
MSc thesis in computer science

Liveness checking of Streamlined
Blockchain Consensus

Yanzhuo Zhou
2023

L I V E N E S S C H E C K I N G O F S T R E A M L I N E D B LO C KC H A I N C O N S E N S U S

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science

by

Yanzhuo Zhou

4993918

August 2023

The work in this thesis was made in the:

Distributed Systems (DS) group
Department of Computer Science
Faculty of Electrical Engineering, Mathematics and Com-
puter Science (EEMCS)
Delft University of Technology

Thesis committee: Dr. Johan Pouwelse, Advisor
Dr. Jérémie Decouchant, Supervisor
Dr. Burcu Kulahcioglu Ozkan, Co-Supervisor
Dr. Kaitai Liang

A B S T R A C T

Byzantine consensus protocols are designed to build resilient systems to achieve
consensus under Byzantine settings, maintaining safety guarantees under any net-
work synchrony model and providing liveness in partially or fully synchronous
networks. However, several Byzantine consensus protocols have been shown to vio-
late liveness properties under certain scenarios. Existing testing methods for check-
ing the liveness of consensus protocols check for time-bounded liveness violations,
which generate a large number of false positives.

In this thesis, for the first time, we check the liveness of Byzantine consensus pro-
tocols by the temperature and lasso detection methods and precisely detail ad-hoc
system state abstractions that should be used to test these algorithms. We pro-
vide a theoretical analysis of the recently-published safety and liveness attacks and
whether the existing test method is able to detect them. To investigate the issues,
we focus on the streamlined blockchain consensus, particularly the HotStuff proto-
col family, which has been recently developed for blockchain consensus. Among
these protocols, the HotStuff protocol itself is both safe and live under the partial
synchrony assumption, whereas 2-Phase Hotstuff and Sync HotStuff protocols can
violate liveness in subtle fault scenarios. We implemented our liveness checking
methods on top of the Twins automated unit test generator to test the HotStuff pro-
tocol family and explored the scenarios with message delay. Our results indicate
that our methods successfully detect all known liveness violations and produce
fewer false positives than the bounded liveness checks.

Keywords. Liveness checking, Byzantine consensus, HotStuff protocols, Twins,
Lasso detection, Temperature checking.

iii

A C K N O W L E D G E M E N T S

Thanks to my supervisors Jérémie Decouchant, Burcu Kulahcioglu Ozkan, and Jo-
han Pouwelse. I couldn’t finish this thesis without their help. Thanks to my pre-
vious supervisor Jan Rellermeyer and ING coordinator Elvan Kula to give me a
chance to participate in the research team of ING. Thanks to my family and friends
for supporting me through this particularly tough time in my life.

v

C O N T E N T S

1 introduction 1

1.1 Research questions . 2

1.2 Contributions . 2

1.3 Thesis outline . 3

2 bft concepts 5

2.1 Overview of Byzantine Fault Tolerance 5

2.1.1 Byzantine generals problem . 5

2.1.2 The 3 f + 1 bound . 5

2.1.3 State machine replication . 6

2.1.4 Properties . 6

2.2 Network model . 7

2.2.1 Synchronous system . 7

2.2.2 Asynchronous system . 7

2.2.3 Partially synchronous system . 7

2.2.4 P2P communication . 7

3 bft protocols and attacks 9

3.1 Partially synchronous Byzantine consensus 9

3.1.1 PBFT . 9

3.1.2 Tendermint . 9

3.1.3 HotStuff . 10

3.1.4 2-Phase HotStuff . 11

3.1.5 Sync HotStuff . 11

3.1.6 Casper & Gasper . 12

3.2 Byzantine behaviors . 14

3.3 Existing attacks . 14

3.3.1 Safety attacks . 14

3.3.2 Liveness attacks . 17

4 bft testing systems and algorithms 23

4.1 Consensus testing . 23

4.1.1 Twins . 23

4.1.2 Other testing methods . 23

4.1.3 Discussion . 24

4.2 Liveness checking . 24

4.2.1 Temperature method . 25

4.2.2 Partial-state caching method . 25

4.2.3 Other liveness checking work . 27

5 apply liveness checking techniques 29

5.1 Definitions . 30

5.1.1 Partial State in the HotStuff Protocol Family 30

5.1.2 Hot State in the HotStuff Protocol Family 30

5.2 Detect liveness issues in 2-Phase HotStuff 31

5.2.1 Attack scenario . 31

5.3 Detect safety & liveness issues in Sync HotStuff 32

5.3.1 Attack scenario . 32

5.3.2 Adaptation . 33

5.3.3 Delay bounds . 33

5.3.4 Scenario description (delaying and re-ordering) 33

5.4 Scenario generation . 34

5.4.1 Generation algorithm . 34

5.4.2 Scenario prioritization . 34

5.5 Application in Twins . 36

vii

viii contents

5.5.1 Checking for temperature . 36

5.5.2 Checking for lassos . 36

5.6 Discussion . 38

6 performance evaluation 39

6.1 Evaluation Setup . 39

6.1.1 Twins Framework . 39

6.1.2 Extension to Twins . 39

6.1.3 Experimental setup . 40

6.2 Experimental evaluation . 41

6.2.1 Parameters . 41

6.2.2 False positives . 42

6.2.3 Results . 42

6.3 Discussion . 44

7 conclusion 45

7.1 Conclusions . 45

7.2 Limitations and future work . 45

L I S T O F F I G U R E S

Figure 2.1 Scenarios with 2f+1 generals (f =1). 5

Figure 2.2 Scenarios with 3f+1 generals (f =1). 6

Figure 3.1 PBFT protocol. 10

Figure 3.2 Tendermint protocol. 11

Figure 3.3 HotStuff protocol. 12

Figure 3.4 Sync HotStuff’s steady case and view change procedures. . . 13

Figure 3.6 Zyzzyva’s safety attack. 15

Figure 3.7 Tangoroa’s safety attack. 16

Figure 3.8 dBFT’s safety attack with f =1. 17

Figure 3.9 2-phase HotStuff’s liveness attack. 18

Figure 3.10 Tendermint’s liveness attack. 19

Figure 3.11 Gasper’s balancing attack. 20

Figure 3.12 PBFT’s read-only optimization liveness attack 21

Figure 3.13 PoS GHOST’s avalanche attack. 22

Figure 4.1 Twins system. 24

Figure 5.1 Two locks in the system. 31

Figure 5.2 State transition. 32

Figure 5.3 Update of the state transition graph. 37

ix

L I S T O F TA B L E S

Table 3.1 Attacks in BFT consensus protocols 15

Table 6.1 The number of Twins scenarios generated under various con-
figurations. 40

Table 6.2 Execution time of a unit test scenario in seconds under vari-
ous configurations. 40

Table 6.3 Liveness and safety violations detected with the temperature
checking, lasso detection, and bounded liveness methods on
the executions of the HotStuff protocol. 42

Table 6.4 Liveness and safety violations detected with the temperature
checking, lasso detection, and bounded liveness methods on
the executions of the 2-Phase HotStuff protocol. 43

Table 6.5 Liveness and safety violations detected with the temperature
checking, lasso detection, and bounded liveness methods on
the executions of the Sync HotStuff protocol. 44

xi

A C R O N Y M S

BFT Byzantine Fault Tolerance . 1

CFT Crash Fault Tolerance . 5

SMR State Machine Replication . 1

PBFT Practical Byzantine Fault Tolerant . 1

DOS Denial-Of-Service . 7

QC Quorum Certificate . 5

GST Global Stabilization Time . 7

P2P Peer-to-peer . 7

xiii

1 I N T R O D U C T I O N

Fault tolerance is a crucial component required for providing reliable large-scale
distributed services. Significant work has been done to ensure high-performance
systems resilient to crash bugs and robust to be deployed. Nevertheless, distributed
systems that guarantee high security against malicious Byzantine faults [40], con-
tinue to pose intriguing challenges to academia and enterprise-level applications.

Byzantine Fault Tolerance (BFT) is a paradigm that gives distributed systems the
ability to tolerate a limited proportion of arbitrary faults (i.e., Byzantine faults) such
as equivocation (i.e., sending conflicting messages to different nodes) and loss of in-
ternal state. Most BFT protocols utilize State Machine Replication (SMR) on multiple
replicas, enabling them to tolerate up to a limited proportion of arbitrary faults. In
particular, BFT consensus protocols aim at solving the consensus problem among
n nodes that might include up to f faulty nodes. BFT consensus protocols aim at
ensuring the safety and liveness properties. Safety ensures that the correct nodes
always decide on the same value, while liveness ensures that the protocol always
eventually progresses.

Practical Byzantine Fault Tolerant (PBFT) [17] has been long-termly regarded as a
cornerstone of Byzantine protocols. It is a voting-based algorithm similar to Paxos
[38]. PBFT has inspired numerous follow-up protocols aimed at improving perfor-
mance and security [66]. Zyzzyva [37] achieves better performance and throughput
by utilizing speculative execution. Tendermint [11] features a communication pat-
tern similar to PBFT but employs gossip-based communication, reducing overhead.
HotStuff [65] achieves a similar linear view change property that permits an hon-
est leader to drive a decision within linear time complexity, attaining optimistic
responsiveness, where any correct designated leader only needs the first quorum of
responses to progress to the next proposal.

Guaranteeing the liveness of a BFT consensus protocol is a difficult and error-
prone process. For example, 2-phase HotStuff is a consensus protocol that Yin
et al. discuss for pedagogical purposes and that could initially be considered
live [65]. However, a particular scenario is shown to prevent the system from mak-
ing progress, as nodes alternatively vote on two conflicting blocks. A similar attack
called the force-locking attack [46], breaks both the safety and the liveness of a pre-
liminary version of the Sync HotStuff protocol by maliciously delaying messages.
These examples of liveness violations call for effective testing methods that will
assist researchers and developers in detecting and tracing them.

However, testing and verifying the correctness of a consensus protocol remains
a complex and challenging task, particularly given the dynamic and intricately dis-
tributed nature of such systems. Previous testing works on consensus have mostly
focused on analyzing crash-tolerant protocols. For example, Jepsen testing tool [43]
simulates network partitions for distributed systems, and it has detected several
consensus violations [33, 34, 31]. Twins [7] is one of the few testing systems that
have been specifically designed to test the safety of BFT consensus protocols under
Byzantine scenarios. Twins can detect safety violations using scenarios that involve
only a few communication rounds. However, most existing testing systems do not
check for liveness violations, which require the generation of infinite executions.

A common approach to finding liveness violations is to check for bounded live-
ness, i.e., checking whether the properties are satisfied within a bounded amount
of time[32, 48]. To do so, the programmer sets some bounds for an event to hap-
pen and reports the executions that exceed the specified thresholds. In the case of

1

2 introduction

consensus protocols, correct processes should accept the same value within a cer-
tain delay or within a given number of execution steps. However, it is difficult for
developers to correctly estimate adequate bound values, in particular in real-world
production-level consensus applications. Low bound values lead to false negatives
while using very large bound values incurs high running times.

Specific liveness testing methods have been proposed for distributed systems.
Temperature-based detection algorithms [32, 47] maintain a temperature variable that
is increased each time the system transitions to a hot state, whose definition is
system-specific. The lasso detection approach [47] relies on state caching to identify
whether a system reaches the same hot state multiple times and therefore discover
potential liveness violations. Little work has been done to effectively apply these
techniques to test liveness violations in the blockchain consensus.

In this thesis, we investigate Byzantine attacks in blockchain consensus protocols
that have been found so far. Our purpose is to analyze whether these attacks can
already be tested by existing techniques, and if not, how can we apply and extend
existing techniques to detect these challenging attacks.

This thesis applies temperature and lasso detection methods to test the liveness of
BFT consensus algorithms. We focus on the HotStuff family of protocols that have
been designed for Blockchain consensus, which are sometimes called streamlined
as they rely on a leader to reach a linear communication complexity and use a block-
locking approach. We believe that our approach can be generalized to all protocols
that rely on views, and in particular to all partially-synchronous protocols that rely
on a leader.

1.1 research questions
The main research questions we explore and investigate in this thesis are:

RQ1 What are recently-detected BFT attacks? Can testing methods be used to de-
tect some interesting and challenging attacks?

RQ2 How can we adapt existing liveness checking techniques for testing blockchain
systems?

RQ3 Can the Twins testing system be extended to incorporate these liveness check-
ing techniques? Can timing violations due to Byzantine faults be detected?

RQ1 investigates what attacks exist in the latest blockchain consensus protocols and
which can not yet be tested. To answer RQ2, we are going to explore how can we
adapt some liveness problem-checking methods for detecting existing violations,
and investigate what kind of protocols can our methodology be applied to. RQ3
technically explores if the Twins testing system can successfully use the techniques
in RQ2 to accomplish the goals in RQ1.

1.2 contributions
In this thesis, we contribute solutions to the above research questions. In summary,
this work makes the following contributions:

• We present a summary of recently published BFT attacks in blockchain con-
sensus protocols and analyze their types, causes, and feasibility of testing.

• We define the notion of partial state and hot state for the HotStuff family of
protocols, which are required for the implementation of the temperature and
lasso detection methods.

1.3 thesis outline 3

• Then, we present a variant of the lasso detection approach, which, differently
from previous works, does not use a controlled scheduling environment to
check for the existence of lassos.

• We also describe how to extend the Twins framework to support the temper-
ature and lasso detection methods for the liveness testing of BFT consensus
algorithms.

• We evaluate the performance of our testing methods on state-of-the-art proto-
cols from the HotStuff protocol family and compare their accuracy to one of
the classical bounded-liveness checking methods.

1.3 thesis outline
This thesis is structured as follows:

Chapter 1 provides brief background knowledge of the topic, the aim of our re-
search, and contributions that we have made. Chapter 2 introduces some basic
concepts and the network models of BFT protocols. Chapter 3 reviews previous
research work on BFT consensus that has been conducted so far, including details
of some related protocols in this thesis and recently-published attacks. Chapter 4

overviews the temperature and lasso-detection based liveness checking methods.
Chapter 5 provides the definition of hot states for streamlined protocols and de-
scribes our extensions to the liveness checking methods for these protocols. Chap-
ter 6 evaluates our methodology’s performance through experiments and analyzes
the results. The final Chapter 7 concludes the thesis.

