗(z)
))

. Now, consider the following lemmas.

Lemma 3: For all i ∈ N , we have

|Ed∗
i − Ld

i | ≤
∣∣(zd − ẑd)− 1

2σ

(
fd

(
1
cn (z

d + dn)
)

− fd
(

1
cn (ẑ

d + dn)
))∣∣ (13)

|Er∗
i − Lr

i| ≤
∣∣(zr − ẑr) + 1

2σ

(
f r
(

1
cn (z

d − zr + dn)
)

− f r
(

1
cn (ẑ

d − ẑr + dn)
))∣∣. (14)

Proof: Let WEd
i
= 1

2σ

(
ui−fd

(
1
cn (z

d+dn)
)
+2σzd+

B∗(z)
)
, WLd

i
= 1

2σ

(
ui−fd

(
1
cn (ẑ

d+dn)
)
+2σẑd+B∗(z)

)
,

WEr
i
= 1

2σ

(
f r
(

1
cn (z

d− zr+dn)
)
−ui+2σzr−B∗(z)

)
and

WLr
i
= 1

2σ

(
f r
(

1
cn (ẑ

d − ẑr + dn)
)
− ui + 2σẑr − B∗(z)

)
.

Therefore, we can rewrite (13), (14) as |Ed∗
i −Ld

i | ≤ |WEd
i
−

WLd
i
| and |Er∗

i − Lr
i| ≤ |WEr

i
− WLr

i
|, respectively. Then,

we have the following possible cases for Ed∗
i :

1. Ed∗
i = 0 ⇒ WEd

i
≤ 0 = Ed∗

i ;
2. 0 < Ed∗

i < Emax
i ⇒ WEd

i
= Ed∗

i ;
3. Ed∗

i = Emax
i ⇒ WEd

i
≥ Emax

i = Ed∗
i .

Also, we have the following possible cases for Ld
i :

a. Ld
i = 0 ⇒ WLd

i
≤ 0 = Ld

i ;
b. 0 < Ld

i < Emax
i ⇒ WLd

i
= Ld

i ;
c. Ld

i = Emax
i ⇒ WLd

i
≥ Emax

i = Ld
i .

Now, we investigate the case that Ed∗
i = 0 and the other

combinations of the above cases can be proved similarly:
a. Ld

i = 0 ⇒ |Ed∗
i − Ld

i | = 0 ≤ |WEd
i
−WLd

i
|;

b. 0 < Ld
i < Emax

i ⇒ |Ed∗
i − Ld

i | = Ld
i − Ed∗

i = WLd
i
−

Ed∗
i ≤ WLd

i
−WEd

i
≤ |WEd

i
−WLd

i
|;

c. Ld
i = Emax

i ⇒ |Ed∗
i −Ld

i | = Ld
i −Ed∗

i ≤ WLd
i
−Ed∗

i ≤
WLd

i
−WEd

i
≤ |WEd

i
−WLd

i
|.

The analogous analysis can be used for the different cases
of Er∗

i and Lr
i , then (14) can be proved similarly.

Lemma 4: For all i ∈ N , we have

|Ed∗
i − Êd∗

i |+ |Er∗
i − Êr∗

i | ≤2|Ed∗
i − Ld

i |+ 2|Er∗
i − Lr

i|.
(15)

Proof: Using the definition of B∗(z) and B∗(ẑ), we
have for all i ∈ N , V (B∗(z)) := Ed∗

i − Er∗
i ≥ 0,

V̂ (B∗(ẑ)) := Êd∗
i − Êr∗

i ≥ 0; however, the sign of
V̂ (B∗(z)) := Ld

i − Lr
i is not known. Now, we investigate

the following possible cases:
1. V̂ (B∗(z)) = Ld

i − Lr
i ≥ 0. Ld

i and Lr
i have the form of

the optimal solution with ẑ and V̂ (B∗(z)) ≥ 0, then it is
the unique optimal solution with ẑ. Therefore, Ld

i = Êd∗
i

and Lr
i = Êr∗

i and |Ed∗
i − Êd∗

i |+ |Er∗
i − Êr∗

i | = |Ed∗
i −

Ld
i |+ |Er∗

i − Lr
i| ≤ 2|Ed∗

i − Ld
i |+ 2|Er∗

i − Lr
i|.

