

A N I N T E G R AT I V E W O R K F LO W F O R 3 D C I T Y M O D E L S V E R S I O N I N G

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics

by

Konstantinos Mastorakis

November 2020

Konstantinos Mastorakis: An integrative workflow for 3D city models versioning (2020)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

GIS & Advies
Stadsbeheer
Gemeente Rotterdam

Supervisors: Hugo Ledoux (TU Delft)
Stelios Vitalis (TU Delft)
Maarten Vermeij (Gemeente Rotterdam)

Co-reader: Giorgio Agugiaro (TU Delft)

http://creativecommons.org/licenses/by/4.0/

A B S T R A C T

3D city models are continuously becoming more popular among practitioners due to
the volume and versatility of information they contain, which makes them suitable
to be used in various applications. However, there is no mechanism to allow main-
taining them updated at the same pace that cities evolve, or when error correction
is necessary, eventually diminishing their value.

Many cities around the world already possess such models which are mostly used
for experimentation and research purposes. Such an example is also the city of
Rotterdam, whose 3D city model is not regularly updated and has to be outsourced
for that purpose.

This thesis investigates into addressing this issue by proposing and implementing
an integrative maintenance workflow. The workflow is designed to fulfill what the
maintenance needs of a typical municipality are expected to be. Those needs were
identified after conducting an analysis of the current situation and collecting infor-
mation from practitioners within the municipality through interviews.

The workflow is a combination of 3D city model versioning and visual editing ca-
pabilities with the aim to effectively maintain CityJSON encoded models in an in-
tuitive way. Its implementation includes two prototype software implementations:
a versioning component, which is utilized to create a workflow inspired by git flow
and allows concurrent maintenance and alternative scenario testing in a non-linear
and distributed way, and a visual editing component capable of editing CityJSON
encoded 3D city models by extending Blender’s functionality.

Following the implementation, the workflow was tested by simulating real world
maintenance scenarios. The tests demonstrate the feasibility of maintaining 3D city
models with such a workflow and more specifically the suitability of git based work-
flows. At the same time some key parameters of the versioning mechanism are
identified which if tuned properly they can optimize the performance, behavior
and robustness of 3D city model versioning.

With both components being prototype solutions the workflow is far from opera-
tional and there is certainly a lot of space for improvement regarding both com-
ponents. Utilizing the workflow in practice would be the ideal way for collecting
useful feedback. Besides that, there are already extensions of Blender that combined
with the visual updating component of the workflow can offer advanced integration
of editing and analysis capabilities.

v

A C K N O W L E D G E M E N T S

With this thesis I am completing my M.Sc. degree in Geomatics, which was two full
years of commitment that has pushed me closer to becoming what I find so exciting
to do as a profession. Adding as much value as possible into geodata.

What started to be a normal 9-month thesis ended up to be a one year project
with many ups and downs with everything becoming more challenging with the
corona pandemic. Looking back I can certainly say that I profoundly enjoyed in-
vesting all the effort together to compile this thesis and I am more than pleased
with the outcome and its implications; first because 3D city models are amazing on
their own and second because I always found great pleasure in creating something
that proves useful and motivates people other than myself. And that is what I hope
this thesis to be since there is a lot of things to be done on the 3D city model domain.

I feel the need to express my utmost gratitude to my mentors during this task,
Hugo Ledoux and Stelios Vitalis for being always available when I needed them for
giving me meaningful feedback and for guiding me through all of this; yet allowing
me to choose the path that I wanted. I am really grateful for having such people
next to me. The quality of the results would be impossible without their contribu-
tion. Many thanks also to Giorgio Agugiaro for providing me with crucial feedback
that helped me do my thesis more complete.

Kudos to the municipality of Rotterdam which made this thesis possible, but more
specifically my supervisor Maarten who made my stay within the premises of the
municipality of Rotterdam feel like home, providing me with all the resources I
needed and trusting my ideas in the first place, Leonard van den Welde for helping
with all technical issues and Harmen Kampinga, Christian Wisse and Roland van der
Heijden for their time and willingness to work with me, providing me all the neces-
sary information to identify the current situation with respect to the 3D city model
and its management. The quality of my thesis would be much lower without that
information. I really wish my stay within the premises was as long as originally
planned but then corona came!

Lastly, I would like to thank my parents for the unlimited psychological support
and their belief in me and to what I am doing. In the times of Covid-19 it was more
than necessary.

vii

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Use case - Gemeente Rotterdam . 4

1.3 Research Questions . 4

1.4 Thesis Scope . 5

1.5 Thesis Overview . 5

2 background and related work 7

2.1 3D city data models and encodings . 7

2.1.1 CityGML . 7

2.1.2 The Scenario Application Domain Extension 8

2.1.3 CityJSON . 8

2.1.4 3DCityDB Database . 9

2.1.5 Choosing a suitable data model and encoding 10

2.2 3D city models maintenance . 10

2.3 Versioning Control Systems in software development 11

2.3.1 Git . 12

2.4 Versioning Solutions for GIS . 14

2.4.1 GeoGig . 14

2.4.2 QGIS versioning plugin . 15

2.4.3 pgVersion . 16

2.4.4 Oracle Workspace Management and ESRI ArcSDE 17

2.4.5 Reflections on Geogig, QGIS versioning plugin, pgVersion 17

2.5 Versioning Solutions for 3D city models 18

2.5.1 CityGML versioning extension as part of the CityGML v.3.0
data model . 18

2.5.2 CityJSON-based versioning solution 18

2.5.3 The fundamental transactions of a Git-like 3D city model ori-
ented versioning control system 20

2.6 3D City Models editing software (CityJSON) 20

2.6.1 cjio . 20

2.6.2 ninja . 21

2.6.3 Blender . 22

3 use case: 3d city model of rotterdam 23

3.1 An overview of Rotterdam’s 3D city model processes and history . . . 23

3.1.1 Current maintenance procedure 24

3.2 Identifying the key points that will allow the effective maintenance
of Rotterdam’s 3D city model . 25

4 the proposed 3d city model maintenance workflow 31

4.1 Introducing the core workflow . 31

4.2 Introducing the multi-branch structure (based on the git workflow) . . 34

4.2.1 Maintenance iterations frequency 36

4.2.2 Managing Merging Conflicts . 37

4.2.3 The ’smallest entity’ problem . 41

4.2.4 Resolving conflict policy . 43

5 implementation 45

5.1 The importance of visual editing capabilities 45

5.2 Introducing Up3date . 46

5.2.1 Implementation specifications 46

6 testing 49

6.1 Datasets and preparation . 49

6.2 Initialize repository and create the multi-branch structure 50

ix

x contents

6.3 Exporting a subset of the 3D city model 51

6.4 Testing the fundamental maintenance operations 51

6.4.1 Visually editing attribute . 51

6.4.2 Visually editing geometry . 53

6.4.3 Updating main branch after the maintenance is completed . . . 58

6.4.4 Adding a new building object 59

6.5 Simulating the creation and adoption of new scenarios 62

6.5.1 Scenario explanation . 64

6.6 Testing for conflicts . 67

6.6.1 Mingle order of attributes . 68

6.6.2 Mingle order of faces . 68

6.6.3 Edit different piece of information within the same object in
(false conflict) . 70

7 discussion 73

7.1 Conclusions . 73

7.1.1 To what extent can a Git-based versioning approach be used
for the maintenance of the 3D city model of a typical munici-
pality? . 74

7.2 Practical comparison with other potential solutions 75

7.2.1 CityGML v.3.0 . 75

7.2.2 3DCityDB . 76

7.3 Mingling the order of faces . 76

7.4 What can Rotterdam expect in practice: Challenges and improvements 77

7.4.1 Tile versioning vs Full Model versioning 78

7.4.2 Identifying the optimal ”smallest entity” in practice 78

7.4.3 What is now possible . 79

7.4.4 What is very likely to be improved 79

8 future work 81

8.1 Git-flow criticism and alternatives . 81

8.2 Further development of the workflow 81

8.2.1 Integrating validity check within the workflow 81

8.2.2 Merging back subsets to the repository 81

8.2.3 Combine GIS software . 82

8.2.4 Updating BAG as a consequence of the 3D city model mainte-
nance . 82

8.2.5 Creating a generator for automatic generation of instances for
the release branch . 83

8.2.6 Handling building textures . 83

a reproducibility self-assessment 95

a.1 Marks for each of the criteria . 95

a.2 Reproducibility of thesis/results . 95

a.3 Self-reflection on the reproducibility . 95

A C R O N Y M S

3DCM 3D City Model . 1

ADE Application Domain Extension . 8

API Application Program Interface . 8

CJV CityJSON Versioning Prototype . 19

CLI Command Line Interface . 3

CRS Coordinate Reference System . 9

CVS Concurrent Versions System . 11

DSM Digital Surface Model .10

ETL Extract Transform Load . 3

GIS Geographical Information System . 9

GML Geography Markup Language . 75

GUI Graphical User Interface . 31

JSON JavaScript Object Notation . 3

LoD Level of Detail . 7

OGC Open Geospatial Consortium . 7

OWM Oracle Workspace Management . 17

SCCS Source Code Control System . 11

SQL Structured Query Language . 16

SRDBMS Spatial Relational Database Management System . 9

VCS Versioning Control System . 2

XML Extensible Markup Language . 7

xi

1 I N T R O D U C T I O N

1.1 motivation
3D City Models (3DCMs) are growing in popularity, especially for governmental par-
ties and cities around the world. More and more domain experts interact with them,
for various purposes ranging from visualization to infrastructure planning and en-
ergy demand estimation among others [Biljecki et al., 2015]. Their appeal lies to the
amount, versatility and heterogeneity of information they contain, but more impor-
tantly to the way they can visualize this information ı.e. in 3D.

Figure 1.1: The multi-domain applications of 3D city models. Figure from Biljecki et al.
[2015]

3DCMs are digital representations of actual cities that are able to store geometric
(vertices), descriptive (attributes) and semantic information (categorization of ob-
jects faces). They are created from combining existing geo-information from vari-
ous sources such as shapefiles, digital terrain models, satellite imagery, CAD-files,
lidar data etc. [Agugiaro, 2016] [Malambo and Hahn, 2010].However, the plethora
of data sources, leads to inconsistencies and big variation in the quality of 3DCMs

datasets [Biljecki et al., 2016].

3DCMs creation is an expensive and time consuming process [Döllner et al., 2006].
That is due to the amount of information that has to be integrated into the model.
Although it is a domain that automation will have a strong impact and some solid
progress in automating the generation of 3DCMs is already done [Cao et al., 2017],
manual editing is still necessary [Malambo and Hahn, 2010].

An important challenge for 3DCM is efficient and effective maintenance. The ma-
jor reason for that is that cities change over time and their respective models need
to be updated for these changes to be reflected in them. In addition, it facilitates

1

2 introduction

the correction of any errors that might happen upon creation [Biljecki et al., 2016].
There is no doubt that good maintenance will always lead to a more functional
3DCMs. In other words an obsolete model is certain to find less use than an up to
date one.

Not taking advantage of the full potential of 3DCMs applications due to lack of (good)
maintenance is equivalent to discarding information already obtained. Considering
the versatility of 3DCMs and how entangled cities are with society, it is safe to say
that limited maintenance translates into reduced societal impact. Furthermore, lim-
itations in maintenance such as lack of managing tools by the organizations that
possess the 3DCM, increases the administrating costs of a 3DCM. This often results
into outsourcing —the biggest part of— its maintenance, by providing the neces-
sary component-datasets to third parties. In some cases the solution for an updated
3DCM includes the (re)generation of completely new iterations of the model from
scratch [Airaksinen et al., 2019], through labor intensive procedures and repetitive
workflows, that a very small proportion of practitioners is able to perform.

There is a lot of research going on in the recent years regarding how 3DCMs should
be maintained; much is at conceptual level and unfortunately little about the im-
plementation level. Research has showcased the importance of keeping track of the
history of maintenance [Samuel et al., 2016] [Chaturvedi et al., 2016], or to put it
simpler, the chronological order of the changes in a 3DCM. For example, a building’s
lifecycle can be extracted by having the order of the changes performed on it along
a timeline (see Figure 1.2). Or being able to recreate the city’s state at any given
moment by following the order of the changes reversely (see Figure 1.3). What is
more, 3DCM maintenance does not necessarily has to happen by a single user at a
time. It is possible for 3DCM to be maintained concurrently and collaboratively by
the adapting what in software development is known as Versioning Control Sys-
tem (VCS) [Prieto et al., 2017]. At the moment, Git [Chacon and Straub, 2019] looks
to be the VCS that inspires most researchers to create 3DCM-oriented VCSs.

Figure 1.2: A building’s lifecycle and how it is related to the order of the changes that were
performed. Figure from Samuel et al. [2016]

However, the maintenance challenge in the 3DCM domain still persists on a practical
level. Most research is around the standardized CityGML data model, whose prac-
tical shortcomings when implemented into a data exchange format lead to limited

1.1 motivation 3

Figure 1.3: A representation of a city’s evolution over time. Figure from Chaturvedi et al.
[2016].

functionality [Ledoux et al., 2019].

Inspired by VCSs for software development, researchers have tried to implement
workflows and data structures to enable versioning or navigation among different
versions of 3DCMs [Prieto et al., 2017] [Samuel et al., 2020], some of them building
directly over, or conceptually close to popular software oriented VCSs.

Although there is a certain focus on the VCS mechanisms themselves which are
responsible for managing the new versions [Prieto et al., 2017] [Samuel et al., 2018]
[Vitalis et al., 2019], there is no focus into improving the way new versions are
generated. Most common ways of generating new versions is by directly editing
a 3DCM file, updating databases where 3DCMs are stored in [Yao et al., 2018], or by
using Extract Transform Load (ETL) software like FME.

Direct editing of a 3DCM file is rather exhaustive and error prone, while FME is
for batch oriented workflows, which do not facilitate single objects maintenance.
Importing and exporting CityGML files into a database is a quite complex task that
few practitioners can perform.

In addition the data structure of CityGML v.2.0 encoding itself does not include
any versioning components, which is not the case with CityGML v.3.0. A presen-
tation of the CityGML v.2.0 and v.3.0 data structures is given in Chapter 2, while
further elaboration can be found in Chapter 6.

On the other hand, CAD software or other non 3DCM oriented software like BIM
is a bad option for editing 3DCMs as well. That is due to the discrepancy between
data models, which inevitably will result in compatibility issues and information
loss [Noardo et al., 2019].

This thesis, focuses on a promising data structure for 3DCM versioning presented
by Vitalis et al. [2019], that wraps around the CityJSON data model [Ledoux et al.,
2019]. CityJSON is a JavaScript Object Notation (JSON)-based format, which was
designed to favor software development around 3DCMs. Their work includes an
implementation of the versioning data structure in a prototype Command Line In-
terface (CLI) software.

The aim of this thesis is to investigate how the maintaining needs of a 3DCM can
be addressed by combining the implementation of Vitalis et al. [2019] data struc-
ture with a software interface that was implemented specifically for this reason and
allows visual editing of CityJSON-encoded 3DCM. To do so a practical workflow is
created and tested with scenarios that simulate the current needs of a typical 3DCM

of a municipality, with respect to updating its model.

Establishing a workflow that combines visual updating and versioning of 3DCMs,
will bring even more value to them by facilitating their use. Among the many ben-

4 introduction

efits of having an up- to-date 3DCM, the capability of extended visual interaction
will increase the adoption rate of 3DCMs across different domain experts. It makes
the user’s experience more seamless regardless their background, by focusing the
user’s attention into what the 3DCM represents rather than splitting their attention
between data structures as well.

1.2 use case - gemeente rotterdam

The use case for this project is the 3DCM of Gemeente Rotterdam. The 3DCM was first
initiated in 2010 but due to geometric defects was rebuilt from scratch in 2016. Since
then, it has been updated in 2018, by integrating around 4000 buildings changes
since 2016 and is planned to be updated in 2020 as well. Currently, a new iteration
of the 3DCM is created in a biennial lifecycle incorporating all the changes that hap-
pened during that time. In the meantime the 3DCM remains outdated.

The basic tasks for keeping the model up to date include -among others- model-
ing new buildings that are built, removing demolished ones, editing the buildings
that are altered ı.e. new building part added etc and editing their attributes. With
the current approach, keeping the 3DCM updated is not a continuous process. It is
actually a big one-off venture that requires planning in advance, takes time and is
financially expensive. It requires outsourcing the necessary datasets to third parties
which create the new iteration of the model.

Although the key registration dataset, namely BAG, which is a component of the
3DCM, is regularly updated and maintained by the municipality without any issues,
the same does not happen with the 3DCM which is outsourced accompanied by el-
evation LIDAR data. The main reason for that is the lack of both software and
established workflows for maintaining 3DCMs.

To understand the current situation in depth and identify the municipality’s needs,
some interviews with practitioners working with the 3DCM were made. They were
focused on the technical aspects of the model itself, the management processes and
its future potential. During the interviews, information about the status of the 3DCM,
as well as the current processes of updating it were gathered.

Obtaining an extended view of the current processes and workflows around Gemeente
Rotterdam’s 3DCM, helped in establishing a solid background for the proposed work-
flow to be built upon. Despite the fact that this project was carried out working
with Gemeente Rotterdam’s 3DCM, the suggested workflow is highly adaptable thus
case-independent, since the maintenance problem of 3DCM is universal. For the
experimentation needs of this thesis, the municipality has kindly provided part of
their 3DCM. The use case is thoroughly presented in Chapter 3.

1.3 research questions

Understanding the current needs a typical municipality has in order to maintain its
3DCM and motivated by the lack of regular maintenance similar to that of BAG and
other key registration datasets the following research question is defined:

• To what extent can a Git-based versioning approach be used for the mainte-
nance of the 3DCM of a typical municipality?

followed by two sub-questions:

1.4 thesis scope 5

-What would be a conceptual workflow that would make this approach
practical and manageable?

-How can the maintenance process be improved by combining the ver-
sioning workflow with 3D visual editing capabilities of the model?

1.4 thesis scope
The scientific and technical scope of this thesis is:

• The objects of interest for this project are buildings; not utilities, trees, city
furniture etc.

• The implementation is strictly limited to cope with CityJSON files converted
from the original CityGML files.

• The visualization and editing platform that is extended to import CityJSON
3DCM is Blender, and all tests with visual editing of the model are made in it.

• Testing will be local and no concurrent editing from many users will take
place.

• Although for the 3DCM datasets used building textures are available they are
out of the scope of this thesis.

• When referring to 3DCityDB implementation —see Chapter 2— only the PostgreSQL-
PostGIS variation is within the scope of this thesis. The alternative Oracle
variation is out of the scope since it is a proprietary database system.

1.5 thesis overview
Chapter 2 presents an extended overview of related work to this thesis explaining
the 3DCMs’s data models and encodings. It then sets the basis on which the work-
flow is built upon and gives a short introduction of the workflow components.

Chapter 3 introduces the specifications of the use case in detail, and identifies the
current maintenance needs of the model.

Chapter 4 establishes the conceptual layout of the workflow with all the intercon-
nections between its components based on the maintenance needs of the 3DCM

Chapter 5 explains the implementation specific decisions of the workflow that were
made and its limitations.

Chapter 6 includes all the tests that were carried out to evaluate the performance of
the workflow’s implementation based on the previous analysis.

Chapter 7 discusses on the findings of this thesis, elaborates based on the results
of Chapter 6 and provides a realistic view of how will Rotterdam be able to benefit
from the workflow.

Chapter 8 suggests what can further be done to improve the workflow, with respect
to both versioning and visual editing component.

2 B A C KG R O U N D A N D R E L AT E D W O R K

2.1 3d city data models and encodings

3DCMs are digital representations of the urban environment. They are single datasets
that incorporate terrain surfaces, buildings, city furniture, trees, infrastructure etc.
in three-dimensions [Döllner et al., 2007]. They are encoded in various ways with
or without semantic specifications of their geometries.

Under the scope of this thesis only 3DCMs that have the ability to store building
surface semantics are included. So only those encodings and data models will be
introduced. There are two file based and one database-based solutions: CityGML
which is an Extensible Markup Language (XML)-based encoding, CityJSON, a JSON-
based encoding and 3DCityDB which extends the PostgrSQL relational databases to
cope -primarily- with CityGML files.

Both file-based encodings are free, human and machine readable. There is citygml-
tools which allows bi-directional conversion between the two. 3DCityDB is also free
and uses a relational database schema for mapping CityGML entities into tables.
These solutions are presented in the following sections.

2.1.1 CityGML

CityGML is an open data model and an XML-file-based format storage for the storage
and exchange of 3DCMs [Gröger et al., 2012]. It defines distinct Level of Detail (LoD)s
that allow the 3D geometries to be stored in more than one representations for
different applications. It is broadly used among practitioners, academia and orga-
nizations at the moment. It is adopted as an international standard, designed and
maintained by the Open Geospatial Consortium (OGC).

Although a lot of work has been done with CityGML as a data model, its perfor-
mance as an exchange format is poor [Ledoux et al., 2019]. Being an XML based en-
coding makes CityGML files quite impractical. XML language is inherently verbose
as every other markup language, since every element it contains has to be inside
opening and closing tags. Also the data structure of CityGML files contributes to
redundancy in information. CityGML files store the coordinates of every vertex of
every object inside each object replicating the same coordinates every time the same
point belongs to more than one faces. This also leads to unnecessary increase of
CityGML files’ size considering the amount of objects it contains, poor editing effi-
ciency and topology support.

What is more CityGML encoding is not strict about how semantics is stored leading
to adhok solutions when it comes to CityGML file parsing, reducing the interop-
erability of these parsers. Finally, CityGML files have deep hierarchical structure,
which combined with the previous fact makes software development for this encod-
ing extremely exhausting and not robust.

All in all, CityGML files are extremely bulky and difficult to be parsed into a pro-

7

https://github.com/citygml4j/citygml-tools
https://github.com/citygml4j/citygml-tools

8 background and related work

gramming environment or browsers, resulting in poor web-compatibility, exchange
practicality and software support.

2.1.2 The Scenario Application Domain Extension

Scenario Application Domain Extension (ADE) [Schüler et al., 2018] is an extension of
the CityGML v.2.0 data model that enables testing of virtual changes (scenarios) on
CityGML v.2.0 encoded 3DCMs. These virtual changes can refer to the whole 3DCM or
any subset of it and can affect both attributes and geometry. The virtually changed
3DCM can then be used for optimization applications, simulations and more. In
other words, Scenario ADE data model is designed to be application independent.
Scenario ADE is implemented as an extension of the 3DCityDB schema for PostGIS.

It consists of two main parts: Time series module and the Core module. The former is
responsible for documenting all inputs and results that have a temporal aspect ac-
companied by other metadata such as data acquisition method, data source, times-
tamp etc. The latter models the set of physical objects changed for the current
scenario and can be derived by a previous scenario. Optionally, some parameters
that describe initial conditions or output parameters of the scenario can be saved.
There is also the capability to save the related resources (financial, time, energy etc).
Last but not least, it is possible to record all the changes that happen to the (virtu-
ally) changed city objects at both geometry and attribute level.

Considering that Scenario ADE has a temporal component transfuses a form of ver-
sioning functionality to it; however that is not its main focus. Its main concept,
i.e. testing new ideas and scenarios has influenced the design of the workflow pre-
sented in this thesis. Thus, the concept of (virtual) scenarios testing is part of the
whole workflow conceptualization as shown in Chapter 4.

2.1.3 CityJSON

CityJSON is a JSON-based encoding of a subset of the CityGML data model. Devel-
oped and maintained by 3D geoinfo lab of TU Delft. It was designed to be a compact
3DCM file exchange format friendly to programmers.

It is 6x more compact on average, than CityGML and incorporates a flattened-out
hierarchy [Ledoux et al., 2019]. Being JSON-based means it can be parsed natively
into most modern programming languages and browsers. This also means that ap-
plications that offer Application Program Interfaces (APIs) can be easily extended to
support CityJSON files.

A key feature of the CityJSON data structure, is that it keeps all the vertices stored
once outside the objects, in a separate list. Each object’s face contains pointers that
point to the index of the vertex in the global vertices list, which contains the coordi-
nates. This not only adds tremendously to the editing capabilities of such a file, but
also simplifies topology creation, and reduces the file size by not storing redundant
information.

Notice in Figure 2.1 that for the CityGML file for every attribute-value pair that both
are enclosed into XML tags. The value itself is nested into the attribute, creating a
very complex file hierarchy. In contrast the CityJSON file is more flat and avoids
using opening and closing tags by using a key-value pairs, the same structure that
in Python is called a dictionary.

https://github.com/gioagu/3dcitydb_scenario_ade/tree/954cf0b1204af43124538974edc0e97eb96a8d12

2.1 3d city data models and encodings 9

(a) A snapshot of a 3DCM file encoded in CityGML
Source: Municipality of Rotterdam (originally

in CityGML)

(b) A snapshot of a 3DCM file encoded in CityJSON

Source: Municipality of Rotterdam
(converted from CityGML)

Figure 2.1: A side by side comparison between a 3DCM file encoded in CityGML and CityJ-
SON

2.1.4 3DCityDB Database

3DcityDB is a free geo-database solution, designed for efficient querying, visualiza-
tion and updating 3DCMs [Yao et al., 2018]. It is a relational database that maps the
data model of CityGML onto a relational database schema, which lies at its core.
It supports two Spatial Relational Database Management System (SRDBMS) Oracle
Spatial/Locator —which is out of scope of this thesis— and PostgreSQL with PostGIS
extension.