2 B F T C O N C E P T S

2.1 overview of byzantine fault tolerance

2.1.1 Byzantine generals problem

The Byzantine generals problem [40], first formalized by L. Lamport et al., high-
lights the challenges of coordinating a decision among generals who communicate
through messengers. As is shown in Figure 2.1a and Figure 2.1b, traitors may send
fake votes, and when a lieutenant is betrayed, it may mislead another lieutenant
to retreat. Similarly, a betrayed commander equivocates messages to different lieu-
tenants. The solution to this problem is to add more generals to at least 3f+1, as
illustrated in Figure 2.2a and 2.2b. When a lieutenant is malicious, other lieutenants
can still receive 2 correct messages to make a decision. Similarly, when the comman-
der has betrayed, the lieutenants cannot agree on a decision. They realize that the
current commander might be a traitor and need to re-elect a reliable one.

In real-world distributed systems, a leader is a commanding general, and a replica
is a lieutenant. Behaviors like message lying, deliberate message delay, and message
faking are known as Byzantine behaviors. The goal of a BFT system is to help
distributed systems maintain resiliency against malicious Byzantine general attacks.

2.1.2 The 3 f + 1 bound

The case of a common node abruptly crashing is called a non-Byzantine fault or
Crash Fault Tolerance (CFT). Consider a scenario with two different requests. As
f replicas may be faulty, the client requires at least N − f replies as a Quorum
Certificate (QC) to proceed. The intersection between the two quorums is (2n −
2 f)− n = n− 2 f . If there are only crash failures, we have to ensure that at least
one intersected replica survives (n − 2 f > 0). Hence, at least 2 f + 1 replicas are
required against CFT.

However, scenarios with Byzantine faults are complicated because it is hard for
the system to determine whether faulty nodes crash or act maliciously. At most
f replicas may be Byzantine. In such cases, we must exclude a quorum of honest

(a) Lieutenant 2 is a traitor. (b) Commander is a traitor.

Figure 2.1: Scenarios with 2f+1 generals (f =1).

5

6 bft concepts

(a) Lieutenant 3 is a traitor. (b) Commander is a traitor.

Figure 2.2: Scenarios with 3f+1 generals (f =1).

nodes and ensure that at least one honest replica survives against Byzantine nodes
(n− 2 f > f). Thus, at least 3 f + 1 replicas are needed for BFT systems.

Note that we do not consider the use of trusted components in this work, which
would lower the necessary number of replicas to 2 f + 1 [22].

2.1.3 State machine replication

State machine replication (SMR) is a technique used in distributed computing to
ensure that a group of nodes agree on a consistent state. Each node maintains
a replica of the state machine and executes the same sequence of operations. The
nodes communicate with each other to exchange information and ensure agreement
on the current state. Byzantine SMR protocols typically consist of three components:
consensus, checkpoint, and view change. The consensus module is based on a
reliable total order broadcast protocol where requests are executed and committed
by honest replicas in a determined order. The checkpoint is used to verify log
information performed by replicas. The view change mechanism is triggered when
faults are detected to elect a new leader. We assume a static membership and
consider dynamic adaptation to be out of the scope of this work [55].

2.1.4 Properties

In order to check the correctness of BFT systems, distributed BFT protocols can be
characterized into these properties:

1. Safety: A safety property guarantees that the correct nodes always decide on
the same value.

2. Liveness: A liveness property guarantees that the protocol always eventually
progresses.

3. Validity: The decided value is a valid proposal.

The validity condition can be referred from the notation proposed by Cachin et.al
[13]. This property ensures the validity of the blocks and the decided value. Specif-
ically, it guarantees that a blockchain implementation can accept a block signed by
valid replicas and decide on a block containing legitimate transactions.

2.2 network model 7

2.2 network model

2.2.1 Synchronous system

A synchronous consensus system requires a group of nodes must agree on a value
or decision within a bounded time interval, denoted as ∆. This assumes that mes-
sage delivery time and node processing times are known and bounded and that the
network is reliable and predictable. However, it is challenging to ensure network
synchrony in real-world distributed systems due to network partitions and other
practical constraints. It may not be a practical solution for high-performance appli-
cations because a large number of lock-step rounds between nodes leads to high
latency.

2.2.2 Asynchronous system

An asynchronous system allows for arbitrary manipulation of message delivery tim-
ing, which enables adversaries to arbitrarily delay their messages as long as they
guarantee eventual delivery. In practice, consensus verification is challenging in
large asynchronous systems, especially in convoluted network environments with
intertwined message delivery, loss, and delay. The FLP impossibility result [28]
proves that deterministic asynchronous consensus cannot achieve liveness, even
with a single crash failure. This restriction can be mitigated by extended features
such as timing manipulation, randomization, and other approaches in practice.

2.2.3 Partially synchronous system

Partially synchronous systems, as defined in [26], strike a balance between syn-
chronous and asynchronous systems by assuming an unknown Global Stabilization
Time (GST) and a finite upper bound ∆ on message delivery times. The adver-
sary can arbitrarily delay, drop, or reorder messages until the GST, but once the
GST is reached, the network becomes fully synchronous, and message delivery is
guaranteed. The system can tolerate long delays, such as those due to network
congestion or overload, as any message sent at time t has to be delivered by time
∆ + max(t, GST).

Partially synchronous consensus protocols can achieve high performance during
periods of full synchrony while still maintaining a high degree of fault tolerance
during periods of partial synchrony. This allows them to scale to large distributed
systems while still providing the safety and liveness guarantees necessary for con-
sensus.

2.2.4 P2P communication

Peer-to-peer (P2P) networks are a communication model in that data are stored and
shared collectively by peer nodes, enabling all clients to provide resources. The dis-
tributed nature of P2P networks increases the robustness of the network by replicat-
ing data across multiple nodes and eliminates the need for a central indexing server
to discover data. In blockchain consensus, P2P networks offer better security and
resiliency to malicious attacks, making them immune to Denial-Of-Service (DOS) at-
tacks and ensuring fault tolerance. P2P gossip is widely used to disseminate data
to all members of the network, preventing centralization and ensuring network re-
silience [16, 15]. We assume that all replicas are directly connected to each other,
which simplifies the implementation of distributed computing primitives [10].

3 B F T P R OTO C O L S A N D AT TA C K S

3.1 partially synchronous byzantine consensus

3.1.1 PBFT

PBFT is a seminal practical BFT protocol proposed by Castro and Liskov in 1999 [17].
It is a typical state machine replication algorithm that tolerates Byzantine malicious
behaviors in a partially synchronous system.

A normal standard PBFT view, is completed in five phases: REQUEST, PRE-
PREPARE, PREPARE, COMMIT, and REPLY, as shown in Figure 3.1:

1. When the process is invoked, the leader node receives a REQUEST message
sent by the client and verifies the message’s validity. The leader then assigns
a sequence number n to the current request message and broadcasts a PRE-

PREPARE message to all other backup replicas.

2. The backups authenticate the received PRE-PREPARE message and broad-
cast PREPARE messages along with a digest of the requests in the previous
message. These two phases ensure that every non-faulty replica agrees on the
order of requests in the same view.

3. Once any replica receives a quorum of 2 f + 1 PREPARE messages, it broad-
casts a COMMIT message to all other replicas. This signals that a quorum of
replicas has completed the persistence and promises to commit the request in
its local history.

4. Finally, any replica that receives a quorum of COMMIT messages caches the
client’s current request and replies with a REPLY message back to the client.
When the client receives f + 1 REPLY messages, a decision can be made.
Otherwise, the request is re-transmitted.

In the event that the leader node is down, the view change phase is initiated when
backups are waiting for the leader to respond over a specified timeout duration. The
process comprises three phases. Each backup replica broadcasts a VIEW-CHANGE

message, which contains the set of stable checkpoints and PREPARE messages. If
the new leader replica receives 2 f VIEW-CHANGE messages, it broadcasts a NEW-

VIEW message. The new leader continues to execute any unfinished request from
the previous view. After the other replicas verify the NEW-VIEW message, they
synchronize and enter a new view.

3.1.2 Tendermint

Tendermint [58] propagates messages over a wide-area P2P gossip network. It em-
ploys a novel view change strategy in which the leadership automatically rotates to
another replica based on a predefined leader selection algorithm. It applies a lock-
ing mechanism that instructs how the current replica votes for previously locked
values, defending against some safety issues.

As illustrated in Figure 3.2, a leader relays the request and broadcasts a new PRO-

POSAL message. Other replicas echo the proposal and broadcast a PREVOTE mes-
sage. Once a majority of votes are received, the node locks this value and gossips a

9

10 bft protocols and attacks

Figure 3.1: PBFT protocol.

PRECOMMIT message. After a majority of PRECOMMIT messages are received,
they decide on the current value. Then, a new leader is rotated. It is important to
note that in each phase, Tendermint schedules a local timeout to progress.

3.1.3 HotStuff

HotStuff [65] is a leader-based BFT replication protocol whose message complexity
is linear with the number of processes instead of quadratic as in PBFT. To achieve
this goal, HotStuff’s normal case consists in four communication phases that involve
leader-to-replicas or replicas-to-leader communication, and its view-change proce-
dure is embedded in its normal case. Classically, HotStuff uses n = 3 f + 1 processes
to tolerate f faults and guarantees responsiveness because the leader initiates the
next phase when it receives n− f equal votes and because an unresponsive leader
leads the replicas to initiate a view-change. HotStuff also mentions using threshold
signatures and pipelining its operations to further improve its performance. Note
that for simplicity, we focus on the non-pipelined version of HotStuff, which is
called Basic HotStuff. The liveness and safety properties of HotStuff have been
proven in partially synchronous networks, and testing our liveness checking tools
on HotStuff allows us to evaluate possible false positives.

HotStuff processes maintain and extend a chain of blocks that contain user trans-
actions that is initialized with a genesis block. All processes maintain the latest
prepared and locked blocks they know of. In a nutshell, HotStuff proceeds accord-
ing to five phases, which are illustrated in Figure 3.3. These phases can be described
as follows.
(1) New-view 1/2-phase. All processes send the latest prepared block they know of
to the leader.
(2) Prepare phase. The leader waits for 2 f + 1 identical prepared blocks and sends a
propose message to all processes that contain a block that extends it. All processes
are expected to vote for this new block by sending to the leader their signature on
it. In this phase, a process votes on a block if it extends the latest block it locked
(for safety) or if it originates from a more recent view (for liveness).
(3) Pre-commit phase. The leader gathers 2 f + 1 votes and aggregates them into
a quorum certificate, which it sends to all processes. Upon receiving a quorum

3.1 partially synchronous byzantine consensus 11

Figure 3.2: Tendermint protocol.

certificate, a process marks the block as being prepared and sends its vote for this
block to the leader.
(4) Commit phase. The leader gathers a quorum certificate on a prepared block and
forwards it to all processes. Upon receiving a quorum certificate in this phase all
processes mark this block as being locked and send their vote for it to the leader.
(5) Decide 1/2-phase. The leader assembles a quorum certificate on a locked block
and forwards it to all processes. Upon receiving this QC all processes execute the
block.

3.1.4 2-Phase HotStuff

2-phase HotStuff is a variant of Basic HotStuff that Yin et al. discuss for pedagogical
reasons in the original HotStuff paper [65]. 2-Phase HotStuff is very similar to
HotStuff and only differs from it by the fact that it combines the Precommit and
Commit phases into a single phase. In 2-Phase HotStuff, a process can lock on a
block once it receives a quorum certificate in the Prepare phase.

3.1.5 Sync HotStuff

Sync HotStuff [3] is a variant of HotStuff for synchronous networks. Sync HotStuff
uses a minimum of n = 2 f + 1 processes to tolerate f Byzantine processes.

Assuming that the communication latency is bounded by ∆, Sync HotStuff’s la-
tency is bounded by 2∆. In the steady case, upon entering a new view, all processes
send their highest locked block to the new leader. After waiting for an initial 2∆ pe-
riod where it receives the highest locked blocks from all correct processes, an honest
leader broadcasts a new block proposal that extends over the highest locked block
along with a quorum certificate for the highest locked block to all processes. All
honest processes subsequently broadcast their vote on the leader’s proposal during
the following round and initialize a local 2∆ commit timer associated with this pro-
posal. If a process does not detect a conflicting block when its commit timer expires,
then it commits the block and all its ancestors and otherwise drops it. While wait-
ing for commit timers to expire, the leader keeps proposing blocks, and processes
keep voting on blocks, which is shown with blocks B1 and B2 in Figure 3.4a. In the

12 bft protocols and attacks

Figure 3.3: HotStuff protocol.

steady case, an honest leader, therefore, keeps proposing and committing blocks
every 2∆.

Whenever it votes on a block, a process resets a local blame timer to 3∆. A view
change (Figure 3.4b) is triggered if a process’s timer expires, if it refuses to vote on a
block, or if detects that the leader broadcasts conflicting blocks, then it broadcasts a
blame message. Upon receiving f + 1 blames, a process broadcasts them and stops
voting in view r, waits for 2∆, and finally moves to view r + 1.

Sync Hotstuff supports different models to enhance its robustness against safety
violations. The mobile sluggish model adds an extra PRECOMMIT phase to tol-
erate network delays for messages. The optimistic responsive model increases the
quorum size to 3n/4. These models can share some utility modules, such as a
common event queue and network library.

3.1.6 Casper & Gasper

Casper [12] aims to reduce message complexity by merging PREPARE and COM-

MIT messages into a single VOTE message [60]. This feature allows Casper to be
essentially considered a variant of Chained Tendermint, with a Two-Chain commit
rule. It is designed to ensure strong accountability and penalize the misbehavior of
faulty validators to defend against long-range attacks and catastrophic crashes.

As shown in Figure 3.5a, Casper defines its checkpoints using common tree struc-
tures like height, leaf, and child. A checkpoint refers to an on-chain block, and a su-
permajority link is a connection between two checkpoints that a higher checkpoint
has accepted a quorum of votes from the lower one, e.g. G =⇒ B1. A checkpoint B
is called justified if it has a supermajority link A =⇒ B from a justified checkpoint
A. If this supermajority link is directly extended from a parent block, e.g.B2 =⇒ B3,
then we call the parent (B2) finalized.

Gasper [4] combines Casper with an LMD-GHOST fork choice rule [57, 4]. Figure
3.5b provides an example of this algorithm. It considers the latest block messages to
determine the heaviest observed subtree. This decision rule provides Gasper with
network partition tolerance and the ability to finalize or validate, blocks, which can
protect against protocol violations.