2. V̂ (B∗(z)) = Ld
i − Lr

i < 0 ≤ V̂ (B∗(ẑ)). V̂ is mono-
tonically non-decreasing, then we have B∗(ẑ) > B∗(z),
which leads to Ld

i ≤ Êd∗
i and Lr

i ≥ Êr∗
i . According

to the possible cases 1−3 in the proof of Lemma 1,
when B∗(z) = 0 (B∗(ẑ) = 0) we have Ed∗

i ≥ Er∗
i

(Êd∗
i ≥ Êr∗

i ) and when B∗(z) ≥ 0 (B∗(ẑ) ≥ 0) we
have Ed∗

i = Er∗
i (Êd∗

i = Êr∗
i ). Since B∗(ẑ) > B∗(z), we

have the following possible cases:
a. B∗(ẑ) > B∗(z) > 0. Then, Ed∗

i = Er∗
i and Êd∗

i =

Êr∗
i . Therefore, we have |Ed∗

i − Êd∗
i |+ |Er∗

i − Êr∗
i | ≤

|Ed∗
i − Ld

i |+ |Êd∗
i − Ld

i |+ |Er∗
i − Lr

i|+ |Êr∗
i − Lr

i| =



|Ed∗
i −Ld

i |+|Er∗
i −Lr

i|+Êd∗
i −Ld

i +Lr
i−Êr∗

i = |Ed∗
i −

Ld
i |+|Er∗

i −Lr
i|+|Lr

i−Ld
i +Er∗

i −Er∗
i | ≤ |Ed∗

i −Ld
i |+

2|Er∗
i −Lr

i|+ |Er∗
i −Ld

i | = 2|Ed∗
i −Ld

i |+2|Er∗
i −Lr

i|.
b. B∗(ẑ) > B∗(z) = 0. Similar to the possible case a.,

this case can be proved analogously.

Now, according to Lemmas 3 and 4 and Assumptions 1
and 2, we continue the proof of Lemma 2. Let xd = 1

cn (z
d+

dn), x̂d = 1
cn (ẑ

d + dn), xr = 1
cn (z

d − zr + dn) and x̂r =
1
cn (ẑ

d− ẑr+dn), then xd− x̂d = 1
cn (z

d− ẑd) and xr− x̂r =
1
cn (z

d− ẑd− (zr− ẑr)). Thus, we have |fd(xd)−fd(x̂d)|+
|f r(xr) − f r(x̂r)| ≤ maxxd∈[

¯
xd,x̄d]

∂fd(xd)
∂xd × |xd − x̂d| +

maxxr∈[
¯
xr,x̄r]

∂fr(xr)
∂xr × |xr − x̂r| = maxxd∈[

¯
xd,x̄d]

∂fd(xd)
∂xd ×

1
cn |z

d−ẑd|+maxxr∈[
¯
xr,x̄r]

∂fr(xr)
∂xr × 1

cn |z
d−ẑd−(zr−ẑr)| ≤

4σ|zd−ẑd|+2σ|zr−ẑr|, where the last inequality is based on
Assumption 2. Analogously, we can obtain similar inequality
in terms of minxd∈[

¯
xd,x̄d]

∂fd(xd)
∂xd and minxr∈[

¯
xr,x̄r]

∂fr(xr)
∂xr .

Hence, both together result in 1
2γ̄ (|z

d − ẑd| + |zr − ẑr|) ≤
1
2σ

(
|fd(xd)− fd(x̂d)|+ |f r(xr)− f r(x̂r)|

)
≤ 2|zd − ẑd|+

|zr − ẑr|, where γ̄ = max(γ2,
γ1γ2

γ2−γ1
). Then, we can obtain

(1− 1
2γ̄ )(|z

d − ẑd|+ |zr − ẑr|) ≥ |zd − ẑd| − 1
2σ |f

d(xd)−
fd(x̂d)|+ |zr− ẑr|− 1

2σ |f
r(xr)−f r(x̂r)| ≥ 0. Since fd(xd)

