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SUMMARY

Ultrasound is a widely used real-time imaging modality to diagnose patients. Ultrasound
imaging has several modes of operation such as ultrafast Doppler which, due to the high
frame-rates, is particularly suited to image blood flow inside bodily organs such as the
brain. Despite its success, the ultrafast imaging technique has some downsides such as
lower overall signal-to-noise ratio (SNR), especially in deeper regions due to the use of
unfocussed transmissions. This thesis explores the use of advanced signal processing
methods such as model-based image reconstruction to regain some of the loss in SNR.

Chapters 3, 4, 5, and 6 of the thesis focus on advanced model-based image recon-
struction techniques, incorporating complex priors or statistical assumptions about the
signal and noise instead of using a simple physical propagation model. Conventional
ultrasound beamforming techniques, such as the delay-and-sum (DAS) beamformer,
perform well in many clinical settings; however, they face challenges in applications
requiring high structural detail or SNR, such as vascular imaging. This thesis explores
deterministic and statistical model-based vascular image reconstruction techniques to
improve SNR, resolution, and clarity of fine vascular details. The proposed techniques
exploit the joint sparsity of the vasculature images at different time instants. These meth-
ods enhance the depiction of vascular structures while increasing SNR and suppress-
ing background noise and artifacts. A large part of the thesis, including Chapters 4, 5
and 6, focuses on the sparse Bayesian learning (SBL) techniques. Starting with classi-
cal SBL, this thesis introduces the application of block-sparsity-based SBL techniques,
such as pattern-coupled sparse Bayesian learning with fixed-point iterations and cor-
related sparse Bayesian learning. Although some of the proposed techniques are not
computationally efficient yet for real-time ultrasound imaging, they do provide a new
contribution to signal processing and computational imaging fields.

Chapter 7 of the thesis focuses on improving the ultrasound transmission to enhance
the SNR. An optimized coded excitation technique has been proposed as an alternative
to standard coded excitation techniques. By keeping the computational complexity to
a modest level, the codes are optimized to increase the SNR without a significant loss
in the image resolution. The Cramér-Rao lower bound (CRB) minimization and a faster
alternative Fisher information matrix (FIM) maximization have been proposed to opti-
mize the codes. The optimized codes are tested on simulated data to demonstrate their
potential for flow imaging.

To sum up, this thesis contributes to the ultrasound blood flow imaging area through
solutions on image reconstruction algorithms and ultrasound transmissions to over-
come current limitations and challenges. This thesis explores using advanced model-
based signal processing methods to improve image quality. Therefore, this work con-
tributes new strategies that can inspire future research and clinical applications in vas-
cular ultrasound imaging.

ix






SAMENVATTING

Echografie is een veelgebruikte real-time beeldvormingstechniek voor het stellen van
diagnoses bij patiénten. Echobeelden kunnen op verschillende manieren worden ver-
kregen, waaronder ultrageluid Doppler-technieken met een zeer hoge beeldsnelheid.
Dankzij deze hoge frame rates is deze methode bijzonder geschikt om de bloedstroom
in organen zoals de hersenen zichtbaar te maken. Ondanks het succes kent ultrage-
luid met hoge beeldsnelheid ook nadelen, zoals een lager signaal-ruisverhouding (SNR),
vooral in diepere weefsels vanwege het gebruik van ongefocuste pulsen. In dit proef-
schrift wordt onderzocht hoe geavanceerde signaalverwerkingstechnieken, zoals mo-
delgebaseerde beeldreconstructie, kunnen worden ingezet om het signaalverlies deels
te compenseren.

Hoofdstukken 3, 4, 5 en 6 richten zich op geavanceerde modelgebaseerde recon-
structietechnieken, waarbij complexe priors of statistische aannames over het signaal
en de ruis worden gebruikt in plaats van een eenvoudig fysisch voortplantingsmodel.
Traditionele beamforming-methoden zoals delay-and-sum (DAS) werken goed in veel
klinische toepassingen, maar zijn beperkt bij beeldvorming die een hoge structurele
resolutie of SNR vereist, zoals vasculaire beeldvorming. In dit proefschrift worden de-
terministische en statistische modelgebaseerde reconstructietechnieken voor vasculaire
beeldvorming onderzocht om de SNR, resolutie en zichtbaarheid van fijne vaatstruc-
turen te verbeteren. De voorgestelde methoden maken gebruik van de gezamenlijke
sparsiteit van vasculaire beelden op verschillende tijdstippen. Deze aanpak verbetert
de weergave van vaatstructuren en onderdrukt tegelijkertijd achtergrondruis en artefac-
ten. Een groot deel van het proefschrift, met name hoofdstukken 4, 5 en 6, richt zich
op sparse Bayesian learning (SBL). Beginnend met klassieke SBL introduceert dit proef-
schrift block-sparsity-gebaseerde SBL-technieken, zoals pattern-coupled sparse Baye-
sian learning met fixed-point iteraties en correlated sparse Bayesian learning. Hoewel
sommige van deze technieken nog niet efficiént genoeg zijn voor real-time echobeeld-
vorming, dragen ze wel bij aan de vakgebieden van signaalverwerking en computatio-
nele beeldvorming.

Hoofdstuk 7 richt zich op het verbeteren van ultrasone transmissies om de SNR te
verhogen. Een geoptimaliseerde gecodeerde excitatie wordt voorgesteld als alternatief
voor standaard gecodeerde excitatietechnieken. Met een bescheiden rekentijd worden
de codes geoptimaliseerd om de SNR te verbeteren zonder noemenswaardig verlies aan
resolutie. Optimalisatie wordt uitgevoerd via Cramér-Rao lower bound (CRB) minima-
lisatie en een snellere benadering op basis van de Fisher-informatiematrix (FIM). De
geoptimaliseerde codes zijn getest op gesimuleerde data om hun potentieel voor flow
imaging te laten zien.

Samenvattend draagt dit proefschrift bij aan het gebied van echografie van bloed-
stroming door oplossingen te bieden voor zowel beeldreconstructie-algoritmen als
transmissietechnieken, met als doel bestaande beperkingen en uitdagingen te overwin-
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nen. In dit werk wordt het gebruik van geavanceerde modelgebaseerde signaalverwer-
kingstechnieken onderzocht om de beeldkwaliteit te verbeteren. Daarmee biedt dit on-
derzoek nieuwe strategieén die toekomstige studies en klinische toepassingen in vascu-
laire echobeeldvorming kunnen inspireren.



INTRODUCTION

Ultrasound imaging is a critical tool in modern medicine, offering real-time visualiza-
tion for accurate diagnosis and monitoring. In cardiovascular medicine, high-quality
ultrasound scans can simplify the detection of anomalies. In maternal-fetal medicine,
detailed images of the fetus help identify potential developmental issues in the baby.
Furthermore, ultrasound imaging plays a significant role in medical research and daily
patient care, providing valuable insights across various medical fields.

The demand for accurate and detailed ultrasound imaging motivates the advance-
ments in image reconstruction techniques. Ultrasound imaging continues to rely heav-
ily on traditional delay-and-sum (DAS) beamforming techniques [1], which offer reli-
able and efficient performance in many clinical settings. On the other hand, there is
increasing interest in exploring model-based image reconstruction techniques [2, 3],
which have the potential to enhance image quality and address challenges in specific
applications, such as blood flow imaging [4, 5, 6, 7, 8]. These model-based methods
aim to improve resolution and signal-to-noise ratio (SNR) by offering better detection
of subtle features and enhancing the overall quality of images. Over time, ultrasound
imaging research has explored various approaches, with model-based techniques gain-
ing increasing attention as a promising alternative to traditional methods [9, 10, 11, 12,
13]. Model-based methods represent the ultrasound imaging process as a linear inverse
problem, and they are flexible to incorporate deterministic or statistical prior knowledge
in order to enhance the imaging of flow.

The formalization of the model/system matrix to be used for the inversion allows
for a variety of well-developed signal processing techniques, such as least squares and
compressive sensing. The latter has been studied by our group and enabled good recon-
structions from fewer data samples [9, 10, 11, 12, 13]. Compressed sensing reduces the
number of required measurements and the number of sensors; hence, the manufactur-
ing costs of the devices become lower and the amount of data to transfer and process
smaller, making real-time assessments more accessible. However, it causes a loss in im-
age quality, such as SNR and resolution, due to the reduction in the number of measure-
ments. While the DAS beamformer is not convenient for solving compressive ultrasound
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imaging problems, model-based techniques offer a solution by incorporating prior in-
formation and optimization frameworks to regain or enhance the image reconstruction
quality [2]. Overall, model-based ultrasound for compressive sensing is promising for
improved diagnostic capabilities and broader clinical applications, in cases where the
number of sensors pose a restriction such as for 3D imaging.

The advantage of the model-based approach is also shown when we consider the
topic of coded excitation. Ultrasound imaging with coded excitation also exploits model-
based imaging, especially when the codes do not have a standard structure. Previously,
it has been shown that applying coded excitation techniques can enhance the SNR, res-
olution, and penetration depth in ultrasound imaging [14, 15, 16, 17]. Instead of using
standard coding techniques such as Barker and Golay codes, random coding is an alter-
native method and provides benefits for improving the resolution [18]. However, DAS
does not work optimally when each element in the transducer is excited with different
pulses, as the interference between different pulses will result in incoherent summation
and delay mismatch. Therefore, model-based beamforming is adopted, which exploits
the linear system model. Besides, further innovative coding designs, such as optimized
codes, require model-based imaging techniques.

1.1. RESEARCH MOTIVATION

In specific applications, particularly those involving compressive spatial coding, model-
based ultrasound imaging methods can face limitations in achieving high spatial reso-
lution, fine detail, or SNR [9, 10, 11]. In particular, compressive spatial coding for flow
imaging may benefit from more specialized and advanced algorithms beyond matched
filtering and least squares methods [12]. As the compressive scenarios typically do not
align with the assumptions of DAS beamforming, exploring model-based techniques be-
comes relevant. Therefore, this thesis aims to develop model-based image reconstruc-
tion algorithms applicable to non-compressive and compressive scenarios.

Previous works have examined the sparsity assumption in contrast-enhanced vascu-
lar ultrasound imaging using microbubbles, but mostly did not make assumptions for
vascular data itself [6, 8]. Although contrast-enhanced ultrasound imaging (CEUS) pro-
vides certain advantages, normal ultrasound imaging (ultrasound imaging without the
use of contrast agents) is more practical and accessible [19, 20]. Besides, due to the short
lifespan of microbubbles within the body, the microbubble injection method exhibits
low stability and consistency in imaging. Therefore, there is a need to discover and ex-
ploit prior information related to the vasculature data without contrast agents, such as
the sparsity of vascular structures in tissue-separated images. However, since it increases
the computational demands, it is necessary to reduce the computational burden using
advanced techniques.

To develop image reconstruction algorithms for ultrasound flow imaging, it’s crucial
to consider different characteristics of the tissue and flow components in these images.
In ultrasound imaging, flow represents the movement of blood through the vasculature,
while tissue refers to the static structures of the surrounding soft tissue. The separation
of flow from tissue is fundamental in creating accurate models of vascular networks.
Sparsity arises in this context, as the vascular network can often be represented using
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fewer data points when isolated from the surrounding tissue. Note that the characteris-
tics of the vasculature are not limited to sparsity, and it also presents a connected net-
work structure.

Deterministic sparsity-based priors may not fully capture the complex prior informa-
tion beyond the bare sparsity of the tissue-separated vascular network, as they primarily
focus on representing the network with the fewest non-zero elements, without account-
ing for other important characteristics such as structure or shape [21]. Capturing more
prior information requires further assumptions on the vascular image data and more
sophisticated deterministic priors, which might increase the number of parameters in
the ultrasound imaging problem and result in a substantial computational burden and
parameter tuning step. On the other hand, probabilistic models such as sparse Bayesian
learning (SBL) assume that unknown data elements are random variables with a zero-
mean Gaussian distribution. This might be more flexible in embracing other properties
of the vasculature in addition to the sparsity. Although SBL was employed for super-
resolution ultrasound imaging with contrast-enhancing microbubbles (which exhibit
sparsity), its performance for tissue-separated vascular networks has remained unex-
plored [22]. The SBL algorithm is notably slow for large-scale vascular ultrasound imag-
ing, especially when it relies on the expectation-maximization (EM) technique. Hence,
reducing the computational burden of the classical SBL is crucial, particularly for large-
size real-time ultrasound imaging problems.

Classical SBL assumes statistical independence between image voxels, which might
not be sufficient to handle dependence between the vascular image voxels. Block spar-
sity naturally arises in practical applications such as in radar images [23, 24, 25], fetal
ECG [26], ultrasound signals [27], and so on. Classical SBL might remain insufficient to
capture the vasculature exhibiting a connected structure, which can be associated with
block sparsity. Investigating block sparse approaches such as pattern-coupled sparse
Bayesian learning (PCSBL) might improve the reconstruction quality of sparse and con-
nected structures [28]. However, existing PCSBL techniques exploit the EM algorithm
and are extremely slow for vascular ultrasound imaging as the real data is of large-size.
Thus, there is a need for a faster version of the PCSBL algorithm [29]. Besides, PCSBL re-
quires tuning of the hyperparameters to achieve its optimal performance. An algorithm
not requiring manual parameter tuning can be more useful in computationally intensive
problems such as ultrasound imaging.

The PCSBL approach, widely used for block sparsity, exploits the relation between
neighboring elements but does not capture their correlations [28, 30, 31, 32]. The statis-
tical correlation of the neighboring pixels can be beneficial in capturing block sparsity
in vascular ultrasound imaging. The dynamic flow is likely to exhibit a correlation be-
tween neighboring blood cells and might result in a correlation between neighboring
image pixels. Existing correlation-based sparse reconstruction methods include block
sparse Bayesian learning (BSBL) and extended block sparse Bayesian learning (EBSBL)
algorithms [33]. While BSBL requires prior knowledge of the block partition, EBSBL of-
fers an alternative that does not require block information, which is the case for natural
signals such as tissue-separated vasculature data. However, EBSBL uses a large dictio-
nary, which results in high computational complexity. Henceforth, developing a faster
alternative that uses block correlations could be beneficial. Furthermore, their perfor-
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mance is inferior to the PCSBL algorithm. Hence, improving the performance of the
correlation-based block sparsity methods is required while reducing the computational
complexity.

The motivation for this thesis also includes improving the image quality within ad-
vancements in ultrasound transmission strategies. While unfocused transmissions in
Doppler ultrasound allow for high frame rate imaging, they often suffer from low SNR,
especially when imaging deeper structures or smaller blood vessels. Although image re-
construction algorithms improve image quality, they mostly have high computational
complexity and memory requirements, particularly the model-based methods that ex-
ploit deterministic or statistical prior information [21, 29, 34]. On the other hand, ad-
vancements in ultrasound transmission can also improve image quality without signifi-
cantly increasing the computational demands. Using coded excitation techniques such
as Barker and Golay codes also improves the SNR and the penetration depth up to a
limit [14, 15, 16, 35, 36, 18]. However, there is still a gap in the literature on utilizing op-
timized code design to increase image reconstruction performance in ultrasound imag-
ing.

In summary, this research explores the use of new computational techniques to ad-
vance ultrasound imaging. While many chapters of the thesis address the limitations
regarding the vascular ultrasound image reconstruction algorithms and prior informa-
tion, one chapter is motivated by limitations on ultrasound transmission strategies.

1.2. RESEARCH OBJECTIVES

The main objective of this thesis is to develop and explore a new set of algorithms that
can leverage model-based image reconstruction applied to the imaging of blood flow. In
this regard, we try to answer three main questions.

Q1. How well can the joint sparsity (i.e., the shared sparsity between different time-
instants of vascular networks) of tissue-separated frames improve the image recon-
struction quality in vascular ultrasound imaging?

One of the primary goals of this thesis in addressing Q1 is to explore how the joint
sparsity of vascular networks at different time instants can be leveraged using a deter-
ministic framework [21]. We will study whether joint sparsity is a valid assumption for
the tissue-separated vascular data. Existing methods assume the sparsity only in the vas-
culature’s power Doppler image (PDI) and assume the statistical independence between
image voxels [6, 8]. This research aims to achieve higher resolution and better depic-
tion of vascular structures by developing new algorithms that exploit joint sparsity of the
tissue-separated vasculature.

We also attempt to answer Q1 by exploiting probabilistic joint sparsity methods for
the tissue-separated vascular data in ultrasound image reconstruction, such as sparse
Bayesian learning (SBL) [37, 38]. Our approach seeks to investigate its performance for
vascular ultrasound imaging and improve the resolution, SNR, noise suppression, and
accurate depiction of the details of the vascular structure with a statistical method.

Q2. Can we design efficient algorithms to enhance the image reconstruction quality by
exploiting the block sparsity in the spatial domain?
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In addition to examining the algorithm performance in vascular ultrasound imag-
ing, this question opens a way for developing block sparsity algorithms for general signal
processing problems, including one-dimensional inverse problems. To approach the an-
swer of Q2, we first pursue incorporating the block sparsity information in the SBL algo-
rithm. Firstly, we aim to use pattern-coupling, namely, the relations between neighbor-
ing parameters, which inherently enforce block sparsity [28]. However, PCSBL relies on
the EM algorithm, which exhibits slow convergence. To finally answer Q2, our objective
is to develop a version of the pattern-coupled sparse Bayesian learning (PCSBL) algo-
rithm based on the fixed-point iterations method, which offers a faster convergence [39].
To our knowledge, such an algorithm has not been described in the literature before. An-
other goal is avoiding manual hyperparameter update rules in PCSBL, which requires a
parameter tuning stage. We aim to develop an efficient method and examine its per-
formance for the one-dimensional direction-of-arrival (DOA) estimation problem and
two-dimensional vascular ultrasound image reconstruction problem, thereby present-
ing a novel contribution to the field.

Alternatively, we focus on enforcing block sparsity using the correlations between
neighboring elements/pixels. Block sparse Bayesian Learning (BSBL) and extended
block sparse Bayesian learning (EBSBL) have been an inspiration for adopting this ap-
proach. Since BSBL involves knowledge of the block partition, EBSBL has become
our primary focus. To answer Q2, a novel approach is needed to improve the perfor-
mance and reduce the computational cost of the existing correlation-based SBL algo-
rithm. Therefore, another objective of this thesis is developing an efficient correlated
sparse Bayesian learning algorithm without the prior block partition information [34].
To demonstrate the enhanced signal/image reconstruction quality, numerical experi-
ments on DOA and amplitude estimation, as well as ultrasound imaging problems, are
pursued.

Q3. Can we improve the imaging of blood flow at greater depths by optimizing trans-
mission codes?

We aim to employ optimized coded excitation for vascular ultrasound imaging to
answer Q3. A linear signal model will optimize the coding scheme, where the code se-
quences appear in a coding matrix. To design optimal codes, we minimize the Cramér-
Rao lower bound (CRB)[40] as a proxy for minimizing the mean square error[41, 42]. We
also introduce a trace-constrained variant of the optimization problem to reduce com-
putational complexity based on the Fisher information matrix. This approach allows us
to investigate whether the designed codes can improve image quality at greater depths
under ultrafast imaging conditions.

1.3. OUTLINE OF THE THESIS

This thesis is organized as follows. First, we present model-based vascular ultrasound
imaging and the related mathematical model in Chapter 2. In Chapter 3, we propose
a multiple-measurement vector (MMV) model to enforce the joint sparsity of the im-
ages at different time instants, which provides an answer to Q1. We propose the MMV
FISTA method as an image reconstruction technique and evaluate its performance for
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Figure 1.1: Thesis outline.

synthetic data. In the subsequent Chapter 4, we present the compressive vascular ul-
trasound imaging model and propose SBL with fixed point iterations to solve the image
reconstruction problem. We seek an answer to Q1 by statistically enforcing the joint
sparsity. In Chapter 5, a novel pattern coupled sparse Bayesian learning algorithm with
fixed point iterations (FP-SBL) is developed, which is tested on the direction-of-arrival
(DOA) estimation problem in radar and the compressive vascular ultrasound imaging
problem using experimental data obtained from mouse brain. We address Q2 by ex-
ploiting the block sparsity in the spatial domain. Then, in Chapter 6, a correlated sparse
Bayesian learning algorithm for recovery of block sparse signals is introduced to provide
an additional answer to Q2. However, as the computational complexity of the developed
algorithm is significantly high for ultrasound imaging problems, its application is lim-
ited to synthetic one-dimensional data and DOA estimation problems. Then, we present
an advancement in ultrasound transmissions, which is the subject of Q3. At this point,
Chapter 7 presents a novel optimization scheme for coded excitation in model-based ul-
trasound imaging to enhance the signal-to-noise ratio. The thesis outline is given in Fig.
1.1.

CHAPTER 2:

This chapter starts by explaining the mechanism of ultrasound imaging, where both fo-
cused and unfocused transmissions are presented. The chapter then presents Doppler
ultrasound imaging, which focuses on power Doppler imaging (PDI) to visualize blood
flow using the signal power intensity. Next, it introduces model-based vascular ultra-
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sound image reconstruction and emphasizes its difference from traditional delay-and-
sum (DAS) beamforming. It presents how this approach exploits matrix-vector formu-
lations and iterative algorithms to improve image quality compared to traditional meth-
ods. The chapter also discusses various image reconstruction methods, such as least
squares estimation and regularized techniques, which can enhance image resolution,
contrast, and noise reduction. To further boost the performance, we introduce the coded
excitation techniques in ultrasound literature to improve the image quality by modifying
the imaging system. Thereafter, we address the challenges in computational complexity
to obtain a high-quality image, which might require additional prior information related
to vascular imaging data. Finally, the chapter summarizes the approaches we focus on
in this thesis to enhance the ultrasound image quality by increasing the SNR and reso-
lution and by removing the artifacts. It also emphasizes further research to refine these
techniques by addressing their limitations.

CHAPTER 3:

To answer Q1, this chapter introduces a multiple measurement vector model (MMYV)
with joint sparsity across ultrasound frames. It starts by addressing the limitations in
existing methods due to limited spatial resolution and long acquisition times. Conven-
tional methods often assume statistical independence between voxels, which can distort
the signal model. A novel image reconstruction approach is proposed using the MMV
model to exploit joint sparsity across images obtained at different time instants to elim-
inate the distortion of the signal model. To reduce the computational complexity, the
£1-SVD method is employed. Our approach enhances the spatial resolution and im-
proves the separation between blood vessels compared to existing methods, albeit with
slightly increased computation time.

CHAPTER 4:

This chapter introduces the vascular ultrasound imaging system with compressive mea-
surements. As in the previous chapter, it exploits the vasculature’s jointly sparse and
connected structure with the MMV model. However, this time, a statistical method is
exploited to seek an answer to Q1, named SBL, solved with the fixed-point iterations
method. Here, the methods from Chapters 3 and 4 are applied to two-dimensional vas-
cular ultrasound scenarios for mouse brain data. However, they could not successfully
reveal the detailed vasculature, which requires future advancements.

CHAPTER 5:

This chapter presents a novel approach for recovering block-sparse signals with un-
known boundaries for answering Q2, a problem that naturally seems to arise in vari-
ous applications, such as tissue-separated vasculature. It introduces a pattern-coupled
sparse Bayesian learning (PCSBL) algorithm that utilizes fixed-point iterations, un-
like the traditional expectation-maximization (EM) algorithm, to achieve faster conver-
gence. The chapter demonstrates that the proposed fixed-point iteration method offers
a simple hyperparameter update rule, which does not require manual adjustments. It
also includes numerical results showing that the method performs comparably to PCSBL
with the EM algorithm in one-dimensional scenarios such as direction of arrival (DOA)
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and amplitude estimation problems while achieving faster convergence. Thanks to the
faster convergence of the algorithm, it is now tested on mouse brain data for the two-
dimensional case. It exhibits slight improvements compared to the conventional SBL
algorithm.

CHAPTER 6:

This chapter aims to answer Q2 by introducing a novel approach for recovering complex-
valued block sparse signals with unknown block partitions. The proposed method re-
duces the computational complexity of previous correlation-based EBSBL method by
employing a tridiagonal correlation matrix. The tridiagonal matrix structure represents
the correlation between neighboring sparse coefficients. The proposed algorithm re-
duces the computational complexity and the number of unknowns compared to EBSBL.
Furthermore, it provides superior performance over the state-of-the-art by reconstruct-
ing both block and non-block sparse patterns. We aim to apply this novel algorithm to
the presented compressive ultrasound imaging problem. However, due to the high com-
putational cost of the algorithm, which exploits the EM, the applications of the algorithm
are only the limited to one-dimensional data such as randomly generated block sparse
data as well as data related to the DOA estimation problem.

CHAPTER 7:

This chapter focuses on the optimization of coded excitation for model-based ultra-
sound imaging with unfocused transmissions to answer Q3. This chapter introduces
anovel approach to enhance SNR by optimizing the coding matrix via the minimization
of the Cramér-Rao lower bound (CRB) and the maximization of the Fisher information
matrix (FIM). The proposed method results in superior SNR in deep imaging regions
compared to conventional sparse codes. Although it reduces the axial resolution, this is
mitigated by the least squares QR (LSQR) method. Simulations using the optimized code
show an improvement of the SNR in ultrasound imaging. Furthermore, the effectiveness
and limitations of coded excitation in practical scenarios are discussed.

CHAPTER 8:
This chapter summarizes the conclusions driven by the findings and scientific contribu-

tions throughout this dissertation. Lastly, it also reviews the insights obtained from the
previous chapters as well as potential research directions.

1.4. L1ST OF CONTRIBUTIONS

Finally, we provide an overview of the contributions made to the scientific literature
during this Ph.D. thesis.

Journal Publications

° J1: D. Dogan, L. Zhu, Y. Hu, J. G. Bosch, P. Kruizinga and G. Leus, "Optimizing
Coded Excitation for Model-Based Ultrasound Imaging With Unfocused Transmis-
sions," in IEEE Transactions on Computational Imaging, vol. 11, pp. 609-624, 2025.
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* J2: D. Dogan, G. Leus, Correlated Sparse Bayesian Learning for Recovery of Block
Sparse Signals with Unknown Borders, IEEE Open Journal of Signal Processing 5,
p-421-435, 2024.

* J3: Y. Hu, D. Dogan, M. Brown, G. Leus, T. van der Steen, P. Kruizinga, Compu-
tational Ultrasound Carotid Artery Imaging with a Few Transceivers: An Emula-
tion Study. Accepted for a publication in IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control

Conference Publications

* Cl: D.Dogan, G. Leus, Pattern Coupled Sparse Bayesian Learning with Fixed Point
Iterations for DOA and Amplitude Estimation, Asilomar Conference on Signals,
Systems, and Computers 2023, paper 1308, p.1303-1307

° C2: D. Dogan, P. Kruizinga, J.G. Bosch, G. Leus, Multiple Measurement Vector
Model for Sparsity-Based Vascular Ultrasound Imaging. Proceedings IEEE Statisti-
cal Signal Processing Workshop 2021, p. 501-505, 2021

e C3: Y. Hu, M. Brown, M. Bulot, M. Cheppe, G. Ferin, D Dogan, G. Leus, L. Wei,
A.EW. van der Steen, P. Kruizinga, J.G. Bosch, Volumetric Computational Ultra-
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Aberration Mask: Phantom Studies, IEEE International Ultrasonics Symposium
2024
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Emulation Study, Proceedings IEEE International Ultrasonics Symposium 2022
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This chapter presents the fundamental concepts of vascular Doppler ultrasound
imaging and model-based Doppler ultrasound imaging, an alternative to the conven-
tional image reconstruction techniques, such as delay-and-sum beamforming. We first
present the power Doppler imaging process and then explain the reconstruction tech-
niques. We then give the mathematical model for the model-based imaging technique
under non-compressive scenarios and discuss how various deterministic and statistical
priors can be obtained to solve that problem. Furthermore, we introduce the existing
coded excitation techniques as a background for the thesis content.

2.1. ULTRASOUND IMAGING MECHANISM

In ultrasound imaging, a transducer consisting of an array of piezoelectric elements is
used to transmit and receive mechanical pressure waves. When a voltage is applied to
a piezoelectric element, it vibrates and generates a mechanical pressure wave. The fre-
quency of vibration is determined by the material of the element, typically ranging from
1 to 30 M Hz for medical applications. When the transmitted pressure wave encounters
various acoustic impedances and echoes will return to the piezoelectric elements. Then,
the transducer elements convert these echoes into small voltage potentials, known as
radio frequency (RF) signals which can be subsequently digitized and used to create an
image of the acoustic impedance differences within the medium.

Conventional ultrasound imaging employs focused ultrasonic waves. It sends a sin-
gle focused wave during each transmission, reconstructing one image line at a time, as
shown in Fig. 2.1. This process is repeated for each neighbouring image line, requiring
multiple transmission events before generating a single image. For Doppler imaging,
where we aim to image motion (such as flowing blood), we need multiple transmissions
per line. Due to the multiple transmissions for every line, this scanning method might
not achieve high sampling frequency for high-frame-rate imaging [43]. An alternative
to constructing an image line by line is using unfocused transmissions. First, a syn-
thetic aperture ultrasound imaging technique can be employed, where a single trans-
mitter can illuminate the entire region of interest (ROI) instead of focusing on a single
angular sector. Since the signal-to-noise ratio (SNR) decreases for such a case, multi-
ple images are compounded to obtain the final image. Each image is acquired by firing
the different sensors in the transducer array [44]. Although synthetic aperture imaging
increases the image quality in terms of resolution, it stll suffers from a limited frame
rate. To reach a higher frame rate, a plane-wave imaging approach illustrated in Fig. 2.1
can be embraced where all the sensors transmit to illuminate the entire field of view [9].
Hence, the entire image can be reconstructed with parallel beamforming from a single
transmission. Compared to synthetic aperture imaging, plane-wave transmissions still
reach a decent level of contrast, SNR, and resolution. This level is achieved via coher-
ent compounding of multiple images with different steering angles. Since plane-wave
imaging uses all elements in the transducer array simultaneously for a few steering an-
gles, it avoids the repeated firing of individual transmitters, leading to a higher frame
rate compared to line-by-line imaging and synthetic aperture methods. Note that plane-
wave imaging is particularly advantageous for high-frame-rate imaging such as Doppler
imaging [43].
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Figure 2.1: Two different methods of ultrasound imaging. (a) Conventional ultrasound imaging
method using line by line focused ultrasonic waves. (b) Demonstration of a plane-wave imaging
scheme. [45]

2.2. VASCULAR POWER DOPPLER IMAGING

Doppler ultrasound imaging is an imaging technique that exploits the interaction be-
tween mechanical pressure waves, tissues, and red blood cells. Doppler shift occurs with
the scattering of red blood cells where the Doppler frequency is related to the velocity of
the blood cells. The visualization of the blood flow and the detection of vascular abnor-
malities or pathologies are enabled by Doppler ultrasound imaging.