3.1 partially synchronous byzantine consensus 13

(a) Steady case with 2 successive blocks B1 and B2. Block B1 is committed by a process 2∆ after it votes
on it.

(b) View change.

Figure 3.4: Sync HotStuff’s steady case and view change procedures.

(a) Casper protocol. (b) LMD-GHOST fork choice rule.

14 bft protocols and attacks

3.2 byzantine behaviors

Equivocation

Equivocation is a most common Byzantine behavior where a replica proposes con-
flicting proposals to different replicas, leading to safety violations if different sets
of replicas commit different values. This behavior involves signing multiple votes
in the same round at a given height.

Amnesia

Amnesia is a scenario where a faulty replica forgets its prior vote for a proposal in
the current round and double-votes or double-signs, leading to equivocated votes
in the same round.

Timing attack

Timing attacks involve distorting the timing of message transmission by delaying or
reordering messages to disrupt the consensus protocol’s execution. Attacks that im-
pact message delays, for example, can increase the view change timeout or instruct
honest replicas to withhold and delay their votes to a certain time slot.

Forking attack

The forking attack is a common chain-based attack that overwrites previous blocks
that have not yet been committed. A Byzantine leader can deliberately generate
conflicting forks from the honest leader. This attack can delay commitment, making
it hard to build a direct parent-child chain and resulting in wasted resources spent
on the forked blocks.

3.3 existing attacks

Overview

The table 3.1 presents an overview of existing attacks to the best of our knowledge
in BFT consensus protocols. We list the Byzantine attacks along with their paper
names, authors, attack type, whether they have been detected, and whether they
have been fixed. For those attacks that we speculate can already be tested with
Twins, we call it ”Twins-able”. As a result, this table aims to provide a compre-
hensive overview of the potential vulnerabilities that can undermine the safety and
liveness of BFT consensus protocols, thereby informing potential improvements and
refinements for these protocols. A detailed discussion of testing will be in the fol-
lowing Chapter 4.

3.3.1 Safety attacks

Zyzzyva, hBFT, EZBFT’s safety attack

A safety attack [1] is described to violate the safety of Zyzzyva [37], which is later
fixed [2]. Similarly, hBFT and EZBFT [53, 54] break their safety under a similar
attack scenario. Here is an example scenario in Figure 3.6. This figure includes 4

replicas, p1,p2,p3,p4 of which p1 is a faulty leader.

Round 1: Leader p1

3.3 existing attacks 15

Protocol Year Violation Type Detected? Fixed?

Zyzzyva [1] 2017 safety Equivocation Twins-able Yes
hBFT [54] 2019 safety Equivocation Twins-able -

EZBFT [53] 2019 safety Equivocation Twins-able -
Tangaroa [14] 2017 safety Network delay (loss) Twins-able -

dBFT [62] 2021 safety Network delay Twins-able Yes
Algorand [63] 2020 safety Fork - Yes

2-phase HotStuff [65] 2019 liveness Non-Responsiveness attack Not yet (Twins) Yes
Tendermint [6] 2018 safety & liveness Silence & Malicious delay Not yet (Twins) Yes

Sync HotStuff [46] 2019 safety & liveness Timing attack Not yet (Twins) Yes
Casper [49] 2019 liveness Malicious delay Not yet (Twins) Yes
Gasper [50] 2021 safety & liveness Equivocation & Malicious delay Not yet (Twins) Yes

FaB [1] 2017 liveness Equivocation Twins-able Yes
PBFT [8] 2021 liveness Isolation Not yet (Injection) Yes

PBFT [45] 2016 liveness Malicious delay Yes (Miller et al. [45]) -
PoS Ethereum [51] 2022 safety & liveness Fork attack Not yet (Twins) -

DBFT [21] 2018 liveness Algorithm design problem - -

Table 3.1: Attacks in BFT consensus protocols

Figure 3.6: Zyzzyva’s safety attack.

1. p1 proposes a PREPARE message for value a to other replicas in a solid line
and equivocates its vote for value b to p4 in a dotted line.

2. p2,p3,p4 receive PREPARE messages and broadcast COMMIT messages to
other replicas. However, only p3 receives 2 f + 1 COMMIT messages for value
a and commits value a at sequence number 1. For simplification, we omit
extra lines.

Round 2: Leader p2

1. In the next round, p1,p2,p4 blame VIEW-CHANGE messages: p1,p4 carry
value b (p1 equivocates). 2 f + 1 VIEW-CHANGE messages elect p2 as the
new leader. p2 accepts f + 1 votes for value b and proposes it.

2. p2 broadcasts PREPARE messages, and further these replicas except p3 nor-
mally commit conflicting value b at the same height. Hence, safety breaks.

16 bft protocols and attacks

Figure 3.7: Tangoroa’s safety attack.

Tangoroa’s safety attack

IBM Research group points out a Tangoroa’s [20] safety issue in [14]. Tangoroa
extends Raft’s [52] messaging structure but it is not Byzantine resilient.

In Figure 3.7, we demonstrate this attack scenario with 4 nodes: p1,p2,p3,p4 of
which p1 is a faulty leader initially. The malicious leader broadcasts a payload a to
its peers while it deliberately omits to send p2 the “AppendEntries” message either
due to message loss or delay. p3 echos the proposal while it does not complete
delivery and further commit. Only p4 delivers and commits the payload a. Then
the leader rotates to p2, p2 has no prior knowledge of a and delivers another payload
b that does not equal a. Then the two correct nodes decide on different payloads
and violate the safety.

dBFT’s safety attack

Wang et.al [62] present a theoretical security analysis on dBFT, demonstrating at-
tack scenarios that violate safety, which is caused by network delays and partitions.
Figure 3.8 shows the details of this scenario. The initial setting includes 7 replicas,
of which p2 is faulty. p1 can also be seen as compromised with message delay.

Round 1: Leader p1

1. p1 proposes a PREPARE message for value a to other peers. Only half of the
replicas (p5,p6,p7) receive and accept value a, while the other half (p2,p3,p4)
know nothing about the proposal and time out.

2. The number of votes is undoubtedly lower than a majority, thus the VIEW-

CHANGE messages are broadcast.

Round 2: Leader p3

1. In the next round, a new leader p3 proposes another value b. The delayed
messages are received by p2,p3,p4. The malicious node p2 accepts the message
and fakes a RESPONSE for the previous value a. Then, p2 collects a quorum
of responses for value a from p1,p5,p6, and p7, which is sufficient for deciding
on this block.

2. Meanwhile, other replicas p3,p4,p5,p6, and p7 execute normally and decide on
value b. So far, the system has decided on two conflicting blocks in the same
round at the same height, hence safety breaks.

3.3 existing attacks 17

Figure 3.8: dBFT’s safety attack with f =1.

Algorand’s fork attack

In [63], Wang points out Algorand can easily create forks. Typically, the possibility
for the Algorand to fork is relatively low (at most 1/109). Suppose that there is a
chain with r blocks, and we define r1 where 3 ∗ r1 < r. The adversary can corrupt
all r1 corresponding user sets, and then construct a new chain r + 1 long forked
from the position r1. The longer chain is legal and successful, thus for this kind of
proof-of-stake blockchain, the users are able to create a conflicting chain easily.

3.3.2 Liveness attacks

2-phase HotStuff’s liveness attack

The lack of a Precommit phase prevents 2-phase HotStuff from making progress
in some particular scenarios, even though it remains safe. In these problematic
scenarios, different processes lock on conflicting blocks and never get to execute any
or update their locks. More precisely, in each view, a subset of processes locks on the
block that is proposed while others reject it, and view changes that are triggered
by network asynchrony prevent sufficiently enough processes from adopting the
newest proposed block. Under these circumstances, the system fails to progress
and is stuck in an infinite loop.

Figure 3.9 illustrates one of these problematic scenarios with four processes P1, P2,
P3, and P4. Process P1 is faulty, while the other processes are correct. The scenario
this Figure illustrates is the following. Originally, all processes are locked on the
same block B0 (e.g., the genesis block). In the first view, process P1 is the leader
and proposes a new block B1 only to P3 and P4 in the Prepare phase, and then only
sends the quorum certificate it assembles to P3 in the Commit phase. The messages
that P1 omits to send are shown using dashes. At the end of the first view, P3 is
the only correct process to lock on B1. In the next view, P2 is the leader. Processes
P1 and P4 send block B1 on which they are locked to P2, but P3’s message, which

18 bft protocols and attacks

26

P1

P2

P3

P4

View 1
P1 proposes block B1

P4 locks B2

Prepare Commit
New
View

Prepare Commit

View 2
P2 proposes block B2

B0

B0

B2

B2

B1

P3 rejects B2

P3 locks B1

P2 locks B2

Figure 3.9: 2-phase HotStuff’s liveness attack.

contains block B1, is delayed (shown using dashes). Consequently, P2 proposes a
block B2 that extends over B0 but is in conflict with B1 in the Prepare phase to all
processes. Eventually, processes P2 and P4 lock on B2 while P3 rejects it and remains
locked on B1. The system is then deadlocked in future views if P1 remains silent
because no quorum of 2 f + 1 processes can be assembled by any leader.

Sync HotStuff’s force-locking attack

Momose and Cruz’s force-locking attack has shown that an adversary that controls
the faulty processes and the network delays can break both the safety and the live-
ness of a preliminary version (eprint 20190312:115828) of Sync HotStuff [46].

Sync HotStuff processes keep processing the messages they receive during the 2∆
period that follows the reception of f + 1 blames. During this period of time, some
correct processes might receive a quorum certificate from a leader. In that case,
these processes are then forced to update their locked blocks, while other honest
processes might not be able to do so. If different honest processes are led to lock
on conflicting blocks, then the system may never be able to make progress in the
future, in particular, if faulty processes subsequently remain silent since no locked
block can ever collect enough votes.

The safety attack on Sync HotStuff builds on the situation where honest processes
have locked on different blocks. In subsequent views, the adversary is assumed to
be able to leverage network delays and use the votes of the Byzantine processes to
lead different subsets of correct processes to commit different blocks.

Tendermint’s liveness attack

A liveness violation [14] in the preliminary version of Tendermint is highlighted.
This vulnerability is demonstrated by Amoussou-Guenou et al. in [6] with a com-
plex 7-round scenario where two different replicas alternately lock their own pro-
posed value at different heights. This attack is caused by the leader’s silence and
message delay, which allows the faulty leader to remain silent until the end of the
view and delay message delivery to specific replicas.

We illustrate it in Figure 3.10. We drop PRECOMMIT messages to shorten the
illustration.

Round 2: Leader p2

1. In round 1, p1 has already proposed and locked a value v1.

3.3 existing attacks 19

Figure 3.10: Tendermint’s liveness attack.

2. The leader p2 proposes its value v2 but p1 rejects the proposal and votes for
its locked value v1. The faulty replica p4 remains silent and only p3 echoes p2,
so no quorum is formed in this round.

Round 3: Leader p3

1. The leader is rotated to p3 and it proposes v3. Still, p1 rejects this proposal
again. p2,p3 send their PREVOTE messages for v3 to other replicas, while p4
only prevotes v3 to p3 before the timeout, delaying its PREVOTE messages to
p1 and p2.

2. Only p3 collects a quorum and locks its proposed value v3.

Round 4: Leader p4

1. The faulty leader p4 remains silent so nothing happens.

2. Although delayed messages from round 3 are received, they do not change
the situation.

Later, p1 can update its lock again but other replicas do not change their locked
values, leading to an infinite scramble for control over the proposal.

Casper’s bouncing liveness attack

A bouncing attack on Casper FFG has been identified, which causes damage to
liveness under the partially synchronous model. Casper has two tiers, and the fork
choice should always prioritize the justified checkpoints currently at the highest
depth. The bouncing attack is caused by inconsistency between the latest justifica-
tion layer and the fork-choice layer.

Assume that there are two candidate chains collecting votes from validators. One
chain has initially justified a block. In the next round, the attacker deliberately
delays its votes to justify another chain’s block. This situation can repeat infinitely,
with both chains growing, preventing a chain from being committed on a direct
child block.

Gasper’s balancing liveness attack

A Gasper vote contains a Casper vote and a GHOST vote. However, a liveness vi-
olation has been detected by Neu et al. in [50]. This attack is not only similar to
Casper’s bouncing attack, but it also causes faulty replicas to split votes between
two chains, breaking safety even without a network partition. The adversary should

20 bft protocols and attacks

Figure 3.11: Gasper’s balancing attack.

be able to know when fork choice is executed, deliver a message to specific valida-
tors at a specific time, and prevent honest validators from exchanging their recently
received messages with each other.

Figure 3.11 depicts the details of this attack. Gasper splits progress into C times-
lots in each epoch. In the attack scenario, the adversary proposer kicks off the attack
by equivocating two conflicting blocks with the ’left’ and ’right’ chains in slot 1 of
epoch 0. For each following slot except the last one in epoch 0, a pair of validators
delay their current votes to the next slot in order to selectively ensure the equality
between the ’left’ and ’right’ votes in slot i + 1. For each following slot in epoch
0, another pair of validators delay their current votes to the next epoch in order to
selectively ensure equality between the ’left’ and ’right’ votes in slot C + i. If there
is a vacancy for honest validators, the faulty proposer assigns a fake node to fill the
gap.

In Epoch 1, the adversary releases the additional votes backlog in the previous
epoch to keep splitting honest validators into two chains. During this Epoch, the
adversary is still instructing honest validators to believe that the chain they previ-
ously voted on is still leading the execution. This scenario can continue infinitely,
with neither chain able to reach a consensus.

FaB’s liveness attack

A liveness attack [1] is presented on FaB [44], a precursor of Zyzzyva with a two-
phase commit fast track. This attack is simple and similar to Zyzzyva’s safety vio-
lation. It also starts with a faulty leader splits the honest replicas into two groups
with conflicting proposals value a and b: (1) group a: f + 1 votes for value a and (2)
group b: f votes for value b. Only one replica A of the group a receives 2 f + 1 votes
for value a and form a QC. During the next view change phase, there is a QC for
value a and f + 1 VIEW-CHANGE messages for value b including one equivocated
view change blame from the faulty leader. The progress can stop when this replica
A and 2 f replicas in group b do not create a new QC.