and f r(xr) are strictly increasing functions, we have (1 −
1
2γ̄ )(|z

d − ẑd| + |zr − ẑr|) ≥ |(zd − ẑd) − 1
2σ (f

d(xd) −
fd(x̂d))|+|(zr−ẑr)+ 1

2σ (f
r(xr)−f r(x̂r))|. Then, according

to Lemmas 3 and 4, we obtain

|Ed∗
i (z)− Ed∗

i (ẑ)|+ |Er∗
i (z)− Er∗

i (ẑ)|
≤(2− 1

γ̄ )(|z
d − ẑd|+ |zr − ẑr|). (16)

Thus, since 1
2 < γ̄ < 1, the mappings z 7→ Ēd,n∗(z) =

1
n

∑
i∈N Ed∗

i (z) and z 7→ Ēr,n∗(z) = 1
n

∑
i∈N Er∗

i (z) are
continuous and contractive.

The following theorem represents the main result of the
paper, where the existence and uniqueness of the Nash
equilibrium associated with problem (5) when the population
size tends to infinity, is proved.

Theorem 2: (Existence and uniqueness of the Nash
equilibrium). Let Assumption 1 hold. Then, a set of strate-
gies {Ed∗

i , Er∗
i }i∈N is a Nash equilibrium associated with

(5) for the infinite population case if Ed∗
i (z), Er∗

i (z) is
the optimal solution to (4) for all i ∈ N with z =
(zd, zr) = (Ēd∗, Ēr∗). If Assumption 2 holds, then the Nash
equilibrium is unique.

Proof: In analogy with Lemmas 3 and 4, we have
|Ed∗

i (z) − Ed∗
i (ẑ)| + |Er∗

i (z) − Er∗
i (ẑ)| ≤ 2|Ed∗

i (z) −
Ld
i (z, ẑ)| + 2|Er∗

i (z) − Lr
i(z, ẑ)| ≤ 2|(zd − ẑd) −

1
2σ (f

d( 1
cn (z

d + dn)) − fd( 1
cn (ẑ

d + dn)))| + 2|(zr − ẑr) +
1
2σ (f

r( 1
cn (z

d−zr+dn))−f r( 1
cn (ẑ

d− ẑr+dn)))|. Therefore,
Ed∗

i (z) and Er∗
i (z) are continuous in z if fd(xd) and

f r(xr) are continuous in xd and xr, respectively. Con-
sequently, Ēd∗(z) and Ēr∗(z), which are the average of
continuous functions, are also continuous in z. Now, we
define the convex compact set χ :=

{
(vd, vr)| 0 ≤ vd ≤

maxi∈N {Emax
i }, 0 ≤ vr ≤ maxi∈N {Emax

i }
}

. Thus, the
constraint set of the problem (4) is a subset of χ and by

Algorithm 1: Picard-Banach iteration

Select ε > 0 and z(1); set ϵ > ε and l = 1;
while ϵ > ε do

z(l+1) :=
(
Ēd,n∗(z(l)), Ēr,n∗(z(l))

)
;

ϵ := ∥z(l+1) − z(l)∥1; l := l + 1;
end

extension (Ēd∗(z), Ēr∗(z)) ∈ χ. Then, for any z ∈ χ,
we have (Ēd∗(z), Ēr∗(z)) ∈ χ, so (Ēd∗(·), Ēr∗(·)) maps
a convex compact set to itself. Hence, according to the
Brouwer fixed point theorem [10], a fixed point z ∈ χ
exists such that (Ēd∗(z), Ēr∗(z)) = z. Following Theorem 1,{
Ed∗

i (z), Er∗
i (z)

}
i∈N is the set of optimal strategies, then

the fixed point (Ēd∗(z), Ēr∗(z)) = z is a Nash equilibrium.
For the second part of the theorem (uniqueness), note that

the applicability of Lemma 1 can be expanded to the infinite
population case. Furthermore, in analogy with Lemma 2, the
mapping z 7→ (Ēd∗(z), Ēr∗(z)) is continuous and contrac-
tive. Hence, following the contraction mapping theorem [11,
Theorem 1.2.2], the mapping z 7→ (Ēd∗(z), Ēr∗(z)) has a
unique fixed point that is the Nash equilibrium with respect
to (5) when the population size tends to infinity.