Its functionality includes importing and exporting from and to various common
formats such as CityGML, KML, Collada, glTF, as well as a 3D web client for visu-
alization and enhanced exploration of semantically extended 3DCMs. It has built-in
procedures organized in six packages that allow Coordinate Reference System (CRS)
transformation, statistics overview, object deletion, maximum volume calculation
etc. [Yao et al., 2018]. Lastly, it makes use of the already existing functionality of
the SRDBMS, such as estimating the bounding box of an object or the whole model.
It is arguably a superior solution for managing 3DCMs compared to dealing directly
with raw CityGML files.

Currently, the only versioning capabilities bestowed to 3DCityDB by the PostgreSQL-
PostGIS combination is the functionality of pgVersion module (see Section 2.4.3), an
extension of the PostGIS schema that enables versioning for 2D Geographical Infor-
mation System (GIS) data.

However, the data structures of 2D GIS data are far simpler than that of 3DCMs.
Most GIS data are simple encodings of 2D objects represented by a single geometry
and its attributes, stored in relatively flat structures. On the contrary, 3DCMs data
structures contain various entities in a nested structure with objects often having
multiple geometries with their respective attributes, plus there is also semantic in-
formation for some of these geometries surfaces. Thus, 3DCMs can not be handled
by the database under no circumstances.

On a data model level there is also no support for 3DCM versioning since 3DCityDB

10 background and related work

currently supports CityGML v.1.0 and v.2.0, which have no versioning elements
within their respective data models.

2.1.5 Choosing a suitable data model and encoding

Considering the goal of this thesis is to design and implement a versioning work-
flow that includes visual editing capabilities of the 3DCM choosing the most appro-
priate data model and encoding is crucial. The data models with their respective
implementations mentioned above are the currently available options for working
with 3DCMs with semantics-storing capabilities. This section explains which option
was selected and why.

CityGML is notoriously verbose and not programming friendly. There is also no
support for versioning either at the data model or at implementation level in the
current version 2.0. For these reasons it was disqualified as the encoding for the
workflow. However, the upcoming CityGML v.3.0 data model incorporates version-
ing but it will be presented in Section 2.5.

CityJSON on the other hand was conceived and implemented to solve the techni-
cal problems the CityGML encoding poses. Using the JSON format is what attracts
developers to create software around it. There is already plenty of different soft-
ware for CityJSON 1 and further software development around it is appealing since
JSON format is widely supported in the programming world. There is also a data
structure —including an implementation— to incorporate versioning into CityJSON
files, which is presented in Section 2.5.2. These were the key reasons for choosing
CityJSON as the most appropriate solution for the workflow.

3DcityDB was considered not a practical alternative for the nature of the thesis,
since the file-based approach offers more practicality for inspecting and tweaking
the data and prototyping in general. In addition, 3DcityDB does not offer hierar-
chical versioning (branches); only linear versioning due to the functionality of Post-
greSQL which by no means can handle the CityGML data models alone. This results
in limited capabilities of extracting previous versions of the 3DCM with potential
loss of information. Lastly, 3DCityDB has no visual editing capabilities —especially
with geometries— which is important for the implementation of the proposed by
this thesis workflow.

2.2 3d city models maintenance
Because 3DCMs contain a vast amount of information they need to be maintained to
preserve or even increase their value over time. Maintenance in the 3DCM domain
though has been ambiguously defined due to the novelty of the domain itself. It is
quite common that 3DCM researchers use the term ”maintenance” in different con-
texts, whose meaning is adapted to the focus and the scope of their research.

In their research [Steinhage et al., 2010] attempt to automate 3DCM generation by
automating 3D reconstruction of buildings with fusion of datasets such as param-
eterized CAD models, building footprints originated from GIS and Digital Surface
Model (DSM) data. These datasets allow for the 3D reconstruction using various
different approaches and techniques.

In the context of their research, maintenance is about managing across versions
of the model created with different 3D reconstruction methods and not maintaining

1 https://www.cityjson.org/software/

https://www.cityjson.org/software/

2.3 versioning control systems in software development 11

a single 3DCM dataset with respect to its evolution through time. A typical result of
different 3D reconstruction methods is different LoD of the resulting geometries. In
Figure 2.2 an example of two alternative 3D reconstruction methods which leads to
to two different LoD geometries.

Both CityGML and CityJSON data models support multi-LoD geometries within a
single object; so versioning as suggested in this case could be better addressed by a
versioning mechanism that wraps around any of the two data models and versions
a single 3DCM which contains more than one LoDs, rather than many 3DCMs that
contain a single (different) LoD.

Figure 2.2: An example of two alternative model versions that were reconstructed using dif-
ferent 3D reconstruction approaches. Figure from Steinhage et al. [2010].

In contrast, maintenance in the context of research of Prieto et al. [2017] refers
to a continuous deployment platform that wraps around CityGML-encoded 3DCMs.
Tools used in software development are utilized, such as VCS and unit testing com-
ponents and adapted to fit 3DCM maintenance needs. As explicitly mentioned in
their paper, deployment means to ’make the model available to its potential users’.
In this context maintenance is about creating workflows that facilitate incorporating
changes to the model in an easy, fast and less error prone way, thus increasing the
usability of the model across different domain experts (see Figure 2.3). The plat-
form allows concurrent maintenance by multiple users and includes both manual
(i.e. editing objects) and automated (i.e. schema validation) maintaining workflows.

2.3 versioning control systems in software de-
velopment

Versioning in software development has been tackled decisively through years since
VCSs have been developed at least since 1975 [Rochkind, 1975], with Source Code
Control System (SCCS) being one of the first [Glasser, 1978]. They are primarily
used to allow developers to roll back into previous versions/instances of source
code, by keeping track of every change that is made. In the following years, VCSs

were extended to enable concurrent work on the same project with ? introducing
Concurrent Versions System (CVS).

According to Ball et al. [1997], alongside every change VCSs capture a lot of meta-
data like timestamp, author, comments etc, which if properly interpreted provides
very useful information on the evolution of the software itself.

A key characteristic of VCSs is the architecture they follow: Distributed vs Central-

12 background and related work

Figure 2.3: An example scenario of the components of the maintenance platform and their
interaction. Figure from Prieto et al. [2017].

ized. Simply put, with a distributed architecture peers work on a local repository
and commit their work / fetch data to/from an online repository in which their
collaborators have access as well Figure 2.5. On the contrary, in a centralized archi-
tecture all peers work directly on the online repository Figure 2.6.

They both come with respective advantages and disadvantages. Based on their
empirical study on the comparison of distributed vs centralized systems, Brindescu
et al. [2014] conclude that in the former, the size of commits is smaller, split com-
mits are more often and commits include more issue tracking labels compared to
the latter. Distributed systems’ ability of committing locally is the a ’killer feature’
-according to the study- for developers. On the other hand the flatter learning curve
of centralized is their strong point.

A very useful feature of VCSs is branching (see Figure 2.4). Branching allows to
create a new copy of the project at any given moment and work on it, leaving the
main copy of the project unaffected. All the changes that happen to the new copy
are also tracked exactly as if they were made on the main. This feature is extremely
useful in software development for trying new prototype ideas, feature extension,
debugging etc. If required the new copy of the project can be merged back to the
main integrating all changes to it and updating the main copy. It also allows for
concurrent working on the project, without affecting each other workflow. In case
the same part of the file is differently modified by more than one users, the system
will prompt a conflict message upon a merge attempt, allowing for manual editing
of the file at that point to resolve the conflict.

2.3.1 Git

Git is among the most popular modern VCSs [Spinellis, 2012]. Developed initially
by Linus Torvalds for maintaining the Linux kernel in 2005, it has grown a lot in pop-
ularity since. Git was designed such that the majority of operations are executed
in the local repository, allowing it to be very fast and responsive, very secure in
terms of data integrity and with the ability for offline work to be done. Its users
range from hobbyist software developers up to the world’s biggest IT corporations

2.3 versioning control systems in software development 13

Figure 2.4: The concept of branches.
Figure from https://www.atlassian.com/git/tutorials/using-branches

such as Microsoft, Apple, Amazon etc. Some other popular VCSs implementations are
Mercurial, Subversion, Perforce, BitKeeper, Monotone.

Git is a distributed VCS and has an explicit conceptual difference compared with
other VCSs. While the rest of the VCSs store the differences -also known as delta-
tables’ between consecutive versions, Git stores the so called ’snapshots’ for every
version [Chacon and Straub, 2019]. It does so by taking a snapshot of the whole
system (i.e. how every file in the repository looks like) every time a new commit
is made and stores a reference to it. At every commit the content of the files for
the whole system is hashed -hashes are used in cryptography for security purposes
but in Git only for data integrity purposes- to verify the content of every file after
any change, which makes it almost impossible for the data to go corrupt. When
needed, it will calculate the differences from ’subtracting’ consecutive snapshot ref-
erences and computing what has been changed. To optimize storing efficiency, in
case any files haven’t been changed between consecutive commits, it stores a link to
the previous identical file in the previous snapshot. This way storing duplicate files
is avoided.

This conceptual design decision gives Git one of its most powerful characteristics
compared to other VCSs. This is how it can deals with branching. To give an idea of
how this simplifies branching, consider that having snapshots stored at any given
moment reduces the task of creating a new branch in simply creating a reference to
an existing snapshot.

Git-based workflows

The capabilities of Git combined with the fact that it is free and open-source led
many enthusiasts and organizations into creating customized Git workflows to ad-
dress their needs. Some of the most popular are the Git flow 2, the GitHub workflow
3 and the GitLab workflow 4 .

2 https://nvie.com/posts/a-successful-git-branching-model/
3 https://guides.github.com/introduction/flow/index.html
4 https://docs.gitlab.com/ee/topics/gitlab flow.html

https://nvie.com/posts/a-successful-git-branching-model/
https://guides.github.com/introduction/flow/index.html
https://docs.gitlab.com/ee/topics/gitlab_flow.html

14 background and related work

Figure 2.5: The structure of a distributed VCS.
Figure from

https://medium.com/faun/centralized-vs-distributed-version-control-systems-a135091299f0

The first has proven to be one of the most used git workflows adopted since its
creation in 2010, while the GitHub workflow is a simplified alternative of the former.
Finally, according to its designers the GitLab workflow is simplifying the task of issue
tracking as development moves forward.

2.4 versioning solutions for gis
The principles of software development VCSs can find great application if ported in
spatial-oriented VCSs. That being said, there is a major difference between the two
that has to be pointed out, in order to better understand what a spatial-oriented
VCSs is about.

The difference is that inevitably, a VCS wraps around the data format it attempts
to version and keep track of. In software development all the source code files are
basically text files regardless the programming language. On the contrary, spatial
data -both 2D and 3D- come in a multitude of formats. Thus, for different formats
a VCS should have radically different implementations. This means that developing
a spatial oriented VCS requires committing to single data exchange format. The cho-
sen format deeply affects the whole developing process robustness and efficiency
of the whole system. This section gives an overview of some VCS implementations
for 2D GIS applications, both commercial and free.

2.4.1 GeoGig

GeoGig is an open source versioning tool that implements Git’s principles to man-
age the versioning of geospatial vector data. It is a CLI distributed VCS which can be
also accessed as a datastore in Geoserver [Franceschi et al., 2019].

It currently supports Shapefiles, PostGIS and SpatiaLite data, which are imported
into a Git-like repository where all changes are tracked. It offers two storage back-

http://geogig.org/

2.4 versioning solutions for gis 15

Figure 2.6: The structure of a centralized VCS.
Figure from

https://medium.com/faun/centralized-vs-distributed-version-control-systems-a135091299f0

ends, either the local filesystem or Postgres.

Its workflow is comprised by three steps that correspond to the three areas: Work-
ing tree where data is imported to be worked on, Staging area which is a preparation
area for the data before being committed to the database and Database where all
data is stored Figure 2.7. Upon importing, GeoGig internally converts it to its own
binary format that can handle and keep track of.

Similar to Git it allows branching and merging of branches. It also takes snap-
shots of the data at any given moment storing all objects that form a version. For
unmodified objects, pointers are utilized between versions so the same (unchanged)
object is only stored once.

Geogig is a promising well documented VCS implementation, considering it is still
unstable. It is considered a conceptually similar implementation to what this thesis
suggests; yet oriented for fundamentally different data type.

Figure 2.7: Geogig’s three-step local workflow (import, add, commit extended with the re-
mote repository transactions.

Figure from Geogig’s official website

2.4.2 QGIS versioning plugin

The QGIS versioning plugin, is another approach to achieve geospatial data ver-
sioning. As its name suggests, it extends QGIS functionality to allow versioning of
its layers. It is a distributed VCS which uses a PostGIS schema for versioning the
database.

https://oslandia.com/en/2013/07/13/qgis-versioning-plugin/

16 background and related work

Developed to provide offline working capabilities and storing data in a PostGIS
database, its approach is as follows: There are three operations for every table in-
sert, delete and update. In reality though, nothing gets deleted from the tables. It is
simply marked as deleted. The update is a sum of insert and delete operations. Those
deleted and newly inserted rows are related with a parent-child relation.

For editing the data and creating new versions the plugin offers two-way func-
tionality. SpatiaLite working copies for offline work, where the currently existing
(not deleted) elements are exported for the user to edit. PostGIS working copies
when there is active connection with the original database, where differences from
the wanted version is stored Figure 2.8.

The database can be updated by editing the working copies and then committing
back to the database as long as the working copy is up to date with it. In case
of conflict the two conflicted versions are stored in a table and tagged as ’theirs’
(database side) and ’mine’ (working copy). The conflict is resolved by deleting one
of them.

Branches are created that stem from any revision, by adding extra history columns
at the version’s record and and setting up a field for all features in this version to
indicate the start of the branch.

Figure 2.8: The schematic representation of the QGIS versioning plugin
Figure from QGIS versioning plugin official website

2.4.3 pgVersion

pgVersion was designed to version PostGIS layers concurrently in a multi-user envi-
ronment. To do so it creates a new schema in a PostGIS-extended database, capable
of managing the versioned tables.

Unlike Geogig and QGIS versioning plugin pgVersion is a centralized VCS, so it does
not have the functionality for offline working. An uninterrupted connection is nec-
essary between the client and the database server. The user can edit the existing and
commit the new versions via direct Structured Query Language (SQL) commands or
by using the pgvs plugin.

https://github.com/sourcepole/pgversion
https://plugins.qgis.org/plugins/pgversion/

2.4 versioning solutions for gis 17

To version the layers through QGIS’s interface, the layer should be prepared for ver-
sioning, conceptually similar to Geogig’s importing operation. Then the versioned
layer should be loaded from the database after removing the original from QGIS.
After finishing the edits the new version can be committed back to the database as
long as no conflicts arise. In case of conflict, the conflicting object(s) are shown with
the author of the edit and the user can choose which one gets committed.

The fact that it is centralized makes pgVersion the most simplistic approach com-
pared to the two previous ones. Although being simple means it is more robust for
what it can do, it also means reduced functionality compared to the other two.

2.4.4 Oracle Workspace Management and ESRI ArcSDE

With Oracle Workspace Management (OWM) users work in workspaces which can
be seen as individual rooms where users work, with all the changes being visi-
ble only to these users. The changes of the workspace are applied to the parent
workspace via a merge transaction which makes the changes visible to the parent
workspace as well [Oracle, 2020]. To be noted that in the case of Oracle products,
this approach does not apply only to geospatial data but in every kind of data as
long as the database schema can support it.

ESRI’s equivalent for workspace is called version and is by default spatial-database
oriented.The approach in this case is that every database has a default version which
can not be deleted and is owned by the administrator. The different versions are
stored in the geodatabase and regardless how many of them exist, each dataset is
only stored once (delta tables technique) [Law, 2010].

Apart from being 2D-oriented, both systems are commercial and proprietary, mean-
ing that they can not be freely used or further developed by anyone except their
owners. They are also generic versioning solutions that are not easy to be adapted
to wrap around complex data structures such as CityGML data model.

2.4.5 Reflections on Geogig, QGIS versioning plugin, pgVersion

In a 2D GIS environment these solutions offer solid overall functionality. 3DCMs

data though is not 2D vector or raster data structure-wise and this means these
implementations can not be used as part of a workflow implementation for version-
ing 3DCMs. They could be potentially tweaked and adapted to handle 3DCMs, but
that would probably be more time consuming and exhausting than implementing
a 3DCM oriented VCS in the first place.

VCSs have specific data models and encodings at their core. The variety of data
formats that spatial information comes in, is the most limiting factor for the inter-
operability of implemented VCSs. Versioning of 2D data alone is challenging and
it has to wrap around the respective data structures to achieve it. The mere com-
plexity of the structure of 3DCM data models which allows them to contain so much
and versatile kind of information (multi-LoD, attributes, semantics) is what vastly
differentiates them from traditional 2D GIS oriented data. It is also what makes it
impossible for a 2D GIS oriented VCS to be tweaked and adapted to handle them. It
will probably be more exhausting than developing a new VCS specifically for that
purpose.

18 background and related work

2.5 versioning solutions for 3d city models

2.5.1 CityGML versioning extension as part of the CityGML v.3.0 data model

A new iteration of the CityGML -CityGML v3.0- has started as a project since 2013,
some months after CityGML 2.0 was adopted from the OGC [Kutzner et al., 2020].
At the time of writing this thesis, CityGML 3.0 is not officially released yet but its
aspects are almost finalized and nearly published.

According to its authors CityGML 3.0 data model is revised and improved to meet
the interoperability needs with other industry standards.

A big addition in the new iteration relevant to this thesis is two new modules that
have been added for versioning support, namely Versioning and Dynamizer. These
two module stem from the previous work of Chaturvedi et al. [2016], whose aim
was to lay the conceptual basis for adding versioning functionality to the CityGML
data model.

Versioning module is responsible for versioning qualitative changes such as the city’s
evolution over time or the lifespan of objects and managing the various versions of
the city model.

Dynamizer is quantitative oriented responsible for capturing thematic values vari-
ation, changes in spatial properties and real time sensor feed.

Although versioning capabilities will be available now, which is a solid improve-
ment of the data model, adding two different modules instead of one adds unneces-
sary complexity to the already complex CityGML data model. It might not look like
a problem in the data model, but it will probably complicate the implementation
of versioning in practice, even if the encoding is not XML-based. Keeping track of
sensors values (i.e. what the Dynamizer module is responsible for) does not necessar-
ily require a custom versioning solution adapted to 3DCMs. This data can easily be
stored in external databases, simplifying the whole data model structure without
losing any functionality. Database existing functionality can address the problem of
keeping track of the history of such data.

In any case, since there is no implementation of the versioning modules in prac-
tice, all the above can be considered speculations. Actual testing requires CityGML
v.3.0 to be officially published so that developers are able to create software imple-
mentations for it.

2.5.2 CityJSON-based versioning solution

Vitalis et al. [2019] suggest a promising data structure that allows versioning for
CityJSON-encoded 3DCMs. The conceptual basis of the solution is Git, which is pre-
sented in Section 2.3.1.

In their approach Vitalis et al. [2019], use a data structure in which all versions
of the model are stored in a single versioned file called vCityJSON, similar to Git’s
local internal database. The vCityJSON file is a JSON file itself meaning that the user
can directly edit it if needed, since it is human and machine readable. As shown in
Listing 2.1 it is similar to a normal CityJSON file with the difference that it contains
an extra tag named versioning.

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,

2.5 versioning solutions for 3d city models 19

4 ”metadata” : { . . . } ,
5 ” CityObjects ” : { . . . } ,
6 ” v e r s i o n i n g ” : { . . . } ,
7 ” v e r t i c e s ” : [. . .] ,
8 ” appearance ” : {} ,
9 ”geometry - templates ” : {}

10 }

Listing 2.1: A vCityJSON file.

For the validation of the functionality of the data structure CityJSON Versioning
Prototype (CJV) was developed. CJV is a CLI prototype software that interacts with
the data structure for realizing versioning of CityJSON files. It is a free software
available at github.

Since the paper was published, a lot of functionality has been added that is not
presented in the paper. For example it now supports branch creation and merging.
Inspired from Git’s principles, it follows the distributed architecture although func-
tionality for remote repositories is not implemented at the moment.

CJV is an attempt to port the working principles of Git into the 3DCM domain to
enable versioning. It is implemented in Python 3 and operated via a CLI. The main
interface is shown in Listing 2.2.

none1

none2 cjv
none3 Usage : cjv [OPTIONS] INPUT COMMAND [ARGS] . . .
none4

none5 A t o o l to c r e a t e and manipulate versioned CityJSON f i l e s .
none6

none7 INPUT can be e i t h e r a versioned f i l e or the word ’ i n i t ’
none8

none9 Options :
none10 −−help : Show t h i s message and e x i t .
none11

none12 Commands :
none13 branch Create or d e l e t e branches .
none14 checkout E x t r a c t vers ion from a s p e c i f i c commit .
none15 commit Add a new vers ion to the h i s t o r y based on the NEW VERSION . . .
none16 d i f f Show the d i f f e r e n c e s between two commits .
none17 log P r i n t s the h i s t o r y of a versioned CityJSON f i l e .
none18 merge Merges a branch to another one .
none19 rehash R e c a l c u l a t e a l l o b j e c t s and commits ids as hashes .

Listing 2.2: A snapshot of CJV’s main interface screen.

In total CJV includes eight commands, four of which Checkout, Commit, Branch, Merge
are the fundamentals as defined in Section 2.5.3. The rest Log, Diff, Rehash are
supportive commands that improve the user’s overall experience. There is also the
init command for initializing an empty versioned file, conceptually identical to the
respective Git command.
CJV’s workflow is as follows: The user first initializes a versioned file either empty
-init- command, or with an instance of the model committed directly into it -init com-
mit- command, which is a combination of commands. The versioned file is then the
system’s storing structure, similar to Git’s internal database (i.e. the ’.git’ folder). As
long as a new version is available from editing the current version, it can be commit-
ted back to the versioned file with respective metadata such as author, timestamp
and a message by utilizing the commit command. All the commits are hashed for
consistency and integrity purposes and each commit uses this hash as an identifica-
tion as well.

To extract a version from the versioned file the checkout command is utilized and
the version is specified with its unique hash.

https://github.com/tudelft3d/cityjson-versioning-prototype

20 background and related work

Branching is also supported by utilizing the branch command and specifying the
version from which the branch stems. The user can then select for each commit at
which branch it should be committed by typing its name in the commit command.
CJV also supports branch merging of branches. Branches with common ancestors
can be merged at any time integrating all the updates of one branch into the other.

2.5.3 The fundamental transactions of a Git-like 3D city model oriented version-
ing control system

Before explaining the transactions two other terms have to be defined. Instance,
which is the a 3DCM file representing the model at a given time instance and ver-
sioned file, which is file that contains multiple instances of the model.

The reason the following transactions are considered fundamental is because they
are the commands that implement the fundamental interaction between the user
and the VCS, so that the former can take full advantage of its versioning capabilities.

Since CJV is based on Git, the commands’ names are identical, which also makes
the transition for users already familiar with Git smoother.

• Checkout: It extracts a specific instance from the versioned file. This instance
is a 3DCM file itself identified by a unique ID. It does not alter the versioned
file. Compared to Git which uses its own internal database, here a file is used
instead i.e. versioned file.

• Commit: Integrates a specific instance into the versioned file. In contrast with
checkout when a commit transaction is executed the versioned file is altered,
as in it is augmented with the new instance. Alongside the instance, metadata
such as time, date, the author of the instance etc are stored in the versioned
file.

• Branch: Creates a new branch (timeline) in the versioned file that stems from
a specified instance. This allows for new instances to be committed in the new
timeline, leaving the original (main) branch unaltered. There is practically no
limit in the number of branches that can be created.

• Merge: Merges a branch into another. It does so by identifying the common
ancestor of the (to be) merged versions and integrating them both into one
new commit, if possible automatically. It is necessary for the branches to be
merged to have a common ancestor.

2.6 3d city models editing software (cityjson)

2.6.1 cjio

cjio (see Listing 2.3), is a free and open source CLI application that can edit and
validate CityJSON files. Through its interface the user can select among many dif-
ferent operators and perform the necessary actions on the CityJSON file. No manual
editing of the file is needed. The advantage of using software to edit the file is that
the file syntax and information integrity is guaranteed since human error is avoided.