3.3 existing attacks 21

Figure 3.12: PBFT’s read-only optimization liveness attack

PBFT’s read-only optimization liveness attack

Berger et al. [8] present a liveness violation in PBFT when the read-only optimiza-
tion request is applied. All operations including reads and updates have to wait
for a quorum of replies from the client. If a malicious leader selectively omits to
send PREPREPARE messages to up to f correct replicas, such replicas lack infor-
mation about the client request and cannot participate in the further commit phase,
violating liveness. The authors conjecture that this attack can be extended to similar
protocols, such as HQ, PBFT-CS, and BFT-SMaRt.

From Figure 3.12 we can see an example scenario: the Byzantine leader p1 delib-
erately omits to send the PREPREPARE message with the proposed value v to p4,
so p4 is unable to prepare for v in the next phases and can not take part in the fur-
ther PREPARE and COMMIT phases. According to the reasons above, the liveness
breaks when the system times out.

PBFT’s delaying liveness attack

In the HoneyBadger [45], a delay attack is described that can thwart the progress
of PBFT by simply delaying the scheduler’s message delivery to the current leader.
This forces the leader to withhold its PREPREPARE message until the timeout trig-
gers a view change. Moreover, the scheduler delays the receipt of VIEW-CHANGE

messages from the last round, making it difficult for the new leader to catch up
with the latest progress. This cycle can be repeated, breaking liveness.

PoS GHOST’s balancing liveness attack

Neu et al. [51] present a generic attack discovered on PoS GHOST variants. This
attack is illustrated with k = 5 number of initial honest blocks in Figure 3.13. Honest
nodes on the left build a chain, while faulty blocks on the right fork the same blocks
and equivocate a sub-tree grown from the genesis. Honest nodes create another new
chain on top of node 2; however, the faulty blocks again fork another sub-tree to
replace honest nodes. Finally, all honest nodes can be replaced. If the total number
k of initial honest blocks is large enough, the adversary can replace Θ(k2) honest
blocks.

22 bft protocols and attacks

Figure 3.13: PoS GHOST’s avalanche attack.

DBFT’s non-deciding liveness attack

DBFT [21] is a leaderless Byzantine consensus for blockchain where each node
shares a similar priority in the decentralized execution of the consensus. DBFT sup-
ports an asynchronous communication network, and the authors provide a binary
Byzantine consensus (BBC) using a strategy called BV-broadcast, which is quite
similar to randomized consensus [45]. In each round, BV-broadcast proposes an
estimated value and then decides upon the estimated convergence to the round
number modulo 2. The decision process still loops because it may help other peers
to converge in the next two rounds. The authors have addressed this issue in the
same paper and proposed a fix.

4 B F T T E S T I N G S Y S T E M S A N D
A LG O R I T H M S

4.1 consensus testing

4.1.1 Twins

Facebook proposed Twins [7] based on their own product, DiemBFT [23], which is
a highly scalable and secure protocol based on HotStuff. It systematically generates
test case scenarios with Byzantine faults and explores them. It models Byzantine
behaviors using twin copies of the processes, i.e., processes with the same identities
and credentials. It runs the cluster with twin replicas and network partition, where
the twin replicas exhibit Byzantine behaviors such as equivocation, double voting,
and loss of internal state, which causes them to forget their voted values.

Figure 4.1 presents a Twins system architecture with its components. The scenario
generator employs a round-by-round generation style. Given that the number of
parameters (nodes, leaders, rounds) is determined, it produces various scenarios
and feeds them into the executor. The generation can be summarized into several
steps:

1. The scenario generator first produces all the possible node partitions.

2. Then the scenario generator assigns each partition to all possible leaders.

3. The scenario generator generates all possible ways to arrange the leader-partitions
scenario pairs over a given number of rounds.

4. Finally, the generated scenarios are sent to the scenario executor for execution.
The execution results are saved to logs, especially the information on buggy
scenarios.

The research team claimed that several famous BFT attacks have been reinstated
and successfully detected with only a few nodes and a few minutes. However, it is
open work to rigorously characterize the attacks that Twins can cover. To the best
of our knowledge, Twins has not yet been extended to detect liveness bugs.

4.1.2 Other testing methods

There is a large body of work that propose new BFT consensus algorithms, make
them robust against Byzantine faults [19], or model-check the correctness of consen-
sus algorithms [39, 36, 35]. In this section, we focus on the most related work on
testing BFT consensus implementations.

Several existing methods for testing consensus systems focus on analyzing crash-
fault tolerant protocols and exercise different executions of the systems under asyn-
chrony, network faults, and crash process faults [5, 24]. e.g.Jepsen [43] is an effort
to test the safety of distributed databases and consensus protocols. It simulates
network partitions for distributed systems, and it has detected several violations in
the consensus systems [33, 34, 31]. However, Jepsen is not designed for Byzantine
consensus.

Targeting BFT systems, BFTSim [56] explores the system’s behavior under unex-
pected network conditions and faults using a network simulator. Turret [41] detects
performance attacks on BFT systems by generating Byzantine attack scenarios with

23

24 bft testing systems and algorithms

Figure 4.1: Twins system.

malicious message deliveries, including message dropping, delay, duplication, and
diversion. Apollo [61], is designed as SBFT’s [29] testing framework. The main
design of the testing strategy is that it provides reusable functions, specific compo-
nents, and methods applicable to its specific instances. Several works [42, 27, 25]
provide testing frameworks that can model and inject network and Byzantine faults
into the executions of BFT protocols.

Netrix [25] provides a domain-specific language and a controlled networking en-
vironment that allows programmers to specify restrictions on the generated execu-
tions or implement their unit tests with network and Byzantine faults.

Recent work ByzzFuzz [64] generates test executions with randomly sampled net-
work and Byzantine process faults. It models Byzantine faults using small-scope
mutations to the original contents of the protocol messages and randomly injects a
parameterized number of mutations.

4.1.3 Discussion

In this thesis, we primarily use Twins as our test system. First, Twins is an innova-
tive approach specific for BFT consensus testing, while prior testing work focused
more on crash faults. Second, Twins is easy to implement and adopt, which gives
us sufficient space for extension. Third, Twins has already theoretically proved that
it is able to reinstate some known attacks presented in our Table 3.1. Although
Twins hasn’t yet implemented the detection of Zyzzyva’s safety violation, we be-
lieve Twins can easily detect it within several rounds, and further extend to detect
similar safety violations caused by equivocation or network delay in Table 3.1. Fi-
nally, Twins does not implement any strategies or algorithms to detect liveness
bugs. All the discussions of liveness issues are that Twins can theoretically repro-
duce FaB’s liveness issue and Twins is unable to resolve timing attacks in Sync
HotStuff. It is calling for some open work such as detecting liveness violations and
tackling multiple pairs of Twins, which is highly related to our topic.

To the best of our knowledge, we do not find a more suitable BFT testing system
or method to start our thesis than Twins.

4.2 liveness checking
In this section, we introduce two approaches that aim at identifying liveness vio-
lations. The first one is bounded liveness checking (also referred to as temperature

4.2 liveness checking 25

checking) [32, 47] and lasso detection with partial state caching [47]. These methods
build on the notion of a hot state, which is a system-wide state in which the sys-
tem does not satisfy some of its properties or produce useful results. Intuitively,
the temperature-checking method reports a violation if the system remains in a hot
state for a long time. On the other hand, lasso detection methods detect the ex-
istence of a cycle of states (i.e., a lasso) where the system can possibly get stuck
forever following its transitions.

4.2.1 Temperature method

Temperature checking checks for bounded liveness, which means that it reports a
violation if an execution does not produce a useful result (i.e., produce a new block
in the case of blockchain consensus) for a specified amount of time. The method
maintains a temperature variable temp, which is equal to the number of successive
hot states the system remained in. It reports a violation if the temperature reaches
a certain threshold value TT provided by the programmer.

Algorithm 1 provides the pseudocode of temperature checking. The checking
temperature method is called whenever the system reaches a state s after executing a
sequence of system events trace. This function increments the system’s temperature
temp if state s is a hot state (line 2), and resets it to 0 otherwise (line 7). Violations
are detected when the temperature reaches the temperature threshold (line 3), and
therefore directly depend on the value of parameter TT that is provided by the user.
A low threshold value might result in a high number of false positives, while a high
threshold value leads to longer execution traces that are more difficult to interpret.

Algorithm 1 CheckTemp
Input: Current state s
Input: Current trace Trace
Input: Current temperature Temp
Input: Threshold TT
Output: Updated temperature value

1 if Hot(s) then
2 Temp← Temp + 1
3 if Temp = TT then
4 REPORT-LIVENESS-BUG(Trace)
5 end
6 else
7 Temp← 0
8 end
9 return Temp

4.2.2 Partial-state caching method

Liveness checking based on lasso-detection aims at finding a cycle of states (i.e., a
lasso) where the system might get stuck and repeat its state infinitely often.

Detecting lassos in the executions of distributed systems is challenging because it
is impractical to register the entire state of complex software systems. However, one
can rely on the partial-state caching method [47]. This method captures only part
of the system state to check whether a partial state is repeated during an execution.
Since the state caching is only partial, repeating the same partial state does not
ensure repeating the same state in the execution. The existence of the cycle is then
verified by replaying the execution of the detected trace using a controlled scheduler
that enforces the execution of certain events and traces.

26 bft testing systems and algorithms

Algorithm 2 and Algorithm 3 details the partial-state caching algorithm. Given
an execution of a trace Trace that has reached a system state s, it checks whether the
current execution may cause a liveness violation. To do so, it uses a hash function
Hash to hash the partial state information, which ideally maps each partial state to
a different hash value. For each new state s that is reached during the execution, it
then checks if Hash(s) has been seen earlier. If it is the case, then it means that a
potential cycle in the state transition system has been identified. The cycle forms a
liveness violation if the states in the traces do not satisfy the system’s properties, i.e.,
if all the events e ∈ trace are in hot states. If the algorithm finds a cycle with a hot
trace, it then verifies the existence of a real cycle by checking each state’s enabled
processes and, if so, reports a liveness violation.

The partial caching method is clearer for developers to analyze than the temper-
ature method because it is easy to target the position where the system fails.

Algorithm 2 CheckLasso
Input: Current state s
Input: Current trace Trace
Input: Threshold value RT
Output: Updated trace
Output: New current trace

1 for i← 0 to Len(Trace) do
2 if Hash(s) = Hash(Trace[i]) then
3 C ← Trace[i..len(Trace)]
4 if Hot(C) ∧ Fair(C) then
5 return ReplayCycle(s, C, Trace, RT)
6 end
7 end
8 end

Algorithm 3 RepeatCycle
Input: Current state s
Input: Current trace Trace
Input: Potential cycle C
Input: Threshold RT
Output: New current state
Output: Updated trace

1 for j← 0 to RT × Len(C)− 1 do
2 i← j mod len(C)
3 m← scheduled(C[i])
4 if m /∈ Enabled(s) then
5 return (s,Trace)
6 end
7 s′ ← T(m, s)
8 Trace← Trace + (m, Enabled(s), Hot(s), Hash(s))
9 s← s′

10 if ¬IsHot(s) ∨ Enabled(s) ̸= enabled(C[i + 1 mod len(C)]) then
11 return (s,Trace)
12 end
13 end
14 REPORT-LIVENESS-BUG(Trace)

4.2 liveness checking 27

4.2.3 Other liveness checking work

There are some other works focusing on liveness checking. Biere et al. [9] present
a transition from checking liveness violations to safety properties (LTS). This paper
discusses lasso-shaped state traces and counter-based liveness checking, which is a
prior work similar to the partial-state caching algorithm. k-LIVENESS [18] checks
the liveness of finite-state systems by counting and bounding the number of a fair-
ness constraint. This method is simpler than LTS yet performs better with fairness
constraints. Tsuchiya and Schiper [59] uses model checking to verify asynchronous
consensus algorithms. They reduce the challenging and infinite consensus problems
to finite bound checking scenarios.

In our thesis, we do not adopt these methods because they are either too old,
complicated, or impractical for a blockchain system.

5 A P P LY L I V E N E S S C H E C K I N G
T E C H N I Q U E S

overview

Based on the analysis of the attacks listed in Chapter 3.3, it is clear that Twins
can quickly capture most existing safety violations. Checking safety properties in
the execution of a protocol is straightforward since we can check whether they are
violated in the states that the system reaches.

The liveness attacks listed in the Table 3.1 are caused by conflicting locks or dis-
turbing message orders. For streamlined protocols such as Tendermint, 2-Phase
HotStuff, and Sync HotStuff, their liveness breaks when two chains lock conflicting
blocks and therefore do not vote for each other. Casper’s liveness violations are
triggered by delaying votes, while it also enters a similar scenario that replicas are
not allowed to progress conflicting votes. Gasper’s liveness attack is more compli-
cated as its adversary controls several pairs of replicas to withhold their votes and
balance the number of votes between two chains across different epochs. It requires
tackling multiple pairs of twins and more precise message control over multiple
views. Detecting these liveness violations is more difficult than detecting safety
properties since it requires finding an infinite execution that the system actually
does not progress.

While the temperature and partial state caching methods provide a practical so-
lution for checking the liveness of software systems, they are not directly applicable
to blockchain consensus systems for several reasons. First, there does not exist a
common notion of a partial state that captures relevant information during the ex-
ecution of blockchain systems. Defining partial states is a delicate task. On the
one hand, a partial state that overly abstracts the system information may fail at
capturing essential state information and therefore suffer from a high rate of false
positives. On the other hand, a partial state that would include too much informa-
tion would not be impractical with large software systems. Second, the notion of
hot state has not been defined for streamlined blockchain systems and is required
by the temperature and lasso detection methods, which we aim to use. Finally, the
lasso detection method requires a controlled scheduler to check whether a detected
potential cycle is replayable. More specifically, it uses the scheduler to enforce the
system to run the sequence of events that produced the detected cycle of system
states; it checks if the cycle is replayable and only reports a violation if it is re-
playable. This makes the lasso detection method difficult to apply for systems that
do not have a controlled event scheduler.

In this work, we address these issues by: (i) formulating a partial-state definition
that captures the essential state information during the execution of a streamlined
BFT consensus algorithm; (ii) defining hot states, which are states that model bad
states, for streamlined BFT consensus; and (iii) using the execution state space for
checking the existence of lassos (i.e., state cycles).