Spectral and color Doppler imaging enables the detection and visualization of the
blood flow velocity and direction. The angle towards the scatterer is the same for the
same transmitting and receiving element. The Doppler frequency fp is given by [43]:

2
fD=fR—fT=—C—yfocos9, 2.1
0

where v is the velocity of the scatterer, ¢ is the speed of sound in the medium, fy is the
transmitted frequency, and 6 is the angle between the ultrasound beam and the flow di-
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rection. A negative fp indicates that the scatterer is moving away from the transducer,
while a positive fp indicates movement towards the transducer. Thus, the Doppler fre-
quency shift is related to both the velocity of the blood cells and the insonation angle.
However, these methods face challenges in detecting blood flow in cases of low-flow,
where it is difficult to separate the flow from tissue moving at similar speeds, and in
deep-lying vessels, where the weak SNR limits accurate detection.

In tasks where flow direction is not significant, but sensitive detection of the presence
of blood flow is essential, such as imaging the small and deep vessels, power Doppler
imaging (PDI) is a valuable method. In PDI, the flow direction is not measured, and the
amplitude or power of these scattered signals is considered rather than their frequency
shift [46]. It is an imaging technique that visualizes blood flow based on the amplitude or
power of the Doppler signal [46]. The total energy of the moving blood cells is achieved
by calculating the integrated power of the Doppler signal. PDI highlights the regions
with strong Doppler signals irrespective of their velocity, where the power increases by
the moving scatterer concentration. Note that color Doppler imaging can miss the low-
velocity or weak blood flow regions, and PDI can mitigate this, which uses the intensity
of the signals rather than the phase [47]. Furthermore, PDI is advantageous in settings
where the insonation angle is challenging to control as it is less angle-dependent.

Now we present the steps of PDI, from raw radio frequency (RF) data acquisition to
PDI formation as shown in Fig. 2.2.

* Raw Data RF Acquisition: The first step given in the first row of Fig. 2.2 is raw RF
data acquisition from D transmissions, such as with D steering angles.

* Beamforming: The next step is using the acquired raw data to generate an ultra-
sound image via delay-and-sum (DAS) beamforming [48] or model-based beam-
forming [49]. Beamforming is the most crucial step of ultrasound processing as it
determines the contrast and resolution of the resulting image. As DAS is a fast and
efficient method, it is widely used, but model-based techniques can be advanta-
geous in some scenarios that require superior imaging quality.

° Compounding: After that, the coherent summation and averaging of the D im-
ages produces a single high-resolution and high-SNR compounded frame of size
L, x Ly. Here, L, and Ly represent the number of samples in the spatial depth and
spatial width (along the transducer array), respectively. Compounding the images
that belong to D steering angles is beneficial for visualizing low-contrast struc-
tures, such as small vessels, as it reduces speckle noise and enhances the SNR.

* Sequential Image Acquisition: Then, M compounded frames are sequentially ac-
quired over time. This resultsin L, x L, x M data. Here, M represents the temporal
(slow-time) dimension and can also be called the number of frames or ensemble
size. Then, each frame is vectorized and stacked as a 2D space-time matrix S with
dimensions L, Ly x M.

* SVD Filtering: A singular value decomposition (SVD) [50] or a high-pass filter [51]
can be applied to this 2D space-time matrix to distinguish between the slow-
moving tissue and faster-moving blood vessels, enabling the explicit depiction of
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Figure 2.2: Data processing chain for Doppler ultrasound imaging.

vascular structures. In the SVD filter case, we take the SVD decomposition of this
2D space-time matrix S as S = UTVH. Then, we set the tissue-related first M, sin-
gular values of I to zero, where M; can be selected empirically. Then, the new di-
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agonal matrix is given by I' and the tissue separated 2D space-time matrix is given
by § = ULV,

* PDIformation: The final PDIimage is formed by averaging all power of the filtered
temporal frames and reshaping the result into an image with dimensions L, x Ly.

Note that Fig. 2.2 presents the steps for conventional PDI. For some model-based
imaging applications with sophisticated image reconstruction techniques, the order can
be modified so that sequential RF data acquisition and SVD filtering are performed be-
fore beamforming and compounding. Since prior information on the cleaned/filtered
signal is used in some estimation problems, SVD filtering is applied first to the RF data
instead of sequentially acquired compounded frames.

2.3. MODEL-BASED ULTRASOUND IMAGE RECONSTRUCTION

2.3.1. TRADITIONAL DELAY-AND-SUM BEAMFORMING

Delay-and-sum (DAS) is the most basic digital beamformer for traditional ultrasound
imaging [1]. Thanks to its simplicity and efficiency; it is widely used in high-frame-rate
ultrasound, such as power Doppler imaging. Calculating the arrival time of an echo to a
specific location is simple when the propagation speed of sound in the body is assumed
to be constant. Since the same pulse is transmitted to and reflected by all pixels and the
time-of-arrival of each echo can be calculated, the complex signals across all sensors are
coherently summed at the corresponding arrival times. In the final image, high intensi-
ties correspond to scattering caused by high impedance differences, while low intensities
represent regions with no scattering or low scattering and thus tissue with homogeneous
impedance.

To clarify the effect of coherent summation in DAS beamforming, block diagrams
of the DAS beamforming for two scatterers at different locations, S; and Sy, are shown
in Fig. 2.3. The top subfigure shows the coherent summation with delay correction for
scatterer S;. The ultrasound echoes reflected from the scatterer S; arrive at different re-
ceivers, Jo, J1, and J,, at different times, po, ¢ and py, as each receiver element has a
different distance from the scatterer. To compensate for varying arrival times, we ap-
ply time delays, dy, di, and dy, to the received signals. Then, these aligned signals are
coherently summed and yield a strong response in the beamformed image, resulting in
constructive interference. On the other hand, in the bottom subfigure of Fig. 2.3, the
signals reflected from S, cannot be coherently summed as they are not aligned using the
delays previously applied for S; and produce a weak response in the beamformed im-
age. In some cases where the signals partially overlap, it might even cause destructive
interference and reduce the signal strength. To obtain the coherent summation for each
pixel in the region of interest (ROI), the required delays need to be calculated explicitly
for each location. If the system geometry is known in ultrasound imaging, the correct
delays for each pixel location, including the scatterers S; and S,, can be computed. Ul-
timately, the overall ROI can be reconstructed with DAS beamforming.

DAS beamforming is applicable to several medical ultrasound imaging techniques
such as Doppler imaging. Since all the techniques have the knowledge of the system ge-
ometry and time-of-arrival for all the echoes, DAS beamforming is suitable for all those
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Figure 2.3: The block diagram of the delay-sum beamforming (DAS) method [52].

techniques. DAS beamforming can be combined with compounding to enhance image
quality and reduce artifacts. The DAS approach assumes that waves can travel unin-
terruptedly with only small inhomogeneities so that the background medium speed of
sound can be assumed constant. Furthermore, the same pulse waveform is received on
each sensor, making coherent summation possible.

2.3.2. MODEL-BASED VASCULAR ULTRASOUND IMAGING

In model-based imaging, the images are reconstructed with a matrix-vector formula-
tion that best represents the measured ultrasound signals given the complete ultra-
sound propagation and scattering model with all parameters. Unlike traditional beam-
forming techniques with simple delay-and-sum operations, model-based techniques
are suitable for exploiting iterative reconstruction techniques to enhance image qual-
ity. Model-based approaches can also employ regularization techniques to enhance the
reconstruction quality [9, 53]. Incorporating prior information with regularization tech-
niques might use assumptions related to the distribution of the scatterers and tissue
smoothness, such as the sparsity of ultrasound images with a homogenous background.
Compared to conventional beamforming, higher spatial resolution can be attained with
model-based imaging, which enables the depiction of small vessels and the detection
of slight changes [53]. Moreover, model-based approaches can enhance image contrast
and SNR, which results in better separation between tissue and blood regions. Lastly,
model-based approaches can mitigate imaging artifacts such as speckle noise, reverber-
ation, and shadowing while preserving the image quality.
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IMAGE FORMATION MODEL

We consider a scenario where we examine the transmission of a known pressure pulse
into a region of interest (ROI) characterized by a homogeneous background medium.
When pixels in the ROI exhibit contrast speed of sound or density compared to the sur-
rounding medium, a scattering event occurs. Although there are multiple reflections be-
tween scatterers, they can be ignored in ultrasound imaging as these differences are rel-
atively small. This Born approximation [54, 55] simplifies the relationship between the
unknown image and measurement data, effectively rendering it linear. Consequently,
the output signal received by a sensor becomes a linear superposition of the echo from
each pixel, as the echo is not significantly altered.

The proposed setup consists of I elements in a linear transducer array. A plane-wave
transmit scheme was employed to acquire signals. All elements are excited jointly with
appropriate delays (e.g., when a plane-wave transmission under a non-zero angle is con-
sidered) and received signals from all elements are recorded. In vascular Doppler ultra-
sound imaging, at every period At, a pulse a(?) is sent from each transmitter, where ¢ is
assumed to be continuous time, and the pulse peak is assumed to be located at ¢ = 0. At
sensor j =1,...,I and pulse period m = 1,..., M the sensor output is modeled as

Z(jr t) m) :ZZaj,i(zrxv t)S(Z; X, m) + n(]) t) m)) (22)

Z,X |

where s(z,x,m) is the time-varying scattering signal related to the position (z,x),
n(j,t, m) corresponds to the white Gaussian noise for the measurement z(j, t, m), and
aji(z,x,t)=a(t—7zx, i), where 7, y j ; is the sum of the pulse delay adopted at transmit-
ter i and the delay related to the distance from the transmitter i to the receiver j through
the pixel at (z, x). In the remainder of this chapter, we work in the frequency domain in-
stead of the time domain since faster computation in the frequency domain is possible.
Note that (2.2) is equally valid in the frequency domain if z(j, £, m) and a; ;(z, x, t) are
replaced by their frequency domain equivalents [10]. We denote the Fourier transform
of z(j, t,m) and a; ; (z, x, t) by z(j,w, m) and a; ;(z, x, w), respectively.

Here, all aj;(z, x, ) and eventually a;,;(z, x,) are known beforehand as the trans-
mitted pulses and the geometry of the problem is known. The only unknowns are the
coefficients s(z, x, m). Now, the problem boils down to the linear equation (2.2). By sam-
pling and exploiting the matrix-vector formulation, this relation can be compactly de-
noted as

Z=AS+N, (2.3)
with
I
a; ... apr aj(wy) Yo aji(zg, X1, 01)
A=l Lap=| = : :
I
ar ..oooarp aj,l(a)p) Zl.zlaj,,-(zl,xl,wp)
Z1,1 ... ZIM z(j, w1, m)
Z=[Z1 ZM]Z Zj,m = . )

zZiy ... ZILM z(j,wp,m)
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s(zl,xl,l) s(zl,xl,M)
S=[Sl SM]Z )
S(ZL,)CL,l) S(ZL,)CL,M)
np oo MM
N= [n1 nM] =
nyi oo DM

Here, w € Q is sampled at F frequencies in the set Q = {w,,...,wr}. We use equidistant
samples taken from the positive side of the frequency spectrum. Further, (z;, x;) is the
sample of the spatially continuous (z, x) related to the Ith pixel. z;, , is the received signal
at receiver j for pulse m and a; ; is the received echo signal at receiver j for pixel /. Note
that stacking the data into Z and S matrices corresponds to the multiple measurement
vector (MMV) model. In the single measurement vector (SMV) case, each column of Z
and S can be represented as

Zm =As;, + 1y, (2.4)

where z,, and s,,, are columns of Z and S.

The model in (2.3) is then generalized to include multiple measurements involving
different transmissions, such as various steering angles or differently coded transmis-
sions. In such a case, D distinct measurement sets are stacked vertically into a larger
system of equations as follows:

Z, Ay N;
=] s+ : ], 2.5)
Zp Ap Np

where A4, Z4, and N, are the sensing matrix, measurements, and noise for the dth trans-
mission, respectively. This concatenated model in (2.5) is an extended version of the
above model in (2.3). For simplicity, we keep the same notation for (2.5) as in (2.3) and
do not introduce new variables for the concatenated model with different transmissions.

IMAGE RECONSTRUCTION METHODS

Here, we present the image reconstruction methods which are applicable to classical
vascular ultrasound imaging. The methods aim to enhance the SNR, contrast, image
detail, and resolution.

Matched Filter: To obtain the estimated image frames S from Z, the simplest and the
computationally most efficient way is the matched filter given by

§=A"z, (2.6)

even though it does not exactly solve the problem in (2.3). Note that if AMA can be ap-
proximated as an identity matrix, the estimator solves (2.3). The matched filter actually
comes close to applying the DAS beamformer. To demonstrate this, assume a delta-
pulse a(f) = (). Therefore, each a j,1 consists of zeros except for a unity magnitude on
the sample at which an echo is expected to arrive for pixel / at sensor j. Since only I
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values are non-zero in every column of the A matrix, the matched filter sums I values of
each column of Z for each pixel, namely the samples in Z at which an echo is expected
at sensor j. By denoting the /th column vector of A as a; and the mth column of Z as
zy with 7, 4, ;, the expected time of arrival for an echo from pixel / on the sensor j, the
element at the /th pixel is given by

S(zp,x;,m) = alem

1
H
= a. Z;
2 a;Zjm
=i 2.7)

1l
M~

2(J,Tz,x,j» M)-

j=1

Hence, this is equivalent to DAS beamforming. Here, if we include D different RF signals
in a single column for mth pulse response, it corresponds to applying traditional DAS
beamforming and compounding within the matched filter framework.

Least Squares Estimation: As an alternative method, the least squares estimation
can be leveraged, which minimizes the sum of the squared differences between the mea-
surement matrix Z and estimated model AS. This leads to the following optimization
problem:

$ = arg ming||Z - AS||%, (2.8)

with closed-form solution
S§=Afz=a"a)"1A"Z, (2.9)

where A' is the pseudoinverse of A. This holds only when A is full rank and invertible.
Tikhonov Regularization: When A is an ill-posed matrix, incorporating prior infor-
mation available for the images, we formulate the inverse problem as follows:

. 1
S=arg minSEIIZ—ASII%+/L%(S). (2.10)

This is a regularized least squares problem, which can also be related to maximum pos-
terior estimation (MAP). Here, the first term controls data fidelity, whereas the second
term Z(S) controls how well the reconstruction matches our prior knowledge of the so-
lution, with the scalar parameter A trading off between these two terms. The regulariza-
tion function can exploit prior knowledge about S.

The most-used regularization term is the Tikhonov regularizer where Z(S) = [|S| I%. It
can be expressed as follows:

. 1
S:argminsEIIZ—ASIIi-+)L||S||§-. (2.11)

It penalizes the large values in S and provides a unique solution. However, it smoothens
S and results in reduced resolution. The solution now becomes

§=@a"A+An~1ANZ. (2.12)
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As an alternative to least squares estimation with ¢,-norm regularization, minimum
mean squared error minimization (MMSE) can be used, which is given by

S = arg mingE((S-9)H(s-9)), (2.13)

if S and N are random. Assume for instance that S has prior distribution .4 (us, Cs) and
N has distribution .4 (0, Cy), then Sis given by,

S=E(SIZ) = us + (Cg' +AHCy'A) 'AM ey L Z - Aps). (2.14)

The prior distribution of S is often unknown and needs an assumption. Note that (2.14)
will be equal to the Tikhonov least squares estimation (2.12) when S is zero mean with
covariance matrix Cg = %I and N is zero mean with covariance matrix Cy = L.

Sparse Regularization: The other widely used regularization term is the sparsity-
enforcing regularizer. In the single measurement case, it is given as follows

1
§m = arg minsmillzm —As 15+ Mismllo. (2.15)

Here, we use Z(s;;) = |Ismllo where the £yp-norm is used as a sparse regularizer. This
method can precisely reconstruct s, if the true s, is known to be sparse, and under
certain conditions on A. Fortunately, several methods have been proposed to solve the
sparse reconstruction. One popular approach is a greedy pursuit method, which ap-
proximates the solution iteratively. Examples of techniques from this group for the sin-
gle measurement vector form are matching pursuit (MP) [56] and orthogonal matching
pursuit (OMP) [57], which can produce fast results with moderate accuracy. Instead of
solving the £p-norm, the cost function can also be relaxed by replacing the £p-norm
by the ¢,-norm for p € (0,1]. For example, the focal underdetermined system solver
(FOCUSS) [58] applies iterative reweighted least squares to solve the ¢;-norm problem.
When the ¢;-norm is used, it results in a convex optimization problem with a unique
global solution. The single measurement vector version of the problem that accounts
for measurement noise is named basis pursuit denoising (BPDN) [59] (also known as
LASSO [60]).

Sparsity-based methods can be adapted to the multiple measurement vector (MMYV)
case. Since the vasculature at different time instants is similar, the joint sparsity assump-
tion for the vasculature may hold. Joint sparsity here means that only the pixels related
to vasculature are non-zero, and the background is zero. Furthermore, non-zero ele-
ments in different frames correspond to the same pixel positions. However, the sequen-
tially acquired frames do not exhibit a sparse structure, as shown in the fourth row of
Fig. 2.2, where the tissue background has a similar intensity to the vasculature. Only
the tissue-separated vascular data can be assumed to be sparse or partially sparse. In
the DAS beamforming or other beamforming techniques, such as the matched filter and
least-squares estimation, the SVD filtering is applied in the last stage of power Doppler
imaging as shown in Fig. 2.2. However, to exploit the joint sparsity information in the
vascular imaging problem, we first apply SVD filtering on the RF data before applying
model-based beamforming. Since SVD filtering and compounding are linear operations,
applying them before or after beamforming should not make a significant difference.
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Note that there can be slight differences in practical applications due to complex noise
characteristics or imperfections in the imaging system.

With the considered assumptions, we can generalize the sparsity-based model given
for the SMV case. In the MMV case, the £, ; -norm can be used as the generalized version
of the £;-norm. Here, the ¢,-norm of all rows of S is computed. Then, the s(2) vector
is contructed, which stacks the £,-norms of the rows of S. Finally, [[S]|2,; = [|st2) 7 is
computed [61]. Hence, we finally obtain the problem

R 1
S:argminsEIIZ—ASII%+A|IS||2,1 (2.16)

Sparse Bayesian Learning: There are also other methods under the probabilistic
framework for sparsity. Note in this context that probabilistic sparse reconstruction
methods are mostly Gaussian [62]. With a reasonable probabilistic model for the un-
known data, these methods outperform deterministic approaches. One well-known
method in the probabilistic framework is sparse Bayesian learning (SBL). It was initially
developed for the relevance vector machine (RVM) [37]. Later, it was applied to the in-
version of compressive measurements [38]. The classical SBL algorithm assumes that
unknown data elements are independent random variables with a zero-mean Gaussian
distribution as follows:

p(s(zy, x1),y)) =€ (0,7)). (2.17)

The variance y; of the coefficients is treated as a hyperparameter learned from the
observations by maximizing the likelihood function, usually using the expectation-
maximization (EM) algorithm. The fixed-point iterations method can be a faster alter-
native than the EM algorithm to solve the likelihood problem. The fixed point iterations
method is an empirical strategy, but it provides a fast convergence rate in most applica-
tions [63, 64].

2.4. CODED EXCITATION

In ultrasound imaging, it is observed that applying coded excitation [14, 15, 16],i.e.,
sending out longer encoded pulses, can enhance the SNR of ultrasound images and
penetration depth. Long-bit streams of a Barker code can significantly improve ultra-
sound color flow imaging sensitivity [17]. Coded excitation involves using longer en-
coded pulses, enabling an extended pulse duration without causing a rise in amplitude
and tissue heating issues. It can increase the SNR notably without exceeding the safety
limits of medical ultrasound imaging devices. Besides, the decoding of the echoes mostly
mitigates the degradation in the axial resolution.

Coded excitation methods in ultrasound imaging can be improved with various
methods. The first way is exploring hybrid coding techniques with a combination of
different coding sequences. The convolution of Barker and Golay codes partially or fully
suppresses sidelobe levels, which increases SNR [65]. Chirp-modulated Golay codes,
that multiply the chirp signal with an orthogonal binary sequence, enhance the SNR sig-
nificantly [66]. Advanced signal processing algorithms can be effective in reconstructing
received echoes. A finite impulse response (FIR) filter reconstructs the echoes transmit-
ted with Barker codes by suppressing sidelobe energy [67]. Finally, longer Barker codes
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Figure 2.4: The Barker and Golay codes after matched filtering.

can be attained via Kronecker products for several applications, including functional ul-
trasound imaging.

In coded excitation, specially designed longer encoded pulses are used. They aim
to reach a high mainlobe-to-sidelobe ratio, albeit with a slightly worse axial resolution
than a single short pulse. Frequency and phase encoding techniques are widely applied
in coded excitation [68]. While frequency encoding linearly modulates the carrier sig-
nal frequency with a chirp [15], phase encoding is achieved via phase modulation of the
transmitted pulse either with linear or bi-phase modulation [14]. While the former ap-
plies linear modulation, the latter encodes the transmitted pulse with a 0-degree or 180-
degree phase shift, respectively represented by 1 and —1. The Golay and Barker codes
are the most common bi-phase modulation techniques, as they increase the SNR.

Barker Code: A Barker code results in a high mainlobe-to-sidelobe ratio after
matched filtering as shown in Fig. 2.4. It results in a 10logl0(K) gain for the SNR,
where K is the code length. However, existing Barker codes only have specific lengths
(2,3,4,5,7,11 and 13), limiting the total transmitted energy. On the other hand, the Kro-
necker product of two Barker codes is a way to generate longer codes [67], at the expense
of degraded autocorrelation. The inverse filter [67] and or spiking filter [68] can provide
a sidelobe suppression, but they decrease the SNR.

Golay Code: The Golay code consists of a pair of finite equal-length binary se-
quences. As shown in Fig. 2.4, the Golay pair is designed to cancel out the range side-
lobes, which can be observed in single transmit signals. The Golay complementary pairs
cancel the sidelobes of length K sequences A and B when A(k) * A(—k) + B(k) * B(—k) =
2K6(k), where the * denotes the convolution operator. Now, the SNR gain of the Go-
lay codes is given by 10log10(2K). Due to the two transmissions, the Golay pairs’ frame
rate is halved. To mitigate this, [69] proposed the transmission of two pairs of mutually
orthogonal Golay complementary sequences.

Random Code: While Barker and Golay codes use phase encoding, random codes
exploit both time and space encoding [18]. In previous methods, the transducers trans-
mit the same pulse for every element. In random codes, however, each transmitter
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Figure 2.5: The wavefield of simultaneously transmitting a single short pulse, 5-bit Barker, and 5-bit random
codes.

transmits different randomly encoded pulses, resulting in ultrasound waves with spa-
tiotemporal interference. This results in low pixel-to-pixel correlations and, hence, high-
resolution images. The wavefields of the single short pulse, 5-bit Barker codes, and 5-bit
random codes are shown in Fig. 2.5.

2.5. CHALLENGES IN VASCULAR ULTRASOUND IMAGING

The first challenge is that low image quality and artifacts in conventional ultrasound
imaging impact its accuracy and reliability [70, 71]. Accurately distinguishing between
blood and tissue in ultrasound images is challenging due to the complex acoustic in-
teractions between the ultrasound waves and heterogeneous tissue structures. Various
types of noise, such as speckle and artifacts like shadowing, reverberation, and mirror
images, distort the ultrasound images [71]. The interaction of ultrasound waves with
different tissue types results in artifacts and insufficient interpretation of the structures.
Especially in deep tissues, the limited resolution hinders the detection of immediate
changes in the body [72]. Model-based imaging results in advancements in image qual-
ity compared to conventional ultrasound imaging. However, the earlier mentioned is-
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sues are still observed due to the limited enhancement of commonly used model-based
imaging techniques such as the matched filter and least squares estimation. More ad-
vanced image reconstruction techniques are required to improve the image quality by
filtering out the noise and correcting the artifacts. Model-based imaging enables the en-
forcement of prior information related to the ultrasound images. However, the knowl-
edge of the characteristics of the prior information is still limited and requires further
understanding of the blood and tissue properties. Enforcing sparsity is helpful for the
representation of microbubbles [22]. On the other hand, sparsity might not be sufficient
to represent the blood flow characteristics if there is no microbubble injection. There-
fore, statistical priors can improve the ultrasound image reconstruction performance.

Another challenge is that model-based imaging is computationally inefficient com-
pared to delay-and-sum beamforming [73]. Model-based imaging requires advanced
and computationally expensive techniques to visualize real-time blood flow. Computa-
tional efficiency is significant, especially in real-time applications. Since DAS is compu-
tationally more efficient and does not require the pre-computation or storage of a large
matrix, it is generally preferred [53]. However, in compressive settings, when for instance
alower number of sensors or distorted unfocused transmissions are used [9, 11, 12], DAS
is not applicable, and model-based beamforming is essential. The fast Fourier transform
can be applied to reduce the computational complexity; however, it still provides a lim-
ited reduction of the computational cost [74]. But, as compression reduces the size of
the measurements, it can reduce the computational cost of the algorithms. Another way
is to exploit iterative algorithms instead of applying methods that require large inverses.

This thesis focuses on enhancing image quality (SNR and resolution) and reducing
artifacts to overcome model-based vascular ultrasound imaging challenges. In several
chapters, this work aims to develop image reconstruction algorithms to eliminate noise
and artifacts. The approach exploits prior information related to vascular images to im-
prove the SNR and image detail. By utilizing sparsity-based deterministic and statistical
priors, the thesis aims to improve the effectiveness of the image reconstruction process.
In Chapter 7, this work focuses on enhancements in ultrasound transmission to increase
the SNR, penetration depth, and resolution. More specifically, we focus on optimizing
the coded excitation scheme for model-based ultrasound imaging. We employ the min-
imization of the Cramér-Rao lower bound (CRB) over the unknown coding matrix to op-
timize the code. Due to the high computational cost of the resulting optimization prob-
lems, we also introduce a trace-constraint optimization problem based on the Fisher
information matrix (FIM).

While noticeable progress has been shown in these areas in the thesis, the computa-
tional challenges associated with model-based imaging are only addressed partially, and
they mostly remain beyond the scope of this thesis. These issues can be considered in
future research.

2.6. CONCLUSION

In this chapter, we have explored the fundamental principles of Doppler and model-
based vascular imaging, which offer significant advantages and flexibility over tradi-
tional methods in ultrasound imaging systems. Model-based imaging, with mathemat-
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ical models and regularization techniques, significantly enhances image quality (SNR,
resolution, and artifact suppression). The chapter also detailed model-based recon-
struction methods, including least squares estimation and regularization techniques,
focusing on sparsity-based regularization and probabilistic frameworks. On the other
hand, model-based techniques face substantial computational challenges, particularly
in real-time applications. They also partially suffer from the disadvantages of conven-
tional ultrasound imaging regarding image quality, but they are open to improvement
with the usage of prior information. The thesis aims to address these issues by devel-
oping advanced reconstruction algorithms and optimizing imaging systems to improve
SNR, resolution, and penetration depth. Future research must tackle the computational
inefficiencies inherent in model-based approaches, exploring new methods and tech-
nologies to overcome these limitations.



MMYV MODEL FOR JOINTLY SPARSE
VASCULAR ULTRASOUND IMAGING

Ultrasound imaging of the vasculature has major significance for the detection of cardio-
vascular diseases and cancer. However, limited spatial resolution or long acquisition times
of existing techniques limit the visualization of the microvascular structures. Enforcing
sparsity in the underlying vasculature as well as exploiting statistical independence be-
tween voxels have become prominent for fast super-resolution imaging. However, such a
statistical independence may not be valid for all voxels and may hence lead to a distorted
signal model. Here we present an image reconstruction method that exploits the sparsity
of the vasculature data without distorting the original signal model. We employ a mul-
tiple measurement vector (MMV) model to enforce the joint sparsity over the images at
different time instants. To reduce the computational complexity of obtaining the solution,
the ¢1-SVD method is applied to the MMV model. We demonstrate that our method im-
proves spatial resolution and provides a clear separation between blood vessels. Although
our method is slightly slower than existing approaches, it outperforms them in terms of
image reconstruction quality.

Part of this chapter is published as: D. Dogan, P. Kruizinga, J.G. Bosch, G. Leus, Multiple Measurement Vector
Model for Sparsity-Based Vascular Ultrasound Imaging (2021), [21].
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3.1. INTRODUCTION

Ultrasound imaging is widely used in medicine as it is a non-invasive and cost-effective
imaging technique [9]. Visualization of the vasculature has major significance for the
detection of cardiovascular diseases and cancer. Cancer treatments cause structural
changes in the microvascular structures, and hence exposing the microvasculature us-
ing ultrasound imaging can provide fast treatment [75]. However, fast detection of the
hemodynamic changes over the microvasculature is prevented by spatial resolution lim-
itations [8]. Therefore, there is a need for fast imaging methods that improve the spatial
resolution of identifying the microvasculature structures.

Recently, sparse representations of signals [76, 77] have gained popularity in areas
such as radar [78], magnetic resonance imaging (MRI) [79], and ultrasound imaging [4].
The specific regularization to solve the ultrasound imaging problem is the sparse struc-
ture of the vascular network [8]. A signal is sparse if it can be represented by a vector with
most coefficients zero, in an appropriate transform domain [80].

Here, we focus on the sparsity-based ultrasound hemodynamic imaging problem
presented in [7, 8]. A method named SUSHI has been developed to improve the spa-
tial resolution in contrast-enhanced ultrasound imaging. It is a fast method exploiting
sparsity in the correlation domain of the underlying vasculature structure [6, 5]. This
method assumes that the temporal fluctuations in volume cells that belong to different
vessels are statistically independent [8].

In this chapter, we propose an image reconstruction method named MMV FISTA that
directly uses the sparse structure of the vasculature instead of enforcing sparsity in the
correlation domain. Although assuming statistical independence between the flows in
different vessels is computationally advantageous, this assumption ignores that blood
cells from the same vessel are correlated to each other. Here we aim to avoid such a
statistical independence assumption. Since the vasculature at different time instants
does not change considerably, we, on the other hand, exploit the temporal correlation
of the frames to improve the spatial resolution. For this, we employ a multiple measure-
ment vector (MMV) model and enforce the joint sparsity of the vasculature in different
frames [81]. Note that such a joint sparsity problem can be considered as a group lasso
problem, with ¢;-relaxation [82]. Furthermore, the number of measurements can be
decreased using the ¢;-SVD method thereby reducing the computational complexity of
solving the MMV problem [61].