On the other hand, a major shortcoming of cjio is that geometries can not be edited
at will, at least in a straightforward way. The user is limited to using only the pre-
defined operators. For anything more than that direct editing of the CityJSON file
is needed.

https://github.com/cityjson/cjio

2.6 3d city models editing software (cityjson) 21

none1 c j i o
none2 Usage : c j i o [OPTIONS] INPUT COMMAND1 [ARGS] . . . [COMMAND2 [ARGS] . . .] . . .
none3

none4 Process and manipulate a CityJSON f i l e , and allow d i f f e r e n t outputs . The
none5 d i f f e r e n t operators can be chained to perform s e v e r a l process ing in one
none6 step , the CityJSON model goes through the d i f f e r e n t operators .
none7

none8 To get help on s p e c i f i c command, eg f o r ’ va l ida te ’ :
none9

none10 c j i o v a l i d a t e −−help
none11

none12 Usage examples :
none13

none14 c j i o example . j son i n f o v a l i d a t e
none15 c j i o example . j son ass ign epsg 7145 remove textures export output . ob j
none16 c j i o example . j son subset −−id house12 save out . j son
none17

none18 Options :
none19 −−vers ion Show the vers ion and e x i t .
none20 −−i g n o r e d u p l i c a t e k e y s Load a CityJSON f i l e even i f some City Objec ts

have
none21 the same IDs (t e c h n i c a l l y i n v a l i d f i l e)
none22

none23 −−help Show t h i s message and e x i t .
none24

none25 Commands :
none26 ass ign epsg Assign a (new) EPSG .
none27 c lean Clean = r e m o v e d u p l i c a t e v e r t i c e s + . . .
none28 compress Compress a CityJSON f i l e , i e s t o r e s i t s . . .
none29 decompress Decompress a CityJSON f i l e , i e remove the . . .
none30 export Export the CityJSON to another format .
none31 e x t r a c t l o d E x t r a c t only one LoD f o r a d a t a s e t .
none32 i n f o Output i n f o in simple JSON .
none33 l o c a t e t e x t u r e s Output the l o c a t i o n of the t e x t u r e f i l e s .
none34 merge Merge the current CityJSON with others .
none35 r e m o v e d u p l i c a t e v e r t i c e s Remove du pl i ca te v e r t i c e s a CityJSON f i l e .
none36 remove materials Remove a l l m a t e r i a l s from a CityJSON f i l e .
none37 remove orphan vert ices Remove orphan v e r t i c e s a CityJSON f i l e .
none38 remove textures Remove a l l t e x t u r e s from a CityJSON f i l e .
none39 r e p r o j e c t Repro jec t the CityJSON to a new EPSG .
none40 save Save the c i t y model to a CityJSON f i l e .
none41 subset Create a subset of a CityJSON f i l e .
none42 t r a n s l a t e T r a n s l a t e the f i l e by i t s (−minx , −miny , . . .
none43 update bbox Update the bbox of a CityJSON f i l e .
none44 update tex tures Update the l o c a t i o n of the t e x t u r e f i l e s .
none45 upgrade version Upgrade the CityJSON to the l a t e s t vers ion .
none46 v a l i d a t e Val idate the CityJSON f i l e : (1) a g a i n s t i t s . . .

Listing 2.3: cjio with all its available operators

2.6.2 ninja

ninja is a free and open source web browser application that visualizes CityJSON
encoded 3DCMs and allows selection of objects by clicking on its 3D representation
through the viewport. If the user wants to edit the object a JSON snippet appears
with the actual piece of information of that object into the CityJSON file i.e. the part
of the CityJSON file containing the data about it (see Figure 2.9). This method con-
sists an improvement over cjio when it comes to editing the attributes and semantics
of an object, although editing geometries is not possible.

https://ninja.cityjson.org/

22 background and related work

Figure 2.9: The interface of ninja. After selecting an object the CityJSON code snippet appears
and the user can directly edit the CityJSON file.

2.6.3 Blender

Blender 5 is a free and open source 3D creation platform. Its functionality includes
modeling, rendering and simulations among others. By default it has no way of
handling any kind of 3DCM files but its extendable through its Python API. As will
be shown in Section 5.2.1, Blender’s data model is mapped against CityJSON data
model to the point that it allows 3DCM file handling.

Blender’s data model is quite extensive, so in this section an overview of only what
is relevant to representing geometries and their attributes will be exposed. This is
by no means a detailed presentation of the full data model. For that official docu-
mentation might prove useful 6.

Blender’s data structure uses the object oriented paradigm. There are many object
types (classes) such as Mesh, Light, Empty, Surface, Camera, etc. The relevant object
types in the context of this thesis are Mesh and Empty. Each object type has their
own built-in properties such as transformation matrices, the collection they belong
to, which is similar to layers in CAD software. Objects are also allowed to have
relations with other objects i.e. parent-child relationship and as many other prop-
erties the user wants to add which are stored as custom properties within the data
structure of the respective object. In the case of objects that incorporate any kind of
geometry, every face of that geometry is allowed to have a distinct material, which
allows Blender to render scenes more naturally, based on how this type of material
interacts with light.

5 https://www.blender.org/
6 https://www.blender.org/fileadmin/verse/spec/datamodel.html

https://www.blender.org/
https://www.blender.org/fileadmin/verse/spec/datamodel.html

3 U S E C A S E : 3 D C I T Y M O D E L O F
R OT T E R DA M

3.1 an overview of rotterdam’s 3d city model pro-
cesses and history

The very first version of Rotterdam’s 3DCM was published in 2011 mostly as a proof
of concept and for experimentation purposes. It used the CityGML v1.0 encoding
schema. The goal for the municipality was to experiment with the potential appli-
cations of the model across its different departments and there was a plan to use
the model for buildings’ volume calculation. Due to the experimental nature of the
project, some necessary geometric restrictions were not met [Boeters et al., 2015].
This resulted in a defective model including among others missing walls between
buildings, leading to a model that was limited to serving visualization purposes
only and not for building volume calculation as initial planned.

In 2016, the whole 3DCM was completely remodeled in order to eradicate the limi-
tations of the first version with respect to building volume calculation. The input
datasets used to create the model were the official 2D base dataset provided by the
dutch Kadaster, BAG, [Bakker, 2009], and lidar data collected from the municipality
at a density of approx 30 points per square meter. Aerial imagery was also used
both for textures (oblique images) and for modeling of the buildings (stereo-pair
images).

These datasets were outsourced to an external third party for the generation of
the new model iteration. The model is encoded in the CityGML v2.0 data exchange
format and then stored into the 3DCityDB. Ever since, the model gets updated in
a biennial lifecycle (see Section 3.1.1), with one update carried out in 2018 and the
next one planned for late 2020 early 2021. At the moment, except buildings, the
model contains trees, city furniture and underground infrastructure, which are out-
side of the scope of this thesis.

Currently, the main use of the model by the municipality is for visualizing new con-
structions in the city and analyzing their environmental impact. This can happen
directly on their online 3D platform or by exporting the model into the supported
by the online platform file formats and working locally. According to practition-
ers, an evolution in the use of the model that they would like to promote, is the
utilization of the model for own-applications, such as tax estimation, planning, sim-
ulations, by the users and not only for viewing purposes.

The model contains the building objects as individual entities, with each build-
ing containing three different geometries LoD 0, LoD 1 and LoD 2. LoD 2 geometry
surfaces have a semantic attribute; WallSurface, GroundSurface or RoofSurface. The
building address and attributes such as creation date are also contained within the
building object.

For the needs of this thesis the municipality has kindly provided me with a part of
their latest —at the time of writing this thesis— version 3DCM of 2018. The (part of)
model was provided in CityGML v2.0 files and contains buildings from the area of
Delfshaven.

23

24 use case: 3d city model of rotterdam

Figure 3.1: A snapshot of the Rotterdam’s 3DCM through the municipality’s online platform.
The online platform can be publicly accessed here

3.1.1 Current maintenance procedure

From 2016 and on, the workflow of the municipality for integrating the changes
in the model is the following: First, the building footprints from BAG —which is
updated at a regular basis within the municipality— are compared with the 3DCM’s
objects footprint which remain static during the biennial update. There is no com-
parison in 3D, since BAG is a 2D dataset. After this side by side comparison the
compared buildings will eventually fall under one out of four categories.

i. New buildings: Buildings existing in BAG and not in the model.

ii. Deleted buildings: Buildings existing in the model but not in BAG.

iii. Mutated buildings: Buildings existing in both BAG and the model yet with
geometrical differences. Since BAG is a 2D dataset, the only differences that
can be detected are differences in buildings’ footprints.

iv. Unchanged buildings: The remaining buildings that haven’t been affected and
don’t need any update.

It is worth mentioning here that for the 2018-2020 maintenance iteration, the build-
ings comparison between BAG and the model will be checked against the issued
building permits of the past two years.

Between 2016 and 2018, 5845 buildings were created, deleted or modified in the
model (see Table 3.1). A list with those buildings together with the lidar data
and aerial imagery is handed in to an external contractor who (re)models the new
and mutated buildings. The contractor returns the newly modeled objects in the
CityGML data exchange format, valid against the CityGML v2.0 encoding schema.

Then a second external contractor, hired by municipality, will incorporate the newly
modeled buildings into the 3DCityDB database (see Figure 3.2). It will also re-
move the deleted buildings. The deleted and mutated buildings’ (initial) models
are stored outside the database for history tracking purposes, alongside the list of
buildings that were affected during the update.

From 2016 to 2018, around 3000 buildings needed to be changed annually, on av-
erage. The current maintenance process includes outsourcing to external parties
for the main workload of the maintenance (i.e. to model new and mutated build-
ings). Apart from the financial cost and the prolonged two-year period that the
model remains outdated, outsourcing for public agencies has another drawback.
Due to european regulations regarding outsourcing arrangements, there is a limit
of approximately 30000 euros imposed; that if exceeded the municipality can not

https://www.3drotterdam.nl/#/

3.2 identifying the key points that will allow the effective maintenance of rotterdam’s 3d city model 25

outsource the project directly to a contractor of their preference, who is already
familiar with their requirements and processes. This creates the problem of re-
communicating their exact needs on how the model should be updated which is
time consuming, inefficient and can affect overall quality.

2016-2018 2018-2020

New 3079 NA
Mutated 1228 NA
Deleted 1538 NA

Total 5845 10000 (approx.)

Table 3.1: The number of buildings that need to be updated in the last two updating itera-
tions of the model.

In a wider perspective, there is potentially an upper limit to the amount of the
buildings that can be maintained at each biennial iterations. When the number of
buildings that need to be maintained exceeds the number that the financial cost
can cover, some buildings will be left out of the maintenance iteration, remaining
outdated for at least four years given the current processes.

BAG

LIDAR External Contractor
#1

Modeled
Buildings
(CityGML)

Aerial Imagery

External Contractor
#2

3D City Model in
3DCityDB

Outsourced

Outsourced

Outsourced
Integration

Delivery

Incorporation

Figure 3.2: The process of incorporating the changed buildings into the 3DCM of Rotterdam.
This process is repeated in a biennial lifecycle with the updated input datasets,
resulting in a new iteration of the model.

3.2 identifying the key points that will allow
the effective maintenance of rotterdam’s 3d
city model

This section introduces the key points that are considered the basis for an efficient
and effective maintenance of the 3DCM of Rotterdam. Following these key points as
described next is expected to facilitate its wider utilization by more external parties

26 use case: 3d city model of rotterdam

and domain experts. To better understand these key points, it might be useful to
see them as current limitations that lead to inefficient and expensive administra-
tion of the model throughout its lifecycle. These limitations directly reflect on the
willingness of practitioners to interact with it for third party applications, while si-
multaneously diminish the value of the 3DCM, due to data obsolescence caused by
long periods of unmaintained 3DCM.

1. Maintaining the model updated at regular time intervals

Arguably the most important key point to successfully maintain a 3DCM is the
ability to keep all its buildings up to date with reality. As shown in Table 3.1,
there are three update cases, in which maintenance of model is needed. For
reference simplicity, buildings falling under these cases will be called ’pend-
ing’.

New buildings must be modeled, missing buildings must be added, demol-
ished buildings should be removed from the model and mutated ones should
be edited. Editing a mutated building includes altering its geometry or at-
tributes to match reality. For example when a new extension has been built or
demolished or an attribute has changed for any reason.

At the moment pending buildings are updated all at once, by outsourcing
them once every two years. With this approach, the model is constantly out-
dated, although through the BAG dataset all the pending updates are known,
since it is constantly maintained by the municipality. It is far from optimal to
know what should be maintained up to two years in advance and yet waiting
until the next iteration simply because there is no mechanism in place to inte-
grate the updated into the model.

Thus, it is crucial that the maintenance iterations frequency gets well-increased
from a two year lifecycle to a much more frequent process. More frequent
maintenance iterations means a 3DCM which follows reality closer than before,
increasing its value and its appeal to interested parties. What is more, the
workload of the maintenance iterations will be dramatically reduced, paving
the ground for avoiding outsourcing of the maintenance.

By dividing the massive biennial maintenance workload in smaller daily or
weekly updates, allows few or even a single practitioner to handle the task
successfully within the municipality. It abolishes the outsourcing necessity
giving the municipality full control and supervision over the model’s mainte-
nance, similar to the BAG maintenance.

In-house maintenance solves two problems at the same time for the munic-
ipality. First, it saves the financial funds that have to be spent for the out-
sourced maintenance. Second, there will be no buildings left unmaintained
due to the financial limitations imposed by the european regulations which
indirectly limits the number of buildings that can be maintained with the cur-
rent approach.

2. Keeping track of maintenance history

Another key point that stems from the previous one, is keeping track of the
maintenance history. Keeping track of the maintenance history is equivalent
to being able to go back from the current model to any previous version of it.
It is very important for monitoring the advancement of the city through years,
while also making sure in case the model’s data is lost or corrupted it can be
restored.

3.2 identifying the key points that will allow the effective maintenance of rotterdam’s 3d city model 27

It can be achieved by storing the differences between consecutive versions,
or by storing the whole model versions as the maintenance iterations ad-
vance. Keeping track of the maintenance history, allows future reference to
the model’s changes, that depicts the city’s evolution over time. Trends can
be identified, and urban planning decision making can happen from a much
more informed point of view.

Currently, during maintenance all the deleted and the initial versions of the
mutated buildings are kept, but this happens manually and outside of the
main platform in which the model is stored. So, although there is a form of
history kept, there is limited metadata with respect to the maintenance. Also,
due to the frequency of the maintenance iteration, the temporal resolution
of the city’s history is severely reduced. For example, if a building’s geome-
try has been changed more than once during the two years, the intermediate
change will be lost as only the last change will be documented.

As already mentioned, every year on average around 3000 buildings need
to be updated. This averages 12,5 pending buildings per day for a 240 work-
ing day year. With a VCS in place to manage the maintenance, it makes sense
that the iterations remain as distributed as possible so they can remain small
in size. Smaller and more frequent updates within a VCS means increased
temporal resolution of the city’s evolution and easier review of that progress,
due to the automatic metadata creation for every iteration. It also relieves the
maintainers from manually keeping track of history, because the VCS takes
care of it automatically within the same platform where the model is stored.
With more metadata available at a finer temporal resolution more insight can
be gained and evolution patterns can be explicitly identified.

More in detail explanation of how the updates should be performed and the
role of the VCS in it, will be given in Chapter 4.

3. Testing alternative scenarios for urban planning

As mentioned in Section 3.1, an important application for the municipality
is to use the 3DCM for testing of new ideas and construction scenarios, before
their potential implementation. Visualizing an idea within the model allows
for environmental impact analysis and facilitates the decision making process
in an unprecedented way. That is due to the fact that the model is in 3D, geo-
referenced in real world coordinates, thus intuitive to interpret and properly
oriented which enables the planner to perform simulations, such as solar ca-
pacity, wind flow simulation in conjunction with the surrounding buildings
etc.

The number of practitioners working on a planning scenario/project varies
from a single person to a group of people. So, it would be beneficial that
testing of scenarios can happen collaboratively and even concurrently in an
effective manner, to maximize efficiency and productivity. Ideally, the whole
planning procedure for the planner(s) should happen without affecting the
main model -allowing any kind of maintenance to happen with no obstacles-
or other practitioners working on the same project.

Keeping track of the history of the planning procedure with the same mecha-
nism as with maintenance during the planning scenario advancement, through
its different stages over time is important. Not only it allows to build the sce-
nario step by step, but also it allows to navigate at will between these steps

28 use case: 3d city model of rotterdam

for more focused analysis on different aspects of the scenario which were im-
plemented at different phases. For better understanding this functionality can
be considered as an undo button that works at any occasion.

Currently this functionality of drawing 3D objects exists within the 3D plat-
form of Rotterdam, but with limited functionalities, compared to those men-
tioned above. The drawing capabilities are limited to visualization and there
is no possibility to keep track of the history, either for collaborative work to
happen.

4. Motivate different domain experts to use the model for custom (own) exter-
nal applications

The key point presented here, is not a key point that will directly have an
impact at the maintenance of the model itself, as the rest of the needs pre-
sented in this section. It is though a way of indirectly increasing the model’s
value, which will consequently help the maintenance procedures to be im-
proved.

There is a big amount of different domain experts that can benefit from work-
ing with (a part of) the 3DCM for different custom applications at a local level.
That is because different domain experts have completely different workflows
that the online platform’s functionality can not cater for. Within or without
the municipality, the capability to export part of the model and incorporate
it into a custom application workflow is crucial for the maximization of the
model’s value and the raise of domain experts interest on the model.

At the moment, the capability of extracting specific objects already exists at
Rotterdam’s online 3D platform, although there is no option for editing the
model prior to exporting. There are many available export formats for the user
to select according to their needs. Yet when working with online platforms
handling 3D data of this size, the user experience can be compromised due
to the limitations of web browsers to cope with 3D information and limited
internet connection bandwidth, leading to limited use of the interface, thus
less custom applications. It is worth mentioning that at the same time, the
functionality to draw and import shapes/objects into the online platform for
visualization already exists; but it is also limited by the browsers limitations
when used as a 3D object editor.

As long as web browsers can’t manipulate 3D data of such size adequately,
a more responsive and edit-capable interface would improve the overall user
experience; attracting more domain experts to use it for extracting subsets of
the model for own use, due to the advanced editing capabilities and exporting
options.

Ideally, the user should directly download the desired area of the city from
the municipality servers, then import it into the aforementioned interface, per-
form the necessary edits, select which buildings they want to export and cre-
ate a new file that can be used for further processing. Having the choice to
export in various different formats would enable domain experts to integrate
the extracted output in their workflows easier.

5. Incorporating the results of custom external applications as part of mainte-
nance if necessary

This key point is about addressing the challenge of being able to incorporate
any useful results that come from the external applications that the model will

https://www.3drotterdam.nl/#/export
https://www.3drotterdam.nl/#/export

3.2 identifying the key points that will allow the effective maintenance of rotterdam’s 3d city model 29

be used for. For example a building’s geometry in higher LoD after enriching
the current one for an architectural project. Or watertight 3D surfaces as a
result of a wind simulation project.

It is realistic to assume that any useful results coming from external projects
will almost always be a subset of the original 3DCM, even if the 3DCM is split
into tiles. Therefore, for this key point to be feasible there needs to be a mech-
anism in place will be able to incorporate these changes into a new instance
of the model without affecting the rest of the buildings.

In contrast with key point 4, in this case the effect of this key point on the
maintenance of the 3DCM is direct and justifies even more the existence of key
point 4 in the first place.

Regardless the importance and the impact of such functionality this key point
is out of the scope of this thesis and the proposed workflow will not address
it. That is because it is quite a challenge to design and implement such a
mechanism within a VCS platform in the time-frame of an M.Sc. thesis. It is
certainly though a very interesting project worth researching. More will be
discussed in Chapter 7.

The five key points explained previously are summarized in Table 3.2 alongside
with their expected effect.

Key Point Expected Effect

1 Maintaining model updated at regu-
lar intervals

Standardize the current maintaining
procedures

2 Keeping track of maintenance history Monitor the evolution of the urban
fabric

3 Testing alternative scenarios for ur-
ban planning

Enhance the planning process while
promoting concurrent collaboration

4 Motivate domain experts to use the
model in custom applications

Raise the interest of third parties to
experiment with the 3DCM

5 Incorporate the results of the external
applications

Allow the work of third parties to en-
rich the 3DCM with more information

Table 3.2: A summary of the key points and their expected effect on the maintenance of the
3DCM

4 T H E P R O P O S E D 3 D C I T Y M O D E L
M A I N T E N A N C E W O R K F LO W

The maintenance workflow suggested in this thesis has a VCS at its core. The VCS

is responsible for keeping track of all the changes while storing all the different in-
stances. To create new instances the maintenance workflow also incorporates a 3D
visual editing platform. A graphical environment for editing an instance of a 3DCM

into the next, is considered necessary for the proposed workflow. Editing a 3DCM

through a Graphical User Interface (GUI) is far more intuitive for the user than a CLI.
It allows direct inspection and visualization of the model and the actions carried
out on it respectively.

The term maintenance in the 3DCM domain does not have a universal meaning
among researchers, as seen in Section 2.2. From the perspective of this thesis, main-
tenance is about facilitating the task of integrating changes in a 3DCM at a frequency
that minimizes the duration for which the model remains outdated therefore maxi-
mizing its value.

To understand the structure and the operation of the VCS of the workflow sug-
gested in this thesis, two main concepts must be introduced, the core workflow and
the multi-branch structure. The core workflow describes the procedure of extracting
a 3DCM instance from the VCS, updating it into a new instance and committing it
back to the VCS. The multi-branch structure defines four branches and their interre-
lations, to form a conceptual approach for an effective and practical maintenance
of the 3DCM that provides unobstructed and concurrent maintenance of the model
by many different actors. These are inspired and adapted from the git-flow (see
Section 2.3.1).

4.1 introducing the core workflow
To grasp the function of the core workflow (see Figure 4.1), the fundamental VCS

transactions introduced in Section 2.5.3 must be kept in mind. The core workflow
only utilizes the commit and checkout transactions out of the four fundamental ones.
The absence of the merge and branch is due to the fact that the core workflow concep-
tualization does not include any branches.

To explain the conceptual steps of the core workflow, it is assumed that the ver-
sioned file is initialized and an instance (at least) has been committed to it. The
steps to complete one circular operation of the workflow are the following:

1. A 3DCM instance is exported by executing the checkout transaction on the
versioned file resulting in an exported 3DCM instance.

2. The exported 3DCM instance is imported into the 3D visual editing platform
(ex. Blender [Blender Foundation, 2019]) where it can be geometrically modi-
fied and and attributes can be edited, so that all the changes are incorporated
in the model.

3. The current state of the model is exported from the visual editing platform in
an updated 3DCM instance.

31

32 the proposed 3d city model maintenance workflow

4. The updated instance is committed back to the versioned file alongside some
metadata such as the author’s name, timestamp and a message describing the
updates performed. The VCS takes care of identifying what has been changed
thus keeping track of the history of the model.

Visual Editing

Versioning Control
Platform

Import

Commit

Convert

Export

Checkout ExportVersioning
Workflow

3D City Model in
 CityGML

3D City Model in
 CityJSON

Updated
3D City Model in

 CityJSON

Convert

3D City
Model subset for
custom external

applications

Figure 4.1: The core workflow

The conceptual steps explained above belong to the VCS environment of the core
workflow (see Figure 4.1). These are the steps that have to be performed every time
the 3DCM needs to get updated.

They address key points 1 and 2, as defined in Table 3.2, because they allow the
3DCM to be maintained while the VCS is keeping track of the 3DCM evolution over
time.

There are however two extra steps that are not involved in the maintenance pro-
cess directly. Those are the initialization step that creates the versioned file where
all the new instances will be committed to and the extraction of isolated part(s) for
custom application step that is optional.

The initialization step needs to be executed for the whole VCS platform to be used.
It is an once-off transaction that can be considered insignificant, yet included in the
schematic representation of the core workflow as it belongs there.

Extracting a subset of the 3DCM for custom external application is an optional step
of the core workflow that is based on the functionality of the visual editing platform.
This functionality can provide a part of the 3DCM to be used for external custom
applications. For example, an architect might need to isolate and extract a neigh-
borhood in which they wish to visualize a project at their own custom software or
for analysis purposes. Or an urban planner might want to do the same at a whole
region for a big scale gentrification.

It addresses key point 4 from Table 3.2 since it provides external parties with parts
of the model at various data exchange formats. This functionality is not directly

4.1 introducing the core workflow 33

(a) The selected CityObjects. (b) Blender’s scene with only the selected CityObjects.