29

30 apply liveness checking techniques

5.1 definitions

5.1.1 Partial State in the HotStuff Protocol Family

The liveness of the HotStuff protocols in Table 3.1 can be violated in the presence of
conflicting locks among the processes of a system. Essentially, our partial process
state encapsulates essential information about the state of a process, which is mod-
ified through the various phases of the protocol execution. The HotStuff authors
have provided various variables to describe the protocol state, such as the locked
block, the last executed block, the height of the last voted block, the prepared block,
the current view id, and the leader id. After having listed the variables that a pro-
cess maintains, we realized that storing prepared blocks in process states is not
necessary to detect the known liveness bugs in HotStuff protocols. However, locked
blocks are instrumental in known liveness violations. In addition, executed blocks
allow us to identify situations where two locked blocks exist in the system, which is
a necessary condition for liveness bugs, but one has been executed, which indicates
progress. We, therefore, define partial process states as follows.

Definition 1 (Partial process state). We define the partial state s of a process p as a tuple〈
H(bprepared), H(block), H(bexec)

〉
where H(.) is a hash function, bprepared is the last block

that the process prepared, block is the block that is locked by the process and bexec is the last
block it executed.

In the context of the HotStuff protocol, the system’s state is defined as the set of
states of all processes within the system. It is worth noting that, for the purpose
of defining hot states, the state of the network channels may not be necessary to
include.

Definition 2 (Partial system state). The partial system state is a tuple ⟨stateMap⟩ where
stateMap : P 7→ S maps each process p to its partial state Sp ∈ S.

We calculate the hash of a system state once and store it to test whether two
states are equal based on their hashes. This approach can reduce the computational
burden and improve the efficiency of the protocol. It is important to note that if
the locked blocks stem from the same blockchain, we do not need to compute a
new hash to avoid introducing too many distinct states. This strategy can also help
improve the performance of the system by minimizing the number of necessary
computations to check for system state equality.

5.1.2 Hot State in the HotStuff Protocol Family

We define hot states for streamlined consensus protocols based on their locking
phase, where a node locks on a block once it learns that a Byzantine quorum has
committed to it.

Definition 3 (Hot state for streamlined protocols). We say that a streamlined blockchain
system is in a hot state if it satisfies these conditions: (i) the correct processes hold at least
two locks on conflicting blocks, (ii) there is no locked block on which a quorum certificate
could be generated if all correct processes that have not locked on a block decided to lock on
it, and (iii) a correct process has not executed a block.

The first condition (i) checks for conflicting locked blocks in the system, where
two different processes have simultaneously locked distinct blocks. Condition (ii)
states that the processes are not able to generate a quorum certificate on one of
the existing locked blocks to reach consensus in this view, i.e., no locked block

5.2 detect liveness issues in 2-phase hotstuff 31

Figure 5.1: Two locks in the system.

can accumulate enough votes from processes that either already locked on it or
could lock on it (because they have not locked a conflicting block). Condition (iii)
guarantees that the system does not execute a block or respond to client requests,
preventing any further updates until the conflicting state is resolved. In Figure 5.1,
we present a scenario that there are some honest replicas locking on two conflicting
blocks, and f − 1 replicas that do not or have not yet locked any block. According
to HotStuff’s voting rule, these two groups of replicas never vote for each other
because their proposal does not extend their previous block. If f − 1 replicas vote
for one group, all the 2 f votes are not enough to create a new quorum.

Given Definition 3, which provides a general definition of hot states for stream-
lined blockchain protocols, it is possible to adapt the general hot definition for
HotStuff, 2-Phase HotStuff, and Sync HotStuff given their quorum certificate sizes
(i.e., 2 f + 1 for HotStuff and 2-Phase HotStuff, and f + 1 for Sync HotStuff).

Hashing

To check whether the system is in a hot state, we use a liveness monitor, which
keeps track of the current state of the processes. In particular, we save the hashes
of the prepared (bprepared), locked (block), and the last executed block (bexec) for each
process, and we ignore other variables. The probability of two hashes colliding
is extremely low at 4.3 ∗ 10−60, and it is believed that hash collision never occurs
during testing.

Execution cases

In real executions, there can be three main situations that could occur. They are
labeled to be Safe, Hot and Recover. A Safe execution means the system never enters
a hot state and successfully commits a decision. A Hot execution is when the system
remains in hot states until the end of the execution. A Recover execution is when
the system experiences a finite number of hot states but eventually recovers from
them.

5.2 detect liveness issues in 2-phase hotstuff

5.2.1 Attack scenario

To describe the attack scenario when we reinstate the liveness violation in Twins,
we set 4 processes and 1 twin as our default configuration. Nodes 1,2,3,4 are honest,
and node 4

′ is the twin of node 4, with the system unable to distinguish between
them. Suppose the twin node not only equivocates but also loses states (i.e., locked
block and double voting), we present an example scenario and observe the state
transition as shown in Figure 5.2:

32 apply liveness checking techniques

Figure 5.2: State transition.

View 1 Node 4 is selected as the first leader, with the partition {[1,2,4′], [3,4]}. Nodes
4 and its twin propose different blocks, but since the system can’t distinguish
between them, only QC([1,2,4′]) B1 is created.

View 2 Node 1 is selected as the next leader, with the partition {[1,4′], [2,3,4]}. Node
1 and node 4

′ receive messages and lock the previous QC B1 although they
can not collect any new QC. The system enters a state S2.

View 3 Node 3 is selected as the next leader, with the partition {[1,4′], [2,3,4]}. Node
3 knows nothing about the previous QC due to the partition and creates a new
QC([2,3,4]) B2.

View 4 Node 4 is selected as the next leader, with the partition {[1,2,4′], [3,4]}. Nodes
3 and 4 lock the previous QC B2, resulting in the system entering the hot
state S3. If honest node 2 is partitioned at the end of this view, no progress
can be made since nodes [1,4′] and nodes [3,4] will never vote for each other,
resulting in the system looping in hot state S3.

View n After some views, the Byzantine node may lose its lock and return to S3. If
the system recovers from hot states, it will enter state S5 or S7.

5.3 detect safety & liveness issues in sync hot-
stuff

In this section, we discuss how to detect the force-locking attack on the preliminary
version of Sync HotStuff (discussed in section 3.3.2). This attack was summarized
in the Twins paper, but it couldn’t be detected due to the message delivery timing
required.

5.3.1 Attack scenario

The force-locking attack involves an honest leader only collecting f votes when
other f + 1 honest replicas time out and blame the current view. The leader then
receives a delayed vote from the twin node, creates a certified block, and is forced
to update locks. Other replicas quit the current view, knowing nothing about the
highest certified block.

5.3 detect safety & liveness issues in sync hotstuff 33

5.3.2 Adaptation

Among the protocols on which we apply our liveness-checking methods, Sync Hot-
Stuff is the only one that cannot be directly simulated on top of Twins, since it does
not rely on a lock-step process. More specifically, in the steady state, a leader in
Sync HotStuff keeps proposing blocks every 2∆ until any equivocation or network
delays prevent progress. However, a Twins scenario requires a new leader to be
specified for each view, while Sync HotStuff’s steady operating mode uses a leader
until a view-chance occurs.

Therefore, we simulate Sync HotStuff on top of the view mechanisms that support
the HotStuff protocols. In a nutshell, we allocate enough ∆ periods of time per view
so that messages generated by two successive views in Sync HotStuff never exist
concurrently in the system, which would needlessly complicate implementation
efforts. So the steady operating mode can also successfully proceed with a new
leader and network partition like HotStuff.

5.3.3 Delay bounds

The force-locking attack on Sync HotStuff is possible when messages can suffer from
network delays (i.e., outside of the strictly synchronous network model). However,
Twins does not support test scenarios with message delays and cannot detect these
attacks. We extended Twins to generate test execution scenarios that delay the
delivery of messages at 0.5∆ increments.

In Sync HotStuff, there are four types of messages: PROPOSE, VOTE, NEW-

VIEW, and BLAME. We do not delay NEW-VIEW and BLAME messages.
For PROPOSE messages, according to the view-change rule, proposals later than

3∆ are regarded as failed requests. It is meaningless to generate a case where an
honest leader is completely unable to send a valid proposal and drop it. Therefore,
we set the maximum proposal-delay bound to 3∆.

For VOTE messages, according to Sync HotStuff’s voting rule, after a proposal is
received, replicas simultaneously send votes and start counting down a 2∆ commit-
timer. If the vote-delay is longer than the commit-timer (2∆), the votes arrive too late
and the leader can never collect a quorum of votes. Thus, we bound the maximum
vote-delay by 2∆.

5.3.4 Scenario description (delaying and re-ordering)

To trigger the force-locking attack, we inject message delays into the scenario gener-
ator. We put up two abstractions, a coarse one that delays all messages uniformly,
and a fine one that more precisely controls messages.

Coarse-abstraction

The coarse-abstraction scenario handles messages roughly. According to the delay
bounds, we randomly delay Propose messages with delays that belong in [0, 1

2 ∆, 1∆, 3
2 ∆, 2∆, 5

2 ∆, 3∆]
and delay all Vote messages with delays that belong in [0, 1

2 ∆, 1∆, 3
2 ∆, 2∆]. We use

uniform distribution to make scenario generation simpler.

Fine-abstraction

The fine-abstraction scenario allows for more precise handling of messages, with the
scheduler delivering messages to specific parties at specified timestamps. We must
specify how each message is handled, including the kind of message delayed/re-
ordered, the duration of delays, the timestamp a message starts delivering, the se-
quence of message orders, the sender and receiver, and even the priority to execute
a specific message if it’s re-ordered.

34 apply liveness checking techniques

Generating this kind of scenario is more complicated, and many parameters must
be randomized in each view. The scientific analysis of how a test case would be
executed in practice can be difficult. We believe a coarse-abstraction scenario is
sufficient to reveal the force-locking attack.

5.4 scenario generation

5.4.1 Generation algorithm

In Algorithm 4, we present an example of generating a coarse-abstraction scenario
for Sync HotStuff to describe our scenario generation algorithm.

We start by enumerating all the possible combinations of different parameters,
such as randomly generating delays and adding nodes to different partition sizes
(line 9). Then, in each view, we use a uniform distribution to randomly select one
from them as the configuration for that view (line 20). This selection is fair because
there is no priority assigned to any specific case. In this way, the generated scenarios
can also be viewed as shuffled test cases. To avoid generating duplicate cases, we
record the generated test cases for deduplication (line 25).

5.4.2 Scenario prioritization

A potential issue for detecting liveness bugs with Twins is that its generator should
generate long scenarios, which adds difficulty to testing due to redundant cases. In
previous Twins, the focus is on safety violations, with each scenario being short (4-7
rounds). For liveness bugs, a few rounds are not sufficient. When testing 10 rounds,
the number of scenarios that need to be generated is extremely large (1032).

We set several rules to prune the number of scenarios that the Twins generator
can produce.

Rule A: Use two partitions with fixed sizes: {[2f+1], [n-(2f+1)]} .

To detect liveness violations, we need at least one partition with a quorum size.
We don’t consider cases with more than two partitions because we only need to ob-
serve two conflicting partitions of locks. Furthermore, when the number of rounds
is large enough, we can discard partitions with a super-quorum because they oc-
cupy a large proportion of scenarios that actually run duplicated scenarios.

Rule B: Drop duplicated replacing cases.

If we already have a partition such as {[1,4], [2,3,4′]}, we would consider parti-
tions like {[2,4], [1,3,4′]}, {[3,4′], [1,2,4]} as duplicated cases because they just switch
the places of honest replicas. Since we don’t specifically distinguish between these
honest replicas, we find that they have a lot of repetitions when tested, so we only
need to keep one of them.

Rule C: Twins are split into two partitions.

This rule only removes the cases in which both twins are allocated into the parti-
tion. When the twin node is a leader, consider {[1,4,4′], [2,3]}. This case violates the
rule that each node votes for only one proposal in a round, and only one proposal
is valid after voting and view-change. We can drop this case if we require the twins
to propose conflicting blocks at the same height.

5.4 scenario generation 35

Algorithm 4 Scenario generation
Input: Node set Nodes
Input: Partition sizes Sizes
Input: Number of nodes n
Input: Number of rounds r
Input: Number of scenarios s
Output: Generated scenarios Generated

1 // enumerate all the possible cases

2 cases← []
3 for i← 0 to n do
4 for j← 0 to len(Sizes) do
5 // get random uniform-distributed delay from [0, 0.5∆, ..., delayBound]
6 pd← getProposeDelay()
7 vd← getVoteDelay()
8 p← addNodes(Nodes, Sizes)
9 append(cases, {L : Nodes[i], P : p, PreposeDelay : pd, VoteDelay : vd})

10 end
11 end
12 // generate a certain number of distinct scenarios

13 casesLen← len(cases)
14 used← []
15 count← 0
16 while count < s do
17 idx ← []
18 for i← 0 to r do
19 // get random uniform-distributed case from [0, casesLen]
20 idx[i]← randInt(0, casesLen)
21 end
22 if contains(used, idx) then
23 continue
24 else
25 append(used, idx)
26 scenario ← []
27 for j← 0 to r do
28 case← cases[idx[j]]
29 append(scenario, case)
30 end
31 append(Generated, scenario)
32 count← count + 1
33 end
34 end
35 return Generated

36 apply liveness checking techniques

5.5 application in twins

5.5.1 Checking for temperature

For the temperature checking method, monitoring whether the system is in a hot
state and maintaining the temperature variable to track the duration in which the
system stays in a hot state is sufficient to detect potential liveness violations. The
method requires two basic variables: (i) the temperature variable, denoted as Temp,
to count the steps the system remains in the hot states, and (ii) the temperature
threshold, denoted as TT, to determine which execution should be identified as a
liveness bug. If Temp exceeds TT, a liveness bug is immediately reported, while a
situation where the temperature does not reach the threshold or quickly recovers
indicates a healthy case.

5.5.2 Checking for lassos

Typically, the standard approach for verifying the existence of a cycle is by replaying
the detected cycle with a controlled scheduler. If the events’ schedule in the detected
cycle can be repeated, a violation could be confirmed and reported. However, one of
the main challenges in replaying a cycle of system states is the need for a controlled
event scheduler to enforce executing a particular event and reaching a particular
state in the execution. Unfortunately, the majority of distributed systems and testing
frameworks do not possess a controlled environment, making it difficult to confirm
and report violations.