The remainder of this chapter is organized as follows. In the next section, we define
the signal model for the ultrasound imaging problem of the vasculature. In Section 3.3,
we present the inverse problem by incorporating the available joint sparsity information.
In Section 3.4, we express the steps of the optimization method that solves the inverse
problem. Then, we comparatively evaluate the performance of the proposed method
with the state-of-the-art. In the final section, we discuss the results and conclude this
chapter.
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3.2. FORWARD MODEL

In this section, we introduce the problem and relate our proposed approach to an ex-
isting method from the literature. In ultrasound imaging, we first construct the image
formation model and represent this in the form of a matrix-vector multiplication. For
simplicity, we consider an imaging model for a system with a single transmitter that
transmits a series of pulses. However, the model can easily be extended to multiple
transmitters. At every period At a pulse a(?) is sent, where ¢ is assumed to be contin-
uous time and the peak of the pulse is assumed to be located at ¢ = 0. At sensor j and
pulse period m, the sensor output is modeled as

z2(j,t,m)=) aj(z,x, 1Y f(z,x,v)exp/ "Mt
zZ,X v
(3.1
=Y aj(z,x,1)s(z,x,m),

z2,X
where f(z,x,v) is the total amount of scattering of all blood cells in a high resolution
volume cell centered at position (z, x) and radial velocity v. Note that a;(z, x, 1) = a(t -
Tzx,j)» Where Ty j is the delay related to the distance from the transmitter to the receiver
Jj through the pixel at (z, x). Lastly, s(z, x, m) is the time-varying scattering signal related
to the position (z, x).

In commercial ultrasound imaging, users generally only have access to the beam-
formed data. Applying delay-and-sum (DAS) beamforming on z(j, t, m) from (3.1) ata
low resolution, the output of the DAS beamformer for the uth low-resolution pixel at
position (z,, x,,) and pulse period m is given by

V(@ X, M) =Y 2(J, T2 00, j> )
J

:ZZ“(TZu,xu,j _szxvj)s(z’ X, m) (32)
j Z,X

=Y hzyx,(2,X)5(2, x,m),
Z,X

where h, x, is assumed to be the point spread function (PSF) of the imaging system.
Note that instead of a DAS, a matched filter can also be used as beamformer for the above
formulation. In literature, several works assume h;, x, as a shift-invariant point spread
function [83, 84], but this assumption generally does not hold for realistic systems.

After obtaining y(z,,x,, m) in (3.2), several preprocessing steps are performed on
y(zy, xy, m) prior to performing sparse reconstruction. First, a singular value decompo-
sition (SVD) is applied to separate the tissue and blood flow subspaces, and we obtain the
blood-related part of y(z,, x,, m) [85]. Sparsity will only be enforced over the blood flow
subspace. Subsequent to SVD filtering, the phase of the received signal is manipulated
to separate different flows (in terms of direction and/or speed) with Doppler processing.
This separation is expected to provide additional anatomical information and a sparser
structure compared to the original signal [8]. A bank of B bandpass filters is applied to
y(zy, Xy, m) to obtain different videos with different velocities:

VP xum) =Y hzy i, (2,05P (2, x,m). 3.3)

Z,X
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For B = 2, the blood flow is separated into a positive and negative flow, which corre-
sponds to positive and negative frequencies in the Doppler domain. Note that this filter-
bank is not crucial and we will not use it for all our experiments. To simplify the presen-
tation, in the remainder of this chapter, we will drop the superscript b but keep in mind
that the presented models and methods apply to any of the frequency bands.

Some approaches such as SUSHI assume that the signal fluctuations in volume cells
that belong to different blood vessels are statistically independent [8, 7]. With this
assumption, the autocorrelation of the beamformed and preprocessed measurements
y(zy, Xy, m) in (3.3) can be approximated as

1y (2w xu) = YNy (zu Xy MIP = Y 1Ry, (2,01 15(2, %), (3.4)
m Z,X

where 74(z,Xx) =Y, |5(z, x, m)|*. In (3.4), the cross-correlation terms are ignored as the
signals from different vessels are assumed uncorrelated. Signals from pixels that are
in the same vessel are not uncorrelated, but for those signals, the cross terms are still
dropped since they are not deemed important for obtaining super-resolution imaging.
Notice how the approximation results in a squared absolute-valued PSE which is nar-
rower than the original PSF and therefore provides improved separation between ves-
sels [8]. Although this approach has some clear advantages, we want to investigate some
techniques that do not distort the original signal model of (3.3). Therefore, we propose
not to solve the problem in the correlation domain and to directly work with the original
signal model in (3.3).

While (3.4) is based on a single measurement vector (SMV) model in the correlation
domain [8], we employ an MMV model based on (3.3) which exploits different pulse
periods in synergy [81, 61]. Such an MMV model is obtained by stacking the y(z,, x,,, m)
and s(z, x, m) values respectively into a space-time matrix Y and S, resulting in the model

Y=HS+N, (3.5)

where the H matrix contains h_, x,(z;,x;), which is sample of h;, x,(z, x) for pixel [ =
1,...,L. Here Y = [y;...ym] and S = [s;...s)/] represent a horizontal concatenation of
respectively the vectorized measurements y,, and unknown images s, related to the
mth pulse period. Note that s,, and y,, include vertically concatenated elements of
s(zy, x;, m), which corresponds to the /th pixel of s(z, x, m), and y(z,, x,,, m) for a partic-
ular m, respectively. Finally, N is similarly defined as Y and represents additional noise
that is picked up at the receiving elements.

3.3. INVERSE PROBLEM

In the inverse problem, the goal is to recover the unknown images, S, from their noisy
and distorted measurements, Y. Here, the image data is reconstructed by combining in-
formation from the measurements with some additional prior (statistical or structural)
knowledge about the unknown image data. The sparsity-based MMV image reconstruc-
tion problem is formulated as

1
min EHY—HSH%MHSHZ,I (3.6)
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where the ¢, ;-norm is the sparse regularizer enforcing the joint sparsity of the image
over different time instants [61]. In the matrix S, the sparsity is enforced only in the spa-
tial domain as the signal is not sparse over the time dimension. Since the vasculature at
different time instants is similar, we expect that all columns have the same sparsity pat-
tern. As a result, we exploit the temporal correlation to obtain a better spatial resolution.
This is referred to as joint (or group) sparsity in the literature [36], and it can be enforced
via the 5 ;-norm. We first compute the £>-norm of all rows of S. Then, we construct
the s¢2 vector, which stacks the £,-norms of the rows of S. Finally, [|S||2,; = ||S([2) [l; is
computed [61].

The main disadvantage of the MMV model is computational complexity. To reduce
this cost, the number of measurements is decreased via the SVD, which relies on the fact
that the set of vectors {ym}ﬁ‘n’t1 lies in a P-dimensional subspace with P < M. To find this
subspace, we first take the SVD of Y resulting in Y = ULV, Then a reduced matrix which
contains most of the signal power is obtained as Y =ULDp = YVDp where Dp = [Ip 0'.
Similary, we multiply S and N by these matrices and obtain § = SVDp and N = NVDp.
Now, instead of the large problem in (3.6) we solve the following problem

R a
min EIIHS—YIIFMIISIIz,l, (3.7

whose solution can be obtained faster. This approach is known at the ¢;-SVD method.
If the model does not contain any noise and the signal subspace has exactly order P, the
solutions of (3.6) and (3.7) are the same, i.e. S =S. In case of noise, the approach in
(3.7) also has a denoising effect. Finally, note that the SVD was already adopted in the
preprocessing stage and hence the SVD required to formulate (3.7) does not introduce
any additional complexity.

3.4. IMAGE RECONSTRUCTION METHOD

The optimization problem (3.7) can now be solved using any off-the-shelf solvers for
MMV inverse problems [87]. M-FOCUSS and standard sparse Bayesian learning (SBL)
include a large inverse and thus are computationally complex for large-scale prob-
lems [88, 89]. On the other hand, inverse-free SBL [90], ADMM [91] and FISTA [87] do
not include a large inverse and hence allow for a fast solution. However, for a fair com-
parison with SUSHI, which solves the problem using FISTA, we apply the MMV version
of FISTA whose updating steps for solving (3.7) are given in Algorithm 1 [92]. Finally,
note that S is easily obtained from § using a simple matrix product. In MMV FISTA, the
computational complexity in each iteration is & (L2P) where s(z;, x;, m) has L pixels for
the mth frame; however, SUSHI has a complexity of & (L3).

3.5. NUMERICAL RESULTS

In this section, we comparatively evaluate the performance of the developed method
with SUSHI for two scenarios [8].
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Algorithm 1: MMV FISTA

Output: S: vectorized unknown images
Input: Y: vectorized measurements, H: sensing matrix, E: number of iterations
initialize A >0, Ly = ||[H'H]|, ' =1,8° =27, e=1
while e < E do
calculate Q¢ = Z¢ — ﬁ H"HZ? -H"Y)

compute S 1- W)* where Qfa' b) is (a, b)th element of Q¢

e — e
(a,b) ~ X(a,b)
matrix, Q(, is the ath row of Q matrix and (x)* = max(x, 0).

update "1 = 0.5(1 + /1 +4(£°)2)

update Z¢+! = §¢ + L1 (§¢ —§e-1)

re+l

end
s=SEpIvT

3.5.1. RESULTS WITH SHIFT-INVARIANT SENSING MATRIX

In this section, we use a shift-invariant H matrix in (3.5) although the shift-invariancy
assumption for the sensing matrix generally does not hold. Note that the sensing ma-
trix for the SUSHI based on the model in (3.4) is equal to the element-wise square of
the H matrix. The shift-invariant matrix-vector multiplication in (3.5) corresponds to a
convolution with the point spread function (PSF) in the spatial domain, and hence to
an element-wise multiplication in the spatial frequency domain. Therefore, both SUSHI
and our method are implemented efficiently in the frequency domain. Here, we use the
PSF from [8] to compare the different algorithms.

For the first simulation, we used 101 frames containing two parallel blood ves-
sels where the blood flows in the same direction, represented by s(z;, x;, m), for m =
1,2,...,101. The high-resolution frames are of size 1024 x 1024 and their average abso-
lute value is shown in Fig. 3.1a. The background is assumed to have an intensity of 1000
whereas the blood flow has an intensity of 1000 + 30 x .4#(0,1). Here, the low-resolution
beamformed images y(z,, x,, m), are of size 128 x 128. White Gaussian noise with 20 dB
SNR is added to the measurements. After obtaining y(z,, x,, m), which is also displayed
in Fig. 3.1a, the tissue is separated from the blood flow by using SVD filtering and keeping
only the components related to the blood flow of y(z,, x,,, m). Since the flow direction is
the same, Doppler processing is not considered here.

For SUSHI, the correlation image ry(z,, x,) consists of a single frame as shown in
Fig. 3.1b. The temporal mean of the tissue separated image y(z,, x,, m) is also given
in Fig. 3.1c. To reduce the number of frames to a single frame in the MMV model, the
£1-SVD is applied with P = 1. Since we only have a simple image and a well-conditioned
sensing matrix of the PSE a single frame is sufficient. Note though that the ¢;-SVD may
require more frames for complex structures such as actual vasculature. We further se-
lect A =0.51in (3.7) for 20 dB SNR. The reconstructions with SUSHI and MMV FISTA are
shown in Fig. 3.1b and 3.1c, respectively. Here, we plot the reconstructed r(z;, x;) in
(3.4) for SUSHI and the temporal mean of the reconstructed s(z;, x;, m) in (3.3) for the
MMV FISTA. Although their image reconstruction times are the same for this simula-
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Figure 3.1: (a) The average absolute value of original and beamformed frames, (b) tissue separated correlation
image of measurements and reconstructed correlation image with SUSHI, and (c) temporal mean of tissue
separated measurements and reconstructed image with MMV FISTA
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tion, the MMV FISTA algorithm outperforms SUSHI. Fig. 3.1b shows that SUSHI could
not separate the blood vessels as they are very close to each other and their flow is cor-
related.

For the second simulation, we use the same setting but this time the synthetic flow
moves downward in the right vessel and upward in the left one. We consider a simula-
tion with and without Doppler processing to separate positive and negative flow. Both
algorithms perform similarly for the opposing flow image (without Doppler processing)
and the positive flow image (with Doppler processing) in Fig 3.2. Since the flow in the
different vessels is uncorrelated now, SUSHI (with and without Doppler processing) can
separate the vessels.

3.5.2. RESULTS WITH SENSING MATRIX OBTAINED FROM K- WAVE

In this section, instead of using a simulated shift-invariant H matrix, the image recon-
struction is performed with a realistic sensing matrix. Here, we assume matched filter
beamforming for Z = AS + W, where X corresponds to the sensor measurements of the
ultrasound imaging system (3.1). Using the matched filter A, we can obtain the system
in (3.2), Y= AHX = AMAS + N = HS + N, with H = AHA, which is not a shift-invariant ma-
trix. Here, A is constructed using the k-wave toolbox in MATLAB for an imaging system
with 128 transmitters and receivers [93] [10]. Furthermore, the A matrix is constructed
in the frequency domain instead of the time domain. The advantage of a frequency-
domain implementation is that number of frequency samples is smaller than the num-
ber of time samples, and it provides fast beamforming [94]. Since the sensing matrix is
not shift-invariant, a fast multiplication with H cannot be performed.

For these simulations, we use the same setting as in the second simulation of Section
3.5.1 with opposing flow. However, both s(z;, x;, m) and y(zy, x,,, m) in Fig. 3.3a are now
of size 101 x 101. Therefore, we do not solve a super-resolution problem but a simple
image reconstruction problem. Note that, even though H is a square matrix, the system
is still highly ill-posed and requires regularization. The tissue is separated from the blood
flow by using SVD filtering to obtain the blood-related part of y(z,, x,,, m) butno Doppler
processing is considered here.

The tissue separated correlation image ry(zy, x,) and the SUSHI reconstruction
rs(z;, x;) are shown in Fig. 3.3b. The number of frames are reduced to 1, 5 and 10 us-
ing the ¢1-SVD method for the reconstructions with MMV FISTA. Finally, the full set of
frames are used. The temporal mean of the tissue separated images y(z,, x,,, m) and
recovered images s(zj, x;, m) are displayed in Fig. 3.3c for several cases. When a sin-
gle frame is used, the image reconstruction performance of SUSHI and MMV FISTA are
similar. Still, the bottom part of the image is more visible with MMV FISTA. Since SUSHI
squares the sensing matrix and the reconstructed image in the forward model, high-
intensity parts become stronger, and low-intensity parts weaken. The image reconstruc-
tion performance of our method improves with an increasing number of frames. Each
iteration of SUSHI and MMV FISTA with a single frame takes 0.04 seconds. Each itera-
tion of MMV FISTA with 5, 10, and all frames takes 0.05, 0.06, and 0.2 seconds, respec-
tively. Therefore, increasing the number of frames does not cause a huge increase in the
computational time of the MMV FISTA algorithm.
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Figure 3.2: (a),(b) Tissue separated and reconstructed images with SUSHI, and (c), (d) temporal mean of tissue
separated and reconstructed images with MMV FISTA
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images with MMV FISTA when 101 frames are reduced to 1, 5 and 10 frames, and all frames are used
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3.6. CONCLUSION AND DISCUSSION

In this chapter, we have proposed an image reconstruction method that directly exploits
the joint sparse structure of the vasculature. The ¢;-SVD algorithm is performed over the
measurements to reduce the computational complexity. We evaluated the performance
of our method within two different simulation settings. In the first set of experiments, we
demonstrated that our method improves spatial resolution and provides a clear separa-
tion between very close vessels. Our method seems slightly slower than SUSHI for the
second set of more realistic experiments, but its image reconstruction quality is better
under appropriate settings.

We first exploited the joint sparse structure with deterministic prior. We aim to con-
sider a statistical prior in the next section, which might be more suitable for the ultra-
sound imaging data. As the structure of the brain vasculature may include additional
properties in addition to sparsity, the statistical priors can be more suitable for the tar-
get problem. The focus of the following sections will be the development of ultrasound
image reconstruction algorithms with statistical priors such as sparse Bayesian learning
and its variants.







SPARSE ALGORITHMS FOR
MODEL-BASED COMPRESSIVE
VASCULAR ULTRASOUND IMAGING

Recently, there has been a growing focus on reducing the amount of measured sensor
data in the ultrasound imaging field while maintaining the image quality. Compres-
sive sensing allows for a combination of signal compression with sensing to reduce the
hardware complexity in applications such as three-dimensional ultrasound imaging.
Unlike the classical delay-and-sum (DAS) beamforming approach, model-based image
reconstruction techniques, such as matched filtering, are used to solve such problems.
Given the number of measurements is often smaller than the number of unknowns, ad-
vanced reconstruction methods are required to solve these ill-conditioned problems. MMV
FISTA, the deterministic image reconstruction method proposed in the previous chapter,
can be useful for solving such problems using the vasculature’s jointly sparse and con-
nected structure. This chapter presents a statistical alternative method: sparse Bayesian
learning (SBL) with fixed-point iterations. While SBL is well-established in the litera-
ture, its application to the ultrasound imaging domain without microbubbles is novel.
In a two-dimensional compressive vascular ultrasound imaging problem, both SBL and
MMV FISTA methods outperform the matched filter regarding signal-to-noise ratio (SNR).
While MMV FISTA often has lower computational complexity than SBL, it requires a time-
consuming manual parameter tuning procedure. Besides, the image reconstruction qual-
ity with SBL is slightly higher than MMV FISTA. However, the improvements obtained with
both methods on real data are limited to SNR improvements rather than revealing fine
vascular details. Therefore, further advancements are required to visualize the detailed
structure of the vasculature.

39
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4.1. INTRODUCTION

The compression of the measured sensor data in ultrasound imaging has been studied
recently. In minimally invasive surgery, where the number of data cables is limited due
to the space, data compression can have a potential [95]. Transferring all data from a
dense imaging array is challenging for high-frame-rate, high-quality imaging. Instead
of using a Nyquist-sampled sensor array, data compression during sensing can be an
alternative. Hence, the data can be reduced without complex hardware compressing the
array’s signals.

Data compression can be useful in three-dimensional (3D) ultrasound, a powerful
imaging tool for many biomedical diagnostic applications [9, 10]. However, it does not
have a vast application area as conventional 3D ultrasound requires high hardware com-
plexity and two-dimensional (2D) arrays that consist of thousands of sensors. In pre-
vious studies [9, 10], a compressive sensing-based method is proposed using a single
channel sensor for 3D imaging. A spatially coded acoustic field that allows detailed 3D
reconstructions is generated by placing an aberration mask upon the sensor. The com-
pression is combined with sensing and realized by coding the ultrasound signals while
they are transmitted or received by an acoustic transducer [9, 10]. As this approach re-
quired the rotation of the sensor to attain a sufficient number of measurements for the
solution of the imaging problem, a more practical approach with a higher number of
sensors is proposed [11, 12].

In these compressive ultrasound imaging systems, the number of measurements is
often smaller than the number of unknowns. The matched filter or least-squares QR
(LSQR) approaches might not be sufficient to capture inherent prior information related
to ultrasound images. Therefore, advanced reconstruction methods that exploit the ul-
trasound image properties can be useful to solve this ill-conditioned problem. Sparse
representations of signals [76, 77] are widely used in the areas such as radar [78], mag-
netic resonance imaging (MRI) [79], spectral imaging [96, 97] and ultrasound imaging [4,
53]. Specifically, the sparse structure of the vascular network is proposed as the specific
regularization to solve the ultrasound imaging problem, which can be included as a sta-
tistical prior on the image [8].

A deterministic joint-sparsity-based approach to this problem was presented in
Chapter 3. In this chapter, on the other hand, we develop methods under a probabilistic
framework, focusing on the conventional sparse Bayesian learning (SBL) algorithm with
fixed-point iterations. The classical SBL algorithm assumes that unknown data elements
are independent random variables with zero-mean Gaussian distribution. Such a statis-
tical approach is known to enforce the sparsity in the literature [63]. This Gaussian prior
not only captures sparsity but also offers greater flexibility to encode prior knowledge
about the data compared to deterministic approaches. The variance of the Gaussian
data elements (e.g., pixel intensities in ultrasound imaging) is treated as a hyperparam-
eter learned from the observations by maximizing the likelihood function, usually using
the expectation-maximization (EM) algorithm [98]. Alternatively, the fixed-point itera-
tions method is used to solve the likelihood problem instead of the EM algorithm for its
speed. The fixed point iterations method is an empirical strategy, but it provides a faster
convergence rate than EM algorithm [63, 64].
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The novel contribution of this chapter is to introduce the usage of a statistical ap-
proach for a compressive vascular ultrasound imaging problem and compare its perfor-
mance with the previously proposed algorithms. Although a similar application of the
SBL can be found in the literature of super-resolution ultrasound imaging with contrast-
enhanced microbubbles [22], we are the first to propose the presented methods for com-
pressive ultrasound imaging scenario by enforcing the prior information regarding the
tissue-separated vasculature data. While microbubbles present a sparse structure, the
prior information regarding the vasculature data is still available to explore. The SBL
algorithm with fixed-point iterations is presented to enforce the joint sparsity of the vas-
cular data at different time instants.

We evaluate the performance of this statistical approach in comparison to the
matched filter and MMV FISTA algorithms across various scenarios [63]. Although our
method achieves improvements in signal-to-noise ratio (SNR), further work is required
to visualize fine vascular details, as the improvements in real data are limited to SNR
enhancements rather than revealing detailed structures.

The remainder of this chapter is organized as follows. In the next section, we define
the signal model for the compressive vascular ultrasound imaging problem. Section 4.3
offers the SBL method that solves the presented problem. Then, we analyze the perfor-
mance of the proposed methods in Section 4.4, followed by a discussion and conclusion
in the final section.

4.2. IMAGE FORMATION MODEL

For the proposed compressive ultrasound imaging system, we first construct the image
formation model and represent this in the form of a matrix-vector multiplication. For
this, we consider a plane-wave imaging model for a system with multiple transmitters.
The proposed setup consists of I elements in a linear transducer array. A plane-wave
transmit scheme was employed to acquire signals. All elements are excited jointly with
appropriate delays (e.g., when a plane-wave transmission under a non-zero angle is con-
sidered) and received signals from all elements are recorded.

To implement the compressive ultrasound imaging system, the transducer is divided
into R equally sized groups of elements. The measurement of each group is constructed
by summing the received signals of the individual elements within that group. This sum-
mation is not a subsampling strategy but an alternative method to reduce the number of
measurements without losing valuable information from all elements.

A similar group summation has been previously implemented in the emulation of
compressive ultrasound imaging with coded aperture [11, 12]. However, the scenario
presented in this chapter differs from the emulation of coded aperture, as we do not
implement any delays in group summation. We take the group summation of the non-
neighboring receivers instead of the neighboring receivers. We have chosen this sim-
ple scenario to measure the performance of the proposed algorithm. Note that various
types of realistic compressions can be attained in ultrasound imaging systems and the
proposed imaging reconstruction method is applicable to both compressive and non-
compressive scenarios.

In the proposed compressive ultrasound imaging system, at every period At, a pulse
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a(t) is sent from each transmitter, where ¢ is assumed to be continuous time, and the
pulse peak is assumed to be located at ¢t = 0. At sensor r = 1,..., R and the pulse period
m=1,..., M, the sensor output is modeled as

z(r,t,m) :;;}; Cr,jaj i (z,x,0)8(z,x,m) + n(r, t, m), @.1)
where s(z, x, m) is the time-varying scattering signal at position (z, x) and n(r, t, m) corre-
sponds to the white Gaussian noise for the measurement z(r, ¢, m). Note that a; ; (z, x, f)
= a(t —T,y,j,i), where 7, ;; is the sum of the pulse delay adopted at the transmitter i
and the delay related to the distance from the transmitter i to the receiver j through the
pixel at (z,x). The binary coefficient ¢, ; € {0,1} indicates whether the received signal
from receiver j is included in the rth group summation. If the received signal j has con-
tribution to the rth group, then ¢;,; = 1; otherwise ¢, ; = 0. In other words, it encodes the
predefined grouping pattern of the receivers in the compressive setup. In the remainder
of this chapter, we work in the frequency domain instead of the time domain since it en-
ables faster computation. We denote the sampled continuous-time Fourier transform of
z(r,t,m) and a; ;(z, x, t) by z(r,w, m) and a;,;(z, x, w), respectively.
Then, we employ an MMV model that exploits different pulse periods in synergy [81,
61]. Such an MMV model is obtained by stacking the z(r,w, m) and s(z, x, m) values re-
spectively into a measurement matrix Z and space-time matrix S, resulting in the model

Z=AS+N, (4.2)
where the matrix
aj; ... app i1 4,z X, 01)
A=c| i L= :
ar ... ar Yi_,ajiz,x1,0F)

and Z, S and N are defined similar to the equation in (2.3). To briefly recap, L represents
the number of pixels, F is the number of frequency samples, and M is the number of
frames in the ultrasound imaging video. Z = [z;...z)/] and S = [s;...s)] represent a hori-
zontal concatenation of respectively the vectorized measurements z,,, € CXF and vector-
ized unknown images s,, € C’ related to the mth pulse period. Here, z,, and s, include
vertically concatenated elements of z(r,w, m) and s(z, x, m) for a particular m. Now we
introduce C € REF*IF which is a matrix that consists of 1s and 0s to select the candidate
elements for receiver group summation. Then, in this chapter, A € CEF*L is defined as
the compressive measurement matrix. From now on, the total number of measurements
is given by RF = N for simplicity. Finally, N is similarly defined as Z and represents addi-
tional Gaussian noise. The model is then generalized to include multiple measurements
involving different steering angles and differently coded grouping combinations similar
to the case in (2.5).

4.3. IMAGE RECONSTRUCTION METHOD

The optimization problem (4.2) can be solved using standard solvers for MMV inverse
problems. FISTA for MMV problems [87] is presented in the previous section, and now
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SBL [89] is proposed to solve the vascular ultrasound imaging problem. While SBL is
slower than MMV FISTA due to the large inverse in each iteration, it does not require
manual parameter optimization, such as for A in (3.6). The conventional SBL algorithm
is based on the expectation-maximization (EM) update rule, which converges slower.
However, using fixed-point (FP) iterations for SBL results in faster convergence [39, 63].

In this section, we apply Bayesian inference to obtain the posterior distribution of
the complex density magnitudes of the pixels from the likelihood and prior model [63].
The conditional probability density function (PDF) for Z given the sources S is complex
Gaussian with noise variance o2

exp (- % 1Z—AS|[%)

g2y =
pZIS;0°) = roZ) N : (4.3)

In the classical SBL model, the complex pixel density magnitudes s(z;, x;, m) are as-
sumed independent across different frames and across each other as

Pm(s(zy, x1, m),y) = €N (0,y). (4.4)
Using Bayes' rule conditioned on I and o2, the posterior distribution of the sources is
pSIZT,0%) = C.N (s, Zs), 4.5)

where the mean and covariance are given by

us =TANz 17, 4.6)
2,=T-TA"Z !AT. 4.7)

The data covariance matrix is
3, =01y +ATA". (4.8)

Using MAP estimation, we obtain $M4” = 5, where the diagonal of T controls the row
sparsity of SMAP,
The hyperparameters I, o are estimated by type-II maximum likelihood. The prob-

ability density function is
) o~ tZ"z;'2)
ZI,0°) = ————— 4.9
Pl ) (rN detz,)M 4.9)

and its log-likelihood function is
logp(Z;T,0%) x —tr(ZE;'Z) — MlogdetZ,. (4.10)
The hyperparameters I and 62 are estimated as
([,6%) = argmax;._ 52 log p(Z;T,6%). (4.11)

After iteratively estimating I, 62, and ) 1§ is obtained from (4.6).
The key step is the estimation of I, which controls the sparsity of S. The derivative of
(4.10) with respect to y; is

dlogp(Z;T,d?)

5, =11Z"=; |13 - Mal'z;a;. 4.12)
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Algorithm 2: SBL with fixed-point iterations method

Output: S: unknown data
Initialize 0% = 0.1, diag(T') = 1, €min = 0.001, Epax = 500
while e < E;;,; and €,,i, < € do
e=e+1,[%d =new
calculate =, = oI + ATAH
update y;’e”’ with (4.14)
I' =diag(yi,....y1)
J ={leN|K largest peaks in T} = {Iy,... Ix}
Ay =(ay,...,ay)
update (02)"¢¥ with (4.15)
e = [|diagT"¢% —T°!9)||, /|| diag(T°'¥)||,
end
S=rAHz 17

Setting this equal to zero results in
1Z"z a1 = Mal'=;a;. (4.13)

This leads to the fixed-point update rule for y;:

Yold H 1
LIzl

?ew = (4.14)
Hy-1
Va; ' Zz a
: new _ ,.old
To ensure convergence, we require Yl = Yl .

For fast convergence, a good estimate of the noise variance is crucial. We assume
that the number of non-zero elements K is approximately known, and a rough guess for
the number of sources suffices. The update rule for o2 follows [63]:

ol = tr(S; —A A'S,)

=62 (4.15)
N-K

The overall SBL with fixed-point iterations is summarized in Algorithm 2.

4.4, NUMERICAL RESULTS

In this section, we comparatively evaluate the performance of the matched filter, MMV
FISTA and SBL performance with the fixed-point iterations method for various scenar-
ios. We use a linear plane-wave imaging system for two-dimensional ultrasound image
reconstruction. The original ultrasound imaging system comprises 128 transmitters and
receivers and D = 20 steering angles. This system’s DAS/matched filter result is obtained
as reference reconstruction data for the comparisons. We first use a compressive sce-
nario with I = 128 elements in a linear array and R = 16 grouped measurements to im-
plement the other algorithms. The number of steering angles is kept as D = 20. In the
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second scenario, we consider a case without grouping the receiver measurements where
I = R =128 but reducing the number of steering angles to D = 2.

We generate a model-based A matrix to image z x x = 384 x 512 pixels in an imaging
area of 19.2 mm by 25.6 mm with inter-pixel distances dz = dx = 5 x 10~°. To reduce the
size of A matrix for efficient computation, only the elements of A matrix that corresponds
to the imaging region of interest (ROI) of z x x = 254 x 129 pixels with inter-pixel distances
of dz=5x107% and dx = 10~* are considered. Here, the ROI covers 12.7 mm by 12.9 mm
area. Lastly, the transmit center frequency of the probe is f = 15.625 x 10° for a Gaussian
pulse.

We construct A matrix with k-Wave Toolbox. We first simulate the one-way wave-
fields for all the pixels in the ROI. For this, we first assume a single source in the center
of the linear array and a flat plate of sensors corresponding to the simulation grid to cal-
culate the one-way impulse response for each pixel location [99]. After computing the
one-way wavefields for the element in the center of the transducer, we shift the simu-
lation grid 128 times to the left and right to imitate the behavior of the transmitters at
all locations. Since convolution in the time domain corresponds to element-wise multi-
plication in the frequency domain, we compute a;,;(z;, X;, w ¢) by multiplying two one-
way impulse responses element-wise in the frequency domain for I transmitters and
receivers, F frequencies, and L pixels. The contribution of all transmitters to each pixel
is summed as 2{21 aj,i(z, x;,wy¢), as given in (4.2). After concatenating over F frequen-
cies, we obtain a; ; for each receiver j and pixel /. Thereafter, we repeat it for all receivers
and pixels and multiply the resulting matrix by C and create the final A matrix in (4.2).