Figure 4.2: The subset before and after cropping

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ”metadata” : { . . . } ,
5 ” CityObjects ” : {
6 ”ID 0599100000415249” : { . . . } ,
7 ”ID 0599100000415250” : { . . . } ,
8 ”ID 0599100000415251” : { . . . } ,
9 ”ID 0599100000415252” : { . . . } ,

10 ”ID 0599100000415260” : { . . . } ,
11 ”ID 0599100000415261” : { . . . } ,
12 ”ID 0599100000415262” : { . . . } ,
13 ”ID 0599100000415263” : { . . . } ,
14 ”ID 0599100000415264” : { . . . } ,
15 ”ID 0599100000415265” : { . . . } ,
16 ”ID 0599100000415266” : { . . . } ,
17 ”ID 61c18aaa - 1d05 - 4a6e - 9cd4 - 3adb20b44e04” : {
18 ”geometry” : [. . .] ,
19 ” type ” : ” Bui ld ingPart ” ,
20 ” parents ” : ” ID˙ 0599100000415253”} ,
21 ”ID 774bdcc9 - 2 ece - 4289 - 8bd7 - 912 a f 31 f 481a” : {
22 ”geometry” : [. . .] ,
23 ” type ” : ” Bui ld ingPart ” ,
24 ” parents ” : ” ID˙ 0599100000415253”
25 } ,
26 ”ID 0599100000415253” : { [. . .] }
27 } ,
28 ” v e r t i c e s ” : [[. . .]]
29 }

Listing 4.1: The new cropped instance exported in CityJSON format.

related to the maintenance of the 3DCM as it does not contribute to the maintain-
ing of the 3DCM itself. What it does though is reaping the benefits of using a 3D
visual platform as an editing platform, at no extra cost since the platform offers
that functionality anyway. Considering that the municipality of Rotterdam wishes
to attract more domain experts to utilize the model for own custom applications, it
is a functionality that will motivate external domain experts to at least experiment
with the potential applications of the model. In turn, it is expected that the interest
of a broader range of practitioners to use the model will be increased; increasing
the need for better and more effective maintenance as well, in an indirect way.

It is also the basis for satisfying the fifth key point (see Table 3.2), which although
it out of the scope of this thesis.

34 the proposed 3d city model maintenance workflow

4.2 introducing the multi-branch structure (based
on the git workflow)

The multi-branch structure is a system of branches inside the VCS, designed to par-
allelize the core workflow, so that multiple practitioners can concurrently and unob-
structedly work on the model’s different maintenance needs; with the capability to
integrate all their work together in a single 3DCM instance, when needed.

The connection between the core workflow and the multi-branch structure is shown
in Figure 4.3. In this graph, every circle represents a commit i.e. a new updated
state of the model. The core workflow —its VCS environment more specifically (see
Figure 4.1)— is the mechanism that allows the creation of every next commit (circle
in Figure 4.3. In other words, between every two consecutive commits within the
same branch in the multi-branch structure the core workflow needs to be carried out.

This thesis proposes that the multi-branch structure is comprised by four branches:
main, maintenance, scenario and release as shown in Figure 4.3. They are considered
to cover the maintenance needs of a 3DCM, while facilitating the concept of scenario
testing for future projects and applications. The workflow is adaptable and flexible
in the sense that more branches can be used if necessary. The branches with their
interactions are the following:

Main

Scenario
(Unimplemented)

Release

Maintenance

Scenario
(Implemented)

R1

V3V2V1V0

R2

?

M1 M2 M3 M4

P0 P1

P0' P1'

P2

Figure 4.3: The multi-branch schematic representation of the branches and their interrela-
tions.

• Main: Main branch with the latest ”true” up to date version of the 3DCM.
It is the ’central’ branch of the VCS, acting as a reference basis for the 3DCM.
Maintenance and release branch stem from it. Maintenance and scenario can
merge back to it while release no.

• Maintenance: Stems from main branch and merges back into it at (preferably)
similar time intervals (see Section 4.2.1). The role of this branch is to be the
workspace in which the maintenance —due to the actual changes— is car-
ried out before getting integrated back to main branch. For example when a
building’s geometry is mutated due to a new compartment or a building is
demolished completely (see Figure 4.4).

To update main branch its latest instance is branched into maintenance branch.

4.2 introducing the multi-branch structure (based on the git workflow) 35

After conducting the required changes within maintenance branch, the new
(updated) instance is merged back to the main branch, thus updating it.

It can also merge into scenario to integrate all the maintenance changes that
have taken place while scenario was evolving. This should happen only when
the tested -in scenario branch- scenario is going to be realized, and the merge
should happen right before it is merged into main.

In case of massive volume of updates (e.g. a new acquisition method that
leads to all buildings being measured more accurately, thus every building
geometry has to be updated) that should happen at a relatively small amount
of buildings per commit. That way, in case of errors or for future reference to
the changes, identifying the responsible commit will be easier. This method
also increases the ”resolution” of the update in the sense of splitting a bulky
massive update into smaller more manageable from every aspect.

• Scenario: Stems from maintenance branch and merges into main if a propo-
sition is realized. It is the workspace that any new idea or scenario can be
tested, without affecting either the main or maintenance branch. Except testing
new ideas for evaluating their multi-aspect impact prior to construction, this
branch is the workspace for conducting simulations such as wind flow analy-
sis or solar capacity of the buildings etc, where a 3DCM comes pretty handy.

Instead of merging directly into main branch, the structure is designed such so
that maintenance first merges into it to integrate all the changes that happened
due to maintenance; right before merging the realized proposition branch into
main. That is in order for the implemented scenario to be integrated into main
as smoothly as possible.

Every different project that has to be tested and evaluated will be contained
in a distinct scenario branch. The (new) scenario branch which will stem from
the latest maintenance instance available, unless otherwise required. It will be
named accordingly based on the project’s name.

This functionality addresses key point 3, by assigning a whole branch for
testing new scenarios and simulations, leaving the main maintenance process
of the 3DCM unaffected.

• Release: Stems from main branch but doesn’t merge anywhere. It is an one
direction branch in the sense that it shouldn’t merge back, because its role is
to contain standalone instances of the model that can be given to the public
for general, educational or research purposes.

At this point someone could argue that release is not needed, since the same
functionality could be covered by main with the use of appropriate tags. There
are certain reasons though that release is a really good option. For example,
main contains the full 3DCM, which might contain certain attributes for every
building that if published would possibly cause privacy issues. Consequently,
any sensitive piece of information or personal data should be wiped out of
the model before publishing. So a ”trimmed” version of the model is needed
in which the 3DCM is clean of any kind of personal data.

Second, having a dedicated branch for this purpose simplifies the whole func-
tion of the workflow with more clear and dedicated roles for every branch.

36 the proposed 3d city model maintenance workflow

(a) A building at its initial state (b) The same building with an extension

Figure 4.4: An example of a mutated building at which a compartment has been added

4.2.1 Maintenance iterations frequency

The frequency at which maintenance iterations occur, will affect the workload of
each iteration and potentially the number of practitioners needed to carry out the
task in a given time period. In the long term it all reflects into efficiency of the VCS.
Assuming that the model can be maintained at will, the optimal frequency would
be the one that minimizes the duration that the 3DCM remains outdated, yet making
sure that there are enough changes to justify a maintenance iteration for that given
frequency.

There are two distinctive alternatives approaches to define the maintenance itera-
tion frequency: Launch an iteration when a fixed number of buildings need to be
maintained and launch an iteration at fixed time intervals.

Apart from defining a kind of standardization of the maintenance iterations fre-
quency, the two alternatives proposed have a second goal under the scope of this
thesis. The goal is to give an idea to the reader, of how a considerably irrelevant
decision affects the VCS function and can create a completely different user expe-
rience. As an example, favoring the fixed time interval might create the need for
more practitioners to maintain concurrently which can complicate the integration
of the changes.

All in all, if the workflow were to be implemented in practice, finding the optimal
maintenance iteration frequency would be a matter of time and experimentation
within the respective agency. Adapting the maintenance task to meet their manage-
ment and administration needs would dictate what applies best.

Fixed number of buildings

A simple arbitrary approach to get an estimation of the frequency at which the iter-
ations should happen is to divide the number of total changed buildings per year
by the working days of the year to calculate the average number (x) of changed
buildings per day. An example of a mutated building is given in Figure 4.4. Then
as long as there are at least x buildings pending at any given day they should be
updated and committed to the VCS. Considering that the rate at which buildings
change is not stable, the frequency will also not be stable.

The benefit of this approach is that it favors consistency with respect to the workload

4.2 introducing the multi-branch structure (based on the git workflow) 37

of each iteration. A consistent -thus predictable- workload allows better resource
allocation, in this case practitioners man-hours. Based on real data from the munic-
ipality of Rotterdam, it is expected one practitioner alone to be able to carry out the
whole iteration within a working day if based on their average daily pending build-
ings estimation. Furthermore, the number of buildings changed at each iteration
will be consistent by definition, which in the long term facilitates the review of the
city’s history by practitioners.

The drawback of this approach is that since the number of pending buildings does
not grow at a steady rate, there could be a long period between two iterations. At
the same time it is possible the number of the pending buildings to rise steeply with-
out any warning, increasing the workload and potentially requiring more than one
practitioners to address the situation. Finally the number of the pending buildings
should be constantly monitored.

Fixed time interval

The second approach to define the maintenance iteration frequency is to define a
fixed time interval at which an iteration should be launched. The advantage of this
approach is that it is simpler than the previous with respect to estimating when an
iteration should be launched. There is no need for estimating the average number
of affected buildings per day and keeping track of the changed building count on a
daily basis. It also keeps the duration at which the model remains outdated consis-
tent.

The downside of this approach is that there is no way to predict the workload
of each iteration, since the rate of building change is unstable. Assuming that the
iteration is planned to happen in a single workday the number of practitioners re-
quired to carry out the task might vary between iterations, so resource allocation
optimization might be compromised. In case though that assigning more than one
practitioners is an affordable option, this approach can become quite efficient.

Although, there is an emerging downside by having more than one practitioners
maintaining the 3DCM concurrently. That being the chance of merging conflicts (see
Section 4.2.2 increases a lot, which will require the practitioners to be familiar with
conflict resolution strategies. In the case of a single practitioner the chance of a
creating a conflict is minimal.

4.2.2 Managing Merging Conflicts

A merging conflict occurs when the VCS does not know how to integrate information
coming from two -to be merged- branches. For example, when the same piece(s) of
information have been edited in two different ways -and branches- and there is an
attempt to merge these two branches, as shown in Figure 4.5. On the contrary, there
is no conflict in Figure 4.6 since different pieces of information have been changed.

In distributed VCSs, the work happens locally with each user having their own copy
of the remote repository as a local repository. Keeping these two synchronized
makes conflicts practically unavoidable. Keep in mind that for every user the num-
ber of total branches that interact (local ones and the remote) grows proportionally;
since every one of them has a copy of those branches stored locally at their systems
as explained in Section 2.3.

The more local repositories needed to be synced with the remote, the more chances
of two or more users editing the same piece of information. In other words, ev-

38 the proposed 3d city model maintenance workflow

Julianalaan 134
2628BL

Delft
Ed. Institute

Julianalaan 134
2628BL

Delft
TU Delft

Julianalaan 134
2628BL

Delft
Delft University of

Technology

Julianalaan 134
2628BL

Delft
TU Delft or

Delft University of
Technology

Figure 4.5: The same piece of information Ed. Institute has been edited differently in two
different instances TU Delft and Technical University of Delft, creating a merge
conflict upon merging.

ery attempt to synchronize each local repository with the remote, regardless of the
direction of the synchronization (local to remote or vice versa), is prone to merge
conflicts, as long as more than one users can influence the remote repository.

Before going more in depth with identifying the points of the workflow at which
conflicts can occur, it is important to make some assumptions based on the mainte-
nance needs introduced in Section 3.2. Those assumptions are related to the number
of actors that will be working concurrently at the same branch and their actions. The
assumptions are the following:

1. There will be no practitioner working directly on the main branch. That is
because based on the multi-branch structure, the main branch is not directly
updated. Any form of updating of the main branch happens only via merging
the maintenance branch and the planning/proposition branch into it.

2. The maintenance branch can be maintained by either one or many practitioners
(depending on the iteration frequency and resource allocation of the agency),
in order to keep the model up to date with reality by implementing the re-
quired updates into it.

3. More than one practitioners are expected to be working concurrently on the
planning/proposition branch. That is solely due to the fact this branch was
created for ideas and scenarios to be tested, which means its functionality
would be limited if only one practitioner/domain expert is able to work on it.

4. The release branch has no special needs in terms of managing. Since the mu-
nicipality can decide whenever they want to publish a new ”trimmed” version
of the model, which is expected to happen at long time intervals of possibly

4.2 introducing the multi-branch structure (based on the git workflow) 39

Julianalaan 134
2628BL

Delft
Ed. Institute

Julianalaan 134
2628BL

Delft
TU Delft

Julianalaan 134
1234AB

Delft
Ed. Institute

Julianalaan 134
1234 AB

Delft
TU Delft

Figure 4.6: 2628 BL and Ed. Institute were changed in the two different instances to 1234AB
and TU Delft. They are different pieces of information so no conflict is created
upon merging.

few years, the workload of committing a ”trimmed” version into the release
branch is considered negligible. Furthermore, the workflow of trimming the
3DCM off of personal information could be easily automated; minimizing the
workload of creating a publishable instance.

5. The users will be asked to synchronize their local repository with the remote
every time the initialize a working session, so everything is up to date with
the remote repository upon the beginning of their work (pull), to avoid ex-
tra conflicts. Session, in this context is the period between two consecutive
commits of a user to the VCS. Furthermore, the VCS will require that the local
repository is synced again with the remote repository right before uploading
(push) the changes in the local repository to the remote.

Branch Number of practitioners

Main 0

Maintenance 1 or >1

Scenario >1

Release 0

Table 4.1: The number of concurrent users per branch.

Based on these assumptions the points of the workflow that conflicts can occur can
be identified. For explanation purposes, two categories of conflicts are defined: Sin-
gle user induced conflicts that happen when merging between branches within a local
repository and Multi-user induced conflicts, that happen when attempting to synchro-
nize between a local and the remote repository clashing with what other users have
already pushed on it.

40 the proposed 3d city model maintenance workflow

Single user induced conflicts: Every local repository has a single user, meaning
that conflicts that arise in this situation are single user dependent. Based on the
sync assumption, such conflicts can happen in the following case:

1. Merging maintenance into planning/proposition when the affected in the scenario
objects were also changed in the maintenance. For example, when testing a
new idea in the scenario and during the evolution of the new idea within sce-
nario, the affected objects were also affected by maintenance as well, creating
ambiguity for the VCS.

This case though, can only be valid when the same user works on mainte-
nance and scenario during the same session. In any other case that work is
done on a single branch there is no chance of a single user induced conflict.

Multi-user induced conflicts: The role of the remote repository is to be commonly
accessed and updated by all users. For the remote repository to be updated, the
local repository changes have to be uploaded (pushed) into it. Since by definition
there are more than one users uploading to it, conflicts will occur.

According to the fifth assumption, the VCS will require the local repository to be
counter-checked against any possible updates in the remote repository since the
first sync upon the beginning of the session. This is the point at which all the con-
flicts between local and remote will become apparent. As long as they are resolved
the local changes will be uploaded (pushed) to the remote repository without any
problem.

Keeping in mind the interrelations between branches as they were introduced ear-
lier, the potential conflict points are the following:

1. Based on the multi-branch structure, the most conflict-yielding situation is that
of multiple users working on the same project inside the same scenario branch.
Editing the same object(s) with another user that has already uploaded (pushed)
their work on the remote repository -in not an identical way- will create a con-
flict upon trying to sync the local repository with the remote.

2. If only a single user is responsible to carry out the maintenance task, the
situation is simplified since there will be no concurrent updating in the main-
tenance branch, thus no conflict chances.

In case of more than one users working on the maintenance branch concur-
rently as mentioned in the second assumption, conflicts might occurs upon
merging the distinct updated instances of different users. In this case though,
since the end result of the updates can be known beforehand (i.e. what should
be updated into what), the maintaining process could be easily standardized
or divided between the users. This way they would never get to work on
the same object. These two strategies can limit the amount of conflicts, or
potentially eliminate them.

3. When a proposed scenario or idea is realized, the maintenance branch has to
be merged into scenario, so the scenario can then be merged into main. If the
buildings affected by the newly implemented proposition have been changed
in maintenance while the scenario was evolving, there will be conflicts upon
merging maintenance into scenario. The conflicting objects will be those build-
ings that were affected by the new idea but also maintained along the process.

A summary of this cases is presented in Table 4.2

4.2 introducing the multi-branch structure (based on the git workflow) 41

Potential conflict cases

1 Multiple users working on scenario
2 Multiple users working on maintenance
3 Merging maintenance to scenario

Table 4.2: Cases in which conflicts are expected to occur.

4.2.3 The ’smallest entity’ problem

To define what a conflict is, the term (same) piece of information was used, which if
changed in more than one ways yields a conflict. The term piece of information in
this context is equivalent with the smallest entity that the VCS can identify as altered.

While in the software development domain that piece of information is every char-
acter of every line of the source code, the situation in the 3DCM domain is not such.
Source code files have no hierarchical entities, meaning that all the information lies
on a single hierarchical level with respect to how the computer parses source code.

In contrast 3DCM file structures are hierarchical structures meaning that one infor-
mation entity lies inside another and so on. This means that a VCS designed to
handle 3DCM files has to (arbitrarily) establish what is considered as this smallest
entity (in terms of hierarchy levels), which can perceive as altered. For example, a
building can be an entity, which incorporate attributes, geometries (different LoD),
which are individual entities as well, which in turn contain different faces which
are also individual entities and so on. A schematic representation of the hierarchy
structure of a 3DCM is shown in Figure 4.7.

Attributes

Geometry
LoD
Shell
Face

Vertex

Building

Address

Figure 4.7: The hierarchy levels formed by the different entities within a 3DCM data structure.
In the VCS proposed the smallest entity is the ’Building’ level (gray circle).

42 the proposed 3d city model maintenance workflow

(a) A plane surface with its vertices stored in default
order

(b) The same surface with the order of the vertices
reversed

Figure 4.8: The same planar surface saved with its vertices in default and reverse order

The hierarchical level of the smallest entity, at which the VCS will be able to perceive
conflict is of utmost importance for the efficiency and robustness of it. For example,
if the building entity level is considered as the deepest level for the VCS, -meaning
the building object is the smallest entity- removing a complete LoD geometry and
changing one of its attributes in different instances will yield a conflict, as for the
VCS the same building object entity is changed (see Figure 4.4).

This will translate into seemingly more conflicts, while in reality not the same piece
of information -as a human would see it- has been altered. Having more conflicts
that are actually not real conflicts requires more time to handle them, affecting the
efficiency of the VCS. The advantage though, of choosing a higher entity level as
the deepest, is that the structure of the VCS mechanism that identifies conflicts can
remain simpler and that the user’s supervision required for conflict resolving at a
higher hierarchical, offers a kind of quality control of the end product.

Ideally, it would be very convenient for the VCS to be able to distinguish changes
at the deepest hierarchical level possible. It would eliminate the fake conflicts due
to smallest entity problem. There is however a big challenge to overcome to do so.
That being the data structure of 3DCM files, with geometrical entities that do not
have to be in a strict specific order in some cases, for example the order of the faces
or even the order of vertices of a face of a geometry (see Figure 4.8).

In order for the VCS to avoid these kind of conflicts, it should be able to identify
the difference between an actual geometric difference in the model and a difference
in the file itself due to reordering its records, which imposes no change in the model
whatsoever. It would be no surprise if manually choosing the correct instance be-
tween two conflicting ones would prove more robust than developing a mechanism
to identify between the types of difference explained above.

That being said conflicts created due to arbitrary selection of the smallest entity can
be counteracted with two fundamentally different approaches or a combination of
the two.

1. Solving the problem on the data structure level: Adjusting the 3DCM data
structure so that hierarchy becomes as flat as possible avoiding nested entities

4.2 introducing the multi-branch structure (based on the git workflow) 43

thus conflicts due to the depth of entities. The benefit of this method is that
it tackles the problem at its root, before it even happens. The disadvantage
though is that the data structure has to be severely compromised with respect
to what is considered best for storing and organizing the information.

2. Solving the problem on the software level: Allow the conflicts to happen due
to the data structure of the 3DCM and resolve them a-posteriori. The disadvan-
tage with this approach is that conflicts will happen although not the same
piece(s) of information have been altered. But the data structure can remain
as primarily designed, which is a very big advantage. Also, software can be
customized to handle conflicts as required, based on different resolving con-
flict policies, which makes this approach far more flexible than changing the
data structure (see Section 4.2.4)

4.2.4 Resolving conflict policy

Resolving a merge conflict inside a VCS is all about choosing which version between
the conflicting ones should be kept. Using the example in Figure 4.5, resolving the
conflict means choosing between TU Delft and Delft University of Technology i.e. what
instance (blue or green) will become accepted.

It is not necessary that one of these two options is selected. It is possible to choose
one third option, that is not included in neither of the two conflicting instances, if
required. But in most cases it will be one of the two conflicting instances that con-
tains the piece of information that will finally be accepted.

In theory, there are endless approaches in resolving conflicts, when it happens on
the software side. From zero tolerance approaches that put the merging completely
on hold and let the user decide 100% what should be done, to completely auto-
mated approaches in which the VCS’s behavior upon conflicts can be designed at
will.

The main benefit of the zero tolerant approach is the complete supervision and con-
trol of the conflict resolution by the user, while the main drawback is that manual
conflict resolution requires a lot of time. On the other hand, complete automation
of conflict resolution has the opposite characteristics. This means that the conflict
resolving algorithm follows predefined steps to resolve the conflict but it is almost
guaranteed that the resolution will not be meaningful.

Nevertheless, in practice, it is not possible to automate the conflict resolution in
such a way so it produces the same results as manual conflict resolution. That is
because the VCS is a structure that has no cognitive abilities, so it is unable to know
what should be kept and what should be discarded upon a conflict.

Due to this reason all the conflicts that will occur as described in Section 4.2.2
are expected to be resolved manually by the user. Since manual editing conflicts are
time-consuming yet unavoidable, it is important for the workflow to be followed
such so that conflicts remain as limited as possible.

One example to understand how the number of conflicts can be affected by the
workflow customization, is related to the number of concurrent users in the main-
tenance branch. Maintenance is a branch that a single user can potentially carry out
the required changes; given the correct maintenance frequency. Opting for more
than one users increases the change of the same part of the model being edited,
thus creating conflicts that could be avoided. In case it is necessary for two or more

44 the proposed 3d city model maintenance workflow

users to work on the maintenance, it is possible to still avoid conflicts, if there is a
previously agreed plan that makes clear who is working on which buildings, so that
there is no overlap in their work areas.

5 I M P L E M E N TAT I O N

The workflow proposed in Chapter 4 was implemented as a proof of concept. The
aim of the implementation was to showcase the feasibility of the concept, testing
its performance and identifying both practical and conceptual shortcomings. The
prototype software used to implement the concept is CJV that was introduced in
Chapter 2 and Up3date, a Blender add-on able to visualize, edit and export instances
of 3DCM encoded in CityJSON v.1.0 format.

Both CJV and Up3date have been developed to work with 3DCM instances encoded
in the CityJSON v.1.0 data exchange format. CityJSON was selected due to its pro-
gramming friendliness and for its data structure itself that makes geometry storing
very efficient and easy to be parsed.

5.1 the importance of visual editing capabilities

There are plenty of ways to edit a CityJSON file. The simplest of them is by manual
direct editing of the file itself since it is a JSON-based human readable text file. This
is however the most error prone method since it requires the user to be very familiar
with the CityJSON file structure. It is also rather exhaustive to constantly make sure
that the syntax of the file remains valid, throughout the process.

A second method is to use cjio. This method is arguably an improvement over
working with direct manual editing. The syntax integrity is guaranteed since all the
modifications are done by a script but the user still needs to be somehow familiar
with the CityJSON file. That is knowing the ID of the objects they want to edit since
that is the way to identify them through the interface of cjio. So far there is no way
to edit a 3DCM directly though a GUI. The closest alternative to it is ninja.

The motivation for implementing a tool that would allow visual editing capabili-
ties can be attributed mainly to two reasons. First, as a proof of concept initiative
since there was no software capable of visual editing of a 3DCM. Second, due to the
fact that by having visual editing capabilities makes the whole interaction between
the user and the model far more intuitive. That is because the user can visualize
the whole 3DCM and perform all the changes graphically, which are shown on the
model in real time. It increases the inspection capabilities of the model as well since
the user can simply navigate around and interact with all the objects. Finally, it at-
tracts users that have no familiarization with the 3DCM files structure to work with
it and simplifies the editing procedure for the experienced users.

All in all, visually editing a 3DCM is less error prone since the user never gets to
interact with the file itself, while all the changes made can be monitored visually in
a 3D environment making the 3DCM editing procedure much more trivial.

45

https://github.com/cityjson/cjio
https://ninja.cityjson.org/

46 implementation

5.2 introducing up3date
Blender (see Section 2.6.3) is a powerful free and open source 3D software suite ca-
pable of producing professional results in the 3D domain.

Although Blender was never designed for handling 3DCMs or big data in general,
it was chosen to serve as the underlying platform because of its versatility and its
extended functionality and because of the fact that it is free and open source, so it
can be endlessly extended and improved.