The existing Twins approach conducts test execution scenarios with specific Byzan-
tine behaviors and network faults. However, it lacks the ability to control the execu-
tion of protocols at message granularity. Therefore, it cannot enforce the execution
of a given schedule of events to check whether some detected cycle can be replayed.
However, it is still possible to observe the states that the system reaches.

In this work, we check for lassos on the state transition graph of the system, which
increases the likelihood of detecting potential cycles of states reachable in the ex-
ecutions and also does not require a controlled scheduler. We construct the state
transition diagram using the information we collect in the test executions we run
on the system.

During each test execution, we collect the state reachability information about
the observed (partial) states and build a state transition graph. Starting from the
initial system state, we observe the system states that are reached after running a
round of the protocol. The execution of the protocol gives us a sequence of system
states, where we transit from one state to another by running a protocol round.
By recording these transitions, we can effectively build a graph that represents the
possible system states and transitions that can occur during the execution of the
protocol.

We maintain a single state transition graph G = ⟨S, T⟩ where S keeps the set of
observed system states and T corresponds to the transitions between these states.
The graph contains an edge from states s1 to s2 if we observed a transition from state
s1 to s2 during one of the test executions. The state transition graph summarizes the
set of states and the transitions between them that are encountered in a set of exe-
cutions. We update the graph after each test execution with information about the
new states and transitions. We made the choice of maintaining a single transition
graph to increase the chances of observing a cycle. However, this choice implies that
correctly identifying a cycle does not mean simply reaching a previously observed
state since it does not necessarily create a cycle in the graph. Therefore, cycles have
to be explicitly searched for in our state transition graph. It is sufficient to search
for cycles after the state transition graph has been updated by all executions.

Figure 5.3 illustrates the state transition graph, its maintenance, and the appear-
ance of a cycle in a simple example. In this example, a state transition graph G1

5.5 application in twins 37

53

S0 S1 S2

S0 S1 S2G1

update

G2

S2 S1

match

Figure 5.3: Update of the state transition graph.

keeps three system states S0, S1, and S2, and their state transitions. Assuming that
we run an additional test execution in which we observe that the system moves
from S2 to S1, then we extend the graph by adding an edge from S2 to S3. The
resulting graph G2 contains a cycle between states S1 and S2, which is a potential
lasso in the execution.

Note that differently from Algorithm 2, we do not check for fairness in Algo-
rithm 5 because we only require to observe the occurrence of a lasso to report a
liveness violation and do not need to check for a fair cycle or for starvation. The
resulting state transition graph can then be analyzed for the presence of lassos,
which represent potential cycles of system states. If a lasso is detected, we can then
investigate further to confirm whether a violation exists. This technique has the
advantage of not requiring a controlled scheduler, as the state transition graph can
be built from the information obtained during test executions.

Algorithm 5 CheckLasso
Input: Current state s
Input: Current trace Trace
Output: Updated trace

1 for i← 0 to len(Trace) do
2 if Hash(s) = Hash(Trace[i]) then
3 C ← Trace[i..len(Trace)]
4 if Hot(C) then
5 if checkCycle(s, ..) then
6 REPORT-LIVENESS-BUG(Trace)
7 end
8 end
9 end

10 end

38 apply liveness checking techniques

5.6 discussion
This section discusses the definitions and methods we use.

For the streamlined protocols, our hot state checks if the system does not progress
due to conflicting locks. This design is based on the published attack scenarios, and
we believe this definition can be modified to detect any more challenging attack
scenarios.

Specifically for Sync HotStuff, our attack scenario only extends message delays.
In fact, we have provided a fine-abstraction scenario to theoretically support arbi-
trary message delaying and re-ordering, however, it is not fully explored.

The adaptation of the partial-state caching algorithm is not perfect. We believe
that there are always better solutions to apply liveness checking techniques, which
is left for future work.

6 P E R F O R M A N C E E VA L U AT I O N

We check the liveness of HotStuff, Sync HotStuff, and 2-Phase HotStuff by running
a set of test executions and using the temperature and lasso detection methods to
detect liveness violations in these executions. Then, we compare the performance
of the temperature and lasso detection methods to a baseline bounded liveness
checking method.

6.1 evaluation setup

6.1.1 Twins Framework

DiemBFT1 officially implements Twins with its testing modules and interfaces.
However, Diem is a real-world decentralized application that is not easy to revise
and extend its core when the codebase is complex with lots of intertwined compo-
nents.

Instead, we built our experiments on top of the relab/hotstuff framework2. The
framework implements a chained version of HotStuff and Twins testing suite, op-
erating in a round-by-round manner similar to DiemBFT. In each round, an honest
leader proposes a leaf block that extends the longest safe chain known to it. Repli-
cas update their states and vote for the current proposal in order to generate a new
committed QC.

6.1.2 Extension to Twins

To support the experiments presented in this thesis, we extended the Twins frame-
work for our evaluation as follows.

First, we implemented the 2-phase HotStuff and Sync HotStuff protocols based
on the consensus interfaces provided by the Twins framework. We rely on the im-
plementation of HotStuff which is provided by Twins. Note that Fast HotStuff [30]
is also implemented in Twins. We do not consider Fast HotStuff in our experi-
ments because it would be redundant with the use of HotStuff’s: the liveness of
both protocols has been demonstrated. Second, we implemented additional func-
tions to capture the system state and maintain the state transition diagram. Our
implementation of the state transition diagram is thread-safe to support the parallel
execution of test scenarios. Third, we extended the testing framework to generate
and execute scenarios that can introduce message delays in the test executions. We
used message-delaying test cases to test the executions of the Sync HotStuff pro-
tocol, whose correctness depends on the timing of the delivery of the messages.
Finally, we implemented the temperature and lasso detection methods for checking
liveness.

1 https://github.com/diem/diem
2 https://github.com/relab/hotstuff

39

https://github.com/diem/diem
https://github.com/relab/hotstuff

40 performance evaluation

Protocol Rounds Number of scenarios to generate
HotStuff &
2-Phase HotStuff

10 ∼ 1× 109

20 ∼ 1.2× 1018

Sync HotStuff
10 > 1× 1032

20 > 1× 1032

Table 6.1: The number of Twins scenarios generated under various configurations.

Protocol Rounds Tmean (s) Tstd (s)

2-Phase HotStuff
10 0.759 0.351

20 2.194 1.398

HotStuff
10 0.838 0.245

20 2.813 0.919

Sync HotStuff
10 3.100 1.062

20 4.156 2.151

Table 6.2: Execution time of a unit test scenario in seconds under various configurations.

6.1.3 Experimental setup

Our experiments run on an HP laptop (ZBook-Studio-G5) equipped with a 2.6 GHz
Intel Core i7 (12 cores), 16 GiB memory, and a UHD Graphics 630.

Scenario generator. Table 6.1 presents the number of scenarios that can be gener-
ated for different protocols and rounds. The scenario generator runs the ”one-time
computational cost”: it tries to enumerate all the ways in which all the nodes can
be distributed among different network partitions and injected message delays. All
the scenarios are configured with 2 network partitions, 4 honest processes, and 1

Byzantine (twin) process, and are executed for 10 or 20 rounds (blocks). In our
experiments we do not explore tackling more than a pair of twins, so we do not in-
crease larger permutations (e.g.7 processes with 2 twins) to present more complex
scenarios. For Sync HotStuff, we only need 3 honest processes, but we have to addi-
tionally enumerate the message delays. The number of possible scenarios is much
larger. If it is larger than 1× 1032, we did not record the exact number because it
was already prohibitively large. Compared with benchmark results reported in [7],
we were able to prune the number of scenarios to more than 10% of that with the
same configuration.

Scenario executor. Table 6.2 provides the time required for Twins to execute a
unit test that involves 10 or 20 blocks with HotStuff and Sync HotStuff. For each
configuration, we randomly selected and executed 1,000 Twins unit test scenarios
and report the average. For HotStuff, we apply a fixed network delay of 10 ms. For
the execution of Sync HotStuff, we set ∆ to 50 ms. The table lists the average exe-
cution times Tmean and the standard deviations Tstd for each protocol and number
of blocks. The times required to execute a scenario with Sync HotStuff are larger
than those of 2-Phase HotStuff and HotStuff since Sync HotStuff requires the use
of longer network delays and malicious delaying by the adversary. For example,
with 20 blocks, Sync HotStuff requires 4.156 s to execute a scenario, while 2-Phase
HotStuff and HotStuff respectively require 2.194 s (47% less) and 2.813 s (32% less).

Time-Bounded Liveness Checking

As a baseline, we checked the bounded liveness of the consensus algorithm execu-
tions using a time bound. This method takes a time bound parameter from the
programmer and reports a potential liveness violation if the system does not reach
a consensus within the given specified delay.

6.2 experimental evaluation 41

The effectiveness of the time-bounded liveness checking method depends on the
actual value of the time-bound parameter chosen by the programmer. In our eval-
uation, we selected three representative bound values per protocol based on its
expected normal case execution time, which we have presented in Table 6.2. We uti-
lized different values for the time-bound parameter: i) a small bound value Tsmall =
Tmean; ii) an intermediate bound value Tmid = Tmean + Tstd, which covers 84% of
the values of a normal distribution; iii) a large bound value Tlarge = Tmean + 2Tstd,
which covers 98% of the values of a normal distribution.

For a given time-bound parameter value, an execution is expected to reach con-
sensus before the time-bound and, if not, will be associated with a potential liveness
violation. Consequently, one can expect that increasing the value of the time-bound
parameter decreases the number of false positive liveness violations, but it also in-
creases the computational overhead. Selecting the right time-bound value is, there-
fore, a delicate process.

6.2 experimental evaluation
All experiments in our research are measured by their performance differences and
their ability to detect vulnerabilities. We do not discuss the baseline performance
between the protocols or the performance between different experimental setups or
benchmarks.

6.2.1 Parameters

There are several critical parameters to measure our approach:
1. Rounds: This parameter indicates the length of each scenario. In our experi-

ments, we set the number of rounds to 10 or 20. We do not test scenarios that are less
than 10 rounds in length since we think they are not long enough to demonstrate a
standard liveness problem.
2. Threshold: This parameter indicates the temperature threshold for the temper-

ature method and the time threshold for the time-bounded checking method when
we report a liveness bug.

3. Time taken: This parameter measures the total runtime to run the tests (in
seconds), including the execution of all generated scenarios, initialization of net-
working and configurations, and analysis of the execution results.

4. Trace length: This parameter measures the average number of rounds to report
a violation (or a dash ”-” if there are no violations).
5. Buggy rate: This parameter calculates the ratios of safety and liveness viola-

tions detected in the executions.
6. False positive rate: This parameter calculates the false positive rate over all the

reported bugs.
Other relevant parameters are not explicitly revealed in the tables:
(1). Type of lassos: This parameter indicates the number of types of lassos that

exist in our state transition cache.
(2). Types of states and hot states: This parameter measures the number of

distinct states captured in our state transition cache after executing all generated
scenarios. The number of total states counts in thousands. Thus we believe the
system is safe from hash collisions (i.e.the possibility is 4.3 ∗ 10−60).

(3). Command requests: This parameter measures the number of commands
contained in each block. To simplify the testing, we default to one command per
request for each view.

(4). Scenario sources and destinations: This parameter acts as the input and
output for the experiments. We generate these scenarios into an input file and feed
them into the executor. The executor outputs buggy scenarios (either liveness or

42 performance evaluation

Rounds Method Threshold Time Trace length
% Safety

violations
% Liveness
violations

% False
positives

10

Temperature 5 17 min 3 s - 0 0 0

Lasso detection - 17 min 16 s - 0 0 0

Small-Timeout 0.8s 14 min 50 s 8 0 98.8 100

Mid-Timeout 1.2s 20 min 23 s 9 0 96.4 100

Large-Timeout 1.6s 31 min 43 s 10 0 94.3 100

20

Temperature 5 52 min 26 s - 0 0 0

Lasso detection - 57 min 3 s - 0 0 0

Small-Timeout 2.8s 48 min 43 s 15 0 95.7 100

Mid-Timeout 3.8s 1 h 5 min 12 s 18 0 94.1 100

Large-Timeout 4.8s 1 h 19 min 34 s 20 0 90.6 100

Table 6.3: Liveness and safety violations detected with the temperature checking, lasso de-
tection, and bounded liveness methods on the executions of the HotStuff protocol.

safety bugs) into a new JSON log file. This file should be configured the same as
the input JSON file so that these scenarios can be re-evaluated.

6.2.2 False positives

False positive liveness violations can be detected based on the analysis of the repli-
cas’ local variables, such as their view number, prepared and locked blocks. How-
ever, the analysis of the remaining positives requires a thorough manual evaluation
of the execution by developers. Indeed, this analysis is not straightforward, because
network partitions and message drops might prevent the processes’ view numbers
to not be synchronized. We observe that the identification of false positives consists
in distinguishing whether there are really two conflicting chains in the system so
that it can no longer make progress. In our evaluation, we, therefore, consider an
execution to be a false positive if we cannot identify two conflicting locked blocks in
the process states it generates, or if there are two conflicting locked blocks such that
one is extending the other for HotStuff. In the latter case, the SafeNode predicate
in HotStuff would still allow progress to be made.

6.2.3 Results

Checking HotStuff’s Liveness

Table 6.3 lists the results of testing the HotStuff protocol with 10,000 randomly se-
lected Twins test scenarios and checking the liveness of the executions using the tem-
perature and lasso-detection based methods, along with the baseline time-bound
checking. For the safety property, we checked the agreement of the protocols by
comparing their executed blocks. For the liveness property, we used time-bound
and temperature methods to check whether the liveness properties are satisfied
within a bounded duration of execution (bounded by temperature and time, respec-
tively) and the lasso detection method to check whether the system can stay in a
cycle of hot system states and therefore does not satisfy its property.

For the temperature method, we estimated a temperature threshold equal to 5

rounds, i.e., we report a violation if the system states in a hot state for 5 rounds.
We use the same temperature threshold for 2-Phase HotStuff and Sync HotStuff
protocols. With this temperature threshold value, the temperature-based and the
lasso detection-based methods did not report any violations for HotStuff (i.e., 0 in
the safety and liveness violations columns).