The proposed RF data is measured using a 128 elements linear array transducer (L7-
4) and a Vantage 256 system (Verasonics). The system was deployed in a mouse brain,
and raw signals correspond to a typical region of interest for vasculature imaging. We
first obtain RF measurements for 128 elements in the emulated linear array. The num-
ber of frames in the vasculature video is M = 197. Note that the measurements are taken
at 20 different steering angles between [—7.5,7.5]° to provide a sufficient variety of mea-
surements.

Before enforcing the sparsity with the proposed algorithms, we separate the tissue
from the vasculature data using the procedure in section 2.2. Since SVD filtering is a
linear operation, we initially apply SVD filtering on the RF data and separate the first
M; = 60 components, which correspond to the tissue. M; is determined empirically by
observing the matched filter reconstructions. To enforce the joint sparsity on the vascu-
lature data, applying SVD filtering on RF data is necessary. Otherwise, the vasculature
with the tissue cannot be considered as sparse. Then, the unknown vasculature image
is reconstructed with MMV FISTA and SBL algorithms in addition to matched filter re-
sults. 1 = 15 x 108 is set for MMV FISTA where manual tuning of A takes significant time.
In contrast, SBL does not require parameter optimization. After 10-15 iterations, nei-
ther MMV FISTA nor SBL significantly improved image quality, and hence the results are
taken from the 10th iteration.

To form the final image for visualization, the reconstructed image data is cropped
and its size is reduced to 171 x 99, which covers an area of 8.55 mm by 9.9 mm. As a
post-processing step, the reconstructed images are upsampled with new pixel distances
of dz = dx =2.5x107°. While upsampling, the Tukey window with fraction r = 0.5 elim-
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Figure 4.1: Comparison of ME MMV FISTA and SBL for mouse brain with 16 receivers with 20 steering angles
when we image them in the same dynamic range

inates the aliasing effects.

Delay-and-sum (DAS) beamformer or matched filter reconstructions with complete
measurement set are shown in Fig. 4.1a. Since no ground truth is available, we consider
these reconstructions as reference images from the non-compressive setting. We then
evaluate the power Doppler image (PDI) quality of the reconstructions as shown in Fig.
4.1 and 4.2. In Fig. 4.1, the dynamic range is selected equally for all of the algorithms, but
in Fig. 4.2, the dynamic range is selected to observe the vasculature with all algorithms in
the best possible way. Since no ground truth exists, qualitative visual inspection is used
for evaluation. In Fig. 4.1, MMV FISTA and SBL algorithms outperform the matched filter
visually for the same dynamic range. While the matched filter has a low contrast between
the vasculature and background reconstruction, the SNR and contrast is significantly
improved via MMV FISTA and SBL algorithms. The sharpest image reconstruction is
attained via SBL algorithm though it exhibits a slight grainy structure. Note also that,
MMV FISTA requires manual parameter tuning of A while SBL does not, making SBL
more practical.

Then, in Fig. 4.2, the average power Doppler of an area outside the vascular region
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Figure 4.2: Comparison of ME MMV FISTA and SBL for random scatterers with 16 receivers with 20 steering
angles when we image them in the suitable dynamic range

was used as the minimum value for the dynamic range in each method for the best vi-
sualization of each method. Here, MMV FISTA and SBL provide a limited improvement
over the matched filter. Enhancements are mainly in SNR, contrast, and background
suppression rather than fine detail reconstruction. Note that none of the advanced al-
gorithms fully recover the fine details in Fig. 4.1a, which is the DAS result of the non-
compressive ultrasound imaging system by using the complete measurements. Since
advanced algorithms are highly time-consuming compared to matched filter, their us-
age seems impractical to attain improved SNR without revealing the additional struc-
tural details.

As an additional setup, we consider the case without doing group summation over
the measurements from 128 receivers. Instead, we only use 2 steering angles rather than
20. Although this does not involve compressing the array measurements, the aim is to
observe how MMV FISTA and SBL perform with a limited number of steering angles.
These angles are selected as the central two from the 20 steering angles, corresponding
to [-0.39,0.39]°. In that case, the improvements obtained with the matched filter and
SBL seem more noticeable both in Fig. 4.3, where images are visualized in the same
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Figure 4.3: Comparison of ME MMV FISTA and SBL for mouse brain with 128 receivers with 2 steering angles
when we image them in the same dynamic range

dynamic range, and Fig. 4.4, where all images are shown in the best possible dynamic
ranges. Even in Fig. 4.4, the image details seem more apparent with SBL compared
to other algorithms, where MMV FISTA provides a decent result. Although it is not a
drastic improvement, the superiority of advanced algorithms over the matched filter in
SNR, contrast and image details is evident. Still, their usage is inconvenient due to the
computational complexity of the advanced algorithms, and this improvement does not
justify the computational time of these advanced algorithms.

The reason behind such a limited improvement with advanced methods can be ex-
plained by the inherent characteristics of the vascular imaging data or the ultrasound
imaging system. Although theoretically, joint sparsity is expected to enhance image
quality, the tissue-separated vascular data might not perfectly adhere to the joint spar-
sity assumption. It might require additional assumptions, such as jointly block sparsity
or hierarchical sparsity, which can be exploited via statistical models, or sparsity in an-
other domain, which can be leveraged within deterministic models. The other explana-
tion for this limited improvement is that the matched filter is already well-suited for the
physical constraints of the imaging system. These constraints may limit the visibility of
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Figure 4.4: Comparison of ME MMV FISTA and SBL for random scatterers with 128 receivers with 2 steering
angles when we image them in the suitable dynamic range

the theoretical advantages of advanced reconstruction algorithms, and they may leave
little room for improvement in the image details. Unfortunately, the computational cost
of advanced algorithms makes their modest enhancements in contrast and background
removal seems less attractive.

4.5. CONCLUSION AND DISCUSSION

In this chapter, we have proposed the SBL method that statistically exploits the sparse
joint structure of the data for vascular ultrasound imaging. We evaluated the perfor-
mance of the MMV FISTA and SBL within two compressive vascular imaging settings
with mouse brain image data and compared their performance with a matched filter.
We observed that the advanced algorithms are limited to increased contrast and better
background removal and were insufficient to model the brain vasculature successfully to
reveal fine image details. Hence, more sophisticated priors that consider the relationship
between neighboring pixels might be required. Block sparsity can be efficient as vascu-
lature seems to exhibit a connected structure. The following two chapters will focus on
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block sparsity with pattern-coupled and correlated sparse Bayesian learning to improve
the reconstruction performance of the ultrasound imaging data or other problems such
as DOA estimation.



PATTERN COUPLED SPARSE
BAYESIAN LEARNING WITH FIXED
POINT ITERATIONS

We consider the problem of recovering block-sparse signals with unknown boundaries.
Such signals arise naturally in various applications. Recent literature introduced a
pattern-coupled or clustered Gaussian prior, in which each coefficient involves its own
hyperparameter as well as its immediate neighbors’ hyperparameters. Some methods use
a hierarchical distribution, making the solution vulnerable to the parameter choice. Be-
sides, these methods mainly rely on the expectation-maximization (EM) algorithm and
either require a suboptimal solution or an approximation of the hyperparameters. To ad-
dress these difficulties, we propose to solve the pattern coupling problem via fixed point it-
erations instead of the EM algorithm. The proposed algorithm does not require any further
assumptions on the hyperparameters and provides a simple update rule for the hyperpa-
rameters. Although the fixed point iterations method is an empirical strategy, it provides
a fast convergence rate. The algorithm is presented for both one-dimensional and two-
dimensional data. Firstly, the proposed algorithm is tested on a simple direction of arrival
(DOA) and amplitude estimation problem for the one-dimensional scenario. Our simula-
tions show that the proposed method achieves reconstruction results similar to those of the
state-of-the-art method; however, the proposed method is faster than the existing counter-
parts. We also tested the algorithm for the mouse brain data for the two-dimensional case
and observed slight improvement compared to the classical SBL.

Part of this chapter is published as: D. Dogan, G. Leus, Pattern Coupled Sparse Bayesian Learning with Fixed
Point Iterations for DOA and Amplitude Estimation (2023) [29].
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5.1. INTRODUCTION

Block sparsity has been observed for signals in numerous applications, such as the clus-
ter structure of scatterers on radar images [23], fetal ECG [26], DOA estimation, and so
on [100]. The block sparse model can be naturally exploited by further including the rela-
tion between sparse coefficients, such as the dependence of the sparsity patterns. Under
noisy environments, correlated settings, or with very compressive measurements, algo-
rithms properly leveraging such an underlying structure could achieve a robust recovery
compared to their counterparts which merely exploit the sparsity.

The pattern-coupled sparse Bayesian learning (PCSBL) algorithm incorporates a
pattern-coupled hierarchical Gaussian prior where each coefficient depends on its own
hyperparameter and its immediate neighbors’ hyperparameters to exploit interactions
between neighboring coefficients [28, 31]. For this problem, a suboptimal solution is
attained for the hyperparameters; however, the performance of the PCSBL depends on
a proper selection of the hyperparameters. Clustered sparse Bayesian learning (CSBL)
takes on a similar idea as the pattern-coupled prior used in PCSBL yet without relying
on the hierarchical distribution over the hyperparameters [30]. Both algorithms use an
EM-based update rule.

We propose to solve the pattern coupling problem via fixed point iterations instead
of the EM algorithm [39]. The fixed point iterations method is an empirical strategy, but
it provides a fast convergence rate in most applications [63, 64]. In [28], PCSBL uses a
lower bound to approximate the optimal hyperparameter, whose performance always
depends on a careful setting of the auxiliary parameter. Instead, our algorithm does not
need such a bound since it does not require any selection of auxiliary parameters. Our
algorithm can be seen as a fixed point update rule-based version of the EM update rule-
based CSBL algorithm [30]. However, CSBL assumes neighboring sparse coefficients to
share the same variance or precision. We do not make such an assumption. Finally,
although a theoretical analysis of the convergence behavior is unavailable, the proposed
algorithm demonstrates a fast convergence rate.

The remainder of this paper is organized as follows. In the next section, we define the
signal model for the DOA and amplitude estimation problem. In Section 5.3, we present
the proposed Bayesian formulation with a short discussion on the existing literature.
Then, we compare the performance of our proposed method with the state-of-the-art.
In the final section, we discuss the results and conclude this work.

5.2. FORWARD MODEL

In DOA and amplitude estimation, we employ a multiple measurement vector (MMV)
model, which exploits different pulse periods in synergy [61]. Such an MMV model can
be expressed as

Z=AS+N, (5.1)

where the system matrix A = [a;...a] € CV*L contains the array steering vectors for
all hypothetical DOAs as columns, with the (n,[)-th element given by exp(—j(n —
1)‘”—Cdsin01)(d is the element spacing, c¢ the sound speed, w the frequency, and 6; the

Ith DOA, e.g., 6; = -90° + 12—1180"); SeclxM represents the complex source amplitudes
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Sty L=121..2)) € CN*M represents the concatenation of the measurements z,, at the

mth snapshot; and the additive white noise N is assumed independent across sensors
and snapshots, where each element has a complex Gaussian distribution with zero mean

and variance 2.

5.3. BAYESIAN FORMULATION

5.3.1. PRIORS ON THE SOURCES

Here, Bayesian interference is used. This involves determining the posterior distribution
of the complex source amplitudes from the likelihood and a prior model. In (5.1), the
probability density function is given by

exp (-5 1Z—AS|[%)
ZIS;0°) = z . 5.2
p(ZIS;07) (10?2)NM (5.2)

as the noise is assumed to be Gaussian. In classical SBL, the complex source amplitudes
s;,m are assumed independent across different snapshots and each other as

Pm(SLm YD) =C€</V(0r7/l)- (5.3)

On the other hand, the pattern-coupled model is proposed in this work to cope with
block-sparse signals with unknown block-sparse structures. This model utilizes the fact
that the sparsity patterns of neighboring coefficients are statistically dependent. Specif-
ically, in this model, the Gaussian prior for each coefficient involves its own hyperpa-
rameter and its immediate neighbors” hyperparameters [28]. For a one-dimensional set-
up, such as the presented DOA and amplitude estimation problem, the pattern-coupled
prior is given as follows:

Pm(SLm YL Yi-1,Yi41) = €A 0,71+ Byi—1 + BYi+1)- (5.4)

Then, we can express their joint distribution as

M L
pSD) =[] [1Pmlstmyi+Brior + Byic) (5.5)
m=1[=1
M
=[[ ¢ ©01 (5.6)
m=1

where I' = diag(y; + Byo + BY2,....YL + Byr—1+ BYL+1). Note that yo = y;4; = 0. In this ap-
proach, the sparsity is controlled by the hyperparameters. If the y; is non-zero, then s; ;,,
is also non-zero. Therefore, if any of the neighboring elements (i.e., s;-; ,;, and s;.1 ) is
non-zero, then the center element s; is likely to be non-zero. It might not give an exact
sparse reconstruction; however, it provides the continuity of the sparsity patterns and
hence the block sparsity.

Note that in PCSBL [28], the pattern-coupling prior has the following form:

P (SLm YD Y11, Y151) = N O,y + Byi—1 + Byis) ™) (5.7)
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Figure 5.1: The pattern-coupling relations in two-dimensional case

Here, the motivation is the 'zero-coupling’ effect. In this approach, if any of the neigh-
boring elements (i.e. s;—; and s;4;) are zero, then the center element s; is likely to be
zero. In other words, if the y; — oo for an element is zero, the neighboring elements are
also zero. On the other hand, in CSBL [30], the prior has the following form:

Pi(SLm YL YI-1Y141) = CA 0,71 +Yi-1 +Yi41)- (5.8)

which has a similar formulation as the proposed one in (5.4), without the § term. They
also provided an extension of that model, which takes the same formulation as given in
(5.4). Tt is also possible to provide an update rule for ; however, it is out of the scope of
this work. We select § = 0.5, resulting in a better reconstruction quality in most scenar-
ios.

Apart from the DOA estimation problem, this method can be extended to reconstruct
two-dimensional data in other problems, such as ultrasound imaging. Here, four neigh-
boring pixels represent the dependence, as shown in Fig. 5.1. Therefore, the pattern-
coupled prior is given for the two-dimensional case as follows:

Pm(s(z, X, M), YL,Yi-1,Y 141, Y i-Ly» YieL,)

(5.9)
=CN 0,71+ Pryvi-1+ BrYier + BeYi-1, + B2Yi+L,)-

where L, represents the number of pixels in the vertical direction. Note that s(z;, x;, m)
corresponds to the Ith pixel of s(z, x, m) given in (2.2). Now, we use ; and S, as coeffi-
cients for the vertical and horizontal directions. For many problems, ; = ,, but they
can be set differently regarding the level of correlation in the vertical and horizontal di-
rections. For brevity, we only make the derivations for the one-dimensional scenario.
Note that it can be simply extended to the two-dimensional case.
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5.3.2. STOCHASTIC LIKELIHOOD

The posterior distribution of the sources can be attained using the Bayes rule condi-
tioned on T and 02:

_ PEiS;a®)p(S;T)

pSIZT,0%) P AN p(ZIS;0*)p(S;T)
’ 'H -1 (5.10)
e tr(S—s)" 25" (S—us))
derzyn 0 e R

Since both p(Z[S; 02) and p(S;I') are Gaussian p(S|Z;T, 02) is also Gaussian with mean
Us and covariance X :
s = E{S|Z;T, 0%} =TA"Z, 'z (5.11)

>,=T-TAHZ AT, (5.12)

Here, the data covariance matrix is given by
_ 2 H
2, =0 Iy+ATA", (5.13)
and its inverse can be computed using the matrix inversion lemma
2 =0y -o02AZA 02, (5.14)

The denominator p(Z; T, 0?) is neglected here as it is only a normalization term and does
not depend on S. So in conclusion, we have S ~ 4.4 (us, Zs). Using MAP estimation, we
obtain

A H —
SMAP — g = EISIZ;T, 0% =TA" 2 1Z. (5.15)

Here the diagonal elements of I control the row sparsity of $¥4” . The hyperparameters
T, o2 are estimated by a type-II maximum likelihood, i.e., by maximizing the evidence
that was treated as constant in (5.10). The evidence is the product of the likelihood
p(ZIS;0?) and the prior p(S;T) integrated over the complex source amplitudes S. The
resulting p(Z; T, o?)is given by

~trzfz;17)

Z:T, 0 =f ZIS; 05 pS;NdZ= ————— 5.16
pET,0% = | PESeIPSTALE ey (5.16)

where dZ =T1}_, 1), | Re(dZ;nn)Im(dZ ) and Z, is the data covariance matrix. We can
derive
logp(Z;T,0%) x —tr(ZN2;'Z) — MlogdetZ,. (5.17)

Finally, the hyperparameters I' and o2 are estimated from the log-likelihood function as
(f,éz) = argmaxr,g 5250 log p(Z; F,oz). (5.18)

The parameters I', 2 and =, ! are iteratively estimated and then finally S is attained by
(5.15).
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5.3.3. ESTIMATION OF I

Since I represents the source powers and controls the sparsity of S, the most significant
step is the estimation of I'. We need to find T for the estimation of S in (5.15). To iter-
atively compute I', we form the derivatives of (5.17) with respect to the elements y; as
follows:

otr(zHz17) _ tr{(dtr(ZHZ;IZ) T 0z,
0yi 0%, 0y1
al'='zz"3 1a; + pal! |z 1225 ')+
pall =7'zz"3 'a;,
alogdet(zz) w(; 102, _
0y1 o1 (5.20)
a?Z;1a1+ﬁa?_IZz al_1+ﬁa'l-'+IZ;1al+1.

} =
(5.19)

After inserting (5.19) and (5.20) into (5.17), the derivative is formed as follows:

dlogp(Z;T,0?)

5, =1Z"= a3 + BlIZM = 113

_ _ 5.21
Iz E a2 - Mpal! 250y, 21

- Mal'=]'a; - Mpall = 'a,,.
Here (5.21) is forced to be zero and we obtain the following equality:
1ZHz; a2 = Ma'z; a +
Mpa' 22 ay ~ IZTZ; a5+ (5.22)
H s-1 Hy-1 2
Mﬁal+lzz aj —BIZ I apalls.

Thereafter, we introduce ( Yo7 )b and multiply the right side of (5.22) to obtain an itera-

tive equation for y; [63, 64] In this paper, b = 2. This leads to the following fixed-point
update rule for y;:

old _
new _ Y1 “Zszlal“z

Yi
VM faliE N o + o)

(5.23)

where H H
vy =al 2 e - U/MIIZNE a5,

H -1 Hy-1 2
Vipr=a,, 2, a1 — (U/MIIZTZ, a5,

Note that }/"ld and X, are given from previous iterations. For the convergence of the

fixed point iterations, we need to attain y}'*" y"ld
Here, by following the steps between (5.19) and (5.23) for the one-dimensional case,

the extension of the given update rule for the two-dimensional data is derived as follows:

old _
new _ Vi 1ZH=;  ayll,

Y1 5
\/alfzz_lal +B1(wi—1 + vi1) + Po(vi—p, + Viyr,)

(5.24)
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where
H s-1 Hy-1 2
vi-i=a; 2, a - (A/MIZTZ, ap ;15

with i € {-1,+1,—L;,+L;}. For brevity, detailed derivations are not included. It is
straightforward to attain (5.24) using the distribution in (5.9).

5.3.4. ESTIMATION OF THE NOISE PARAMETER 0

For fast convergence of the FP PCSBL method, it is important to develop a good noise
variance estimate as it controls the sharpness of the peaks. In (5.15) and (5.13), we need
to obtain o2 for the estimation of S. This section estimates the noise variance ¢?, itera-
tively. We assume that the number of non-zero elements in the sparse vector is approxi-
mately known. Here stochastic maximum likelihood provides an asymptotically efficient
estimate of o2 if the set of active sources is known. Note that we do not need to know
the exact number of sources. A rough guess for the number of sources is also sufficient
to obtain a good performance.

Let I' ;- be the covariance matrix of the K estimated sources with corresponding
steering matrix A j . The corresponding data covariance matrix is

3, =0 Iy +A 4T A", (5.25)

Note that the data covariance matrix (5.13) and (5.25) are identical. We first force (5.21)

to zero as follows: ’
a2l (S, — 2%  as+

pay 21— 22 ey g+ (5.26)
patl =71, -2)2 'a;, =0

for all sources I. Here, the data sample covariance matrix s S, = ZZ"/ M. Note that (5.26)
holds for the values of [ = 1,..., L and results in the following:

1 .
ﬁ 1 ... 0 U
. . .1 =0 (5.27)
00 B 1||u
where u; =at'2;1(S, - 2,)2a;. By solving (5.27), we obtain the following equality
al'= 1S, -2,)2;"a; =0. (5.28)
Jaffer [101] shows that for a full I matrix, the derivative in (5.21) is given by

dlogp(Z;T,0%) _

°F Az S, -2 A, =0 (5.29)

and using the matrix inversion lemma, it is equivalent to the following condition:

A% (S,-2)A % =0, (5.30)
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Algorithm 3: FP PCSBL

Output: S: unknown data
Initialize 0% = 0.1, diag(') = 1, € i, = 0.001, Ejpqx = 500
while e < E;;,; and €,,i, < € do

e=e+1, rold — [rew

calculate =, = oI + ATAH

update y;’e“’ with (5.23)

I' =diag(y1 + Byo + By2, ... YL+ BYL-1+ BYL+1)

J ={leN|K largest peaks in T} = {Iy,... Ix}

Ay =(ay,...,ay)

N
2\ new_ Tr(AN—A AT )S,)
update (6°)"Y=——F"%—

e = ||diag("e¥ — T°!9)]||, /||diag(T°')||,
end
S=rAHz 1z

by following the steps in [101]. In [63], Jaffer’s condition is assumed to be correct, even
though T is a diagonal matrix. On the other hand, when T is diagonal, we cannot guar-
antee that the following is always true

al=;ls, -2,z 'ay =0for [ £1, (5.31)
. 2
as this comes from the derivative %ﬁr’a) for the off-diagonal elements of I'. How-

ever, we do not have any off-diagonal terms in I'. Therefore, Jaffer’s condition might not
hold for diagonal matrices. Unlike [63], instead of using Jaffer’s condition, we estimate
o by using the approximation tr(S,) = tr(Z;). Then, by using (5.25) we attain

€=tr(S,— ;) =tr(S, —0’In—A 4 T A =

tr(Sy) — tr(o?Iy) —e = tr(A 4 T A" = (5.32)

tr(PA ¢ T v A", P) = tr(P(Z; - o?I)P)

where P is the projection matrix onto the subspace spanned by the active components
and is written by

P=AyA, =A, A A,)'A =P =PP. (5.33)
Thereafter we obtain

tr(S,) — o%tr(Iy) — € = tr(PZ,P) — *tr(PP). (5.34)

Then, the trace in (5.34) is evaluated and it leads to tr(PP) = tr(P"'P) = K, tr(Iy) = N and
tr(PX,P) = tr(P?Z,) = tr(PX;). That gives

tr(S,) — No? —¢ = tr(PX ;) — Ka?. (5.35)
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Figure 5.2: The reconstructions and NMSE performance of the sparse Bayesian algorithms for a single snap-
shot with correlated data under 20 dB SNR

Inserting 0 = tr(P(S, — 2,)) and solving (5.35) for o2 results in

o w(Sz—PS)+60-€ tr(S,—PS;)
7= N-K “TN-K
which is the same variance estimator as in [63], although it is derived differently. This ap-
proximation makes the noise power estimation error-free if tr(X;) = tr(S;) and tr(PX,) =
tr(PS,) or tr(P(S, — =;)) = tr(S, — Z;), unbiased as E[e] = 0 and E[0] = 0, consistent since
its variance tends to zero for M — oo and asymptotically efficient as it approaches the
Cramér-Rao lower bound (CRLB) as M — oo.

=62, (5.36)

5.4. NUMERICAL RESULTS

5.4.1. RESULTS FOR DOA AND AMPLITUDE ESTIMATION

The proposed algorithm is tested on a DOA and amplitude estimation problem with
block sparse sources. It should be noted that most analysis in the literature has been
done with randomly designed sensing matrices [28, 33]. However, such a random de-
sign is not realistic to evaluate the performance of our algorithm. Hence, we tested
and compared different algorithms for a simple DOA and amplitude estimation prob-
lem. The performance of the proposed algorithm is close to both PCSBL and CBSL;
however, it is faster than both algorithms. Here, we consider an array with various
numbers of elements and various numbers of snapshots and SNR values. The DOAs
are on an angular grid [-90 : 0.5 : 90]°, and L = 361. The noise is modeled as i.i.d.
complex Gaussian. The single snapshot array signal-to-noise ratio (SNR) is SNR =
10log, [E[l|As ;| |§] [E[|Iny,;] |§]]- For M snapshots the noise power becomes
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E[lINII%1/(MN) = 107SNFIO1E[]|AS| 51/ (MN). (5.37)

Here, we examine a scenario with K = 20 random sources at random three DOA groups
with s; ,, having random complex amplitudes. The sources are chosen to be correlated
to see the robustness of the algorithms with such a setting. The correlated sources are
created as S = R/?W where W is complex random noise with unit variance. We choose

1 a 0
a 1 ... 0

R=|. . . (5.38)
0 1

where a = 0.5. Ris chosen to be a tridiagonal correlation matrix; hence, only the neigh-
boring correlations are considered.

The reconstructed amplitudes and their NMSE performance with correlated data for
a single snapshot problem with N/L =0.27 and SNR =20 dB are given in Fig. 5.2. FP SBL
represents a sparse Bayesian learning algorithm with a Type II likelihood maximization
with a fixed point update rule [63, 64]. FP PCSBL is the pattern-coupled version of that
algorithm, which is proposed in this work. We compare our algorithm with EM update-
based SBL algorithms which are classical SBL (EM SBL), PCSBL (EM PCSBL), and CSBL
(EM CSBL). Even though we consider correlated data, FP PCSBL provides a considerable
improvement compared to regular FP SBL. Note that FP PCSBL exploits the statistical
dependence of the sparsity patterns of the neighboring coefficients when the data is un-
correlated. However, it still provides a huge improvement for correlated data. Similarly,
EM PCSBL and EM CSBL significantly improve EM SBL. On the other hand, EM PCSBL,
EM CSBL, and FP PCSBL have similar performances. However, while overall EM PCSBL
and EM CSBL algorithms take around 0.5 — 1.5 seconds with a Macbook Pro 2019 (16 GB
of RAM and 6-core Intel Core i7 2.6 GHz processor), FP PCSBL converges in 0.03 — 0.05
seconds for a single snapshot problem thanks to the fast convergence of the fixed point
update rule. The NMSE performance of the reconstructions with correlated data for a
single snapshot problem with different N/L, SNR, and snapshot values are given in Fig.
5.3a,5.3b, and 5.3c, respectively. All results are averaged 100 Monte Carlo simulations.
While FP SBL performs better than EM SBL for different N/L and SNR values, we ob-
serve similar performances for FP PCSBL, EM PCSBL, and EM CSBL. For small SNR val-
ues, FP PCSBL has slightly better performance than its counterparts, but we observe the
opposite for small N/L values. Lastly, the performance of all the algorithms is increased
by increasing the number of snapshots to some extent. However, in the multi-snapshot
problem, with an increasing number of snapshots, we do not see a considerable benefit
of using pattern coupling.

The algorithm is also tested with different values of a, (i.e. 0 < a < 0.5) and we observe
similar results as in Figs. 5.2, 5.3a, 5.3b and 5.3c, including for the case of uncorrelated
data (i.e. a = 0). Hence, the correlations in the data for given values of a do not have a
significant impact on the reconstruction performance.
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Figure 5.4: Comparison of (a), (c) FP SBL and (b), (d) FP PCSBL for mouse brain with 16 measurements and
20 steering angles when we image them in the same dynamic range

5.4.2. RESULTS FOR VASCULAR ULTRASOUND IMAGING

Now, we apply the proposed algorithm to the mouse brain data with the presented con-
figurations in Chapter 4. The number of frames for the mouse brain datais M = 197. The
corresponding PDI reconstructions are shown in 5.4 and 5.5 with 16 measurements and
20 steering angles and with 128 measurements and 2 steering angles, respectively. While
Fig. 5.4a, 5.4b, 5.5a and 5.5b show the reconstructions, Fig. 5.4c, 5.4d, 5.5c and 5.5d are
zoomed version of those reconstructed images.

We observe a grainy structure with the classical FP SBL algorithm, which is slightly
mitigated by FP PCSBL. The grainy structure is due to the independent selection of hy-
perparameters in FP SBL. Since we enforce the dependence between neighboring hy-
perparameters in FP PCSBL, the grainy effect is reduced. However, this improvement
did not substantially affect the SNR. In Fig. 5.3c, we have already analyzed the NMSE
versus the number of snapshots for the DOA and amplitude estimation problem. After
10 — 20 snapshots, FP SBL and FP PCSBL perform similarly in the NMSE sense. Since
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Figure 5.5: Comparison of (a), (c) FP SBL and (b), (d) FP PCSBL for mouse brain with 128 measurements with
2 steering angles when we image them in the same dynamic range

the number of frames for the mouse brain data equals M = 197, the difference between
FP SBL and FP PCSBL might not be pronounced. Reducing the number of frames below
20 might make the differences more apparent; however, we needed at least 50 frames
to obtain a convenient vasculature PDI image. Hence, it did not present a suitable sce-
nario to observe the clear distinction between FP SBL and FP PCSBL for the mouse brain
imaging data. Nonetheless, removing the grainy structure shows that the relationship
between neighboring elements still provides some performance gain.

Due to their computational demands, we did not test EM SBL, EM PCSBL, and EM
CSBL algorithms on the mouse brain dataset. Since the performance of the FP SBL and
EM SBL are almost the same, and EM PCSBL, EM CSBL, and FP PCSBL show compa-
rable results in DOA and amplitude estimation, we expect similar outcomes in vascular
ultrasound imaging as well.
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5.5. CONCLUSION AND DISCUSSION

In this work, we proposed a pattern coupling algorithm with fixed point iterations based
on the update rule for the hyperparameters instead of using the EM algorithm. It does
not require further assumptions on the hyperparameters and provides a simple update
rule. The proposed algorithm was first tested on a simple DOA and amplitude estimation
problem, and its performance was close to that of both EM PCSBL and EM CBSL; how-
ever, it was faster than both counterparts, thanks to the fixed-point iterations method.
We also applied the proposed FP PCSBL algorithm to the mouse brain imaging data.
However, as the number of frames is high for the data, we could not observe a significant
improvement apart from the reduction of the grainy structure.