Up3date is an add-on for Blender that extends it to handle 3DCMs encoded in CityJ-
SON v1.0. It is developed in Python via Blender’s API. It is compatible with Blender
v.2.80 or greater. It is able to import a 3DCM file encoded in CityJSON v1.0 into
Blender’s scene enabling all Blender’s functionality on it and export it back into a new
CityJSON v1.0 file. It stores all the information contained in the file (except textures
and template-geometries) leading in zero loss of information during editing and
exporting back into CityJSON format. All semantic information, object attributes
and multiple LoD geometries are maintained upon importing and exporting.

It is designed such that any given Blender scene can potentially be exported into
the CityJSON format. This means that Up3date can be utilized as an effective con-
verter between CityJSON and all supported by Blender formats and vice versa.

The source code of Up3date is free and open and can be found at github.

Figure 5.1: A screenshot after importing a 3DCM into Blender using Up3date

5.2.1 Implementation specifications

A single object can have only one representation in Blender, so there need to be a
workaround for the multi-LoD geometries that can be found in CityJSON files. This
workaround allows Blender to store all of them, in order for the whole importing
editing and exporting procedure to become lossless.

First, each CityObject corresponds to an Empty Blender object that contains all its
attributes as custom properties in Blender’s data model. In case the attributes have
nested structures themselves name prefixes are used at the beginning of the name
of the custom property within Blender.

https://github.com/cityjson/Up3date

5.2 introducing up3date 47

Each geometry —different LoD— of each CityObject is a distinct Mesh in Blender,
which is related to the Empty object that represents the CityObject as its child. In
the case of CityObjects that are building parts again an Empty object represents that
CityObject which has as many children —Meshes— as the LoD count of its geometry.
Finally, the whole Empty object that represents the building part-CityObject will be a
child of the CityObject that represents the entire building entity.

Finally, different LoDs (i.e. LoD 0, LoD 1, LoD 2 etc.) are stored in different Blender’s
collections for organization and visualization purposes. Their attributes such as their
LoD and geometry type (Solid, MultiSurface etc.) are stored as custom properties within
the Mesh objects data structure itself.

Surface semantics, are stored as materials for every face of every LoD 2 geometry.

A summarizing of the entity mapping is given in Table 5.1.

CityJSON Blender

CityObject Empty object
(all attributes stored as custom properties)

Geometry (LoD) Mesh object
(all attributes stored as custom properties)

Semantics Materials of LoD 2 geometry faces

Table 5.1: Mapping between CityJSON and Blender entities

6 T E S T I N G

6.1 datasets and preparation
The performance of the implementation within the scope of this thesis is an indica-
tion of how well the workflow handles the fundamental transactions for both the
visual editing and the versioning component. To evaluate it, some of the scenarios
described in Chapter 4 were tested with real 3DCM datasets provided by Gemeente
Rotterdam. The aim of testing is to simulate expected interactions between users and
model, identify existing shortcomings both in Up3date and CJV and interpret them
with respect to the conceptual workflow.

The datasets on which the testing was carried out contain building objects, with
all their attributes and semantics but no textures, although there are available tex-
tures in the 3DCM official portal of Rotterdam. They were created from the latest
information collected from Gemeente Rotterdam and they were delivered encoded in
CityGML format.

Each dataset contains a different area of the city, i.e. the complete model is divided
into tiles. Without any specific reason, the given datasets are the tiles B-3 18, B-3 19,
B-3 20, B-3 21, B-3 54, according to Gemeente Rotterdam identification system. They
all contain three different LoD, those being LoD 0, LoD 1, LoD 2. They were converted
into CityJSON encoding using the free software citygml-tools.

For consistency purposes, all the files prior to testing were imported into Up3date
and exported back into CityJSON, without carrying out any changes. That is be-
cause the order that the objects are stored in the original file and the file created
after exporting through Blender is not the same. Omitting this process would lead
to false conflicts being detected by CJV compromising testing. For reference reasons
this dataset will be called ”normalized”.

The order that the CityObjects are stored after exporting from Up3date is different
because of the way the exporter writes the CityJSON file. More specifically, the func-
tion used to write the CityJSON file does it in an alphabetical order. So technically,
”normalizing” a CityJSON file is nothing different than rearranging the order of its
CityObjects in an alphabetical order.

The original dataset as well as the ”normalized” dataset are visually and with the
respect to the information the contain identical as expected. Their differences are in
the order of the objects in the files and in the number of vertices stored in case the
original file had duplicate vertices, and consequently the file size (see Table 6.1).

The tests that will be carried out in this chapter include initializing the repository
of the VCS, creating the multi-branch structure suggested in Chapter 4 and testing
its functionality with respect to the expected use of the workflow. They were con-
ducted on a complete dataset ı.e. a complete tile provided by the municipality in
CityGML and converted into CityJSON encoding.

49

https://github.com/citygml4j/citygml-tools

50 testing

B3 18 CityGML B3 18 CityJSON B3 18 CityJSON
converted exported

CityObjects 782 782

vertices 89954 23623

file size 23.9 MB 4.3 MB 3.4 MB

Table 6.1: A comparison of statistics between the original CityGML file, the CityJSON file as
converted from CityGML and the CityJSON exported from Up3date file using the
original as input. The statistics for CityJSON files were calculated with cjio

6.2 initialize repository and create the multi-
branch structure

To carry out all testing the repository has to be first initialized and the multi-branch
structure to be created within it. In this case CJV is used as the implemented VCS

and the system’s platform is a vCityJSON file.

Using the init commit command a vCityJSON file is created (see Listing 6.2) with
the initial normalized version of the dataset. The four branches of the multi-branch
structure are created next, each one stemming accordingly, using CJV’s branch com-
mand. For each version committed to it, the versioned file stores the version’s
metadata such as author, date, message etc.

none1

none2 cjv i n i t commit B3 18 normalized . j son main −a ” Konstantinos Mastorakis ” −m ”
I n i t i a l Commit” −o versioned . j son

none3 Opening B3 18 normalized . j son . . .
none4 Appending v e r t i c e s . . .
none5 Removing du pl i ca te v e r t i c e s . . .
none6 Updating main to b9ca079909bf4654ca67 f08cab9e8cae4545a749

none7 Saving to versioned . j son . . .

Listing 6.1: The initialization init commit command to create the versioned file and commit
the initial instance to it.

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ” ex t en s i on s ” : {} ,
5 ”metadata” : { . . . } ,
6 ” CityObjects ” : { . . . } ,
7 ” v e r s i o n i n g ” : {
8 ” v e r s i o n s ” : {
9 ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” : {

10 ” author ” : ” Konstant inos Mastorakis ” ,
11 ” date ” : ”2020 - 08 - 19T19 : 52 : 43 . 562161Z” ,
12 ”message” : ” I n i t i a l Commit” ,
13 ” parents ” : [] ,
14 ” o b j e c t s ” : [. . .] ,
15 }} ,
16 ” tags ” : {} ,
17 ” branches ” : {
18 ”main” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
19 ” maintenance ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
20 ” s c e n a r i o ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
21 ” r e l e a s e ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749”
22 }} ,
23 ” v e r t i c e s ” : [. . .]
24 }

Listing 6.2: The versioned file after committing the first instance of the 3DCM and creating
the multi-branch structure. Notice that all branches have the same initial instance
since it was the first instance committed to the main and all the rest branches
stem directly or indirectly from it.

6.3 exporting a subset of the 3d city model 51

6.3 exporting a subset of the 3d city model
The main concept behind conducting this test is the practicality of working in a
subset of the file. Although it is theoretically possible to be always working directly
on the full dataset it is way more convenient for the user to work only on their area
of interest. It is also more efficient from a computing cost aspect, since the data size
reduces dramatically. For instance, within the municipality of Rotterdam there are
approximately a hundred thousand buildings.

What is also useful and worth mentioning is that Blender can export into various
formats. In cooperation with Up3date a (subset of a) 3DCM could potentially be con-
verted into many (if not all) the available formats supported by Blender. This would
facilitate and motivate external applications in which a (very) small part of the 3DCM

is needed in different 3D formats in every occasion. Testing of these format conver-
sions is out of the scope of this thesis though.

As shown in Figure 4.2a, CityObjects from ID 0599100000415249 to ID 0599100000415266
are selected randomly for demonstration purposes and the rest are deleted from
Blender’s scene (see Figure 4.2b). The new scene is then exported into a CityJSON
file with Up3date exporter (Listing 4.1).

At this point it should be mentioned that the current implementation of the VCS ı.e.
CJV does not have the ability to merge the changes of a subset back to the complete
dataset. So this test only deals with testing the exporting functionality of Up3date
when it comes to exporting subsets. More on that will be discussed in Chapter 7.

6.4 testing the fundamental maintenance oper-
ations

In this section the most prevalent cases that the user will come across with respect
to the 3DCM maintenance are simulated. For example editing a building object’s
attributes or geometry. In theory, there is no limit in the combination of tasks that
can be executed as maintenance operations. Practically all combinations of tasks
can be broken down to simple operations which are simulated here.

As already mentioned in Chapter 3 there are three categories of buildings that need
to be maintained. New, mutated, and deleted. All the tests carried out here wrap
around these three categories.

It is assumed that there is only one user working at a time, so that conflicts due
to multiple users working on the same objects are diminished.

6.4.1 Visually editing attribute

Editing an attribute is the simplest action the user can perform on a 3DCM. Some
of those attributes are arbitrarily assigned by external parties and are more prone
to change (address of a building), while others are practically fixed (building’s cre-
ation date). An implemented maintenance workflow can not be functional without
addressing the necessity of editing attributes.

In this test a building’s attribute is edited and then the new version of the 3DCM is
exported with Up3date and fed into the CJV for versioning. More specifically the ob-
ject ID 0599100000669100 is randomly selected and its attribute address.PostalCode is
changed from 3025GM (Figure 6.1a) to 1234AB (Figure 6.1b). This test is equivalent

52 testing

to any other attribute being changed, since there is no difference in the mechanism,
regardless how nested an attribute is. After editing the attribute a new instance is
exported with Up3date which is committed to CJV.

(a) The object’s ID 0599100000669100 attributes be-
fore editing.

(b) The object’s ID 0599100000669100 attributes after
editing

Figure 6.1: Editing the address.PostalCode attribute of the ID 0599100000669100 object.

As shown in Listing 6.4 the commit is successful and updates the maintenance branch
with a new instance. CJV recognizes the object whose attribute is edited and prints
a status message. There is though no extra details regarding what part of the ob-
ject was affected. In Listing 6.5 the updated versioned file is shown in which two
versions are now present.

1 {
2 ”ID 0599100000669100” : {
3 ”geometry” : [. . .] ,
4 ” address ” : {
5 ”CountryName” : ” Nederland ” ,
6 ”LocalityName” : ”Rotterdam” ,
7 ”ThoroughfareNumber” : ”16” ,
8 ”ThoroughfareName” : ” Ros ie r Faas sens t raat ” ,
9 ” PostalCode ” : ”1234AB” ,

10 ” l o c a t i o n ” : { . . . }
11 } ,
12 ” type ” : ” Bui ld ing ” ,
13 ” a t t r i b u t e s ” : { . . . }
14 }
15 }

Listing 6.3: The new instance as exported from Blender into a CityJSON file after editing the
PostalCode attribute.

none1

none2 cjv versioned . j son commit B3 18 a t t r i b e d i t . j son maintenance −a ” Konstantinos
Mastorakis ” −m ”ID 0599100000669100 posta l code changed ”

none3 Opening versioned . j son . . .
none4 Opening B3 18 a t t r i b e d i t . j son . . .
none5 Appending v e r t i c e s . . .
none6 Removing du pl i ca te v e r t i c e s . . .
none7

none8 Changes :
none9

6.4 testing the fundamental maintenance operations 53

none10 changed: ID 0599100000669100 (7af9636544ab267.. ->b5ccd65188e66b3..)
none11

none12 1144 o b j e c t s not changed .
none13

none14 Updating maintenance to a493d4a48ff40151bfd7a57b49bb28b99975402b
none15 Saving to versioned . j son . . .

Listing 6.4: The commit of the object’s ID 0599100000669100 edited attribute instance in the
versioned file.

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ” ex t en s i on s ” : {} ,
5 ”metadata” : { . . . } ,
6 ” CityObjects ” : { . . . } ,
7 ” v e r s i o n i n g ” : {
8 ” v e r s i o n s ” : {
9 ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” : { . . . } ,

10 ”a493d4a48 f f 40151 bfd 7a57b49bb28b99975402b” : {
11 ” author ” : ” Konstant inos Mastorakis ” ,
12 ” date ” : ”2020 - 08 - 20T13 : 09 : 57 . 609656Z” ,
13 ”message” : ”ID 0599100000669100

˙ p o s t a l ˙ c o d e ˙ c h a n g e d ” ,
14 ” parents ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545

a749” ,
15 ” o b j e c t s ” : [. . .] ,
16 }} ,
17 ” tags ” : {} ,
18 ” branches ” : {
19 ”main” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
20 ” maintenance ” : ”a493d4a48 f f 40151 bfd 7a57b49bb28b99975402b” ,
21 ” s c e n a r i o ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
22 ” r e l e a s e ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749”
23 }} ,
24 ” v e r t i c e s ” : [. . .]
25 }

Listing 6.5: The new version of the edited attribute instance committed in the versioned file.

6.4.2 Visually editing geometry

Alongside attribute editing, editing the geometry of objects in a 3DCM is also a
fundamental action. As buildings get altered or even higher accuracy raw data are
collected over time, it is really useful to be able to update the existing objects with
new geometric information.

Edit part of the building object’s geometry

For this test object’s ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 LoD-2 geometry is se-
lected randomly. The face that represents the roof is deleted and the new 3DCM is
exported. Although in practice deleting the roof of a building is not a common edit,
it is better for visualization purposes and allows easier visual comparison, since a
whole face is missing. Any alteration of one or more vertices of a face, instead of
deleting a face is considered equivalent for the VCS.

Notice how the object’s faces are reduced from 44 to 43 in Listing 6.6 and List-
ing 6.7. Again CJV identifies correctly which object is changed Listing 6.8, but as
with attribute edit, there is no insight in what specifically is changed.

54 testing

Figure 6.2: The object’s ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 screenshot before deleting
the roof face in Blender.

1 {
2 ” boundar ies ” : { . . .
3 ”36” : [. . .]
4 ”37” : [. . .]
5 ”38” : [. . .]
6 ”39” : [. . .]
7 ”40” : [. . .]
8 ”41” : [. . .]
9 ”42” : [. . .]

10 ”43” : [. . .]
11 ”44” : [. . .]
12 } ,
13 ” semant ics ” : { . . . } ,
14 ” t e x t u r e s ” : {} ,
15 ” lod ” : 2
16 } ,
17 ” type ” : ” Bui ld ingPart ” ,
18 ” parents ” : ”ID 0599100000688769”
19 }

Listing 6.6: The object’s ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 screenshot before deleting
the roof face, in the CityJSON file.

1 {
2 ” boundar ies ” : { . . .
3 ”36” : [. . .]
4 ”37” : [. . .]
5 ”38” : [. . .]
6 ”39” : [. . .]
7 ”40” : [. . .]
8 ”41” : [. . .]
9 ”42” : [. . .]

10 ”43” : [. . .]
11 } ,
12 ” semant ics ” : { . . . } ,
13 ” t e x t u r e s ” : {} ,
14 ” lod ” : 2
15 } ,
16 ” type ” : ” Bui ld ingPart ” ,
17 ” parents ” : ”ID 0599100000688769”
18 }

Listing 6.7: The object’s ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 screenshot after deleting the
roof face, in the CityJSON file.

6.4 testing the fundamental maintenance operations 55

Figure 6.3: The object’s ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 screenshot after deleting the
roof face in Blender.

none1

none2 cjv versioned . j son commit B3 18 geometry e d i t . j son maintenance −a ” Konstantinos
Mastorakis ” −m ”ID d86a1c93−08c6−4fc2 −90c6−0c1 f64afa008 e d i t geometry”

none3 Opening versioned . j son . . .
none4 Opening B3 18 geometry e d i t . j son . . .
none5 Appending v e r t i c e s . . .
none6 Removing du pl i ca te v e r t i c e s . . .
none7

none8 Changes :
none9

none10 changed: ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 (39e1c319b1deb1a.. ->6e8a0c51235b7d6..)
none11

none12 1144 o b j e c t s not changed .
none13 Updating maintenance to 5 c0a626ea58438ac24af8d3059 f f9487 f1d7d42d
none14 Saving to versioned . j son . . .

Listing 6.8: The commit of the edited geometry of object’s ID d86a1c93-08c6-4fc2-90c6-
0c1f64afa008 in the versioned file.

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ” ex t en s i on s ” : {} ,
5 ”metadata” : { . . . } ,
6 ” CityObjects ” : { . . . } ,
7 ” v e r s i o n i n g ” : {
8 ” v e r s i o n s ” : {
9 ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” : { . . . } ,

10 ”a493d4a48 f f 40151 bfd 7a57b49bb28b99975402b” : { . . . } ,
11 ”5c0a626ea58438ac24 a f 8d3059 f f 9487 f 1d7d42d” : {
12 ” author ” : ” Konstant inos Mastorakis ” ,
13 ” date ” : ”2020 - 08 - 20T14 : 08 : 16 . 169781Z” ,
14 ”message” : ”ID d86a1c93 - 08c6 - 4 f c 2 - 90c6 - 0c1 f 64 a fa

008 e d i t geometry” ,
15 ” parents ” : ”a493d4a48 f f 40151 bfd 7a57b49bb28b99975

402b” ,
16 ” o b j e c t s ” : [. . .] ,
17 }} ,
18 ” tags ” : {} ,
19 ” branches ” : {
20 ”main” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
21 ” maintenance ” : ”5c0a626ea58438ac24 a f 8d3059 f f 9487 f 1d7d42d” ,
22 ” s c e n a r i o ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
23 ” r e l e a s e ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749”

56 testing

24 }} ,
25 ” v e r t i c e s ” : [. . .]
26 }

Listing 6.9: The updated versioned file after committing the new instance.

Delete whole building object

Apart from deleting only parts of an object’s geometry, in some cases the whole ob-
ject has to be removed from the 3DCM because it is not longer existent, for example
if it is demolished. Furthermore, in some cases it might be more efficient to remove
an object and replace it with its newer version than updating the existing one. In
both these cases the whole building object should deleted at its entirety.

For this test object ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 is chosen and com-
pletely eliminated from the 3DCM. The updated instance is then committed to the
versioned file.

Notice that in Listing 6.12, CJV identifies two differences, although only one ob-
ject is deleted. This happens because the ID 848b57d6-528f-4c1d-ab65-27cbb29633d1
object is a child of the ID 0599100000701839 object. So by eliminating the first CJV

sees the parent object as changed as well, which is expected.

Figure 6.4: A screenshot of the 3DCM before deleting object ID 848b57d6-528f-4c1d-ab65-
27cbb29633d1 in Blender.

1 {
2 ”ID 848b57d6 - 528 f - 4c1d - ab65 - 27cbb29633d1” : [. . .]
3 ”ID 855d2dc8 - f c 25 - 4a95 - ac57 -ad7 a f 7aa0a5d” : [. . .]
4 ”ID 870 f 7d50 - a0ea - 4d0 f - a070 -d5d804536ed9” : [. . .]
5 ”ID 878 f f 256 - afb 7 - 44 af - a863 - e8 ec 6a0 bf 5bd” : [. . .]
6 ”ID 892 dacc 2 - 4138 - 4de3 -b36a - ad029 f f 2d79 f ” : [. . .]
7 ”ID 8974a5bc - 00a7 - 462c - 8 f 77 - 41 f 3470cb4dc” : [. . .]
8 ”ID 8ae195a2 - 55ac - 4566 - 937a - 184d8a28294d” : [. . .]
9 ”ID 8b8150 af - 189b - 4b6a - ab5c - 8 f 46 cc 79266c” : [. . .]

10 ”ID 8e2e4513 -b726 - 4b2d - bf 52 -bd48a484c777” : [. . .]
11 ”ID 8e5517ea - f 145 - 4640 - 864d - a20 f 75514968” : [. . .]
12 }

Listing 6.10: The object’s ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 screenshot as part of the
model before deleting it from the 3DCM in the CityJSON file.

6.4 testing the fundamental maintenance operations 57

Figure 6.5: A screenshot of the 3DCM after deleting object ID 848b57d6-528f-4c1d-ab65-
27cbb29633d1 in Blender.

1 {
2 ”ID 855d2dc8 - f c 25 - 4a95 - ac57 -ad7 a f 7aa0a5d” : [. . .]
3 ”ID 870 f 7d50 - a0ea - 4d0 f - a070 -d5d804536ed9” : [. . .]
4 ”ID 878 f f 256 - afb 7 - 44 af - a863 - e8 ec 6a0 bf 5bd” : [. . .]
5 ”ID 892 dacc 2 - 4138 - 4de3 -b36a - ad029 f f 2d79 f ” : [. . .]
6 ”ID 8974a5bc - 00a7 - 462c - 8 f 77 - 41 f 3470cb4dc” : [. . .]
7 ”ID 8ae195a2 - 55ac - 4566 - 937a - 184d8a28294d” : [. . .]
8 ”ID 8b8150 af - 189b - 4b6a - ab5c - 8 f 46 cc 79266c” : [. . .]
9 ”ID 8e2e4513 -b726 - 4b2d - bf 52 -bd48a484c777” : [. . .]

10 ”ID 8e5517ea - f 145 - 4640 - 864d - a20 f 75514968” : [. . .]
11 ”ID 8 f 69 f 6c7 - f 4 f f - 4c28 - 9 f 1c - b497c656 fded ” : [. . .]
12 }

Listing 6.11: The object’s ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 screenshot after deleting
it from the 3DCM in the CityJSON file.

none1

none2 cjv versioned . j son commit B3 18 o b j e c t dele ted . j son maintenance −a ” Konstantinos
Mastorakis ” −m ”ID 848b57d6−528 f−4c1d−ab65−27cbb29633d1 deleted ”

none3 Opening versioned . j son . . .
none4 Opening B3 18 o b j e c t dele ted . j son . . .
none5 Appending v e r t i c e s . . .
none6 Removing du pl i ca te v e r t i c e s . . .
none7

none8 Changes :
none9

none10 changed: ID 0599100000701839 (2f429e144117ec6.. ->87ece8e7c59117f..)
none11 deleted: ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 (e8c609003e7b250..)
none12

none13 1143 o b j e c t s not changed .
none14 Updating maintenance to b927d455c7971 f3cbba5 f83988658646177eaa52

none15 Saving to versioned . j son . . .

Listing 6.12: The commit of the deleted object’s ID 848b57d6-528f-4c1d-ab65-27cbb29633d1

instance in the versioned file.

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ” ex t en s i on s ” : {} ,
5 ”metadata” : { . . . } ,
6 ” CityObjects ” : { . . . } ,
7 ” v e r s i o n i n g ” : {
8 ” v e r s i o n s ” : {
9 ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” : { . . . } ,

58 testing

10 ”a493d4a48 f f 40151 bfd 7a57b49bb28b99975402b” : { . . . } ,
11 ”5c0a626ea58438ac24 a f 8d3059 f f 9487 f 1d7d42d” : { . . . } ,
12 ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” : {
13 ” author ” : ” Konstant inos Mastorakis ” ,
14 ” date ” : ”2020 - 08 - 20T14 : 47 : 02 . 495869Z” ,
15 ”message” : ”ID 848b57d6 - 528 f - 4c1d - ab65 - 27cbb2963

3d1 de l e t ed ” ,
16 ” parents ” : ”5c0a626ea58438ac24 a f 8d3059 f f 9487 f 1d7

d42d” ,
17 ” o b j e c t s ” : [. . .] ,
18 }} ,
19 ” tags ” : {} ,
20 ” branches ” : {
21 ”main” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
22 ” maintenance ” : ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” ,
23 ” s c e n a r i o ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
24 ” r e l e a s e ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749”
25 }} ,
26 ” v e r t i c e s ” : [. . .]
27 }

Listing 6.13: The updated versioned file after committing the deleted object’s ID 848b57d6-
528f-4c1d-ab65-27cbb29633d1 instance.

6.4.3 Updating main branch after the maintenance is completed

As long as the maintenance cycle is completed all the changes should be passed to
main according to the suggested workflow. To make this happen within the VCS,
main should be updated to point at the latest instance committed to maintenance. It
is equivalent with what is called as fast-forward merge in Git.

Due to CJV being a prototype software there is not a fast-forward merge command
implemented yet. To simulate the exact same functionality main is deleted and then
created again to stem from the last instance of maintenance. This action produces
exactly the same result as fast-forwarding main would.