Following Theorem 2, when the population size tends to
infinity, the Nash equilibrium associated with (5) can be
obtained from (4) exploiting the fixed point of the mapping
(Ēd∗, Ēr∗) as reference z. If Assumption 2 holds, this
mapping is continuous and contractive (the proof is the same
as the proof of Lemma 2). Folllowing [7]–[9], we consider
Picard-Banach iteration, Algorithm 1, for computing the
unique Nash equilibrium with respect to (5). Then, in analogy
with [12, Theorem 2.1], we show in the following proposition
the convergence of Algorithm 1.

Proposition 1: (Convergence of Algorithm 1). Let As-
sumptions 1 and 2 hold. Then, the convergence of Al-
gorithm 1 to the unique fixed point of the mapping
(Ēd,n∗, Ēr,n∗) is guaranteed for any initial condition z(1).
For the infinite population case, this point is the unique Nash
equilibrium associated with (5).

Proof: If Assumption 2 holds, the mapping
(Ēd,n∗, Ēr,n∗) (as well as (Ēd∗, Ēr∗)) is continuous and
contractive. Thus, following [12, Theorem 2.1], Picard-
Banach iteration (Algorithm 1) can compute the unique fixed
point of such mapping. In analogy with Theorem 2, when
n → ∞, the unique fixed point of this mapping is the unique
Nash equilibrium associated with (5).

We note that Assumption 2 is a sufficient condition and for
sufficiently small σ, algorithm 1 still converges in simulation.
Even under Assumption 2, σ is often small in practice.

IV. SIMULATION RESULTS

In this section, the performance of the proposed method
is verified by simulation in Python 3.9.13. We use the
total inflexible load profile given in [8, Figure 1]. The
time horizon covers the 12-hour period and we use the
supply price functions fd(x) = 0.15x1.5 $/kWh and



Fig. 1. The consumption schedules of energy consumers when they cannot
anticipate the redispatch market.

Fig. 2. The consumption schedules of energy consumers when they can
anticipate the redispatch market: (a) total day-ahead market demand and (b)
total demand after redispatch market.

f r(x) = 0.18x1.5 $/kWh from [7]–[9]. Also, we select
σ = 10−5 $/(kWh)2 and the utility and the maximum
consumption of each agent are chosen randomly from the
uniform distributions on the intervals [0.04, 0.15] $/kWh and
[3 × 104, 105] kWh, respectively. The other parameters are
identical to those used in [7]–[9].

Now, we consider Algorithm 1 for this simulation setup.
Fig. 1 shows that the congestion does not occur when the
consumers cannot anticipate the redispatch market. However,
Fig. 2(a) demonstrates that the congestion occurs at times
t = 0, 1, 2, 3 when the consumers can anticipate the redis-
patch market. Indeed, the consumers bid high consumption
schedules on the day-ahead market at the times when they
anticipate the congestion may occur to make profits on
the redispatch market. We can observe from Fig. 2(b) that
DSO asks the consumers to reduce their consumptions. By
comparing Fig. 2 with Fig. 1, we can see that the congestion
problem is aggravated when the consumers can anticipate
the redispatch market. Moreover, we can notice from Fig. 3
that consumers make more profits from the DSO when
they can anticipate the redispatch market in comparison
with the case that they cannot. Thus, the increase-decrease
game aggravates the congestion and allows the consumers to

Fig. 3. The revenue, welfare and cost at time t = 1: (a) energy consumers
cannot anticipate the redispatch market and (b) energy consumers can
anticipate the redispatch market.

extract windfall profits from the DSO.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have modeled the increase-decrease game
for large populations of energy consumers using determinis-
tic mean field game. We have shown that a Nash equilibrium
exists for this game and used an algorithm that converges to
this Nash equilibrium for the infinite population case. Future
works include modeling and analyzing the increase-decrease
game using stochastic mean field game.
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