CORRELATED SPARSE BAYESIAN
LEARNING FOR RECOVERY OF
BLOCK SPARSE SIGNALS

We consider the problem of recovering complex valued block sparse signals with unknown
borders. Such signals arise naturally in numerous applications. Several algorithms have
been developed to solve the problem of unknown block partitions. In pattern-coupled
sparse Bayesian learning (PCSBL), each coefficient involves its own hyperparameter and
those of its immediate neighbors to exploit the block sparsity. Extended block sparse
Bayesian learning (EBSBL) assumes the block sparse signal consists of correlated and over-
lapping blocks to enforce block correlations. We propose a simpler alternative to EBSBL
and reveal the underlying relationship between the proposed method and a particular
case of EBSBL. The proposed algorithm uses the fact that immediate neighboring sparse
coefficients are correlated. The proposed model is similar to classical sparse Bayesian
learning (SBL). However, unlike the diagonal correlation matrix in conventional SBL, the
unknown correlation matrix has a tridiagonal structure to capture the correlation with
neighbors. Due to the entanglement of the elements in the inverse tridiagonal matrix,
instead of a direct closed-form solution, an approximate solution is proposed. The al-
ternative algorithm avoids the high dictionary coherence issue in EBSBL, reduces the un-
knowns of EBSBL, and is hence computationally more efficient. The sparse reconstruction
performance of the algorithm is evaluated with both correlated and uncorrelated block
sparse coefficients. Results of comprehensive simulations demonstrate that the proposed
algorithm outperforms PCSBL and correlation-based methods such as EBSBL in terms of
reconstruction quality. The numerical results also show that the proposed correlated SBL
algorithm is able to deal with isolated zeros and isolated nonzeros as well as block sparse
patterns.

Part of this chapter is published as: D. Dogan, G. Leus, Correlated Sparse Bayesian Learning for Recovery of
Block Sparse Signals with Unknown Borders, IEEE Open Journal of Signal Processing (2024) [34].
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6.1. INTRODUCTION

Block sparsity has been observed for signals in a wide range of applications, such as
the cluster structure of scatterers in radar images [23, 24, 25], fetal ECG [26], ultrasound
signals [27] and so on. The structured sparse model can be naturally exploited by in-
cluding further the dependencies among sparse coefficients, such as the correlations
between coefficients or dependence of the sparsity patterns. Under noisy environments
or with very compressive measurements, algorithms properly leveraging such an under-
lying structure could achieve a robust recovery compared to their counterparts which
merely exploit the sparsity.

A number of algorithms have been proposed for block sparse signal recovery when
the block partition is known a priori, including greedy pursuit algorithms like Model-
based Compressive Sampling Matching Pursuit (CoSaMp) [102], Block Orthogonal
Matching Pursuit (Block OMP) [103], and regularized convex optimizations, such as
group Lasso [104], group basis pursuit [105], mixed ¢, /¢, programming [106] and block
sparse Bayesian learning (BSBL) [107, 33]. These algorithms require knowledge of the
cluster pattern (block partition) a priori. However, prior knowledge of the block parti-
tion of sparse coefficients is practically unavailable. To address this problem, a particu-
lar structure is imposed on the support of sparse coefficients in the first category of al-
gorithms [108, 109]. For instance, the Clustered Sparse Solver (Cluss) algorithm in [108]
employs a hierarchical Bayesian “spike-and-slab” prior model to encourage the sparse-
ness and promote the cluster patterns simultaneously. However, since the resulting pos-
terior distribution of the Bayesian cluster sparse model cannot be analytically derived,
Markov chain Monte Carlo (MCMC) sampling [110] has to be employed for Bayesian
inference. Similarly, the Boltzmann machine is employed on the support of sparse coef-
ficients in [109] to model the dependencies and an approximate model of the maximum
a posterior (MAP) estimator is used to estimate hidden variables with exhaustive search.

In another category of algorithms, different block sparsity priors are imposed directly
on the sparse coefficients. Algorithms such as extended block sparse Bayesian learning
(EBSBL) [33], pattern-coupled sparse Bayesian learning (PCSBL) [28], cluster structured
sparse Bayesian learning (CSBL) [30] and total variation regularized sparse Bayesian
learning (TVSBL) [111] are evaluated under this category. EBSBL is an extension of the
block sparse Bayesian learning algorithm which is designed for known block partitions.
In EBSBL, it is assumed that the nonzero blocks are arbitrarily located and their size is
unknown. Then the signal is partitioned into a number of overlapping and fully cor-
related blocks with user-defined block size. By expanding the overlapping blocks to a
non-overlapping block structure, an extended set of fully correlated blocks is introduced
for the unknown sparse coefficients. Based on this block structure, an expanded sens-
ing matrix is constructed by adding redundant columns to the original sensing matrix.
Similarly, the unknown coefficient vectors introduced for each block are concatenated
as an augmented vector. Thereafter, the measurements are expressed as a linear com-
bination of the expanded measurement matrix and concatenation of the block vectors.
Then, the problem can be effectively solved by the traditional BSBL algorithm to find the
augmented block vector. Finally, the unknown sparse coefficients can be computed by
using the relation between the original sparse coefficients and the blocks. PCSBL, on
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the other hand, introduces a pattern-coupled hierarchical Gaussian prior for each coef-
ficient involving its own hyperparameter and those of its immediate neighbors to exploit
interactions between neighboring coefficients. A suboptimal solution is attained for the
hyperparameters; however, the performance of PCSBL heavily depends on a proper se-
lection of the hyperparameters. Extensions of PCSBL to two-dimensional cases are fur-
ther addressed in [31, 32]. CSBL takes on a similar formula as the pattern-coupled prior
used in PCSBL without relying on the hierarchical distribution over the hyperparame-
ters. As a result, no proper hyperparameter selection is required in contrast to PCSBL.
For both the PCSBL and CSBL, the expectation-maximization (EM) is developed to learn
the hidden variables and the unknown parameters. Lastly, in TVSBL, a block SBL method
has been developed inspired by total variation (TV) denoising [111].

In the mentioned category, algorithms such as EBSBL, PCSBL, CSBL, and TVSBL ex-
ploit the EM algorithm in update rules. Instead of EM, the variational Bayesian inference
can be exploited. As an alternative to PCSBL with EM, [112] develops an algorithm using
variational Bayesian inference, and it has a noticeable performance for the MIMO chan-
nel estimation problem. [113] introduces a method that exploits variational Bayesian in-
ference instead of EM, which can be considered an alternative version of EBSBL (BSBL).
Although it performs similarly to BSBL, it is faster than BSBL as it is a covariance-free
algorithm. [114] also presents both EM and variational Bayesian inference methods for
Kalman smoothing, reporting that they have similar performance, but the variational
Bayesian method is slower due to the high number of iterations required for conver-
gence. Although there is no clear consensus on which family of methods is faster or
has better performance, we prefer EM-based update rules for a fair comparison with the
existing methods. However, the variational Bayesian method can also be exploited as
future work.

In the second category, where different group-structured priors are imposed on the
sparse coefficients, only a few existing algorithms consider intra-block correlation, i.e.,
the correlation among the elements within each block. In practical applications intra-
block correlation widely exists in signals, such as physiological signals [26] and im-
ages [27]. In this chapter, we review several algorithms that explore and exploit intra-
block correlation to improve performance. These algorithms are based on block sparse
Bayesian learning (BSBL) and extended block sparse Bayesian learning (EBSBL) [33].
However, BSBL requires knowledge of the block partition and EBSBL suffers from several
key drawbacks leading to high computational complexity and coherence, and a larger
dictionary matrix. Note that high number of unknowns deteriorates the performance of
EBSBL.

In this chapter, a new algorithm dealing with the problem of an unknown block par-
tition of the correlated signal is proposed to alleviate the challenges of recently reported
methods. This chapter is motivated by the disadvantages of EBSBL, where the interac-
tions among neighboring coefficients are implicitly modeled by a linear transformation
of the artificially constructed augmented vector. A new structured sparse prior can be
derived based on the underlying relationship between the correlation matrices in the
augmented EBSBL model and the original signal model. The proposed algorithm uses
the fact that immediate neighboring sparse coefficients are correlated. It is also inspired
by PCSBL [28] and CSBL [30] in the sense that it considers the relation between neigh-
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boring sparse coefficients. However, it is different than PCSBL and CSBL since they do
not leverage the existing correlations among the data. We naturally exploit these cor-
relations instead of relating the hyperparameters. In this chapter, we only focus on the
correlations between immediate neighbors. Hence, the unknown correlation matrix has
a tridiagonal structure, which is different than the diagonal correlation matrix used in
conventional SBL algorithms [37, 63]. The proposed algorithm with a tridiagonal cor-
relation matrix is a simple extension of the classical sparse Bayesian learning algorithm
which has a diagonal correlation matrix. On the other hand, our algorithm improves the
group sparsity performance as it does not ignore the correlation with the neighbors.

While classical SBL assumes the sources are uncorrelated, EBSBL assumes the dif-
ferent blocks share a common correlation structure [33]. In this chapter, we claim that
if there is an intra-block correlation in the data, modeling an inter-element correlation
can already trigger a grouping effect. In other words, without building a new block-based
data model, assuming inter-element correlation in the classical SBL model already pro-
motes group sparsity. It is also shown that there is a grouping effect even when the true
data does not have intra-block correlations but only contains the block structure without
correlations.

There are three contributions of this chapter, which can concisely be summarized
as follows. First, a new structured sparse recovery algorithm is proposed, which can be
considered a better alternative to EBSBL. The algorithm avoids the high dictionary co-
herence in EBSBL and also reduces the unknowns of EBSBL, making it computationally
more efficient. Second, we provide an analysis of the relation between our algorithm
and a particular case of EBSBL. The intuitions given here can be used to enhance the
approximate update rule for the proposed algorithm with a tridiagonal structure. The
third contribution of our chapter is the ability of the proposed algorithm to tackle irreg-
ular sparsity patterns where the sparse vector contains both block sparse and isolated
coefficients. Once there are isolated zeros and nonzeros in the data, the group spar-
sity algorithms might not perform well as their assumptions enforce only the grouping
effect. However, the proposed algorithm is also able to deal with isolated zeros and iso-
lated nonzeros as well as block sparse patterns.

The rest of the chapter is organized as follows. Section II provides a review of clas-
sical sparse Bayesian learning and extended block SBL algorithms. A tridiagonal corre-
lation based prior on the sparse coefficients is derived from the classical SBL algorithm
in Section III. Section IV discusses the relationship of the proposed method to EBSBL.
Comparisons of the proposed method with the state-of-the-art are shown in Section V.
Conclusions are drawn in Section VI.

6.1.1. NOTATION

Throughout the chapter, bold symbols in small and capital fonts are used for vectors and
matrices, respectively. ||x||§ denotes the I;-norm of vector x. x; denotes the i-th block
of x. And the i-th element of x is either denoted by x(i), (x); or x;. Furthermore, (A);;
and A;; represent the element in ith row and jth column of an A matrix. For matrix A,
AH and A~! denote the Hermitian and the inverse of the matrix, respectively. tr(A) is the
trace of a matrix A. Notation diag(A) denotes a column vector composed of the diagonal
elements of a matrix A. rank(A) denotes the rank of matrix A. |A| is the determinant of
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the matrix A. €.4"(.) denotes the multivariate complex Gaussian distribution.

6.2. REVIEW OF SBL ALGORITHMS

Sparse signal recovery problems attempt to recover the unknown sparse coefficient vec-
tor s € C! from noisy and distorted measurements z € C". More specifically, we consider
the model

Z=As+n (6.1)

where n € C¥ is the additive white noise and A € CV*L is the measurement matrix with

N « L. Ablock structure in s is commonly observed in practice, where elements of s tend
to be nonzero in multiple groups with unknown block sizes and arbitrary locations. Let
us first give a detailed review of the considered structure in classical SBL. Such a detailed
review is given to show the relation between our method to the classical SBL. Then we
provide a brief review on the EBSBL [33].

6.2.1. CLASSICAL SBL

Using Bayesian inference to solve the linear problem in (6.1) involves determining the
posterior distribution of the complex amplitudes s from the likelihood and prior distri-
bution. The conditional probability density function (PDF) for z given the sources s is
complex Gaussian with noise variance o2:

1 2
5. exp(=7llz—Asll5)
p(zls;0°) = oDV . (6.2)

The unknown coefficients s; are assumed to be independent across different coefficients
[ and to follow a zero-mean complex Gaussian distribution:

1
pilsiyn = —e M, (6.3)
Y1
Then the variances of the elements of s can be stacked into ¥ = [y1,...,y]” and we get
L
psy) =1 pitssy) =€ 0,T) (6.4)
I=1

with I' = diag(y). When the variance y; = 0, then s; = 0 with probability 1. Hence the
sparsity of the model is controlled by the hyper-parameters y. It has been shown that
such a model enforces sparsity.

By using the likelihood in (6.2) and the prior in (6.4), the posterior PDF of s can be
found using the Bayes rule conditioned on y and ¢ and neglecting the denominator

p(zls;0?)p(z;y)
pzy,02)
o t(s—pe) 2 (5 ps))

nldet(Zy)

p(sizy,0?) = o p(zls;a®) p(s;y)

(6.5)

= %e/‘/(ﬂmzs)
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Since both p(zls;0?) in (6.2) and p(s;y) in (6.4) are Gaussians, their product (6.5) is Gaus-
sian with posterior mean pg and covariance X4 given by

ps = Els|zT,0%] =TA"3 12

=02 2A"A+1 1) 'AHz 69
and
25 = El(s— ps)(s— o) |z, T, 0]
- (%AHA+I’_1)_1 =T-TA"z;'Ar e
where the covariance matrix of the measurements X, is given by
>, =0 Iy +ATA". 6.8)

Here, to estimate the I and 02, we perform expectation-maximization (EM) to maximize
pzT, 02). The actual EM formulation proceeds by treating the s as a hidden variable and
then by maximizing

Q(T',0%) = Egr o2 [log p(z,s; T, 0%)] (6.9)

with respect to the hyperparameters I' and o2 to find their estimates, where Egzr o2l
denotes an expectation with respect to the posterior distribution of s. By substituting
the joint distribution p(z,s;T,0?) = p(zls; %) p(s;T) into (6.9) we obtain

Egzr,o2llogp(z,s;T, a?)] =Eg ;52 [logp(zls; a?)+

(6.10)
Eslz;I‘ [log p(s;I)].

Ignoring the terms independent from I', we can estimate the I' by maximizing
Egzrllog p(s;T)]. Starting from

1 1 Hp-1
logp(s;l"):—glog(ll"l)—is T s (6.11)

and using the fact that s"T~'s = tr(I' 'ss") and E[ss"] = Z¢ + s u';' we attain the follow-
ing expression:

1 1
Egzrllogp(s;T)] = —Elog(ll‘l) - Etr(l‘*l(Zs + usuth). (6.12)

This function is also called as Q function. Since we have a diagonal I', we can maximize
this function only for the diagonal elements in I. Hence, we can take the derivative as

follows:
OBszrlp&D)] _ (Es+pspu 1

=0. (6.13)
g Ys Yi
Then, the closed-form solution for I'; is given by
¥1= Eou+ (s (). (6.14)

Note that in classical SBL, the sources are assumed uncorrelated.
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6.2.2. EXTENDED BLOCK SBL (EBSBL)

The BSBL method is proposed to solve the group sparsity problem with a known block
partition [33] in which both the block size and the border locations of the blocks are
known. Group sparsity is enforced by considering a separate covariance matrix per
block, with a common structure over the different blocks and potentially a specific struc-
ture within every block (e.g., Toeplitz). The extension of this method, the extended BSBL
(EBSBL) deals with unknown block partitions. EBSBL considers an extended set of hid-
den blocks x; with hidden block size h fori =1... g (g = L—h+1 is the number of blocks).
More specifically, the unknown signal s is represented as

g
s=) Eix; (6.15)
i=1

where E; € RE h contains an identity matrix from the ith row to the (i + & — 1)th row and
zeros for the other entries. This idea allows for blocks of size & with unknown border lo-
cations but it can also handle blocks that might have a size different from % as discussed
in [33]. Under (6.15), the model in (6.1) can be written as follows:

g
z=) AE;x;+n=0x+n (6.16)
i=1
where x = [xlT .. .xg] Tand®=1[0;. ..0¢] with ®; = AE;. The problem in (6.16) becomes a
block sparsity problem with a known block partition and is solvable by BSBL. Specifically,
x is assumed to follow the given distribution:

p; (i, B}S_ ) =64 (0,Ty), (6.17)

where T'p = diag(f1B,..., B¢gB) and where each block satisfies the parameterized multi-
variate Gaussian distribution of p(x;; 8;,B) = €.47(0, ;B) with B; determining the de-
gree of block sparsity. Then we can find the MAP estimate of x using the given formulas
in (6.6), (6.7) as follows:

px = EIX|z;Ty,0%] = To0" (6%1y + 0T 0M) 12 (6.18)

Zx = El(x— p) (x— )12 T, 0]
_ L oH -1,-1 (6.19)
= (;@ O+T;) .
After iteratively finding the hyperparameters, finally, the estimate of the unknown
signal s is given by

g
§=) Eipy,. (6.20)
i=1

EBSBL is designed to cope with block-sparse recovery under the assumption of an un-
known block partition. However, it suffers from several disadvantages. First, it leads to
a higher computational complexity, as the augmented vector x is of size h x (L—h +1),
which is almost & times the size of the original signal s. More importantly, since the
expanded measurement matrix O is constructed by adding redundant columns to the
original measurement matrix A, dictionary © will be of high coherence. It affects the
efficiency of the sparse coefficient estimation in SBL [30].
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6.3. CORRELATED SPARSE BAYESIAN LEARNING ALGORITHM

As we mentioned before, classical SBL assumes the sources are uncorrelated, whereas
EBSBL assumes the different blocks share a common correlation structure, which in-
cludes intra-block correlation or not. Related to the latter, it has been shown that if
the data contains an intra-block correlation, the performance of EBSBL improves if it is
taken into account. On the other hand, the performance of EBSBL ignoring intra-block
correlation does not change with the amount of intra-block correlation in the data. The
claim we make in this chapter is that if there is an intra-block correlation in the data, just
modeling an inter-element correlation can already trigger a grouping effect. In other
words, assuming inter-element correlation in the classical SBL model already promotes
group sparsity without the need for building a new block-based data model first. Exper-
imental results (shown later on) show that this grouping effect is even there when the
true data has no intra-block correlations.

In this section, we, therefore, discuss how the classical SBL can be extended for cor-
related sources, where we assume for simplicity that only neighboring elements are cor-
related.

6.3.1. PRIORS ON THE SOURCES

In this section, the complex coefficients s;, which were assumed to be independent and
uncorrelated in the classical SBL, are assumed to be correlated with their immediate
neighbors. In other words, s has the following distribution:

psT) =€ 4(0,1) (6.21)

with the following tri-diagonal structure for I':

Fll rlz 0 0
Tor Top T3 ... 0

r=Esst)=|0 Ts2 Tsz ... 0 (6.22)
0 ... TI'ip

Hence, we assume to have nonzero elements in the tridiagonal elements of ', I';;y where
I'=11=1+1,I'=1-1, by ignoring the other elements of I'. Note that I''s diagonal
elements represent the power of the coefficients and I';; = 0. When the variance I';; =0,
then s; = 0. Hence, the sparsity of the model is controlled by the diagonal elements of I
For that problem, the likelihood is given by

p(siz;T,0%) = €N (s, Zs), (6.23)

which is similar to the formulation in (6.21). Based on the likelihood in (6.23) and the
prior of s in (6.21), it is easy to show that the posterior of s is a Gaussian with mean and
covariance

§ = ps =TAH (0?1 +ATAM) g, (6.24)

1
s=(A"A+T )7, (6.25)
g
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where T is a tridiagonal matrix but the inverse T! does not have a simple structure as
in the diagonal case. However, a fast inverse of this tridiagonal matrix is available with
recursive methods [115].

6.3.2. DISCUSSION

Once we insert (6.22) into (6.24), while attaining u; or §, we can see how the structure of
I' affects the relation with the neighboring elements. For the computation of us, we can
see that in each row there are contributions from the sub-diagonals (the correlations
with the neighbors) in the multiplication of the I' and AH(0?1y + ATA™)"'z. Here, in
addition to I';;, both I';;_1) and T'j;41) contribute to (us);.

For the correlated block sparse data, the correlations with the neighboring elements
(correlations in the sub-diagonals) become nonzero inside the group, and they become
zero outside the group or for the corner elements of the group. The nonzero elements on
the sub-diagonals enforce the neighboring elements to be nonzero in the group. Like-
wise, the corners of the groups can be clearly separated as the diagonals for the corner
elements are nonzero, but the correlation with the neighboring zero element which is
in the sub-diagonal is zero. If we focus on a single nonzero element surrounded by ze-
ros (isolated nonzero element), its autocorrelation is nonzero, but the elements in the
sub-diagonal are zero. Similarly, for a zero element inside a nonzero group (isolated zero
elements), the correlations in the sub-diagonal become zero and are not affected by the
neighboring nonzeros.

Once these elements of the I' are used in (6.24), it can be seen that the contributions
are only between consecutive nonzero elements. If there is a zero neighbor, then it does
not have any contribution. Furthermore, if the nonzero element is a corner element or
an isolated nonzero element, it also does not have a contribution to the zero neighbors.
Only the nonzero elements in the group contribute to each other as given in (6.24) and
provide a grouping effect. As a result, the proposed algorithm does not have any expo-
nential decay around the corners of the groups or isolated zero and nonzero coefficients.
Hence, unlike pattern coupling approaches [28, 30], the proposed algorithm tackles both
isolated nonzero and zero elements in addition to the block sparse patterns.

6.3.3. ESTIMATION OF I"

By following the derivations from (6.9) to (6.12) to derive the EM-based update rule for
T, we attain the minimization function for I'. Since we assume a structure over I', we
can minimize the function in (6.12) only for the tridiagonal elements in (6.22). Note that
we have complex-valued data and T is Hermitian symmetric but not symmetric, and
thus each entry in the matrix is considered as a unique entry. Hence, we can take the
derivative of all tridiagonal entries and set them to zero, leading to

OEszr[p(s;T)] _1 Hiroel  aoel
Lozt P ) e (2 + et T =T, =0
ory st Hsks i (6.26)

forl=0,I=U'+1andl=1-1.

Note that while I has a particular tridiagonal structure, I'"! does not have a simple par-
ticular structure, unlike the diagonal version of I'. Hence, finding a closed-form solution
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to this problem is tricky as the I';; terms are entangled. Alternatively, we can use iter-
ative algorithms to maximize (6.12), such as gradient-ascent [116] or fixed-point itera-
tions [39]. However, they might be time-consuming as we need to take the inverse of I'
several times during the update steps of the iterative algorithms. Instead of solving the
problem with iterative methods, we propose an approximation for the solution of I'.

To propose an approximation for the tridiagonal I', we first consider the update rule
for I without any structure, and then try to relate this to the solution for the tridiagonal
I'. If we consider all the correlations in I without any structure, the derivative of (6.12)
with respect to I is expressed as follows:

OEs),r[p(s;T)] _

°F I (E+psphr-t-rt, 6.27)

Setting this derivative to zero, we obtain the following closed-form solution
=2+ pepu. (6.28)

Here T notation is used for the full I'. However, using all the correlations does not lead
to a sparse solution. In classical SBL, the sparse coefficients are generally assumed to be
uncorrelated and result in a diagonal I'. Note that the I' estimated in (6.14) corresponds
to the diagonal of T and is also the closed-form solution to the problem in (6.13). Like-
wise, in the tridiagonal case, although it is not a closed-form solution to the problem in
(6.26), we can use the following approximation

Ty = (o) + (ps) 1 () 6.29)
forl=10'1=0I'+1andl=1-1 '
as a solution for the tridiagonal elements. Note that this solution contains the elements
in the diagonal and main sub-diagonals of T. The intuition behind such an update rule
is using the neighboring correlations that come from the full correlation matrix T. Since
extracting a tridiagonal submatrix from the correlation matrix I' preserves the relation
between neighboring elements, we embrace this approach. However, the convergence
of such an update rule cannot be guaranteed as the proposed I' matrix is not guaran-
teed to be positive definite anymore. Then, log(|I'|) might be undefined, and it might
become complex valued at certain points, and it cannot guarantee the increment of the
Q function in (6.12) during EM steps.
To guarantee the positive definiteness of I' and obtain a generalized update rule for
I', we multiply the sub-diagonals by a parameter f to reduce their values:

Ty = (Zs) i + ()i (pth)p for 1= 1

Tyr = B(Es) i+ (e) 1 (h ) (6.30)
forl=0'"+1andl=1"-1.

Still, the correlation between neighboring elements is preserved which causes the group
sparsity thanks to the relation between neighboring zeros and nonzeros. For values of
B €10,0.5], we empirically observe that I stays positive definite and the Q function (6.12)
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does not result in complex values. Here, the most efficient § is observed to be 0.5. Al-
though the update rule proposed for the sub-diagonal elements is intuitive, it provides a
significant performance improvement for block sparse and isolated elements.

To provide theoretical bounds of f for the positive definiteness of I', we use the fol-
lowing proposition from [117]:

a) bl 0 0
bik ay b2 0

Proposition 1: LetI'y = 0 by as 0 | be a Hermitian symmetric tridiago-
0 e aen ag,

nal matrix with diagonal entries positive and real. If

1 1
l?,'b;k < —-a;ais1 (6.31)

2
4 cos?(747)
then I'; is positive definite. Using this proposition, we can introduce the following theo-
rem.
Theorem 1: For p? < 1 —1_—— T in (6.30) is positive definite.
4 cos*(57)
Proof. First, we prove this for the second part of (6.30) which includes pspt!. Assuming
that pus = ¢, we have the following

tridiag(ps p?) = tridiag(ccH)

cic;  Becy 0 0
et ok ek 0
peey 26y - Peacs (6.32)
— 0 Besc;  czey ... 0
0 0 0 .. crey

where tridiag(.) is defined as the extraction of the tridiagonal part of a given ma-
trix and multiplication of the subdiagonals by 8. For 2 < im, we can write
L+1

2 A% ) * 1 . % * 1 : ) _
Bci ¢ Civ1C; < 4CiC; Cl+lci+1—cosz(ﬁ) using the Proposition 1. Therefore, for the val
1

ues of f2 < 1 —1-— we can conclude that tridiag(.) results in a positive definite matrix
4 cos*(777)

from rank-one matrices and tridiag(ps u:') is positive definite.

Now, we generalize this approach for any positive definite matrix. Note that all posi-
tive definite matrices can be written as CCH = Zg\i 1 c,‘ci.'| which is a summation of multi-
ple rank-one matrices. Here, c; is the ith column of C. As tridiag(.) is a linear operator, it
can be written as follows:

N
tridiag(CC") = ) tridiag(c;ct). (6.33)
i=1

Since tridiag(.) results in a positive definite matrix for each c,-clH, and the summation of
positive definite matrices is also a positive definite, tridiag(CCH) is positive definite.
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Note that Zg is positive definite for a positive definite I'. Therefore, tridiag(Zs) is
positive definite. As a final step, it can be concluded that,

T = tridiag(Zs) + tridiag(us ) (6.34)

is positive definite since it is a summation of positive definite matrices. O

Remark 1: From Theorem 1, guarantees the positive defi-

_Zcos%ﬁ) <p< Zcos%ﬁ)
niteness of I'. To choose a safe boundary for 8, we keep it in the range [0, 0.5] for values
of L > 50. Note that we keep f positive so as not to change the sign of the correlation
between the neighboring elements.

Remark 2: Note that it is important to show the proposed update rule increases the
Q function (6.12) in every iteration. Because then we can draw from the generalized
EM theory [118]: any hyperparameter update rule that ensures that the Q function is
non-decreasing in each EM iteration will ensure convergence of the EM iterations to a
local maximum or saddle point. Once we consider the case f € [0.0.5] for (6.30), we em-
pirically observe that the Q function in (6.12) increases in each iteration, and it has a
higher increase in each EM iteration compared to the one in (6.14). Although the the-
oretical convergence proof is unavailable, we have never encountered a case where the
algorithm’s convergence is not satisfied with a high number of trials of simulations and
various problem models.

Remark 3: The choice of  seems slightly important for the recovery performance, as
demonstrated by our simulation results. Although our simulations suggest that choosing
anon-zero  mostly improves the performance compared to the setting with g = 0, the
best choice of § appears to be around 0.5. However, for cases where the signal structure
is unknown, the § parameter might be adjusted for the structure of the data by setting it
to another value in the range g € [0,0.5].

6.3.4. ESTIMATION OF THE NOISE PARAMETER 0'2
To estimate 0, we maximize Eg),.r ,2[p(z,8;T,0%)] with respect to 6 [28]. Now, we only
focus on the o related terms on the right-hand side of (6.10) as follows:

Egy.02llog p(zls; o))

Ey,.2[llz—As||2]
2 slz;o 2
x —Nlogo I S (6.35)

llz— Aps|l3 + tr(ZA7A)
_ = ,

= —Nlogo?
The second equality can be derived as follows:
Egz,02 12— As|[3]
=7z 2E(s"AMz) + E[s"AHAs)
=zMz—2p ANz + pH AR A g + r(zAPA)
= |lz— ApllZ + tr(ZsAHA).

(6.36)
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Algorithm 4: Correlated SBL

Output: S: unknown data
Initialize 0% =1, diag(T) =1, €nin = 0.001, Ej;pqx = 100

while e < Ej;, 4 and ey, <€ do

e=e+1, udld = ptew, F;’ll,d =T,

I= tridiag(I‘;’ﬁ“’

compute Zg = (#AHA+ r-h-!

update '/} with (6.30)
update (02)"¢¥ with (6.37)

e=lpd — pg' Ml

end

e — new
§=py

Then, we set the derivative of (6.35) with respect to o to 0 and we obtain the update for

o2 as

_ llz=Ap|} +tr(ZA7A)
- ~ :

4 (6.37)

The estimate of s is finally given by pg in (6.6) by iteratively calculating the I';;’s in
(6.29) and o2 in (6.37) till convergence. The iterative steps of the proposed algorithm
are given in Algorithm 9. For the convergence, we use the stopping criterion that the
maximum absolute error of two successive estimates of s is smaller than a threshold, or
the number of iterations exceeds the maximum number of iterations.

6.3.5. COMPUTATIONAL COMPLEXITY

The computational complexity of the proposed algorithm is similar to the classical SBL,
PCSBL, and CSBL. Here, the main computational task at each iteration is to calculate the
covariance matrix X4 as it requires computing the inverse of an L x L matrix. By using
the matrix inversion lemma [119], this matrix inversion can be converted to an N x N
matrix inversion. Hence the computational complexity is of order &' (N). However, for
the computation of the tridiagonal I', there is a slight increase in the computational cost,
but its effect on the overall computational complexity is negligible.