Initial Commit

Attribute Edit Geometry Edit Whole object
deletedInitial Commit

main

maintenance

Merging
Outcome

Figure 6.6: The fast-forward merge command. In practice, no actual merging has occurred
within the VCS. It is just the update of main branch head to point at the last
instance of maintenance.

none1 Found 4 vers ions .
none2

none3 * version b927d455c7971f3cbba5f83988658646177eaa52 (maintenance , main)
none4 Author : Konstantinos Mastorakis
none5 Date : 2020−08−20T14 : 4 7 : 0 2 . 4 9 5 8 6 9Z
none6 Message :
none7

none8 ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 deleted
none9

none10 * version 5c0a626ea58438ac24af8d3059ff9487f1d7d42d
none11 Author : Konstantinos Mastorakis
none12 Date : 2020−08−20T14 : 0 8 : 1 6 . 1 6 9 7 8 1Z
none13 Message :
none14

6.4 testing the fundamental maintenance operations 59

none15 ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 edit geometry
none16

none17 * version a493d4a48ff40151bfd7a57b49bb28b99975402b
none18 Author : Konstantinos Mastorakis
none19 Date : 2020−08−20T13 : 0 9 : 5 7 . 6 0 9 6 5 6Z
none20 Message :
none21

none22 ID 0599100000669100 postal code changed
none23

none24

none25 * version b9ca079909bf4654ca67f08cab9e8cae4545a749 (scenario, release)
none26 Author : Konstantinos Mastorakis
none27 Date : 2020−08−19T19 : 5 2 : 4 3 . 5 6 2 1 6 1Z
none28 Message :
none29

none30 Initial Commit

Listing 6.14: The log command for main after simulating the fast-forward merge.

6.4.4 Adding a new building object

Adding a new object in a 3DCM via a GUI is a fundamental operation for the mainte-
nance and update of a 3DCM. Either a new building is built and needs to be inserted
in the model, or a new area is mapped, the need to add new objects is imperative.

With this test a new building addition into the 3DCM is simulated using Up3date.
The updated model is committed into the versioned file afterwards 1.

Adding a building is slightly more complicated than deleting or editing one. That
is due to specific parameters which have to be given by the user in order for the
editing software to be aware what kind of object is inserted; which in turn affects
the structure within the CityJSON file.

Within the context up Up3date, to insert a new —potentially multi-LoD— building
the following steps have to be followed:

1. Every LoD/geometry has to be added as a mesh in the respective Blender collec-
tion —there is one collection for every LoD type which in the case of Rotterdam
is 0,1,2— so three different collections.

The mesh should be named in a predefined way for Up3date to parse it cor-
rectly. For example, a single LoD0 geometry should be added and named as
0: [LoD0] ID of object preserving also the spaces. The zeroes in bold repre-
sent the LoD of the geometry and should be 1 for LoD1 and so on.

For every mesh/geometry two more things needs to be added as custom prop-
erties: type : the surface type 2 and lod : the number of lod

2. An empty object has to be created with ID of object as a name. That object is
an umbrella for the various LoD geometries.

All the attributes are stored within this object as custom properties. In case
the attributes are nested for example the postal code of an address then the at-
tribute key should be address.postalcode so Up3date can understand the nested
attribute structure and handle it accordingly.

3. If the semantics of the building’s surfaces are known they can be assigned
as materials to the respective faces for LoD2 or higher. The only information

1 This test was carried out afterwards the previous ones because of some technical problems with the
Up3date which did not allow to conduct at the same time with them.

2 Surface, MultiSurface, CompositeSurface or Solid is accepted

60 testing

Up3date parses is the name of the material/semantics 3 so it is the only thing
that the user needs to worry about.

To avoid confusion and since the performance of CJV is what is mostly important,
the new object will be added on the initial normalized version of the 3DCM. The
initial version will be committed in a new completely empty maintenance branch
and then followed by the new —added object— version.

For this test a new building object will be inserted in the 3DCM named CubicHouse
having only an LoD2 geometry for which semantics are also available. For simplicity
purposes the geometry is considered to be an arbitrary cube. The new version will
be then exported and committed to the VCS. The attributes of both the building ob-
ject and the LoD2 geometry can be seen in Figure 6.8. As can be seen in Listing 6.15,
CJV succesfully identifies the new building addition into the 3DCM.

Figure 6.7: CubicHouse in Blender’s scene.

(a) The attributes of the empty object used as an um-
brella to store all geometries.

(b) The attributes of the mesh object that represents
the LoD2 geometry.

Figure 6.8: The attributes/custom properties of the newly inserted object as defined in
Up3date

3 The types of building surface semantics are RoofSurface, WallSurface, GroundSurface, ClosureSurface etc.

6.4 testing the fundamental maintenance operations 61

none1

none2 cjv versioned . j son commit added building . j son −a ” Konstantinos Mastorakis ” −m
”CubicHouse added”

none3 Opening versioned . j son . . .
none4 Opening added building . j son . . .
none5 Appending v e r t i c e s . . .
none6 Removing du pl i ca te v e r t i c e s . . .
none7

none8 Changes :
none9

none10 added: CubicHouse (9961d3a10056db5..)
none11

none12 1145 o b j e c t s not changed .
none13

none14 Updating master to 3 fd74 f67e1149a71380ea98823301a42cbe735bd
none15 Saving to versioned . j son . . .

Listing 6.15: The commit of the added object CubicHouse instance in the versioned file.

1 {
2 CubicHouse” : {
3 ”geometry” : [
4 { ” type ” : ” So l i d ” ,
5 ” boundar ies ” : [. . .] ,
6 ” semant ics ” : {
7 ” va lue s ” : [
8 [0 ,
9 1 ,

10 2 ,
11 3 ,
12 4 ,
13 5]
14] ,
15 ” s u r f a c e s ” : [
16 {” type ” : ” Wal lSurface ”} ,
17 {” type ” : ” Wal lSurface ”} ,
18 {” type ” : ” Wal lSurface ”} ,
19 {” type ” : ” Wal lSurface ”} ,
20 {” type ” : ” GroundSurface ”} ,
21 {” type ” : ” RoofSurface ”}]
22 } ,
23 ” tex ture ” : {} ,
24 ” lod ” : 2 }
25] ,
26 ” type ” : ” Bui ld ing ” ,
27 ” address ” : {
28 ”CountryName” : ” Nederland ” ,
29 ”LocalityName” : ”Rotterdam” ,
30 ” PostalCode ” : ”2209SE” ,
31 ” l o c a t i o n ” : {” lod ” : 0}
32 } ,
33 ” a t t r i b u t e s ” : {
34 ” creat ionDate ” : 20201030 ,
35 ” statusOmschr ” : ”Pand in gebru ik ” }
36 }
37 }

Listing 6.16: Part of the CityJSON instance showing the CubicHouse as exported from Up3date.

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ” ex t en s i on s ” : {} ,
5 ”metadata” : { . . . } ,
6 ” CityObjects ” : { . . . } ,
7 ” v e r s i o n i n g ” : {
8 ” v e r s i o n s ” : {
9 ” dce 1196 f 4089e5 f 7a3bd1c24 bbfca 150135d26e5” : {

10 ” author ” : ” Konstant inos Mastorakis ” ,
11 ” date ” : ”2020 - 10 - 30T16 : 21 : 07 . 292246Z” ,
12 ”message” : ” I n i t i a l Commit” ,

62 testing

13 ” parents ” : [] ,
14 ” o b j e c t s ” : [. . .]
15 } ,
16 ”3 fd 74 f 67e1149a71380ea98823301a42 cbe735bd” : {
17 ” author ” : ” Konstant inos Mastorakis ” ,
18 ” date ” : ”2020 - 10 - 30T16 : 23 : 45 . 256810Z” ,
19 ”message” : ”CubicHouse added” ,
20 ” parents ” : [dce1196 f 4089e5 f 7a3bd1c24 bbfca 150135

d26e5”] ,
21 ” o b j e c t s ” : [. . .]
22 } ,
23 ” tags ” : {}
24 } ,
25 ” branches ” : {
26 ” master ” : ”3 fd 74 f 67e1149a71380ea98823301a42 cbe735bd”}
27 } ,
28 ” v e r t i c e s ” : [. . .]

Listing 6.17: The versioned file after committing the version where CubicHouse was added.

6.5 simulating the creation and adoption of new
scenarios

As introduced already, there is a dedicated branch (scenario) for testing every new
scenario or idea. In terms of editing the 3DCM to implement the new scenario,
the process is a combination of the fundamental maintenance operations (see Sec-
tion 6.4).

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ” ex t en s i on s ” : {} ,
5 ”metadata” : { . . . } ,
6 ” CityObjects ” : { . . . } ,
7 ” v e r s i o n i n g ” : {
8 ” v e r s i o n s ” : {
9 ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” : { . . . } ,

10 ”a493d4a48 f f 40151 bfd 7a57b49bb28b99975402b” : { . . . } ,
11 ”5c0a626ea58438ac24 a f 8d3059 f f 9487 f 1d7d42d” : { . . . } ,
12 ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” : {
13 ” author ” : ” Konstant inos Mastorakis ” ,
14 ” date ” : ”2020 - 08 - 20T14 : 47 : 02 . 495869Z” ,
15 ”message” : ”ID 848b57d6 - 528 f - 4c1d - ab65 - 27cbb2963

3d1 de l e t ed ” ,
16 ” parents ” : ”5c0a626ea58438ac24 a f 8d3059 f f 9487 f 1d7

d42d” ,
17 ” o b j e c t s ” : [. . .] ,
18 }} ,
19 ” tags ” : {} ,
20 ” branches ” : {
21 ”main” : ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” ,
22 ” maintenance ” : ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” ,
23 ” s c e n a r i o ” : ”b927d455c7971 f 3cbba5 f 83988658646177 eaa52” ,
24 ” r e l e a s e ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
25 ” s c e n a r i o ˙ 1” : ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52”
26 }} ,
27 ” v e r t i c e s ” : [. . .]
28 }

Listing 6.18: The two branches that the individual versions will be committed at.

The major differentiation between maintenance and scenario is that within scenario the
changes are carried out by multiple users who work concurrently and are different
from the changes carried out for maintenance purposes, so they have to be merged
together with them before passing to main, if the scenario gets realized.

6.5 simulating the creation and adoption of new scenarios 63

This translates into potential conflicts, first between the concurrent users within
scenario and second upon merging scenario into maintenance. For demonstration pur-
poses a merging operation with no conflicts will be shown in this example in which
two different sets of changes are first integrated into scenario and then passed into
maintenance.

Branched from
 maintenance

Increase building
height

scenario

scenario_1

Redesigned roof
User 1

Branched from
maintenance

User 2

Merging changes

main

Merging
(maintenance)

Merging
(scenario)

Figure 6.9: A schematic representation of the test in a sequence of commits. The merging
commits in main or in reality fast-forward merges.

For this test two sets of changes will be committed into scenario, simulating two
users working on different objects of the model implementing the scenario for visu-
alization and testing purposes. In practice though since there is no remote reposi-
tory for the individual users to push their work a workaround is needed. To sim-
ulate this functionality two branches are created scenario and scenario 1 each one
simulating each individual user and pointing to the last instance of maintenance.
(Listing 6.18).

(a) Building’s ID 07d2fe44-ddd6-43e5-9ea0-
5fd753ff0c52 LoD 2 geometry whose roof
will be reconstructed for hosting solar panels

(b) Building’s ID 0599100000760584 LoD 1 geometry
whose upwards extension needs to be tested

Figure 6.10: The two buildings that have to be edited for the implementation of the new
scenario

Each set of changes will be carried out in these branches respectively; then the
branches will be merged together into one (scenarion in this case), which is the
equivalent of pushing the two local branches into the remote scenario branch. These
changes can be then passed to maintenance simulating the adoption and the realiza-
tion of the scenario. To do the merge command is used. The difference between
a realized and a non-realized scenario is that there is no update of maintenance to
match scenario.

When using merge, the direction of the merging should be chosen. This affects

64 testing

(a) Building’s ID 07d2fe44-ddd6-43e5-9ea0-
5fd753ff0c52 LoD 2 geometry whose roof
shape is redesigned

(b) Building’s ID 0599100000760584 LoD 1 geometry
after extending its height

Figure 6.11: The two building geometries after being edited implementing the new scenario

the branch in which the outcome of merge will be committed. Similar to Git, the out-
come of merge is identical regardless the merging direction (scenario to maintenance
or vice versa). In this case the direction of the merge is from scenario to maintenance,
since integrating the changes into maintenance is the desired outcome.

6.5.1 Scenario explanation

The concept of the scenario whose approval and realization will be simulated is the
following: The shape of a building’s roof needs to be decided to maximize its solar
capacity depending also on a building nearby that will be extended upwards. The
exact shape of the roof in conjunction with the effect of the increased height of the
neighboring building should be analyzed.

Ideally to understand how the increase in the building’s height and the proper
roof shape of the two buildings interact a shade simulation should be carried out to
the updated model(s).

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ” ex t en s i on s ” : {} ,
5 ”metadata” : { . . . } ,
6 ” CityObjects ” : { . . . } ,
7 ” v e r s i o n i n g ” : {
8 ” v e r s i o n s ” : {
9 ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” : { . . . } ,

10 ”a493d4a48 f f 40151 bfd 7a57b49bb28b99975402b” : { . . . } ,
11 ”5c0a626ea58438ac24 a f 8d3059 f f 9487 f 1d7d42d” : { . . . } ,
12 ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” : { . . . } ,
13 ”c5814a2b2529c01d592 eaacedbab 3d436286 fb 7b” : {
14 ” author ” : ” Konstant inos Mastorakis ” ,
15 ” date ” : ”2020 - 08 - 26T16 : 21 : 06 . 232885Z” ,
16 ”message” : ”ID 0599100000760584 lod 1 geometry

extruded ” ,
17 ” parents ” : ”b927d455c7971 f 3cbba5 f 83988658646177

eaa52” ,
18 ” o b j e c t s ” : [. . .] ,
19 } ,
20 ”e52c328 ce 44 f c 3e0a39cd9 a f 7245cbb6d0476609” : {
21 ” author ” : ” Konstant inos Mastorakis ” ,
22 ” date ” : ”2020 - 08 - 26T16 : 56 : 46 . 839261Z” ,
23 ”message” : ”ID 0599100000760585 lod 2 r o o f

r ede s i gned ” ,

6.5 simulating the creation and adoption of new scenarios 65

24 ” parents ” : ”b927d455c7971 f 3cbba5 f 83988658646177
eaa52” ,

25 ” o b j e c t s ” : [. . .] ,
26 }} ,
27 ” tags ” : {} ,
28 ” branches ” : {
29 ”main” : ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” ,
30 ” maintenance ” : ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” ,
31 ” s c e n a r i o ” : ”e52c328 ce 44 f c 3e0a39cd9 a f 7245cbb6d0476609” ,
32 ” r e l e a s e ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
33 ” s c e n a r i o ˙ 1” : ”c5814a2b2529c01d592 eaacedbab 3d436286 fb 7b”
34 }} ,
35 ” v e r t i c e s ” : [. . .]
36 }

Listing 6.19: The vCityJSON file after committing both instances at their respective branches.

In this hypothetical scenario one user is responsible to implement the shape of the
roof of the building (Figure 6.10a) and the second to implement the upwards ex-
tension of the second building (Figure 6.10b) so that the solar capacity analysis can
be performed. The two users will commit their respective instances (Figure 6.11a,
Figure 6.11b) to the individual branches with then will be merged into one.

More specifically the instance depicted in Figure 6.11a will be committed at sce-
nario and the instance depicted in Figure 6.11b in scenario 1. Next, branch scenario 1
will be merged into scenario (Listing 6.20). The log output for scenario is shown in
Listing 6.21. Finally, main will be fast-forwarded to scenario Listing 6.22 simulating
that the implemented in the 3DCM changes will be realized.For better understanding
see Figure 6.9 which is a schematic representation of the merging mechanics of the
whole test.

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ” ex t en s i on s ” : {} ,
5 ”metadata” : { . . . } ,
6 ” CityObjects ” : { . . . } ,
7 ” v e r s i o n i n g ” : {
8 ” v e r s i o n s ” : {
9 ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” : { . . . } ,

10 ”a493d4a48 f f 40151 bfd 7a57b49bb28b99975402b” : { . . . } ,
11 ”5c0a626ea58438ac24 a f 8d3059 f f 9487 f 1d7d42d” : { . . . } ,
12 ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” : { . . . } ,
13 ”c5814a2b2529c01d592 eaacedbab 3d436286 fb 7b” : { . . . } ,

14 ”e52c328 ce 44 f c 3e0a39cd9 a f 7245cbb6d0476609” : { . . . }
15 ”a675e34ac692c0418a82420bb706987e5 df 3 ec 47” : {
16 ” author ” : ” Konstant inos Mastorakis ” ,
17 ” date ” : ”2020 - 08 - 26T16 : 59 : 23 . 047245Z” ,
18 ”message” : ”Merge s c e n a r i o 1 to s c e n a r i o ” ,
19 ” parents ” : {”c5814a2b2529c01d592 eaacedbab 3d43628

6 fb 7b” , ”e52c328 ce 44 f c 3e0a39cd9 a f 7245cbb6d04
76609”} ,

20 ” o b j e c t s ” : [. . .] ,
21 } , } ,
22 ” tags ” : {} ,
23 ” branches ” : {
24 ”main” : ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” ,
25 ” maintenance ” : ”b927d455c7971 f 3cbba5 f 83988658646177eaa 52” ,
26 ” s c e n a r i o ” : ”a675e34ac692c0418a82420bb706987e5 df 3 ec 47” ,
27 ” r e l e a s e ” : ”b9ca079909 bf 4654ca67 f 08cab9e8 cae 4545a749” ,
28 ” s c e n a r i o ˙ 1” : ”c5814a2b2529c01d592 eaacedbab 3d436286 fb 7b”
29 }} ,
30 ” v e r t i c e s ” : [. . .]
31 }

Listing 6.20: The vCityJSON file after merging scenario 1 to scenario.

66 testing

none1 Found 7 vers ions .
none2

none3 * version a675e34ac692c0418a82420bb706987e5df3ec47 (scenario)
none4 Author : Konstantinos Mastorakis
none5 Date : 2020−08−26T16 : 5 9 : 2 3 . 0 4 7 2 4 5Z
none6 Message :
none7

none8 Merge scenario 1 to scenario
none9

none10 * version c5814a2b2529c01d592eaacedbab3d436286fb7b (scenario 1)
none11 Author : Konstantinos Mastorakis
none12 Date : 2020−08−26T16 : 2 1 : 0 6 . 2 3 2 8 8 5Z
none13 Message :
none14

none15 ID 0599100000760584 lod 1 geometry extruded
none16

none17 * version e52c328ce44fc3e0a39cd9af7245cbb6d0476609

none18 Author : Konstantinos Mastorakis
none19 Date : 2020−08−26T16 : 5 6 : 4 6 . 8 3 9 2 6 1Z
none20 Message :
none21

none22 ID 0599100000760585 lod 2 roof redesigned
none23

none24 * version b927d455c7971f3cbba5f83988658646177eaa52 (maintenance , main)
none25 Author : Konstantinos Mastorakis
none26 Date : 2020−08−20T14 : 4 7 : 0 2 . 4 9 5 8 6 9Z
none27 Message :
none28

none29 ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 deleted
none30

none31 * version 5c0a626ea58438ac24af8d3059ff9487f1d7d42d
none32 Author : Konstantinos Mastorakis
none33 Date : 2020−08−20T14 : 0 8 : 1 6 . 1 6 9 7 8 1Z
none34 Message :
none35

none36 ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 edit geometry
none37

none38 * version a493d4a48ff40151bfd7a57b49bb28b99975402b
none39 Author : Konstantinos Mastorakis
none40 Date : 2020−08−20T13 : 0 9 : 5 7 . 6 0 9 6 5 6Z
none41 Message :
none42

none43 ID 0599100000669100 postal code changed
none44

none45 * version b9ca079909bf4654ca67f08cab9e8cae4545a749 (release)
none46 Author : Konstantinos Mastorakis
none47 Date : 2020−08−19T19 : 5 2 : 4 3 . 5 6 2 1 6 1Z
none48 Message :
none49

none50 Initial Commit

Listing 6.21: The log command output for scenario after merging scenario 1 into it

6.6 testing for conflicts 67

none1 Found 7 vers ions .
none2

none3 * version a675e34ac692c0418a82420bb706987e5df3ec47 (scenario , main)
none4 Author : Konstantinos Mastorakis
none5 Date : 2020−08−26T16 : 5 9 : 2 3 . 0 4 7 2 4 5Z
none6 Message :
none7

none8 Merge scenario 1 to scenario
none9

none10 * version c5814a2b2529c01d592eaacedbab3d436286fb7b (scenario 1)
none11 Author : Konstantinos Mastorakis
none12 Date : 2020−08−26T16 : 2 1 : 0 6 . 2 3 2 8 8 5Z
none13 Message :
none14

none15 ID 0599100000760584 lod 1 geometry extruded
none16

none17 * version e52c328ce44fc3e0a39cd9af7245cbb6d0476609

none18 Author : Konstantinos Mastorakis
none19 Date : 2020−08−26T16 : 5 6 : 4 6 . 8 3 9 2 6 1Z
none20 Message :
none21

none22 ID 0599100000760585 lod 2 roof redesigned
none23

none24 * version b927d455c7971f3cbba5f83988658646177eaa52 (maintenance)
none25 Author : Konstantinos Mastorakis
none26 Date : 2020−08−20T14 : 4 7 : 0 2 . 4 9 5 8 6 9Z
none27 Message :
none28

none29 ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 deleted
none30

none31 * version 5c0a626ea58438ac24af8d3059ff9487f1d7d42d
none32 Author : Konstantinos Mastorakis
none33 Date : 2020−08−20T14 : 0 8 : 1 6 . 1 6 9 7 8 1Z
none34 Message :
none35

none36 ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 edit geometry
none37

none38 * version a493d4a48ff40151bfd7a57b49bb28b99975402b
none39 Author : Konstantinos Mastorakis
none40 Date : 2020−08−20T13 : 0 9 : 5 7 . 6 0 9 6 5 6Z
none41 Message :
none42

none43 ID 0599100000669100 postal code changed
none44

none45 * version b9ca079909bf4654ca67f08cab9e8cae4545a749 (release)
none46 Author : Konstantinos Mastorakis
none47 Date : 2020−08−19T19 : 5 2 : 4 3 . 5 6 2 1 6 1Z
none48 Message :
none49

none50 Initial Commit

Listing 6.22: The log command output for main after merging scenario into it

6.6 testing for conflicts
This section aims at understanding when the VCS considers an object changed which
potentially leads to merging conflicts. By altering the information included in the
3DCM in various ways, the performance of the VCS can be tested in practice and
more insight can be gained that can help improving the later.

The conflicts created can be divided into two categories. False conflicts, these hap-
pening when the smallest entity issue introduced in Chapter 4 and true or expected
conflicts that happen because the exact same piece of information is changed in two
different ways prior to merging.

68 testing

These tests will be carried out on a new versioned file for simplicity purposes. For
consistency purposes the initial file in the new versioned file will be the same as
before.

6.6.1 Mingle order of attributes

This test aims in understanding if by changing the order of two CityObject’s at-
tributes in the CityJSON file itself, the CityObject is understood as altered by the
VCS.

If this happens it means that editing the 3DCM instance file with a software other
than Up3date for example, which potentially mingles the order of attributes, would
make the object(s) appear as changed upon committing to the respective branch
and yield a conflict if the same object has been edited differently by another user in
the meantime.

1 {
2 ”ID 0599100000012851 : {
3 ”geometry : [. . .] ,
4 ” address ” : { . . . } ,
5 ” type ” : ” Bui ld ing ” ,
6 ” a t t r i b u t e s ” : {
7 ” yearOfConstruct ion ” : 1910 ,
8 ” creat ionDate ” : ”2017 - 08 - 15”

,
9 ”gebouwnummer” : ”05991000000

12851” ,
10 ” hoogste bouwlaag” : 2 ,
11 ” statusOmschr ” : ”Pand in

gebru ik ” ,
12 ” aantalBouwlagen ” : 4 ,
13 ” laags t e ˙bouwlaag ” : 1 ,
14 ”typeOmschr” : ” tussenpand ”
15 }}
16 }

Listing (6.23) The original attribute order of
CityObject ID 0599100000012851.

1 {
2 ”ID 0599100000012851 : {
3 ”geometry : [. . .] ,
4 ” address ” : { . . . } ,
5 ” type ” : ” Bui ld ing ” ,
6 ” a t t r i b u t e s ” : {
7 ” creat ionDate ” : ”2017 - 08 - 15” ,
8 ” yearOfConstruct ion ” : 1910 ,

9 ”gebouwnummer” : ”05991000000128
51” ,

10 ” hoogste bouwlaag” : 2 ,
11 ” statusOmschr ” : ”Pand in

gebru ik ” ,
12 ” aantalBouwlagen ” : 4 ,
13 ” laags t e ˙bouwlaag ” : 1 ,
14 ”typeOmschr” : ” tussenpand ”
15 }}
16 }

Listing (6.24) The changed attribute order of
CityObject ID 0599100000012851.

none1

none2 cjv v e r s i o n e d c o n f l i c t s . j son commit B3 18 normalized reorder a t t r i b u t e . j son
master −a ” Konstantinos Mastorakis ” −m ”
ID 0599100000012851 at tr ibutes swapped ”

none3 Opening v e r s i o n e d c o n f l i c t s . j son . . .
none4 Opening B3 18 normalized reorder a t t r i b u t e . j son . . .
none5 Appending v e r t i c e s . . .
none6 Removing du pl i ca te v e r t i c e s . . .
none7

none8 Changes :
none9

none10 changed: ID 0599100000012851 (d6ade9370ad2e5c.. ->d200c4bb3f915ef..)
none11

none12 Updating master to 74 e5d00d9e5c6dd654d786b2908ffd2294032f88

none13 Saving to v e r s i o n e d c o n f l i c t s . j son . . .