On the other hand, the time-bounded liveness checking baseline reported many
potential liveness violations, where the executions could not reach a consensus in

6.2 experimental evaluation 43

Rounds Method Threshold Time Trace length
% Safety

violations
% Liveness
violations

% False
positives

10

Temperature 5 16 min 25 s 9 0 0.23 0

Lasso detection - 16 min 19 s 8 0 0.42 0

Small-Timeout 0.8s 14 min 21 s 8 0 77.8 98.2
Mid-Timeout 1.2s 19 min 44 s 9 0 74.6 94.5

Large-Timeout 1.6s 30 min 11 s 10 0 58.6 88.6

20

Temperature
5 51 min 13 s 12 0 1.92 0

10 53 min 30 s 17 0 0.74 0

15 54 min 2 s 20 0 0.17 0

Lasso detection - 52 min 26 s 13 0 2.04 0

Small-Timeout 2.2s 38 min 52 s 12 0 78.8 97.6
Mid-Timeout 3.6s 59 min 12 s 16 0 66.4 90.4

Large-Timeout 5.0s 1h 20 min 33 s 20 0 46.5 77.9

Table 6.4: Liveness and safety violations detected with the temperature checking, lasso de-
tection, and bounded liveness methods on the executions of the 2-Phase HotStuff
protocol.

the given amount of time. The results for time-bounded liveness checking show
that using a small timeout reports a lot of violations. For example, with 20 rounds
and the small timeout value, the time-bounded liveness checking method reported
that 78.8% of the executions contain liveness violations. However, 95.7% of those are
false positives where consensus has not been reached within the allocated number
of rounds because of network partitions. In fact, it is very likely that the Twins
test generator produces scenarios that cannot gather a quorum of votes because of
network partitions and lack of leader replacement. Most of such test scenarios have
not even completed their executions before timing out, and then they are labeled
as violations. Albeit fewer, using a larger timeout bound still leads to reporting a
high number of false positive liveness violations in which the system does not even
enter a hot state. For example, still with 20 rounds, using the large timeout value
decreases the proportion of executions that contain liveness violations to 90.6%.
Overall, time-bounded checking reports them as potential liveness violations since
these scenarios cannot reach a consensus due to frequent network partitions.

Checking 2-Phase HotStuff’s Liveness

Table 6.4 lists the results we obtained by executing randomly selected unit test sce-
narios on 2-Phase HotStuff, which is known to violate liveness in certain scenarios.
Similar to the results for HotStuff, we observe that time-bounded liveness Similar
to the results for HotStuff, we observe that time-bounded liveness checking meth-
ods provide a higher amount of false positives than temperature and lasso-based
methods. To evaluate the effect of the temperature value on the amount of reported
false positives, we ran the tests for a varying number of temperature bounds (5,
10, 15) and checked if the system execution can reach those temperature bounds in
the execution of 20 rounds. We observed that increasing the temperature thresh-
old increases the required time to complete the test executions while it reduces the
amount of reported false positives. For example, replacing the small timeout by the
large timeout with 20 rounds increased the computation time from 38 min 52 s to
1 h 20 min 33 s, and reduced the proportion of false positives from 97.6% to 77.9%.
Similarly, the time taken for the time-bounded checking also increases with the
time-bound. For the lasso detection method, the execution time does not depend
on a predefined bound but on the execution time of the test case together with the
time required for cycle detection.

44 performance evaluation

Rounds Method Threshold Time Trace length
% Safety

violations
% Liveness
violations

% False
positives

10

Temperature 5 6 min 54 s 7 3.1 1.8 2.2
Lasso detection - 6 min 38 s 6 2.6 1.3 2.6
Small-Timeout 3.1s 5 min 49 s 7 0.3 33.6 96.4
Mid-Timeout 4.1s 6 min 41 s 8 2.5 32.4 92.7

Large-Timeout 5.1s 8 min 37 s 10 2.6 20.7 84.8

20

Temperature
5 8 min 36 s 9 1.7 1.9 3.6

10 9 min 4 s 14 1.1 0.5 0

15 9 min 12 s 18 0.7 0.1 0

Lasso detection - 8 min 42 s 8 2.1 1.6 3.4
Small-Timeout 4.2s 7 min 2 s 7 0 34.2 95.3
Mid-Timeout 6.4s 10 min 24 s 15 0.3 24.2 91.2

Large-Timeout 8.6s 14 min 9 s 20 1.6 16.7 81.2

Table 6.5: Liveness and safety violations detected with the temperature checking, lasso de-
tection, and bounded liveness methods on the executions of the Sync HotStuff
protocol.

Checking Sync HotStuff’s Liveness

Table 6.5 shows the execution results of testing Sync HotStuff (eprint version 20190312:115828)
with ∆ set to 50ms. Overall, our findings for testing Sync HotStuff are mostly sim-
ilar to the observations we made with HotStuff (Table 6.3) and 2-Phase HotStuff
(Table 6.4). One significant difference, however, is the fact that this version of Sync
HotStuff can violate both safety and liveness in certain test scenarios. For exam-
ple, we found that the lasso detection method identified that 2.1% and 1.6% of the
executions respectively contained safety and liveness violations with 20 rounds. Ad-
ditionally, we have observed slightly more false positive liveness violations in Sync
HotStuff than with HotStuff and 2-Phase HotStuff. We believe that this higher false
positive rate comes from the adaptations we had to make to run Sync HotStuff on
top of Twins.

6.3 discussion
Our evaluation shows that time-bounded liveness checking introduces a significant
number of false positives when applied to streamlined protocols, as compared to
temperature-based and lasso-based techniques. We believe that most of the attacks
examined for RQ1 can be tested by flexibly adapting the abstractions and meth-
ods developed for RQ2 and RQ3. We find that using a small timeout for liveness
checking is not practical, as it fails to detect actual violations; rather, it detects a
considerable number of false positives.

Even when increasing the timeout duration to a larger value, the rate of false
positives remains high, and the execution time significantly increases. In contrast,
temperature-based and lasso-based techniques utilize the concept of hot states to
detect the occurrence of a violation, making them more precise and reducing the
likelihood of false positives.

7 C O N C L U S I O N

7.1 conclusions
This thesis aims to answer the following research questions:

RQ1 What are recently-detected BFT attacks? Can testing methods be used to de-
tect some interesting and challenging attacks?

RQ2 How can we adapt existing liveness checking techniques for testing blockchain
systems?

RQ3 Can the Twins testing system be extended to incorporate these liveness check-
ing techniques? Can timing violations due to Byzantine faults be detected?

In Chapter 4, we delve into BFT protocols, and undertake an in-depth analysis of
their susceptibility to safety or liveness violations, in order to respond to RQ1. We
meticulously examine various attacks existing in BFT consensus algorithms, and we
believe that our findings cover most Byzantine behaviors.

Chapter 5 addresses RQ2 by scrutinizing the existing liveness violations in stream-
lined Byzantine consensus protocols, specifically, the HotStuff protocol family. We
found out that existing time bounded checking methods generate a high number of
false positives. To overcome this limitation, we have adopted temperature and lasso-
detection liveness-checking techniques to streamlined Byzantine consensus proto-
cols, for the first time. We focused on the HotStuff protocol family and propose
necessary definitions of system state abstractions (namely partial and hot states).

To address RQ3, we demonstrate that the implementation of our methods on
top of the Twins testing framework successfully detects the liveness violations in
2-Phase HotStuff and in an early version of Sync HotStuff.

Both the temperature and the lasso-detection methods are shown to be practical
for the liveness-checking of blockchain consensus algorithms. Our results indicate
that these methods identify liveness violations with fewer false positives than the
time-bounded liveness checking baseline. However, adequately selecting the thresh-
old of the temperature-based method is a delicate task that can lead to false posi-
tives or high computational overhead, while lasso detection might be more memory
intensive for complex systems.

7.2 limitations and future work
This section discusses the limitations of our designs and experiments and highlights
potential areas for future work.

Extending attack coverage. We have only investigated a subset of the Byzantine
behaviors, and liveness checking techniques have not been extended to other BFT
testing systems. Our study focused on streamlined BFT blockchain protocols while
non-lock-step asynchronous protocols have been excluded. Exploring and detect-
ing liveness attacks in diverse protocols would be an exciting direction for future
research.

Refining message timing. Our approach to message timing is limited to schedul-
ing messages at a relatively coarse granularity. Further research could refine the ap-
proach by considering a more detailed message processing model and developing a

45

46 conclusion

more precise algorithm to detect liveness violations in BFT protocols. For example,
future work could explore more sophisticated attack scenarios where Gasper’s ad-
versary arbitrarily controls multiple Twins pairs to balance votes to specific replicas,
which may require more fine-grained timing data and precise algorithms to capture
the behavior.

B I B L I O G R A P H Y

[1] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla, and Jean-Philippe Mar-
tin. “Revisiting fast practical byzantine fault tolerance”. In: ArXiv (2017). url:
https://arxiv.org/abs/1712.01367.

[2] I. Abraham, G. Gueta, D. Malkhi, and Jean-Philippe Martin. “Revisiting Fast
Practical Byzantine Fault Tolerance: Thelma, Velma, and Zelma”. In: ArXiv
(2018). url: https://arxiv.org/pdf/1801.10022.pdf .

[3] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and Maofan Yin. “Sync HotStuff:
Simple and Practical Synchronous State Machine Replication”. In: IEEE Sym-
posium on Security and Privacy (2020).

[4] V. Buterin et al. “Combining GHOST and Casper”. In: Preprint, arXiv:2003.03052
(2020).

[5] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. “Lineage-driven Fault
Injection”. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. Ed. by
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives. ACM, 2015, pp. 331–
346. doi: 10.1145/2723372.2723711. url: https://doi.org/10.1145/2723372.
2723711.

[6] Y. Amoussou-Guenou, A. Del Pozzo, and M. Potop-Butucaru. “Correctness
and Fairness of Tendermint-core Blockchains”. In: CoRR 20.4 (2002), pp. 398–
461.

[7] S. Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery
Ching, and Dahlia Malkhi. “Brief Announcement: Twins – BFT Systems Made
Robust”. In: 35th International Symposium on Distributed Computing (DISC 2021).
Ed. by Seth Gilbert. Vol. 209. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, 2021, 46:1–46:4. isbn: 978-3-95977-210-5. doi: 10 . 4230/LIPIcs .DISC .

2021.46. url: https://drops.dagstuhl.de/opus/volltexte/2021/14848.

[8] C. Berger, H. P. Reiser, and A. Bessani. “Making Reads in BFT State Machine
Replication Fast, Linearizable, and Live”. In: 2021 40th International Symposium
on Reliable Distributed Systems (SRDS) (2021).

[9] A. Biere, C. Artho, and V. Schuppan. “Liveness Checking as Safety Checking”.
In: Electronic Notes in Theoretical Computer Science 66 (2002). url: http://www.
elsevier.nl/locate/entcs/volume66.html.

[10] Silvia Bonomi, Jérémie Decouchant, Giovanni Farina, Vincent Rahli, and Sébastien
Tixeuil. “Practical Byzantine reliable broadcast on partially connected net-
works”. In: 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). IEEE. 2021, pp. 506–516.

[11] E. Buchman, J. Kwon, and Z. Milosevic. “The latest gossip on bft consensus”.
In: Tech. rep., Tendermint (2018). url: https://arxiv.org/abs/1807.04938.

[12] V. Buterin and V. Griffith. “Casper the friendly finality gadget”. In: Preprint,
arXiv:1710.09437 (2017).

[13] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. “Secure and efficient asyn-
chronous broadcast protocols”. In: CRYPTO 2001: Proceedings of the 21st Inter-
national Conference on Cryptology (2001), pp. 524–451.

[14] C. Cachin and M. Vukoli´c. “Blockchain consensus protocols in the wild”. In:
(2019). url: https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113.

47

https://arxiv.org/abs/1712.01367
https://arxiv.org/pdf/1801.10022.pdf
https://doi.org/10.1145/2723372.2723711
https://doi.org/10.1145/2723372.2723711
https://doi.org/10.1145/2723372.2723711
https://doi.org/10.4230/LIPIcs.DISC.2021.46
https://doi.org/10.4230/LIPIcs.DISC.2021.46
https://drops.dagstuhl.de/opus/volltexte/2021/14848
http://www.elsevier.nl/locate/entcs/volume66.html
http://www.elsevier.nl/locate/entcs/volume66.html
https://arxiv.org/abs/1807.04938
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113

48 bibliography

[15] Tong Cao, Jérémie Decouchant, Jiangshan Yu, and Paulo Esteves-Verissimo.
“Characterizing the impact of network delay on bitcoin mining”. In: 2021
40th International Symposium on Reliable Distributed Systems (SRDS). IEEE. 2021,
pp. 109–119.

[16] Tong Cao, Jiangshan Yu, Jérémie Decouchant, Xiapu Luo, and Paulo Veris-
simo. “Exploring the monero peer-to-peer network”. In: Financial Cryptog-
raphy and Data Security: 24th International Conference, FC 2020, Kota Kinabalu,
Malaysia, February 10–14, 2020 Revised Selected Papers 24. Springer. 2020, pp. 578–
594.

[17] M. Castro and B. Liskov. “Practical Byzantine fault tolerance and proactive
recovery”. In: ACM Transactions on Computer Systems 20.4 (2002), pp. 398–461.

[18] K. Claessen and N. Sorensson. “A liveness checking algorithm that counts”.
In: 2012 Formal Methods in Computer-Aided Design (FMCAD) (2012).

[19] Allen Clement, Edmund L. Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco
Marchetti. “Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults”.
In: Proceedings of the 6th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2009, April 22-24, 2009, Boston, MA, USA. Ed. by Jennifer
Rexford and Emin Gün Sirer. USENIX Association, 2009, pp. 153–168. url:
http://www.usenix.org/events/nsdi09/tech/full%5C papers/clement/clement.

pdf .

[20] C. Copeland and H. Zhong. “Tangaroa: A Byzantine fault tolerant raft”. In:
Class project in Distributed Systems, Stanford University (2014). url: http://www.
scs.stanford.edu/14au-cs244b/labs/projects/copeland zhong.pdf .

[21] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. “Dbft: Efficient leaderless
byzantine consensus and its application to blockchains”. In: 2018 IEEE 17th
International Symposium on Network Computing and Applications (NCA) (2018),
pp. 1–8.

[22] Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu. “DAMY-
SUS: streamlined BFT consensus leveraging trusted components”. In: Proceed-
ings of the Seventeenth European Conference on Computer Systems. 2022, pp. 1–
16.

[23] Diem. Diem. url: https://github.com/diem/diem.