6.4. RELATION TO EBSBL

To show the relation between our method and EBSBL, we consider EBSBL with /# = 2 and
hence g = L—1. In such case, s; = x;_1(2) +x; (1), where (.) shows the entry indice in x;.
Different than EBSBL, where there is a single B for each block, we use different B;s for
each block. We then have E[x,-x;'] =6;,jBiB; (6;j =1if i = j; otherwise §; ; = 0). Note
that, to avoid ambiguities, we also take §; = 1. In our approach, we assume each s; is cor-
related to the neighboring elements s;_; and s;;; and ignore the other correlations. By
interpreting the E[ss"] in (6.22) in terms of the B; matrices our entries in the tridiagonal
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I’ matrix are given as follows:

[si ]

[(xi-1(2) +x; (1)) (X;-1(2)* +x;(1)7)]
[x; (1)x; ()" +%;-1(2)%;-1(2)"]

an B(zz)
[
E]

E
E
E
B
(6.38)
1“z(H-l) =Els; z+1]
x;-1(2) +x;(1)(x; (2)" +x;41(1)")]
= Elx;(1)x;(2)*] =B{"?
Fispi = F;(i-*—l) forL>i>1,

where Bg.') corresponds to the (.)th entry of the B; matrix. Here, the intermediate terms
in E[sisl. ] and E[s; z+1] are E[(x;—1(2)x; (1)* +x;(1)x;-1(2)*] = 0 and E[(x;-1(2)x;(2)* +
X; (Dx;41 (D" +x;-1(2)x;41(1)*] = 0, respectively as E[x,'x';'] =0fori#j).

The equations in (6.38) can also be written as follows:

B(ll) +B@? B(12)

Els S -
[8i:i+1 l+1] B§21) Bgill)JrB(zz)

(6.39)

where s;.; represents the elements of s from i to j. Therefore, our model can be in-
terpreted as an alternative to the EBSBL for /z = 2 when there are separate correlation
matrices B; for each group.

To show the equivalence between the MAP estimates of § in EBSBL and in the pro-
posed method, we give an examination of the updating rule of § in (6.20) that comes from
(6.18), and the updating rule of § in (6.24), respectively. Rewriting the first part of (6.18)
and (6.24) as

B(ll)aH + B(IZ) I2-|
BVall + (B‘”) +B(H))a2 +B?al]
rat = : (6.40)

21 ez) g1 12
L o
BLflaL—l +BL 191

L—-

(1) gH (12)gH
B%Zl) ; +B(22)
By 1 +By 2
o0 = : ) (6.41)
an H 12)
B(21} H B(22) al
B; +B; 7 a;
where a; represents the ith column of the A matrix. It is straightforward to see that TAH =
Zfz‘ll E;To0". Now, we need to show the equivalence of the second part of (6.18) and
(6.24), which is given by (621 + ©I',®")~1Z and (621 + ATA")"Z. Using the simple
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Figure 6.1: (a) The magnitudes of reconstructed group sparse data with K =25, N =35and L =100
for SBL and the proposed method with noiseless data and (b) the value of the Q function for SBL
and the proposed one.

diagonal structure of I'y we attain the following:

®r0®H Z(alB(ll)aH +a;, B(21) H
i=1

B(IZ)

(6.42)

B (22) H

a;, +a;iaB " a),
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and using the tridiagonal structure of I' we obtain

ATA" = a;B{"Va!! +2,B*Vall+

L-2
12) _H 22 11
Y (@B"?al, +a;, B +B!all + (6.43)
i=1
a;. ZB(ZD lH+1)+aL 1B(12)aL +a B(Z_Z)aH

It is easy to see the equivalence of the expressions in (6.42) and (6.43). Therefore, the
MAP estimates of § are the same for both algorithms.

The difference between the algorithms can be seen in the update rules for B; in EB-
SBL and the proposed algorithm. The update rules for EBSBL in [33] are given as follows:

Bi = tr(B; ! (Zx, + px, D)), (6.44)

x; T ﬂxl le,

l

g
Z (6.45)
Normally, in EBSBL, §; is also learned during the iterations but once we assume f; =1
we cancel that step and only have the iterations for B; and ¢. Our update rule can be
considered a counterpart of the case without averaging the B;s in EBSBL as follows:

B; =3y, + pix, 1Y, (6.46)

where Xy, € C2*2 corresponds to the ith diagonal block in Zx in (6.19) and py, € C? is the
ith block of Hx in (6.18). We already showed that pg = ZL IE, px. However, now we can-
not obtain the tridiagonal part of pg ys , which is included in our update rule in (6.29), by
the overlapping block diagonal sum of blocks in pypt! in the way that we obtained (6.39).
Another difference between our algorithm and EBSBL is in the update of 24 in (6.19) and
2 in (6.25) due to the inversion terms. While I'y in (6.19) is a block diagonal matrix, I in
(6.25) is a tridiagonal matrix, and relating their inverses is not straightforward. Besides,
the outmost inverse term entangles the relationship between Xy and X.

Note that the number of unknown variables in EBSBL when £ = 2 is almost two times
the one required in the proposed algorithm. The reduced number of unknowns en-
hances the performance of the proposed algorithm. Lastly, the proposed method has
around ¢'(h®) = 0'(2%) times lower computational complexity than EBSBL.

6.5. NUMERICAL RESULTS

In this section, we conduct numerical experiments to evaluate the performance of the
proposed algorithm in comparison with the existing literature. The performance of the
algorithms is examined for both synthetic and real data. The benchmark algorithms in-
clude SBL [37], BSBL [33], EBSBL [33], CSBL [30], PCSBL [28], and the proposed method.
For EBSBL, we use EBSBL-BO: the bound-optimization presented in [33], as it is used as
a reference method for comparison and it is stated that it has a similar performance to
EBSBL-EM: the expectation-maximization method.
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Figure 6.2: Success rate performance comparison of the sparse Bayesian learning algorithms with
correlated (a) and uncorrelated (b) noiseless data for the sparsity level K = 25 and different sizes
of the measurements N
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Figure 6.3: Success rate performance comparison of the sparse Bayesian learning algorithms with
correlated (a) and uncorrelated (b) noiseless data for the size of the measurements N = 40 and
different sparsity levels K.

6.5.1. SYNTHETIC DATA AND SYNTHETIC SYSTEM MATRIX

The measurement matrix A is randomly generated with each entry independently drawn
from a normal distribution, and the columns are normalized to unit norm. Like-
wise, the nonzero coefficients of s are drawn from a complex normal distribution.
Complex Gaussian white noise is added with a signal-to-noise ratio of SNR(dB) =
20log10(||Asll2/lIn]l2).

We use the success rate and the support recovery rate under the noiseless case
for performance evaluation. On the other hand, the normalized mean squared error
(NMSE) is used under noisy cases. The NMSE is calculated by averaging the normalized
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Figure 6.4: Support recovery rate performance comparison of the sparse Bayesian learning algo-
rithms with correlated (a) and uncorrelated (b) noiseless data for for the sparsity level K = 25 and
different sizes of the measurements N.
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Figure 6.5: Support recovery rate performance comparison of the sparse Bayesian learning algo-
rithms with correlated (a) and uncorrelated (b) noiseless data for the size of the measurements
N =40 and different sparsity levels K.

squared errors ||s —§| Ig/llsl |§- The success rate is defined as the percentage of successful
trials in a total of T independent runs. A successful trial is defined as one with NMSE
being less than 1073, A total number of T = 100 independent trials are conducted. Be-
sides, for the identification of the true support of sparse signals, we consider the “pattern
recovery success rate”. Similar to the regular success rate, it is the ratio of the number of
successful trials to the total number of independent runs. However, each trial is con-
sidered successful if the support of the block-sparse signal is recovered. A coefficient
whose magnitude is less than 1072 is assumed as a zero coefficient for the calculation of
the pattern recovery success rates (but not for the regular success rate).
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For the proposed method, € = 0.001 and Ej;,,, = 100 in Algorithm 9 are used in our
experiments. Similarly, for PCSBL and CSBL, we used the same values. On the other
hand, the probability distribution relies on hierarchical parameters a and b in p(T'|a, b)
in PCSBL. It should be noted that the choice of the hyperparameter a of PCSBL af-
fects dramatically the algorithm’s performance [30]. The parameter a is always set to
0.5 to achieve its best performance in the following experiments. Also, the parameter
b =10"1°. To make a fair comparison, the block size h is first set to be 2 for both BSBL
and EBSBL. However, we also consider /& = 4 for BSBL and EBSBL, as it is used for com-
parison in the literature [33, 28]. Note that the algorithms are modified to handle the
complex data.

For the proposed algorithm, we use the update rule in (6.30) with § = 0.5. For this,
we observe the behavior of the Q function in (6.12) during EM iterations both for SBL
and the proposed method with different 8 values. For a sample realization, the objective
function increase during EM iterations for all of them is shown in Fig. 6.1b, and the
reconstructed data for different methods are shown in 6.1a with a noiseless case. Note
that the proposed method further increases the value of the objective function compared
to classical SBL for values of § € [0,0.5]. Since the highest increment is observed with
B = 0.5 among several realizations, we select § = 0.5 to test our algorithm.

In the numerical simulations, sparse signals with dimensionality of N =40, L = 100
and K = 25 nonzero coefficients are partitioned into five arbitrary blocks with random
sizes and arbitrary locations. For these arbitrary groups, we generate them in the same
way with [28]. Here, the group sizes are likely to be higher than two and the nonzero
groups are apart from each other. Hence, in this setting, the chance of there being iso-
lated zeros and nonzeros among the groups is very small. The sources are chosen to
be both uncorrelated and correlated which matches our tridiagonal correlation assump-
tion. The correlated sources are created as s = R'/>w where w is complex random noise
with unit variance. We choose

c 0

c 1 ... 0
R=|. . . (6.47)

0 1

where ¢ = 0.3. Ris chosen to be a tridiagonal correlation matrix; hence, only the neigh-
boring correlations are considered. As a second setting, the sources are chosen to be
uncorrelated to see the robustness of the algorithms with such a setting and ¢ = 0.

PERFORMANCE IN NOISELESS ENVIRONMENTS

The success rates of the exact recovery of different algorithms the noiseless case (SNR =
100 dB) are provided from the viewpoint of the size of the measurements N for the pur-
pose of comparison. Fig. 6.2 and 6.3 give the success rates of different algorithms against
the size of the measurements N and the sparsity level K for both correlated and uncor-
related data, respectively. Simulation results with correlated complex-valued data in Fig.
6.2a and 6.3a show that the proposed method outperforms all other methods in terms
of success rate. Note that the main counterpart of our method is EBSBL (h = 2) and
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Figure 6.6: NMSE performance comparison of the sparse Bayesian learning algorithms with cor-
related (a) and uncorrelated (b) noisy data (20 dB SNR) for the sparsity level K = 25 and different
sizes of the measurements N.

Correlated sources: SNR = 20

03 Uncorrelated sources: SNR = 20

025

02t
Loist
z

01 F

0.05 =

12 14 16 18 20 22 24 26 28 12 14 16 18 20 22 24 26 28

Sparsity level (K) Sparsity level (K)
(@ (b)

Figure 6.7: NMSE performance comparison of the sparse Bayesian learning algorithms with cor-
related (a) and uncorrelated (b) noisy data (20 dB SNR) for the size of the measurements N = 40
and different sparsity levels K.

there is a significant difference between EBSBL and the proposed one in terms of suc-
cess rate. Furthermore, our method has lower computational complexity. Surprisingly,
CSBLs success rate is lower than other algorithms. It has been reported that CSBL per-
forms similarly to PCSBL [30]. It still has good performance in terms of NMSE, but since
the preselected threshold is set at 1073, its success rate is low. If we select it as 101, the
success rate of CSBL would be higher. However, for the noiseless case, 10~3 seems to be
a good choice to evaluate the performances of the algorithms. On the other hand, BSBL
might not be a suitable algorithm to test the performances of the data with varying block
sizes and varying block partition locations. While BSBL performs well with the data that
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Figure 6.8: The magnitudes of the reconstructions of SBL algorithms with group sparse noisy data
(20 dB SNR).

might fit into the considered block partition assumption, it does not perform well with
the other data.

With uncorrelated data, again the proposed method has a higher success rate than
the existing literature. Compared to the correlated case in Fig. 6.2 and 6.3, the EBSBL
method has lower performance with uncorrelated data. This is expected as it directly
uses the correlations. However, surprisingly our method’s and PCSBLs performances
did not change significantly. While we exploit the correlations of the neighboring ele-
ments, PCSBL assumes them uncorrelated and enforces the statistical dependence be-
tween sparsity patterns. Although these two methods utilize different motivations for
correlated neighboring coefficients, they seem not to be affected by the level of the cor-
relation.

In the support recovery rate graphs in Fig. 6.4 and 6.5, the performances of the algo-
rithms are similar to the success rate performances given in Fig. 6.2 and 6.3. Although
we observe small variations over the methods, again the proposed method outperforms
the existing literature.

PERFORMANCE IN NOISY ENVIRONMENTS

The performances of different algorithms in terms of the NMSE against the size of the
measurements N and the sparsity level K are given in Fig. 6.6 and 6.7, respectively. Un-
der noisy environments, the NMSEs of all algorithms consistently decrease as the size
of the measurements NN increases and the sparsity degree K decreases as shown in Fig.
6.6 and 6.7, where PCSBL with a = 0.5 achieves the lowest NMSE and proposed method
achieves lower performance than the best performance of PCSBL. Note that the tested
data consists of sparse groups and the chance of isolated zeros and nonzero elements in
the data is very small. Different from the noiseless case, CSBL is better at dealing with
noise than other correlation-based methods. However, in noiseless cases, it does not
provide a perfect estimation of s while other methods can produce a very low recon-
struction error and high success rate.

lustrative examples of sparse coefficient recovery of different algorithms with the
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Figure 6.9: NMSE performance comparison of the SBL algorithms with the data that has isolated
zeros for (a) the sparsity level K = 25 and different the size of the measurements N; (b) the size of
the measurements N = 30 and different sparsity level K.
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Figure 6.10: NMSE performance comparison of the SBL algorithms with the data that has isolated
zeros for (a) the sparsity level K = 25 and different the size of the measurements N; (b) the size of
the measurements N = 35 and different sparsity level K.

size of the measurements N being 40 are given in Fig. 6.8, respectively. PCSBL and our
proposed method provide the most accurate estimates of the original sparse coefficients
with fewer measurements, especially for those significant elements inside blocks. By
closely looking at CSBL and PCSBL, we observe smooth decay around the corners of the
groups. This effect is stronger in CSBL due to the modeling difference between CSBL
and PCSBL. On the other hand, although the proposed method is able to reconstruct
sharp edges, the proposed one and other correlation-based methods suffer from recon-
structing some off-group elements. This is possibly arising from the effect of the noise
correlation. In CSBL and PCSBL, we observe smooth edges and the boundaries of the
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Figure 6.11: The magnitudes of the reconstructions of SBL algorithms with (a) noisy data (20 dB
SNR) which has isolated zeros in each group (b) the data with mixed groups, isolated zeros, and
isolated nonzeros.

groups are indistinct but we do not observe reconstructed elements that are not close to
the groups.

In addition to testing with group sparse data, we test our algorithm for a new setting
where each group has an isolated zero element inside the group. For such a scenario, the
proposed method achieves the best performance in terms of NMSE with 20 dB SNR as
shown in Figs. 6.9a and 6.9b for varying numbers of N and K respectively. The recon-
structions are shown in Fig. 6.11a for a single realization. As CSBL and PCSBL algorithms
consider contributions from the neighboring elements, the isolated zero element is af-
fected by the surrounding nonzeros. On the other hand, the proposed algorithm consid-
ers the correlation with the neighbors in a multiplication form. When the sub-diagonal
elements become zero they do not negatively affect the reconstruction of the isolated
zero elements. Note that with such data, the classical SBL algorithm is also performing
better than most of the other group sparsity-based algorithms. For BSBL and EBSBL, the
performance varies significantly depending on different Monte Carlo realizations. Again
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Figure 6.12: The magnitudes of the reconstructions of SBL algorithms with noisy group sparse data
(20 dB SNR) for DOA and amplitude estimation.

it possibly arises from the block partition assumption of the algorithms.

We also tested these algorithms with a mixed scenario which consists of two iso-
lated zero elements, two full group elements, and one group with an isolated nonzero
element. As shown in Figs. 6.10a and 6.10b, we attain the best performance with the
proposed method as it tackles the isolated nonzeros and isolated zeros more success-
fully compared to the existing literature. As the groups do not have a specific size,
other correlation-based algorithms such as BSBL and EBSBL might fail to reconstruct
the groups. We again demonstrate the reconstructions in Fig. 6.11b and observe a simi-
lar effect.

6.5.2. DOA AND AMPLITUDE ESTIMATION WITH SYNTHETIC DATA

Now, the proposed algorithm is tested on a DOA and amplitude estimation problem with
block sparse sources. It should be noted that most analysis in the literature has been
done with randomly designed sensing matrices [28, 33]. However, such a random de-
sign is not realistic to evaluate the performance of these algorithms. Hence, we tested
and compared their performance for a simple DOA and amplitude estimation problem.
Here, we consider an array with various numbers of elements. The DOAs are on an an-
gular grid [-90:0.5:90]°, and L = 361. The noise is modeled as i.i.d. complex Gaussian.
Here, we examine a scenario with K = 25 random sources in five random groups. DOA
groups collect s; values having random complex amplitudes. The sources are chosen to
be correlated and ¢ = 0.5.

The performances of different algorithms in terms of the NMSE against the size of
the measurements N and the sparsity level K are given in Fig. 6.13, 6.14, 6.15 and 6.16
for 20 dB SNR and 10 dB SNR, respectively. With such a realistic setting where the system
model A is a realistic matrix, the best performance is attained by the proposed algorithm,
especially for the 20 dB SNR case. The performance of the proposed algorithm is still
comparable to or better than the state-of-the-art under the 10 dB SNR case. Note that
the DOA matrix A has a higher coherence compared to a randomly generated A matrix.
Ilustrative examples of the sparse coefficient recovery of different algorithms with the
size of the measurements N being 40 are given in Fig. 6.12. Here, the proposed method
provides the most accurate estimates of the original sparse coefficients. By closely look-
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Figure 6.13: NMSE performance comparison of the SBL algorithms with noisy data (20 dB SNR)
for (a) the sparsity level K = 25 and different the size of the measurements N; (b) the size of the
measurements N = 45 and different sparsity level K for a single snapshot problem with correlated
data.
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Figure 6.14: NMSE performance comparison of the SBL algorithms with noisy data (20 dB SNR)
ffor (a) the sparsity level K = 25 and different the size of the measurements N; (b) the size of the
measurements N = 45 and different sparsity level K for a single snapshot problem with uncorre-
lated data.

ing at CSBL and PCSBL, we again observe a smooth decay around the corners of the
groups. On the other hand, the proposed method is able to reconstruct sharp edges.

6.6. CONCLUSION

In this chapter, we have proposed a correlated sparse Bayesian learning algorithm for
block sparse signals with arbitrary block sizes and locations under the Bayesian frame-
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Figure 6.15: NMSE performance comparison of the SBL algorithms with noisy data (10 dB SNR)
for (a) the sparsity level K = 25 and different the size of the measurements N; (b) the size of the
measurements N = 45 and different sparsity level K for a single snapshot problem with correlated.
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Figure 6.16: NMSE performance comparison of the SBL algorithms with noisy data (10 dB SNR)
for (a) the sparsity level K = 25 and different the size of the measurements N; (b) the size of the
measurements N = 45 and different sparsity level K for a single snapshot problem with uncorre-
lated data.

work. This is a simpler alternative to EBSBL and we explain the underlying relationship
between the proposed method and a particular case of EBSBL. The proposed algorithm
uses the fact that immediate neighboring sparse coefficients are correlated. Unlike the
diagonal correlation matrix in conventional SBL, the unknown correlation matrix has
a tridiagonal structure to capture the correlation with neighbors. Due to the entangle-
ment of the elements in the inverse tridiagonal matrix, instead of a direct closed-form
solution, an approximate solution is proposed. The sparse reconstruction performance
of the algorithm is evaluated with both correlated and uncorrelated block sparse coeffi-
cients. Results of comprehensive simulations demonstrate that the proposed algorithm
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outperforms CSBL and PCSBL and other correlation-based methods such as EBSBL in
terms of reconstruction quality. The numerical results also show that the proposed cor-
related SBL algorithm is capable of recovering signals with both block patterns and iso-
lated coefficients.

6.7. DISCUSSION

The correlated sparse Bayesian learning algorithm can be modified for the two-
dimensional scenario. However, now the matrix given in (6.22) does not have a simple
tridiagonal structure. Instead, it is block tridiagonal with tridiagonal blocks to capture
all the correlations between neighboring elements. Estimating the correlations cannot
be simply extended but requires significant computations.

Atfirst, the correlated sparse Bayesian algorithm is developed for vascular ultrasound
imaging to be used with the mouse brain data tested in Chapter 4 and 5. However, due
to the high computational complexity of the expectation-maximization algorithms with
large-size data and the complicated derivations in the two-dimensional case, the pro-
posed method has not been developed for and applied to the ultrasound imaging prob-
lem. In future work, estimating the non-zero elements in the block tridiagonal with tridi-
agonal blocks correlation matrix is required. Furthermore, the algorithm’s speed can be
boosted with an inversion-free method [120, 121]. Alternatively, the problem can be
solved via the fixed-point iteration method, as in the previous chapter, which focused
on pattern-coupling in sparse Bayesian learning. However, again, the block tridiagonal
with tridiagonal blocks structure requires investigation of suitable parameter estimation
rules.

Unfortunately, the previously proposed algorithms generally provided limited im-
provements and demanded high computational power, as illustrated in Chapters 4 and
5. Since we aim to balance image quality and computational requirements, the pro-
posed algorithms were impractical. Hence, we did not endeavor to develop the two-
dimensional version of the correlated sparse Bayesian learning algorithm. Ultimately,
we decided to focus on the developments in ultrasound transmissions instead of image
reconstruction algorithms. Such an approach seems more promising than making more
algorithmic advances.

Although we did not apply the correlated sparse Bayesian learning algorithm to the
vascular ultrasound imaging problem, we have gladly developed an efficient algorithm
that outperformed the literature in one-dimensional problems such as DOA estimation.
It is a novel contribution to the literature and a valuable part of the thesis as it provides
mathematical insights into this application-focused thesis.







OPTIMIZING CODED EXCITATION
FOR MODEL-BASED ULTRASOUND
IMAGING WITH UNFOCUSED
TRANSMISSIONS

Ultrafast imaging, which uses unfocussed transmissions to form images, provides very
high frame rates at the cost of low signal-to-noise ratio (SNR). This loss of SNR becomes
especially apparent when imaging deeper structures. Ultrafast imaging is mostly used in
combination with Doppler processing. Even if we apply tissue-separation filters, they lead
to significant energy loss and decrease the SNR. Previous work showed that this loss in
SNR and, hence, penetration depth can be partially regained using coded transmissions.
However, these codes are mostly either standard or randomly generated and can be im-
proved with a design rooted in an optimization scheme. To address this limitation, we
design an optimized code tailored to ultrasound imaging with unfocused transmissions
represented by a generalized encoding matrix in a linear signal model. We employ the
minimization of the Cramér-Rao lower bound (CRB) over the unknown coding matrix as
a way to optimize the code. Due to the high computational cost of the resulting optimiza-
tion problems, we also introduce a trace-constraint optimization problem based on the
Fisher information matrix (FIM). Simulation results show that the optimized code pro-
vides higher SNR in deep image regions than previously tested coding schemes such as
the Barker code, albeit with a trade-off for decreased resolution. On the other hand, the
application of least-squares QR (LSQR) mitigates this resolution degradation. Lastly, the
optimized code was tested in simulations using a numerical model of a clinical transducer
setting, demonstrating its potential for higher SNR in ultrafast Doppler imaging.

This chapter is accepted for a publication in IEEE Transactions on Computational Imaging as "Optimizing
Coded Excitation for Model-based Imaging with Unfocused Transmissions”.
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7.1. INTRODUCTION

Doppler ultrasound imaging is a well-established technique widely used for imaging
blood flow inside the human body, leveraging the principles of ultrasound and the in-
teraction of mechanical pressure waves with tissue and red blood cells[122, 123]. Un-
focused transmissions are advantageous for Doppler ultrasound compared to conven-
tional ultrasound imaging [124]. The latter employs focused ultrasonic waves and sends
a single focused wave during each transmission, reconstructing one image line at a time.
However, this might not achieve a high sampling frequency and could result in inaccu-
racies for Doppler imaging [125]. In contrast, in unfocused transmissions such as plane-
wave imaging, receivers capture the backscattered echoes from the entire imaging area.
This enables the reconstruction of a full image from a single transmission using beam-
forming. It can obtain much more images compared to conventional ultrasound for the
same number of firings and acquisition time.

Unfocussed transmissions trade image quality (specifically SNR) for temporal reso-
lution, which is beneficial for Doppler imaging [126]. This gain allows for novel imaging
applications such as functional ultrasound [125], pulse wave velocity imaging [127], etc.
Although they also notably trade-off (reduce) spatial resolution, we are particularly inter-
ested in imaging blood flow inside the brain, where the SNR is of paramount importance.
A higher SNR contributes to a high-quality image, enhancing diagnostic capabilities in
clinical applications [128]. Unfocused transmissions face challenges in visualizing vas-
culature due to a low SNR. Echo signals from blood cells are considerably weaker than
surrounding tissue. This leads to limitations in visualizing small blood vessels and deep
areas.

There are advanced filtering methods for visualization of the microvasculature es-
pecially at greater depths. While some of these filters can be classified as beamforming
methods, many others can be categorized as post-processing methods for detailed vi-
sualization. Examples of beamforming approaches include MVDR [129], LSQR (Least
Squares QR, an iterative algorithm used for solving large linear systems of equations)
[130], sparse reconstruction methods [21], and deep learning-based methods [131]. In
terms of post-processing, methods like SVD filtering [50] and super-resolution tech-
niques such as TMSBL [132] and SUSHI [133] improve the quality of the beamformed
image and enable better visualization at deeper levels. However, these methods often
face challenges related to computational complexity, particularly when applied to real-
time imaging.

It is also observed in ultrasound literature that applying coded excitation [14, 15, 16,
134, 135], which means sending out longer encoded pulses, can enhance the SNR of ul-
trasound images and improve the penetration depth. Coded excitation achieves a high
main lobe-to-side lobe ratio after pulse compression, with an axial resolution compara-
ble to or slightly worse than a single short pulse. Note that pulse compression is a signal
processing technique where a long-duration coded pulse is transmitted and its echo is
processed via decoding filtering to compress energy into a narrow peak [136, 137]. The
design of coded excitation pulses typically utilizes frequency or phase encoding tech-
niques based on the impulse response of the transducer [68]. Frequency encoding in-
volves linearly modulating a carrier signal frequency, often achieved through linear fre-
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quency modulation (FM), also known as chirp excitation [15]. On the other hand, phase
encoding is achieved by modulating the phase of the transmitted pulse, such as linear
phase modulation and bi-phase modulation [14]. In linear phase modulation, the phase
changes linearly with time across the pulse duration. This creates a smooth phase tran-
sition and can contribute to the signal’s resilience against distortion and interference.
In bi-phase modulation, the transmitted pulse is encoded with either a 0-degree shift
(represented by 1) or a 180-degree shift (represented by -1).

The two commonly used bi-phase modulation sequences are the Golay and Barker
codes, which have found extensive applications in ultrasound imaging thanks to their
favorable autocorrelation properties and ability to generate high-quality images with
improved signal-to-noise ratio [35, 36]. A Barker code is a binary sequence that leads
to a high main lobe-to-side lobe ratio after matched filtering, with good autocorrelation
properties. However, existing Barker codes only have specific lengths, restricting the to-
tal transmitted energy. The Golay code consists of a pair of finite equal-length binary se-
quences. Unlike single transmit signals like Barker codes, which exhibit range side lobes
after pulse compression, the Golay pair is designed to cancel out these range side lobes.
However, the drawback of Golay pairs is that the frame rate will be halved since it re-
quires two transmissions to obtain a single image. Note that these two transmissions are
added to cancel out the side lobes. A major weakness of Golay code pairs is incomplete
cancellation caused by target motion between transmissions, even when complemen-
tary orthogonal codes are used. This problem has been tackled in [69] by transmitting
two pairs of mutually complementary orthogonal codes, which can achieve the same
frame rate as a single transmission code.

Instead of applying the same code for every transmitting element, the random code
is an alternative to Barker and Golay encoding, incorporating the time and space do-
mains [18]. Instead of transducer elements transmitting the same encoded pulse, this
method excites each element with a different randomly encoded pulse. The resulting
randomly transmitted waves constructively and destructively interfere in the imaging
area, creating spatio-temporal interference patterns. This leads to low pixel-to-pixel cor-
relations, which might yield a high-resolution image. However, the SNR improvement is
quite limited compared to Barker and Golay codes. Furthermore, there are also complete
complementary codes that offer better side lobe suppression and higher SNR improve-
ment compared to random codes [138]. Hence, they are more effective for high-quality
imaging while maintaining low pixel-to-pixel correlations.

Coded excitation in ultrasound imaging can be refined using diverse methods. One
promising way involves investigating hybrid coding techniques, combining different
coding sequences to combine their strengths. For instance, [65] suggests the convolu-
tion of Barker and Golay codes to effectively mitigate side lobe levels, leading to a notable
increase in SNR. Similarly, [66] introduces chirp-modulated Golay codes, integrating or-
thogonal binary codes with a chirp, which results in a substantial enhancement. Another
approach is integrating advanced signal processing algorithms to decode and recon-
struct received echoes efficiently. Decoding filtering techniques, such as mismatched
or adaptive filters [139, 140], play a critical role in balancing side lobe suppression and
SNR gain during pulse compression. For instance, the work [67] uses a finite impulse
response (FIR) filter, to decode echoes transmitted with Barker codes, effectively sup-
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pressing the side lobe energy at the expense of decreased SNR. This approach further
facilitates the design of longer Barker codes using Kronecker products, enabling appli-
cations such as functional ultrasound neuroimaging, but it may degrade the autocorre-
lation properties.