Listing 6.25: The commit of the swapped attributes’ instance of object’s ID 0599100000012851.
CJV perceives the object as changed.

6.6.2 Mingle order of faces

This case is the exact same test as the previous one but instead of attributes the order
of the faces of an object’s geometry is swapped. Knowing that CJV uses hashes it is

6.6 testing for conflicts 69

1 {
2 ”ID 0599100000012859 : {
3 ”geometry” : {” type ” : ” So l i d ” ,
4 ” boundar ies ” : [
5 [
6 [
7 [
8 4312 ,
9 4313 ,

10 4314 ,
11 4315 ,
12 4316 ,
13 4317 ,
14 4318 ,
15 4319 ,
16 4320 ,
17 4321 ,
18 58 ,
19 4322 ,
20 4323
21]
22] ,
23 [
24 [
25 14927 ,
26 14928 ,
27 14929 ,
28 14930 ,
29 14931 ,
30 14932
31]
32 }}
33 }

Listing (6.26) The original face order of CityObject
ID 0599100000012859.

1 {
2 ”ID 0599100000012859 : {
3 ”geometry” : {” type ” : ” So l i d ” ,
4 ” boundar ies ” : [
5 [
6 [
7 [
8 14927 ,
9 14928 ,

10 14929 ,
11 14930 ,
12 14931 ,
13 14932
14]
15] ,
16 [
17 4312 ,
18 4313 ,
19 4314 ,
20 4315 ,
21 4316 ,
22 4317 ,
23 4318 ,
24 4319 ,
25 4320 ,
26 4321 ,
27 58 ,
28 4322 ,
29 4323
30]
31 [
32 }}
33 }

Listing (6.27) The changed face order of CityObject
ID 0599100000012859.

Figure 6.13: Swapping the first and second face of the LoD 2 geometry of CityObject
ID 0599100000012859.

expected that the outcome will be the same as before, meaning that the VCS will see
the object as changed. For demonstration purposes though the test is carried out.

none1

none2 cjv v e r s i o n e d c o n f l i c t s . j son commit B3 18 normalized reorder f a c e . j son master
−a ” Konstantinos Mastorakis ” −m ”

ID 0599100000012859 lod 2 faces swapped ”
none3 Opening v e r s i o n e d c o n f l i c t s . j son . . .
none4 Opening B3 18 normalized reorder f a c e . j son . . .
none5 Appending v e r t i c e s . . .
none6 Removing du pl i ca te v e r t i c e s . . .
none7

none8 Changes :
none9

none10 changed: ID 0599100000012859 (d278de805af79dd.. ->c33e4caba5ad000..)
none11

none12 Updating master to 824798 c78cbe2a4ad3ed912d19f1a0211b42e885

none13 Saving to v e r s i o n e d c o n f l i c t s . j son . . .

Listing 6.28: The commit of the swapped faces of object’s ID 0599100000012859 LoD 2

geometry faces version. CJV perceives the object changed.

70 testing

6.6.3 Edit different piece of information within the same object in (false conflict)

In this case a different sub-entity of the object is changed in two branches and then
a merge attempt is executed to check the outcome.

1 {
2 ” type ” : ”CityJSON” ,
3 ” ve r s i on ” : ”1 . 0” ,
4 ” ex t en s i on s ” : {} ,
5 ”metadata” : { . . . } ,
6 ” CityObjects ” : { . . . } ,
7 ” v e r s i o n i n g ” : {
8 ” v e r s i o n s ” : {
9 ”8 bf 0de99a8ad1 fb 9 fb 3d8927c34cda7a082a5 dfd ” : { . . . } ,

10 ”74e5d00d9e5c6dd654d786b2908 f f d 2294032 f 88” : { . . . } ,
11 ”824798c78 cbe 2a4ad3ed912d19 f 1a0211b42e885” : { . . . } ,
12 ”2217 f f 724 ce 1e07d96765b240 fa 28191e5e45 fb 8” : {
13 ” author ” : ” Konstant inos Mastorakis ” ,
14 ” date ” : ”2020 - 08 - 28T12 : 39 : 11 . 061604Z” ,
15 ”message” : ”ID 0599100000012851 p o s t a l code

changed” ,
”

parents ” : ”824798c78cbe 2a4ad3ed912d19 f 1a0211b
42e885” ,

16 ” o b j e c t s ” : [. . .]
17 } ,
18 ”68258e642350d97d9bd48e9ca7266409ab28c2de” : {
19 ” author ” : ” Konstant inos Mastorakis ” ,
20 ” date ” : ”2020 - 08 - 28T12 : 40 : 03 . 307291Z” ,
21 ”message” : ”ID 0599100000012851 number changed” ,
22 ” parents ” : ”824798c78cbe 2a4ad3ed912d19 f 1a0211b42

e885” ,
23 ” o b j e c t s ” : [. . .]
24 } , } ,
25 ” tags ” : {} ,
26 ” branches ” : {
27 ” master ” : ”2217 f f 724 ce 1e07d96765b240 fa 28191e5e45 fb 8” ,
28 ” t e s t i n g ” : ”68258e642350d97d9bd48e9ca7266409ab28c2de” ,
29 }} ,
30 ” v e r t i c e s ” : [. . .]
31 }

Listing 6.29: The versioned file after committing both instances into their respective branches.

More specifically a second branch is created in the versioned file and then two
new instance are committed; one into each branch respectively. In the first instance
object’s ID 0599100000012851 PostalCode is changed from 3025TW to 9876CD. In the
second, attribute ThoroughfareNumber is changed from 126 to 150 (leaving the postal
code unchanged to the original value 3025TW). Then, both instances are committed
to their respective branches (see Listing 6.29). Finally, merge command is used to
test the behavior of the VCS. As shown in Listing 6.30 the VCS can not merge the
two instances raising a conflict.

none1

none2 cjv v e r s i o n e d c o n f l i c t s . j son merge testing master −a ” Konstantinos Mastorakis ”
none3 Opening v e r s i o n e d c o n f l i c t s . j son . . .
none4 Common ances tor : 824798 c78cbe2a4ad3ed912d19f1a0211b42e885

none5 There are c o n f l i c t s !
none6 − ID 0599100000012851

none7 Forgive me f o r not being able to r e s o l v e them r i g h t now . . .

Listing 6.30: CJV raising a conflict upon merging the two branches.

After carrying out the three conflict-related experiments presented so far, it is safe
to conclude that any change within the records of the 3DCM or their order will be
perceived as a changed object from CJV.

6.6 testing for conflicts 71

Concluding, it is of course expected a conflict to be raised when editing the same
record within the same object in two different instances and attempting to merge
them. That is the desired behavior of a VCS.

The problem is that CJV will also raise a conflict in case different records within
the same object are edited which is not optimal since the user has to manually
create a new instance and integrate these two changes together.

7 D I S C U S S I O N

3DCMs and their manipulation is an emerging domain that has been growing very
fast recently. That is due to technologies that allow massive spatial data collection
becoming more accessible and computers’ hardware becoming more powerful and
capable of handling it. In addition, 3DCMs become more and more popular due to
the intuitiveness of dealing with visualized 3D information plus the fact that all the
information is integrated into a single dataset.

3DCMs have to catch up with reality in order for them to be as useful as possible
i.e. they need to be maintained regularly. This thesis suggested a prototype work-
flow for the successful and efficient maintenance of CityJSON encoded 3DCMs. This
workflow includes the use of two prototype software components: One for editing
a 3DCM through a GUI and one for implementing a VCS.

Originating from software development, the use of a VCS capable to handle 3DCM

files is considered the most appropriate solution for effective maintenance. That is
because VCS have the ability to keep track of all changes automatically while they
guarantee data integrity. They also allow concurrent maintaining in an efficient way,
by identifying potential information mismatch (i.e.conflicts). These characteristics
make a VCS the most important component of a 3DCM maintenance workflow.

7.1 conclusions

A major change that the workflow introduces is the regularity of maintenance. With
respect to 3DCMs, maintenance can be considered as a cornerstone. It is the —
conceptual— foundation for promoting integration of the suggested workflow into
the existing workflows of public organizations or private companies who work with
this kind of information. Not only it will grant them full control over the 3DCM and
its evolution, but it will also save them considerable financial resources currently
used for outsourcing in some cases.

Being prototype means that the workflow is far from becoming operational. Ar-
guably, one of the most important conclusions which affects the whole behavior of
the VCS has to do with the smallest entity issue as it was described in Chapter 4. In
other words, the hierarchical level within a 3DCM file at which the VCS can interpret
a change is crucial for an efficient and smart solution.

That being said, what is the smallest entity has to be defined in advance, since
one could argue that it could be the attribute’s level, someone else the index of the
vertices within the faces of each geometry and a third party the vertices coordinates
themselves (although they are kept outside the CityObjects in the case of CityJSON).

For comparison, in software development oriented VCSs that level is every simple
character in a text file (i.e. the smallest entity possible). Doing the same is not as
trivial with 3DCMs oriented VCS because there are many different types of informa-
tion (descriptive, geometrical, semantic, numerical, text etc) which is nested within
each other as well.

73

74 discussion

As shown during testing, having an object higher into the CityJSON’s hierarchy
as the smallest entity is simpler from a developing point of view. However it raises
conflicts that from a human perspective should not be raised (i.e. false conflicts),
therefore increasing the workload for the maintainer.

On the other hand going deeper into the hierarchy means that the VCS will become
smarter in the sense of understanding and interpreting what part of information is
changed within a CityObject; reducing or even ideally eliminating the raise of false
conflicts. However, from a developing point of view it would increase the complex-
ity of the VCS software.

For this automation to be meaningful the developing of the VCS functionality to
match this performance should be flawless, which is not easily achievable in the con-
text of 3DCM data structures. Although automating procedures is always a tempting
path to follow with big data, in the 3DCMs domain —and with their maintenance
as well— it looks like human supervision will always be necessary to some extent.
That is due to the nature and versatility of the data.

Ideally, the ”golden ratio” should be achieved between a smart VCS yet leaving
space for (at least) some human supervision. For that ”golden ratio” to be defined,
further research is needed with trial and error to be probably the best approach.

7.1.1 To what extent can a Git-based versioning approach be used for the main-
tenance of the 3D city model of a typical municipality?

The main goal of the thesis was to investigate to what extent a Git-based versioning
approach is suitable for the maintenance of the 3DCM of a typical municipality. After
designing, implementing and testing such a workflow, perhaps the most important
generic conclusion is that aGit-based VCS with visual editing capabilities is a very
promising combination for tackling the task of maintaining a 3DCM updated.

What this thesis has shown, is that maintaining 3DCMs can become a relatively sim-
ple task —compared to what is now— that does not require the maintainers to be
experts with 3DCM data models, encodings and specifications.

The workflow and specifically its versioning component was customized accord-
ing to the needs of the municipality of Rotterdam, in order to keep it simple yet
manageable and practical.

A quite positive surprise was the realization that some of the key points for the
effective maintenance for the municipality of Rotterdam are coinciding —at a con-
ceptual level— with some of Git’s functionality. More specifically, key point 3,4 and
5 from Table 3.2 are really close to what Git operations branch, fork and pull request
respectively.

It has to be mentioned here that upon the identification and formulation of all five
key points in Table 3.2, Git’sfunctionality was not taken into account at all. This fact
confirms that a Git-based versioning approach for maintaining a 3DCM of a typical
municipality; assuming that those key points will remain more or less the same for
other municipalities as well.

Regarding the visual editing capabilities of the workflow another useful realization
was that these capabilities might be more necessary than initially thought. Devel-
oping the visual editing component of the workflow started as a proof of concept.
However, after using it for generating the new instances for the versioning com-

7.2 practical comparison with other potential solutions 75

ponent it became clear that some geometrical edits are almost impossible without
a visual editor. For example changing the shape of a roof (see Figure 6.10a, Fig-
ure 6.11a).

In that sense, what was developed to improve the interface via which the user can
edit a 3DCM, turned out to have more capabilities than other 3DCM editing software.
Last but not least, having the capability to edit a 3DCM via a GUI drastically improves
the user experience with respect to updating and editing a 3DCM, while it provides
with intuitive inspection of the edits in real time.

7.2 practical comparison with other potential so-
lutions

Before carrying any comparison with other potential solutions it has to be clarified
that currently there are no other implemented solutions that allow versioning of
3DCMs. What is more, discussion about versioning itself has little to no meaning in
an abstract context. In order for a comparison to be meaningful it needs to compare
two implementations of versioning; since in a conceptual and data model level ev-
erything is more or less an abstraction with respect to versioning.

With this in mind, the following comparisons are carried out with a speculation of
what a versioning implementation of the alternative data models would be based
on the respective data models. In other words, until a solid implementation of
versioning is available for the alternative data models, no real comparison can exist.

7.2.1 CityGML v.3.0

The most obvious comparison would be with an implemented workflow that would
wrap around the new CityGML v.3.0 data model and encoding. In my opinion, both
the data model of CityGML v.3.0 and the Geography Markup Language (GML) encod-
ing have some specific characteristics that make CityGML v.3.0 inferior to CityJSON
for the purpose of versioning.

At the moment, there is no software available that implements CityGML v.3.0 ver-
sioning module in practice. Someone could argue at this point that CityGML v.3.0
is not yet released officially for that to happen. However, practice has shown that
the GML encoding imposes many difficulties when it comes to developing software
for handling such files. That is the case with CityGML v.2.0 as well that limited
software can support that encoding. It is certain that these difficulties will continue
to exist also with CityGML v.3.0.

In the case the aforementioned difficulties were to be surpassed, there is a second
point —in my opinion even more important— because it is encoding independent
and has to do with the data model of CityGML v.3.0 itself. The CityGML v.3.0 ver-
sioning module inherently creates redundancy of information which for versioning
solutions can complicates things a lot and create break points.

According to the CityGML v.3.0 versioning data module apart from the different
versions of the objects, the transition record between them is also kept within the
same structure. Obviously, these two need to be always ”synced”, otherwise great
amount of confusion will arise. Keeping them synced from an implementing point
of view adds a lot of complexity and potentially compromises the robustness of the
whole versioning platform. The amount of potential break points is increased every
time a new version of an object is created.

76 discussion

What is even more limiting is the fact that the transaction types between two ver-
sions of an object are prescribed as well by the data model. What this means is that
the user is not free to assign the type of transaction they wish but to choose from
predefined ones. In the case a new type of transaction emerges it is not possible
to record that accurately and it would require the data model to be revised or an
extension to be created, which adds unnecessary complexity. In comparison, the
CityJSON data structure for versioning does not require any record of such transi-
tion.

A minor point but worth mentioning is the lack of prediction of a mechanism for
handling the versions within the CityGML file from the data model. Although this
mechanism could theoretically be implemented in the future, users must be editing
directly on the CityGML file until it is in place, which inevitably leads to higher
error and breaking the file probability, especially with a complex data model such
as the CityGML v.3.0 versioning module.

Summarizing, CityGML v.3.0 is considered inferior to CityJSON for a versioning im-
plementation mainly due to the redundancy of information it introduces followed
by an already notorious encoding format among the software developing commu-
nity. Last but not least, it is unnecessarily strict when it comes to what can be the
types of transactions with no tangible benefit.

7.2.2 3DCityDB

According to the official website, there is no support for versioning within the 3dCi-
tyDB which currently supports the CityGML v.1.0 and v.2.0 formats. Most probably
CityGML v.3.0 will be supported in the future, but for now there is nothing officially
stated about that in their website.

If CityGML v.3.0 gets supported by 3DCityDB implementing versioning capabili-
ties as CityGML v.3.0 data model dictates would also mean that the characteristics
of the latter mentioned in Section 7.2.1 are inherited to 3DCityDB as well. In my
opinion, using a versioning mechanism besides what CityGML v.3.0 data model sug-
gests, that would also take advantage of the inherent benefits of a database when it
comes to versioning, might lead to a better solution.

In the case that 3DCityDB gets to support the CityJSON data model and format,
will be a big improvement from a software development point of view. That makes
the development of a (Git-based) versioning solution more feasible, if the CityGML
v.3.0 data model proves to be not the suitable approach for versioning in practice.

Since it is not viable for the 3DCM of a municipality to be kept in raw 3DCM files,
making the use of database is perhaps the best way to follow. Eventually, 3DCM

versioning software will be implemented and accepted, it is just not there yet.

7.3 mingling the order of faces

As seen in Section 6.6.2 changing the order of the faces within a geometry of any
object, makes the VCS see the whole object as changed. This means that many false
conflicts will be yielded due to this. In case of using different software to edit the
same file, the order of its contents is very likely to change, creating a lot of unneces-
sary conflicts when integrating the changes back to the VCS and creating potential
data corruption or loss if the conflicts are not handled properly . That is why the

7.4 what can rotterdam expect in practice: challenges and improvements 77

dataset was ”normalized” before doing any tests on it in Chapter 6 so the results
would be valid.

One way to avoid that, would be to order the faces of every geometry in a uni-
versal way prior to committing to the VCS, so it can detect what is actually changed.
An example of such ordering is the lexicographical order 1. An approach like that is
very likely to address this challenge effectively.

Regardless that, a question of more or less philosophical nature arises at this point:
If the order of the faces/vertices of a geometry/face is changed, can the geometry/face be con-
sidered the same?

Being philosophical, there is no right or wrong answer to this question from a
human perspective. For the versioning component of the workflow though, the an-
swer to the question at the moment is negative. From a developing point of view
that answer makes things simpler, but on a practical level it will certainly create lots
of false conflicts. This translates into considerably more workload and increased
error possibility.

For a more efficient and robust system it looks like the answer to that question with
respect to the versioning component should be positive. That way the robustness
of the VCS will increase, allowing a facilitating the use of different editing software
and workflows.

If the answer for the VCS remains as is, it will be up to the practitioner to interpret if
there is an actual change to the CityObjects. This will be rather exhaustive procedure
especially when there are many CityObjects. What is more, it will compromise the
history tracking mechanism of the VCS since it will present false changes that have
never taken place.

The exact same applies for mingling the order of attributes (see Section 6.6.1) with
the only difference that tackling this issue is more straightforward. That is due to
descriptive data having simpler data structures and key field within the dictionary
is text rather than an identification number for indexing. A simple alphabetical
ordering of the attributes would solve the problem effectively.

7.4 what can rotterdam expect in practice: chal-
lenges and improvements

As already mentioned in Chapter 3, currently the municipality of Rotterdam out-
sources the task of updating their 3DCM once every two years. Adopting the sug-
gested workflow —with the necessary customization to fit their existing workflows—
will enable the municipality to —potentially— manage the 3DCM completely on its
own in the future.

However, there is no change that comes at no cost. Such a transition is certain that
will impose plenty of challenges, especially since there is no pre-existing workflow
due to outsourcing. The challenges are created first due to the prototype nature of
the workflow and second to the required resources the municipality would need to
invest, in order for the practitioners to familiarize, understand and use the work-
flow effectively.

The more impeding challenges are expected to be those that are related to the proto-

1 https://en.wikipedia.org/wiki/Lexicographic order

https://en.wikipedia.org/wiki/Lexicographic_order

78 discussion

type nature of the workflow. Even if the practitioners were sufficiently trained and
familiar with the workflow they would not be able to overcome these challenges,
since they are inherent to the workflow.

7.4.1 Tile versioning vs Full Model versioning

One of the biggest challenges is that the versioning workflow works with a single
dataset i.e. 3DCM. The 3DCM of the municipality is split in tiles for better administra-
tion. A single file for the whole city of Rotterdam would be almost impossible to be
(visually) processed due to limitations of Blender to handle so much information.

There are two alternatives to overcome this challenge:

a) Every tile is versioned separately and all the latest versions are combined to compose
the full model:

In this case every tile has its own versioning structure (i.e. VCS) and the latest
instance of each VCS is combined to create the whole 3DCM. With this approach
keeping track of the history of the changes of the 3DCM as a whole becomes
problematic due to many different VCSs storing ”their own” history. In addi-
tion, working on an area that belongs in two or more tiles —for example when
testing a new scenario— will certainly create issues such as creating duplicate
new scenario branches among the affected tiles’ VCSs.

b) The whole model is versioned and then the visual editor only works with a subset or
tile of the whole model:

This approach is more solid from a conceptual point of view. That is because
a single VCS structure is utilized to manage all the changes of the full 3DCM,
so there is only one VCS structure to be managed. The biggest challenge in
this case is technical. That is the capability of working on a subset of the full
3DCM and then merging it (i.e. the changes carried out) back to the full 3DCM,
in order to incorporate the updates into it.

The challenge lies in developing a merging mechanism to ”pass” these changes
back to the full 3DCM. That requires a mechanism of merging 3D geometries
among others, in order for change detection to be possible and stored within
the VCS. It will also extent the functionality of the workflow to address key
point #5 (see Table 3.2), which will dramatically increase the enrichment po-
tential of the 3DCM by external projects that use the 3DCM as their base. More
details on that in Section 8.2.2.

7.4.2 Identifying the optimal ”smallest entity” in practice

The fact that CityObject is the ”smallest entity” of the VCS (see Section 4.2.3) is ex-
pected to raise many conflicts. Many of them will be false conflicts from a human
perspective. Training practitioners to familiarize with what conflicts are in the first
place, how to identify a false from an actual one and how to resolve them is un-
doubtedly going to obstruct the adoption of the workflow. It is very possible after
testing the workflow in practice, another entity to be selected as the ”smallest en-
tity” to optimize the performance of the VCS.

In my opinion, an extensive time period of continuous testing of the workflow in
real conditions including recurring feedback would set the foundation for solid and
meaningful improvement of the workflow from a developing aspect. Consequently,

7.4 what can rotterdam expect in practice: challenges and improvements 79

this whole testing and feedback venture creates some resources costs that have to
be invested for this cause. That way, the workflow will improve with respect to the
above-mentioned aspects —and possible many other to be revealed during testing—
allowing it to come closer to becoming operational.

7.4.3 What is now possible

Even without any further investment, the municipality can still use the visual edit-
ing component of the workflow for achieving a ”limited” maintenance of the 3DCM.
Instead of relying on an external party in order to provide them with the updated
iteration CityGML file, in-house generation will be possible and potentially updat-
ing the database with the new instances.

Based on the current situation, this can happen by following (a variation of) the
conceptual steps shown in Figure 4.1 whose implemented equivalent is shown in
Figure 7.1.

Those steps are:

1. The CityGML v2.0 file is converted to a CityJSON v1.0 using citygml-tools.

2. The (normalized) converted file is imported into Blender for editing.

3. After editing is over, a new CityJSON v1.0 instance is created from Blender. In
case the municipality wishes to only use the visual editing capability of the workflow
then the new instance is converted back to CityGML and imported into their database
implementation.

4. The new instance is committed back to the versioning control platform, from
where it can be retrieved (checkout command of CJV) and converted —if
necessary— back to CityGML v2.0 encoding to be compatible with the existing
platform of the municipality.

Regardless what they opt for, either with the ”limited” or full adoption of the work-
flow for maintaining the 3DCM the municipality will be able to —at least— keep the
model updated at a regular time intervals, within its premises and while having the
absolute control over it. That alone is a major improvement of managing the 3DCM.

Furthermore, history of the maintenance can be kept automatically without the
need to keep the obsolete objects stored separately, which is the current practice. In
addition, new ideas and scenarios can be tested by creating new branches at no ex-
tra expense and without disrupting the actual maintenance. The workflow is highly
scalable and adaptive which means that new branches can be created and deleted
at will and for whatever use.

Last but not least, outsourcing will not be necessary anymore. With no outsourcing
comes no financial burden for outsourcing, relieving the budget of the municipality.
The same budget could be invested on the pilot testing of the workflow which was
described in Section 7.4.2, however that is completely up to the municipality.

7.4.4 What is very likely to be improved

The four steps presented in Section 7.4.3 is what currently needs to be done in order
for compatibility between CityGML and CityJSON to be established so that the 3DCM

can be edited before converting back to CityGML for inserting the new instance in
the database.

https://github.com/citygml4j/citygml-tools

80 discussion

Blender

Repository

Import

Commit

Convert

Export

Checkout Export
Implemented
Versioning
Workflow

CityGML v.2.0
instance

 CityJSON v.1.0
instance

Updated
 CityJSON v.1.0

instance

Convert

Cropped
CityJSON

v.1.0 instance

Rotterdam's 3DCityDB
platform

Figure 7.1: The implemented core workflow in conjunction with Rotterdam’s 3D platform.