[24] C. Dragoi, C. Enea, B. Kulahcioglu Ozkan, R. Majumdar, and F. Niksic. “Test-
ing consensus implementations using communication closure”. In: Proceedings
of the ACM on Programming Languages 210 (2020), pp. 1–29.

[25] Cezara Dragoi, Constantin Enea, Srinidhi Nagendra, and Mandayam Srivas.
“A Domain Specific Language for Testing Consensus Implementations”. In:
CoRR abs/2303.05893 (2023). doi: 10 .48550/arXiv .2303 .05893. arXiv: 2303 .
05893. url: https://doi.org/10.48550/arXiv.2303.05893.

[26] C. Dwork, N. Lynch, and L. Stockmeyer. “Consensus in the presence of partial
synchrony”. In: Journal of the ACM 35.2 (1988), pp. 288–323.

[27] R. Fernandez, R. Martins, and J. Soares. “ZERMIA - A Fault Injector frame-
work for testing Byzantine Fault Tolerance protocols”. In: NSS2021, 15th Inter-
national Conference on Network and System Security (2021).

[28] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impossibility of distributed
consensus with one faulty process”. In: Journal of the ACM 32.2 (1985), pp. 374–
382.

[29] G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K. Reiter, D.
Seredinschi, O. Tamir, and A. Tomescu. “SBFT: A Scalable and Decentralized
Trust Infrastructure”. In: 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) (2019).

http://www.usenix.org/events/nsdi09/tech/full%5C_papers/clement/clement.pdf
http://www.usenix.org/events/nsdi09/tech/full%5C_papers/clement/clement.pdf
http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
https://github.com/diem/diem
https://doi.org/10.48550/arXiv.2303.05893
https://arxiv.org/abs/2303.05893
https://arxiv.org/abs/2303.05893
https://doi.org/10.48550/arXiv.2303.05893

bibliography 49

[30] M. M Jalalzai, J. Niu, and C. Feng. “Fast-hotstuff: A fast and resilient hotstuff
protocol”. In: arXiv preprint arXiv:2010.11454 (2020).

[31] Jepsen. Tendermint 0.10.2. url: https://jepsen.io/analyses/tendermint-0-10-2.

[32] Charles Killian, James W Anderson, Ranjit Jhala, and Amin Vahdat. “Life,
death, and the critical transition: Finding liveness bugs in systems code”. In:
NSDI. 2007.

[33] Kyle Kingsbury. Jepsen tests for Cassandra 2.0.0. url: https://aphyr.com/posts/

294-call-me-maybe-cassandra.

[34] Kyle Kingsbury. Jepsen tests for etcd 3.4.3. url: https://jepsen.io/analyses/etcd-
3.4.3.

[35] Igor Konnov, Marijana Lazic, Ilina Stoilkovska, and Josef Widder. “Survey
on Parameterized Verification with Threshold Automata and the Byzantine
Model Checker”. In: Log. Methods Comput. Sci. 19.1 (2023). doi: 10.46298/lmcs-

19(1:5)2023. url: https://doi.org/10.46298/lmcs-19(1:5)2023.

[36] Igor Konnov and Josef Widder. “ByMC: Byzantine Model Checker”. In: Lever-
aging Applications of Formal Methods, Verification and Validation. Distributed Sys-
tems - 8th International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-
9, 2018, Proceedings, Part III. Ed. by Tiziana Margaria and Bernhard Steffen.
Vol. 11246. Lecture Notes in Computer Science. Springer, 2018, pp. 327–342.
doi: 10.1007/978-3-030-03424-5\ 22. url: https://doi.org/10.1007/978-3-030-
03424-5%5C 22.

[37] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. “Zyzzyva: specula-
tive Byzantine fault tolerance”. In: Technical Report UTCS-TR-07-40, University
of Texas at Austin, Austin, TX, USA (2007).

[38] L. Lamport. “Paxos Made Simple”. In: ACM SIGACT News (Distributed Com-
puting Column) 121 (2001), pp. 51–58.

[39] L. Lamport. The TLA home page. url: https://lamport.azurewebsites.net/tla/

tla.html.

[40] L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem”. In:
ACM Transactions on Programming Languages and Systems (1982), pp. 382–401.
url: https : / /www.microsoft . com/en - us / research/publication/byzantine -

generalsproblem/.

[41] H. Lee, J. Seibert, E.Hoque, C. Killian, and C. Nita-Rotaru. “Turret: A platform
for automated attack finding in unmodified distributed system implementa-
tions”. In: 2014 IEEE 34th International Conference on Distributed Computing Sys-
tems (2014), pp. 660–669.

[42] Daniel LOK. “Modelling and Testing Composite Byzantine-Fault Tolerant Con-
sensus Protocols”. In: Capstone Final Report for BSc (Honours) in Mathematical,
Computational, and Statistical Sciences, YaleNusCollege (2019).

[43] R. Majumdar and F. Niksic. “Why is random testing effective for partition
tolerance bugs?” In: Proceedings of the ACM on Programming Languages 2.46

(2018), pp. 1–24.

[44] J-P Martin and L. Alvisi. “Fast Byzantine Consensus”. In: IEEE Transactions on
Dependable and Secure Computing 3 (2006), pp. 202–215.

[45] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. “The honey badger of bft
protocols”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), pp. 31–42.

[46] A. Momose and J. Cruz. “Force-Locking Attack on Sync Hotstuff”. In: IACR
Cryptology ePrint Archive (2020).

[47] R. Mudduluru, P. Deligiannis, A. Desai, A. lal, and S. Qadeer. “Lasso Detec-
tion using Partial-State Caching”. In: 2017 Formal Methods in Computer Aided
Design (FMCAD) (2017).

https://jepsen.io/analyses/tendermint-0-10-2
https://aphyr.com/posts/294-call-me-maybe-cassandra
https://aphyr.com/posts/294-call-me-maybe-cassandra
https://jepsen.io/analyses/etcd-3.4.3
https://jepsen.io/analyses/etcd-3.4.3
https://doi.org/10.46298/lmcs-19(1:5)2023
https://doi.org/10.46298/lmcs-19(1:5)2023
https://doi.org/10.46298/lmcs-19(1:5)2023
https://doi.org/10.1007/978-3-030-03424-5_22
https://doi.org/10.1007/978-3-030-03424-5%5C_22
https://doi.org/10.1007/978-3-030-03424-5%5C_22
https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://www.microsoft.com/en-us/research/publication/byzantine-generalsproblem/
https://www.microsoft.com/en-us/research/publication/byzantine-generalsproblem/

50 bibliography

[48] Madanlal Musuvathi and Shaz Qadeer. “Fair stateless model checking”. In:
ACM SIGPLAN Notices 43.6 (2008), pp. 362–371.

[49] R. Nakamura. Apollo - the Concord BFT engine’s system testing framework. url:
https://github.com/vmware/concord-bft/tree/master/tests/apollo.

[50] J. Neu, E. Tas, and D. Tse. “Ebb-and-Flow Protocols: A Resolution of the
Availability-Finality Dilemma”. In: IEEE Symposium on Security and Privacy
2021 (2021).

[51] J. Neu, E. Tas, and D. Tse. “Two Attacks On Proof-of-Stake GHOST/Ethereum”.
In: Preprint (2022). url: https://arxiv.org/pdf/2203.01315.pdf .

[52] D. Ongaro and J. K. Ousterhout. “In search of an understandable consensus
algorithm”. In: Proc. USENIX Annual Technical Conference (2014), pp. 305–319.

[53] N. Shrestha and M. Kumar. “Revisiting hBFT: EZBFT: A Decentralized Byzan-
tine Fault Tolerant Protocol with Speculation”. In: ArXiv (2019). url: https:
//arxiv.org/pdf/1909.03990.pdf .

[54] N. Shrestha and M. Kumar. “Revisiting hBFT: Speculative Byzantine Fault
Tolerance with Minimum Cost”. In: ArXiv (2019). url: https://arxiv.org/pdf/
1902.08505.pdf .

[55] Douglas Simoes Silva, Rafal Graczyk, Jérémie Decouchant, Marcus Völp, and
Paulo Esteves-Verissimo. “Threat adaptive byzantine fault tolerant state-machine
replication”. In: 2021 40th International Symposium on Reliable Distributed Sys-
tems (SRDS). IEEE. 2021, pp. 78–87.

[56] Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timothy
Roscoe. “BFT Protocols Under Fire”. In: 5th USENIX Symposium on Networked
Systems Design & Implementation, NSDI 2008, April 16-18, 2008, San Francisco,
CA, USA, Proceedings. Ed. by Jon Crowcroft and Michael Dahlin. USENIX As-
sociation, 2008, pp. 189–204. url: http://www.usenix.org/events/nsdi08/tech/
full%5C papers/singh/singh.pdf .

[57] Y. Sompolinsky and A. Zohar. “Secure high-rate transaction processing in
bitcoin”. In: International Conference on Financial Cryptography and Data Security
(2015), pp. 507–527.

[58] Tendermint. Tendermint. url: https://github.com/tendermint/tendermint.

[59] T. Tsuchiya and A. Schiper. “Verification of consensus algorithms using satis-
fiability solving”. In: Distributed Computing (2011), pp. 341–358.

[60] Vitalik. Casper FFG with one message type, and simpler fork choice rule. url: https:
//ethresear.ch/t/casper-ffg-with-one-message-type-and-simpler-fork-choice-

rule/103.

[61] VMware. Apollo - the Concord BFT engine’s system testing framework. url: https:
//github.com/vmware/concord-bft/tree/master/tests/apollo.

[62] Q. Wang, R. Li, S. Chen, and Y. Xiang. “Formal Security Analysis on dBFT
Protocol of NEO”. In: (2021). doi: arxiv-2105.07459. url: https://arxiv.org/
abs/2105.07459.

[63] Y. Wang. “Another Look at ALGORAND”. In: (2020). url: https://arxiv.org/
pdf/1905.04463.pdf .

[64] Levin N. Winter, Florena Buse, Daan de Graaf, Klaus von Gleissenthall, and
Burcu Kulahcioglu Ozkan. “Randomized Testing of Byzantine Fault Tolerant
Algorithms”. In: 7.OOPSLA1 (Apr. 2023). doi: 10.1145/3586053. url: https:
//doi.org/10.1145/3586053.

[65] M. Yin, D. Malkhi, M. K Reiter, G. Gueta, and I. Abraham. “Hotstuff: Bft
consensus with linearity and responsiveness”. In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing (2019), pp. 347–356.

https://github.com/vmware/concord-bft/tree/master/tests/apollo
https://arxiv.org/pdf/2203.01315.pdf
https://arxiv.org/pdf/1909.03990.pdf
https://arxiv.org/pdf/1909.03990.pdf
https://arxiv.org/pdf/1902.08505.pdf
https://arxiv.org/pdf/1902.08505.pdf
http://www.usenix.org/events/nsdi08/tech/full%5C_papers/singh/singh.pdf
http://www.usenix.org/events/nsdi08/tech/full%5C_papers/singh/singh.pdf
https://github.com/tendermint/tendermint
https://ethresear.ch/t/casper-ffg-with-one-message-type-and-simpler-fork-choice-rule/103
https://ethresear.ch/t/casper-ffg-with-one-message-type-and-simpler-fork-choice-rule/103
https://ethresear.ch/t/casper-ffg-with-one-message-type-and-simpler-fork-choice-rule/103
https://github.com/vmware/concord-bft/tree/master/tests/apollo
https://github.com/vmware/concord-bft/tree/master/tests/apollo
https://doi.org/arxiv-2105.07459
https://arxiv.org/abs/2105.07459
https://arxiv.org/abs/2105.07459
https://arxiv.org/pdf/1905.04463.pdf
https://arxiv.org/pdf/1905.04463.pdf
https://doi.org/10.1145/3586053
https://doi.org/10.1145/3586053
https://doi.org/10.1145/3586053

bibliography 51

[66] Jiangshan Yu, David Kozhaya, Jeremie Decouchant, and Paulo Esteves-Verissimo.
“Repucoin: Your reputation is your power”. In: IEEE Transactions on Computers
68.8 (2019), pp. 1225–1237.

	1 Introduction
	1.1 Research questions
	1.2 Contributions
	1.3 Thesis outline

	2 BFT Concepts
	2.1 Overview of Byzantine Fault Tolerance
	2.1.1 Byzantine generals problem
	2.1.2 The 3f+1 bound
	2.1.3 State machine replication
	2.1.4 Properties

	2.2 Network model
	2.2.1 Synchronous system
	2.2.2 Asynchronous system
	2.2.3 Partially synchronous system
	2.2.4 P2P communication

	3 BFT Protocols and Attacks
	3.1 Partially synchronous Byzantine consensus
	3.1.1 PBFT
	3.1.2 Tendermint
	3.1.3 HotStuff
	3.1.4 2-Phase HotStuff
	3.1.5 Sync HotStuff
	3.1.6 Casper & Gasper

	3.2 Byzantine behaviors
	3.3 Existing attacks
	3.3.1 Safety attacks
	3.3.2 Liveness attacks

	4 BFT Testing Systems and Algorithms
	4.1 Consensus testing
	4.1.1 Twins
	4.1.2 Other testing methods
	4.1.3 Discussion

	4.2 Liveness checking
	4.2.1 Temperature method
	4.2.2 Partial-state caching method
	4.2.3 Other liveness checking work

	5 Apply liveness checking techniques
	5.1 Definitions
	5.1.1 Partial State in the HotStuff Protocol Family
	5.1.2 Hot State in the HotStuff Protocol Family

	5.2 Detect liveness issues in 2-Phase HotStuff
	5.2.1 Attack scenario

	5.3 Detect safety & liveness issues in Sync HotStuff
	5.3.1 Attack scenario
	5.3.2 Adaptation
	5.3.3 Delay bounds
	5.3.4 Scenario description (delaying and re-ordering)

	5.4 Scenario generation
	5.4.1 Generation algorithm
	5.4.2 Scenario prioritization

	5.5 Application in Twins
	5.5.1 Checking for temperature
	5.5.2 Checking for lassos

	5.6 Discussion

	6 Performance Evaluation
	6.1 Evaluation Setup
	6.1.1 Twins Framework
	6.1.2 Extension to Twins
	6.1.3 Experimental setup

	6.2 Experimental evaluation
	6.2.1 Parameters
	6.2.2 False positives
	6.2.3 Results

	6.3 Discussion

	7 Conclusion
	7.1 Conclusions
	7.2 Limitations and future work