There is a potential for utilizing optimized code design to enhance SNR in ultra-
sound imaging with unfocused transmissions. While substantial research has been ded-
icated to optimized code design in the radar domain, emphasizing robustness and high-
resolution [141] [142] and demonstrating significant improvements in radar detectabil-
ity, a notable gap exists for unfocused transmissions in ultrasound imaging. Therefore,
this chapter explores optimized code sequences for ultrasound imaging with unfocused
transmissions. We first present a linear signal model where the code sequences appear
in a coding matrix. To optimize this coding matrix, we employ the minimization of the
Cramér-Rao lower bound (CRB) [40] as a proxy to minimize the mean square error[42]. In
that sense, the minimization of the maximum eigenvalue, determinant, and trace of the
CRB matrix has been proposed to find the optimized encoding matrix for a specific imag-
ing area [143]. Since the original problem is non-convex, some relaxations are imposed
to ensure a feasible solution [144]. The drawback of this approach is its computational
complexity and memory challenge for large imaging areas. A suboptimal formulation is
proposed to address this by maximizing the trace of the Fisher information matrix (FIM)
instead of minimizing the trace of the CRB. Fortunately, the maximization of the trace
of the FIM results in a small-scale problem that can be solved by finding the eigenvector
of a small-sized matrix corresponding to the largest eigenvalue. Therefore, the proposed
approach is computationally more efficient.

The rest of this chapter is organized as follows: Section 7.2 presents the signal model
and the associated image reconstruction. The subsequent section, Section 7.3, focuses
on articulating the optimization methods applicable to the encoding matrix. Further,
Section 7.4 shows the results, delving into the application scenario for the proposed
method and discussing its limitations. Conclusions are drawn in Section 7.6.

7.2. SIGNAL MODEL

In this work, model-based beamforming is employed instead of the conventional delay-
and-sum (DAS) approach. In our approach, each transmitter sends different pulses,
while DAS is useful in the case where all transmitters share the same coding pattern.
Model-based beamforming provides more flexibility in handling the diverse coded ex-
citation scheme. In model-based ultrasound imaging, we first construct the image for-
mation model and represent this in the form of a matrix-vector multiplication [21]. In
the ultrasound imaging system, there are I elements where all the elements transmit
and receive the backscattered signal. The imaging area is discretized into a grid of L pix-
els. Using the Born approximation [145], each measurement is represented as a linear
combination of the pulse-echo signals from the scatterers [49] weighted by their scatter-
ing coefficient. Throughout this chapter, we will work in the frequency domain instead
of the time domain since it allows for faster computation. More specifically, we only
consider a limited set of F frequencies given by Q = {w;,w», -+ ,wr}, which are assumed
equidistant and within the positive side of the frequency spectrum. Defining z;[w] as
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the signal received by the jth element at frequency w, we can write

L I
zjlwl =) 51 gjrilolu;lw]. (7.1)
=1 i=1

Here, s; represents each pixel’s unknown reflection coefficient, and u;[w] represents the
excitation pulse sent by element i at frequency w. Furthermore, g;; ;(w] is the overall
Green’s function for the wave propagating from the transmitting element i to pixel m
and from the pixel ! to the receiving element j. The computation of Green’s function
considers factors such as the distance between the transmitting/receiving elements and
each pixel, attenuation during propagation in the tissue, and the impulse responses of
the transducers. The overall function g; ; ; (] is given by

hilwlhy (o)

gj1ilwl = —47r(di,z v

EXP(—fﬁ(di,l +dz,j)), (7.2)
Vo

where h;[w] and h,[w] respectively correspond to the known transmit and receive im-
pulse responses of the transducer, d;; denotes the distance from the transmitting ele-
ment i to pixel [, and dj ; is the distance covered by the backscattered signal from pixel /
to sensor j. Further, vy corresponds to the speed of sound in the medium. The denom-
inator in equation (7.2) stands for the geometric spreading of the pressure field, con-
sidering the entire distance the wave travels from the source to the pixel and back to the
sensor. The exponential term in (7.2) represents the phase shift caused by the delay from
the source to the pixel and back to the sensor.

Note that the excitation pulse u;[w] in equation (7.1) depends on the transmitting
elements. For this scenario, we consider a case where all I elements transmit longer
pulses consisting of an equal number K of base pulses. Every base pulse is amplitude
and bi-phase encoded with a weight denoted by c; . Hence, the excitation pulse u;[w]
at transmitting element i and frequency w can be written as

K
uilwl = Y ¢ rprlol =c] plol, (7.3)
k=1

where pilw] denotes the kth base pulse. The relation between two consecutive base
pulses is prs1[w] = prlwle /T where 7 is the delay between two base pulses. Further,
plw] = [pl[w],pz[w],...,pK[w]]T is the base pulse vector and c¢; = [c,-yl,c,-yg,...,c,-,K]T is
the amplitude and bi-phase code related to transmit element i. Here, we also concate-
nate the c;'sas Ce RI*K which is called the encoding matrix, i.e., C = [c}, ¢y,..., cI]T.

The measurements from all elements are stacked in a vector z[w] € C/, and the part
related to the Green’s functions can be stored in a matrix A¢[w]. The measurement model
for all elements at frequency w is then expressed as

z1[w]
zlw] = : =Aclwls, (7.4)

zrlw]
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where the mth entry of the vector s € R is [s]; = s; and the (j, [)th entry of the matrix
Aclw] € CL is written as

1
Aclwllj = 1:Zi &)1, [wle] plw] = g},[w]Cp[w], (7.5)

where gjilwl=1gji1lwl,..., gj,“[w]]T. Now we can also write A¢[w] in (7.4) as follows

gL[w] gIL[w]
Aclw] = S (I ® (Cplw])]
gIT'1 [w] ... gIL[a)]
=Glowl[I @ (Cplw])]. (7.6)

where Iy is an L x L identity matrix. It is clear from (7.6) that A¢[w] is linear in every
element of the encoding matrix C. As a result, (7.6) can be written as

K
Aclw] = Z Z Ci kA klw (7.7
where A; i [w] € CV*M is given by
A; klw] = Glw][IL ® (E; kplw])], (7.8)

with E; ;. € R™K a matrix with only one non-zero entry, i.e., [E; t]; x = 1. The matrix E; x
basically selects which code entry is active.

Finally, all the frequency components are computed and concatenated vertically.
Adding zero-mean white Gaussian noise with variance 02 to the model, this leads to

Z[w] Aclw]
7= : = : s+n=As+n. (7.9)
z[wr] Aclwr]

Here, z € RF! contains all measured samples from the array transducer in the frequency
domain and A, € RF*M collects as columns the impulse responses related to the differ-
ent pixels. Here, n € R¥/ represents the additive white Gaussian noise. Due to (7.7) we
can write

I K
=2 2 CikAik (7.10)
i=1k=1
where
A klw]
Ajg= :
A klwF]

For simplicity, we will group the two indices i and k into asingle index p as p = (k—1)I+1,
where p =1,2,...,IK. In this context, we will also define c(x_1y7+; = ¢; r and Ag—1)7+i =
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A; i, which allows us to rewrite (7.10) as

IK
Ac= Y cyAp, (7.11)
p=1

Finally note that we can view ¢, as the pth entry of the vector ¢ = vec(C), where vec(.)
vectorizes a matrix columnwise.

In the remainder of this chapter, coded excitation techniques are generalized using
the encoding matrix C. The rows of C are identical for Barker and Golay codes, as the
same signal is transmitted from all transducers while the elements are randomly gener-
ated for the random code case. For all those schemes, the entries of C are 1 or —1. In
addition to bi-phase encoding, we also consider amplitude encoding in the proposed
optimized coding scheme, as it has proven its advantages in radar applications [146].
The modulus of each entry in C is the weight for amplitude encoding, while its polarity
stands for the phase encoding of the transmitted ultrasound pulses.

7.2.1. IMAGING TECHNIQUES

Before optimizing the code, let us present imaging methods that solve (7.9). The simplest
one is matched filtering, which maximizes the SNR under additive Gaussian noise and
has the following solution:

s=Alz (7.12)

Secondly, least squares estimation can be considered, which minimizes the sum of
squared differences between the measurement vector z and the modeled measurement
vector based on the estimated vector s. It has the following closed-form solution:

§=@AHAy) 1Al (7.13)

which only holds when A¢ is full rank.

Note that matched filtering (7.12) will be the main technique employed in this work,
thanks to its efficiency and ease of implementation. On the other hand, the least squares
estimation in (7.13) has a large inverse, and its computational complexity is significantly
high. Instead of solving the large inverse, an iterative LSQR algorithm will be used [130].

7.3. OPTIMIZATION OF THE ENCODING MATRIX

Based on the earlier developed linear measurement model, we are now ready to find the
optimal coded excitation scheme. Therefore, we first focus on estimating the image s,
and we then optimize the related estimation error for s with respect to ¢ (the vectorized
version of the coded excitation matrix C). Suppose s is deterministic and unknown. In
that case, we can estimate s using an unbiased estimator leading to an error covariance
matrix Re = E(ee™) [42], with e = s—§. This could be any of the previously considered esti-
mators, including (if needed) a proper normalization for making the estimator unbiased.
The trace of the error covariance matrix Re yields the mean square error (MSE) of the esti-
mator [42]. For any unbiased estimator, the error covariance matrix Re is bounded below
by the Cramér—Rao lower bound (CRB) matrix. So, instead of finding an expression for
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Re related to a specific unbiased estimator, we will make use of the CRB matrix, which is
often easier to derive. We thereby also remark that the CRB matrix is the inverse of the
Fisher information matrix (FIM) F, which quantifies how much information a dataset
provides about the parameter of interest. So in general, we have Re > F~!, where F could
potentially depend on the unknown image s. For our specific data model, which is a
linear additive Gaussian model, the FIM is independent of s and is given by

—2,H
F=0"2AA.. (7.14)

As can be seen, it does not depend on s but it does depend on the code c¢. We make this
explicit by writing F(c) instead of F.

7.3.1. CRB MINIMIZATION

There are three ways of minimizing the CRB matrix: minimization of the largest eigen-
value of the CRB matrix (Eig-Opt), minimization of the determinant of the CRB matrix
(Det-Opt), or minimization of the trace of the CRB matrix (Trace-Opt) [143].

Eig-Opt: We first formulate the problem for Eig-Opt, which minimizes the largest
eigenvalue of the CRB matrix. Note that using the maximum eigenvalue ensures that
the CRB is minimized on all elements simultaneously. On the other hand, they might
compensate for each other within the trace or determinant. In that sense, Eig-Opt can
be more efficient for minimizing the CRB [143]. The Eig-Opt problem can be written as
follows:
min  Amax(F~'(€))
¢ (7.15)
st. lell5 =1,
where Amax (F~1(c)) is the maximum eigenvalue of F~! (c). Note that minimizing the max-
imum eigenvalue of the CRB matrix is equivalent to maximizing the minimum eigen-
value of its inverse. As such, we can also write

max Anﬂn@&EAc)
c (7.16)
st. lell5 =1,

where Ay (F71(c)) is the minimum eigenvalue of F~l(c). Here, (7.16) is equivalent to

max A

Ac

st. AMA. - 1. =0, (7.17)
llell5 =1,

where the first constraint is not linear in ¢, and the problem in (7.17) is thus not convex.
More specifically, we can write

H

y IK
AcAc=| . cpAp
p=1
IK IK

=y > c;chyAq,
p=1lg=1

IK
Zl CqAyq
9= (7.18)



7.3. OPTIMIZATION OF THE ENCODING MATRIX 101

where ¢, represents the complex conjugate of ¢p. Solving nonconvex problems can be
challenging due to the potential of traditional optimization algorithms getting trapped
in local optima or encountering convergence issues. As a result, some relaxation is in-
troduced to turn the nonconvex problem into a convex one. Here, a common relaxation
technique is employed, which involves absorbing the quadratic term c; ¢, into a single
variable Cp 4 [42]. As such, (7.18) can be transformed into

H IK IK H
AdAc = Zl Zl Cp,qApAg, (7.19)
p=lq=

which is linear in Cy, 4 instead of quadratic in c,. Introducing the matrix ¢’ € C/X* 1K with
[%]p,q = Cp,q, the equivalence between (7.18) and (7.19) only holds when € = ccH. This
requires % to be a rank-one matrix, and this constraint is not convex. One way to relax
this rank-one constraint is by replacing it with ¢’ = 0. Defining A = [A],...,AJ; ], this
allows us to relax (7.17) as the following semidefinite program (SDP) [144]:

max A
C,A
H
st. AT(ERIpPA-AIL =0 (7.20)
=0

1" diag(%) = 1.

Note that ||c||§ =1 is equivalent to leiag(%) = 1. The matrix inequality constraint is
now linear in ¢, and thus, the whole problem is convex.

Based on this formulation, we can also modify the problem to a subsampled sce-
nario by defining z = AcRs, +n where R € RE*S is a subsampling matrix, S is the number
of subsamples and s, contains only the pixels from the subsampled area. Note that this
scenario ignores the contribution of most of the pixels in the area, and it does not give
the optimal solution for the overall area. However, it is applied because of the substantial
computational complexity of solving the SDP (7.20). The subsampled problem formula-
tion is given by:

max A
)
TAH
st. R'AM(E®Ip)AR-AIs =0 (7.21)
=0

17 diag(¥) = 1.

Note that the size of the first constraint significantly decreases due to subsampling the
data.

Det-Opt: Second, we can consider minimizing the determinant of the CRB matrix,
which is referred to as the Det-Opt criterion. The problem can then be formulated as

min det(F'(c))
c (7.22)
st. lell3=1.
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Since the CRB matrix is the inverse of the Fisher information matrix, (7.22) is equivalent
to

max det(A':Ac)

¢ (7.23)

s.t. llell3 =1.
Applying the same relaxation techniques and replacing det(F(c)) with log(det(F(c))) we
obtain the problem

max log(det(A™(€ ®1ppA))

st. €=0 (7.24)
1" diag(®) = 1.

Since log(det(F(c))) is known to be concave for a positive semidefinite matrix F(c), the
above optimization problem is convex [147].

Trace-Opt: Third, we consider minimizing the trace of the CRB matrix, called Trace-
Opt, which is given by
min trace(F ! (c))
¢ (7.25)
s.t. llell5=1.
By again applying the same convex relaxation techniques, we attain the following mini-
mization problem:
min trace(A™(¢ ® 1z)A) ™)

O

st. €=0 (7.26)
17 diag(¥) = 1.

To eliminate the large inverse term from the objective function, we first reformulate the
problem as follows:

min trace(T)

¢,T

st. T-AM@eInA) >0
€ =0
1" diag(¢) = 1.

where T is introduced as the upper bound of the term inside the trace(.). Now, we min-
imize trace(T) instead of AH(% ® Ir;)A)~! [144]. Using the Schur complement method
[148], we finally obtain

(7.27)

min trace(T)
€, T
T Iy
I, AM@eImA =0 (7.28)
=0
17 diag(%) = 1.

Similar to (7.21), we can apply subsampling to Det-Opt criterion in (7.24) and Trace-Opt
criterion in (7.28).

S.t.
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Now, solving (7.20),(7.24) or (7.28) for € yields the optimized encoding matrix. As the
resulting solution % from (7.20),(7.24) or (7.28) is not guaranteed to have rank one, an
approximate rank-one solution can be found by choosing the largest eigenvector of z.
However, the effectiveness of this method depends on the low rankness of %. Another
widely employed approach is the randomization method, where we treat % as a covari-
ance matrix to generate multiple candidate random vectors from & ~ .4 (0,%). Subse-
quently, these solutions are projected onto the original constraint set. In our case, every
randomization is normalized here to satisfy the energy constraint. Each candidate is
then applied to the original problem (7.15),(7.22) or (7.25), and the realization that opti-
mizes the related cost is selected as the solution[149]. This approach is regularly used in
literature thanks to its proven success in many studies and its theoretical performance
guarantees for several discrete optimization problems [150, 149]. While we cannot es-
tablish a lower bound on the optimality of this method, empirical observations demon-
strate that this approach consistently outperforms solutions derived from the leading
eigenvector. Note that if % is found to have rank one, the random vectors generated us-
ing % as covariance matrix will be identical to the leading eigenvector of %, up to a scalar
value.

The previous optimization schemes in (7.15),(7.22), or (7.25) represent the optimal
MSE solution. However, due to the substantial pixel count in the imaging area, the com-
putational demands of the cost function become significant. This involves calculating
and storing a significant number of A';Aq € CL matrices, making it computationally
challenging and memory-intensive to implement and solve in cvx, which is a MATLAB
toolbox for solving convex optimization problems [151]. One way is to optimize the
codes for the subsampled imaging area with fewer pixels, such as proposed in (7.21).
However, this solution will be suboptimal as the new CRB for the subsampled data will
not be optimal for the overall system. Another way to address this limitation is to explore
a suboptimal optimization function that is less complex and more efficient.

7.3.2. FIM MAXIMIZATION

Rather than minimizing the trace of the CRB matrix in (7.25), an alternative approach
involves maximizing the trace of the FIM. An optimized encoding matrix can be ob-
tained by maximizing the Fisher information within a region of interest (ROI). Thanks
to the linearity of the trace operator, this proposed approach becomes computationally
more efficient than the optimization schemes outlined in (7.20),(7.24) or (7.28). How-
ever, it may not achieve the optimal MSE, potentially resulting in a degradation of image
quality. This degradation results from the fact that trace-based FIM maximization and
trace-based CRB minimization are not mathematically equivalent optimization prob-
lems since the trace(.) operator is not linear.

Although this is not equivalent to the minimization problem in (7.25), we can maxi-
mize the trace of the FIM as expressed in (7.14) which leads to

max trace(AL"Ac)
¢ ) (7.29)
s.t. lell; =1.
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Through the transformation of A!;'Ac using (7.18), its trace can be written as

IK IK
trace(A?Ac) = Z Z c;‘,cqtrace(A';Aq)
p=1g=1 (7.30)
=clc,
where 7 is given by
trace(A'l"Al) trace(AT'AIK)
o = : : . (7.31)
trace(AIHKAl) trace(AIHKAIK)

As aresult, (7.29) can be simplified as

max c"./c
¢ (7.32)
st. fe)l®=1.

The solution to this problem is well-known by Lagrange multipliers and is given by
the eigenvector of .7 corresponding to the largest eigenvalue [152].

Notably, the matrix <7 is complex and has complex eigenvectors. However, we need
to narrow its focus to amplitude and bi-phase encoding. In other words, the encoding
vector c is constrained to the real domain. By decomposing the cost function in (7.32)
using real and complex parts, it can be expressed as

Re(w) -Im(<)
Im(«/) Re(%)

Re(c)

H _ T T
cHozc=[Re(©T Im©7] Im(c)

. (7.33)

Since only the real part of ¢ is considered for amplitude and bi-phase encoding, the imag-
inary part can be set to zero, i.e., Im(c) = 0. As a result, (7.33) can be expressed as

Re(c) "Re(«)Re(c). (7.34)

The amplitude and bi-phase encoding vector can thus be determined by extracting the
leading eigenvector from the real part of the matrix .#'. We will call this method the FIM-
Opt approach.

7.3.3. ENCODING MATRIX OPTIMIZATION FOR MULTIPLE TRANSMISSIONS

For multiple transmissions, D distinct encoding matrices are designed to construct a
more accurate compounded ultrasound image. Assuming the pixel intensity s remains
constant across these D transmissions, a signal model for the D transmissions and mea-
surements can be expressed as follows

v Ac, n;

V) Ac, n
. S+ . . (7.35)

Zp Acp np
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Itis important to note that the model (7.35) remains linear concerning both s and the en-
coding matrices C;4. Consequently, the optimization methods detailed in Sections 7.3.1
and 7.3.2 can again be employed to address and solve the code design for this model.

Solving for the encoding matrices in (7.35) using the optimization meth-
0ds(7.20),(7.24) or (7.28) described in Section 7.3.1 would still encounter memory issues
when implemented due to the large number of pixels. Alternatively, for the solution
based on the minimization of the CRB, we can use the same method as before but adopt
the randomization method in the subsampled scenario to obtain L distinct encoding
matrices instead of creating the formulation based on (7.35). We first generate many
random vectors from the distribution & ~ .4°(0,%). Then, we apply them to the orig-
inal problem and choose L candidates that give the minimum value for (7.15),7.22, or
7.25. Hence, we find L solutions that minimize the CRB, and these L transmissions are
coherently compounded. For the solution based on the maximization of the FIM, it is
observed that multiple large eigenvalues of </ are close to each other, suggesting the
presence of multiple suboptimal solutions. Therefore, a potential solution could involve
the first few leading eigenvectors corresponding to these largest eigenvalues for multiple
transmissions. Then, each eigenvector is normalized and selected as a coding vector of
each transmission, and finally, these L transmissions are compounded.

7.3.4. COMPUTATIONAL COMPLEXITY

The FIM-Opt approach requires the computation of the ./ matrix in (7.31). Because of
the trace operator, this requires calculating the diagonal of I?K? matrices of the form
A?Aq € CH*L (see (7.19); for the subsampled scenario, we can simply change L by S).
Computing the diagonal of each AyAq requires a complexity of & (LFI) and the over-
all cost becomes ¢ (IK?LF). Taking the traces of all terms in (7.31) has complexity
O(I?K? L); which is relatively negligible. Later, computing the eigenvectors of the result-
ing ./ matrix brings a computational complexity of &' (I3K3), which is again negligible.
Note that I in our case is of size 80 or 128 and 2 < K < 5. Hence, the optimization proce-
dure with FIM-Opt has an overall computational complexity of ' (I*K?LF).

In Eig-Opt, Dep-Opt and Trace-Opt scenarios, calculating the I?K? entries of the
A?Aq € C¥*L matrices in (7.19) has a computational complexity of ¢'(I*K?L?F) which
is already L times the complexity of the FIM-Opt scenario. Moreover, the computational
complexity of the SDP given in (7.20) or (7.28) has a complexity of OUI*K?F2L+ 2 12KF)
per iteration because AH (% ® Ir;)A is computed in every iteration with respect to up-
dated codes in SDP. Note that instead of actually implementing the Kronecker product,
an equivalent expression in (7.19) is used. Then, the computational complexity of the
SDP per iteration becomes ¢'(I°K?L?F). Besides, the cost of the first and second pos-
itive semidefinite constraints are ¢(L%) and ¢ (I3K3), respectively, in (7.20) and (7.28).
Since these terms are generally negligible, the overall computational cost of Eig-Opt or
Trace-Opt becomes &' (IK?L2FT) where T is given by the number of iterations in the
SDP solver. Note that cvx uses interior point methods, where each iteration has addi-
tional costs, increasing the computation time even further.

While FIM-Opt requires a single step with the complexity of &' (I°K?LF), Eig-Opt,
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Trace-Opt, and Det-Opt require a notably higher cost, which makes FIM-Opt more use-
ful in practical scenarios. Furthermore, ¢ (I°K?L?FI) quadratically increases by L, and
the number of pixels can be significantly high in ultrasound imaging, which requires
subsampling. Nonetheless, the optimization of the codes is performed only once and
can be used in imaging tasks repeatedly.

Finally, the computational cost of matched filtering after the optimization procedure
is O (LFI), which is equivalent for all coding schemes of comparison.

7.4. NUMERICAL RESULTS

Simulation experiments are conducted using the k-Wave toolbox [153]. In all k-Wave
simulated measurements, the attenuation coefficient has a frequency-dependent power
law model for realistic nonlinear ultrasound wave propagation in biological soft tissue.
The attenuation is defined as a(f) = a f¥ where a = 0.75 dB/(MHzY-cm) is the attenu-
ation coefficient and y = 1.5 is the power law exponent.

Two scenarios are considered to evaluate the performance of the proposed optimized
code. The first scenario presented in Section 7.4.1 involves a densely sampled high-
frequency array with an element pitch-to-wavelength ratio less than 0.5. The second sce-
nario in Section 7.4.2 aims to test the optimized code on a numerical model of the clinical
transducer array again with an element pitch-to-wavelength ratio less than 0.5. We used
both a high-frequency array and a lower-frequency clinical probe to test our method’s ro-
bustness across different transducer simulations. Note that high-frequency arrays offer
a better resolution for detailed analysis in superficial imaging [154], while low-frequency
arrays are useful in practical deep imaging scenarios [122, 123]. In a densely sampled
high-frequency array with 128 elements, we first start with a toy example (a simplified
simulation) to compare the proposed algorithm with the state-of-the-art. Then, we
compare the performance of CRB minimization and FIM maximization for point scat-
terers data for a highly subsampled optimization scheme. Lastly, the computationally
efficient FIM method is chosen to compare its performance with the state-of-the-art.
These comparisons are also carried out with the simulated clinical transducer for both
point scatterers data and a simulated flow phantom in Doppler imaging.

First, the transmitted pulse length #,,,,;5c <5.19 us was chosen to limit the dead-zone
to 4 mm. Second, the total pulse length is the length of the base pulse multiplied by
the number of bits since we do not consider any overlap between consecutive pulses.
In other words, the delay 7 between two base pulses is considered equal to the base
pulse length. Third, the number of transmissions D is important for the imaging qual-
ity. For the initial toy example, we pick D = 1 in Section 7.4.1. For the cases in Section
7.4.1, we select various values of D = 1,3, 5,10 for comprehensive analysis between CRB
minimization and FIM maximization. In ultrafast compounded Doppler imaging, it is
experimentally validated that when D reaches 9, the resulting contrast and SNR are sat-
isfying, and image contrast will only slightly improve for D > 16 assuming plane-wave
imaging [124]. Hence, D bounded between 10 and 16 should be sufficient in literature.
Hence, we pick D = 10 for the comparisons with the state-of-the-art in Sections 7.4.1
and 7.4.2. Hence, we make sure that all the compared methods are tested with a suffi-
cient number of transmissions. Those methods involve Barker coding, random coding,
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Figure 7.1: Transmit pulse shape: (a) single short pulse (base pulse), (b) frequency spectrum of base pulse

and plane-wave transmissions.

7.4.1. DENSELY SAMPLED HIGH-FREQUENCY ARRAY

The densely sampled high-frequency array consists of 128 elements spaced with 25 um
pitch. The ultrasound transducer emits a base pulse with a center frequency of 15 MHz.
The base pulse and its frequency spectrum are given in Fig. 7.1. The imaging region
of interest extends from 4 mm to 11 mm in depth and from —1.25 mm to 1.225 mm in
width, aligning with the area typically studied in mouse brain imaging. The interpixel
spacing is picked as dz = dx =25 um.

ToYy EXAMPLE

In this section, we compare the results of the approaches that rely on the minimization
of the CRB and the maximization of the FIM with the state-of-the-art for a single scat-
terer. For the former approach, we solve the problem given in (7.20) and (7.28) using cvx
software [151]. However, due to the high computational complexity of the problem, we
only focus on a small optimization area with a single pixel. For the latter approach, the
solution is given by the leading eigenvector of Re(%/).

Due to the high computational complexity of the CRB-based solution, an optimized
encoding matrix of size 128 x 2 is designed, with the pulse having a short bit-length of 2.
To evaluate the performance of the algorithms, we first consider a single scatterer image
where the codes are optimized with respect to the known scatterer point, which is lo-
cated at [x, y] = [0,8] mm. Since we test only for a single scatterer, such an optimization
scheme is sufficient. Ideally, for a larger area of distributed scatterers, the optimization
should be performed on the pixels taken from the entire area to improve the SNR per-
formance. Here, we only consider a single transmission, i.e., D = 1. We use random
rounding for the CRB minimization method, and the single realization that maximizes
(7.20) (Eig-Opt) or minimizes (7.28) (Trace-Opt) is picked among 100 random vectors
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Figure 7.2: The single transmission imaging results for optimized transmissions with Eig-Opt, Trace-Opt,
FIM-Opt, Barker code, random code, and plane-wave transmission for noiseless data (top) and noisy data with
10 dB SNR (bottom)

that belong to the following distribution & ~ .47 (0, ?). Here, further increasing the num-
ber of random vectors did not visibly affect the performance. For the solution based on
the maximization of the FIM (FIM-Opt), the leading eigenvector of Re(<) is selected for
transmission. The performance of the methods is compared to the Barker code, ran-
dom code, and plane-wave transmission under noiseless and noisy conditions with 10
dB SNR. Before transmission, all pulses undergo normalization to ensure uniform aver-
age energy levels. Except for the plane-wave transmission, all transmission codes have
alength of 2. All results obtained with matched filtering in (7.12) for these six scenarios
are shown in Fig. 7.2.

The results are numerically analyzed by comparing the SNR and CNR in the four
scenarios, where SNR = 1010g10(§;;). Pg and P, are the average power of the point
scatterer and background noise, respectively. In noise-free cases, P, corresponds to
the average power of the low-intensity background region across the image. Here,
CNR = 10log;( ”‘;—:‘”I) where y1 and p,, are mean values of the intensities of point scat-
terer and background regions, and o, is the standard deviation of the noise. To com-
pute the SNR and CNR, the red rectangles are used for the scatterer and background
noise. Eig-Opt, Trace-Opt, and FIM-Opt perform similarly in noiseless and noisy cases
with 10 dB SNR noise, outperforming the plane-wave, random code, and Barker code
reconstructions. Since the formulations in (7.21) and (7.28) are the same for the single
pixel scenario, it is expected that we observe that both Eig-Opt and Trace-Opt results in
the same reconstructions. We also observe that in the noisy case, while Eig-Opt, Trace-
Opt, FIM-Opt, and the Barker code approach could reconstruct the scatterer, the other
methods could not provide a proper view of the scatterer. The Eig-Opt, Trace-Opt and
FIM-Opt results outperform the Barker code in the noisy case. Thanks to the compu-
tational efficiency of the FIM-Opt approach, it is more advantageous than both Eig-Opt
and Trace-Opt methods.
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Figure 7.3: Simulated imaging performance for densely sampled high-frequency array. The compounded
image results for optimized transmissions with Eig-Opt, Trace-Opt, and FIM-Opt using 9 and 121 pixels for (a)

single transmission, (b) 3 transmissions

CRB MINIMIZATION VERSUS FIM MAXIMIZATION

Now, instead of a single scatterer, we consider uniformly distributed point scatterers in
Fig. 7.3. The scatterers are placed 0.625 mm apart both in z and x directions. We com-
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Figure 7.4: Simulated imaging performance for densely sampled high-frequency array. The compounded
image results for optimized transmissions with Eig-Opt, Trace-Opt, and FIM-Opt using 9 and 121 pixels for (a)
5 transmissions, and (b) 10 transmissions
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Figure 7.5: Simulated imaging performance for the densely sampled high-frequency array with the imaging
results of D =5 transmissions for Eig-Opt

pare the imaging performance of three transmission methods: Eig-Opt, Trace-Opt, and
FIM-Opt, using 2-bit codes. However, due to the high computational complexity of the
problem, we only focus on a small optimization area with few pixels (9 or 121 pixels).
Since we optimize the codes for a small area, comparing them with the state-of-the-art
would be unfair. It was fair for the single scatterer as the codes are optimized with re-
spect to the specific location of the scatterer. Now, the optimization area is significantly
smaller than the extent of the uniformly distributed scatterers, and the subset of pix-
els selected does not overlap with the scatterers. Therefore, only the proposed methods
are compared to choose the best one for more comparisons in the next section. Before
transmission, all codes undergo normalization to ensure uniform average energy levels.