However, the process that these steps describe is very likely to be simplified in the
future. 3DCityDB currently used by Rotterdam to store the 3DCM utilizes citygml4j2

functionality. citygml4j also supports parsing from CityJSON format. Thus, it is very
possible that 3DCityDB will fully support the CityJSON file format in the future.
That would render step #1 unnecessary simplifying the whole task of integrating
the workflow with CityGML files.

2 https://github.com/citygml4j

https://github.com/citygml4j

8 F U T U R E W O R K

8.1 git-flow criticism and alternatives
The versioning component of the suggested workflow is based on the git-flow (see
Section 2.3.1). That is simply because it is one of the most successful and adopted
git workflows to date.

However, there is some criticism on the git-flow from the developers of similar git
based workflows. For example the developers of the GitLab workflow propose their
workflow as an improvement of the Git flow integrating it with an issue tracking
system and utilizing master/main branch should more than git-flow.

In my opinion, an issue tracking system with 3DCMs does not offer important im-
provements, since the maintenance transactions of a 3DCM do not vary too much in
contrast with software development (new features). In other words the GitLab flow
might be better for software development but not such a big improvement for the
3DCM domain.

Regardless that, it would be interesting to implement a 3DCM oriented workflow
based on it and investigate the performance and functionality in practice.

8.2 further development of the workflow
The fact that 3DCM maintenance is a relatively new domain with no universally
accepted or standardized solutions so far creates a lot of space for improvement.
More specifically with respect to the workflow suggested there are additions and
improvements that could boost its functionality. These aspects are discussed in the
next sections.

8.2.1 Integrating validity check within the workflow

It is really useful to have every new 3DCM instance checked for the validity of its
objects geometry to reassure that all geometries are valid against a standard. It can
be considered as a quality control which at every step makes sure no degradation
of (at least) geometric information occurs.

There is already an implemented solution for validating CityJSON encoded 3DCM

files named val3dity. Integrating val3dity in the workflow that is suggested in this
thesis would make the workflow more complete and robust.

8.2.2 Merging back subsets to the repository

At the moment the workflow is capable only for exporting a subset of the 3DCM

for external applications. Having the ability to merge back the (extra information
included in a) subset into the VCS means that any application stemming from the
3DCM can potentially contribute back to it. For example a more detailed model of

81

https://github.com/tudelft3d/val3dity

82 future work

a building due to an architectural project that enhanced the LoD 2 of the model for
that building. Or incorporate the ”watertight” geometries of the buildings included
in a subset that was used for a wind flow or flood simulation.

Of course this requires to make sure that the augmented subsets fulfill some prede-
fined quality standards so that there is no information degradation or loss.

To incorporate subsets used for external applications back into the VCS, the sub-
set needs to be in CityJSON format. If not, it has to be converted. When converting
between formats, there is always the case of information loss because of the differ-
ent data models among 3D formats that do not hold the same information.

Supposing that all these prerequisites are met, there is then the need for a sophisti-
cated 3D merging algorithm that merges the augmented/changed objects with the
existing ones. A solution to that could be something similar to what Doboš and
Steed [2012] suggest. In any case, solving this problem is far from trivial, but will
bring the managing of the 3DCM to a whole new level, so in my opinion it is some-
hting definitely worth researching into.

Another advantage of being able to merge back subsets into the repository via the
VCS is that maintainers will be able work on a subset of the whole 3DCM rather than
on its entirety. At the same time the challenge mentioned in Section 7.4.1 is ad-
dressed in a very efficient way. From a computational point of view this will have a
big impact in efficiency and time costs, as well.

8.2.3 Combine GIS software

3DCMs are already geo-referenced at their actual real world coordinates. That could
be the basis for spatial analysis using GIS applications. Investigating into augment-
ing the visualization platform with GIS capabilities could lead into big improve-
ments for the visualization platform itself while allowing users to run further analy-
sis in the 3DCM. From the most simple task of inserting a 2D map as a base reference
below the model for better spatial understanding up to calculating optimal routes
within the 3DCM and so on.

There is already a GIS-oriented free and open source add-on for Blender, namely
BlenderGIS. In my opinion, it is worth doing some investigation into combining its
functionality with Up3date or even integrate (part of) them into a new more versatile
and functional add-on that serves both purposes.

8.2.4 Updating BAG as a consequence of the 3D city model maintenance

In the case of the municipality of Rotterdam BAG is one of the main component
datasets for the creation of the 3DCM. Currently it is updated separately inside the
municipality then outsourced to external parties every two years for the new itera-
tion of the model to be created upon. BAG contains all the descriptive non-spatial
information (attributes) and the geometrical footprint for each building and this in-
formation is passed into the model during the creation process Figure 3.2.

The idea is that since from the maintenance of the 3DCM all the history is kept, a log
file can be created from the VCS that can be used as a guide to update BAG. That
would reverse the current procedure of consulting BAG to identify which buildings
have been changed and then update the 3DCM based on that. It would bring the
3DCM into the center of the spatial datasets’ ecosystem, making it the main dataset
according to which everything else is maintained.

https://github.com/domlysz/BlenderGIS

8.2 further development of the workflow 83

Updating BAG would increase the robustness of the whole maintaining domain
of the 3DCM, because it converts the versioning platform into a hub from which all
satellite datasets can benefit from. The model can be continuously updated by the
municipality with simple controllable workflows (introduced in Chapter 4) with-
out the need for outsourcing. Last but not least, the whole BAG update process
will not affect the versioning of the 3DCM at all, which minimizes the complexity of
implementing this approach.

8.2.5 Creating a generator for automatic generation of instances for the release
branch

The release branch is designed and implemented in the multi-branch structure to
provide the actual 3DCM stripped off of any sensitive information for educational
purposes, application developers etc.

Removing the sensitive records is all about wiping some attributes from the re-
spective CityObjects. Implementing the software for this to happen automatically
and integrate in into the suggested workflow would be really useful and increase
the value of the workflow.

8.2.6 Handling building textures

Building textures were out of this scope of this thesis as mentioned in Section 1.4.
However, building facade textures are already available for the city of Rotterdam
and it would be an upgrade to handle them as well within Blender upon the editing
process.

Since they are stored externally it makes sense for them to be excluded from the
VCS. However, Blender supports textures. Perhaps the most suitable approach is to
enrich building objects with texture is by using Blender’s UV sphere functionality.

L I S T O F F I G U R E S

Figure 1.1 The multi-domain applications of 3D city models. Figure
from Biljecki et al. [2015] . 1

Figure 1.2 A building’s lifecycle and how it is related to the order of the
changes that were performed. Figure from Samuel et al. [2016] 2

Figure 1.3 A representation of a city’s evolution over time. Figure from
Chaturvedi et al. [2016]. 3

Figure 2.1 A side by side comparison between a 3DCM file encoded in
CityGML and CityJSON . 9

Figure 2.2 An example of two alternative model versions that were re-
constructed using different 3D reconstruction approaches.
Figure from Steinhage et al. [2010]. 11

Figure 2.3 An example scenario of the components of the maintenance
platform and their interaction. Figure from Prieto et al. [2017]. 12

Figure 2.4 The concept of branches. 13

Figure 2.5 The structure of a distributed VCS. 14

Figure 2.6 The structure of a centralized VCS. 15

Figure 2.7 Geogig’s three-step local workflow (import, add, commit ex-
tended with the remote repository transactions. 15

Figure 2.8 The schematic representation of the QGIS versioning plugin . . 16

Figure 2.9 The interface of ninja. After selecting an object the CityJSON
code snippet appears and the user can directly edit the CityJ-
SON file. 22

Figure 3.1 A snapshot of the Rotterdam’s 3DCM through the municipal-
ity’s online platform. 24

Figure 3.2 The process of incorporating the changed buildings into the
3DCM of Rotterdam. This process is repeated in a biennial
lifecycle with the updated input datasets, resulting in a new
iteration of the model. 25

Figure 4.1 The core workflow . 32

Figure 4.2 The subset before and after cropping 33

Figure 4.3 The multi-branch schematic representation of the branches
and their interrelations. 34

Figure 4.4 An example of a mutated building at which a compartment
has been added . 36

Figure 4.5 The same piece of information Ed. Institute has been edited
differently in two different instances TU Delft and Technical
University of Delft, creating a merge conflict upon merging. . . 38

Figure 4.6 2628 BL and Ed. Institute were changed in the two different
instances to 1234AB and TU Delft. They are different pieces
of information so no conflict is created upon merging. 39

Figure 4.7 The hierarchy levels formed by the different entities within a
3DCM data structure. In the VCS proposed the smallest entity
is the ’Building’ level (gray circle). 41

Figure 4.8 The same planar surface saved with its vertices in default and
reverse order . 42

Figure 5.1 A screenshot after importing a 3DCM into Blender using Up3date
46

Figure 6.1 Editing the address.PostalCode attribute of the ID 0599100000669100
object. 52

85

86 list of figures

Figure 6.2 The object’s ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 screen-
shot before deleting the roof face in Blender. 54

Figure 6.3 The object’s ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 screen-
shot after deleting the roof face in Blender. 55

Figure 6.4 A screenshot of the 3DCM before deleting object ID 848b57d6-
528f-4c1d-ab65-27cbb29633d1 in Blender. 56

Figure 6.5 A screenshot of the 3DCM after deleting object ID 848b57d6-
528f-4c1d-ab65-27cbb29633d1 in Blender. 57

Figure 6.6 The fast-forward merge command. In practice, no actual merg-
ing has occurred within the VCS. It is just the update of main
branch head to point at the last instance of maintenance. 58

Figure 6.7 CubicHouse in Blender’s scene. 60

Figure 6.8 The attributes/custom properties of the newly inserted ob-
ject as defined in Up3date . 60

Figure 6.9 A schematic representation of the test in a sequence of com-
mits. The merging commits in main or in reality fast-forward
merges. 63

Figure 6.10 The two buildings that have to be edited for the implemen-
tation of the new scenario . 63

Figure 6.11 The two building geometries after being edited implement-
ing the new scenario . 64

Figure 6.13 Swapping the first and second face of the LoD 2 geometry of
CityObject ID 0599100000012859. 69

Figure 7.1 The implemented core workflow in conjunction with Rotter-
dam’s 3D platform. 80

Figure A.1 Reproducibility criteria to be assessed. 95

L I S T I N G S

Listing 2.1 A vCityJSON file. 18

Listing 2.2 A snapshot of CJV’s main interface screen. 19

Listing 2.3 cjio with all its available operators 21

Listing 4.1 The new cropped instance exported in CityJSON format. . . . 33

Listing 6.1 The initialization init commit command to create the versioned
file and commit the initial instance to it. 50

Listing 6.2 The versioned file after committing the first instance of the
3DCM and creating the multi-branch structure. Notice that all
branches have the same initial instance since it was the first
instance committed to the main and all the rest branches stem
directly or indirectly from it. 50

Listing 6.3 The new instance as exported from Blender into a CityJSON
file after editing the PostalCode attribute. 52

Listing 6.4 The commit of the object’s ID 0599100000669100 edited at-
tribute instance in the versioned file. 52

Listing 6.5 The new version of the edited attribute instance committed
in the versioned file. 53

Listing 6.6 The object’s ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 screen-
shot before deleting the roof face, in the CityJSON file. 54

Listing 6.7 The object’s ID d86a1c93-08c6-4fc2-90c6-0c1f64afa008 screen-
shot after deleting the roof face, in the CityJSON file. 54

Listing 6.8 The commit of the edited geometry of object’s ID d86a1c93-
08c6-4fc2-90c6-0c1f64afa008 in the versioned file. 55

Listing 6.9 The updated versioned file after committing the new instance. 55

Listing 6.10 The object’s ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 screen-
shot as part of the model before deleting it from the 3DCM in
the CityJSON file. 56

Listing 6.11 The object’s ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 screen-
shot after deleting it from the 3DCM in the CityJSON file. . . . 57

Listing 6.12 The commit of the deleted object’s ID 848b57d6-528f-4c1d-
ab65-27cbb29633d1 instance in the versioned file. 57

Listing 6.13 The updated versioned file after committing the deleted ob-
ject’s ID 848b57d6-528f-4c1d-ab65-27cbb29633d1 instance. . . . 57

Listing 6.14 The log command for main after simulating the fast-forward
merge. 58

Listing 6.15 The commit of the added object CubicHouse instance in the
versioned file. 61

Listing 6.16 Part of the CityJSON instance showing the CubicHouse as ex-
ported from Up3date. 61

Listing 6.17 The versioned file after committing the version where Cubic-
House was added. 61

Listing 6.18 The two branches that the individual versions will be com-
mitted at. 62

Listing 6.19 The vCityJSON file after committing both instances at their
respective branches. 64

Listing 6.20 The vCityJSON file after merging scenario 1 to scenario. 65

Listing 6.21 The log command output for scenario after merging scenario 1
into it . 66

Listing 6.22 The log command output for main after merging scenario into it 67

Listing 6.23 The original attribute order of CityObject ID 0599100000012851. 68

87

88 Listings

Listing 6.24 The changed attribute order of CityObject ID 0599100000012851. 68

Listing 6.25 The commit of the swapped attributes’ instance of object’s
ID 0599100000012851. CJV perceives the object as changed. . . 68

Listing 6.26 The original face order of CityObject ID 0599100000012859. . 69

Listing 6.27 The changed face order of CityObject ID 0599100000012859. . 69

Listing 6.28 The commit of the swapped faces of object’s ID 0599100000012859

LoD 2 geometry faces version. CJV perceives the object changed. 69

Listing 6.29 The versioned file after committing both instances into their
respective branches. 70

Listing 6.30 CJV raising a conflict upon merging the two branches. 70

L I S T O F TA B L E S

Table 3.1 The number of buildings that need to be updated in the last
two updating iterations of the model. 25

Table 3.2 A summary of the key points and their expected effect on the
maintenance of the 3DCM . 29

Table 4.1 The number of concurrent users per branch. 39

Table 4.2 Cases in which conflicts are expected to occur. 41

Table 5.1 Mapping between CityJSON and Blender entities 47

Table 6.1 A comparison of statistics between the original CityGML file,
the CityJSON file as converted from CityGML and the CityJ-
SON exported from Up3date file using the original as input.
The statistics for CityJSON files were calculated with cjio . . . 50

Table A.1 Self-assessment of scores regarding the criteria presented in
Figure A.1 . 95

89

B I B L I O G R A P H Y

Agugiaro, G. (2016). First steps towards an integrated CityGML-based 3D model of
Vienna. volume III-4, pages 139–146.

Airaksinen, E., Bergström, M., Heinonen, H., Kaisla, K., Lahti, K., and Suomisto, J.
(2019). The Kalasatama Digital Twins Project - The final report of the KIRA-digi
pilot project.

Bakker, N. (2009). Key registers as base of the dutch SDI. GSDI World Conference.

Ball, T., Kim, J., Porter, A., and Harvey, P. S. (1997). If your version control system
could talk.

Biljecki, F., Ledoux, H., Du, X., Stoter, J., Soon, K. H., and Khoo, V. H. S. (2016).
The most common geometric and semantic errors in CityGML datasets. ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-
2/W1:13–22.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Applications
of 3D City Models: State of the Art Review. ISPRS International Journal of Geo-
Information, 4(4):2842–2889.

Blender Foundation (2019). Blender 2.82 reference manual.

Boeters, R., Arroyo Ohori, K., Biljecki, F., and Zlatanova, S. (2015). Automatically
enhancing CityGML LOD2 models with a corresponding indoor geometry. In-
ternational Journal of Geographical Information Science, 29(12):2248–2268. ISSN:
1365–8816 (Print), 1362–3087 (Online).

Brindescu, C., Codoban, M., Shmarkatiuk, S., and Dig, D. (2014). How do cen-
tralized and distributed version control systems impact software changes? In
Proceedings of the 36th International Conference on Software Engineering - ICSE 2014.
ACM Press.

Cao, R., Zhang, Y., Liu, X., and Zhao, Z. (2017). 3d building roof reconstruction
from airborne LiDAR point clouds: a framework based on a spatial database.
International Journal of Geographical Information Science, 31(7):1359–1380.

Chacon, S. and Straub, B. (2019). Pro Git. Apress.

Chaturvedi, K., Smyth, C. S., Gesquière, G., Kutzner, T., and Kolbe, T. H. (2016).
Managing Versions and History Within Semantic 3D City Models for the Next
Generation of CityGML. In Advances in 3D Geoinformation, pages 191–206.
Springer International Publishing.

Doboš, J. and Steed, A. (2012). 3D Diff. In SIGGRAPH Asia 2012 Technical Briefs on -
SA '12. ACM Press.

Döllner, J., Baumann, K., and Buchholz, H. (2007). Virtual 3D City Models as Foun-
dation of Complex Urban Information Spaces.

Döllner, J., Kolbe, T., Liecke, F., Sgouros, T., and Teichmann, K. (2006). The virtual
3D city model of Berlin - Managing, integrating, and communicating complex
urban information. Proceedings of the 25th Urban Data Management Symposium
UDMS.

91

92 BIBLIOGRAPHY

Franceschi, S., Adoch, K., Kang, H. K., Hupy, C., Coetzee, S., and Brovelli, M. A.
(2019). OSGEO UN Committee Educational Challenge: A use case of shar-
ing software and experience from all over the world. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLII-4/W14:49–55.

Glasser, A. L. (1978). The evolution of a Source Code Control System. ACM SIG-
SOFT Software Engineering Notes, 3(5):122–125.

Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K.-H. (2012). OGC City Geography
Markup Language (CityGML) Encoding Standard. Open Geospatial Consortium,
2.0.0 edition.

Kutzner, T., Chaturvedi, K., and Kolbe, T. H. (2020). CityGML 3.0: New Functions
Open Up New Applications. PFG – Journal of Photogrammetry, Remote Sensing
and Geoinformation Science, 88(1):43–61.

Law, D. (2010). Versioning 101: Essential information about ArcSDE geodatabases.

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski, A., and Vitalis, S.
(2019). CityJSON: a compact and easy-to-use encoding of the CityGML data
model. Open Geospatial Data, Software and Standards, 4(1):4.

Malambo, L. and Hahn, M. (2010). LiDAR assisted CityGML creation.

Noardo, F., Biljecki, F., Agugiaro, G., Arroyo Ohori, K., Ellul, C., Harrie, L., and
Stoter, J. (2019). GeoBIM Benchmark 2019: Intermediate Results. In 14th 3D
GeoInfo Conference 2019, volume XLII-4 of ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, pages 47–52. IS-
PRS.

Oracle (2020). Understanding Versioning.

Prieto, I., Izkara, J. L., and Béjar, R. (2017). A continuous deployment-based ap-
proach for the collaborative creation, maintenance, testing and deployment
of CityGML models. International Journal of Geographical Information Science,
32(2):282–301.

Rochkind, M. J. (1975). The source code control system. IEEE Transactions on Software
Engineering, SE-1(4):364–370.

Samuel, J., Périnaud, C., Servigne, S., Gay, G., and Gesquière, G. (2016). Repre-
sentation and Visualization of Urban Fabric through Historical Documents. In
Catalano, C. E. and Luca, L. D., editors, Eurographics Workshop on Graphics and
Cultural Heritage. The Eurographics Association.

Samuel, J., Servigne, S., and Gesquière, G. (2020). Representation of concurrent
points of view of urban changes for city models. Journal of Geographical Systems.

Samuel, J., Servigne, S., and Gesquière, G. (2018). Urbanco2fab: comprehension of
concurrent viewpoints ofurban fabric based on git. ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences, IV-4/W6:65–72.

Schüler, N., Agugiaro, G., Cajot, S., and Maréchal, F. (2018). Linking interactive
optimization for urban planning with a semantic 3D city model. ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4:179–186.

Spinellis, D. (2012). Git. IEEE Software, 29(3):100–101.

Steinhage, V., Behley, J., Meisel, S., and Cremers, A. B. (2010). Automated updating
and maintenance of 3D city models. ISPRS Volume XXXVIII-4-8-2/W9, 2010.

BIBLIOGRAPHY 93

Vitalis, S., Labetski, A., Arroyo Ohori, K., Ledoux, H., and Stoter, J. (2019). A
data structure to incorporate versioning in 3D city models. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W8:123–
130.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi,
T., and Kolbe, T. H. (2018). 3DCityDB - a 3D geodatabase solution for the
management, analysis, and visualization of semantic 3D city models based on
CityGML. Open Geospatial Data, Software and Standards, 3(1).

A R E P R O D U C I B I L I T Y
S E L F - A S S E S S M E N T

a.1 marks for each of the criteria

Figure A.1: Reproducibility criteria to be assessed.

a.2 reproducibility of thesis/results

Criteria Score
Input data 2

Pre-processing 3

Methods, Analysis, Processing 3

Computational Environment 3

Results 2

Table A.1: Self-assessment of scores regarding the criteria presented in Figure A.1

a.3 self-reflection on the reproducibility
The data, processes and software tools were all retrieved, inspired and implemented
without any restrictions. More specifically the 3D City Model of Rotterdam is pub-
licly available for download through the official website. All the software used is
also free and open source publicly available at github. Every part of what is intro-
duced and used in this thesis can be accurately reproduced at any time and without
any restrictions.

95

https://www.3drotterdam.nl/#/export

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

	1 Introduction
	1.1 Motivation
	1.2 Use case - Gemeente Rotterdam
	1.3 Research Questions
	1.4 Thesis Scope
	1.5 Thesis Overview

	2 Background and Related Work
	2.1 3D city data models and encodings
	2.1.1 CityGML
	2.1.2 The Scenario Application Domain Extension
	2.1.3 CityJSON
	2.1.4 3DCityDB Database
	2.1.5 Choosing a suitable data model and encoding

	2.2 3D city models maintenance
	2.3 Versioning Control Systems in software development
	2.3.1 Git

	2.4 Versioning Solutions for GIS
	2.4.1 GeoGig
	2.4.2 QGIS versioning plugin
	2.4.3 pgVersion
	2.4.4 Oracle Workspace Management and ESRI ArcSDE
	2.4.5 Reflections on Geogig, QGIS versioning plugin, pgVersion

	2.5 Versioning Solutions for 3D city models
	2.5.1 CityGML versioning extension as part of the CityGML v.3.0 data model
	2.5.2 CityJSON-based versioning solution
	2.5.3 The fundamental transactions of a Git-like 3D city model oriented versioning control system

	2.6 3D City Models editing software (CityJSON)
	2.6.1 cjio
	2.6.2 ninja
	2.6.3 Blender

	3 Use case: 3D city model of Rotterdam
	3.1 An overview of Rotterdam's 3D city model processes and history
	3.1.1 Current maintenance procedure

	3.2 Identifying the key points that will allow the effective maintenance of Rotterdam's 3D city model

	4 The proposed 3D City Model maintenance workflow
	4.1 Introducing the core workflow
	4.2 Introducing the multi-branch structure (based on the git workflow)
	4.2.1 Maintenance iterations frequency
	4.2.2 Managing Merging Conflicts
	4.2.3 The 'smallest entity' problem
	4.2.4 Resolving conflict policy

	5 Implementation
	5.1 The importance of visual editing capabilities
	5.2 Introducing Up3date
	5.2.1 Implementation specifications

	6 Testing
	6.1 Datasets and preparation
	6.2 Initialize repository and create the multi-branch structure
	6.3 Exporting a subset of the 3D city model
	6.4 Testing the fundamental maintenance operations
	6.4.1 Visually editing attribute
	6.4.2 Visually editing geometry
	6.4.3 Updating main branch after the maintenance is completed
	6.4.4 Adding a new building object

	6.5 Simulating the creation and adoption of new scenarios
	6.5.1 Scenario explanation

	6.6 Testing for conflicts
	6.6.1 Mingle order of attributes
	6.6.2 Mingle order of faces
	6.6.3 Edit different piece of information within the same object in (false conflict)

	7 Discussion
	7.1 Conclusions
	7.1.1 To what extent can a Git-based versioning approach be used for the maintenance of the 3D city model of a typical municipality?

	7.2 Practical comparison with other potential solutions
	7.2.1 CityGML v.3.0
	7.2.2 3DCityDB

	7.3 Mingling the order of faces
	7.4 What can Rotterdam expect in practice: Challenges and improvements
	7.4.1 Tile versioning vs Full Model versioning
	7.4.2 Identifying the optimal "smallest entity" in practice
	7.4.3 What is now possible
	7.4.4 What is very likely to be improved

	8 Future Work
	8.1 Git-flow criticism and alternatives
	8.2 Further development of the workflow
	8.2.1 Integrating validity check within the workflow
	8.2.2 Merging back subsets to the repository
	8.2.3 Combine GIS software
	8.2.4 Updating BAG as a consequence of the 3D city model maintenance
	8.2.5 Creating a generator for automatic generation of instances for the release branch
	8.2.6 Handling building textures

	A Reproducibility self-assessment
	A.1 Marks for each of the criteria
	A.2 Reproducibility of thesis/results
	A.3 Self-reflection on the reproducibility