An image subset of 3 x 3 =9 equidistantly distributed pixels from 8 to 9.3 mm on the
z-axis and from —0.65 to 0.65 mm on the x-axis in Fig. 7.3a was chosen for optimization.
Note that this area is shown with a red rectangle where the scatterers and selected pixels
do not overlap. This area is chosen in the middle of the region of interest between 6 mm
to 11 mm. Such a low number of pixels is selected due to the computational complexity
of the semidefinite program in (7.20) for Eig-Opt and (7.28) for Tra-Opt, which is solved
via the cvx toolbox. On a Dell server with dual AMD EPYC 7551 processors (64 cores to-
tal, 128 threads, 128 GB RAM, 1 TB SSD), optimization with Eig-Opt takes approximately
1800 seconds, Tra-Opt takes about 2600 seconds, and FIM-Opt completes in around 20
seconds for 9 pixels. While this server is optimized for fast computation, running the
same algorithms on a standard MacBook Pro 2019 (2.6 GHz 6-core Intel Core i7) takes
roughly 10,000 seconds for Eig-Opt and Tra-Opt. The middle three plots in Fig. 7.3a and
the first three plots in Fig. 7.3b, 7.4a and 7.4b are obtained with the optimized code that
relies on 9 pixels. Hence, we compare the results for minimizing the CRB based on the
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Eig-Opt and Trace-Opt criterion and maximizing the FIM for the same pixels.

In the second scenario, a subset of pixels comprising 11 x 11 = 121 equidistantly dis-
tributed pixels spanning from 7.3 to 9.9 mm on the z-axis and from —1.3 to 1.3 mm on
the x-axis in Fig. 7.3a was chosen to maximize the FIM where the area is shown with a
magenta rectangle. Although there is not a specific reason for the exact choice of 11 x 11,
we aim to exceed the performance of the CRB minimization for a small area (9 pixels) by
maximizing the FIM for a larger area (121 pixels), with lower computational complexity.
Indeed, it is significantly lower as it only takes around 160 seconds with the given Dell
server. However, Eig-Opt and Tra-Opt algorithms exceed 36 hours for 121 pixels scenario;
hence, it is not practical. The last plots are obtained with the optimized code concerning
121 pixels in Figs. 7.3 and 7.4. Note that the computational cost of FIM-Opt, even with
more pixels, is still lower than the Eig-Opt and Trace-Opt methods.

For each method D =1, D =3, D =5 and D = 10 transmissions are compounded.
These codes are generated randomly for the Eig-Opt and Trace-Opt which employ the
mentioned random rounding method in Section 7.3.3, and D realizations that minimize
(7.15) or (7.25) are picked, respectively. With FIM-Opt, the leading D eigenvectors of
Re(«) are selected for transmission. All results obtained with matched filtering from
D=1,D=3,D=5,and D = 10 transmissions for these four scenarios are shown in Figs.
7.3 and 7.4. We only show the results without noise in Figs. 7.3 and 7.4. Moreover, Fig. 7.5
shows individual transmissions of the Eig-Opt algorithm compounded in Fig. 7.4a. Here,
each transmission focuses on a different part of the image, hence showing the necessity
of various transmissions.

The SNR values given in Figs. 7.3 and 7.4 are obtained by taking the average power
of all the known scatterer locations for P;. To compute P, noise locations are selected
at the central points between every four scatterers, where the scatterers form the cor-
ners of a rectangle. These central points represent regions expected to contain minimal
signal, primarily dominated by noise. Across the reconstructions, single transmission is
insufficient for a good reconstruction quality for all methods, as shown in Figs. 7.3 and
7.4. The resolution of the scatterers increases with D = 5 transmissions especially for
FIM-Opt method and the entire ROI even becomes more resolvable with D = 10 trans-
missions. In terms of the clarity of all scatterers, the Eig-Opt performs similarly to the
FIM-Opt, where the performance of Trace-Opt seems to be slightly weaker than the oth-
ers. FIM-Opt outperforms both Eig-Opt and Trace-Opt in terms of SNR. When the region
of interest for maximizing the FIM is extended from 9 pixels to 121 pixels, the scatterers
in the entire ROI become more resolvable. In contrast, the SNR values for FIM-Opt for
9 pixels seem higher. This is due to scatterers in the middle of the x-axis seeming to be
very bright and increasing the average SNR for FIM-Opt with 9 pixels. Here FIM-Opt op-
timized based on 121 pixels and with 10 transmissions seems to provide a good balance
between resolution and SNR by capturing the entire area of scatterers.

The computational complexity of the CRB minimization is significantly higher than
the FIM maximization, and hence, FIM-Opt is more advantageous than others also in
terms of computational cost. While the Eig-Opt and Trace-Opt require solving a high-
cost SDP given in (7.20) or (7.28) using a toolbox such as cvx, the FIM-Opt only takes D
eigenvectors of Re(«7) in (7.31). In the FIM-Opt method, irrespective of the area of inter-
est, the size of the .« matrix in (7.31) is the same for the same code length and number
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Figure 7.6: Simulated imaging performance for a probe geometry matching that of a densely sampled high-
frequency array based on the 10 leading eigenvectors with FIM-Opt Method

of transmitters. The only increment in the computational complexity is calculating the
</ matrix. In the end, FIM-Opt is exploited for the rest of the simulations thanks to its
reconstruction quality and computational efficiency.

FIM MAXIMIZATION VERSUS THE STATE-OF-THE-ART

In this section, an optimized encoding matrix of size 128 x 5 is designed, with the pulse
having a bit-length of K = 5. We compare the imaging performance of four transmis-
sion methods: single short pulse plane-wave, 5-bit Barker code, 5-bit random code, and
5-bit optimized code with FIM-Opt. Before transmission, all codes are normalized to
ensure uniform average energy levels. Here, images from D = 10 transmissions are com-
pounded. The scatterers are placed 0.625 mm apart in the z direction and 0.45 mm
apart in the x direction, respectively. For FIM-Opt, an image subset between 6 to 11 mm
in the z-axis and between —1.5 mm to 1.5 mm in the x-axis was chosen for optimization,
as shown with the red rectangle in Fig. 7.7. This image subset contains 50 x 30 = 1500
equidistantly distributed pixels. The distance between each pixel used for optimization
is 0.1 mm in the z and x directions, four times the interpixel distance. Since the con-
struction of .7 takes time when the area is extended, the optimization region is limited.
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Figure 7.7: Simulated imaging performance for densely sampled high-frequency array for optimized code,
Barker code, plane-wave, and random transmission with SNR = 10 dB

Fig. 7.6 shows the matched filter imaging results from the optimized (FIM-Opt) code
based on the 10 leading eigenvectors. It shows that each eigenvector transmission pro-
duces a different focusing area in the image, leading to varying imaging results. This
finding highlights the need for different optimized encoding matrices for multiple trans-
missions. Then, the compounded imaging results are shown in Fig. 7.7 for all meth-
ods. These are reconstructed from measurements with the same additive white Gaussian
complex noise at SNR of 10 dB. The left-most image is obtained with the optimized code
by compounding data from the 10 leading eigenvectors. The subsequent two images dis-
play results from Barker-5 transmissions and single pulse plane-wave transmissions by
compounding the data from 10 insonified angles spanning [-12°,12°]. Meanwhile, the
fourth image is acquired and compounded through 10 instances of 5-bit random code
transmissions.

The SNR values in Fig. 7.7 are obtained by taking the average power of all the known
scatterer locations as P and picking a low-intensity point between every four scatterers
for P,, where the scatterers form the corners of a rectangle. Although the optimization
of the codes is performed for an area smaller than the ROI, the SNR values are acquired
with the points picked from the entire ROI. The CNR values are also attained in a simi-
lar fashion. The results show that the optimized transmission produces the highest SNR
and CNR, and the reconstructions appear brighter in the deeper area ranging from 7
to 9 mm. Conversely, the Barker code and plane-wave transmissions show distortions
starting from approximately 8 mm depth. Distortions are also present for the optimized
codes, but their effect is less severe thanks to the higher SNR of optimized codes. Lastly,
arandom transmission appears to be the most sensitive to additive noise, leading to sig-
nificant degradation in image quality. In summary, Barker codes outperform plane-wave
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Figure 7.8: Normalized autocorrelation function for optimized code on the 80th element,

[0.75,-1.58,1.88,—1.51,0.70], and Barker code of length 5, [1,1,1,-1,1]. These codes are scaled with the
same factor after normalization to show the magnitude of the optimized codes compared to standard Barker
codes.

and random codes in the deeper region but still fall short compared to the optimized
transmission regarding SNR and noise sensitivity.

To measure resolution, we used the full width at half maximum (FWHM) of the point
spread function (PSF) at the scatterer locations. The FWHM represents the width of the
PSF at 50% of its peak value and indicates how well nearby points can be distinguished.
We report both axial and lateral FWHM values as indicators of spatial resolution. The
FWHM of the PSF for resolution is given in Table 7.1 for the images in Fig. 7.7. The twelve
scatterers inside the region over the [6,7.5] mm across z-axis have been used and their
FWHM values are averaged. These scatterers are chosen as they are in the optimization
area, and they do not suffer from the degradations starting around 8 mm for random
codes. The optimized codes present the worst resolution and the highest FWHM value.
Then, Barker codes and plane-wave produce better axial and lateral resolution, and ran-
dom codes result in the best resolution values.

A trade-off between SNR and resolution (both axial and lateral) for the optimized
code is observed. This trade-off arises from the limitation in the optimization formula-
tion (7.32), where the autocorrelation property of the code is not considered. The au-
tocorrelation function (ACF) of the optimized code (on the 80th element) and the 5-bit
Barker code is plotted in Fig. 7.8. It can be seen that the normalized main lobe ampli-
tude (the highest peak) of the optimized code (0.55) is higher than the Barker code (0.25)
by a factor of 2. However, the main lobe-to-side lobe (the second highest peak) ratio of
the optimized code 1.89 is considerably lower than that of the Barker code (5). A lower

FWHM (mm) Optimized Barker PW  Random

Axial 0.423 0.342 0.327 0.266
Lateral 0.333 0.323  0.310 0.262

Table 7.1: Axial and lateral FWHM of PSF
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Figure 7.9: (a) CRB versus depth for random, Barker, plane-wave, and optimized code at —0.7 mm on x-axis;
(b) CRB versus D, the number of compounded eigenvectors, for a pixel at depth 4.5 mm and depth 11 mm

main lobe-to-side lobe ratio increases interference and artifacts caused by side lobe en-
ergy and results in smoother images with worse resolution. Although a high main lobe
level can result in a higher SNR in the image; a low main lobe-to-side lobe ratio causes a
degraded resolution for optimized codes.

We evaluate the CRB of the four methods across different imaging depths, as shown
in Fig. 7.9a. The results reveal that the FIM-Opt code yields the lowest CRB, indicating
superior estimation precision of optimized codes, meaning it provides the most accurate
estimation of scatterer intensities among the tested methods. Meanwhile, the Barker
code and short pulse plane-wave exhibit similar CRB curves and the random code dis-
plays the highest CRB values. These SNR values align with the trends observed in the
imaging results. Hence, this analysis confirms the effectiveness of the FIM-Opt code
compared to the other tested methods in terms of increased SNR.

Remark 1: Note that number of transmissions D can also be analyzed from the CRB
perspective. Thus, how the CRB changes when compounding more leading eigenvectors
for multiple transmissions is investigated. In Fig. 7.9b, the normalized CRB is plotted
for a pixel located at depths of 4.5 mm and 11 mm when compounding 1 to 40 leading
eigenvectors. It becomes evident that after compounding 5 transmissions, the CRB no
longer decreases significantly. Still, to accommodate the literature, the number of trans-
missions D is set to 10 for good compounded image quality.

7.4.2. SIMULATED CLINICAL TRANSDUCER RESULTS

Here, the M5Sc-D phased array transducer manufactured by General Electric (GE) with
its 80 x 3 elements and a pitch of 0.27 mm is used. This transducer complies with the
Nyquist sampling requirement, operating at a center frequency of 2.8 MHz with wave-
length A = 0.55 mm. We only consider using the middle row elements, resulting in 80
active elements. The choice was made for computational efficiency, as it reduces the
number of elements. Although this limits the shape of the beam in the elevation di-
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rection, it allows for a focused investigation of beamforming performance in the lateral
direction. The pixel spacingis dz = dx =90 um.

MATCHED FILTER RESULTS

Simulations are conducted using equidistantly distributed point scatterers within the
imaging area. The encoding matrix C was optimized with dimensions 80 x 5, focusing on
an image subset ranging from around 50 mm to 90 mm in the z-axis and —12 mm to 12
mm in the x-axis which is shown with the red rectangle in Fig. 7.10a. This image subset
contains 90 x 44 = 3960 equidistantly distributed pixels. Here, the distance between each
pixel used for the optimization is 0.54 mm in the z and x directions, 6 times the interpixel
distance. Its performance was compared to the 5-bit Barker code, single pulse plane-
wave, and 5-bit random code. The imaging region ranges from 5 mm to 90 mm. Fig.
7.10a displays the results obtained from compounding 10 transmissions, all subject to
the same level of additive white Gaussian noise (SNR = 10 dB).

In Fig. 7.10a, the imaging result beginning at 55 mm with the optimized code is more
detectable and more robust to the noise than the Barker code, the plane-wave, and ran-
dom codes in the deeper regions. Note that the proposed coding scheme is optimized
for the area between 50 mm and 90 mm. Therefore, the performance enhancement is
expected in that area. As a trade-off, the optimized code has a lower resolution than the
other alternatives. Another trade-off of the optimized code is that it results in a narrower
field of view compared to other methods. The top left and right point scatterers are not
detectable since the near field between 5 mm to 50 mm is ignored for optimization, and
some information loss may exist in the near field area. Among other methods, the 5-
bit Barker code seems to have higher SNR than the other but slightly degrades the axial
resolution compared to the plane-wave or random codes, leading to visible side lobes
at point targets as the Barker code does not possess perfect side lobe cancellation after
pulse compression[67]. To quantify this, a vertical line at x = [-0.6875] mm is analyzed.
Along the axial direction, 19 scatterers are considered to compute the average main lobe-
to-side lobe ratio, which is found to be 8.46 dB. The optimized code performs even worse
in this regard, yielding a lower ratio of 3.38 dB. Conversely, the random code exhibits
better axial resolution than the other methods, particularly in the near-field area[18].
However, the SNR of the random code is notably lower than other methods. In conclu-
sion, the trade-off between the SNR of the optimized code and axial resolution is also
observed in Figure 7.10a.

The results are numerically analyzed by comparing the SNR in the four scenarios. For
this calculation, a line at x = [-0.6875] mm is picked. We aim to give the reader a richer
view of what is happening with the SNR at various depths. The middle line is chosen as
the limited optimization region affects the field of view in the corners. Boundary effects
have less influence on the middle. This region is where the optimization is most effective,
providing a more reliable and representative evaluation of the method. The highest-
intensity and lowest-intensity regions are determined on this line. It results in 19 high-
intensity regions, corresponding to approximate locations of 19 point scatterers at x =
[-0.6875] mm. Then 19 lowest intensity regions in this line are selected and considered
as background noise. Each SNR value is computed between a high-intensity region and
neighboring a low-intensity region and results in 19 SNR values. Using these 19 SNR
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Figure 7.10: Simulated imaging performance for a probe geometry matching that of a clinical transducer (a)
Imaging results for optimized code, Barker codes, plane-wave, and random transmissions with SNR = 10 dB.
(b) Imaging results for 3-bit, 5-bit, and 10-bit optimized codes with SNR = 10 dB.
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Figure 7.11: (a) The SNR boxplot analysis for point scatterer images with optimized codes, Barker codes,
single pulse plane-wave, and random codes. In each box, the bottom and top edges of the box represent the
25th and 75th percentiles in the data, and the red line inside the box marks the median. The whiskers represent
the highest and lowest values in the data. (b) The SNR boxplot analysis for point scatterer images with 3-bit,
5-bit, and 10-bit optimized codes.

values, the box plots of the SNR data from each method are shown in Fig. 7.11b. The
optimized code has the highest SNR among all methods. A single pulse plane-wave has
the highest variation. If we look at the median SNR value, the optimized code has an
SNR gain of 4.4 dB, while the Barker code has a gain of 2.5 dB compared to the single
short pulse. Note that the optimized and Barker codes maintain a more consistent SNR
performance than single pulse and random code.

Furthermore, the performance of different bit-length optimized codes (3-bit, 5-bit,
and 10-bit) is compared. The results are shown in Figs. 7.10b and 7.11b. As the bit-
length increases, the SNR also increases. Note that longer codes have higher main lobe
levels after pulse compression, resulting in a stronger signal relative to the noise, espe-
cially in the deeper regions. However, the use of longer codes also involves a trade-off.
Specifically, a 10-bit code exhibits lower resolution for point scatterers compared to the
3-bit and 5-bit codes. As can be seen from the autocorrelation function of optimized
codes in Fig. 7.12, the 10-bit code has the highest main lobe amplitude but the lowest
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Figure 7.12: Autocorrelation function for 3-bit, 5-bit, and 10-bit optimized codes
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Figure 7.13: Simulated imaging performance for a probe geometry matching that of a clinical transducer for

(a) Optimized code using Least Squares QR (LSQR) algorithm (b) Barker code using LSQR algorithm. Here, we
show the images after 1 to 16 iterations.
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Figure 7.15: Image contrast of a vertical line from the image at 0.24 mm on x-axis to noise comparison be-
tween optimized code at 10th and Barker code at 4th iteration.

main lobe to side lobe ratio which is only 1.19. The 3-bit code has the lowest main lobe
level but has a main lobe-to-side lobe ratio of 5, which is equal to the 5-bit Barker code.

LSQR RESULTS

Instead of reconstructing the image with the matched filter, we can also seek a better
fit between the data and the model by applying LSQR to improve the resolution of the
optimized code results. Experiments with the number of iterations from 1 to 16 were
conducted. Fig. 7.13a displays images obtained at different iteration steps. The opti-
mized code results show that the image resolution improves as the number of iterations
increases. However, after around 10 iterations, the image starts to overfit with the noise.
Especially in deeper areas with lower signal levels, it leads to a decrease in the SNR and
overall image quality. We observed this effect visually in the reconstructed images, where
noise patterns become more prominent. Furthermore, the point scatterers at two sides
at the top of the image become visible within the increasing number of iterations, which
were not clear in matched filter reconstructions in Fig. 7.10a with optimized code.

The LSQR results from the optimized code are compared to those from the Barker
code, as shown in Fig. 7.13b. The results indicate that LSQR does not significantly im-
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prove the SNR for the Barker code. Although the resolution improves slightly with an
increase in the number of iterations, the near-field area starts to overfit with the noise
after 7 iterations. Analyzing the normalized residual curve for these two coded excita-
tion schemes reveals that the residual does not decrease significantly for Barker codes
compared to optimized codes with the addition of more iterations (Fig. 7.14).

In a direct comparison of the best performance image using LSQR between these two
transmission schemes (e.g., the 10th iteration for optimized codes and the 7th iteration
for Barker codes), the optimized codes still outperform Barker codes in terms of SNR in
deeper areas while achieving a decent resolution. Fig. 7.15 shows the contrast signal for
a vertical line located at position 0.24 mm on x-axis in the image. The scatterers show
clear peaks before 60 mm for both methods. The Barker code starts to fail in the area
deeper than 60 mm, while the optimized code still maintains a good contrast.

7.4.3. DOPPLER FLOW SIMULATIONS

In this section, the blood flow imaging simulation is done in k-Wave using MATLAB. The
clinical transducer setting described in Section 7.4.2 is used here. A flow phantom with
a size of 90 x 20 mm is generated with a 9 mm diameter parabolic blood vessel that is
placed 55 mm away and angled at 25° from the transducer surface. The flow velocity is 9
cm/s, and the blood-to-tissue level is —67 dB. The simulated number of frames is 30. The
tissue density is modeled as a random distribution with a mean value of approximately
1000 kg/m3. The scatterer density in the blood vessel region is also randomly distributed
with values ranging from 1000 kg/m3 to 1020 kg/m?>, where the vessel wall is assumed
static. The imaging performance of the 5-bit optimized code and 5-bit Barker code is
compared for 10 transmissions. The matched filter is used for beamforming, and after
compounding, an SVD filter is applied to all the temporal compounded images to gain
the final power Doppler image [50].

Different levels of white Gaussian noise at the noise-to-blood level of —30, —15, and
0 dB are added to the measurement data. The results are shown in Figures 7.16 and 7.17.
The SNR and the contrast-to-noise ratio (CNR) are calculated for each image, where the
blood vessel area and the tissue area are indicated by the black and white rectangular in
Fig. 7.16 respectively. These regions are selected considering the actual locations of the
blood vessel and the tissue area in the simulated flow image. We aimed to observe the
effect of different codes around the boundaries of the blood vessel. After SVD filtering,
the PDI results at a noise level of 0 and —15 dB show that the blood vessel images from
the optimized code exhibit a better distinction between vessel and background regions
and have stronger intensity compared to the ones from the Barker code (Fig. 7.16). In
the deeper area (below 60 mm), the optimized code exhibits an improved contrast be-
tween the vessel and the background compared to the Barker code. The optimized code
exhibits a clear advantage over the Barker code for a high noise level (—30 dB). The nu-
merical results show that the optimized code has consistent and higher SNR and CNR
across different noise levels. For the noise levels 0, —15, and —30 dB, the optimized code
has SNR gains of 2.33, 4.3, and 7.78 dB compared to the Barker code. The optimized
code is more robust for high-level noise. The blood flow simulation result demonstrates
the ability of the proposed optimized code to improve the SNR of the Doppler images
in deep areas. The resolution problems exhibited by the optimized code in the previous
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Figure 7.16: (a) shows the Power Doppler images from 5-bit Barker code with noise-to-blood levels at 0, —15,
and —-30 dB. (b) is the Power Doppler images from the optimized code. All the images are shown with the same
colormap spectrum from 0 to —40 dB.
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Figure 7.17: (a) SNR of the Barker code and optimized code; (b) CNR of the Barker code and optimized code.
They are calculated using the ROI shown in Fig. 7.16, where the black and white rectangular shows the blood
vessel and the background region, respectively.

sections are not very severe in the Doppler flow simulation.

7.5. DISCUSSIONS AND FUTURE WORK

7.5.1. DISCUSSIONS

In this work, a model-based approach is embraced as it allows for more flexibility in
handling the diverse coded excitation scheme used in our method. For a fair compar-
ison between different coding schemes, we applied model-based beamforming to all
coded excitations in order to ensure that any differences in performance are not due to
the choice of beamforming. This approach allowed for the design of the coded excita-
tion scheme with CRB minimization (Eig-Opt, Det-Opt, Trace-Opt) or FIM maximization
(FIM-Opt). Note that the matched filter method prioritizes SNR, which is maximized by
the matched filter, over spatial resolution. Therefore, all methods can suffer from slight
resolution loss.

Theoretically, we can obtain the optimal solution with an exhaustive search for CRB
minimization, resulting in a single transmission that captures the entire region of inter-
est but has a high computational cost. Since the optimization problem is non-convex,
convex relaxation and subsampling are used, leading to suboptimal solutions and per-
formance degradation. A more feasible FIM-Opt approach is proposed to reduce the
complexity further, providing practical solutions that approximate the ideal case, with
multiple randomizations to compensate. Diverse codes ensure that different parts of
the region of interest are emphasized with each transmission, producing a more com-
prehensive and meaningful image. This diversity benefits scenarios with multiple trans-
missions.

Simulations in Section 7.4.1 and 7.4.1 concluded that FIM-Opt is a cost-efficient so-
lution that performs slightly better than the Eig-Opt and Trace-Opt for the same opti-
mization area. Besides, FIM-Opt with an enlarged optimization area outperforms the
Trace-Opt and Eig-Opt optimized for a small area in terms of resolution, although FIM-
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Opt is still computationally more efficient.

In Section 7.4.1 FIM-optimized code achieves the highest SNR and robustness to the
noise and lowest CRB. However, its lower main lobe-to-side lobe ratio introduces a trade-
off between SNR and resolution. For example, Barker codes are specifically designed to
have good autocorrelation properties, allowing for axial resolution retrieval compara-
ble to a single short pulse. The findings in Section 7.4.2 also support these arguments.
Moreover, increasing bit lengths results in higher SNR but in lower resolution and hence
suffers from this trade-off. To establish a balance between SNR and resolution, LSQR is
employed in Section 7.4.2, and an improvement is observed until the 10th iteration for
the optimized code. However, there is still a need for optimized codes that maximize the
main lobe-to-side lobe ratio while minimizing CRB without using any advanced beam-
forming methods.

The simulation results in Section 7.4.3 demonstrate that the optimized code offers
improved SNR and CNR compared to the Barker code, again with a trade-off for the reso-
lution. This is common in clinical imaging and often depends on the diagnostic context.
For example, in scenarios where noise dominates, stronger vessel contrast can improve
overall visibility, even if boundaries appear smoother. Our results indicate that small ves-
sel visibility is not significantly compromised, as shown by the improved CNR metrics.

7.5.2. LIMITATIONS AND FUTURE WORK

Our work can be considered as an initial attempt for the usage of optimized coded-
excitation and it has a lot of potential for future research direction.
* Ashighlighted before, future work needs to achieve balanced enhancement of SNR
and resolution. For example, adding a resolution-related constraint (e.g., related
to the autocorrelation property) to the problems in (7.15), (7.25), (7.22) or (7.29)
can improve the resolution.

» This work considered amplitude encoding. However, bi-phase encoding can be
easier to implement for more practical purposes with the Verasonics system. In
the optimization function, we then need a binary constraint where c € {-1, 1K,

* The optimization problem poses a computational complexity challenge. Future
research on developing efficient algorithms rather than subsampling can be more
useful.

* Another computational problem is due to the model-based approach. Although a
direct application of DAS beamforming is not possible as each transmitter sends a
different coded pulse, a decoding matrix for the optimized encoding matrix can be
developed. Then, an initial implementation of the decoding matrix makes apply-
ing the DAS beamforming possible. Still, the design of the decoding matrix poses
a computational challenge. For a similar discussion, [155] can be considered.

Conducting Phantom and in Vivo experiments with the Verasonics can validate
the applicability of the proposed method and are needed as future work.
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* The proposed model-based framework for coded excitation can be useful for sys-
tems with compressive sensing or more advanced image reconstruction tech-
niques with fewer sensors [11].

7.6. CONCLUSIONS

In this work, we have proposed optimizing a coded excitation scheme. For this, we de-
signed an optimized code represented by a generalized encoding matrix in a linear signal
model. Then, we employed the minimization of the CRB for the unknown coding ma-
trix. The minimization of the maximum eigenvalue, determinant, and trace of the CRB
matrix has been proposed, but its computational complexity makes the optimization in-
feasible for a large area of interest. Therefore, instead of minimizing the trace of the CRB,
maximizing the trace of the FIM has been proposed. It results in a computationally less
complex problem that can be solved by finding the eigenvector of a small-sized matrix
corresponding to the largest eigenvalue. We used a densely sampled high-frequency ar-
ray to compare the performance of the CRB’s minimization and the FIM’s maximization
for point scatterer data. Then, the suboptimal FIM-based method is chosen to compare
its performance with the state-of-the-art. It is observed that while the SNR increases, the
resolution decreases as the autocorrelation property is not considered. We also tested
the suboptimal FIM-based method with a numerical model of the clinical transducer on
the point scatterer data. Again, we obtained a tradeoff between SNR and resolution. We
also observed that LSQR can drastically improve the resolution of the optimized code
with a slight decrease in SNR. Finally, blood flow simulations are done using a clinical
transducer, and the optimized code exhibits consistent and higher SNR and CNR at dif-
ferent noise levels. Future work highlights the need to balance SNR and resolution and
computationally more efficient optimization schemes.



CONCLUSIONS AND FUTURE WORK

8.1. CONCLUSIONS

This thesis has presented advanced methods and optimization techniques in ultrasound
imaging to address some challenges in the field. This work focused on enhancing imag-
ing quality (resolution, SNR) by proposing novel algorithms and optimizing transmit sig-
nal designs within the imaging system. The key contributions can be summarized as
follows:

Chapter 2 briefly explores the fundamental principles of model-based vascular imag-
ing focusing on power Doppler imaging (PDI). The chapter emphasizes the advantages
of the model-based approach over the traditional DAS approach. Using mathemati-
cal models and regularization techniques, model-based approaches improve the image
quality. The chapter first presents the basic model-based image reconstruction tech-
niques such as matched filter and least squares estimation. Then, it continued with
deterministic and probabilistic frameworks to exploit the prior image information. On
the other hand, model-based methods face challenges in balancing computational ef-
ficiency and image quality, especially for real-time applications. While the image qual-
ity can be improved with those methods, they still require advancements, especially in
compressive scenarios. Hence, this thesis aims to overcome these issues by developing
an advanced reconstruction algorithm and imaging system to improve SNR, resolution,
penetration depth, noise reduction, and so on.

To answer Q1, Chapter 3 proposes an image reconstruction method leveraging the
joint sparse structure of the vasculature at different time instants. The ¢;-SVD algo-
rithm is performed over the measurements, to reduce the computational complexity of
this MMV model. We evaluated the performance of the proposed method within two
different simulation settings. In the first set of simulations, where an ultrasound super-
resolution problem is considered, it has been shown that the proposed method improves
the spatial resolution and provides a clear separation between very close vessels com-
pared to the state-of-the-art. In the second setting, where the image reconstruction is
directly applied to the RF measurements, our method seems slightly slower than SUSHI,
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which is a state-of-the-art method. Still, its image reconstruction quality is better under
appropriate settings. This chapter also discussed why joint sparsity with deterministic
priors might not be sufficient for the ultrasound imaging data. Due to the limited prior
information associated with deterministic sparsity, this chapter points out the motiva-
tion for the need for statistical sparsity in the upcoming chapters.

To answer Q1, Chapter 4 proposes using the SBL algorithm with fixed-point itera-
tions for vascular ultrasound imaging. Instead of deterministic methods, joint sparsity
is now enforced using statistical methods. Further, the performance of the MMV FISTA
and SBL algorithms have been compared with mouse brain image data. Both methods
slightly outperform the matched filter; however, the improvements are limited to noise
suppression and increased contrast ratio and did not contribute to visualizing the de-
tailed structure of vasculature. This chapter also noted that since vasculature seems to
be a connected network, more advanced priors considering the relations between neigh-
boring pixels might improve the reconstruction quality.

To answer Q2, Chapter 5 introduced a pattern coupling algorithm with fixed-point
iterations, FP PCSBL, which is computationally faster than the EM algorithm. The per-
formance of the proposed method has been tested with DOA and amplitude estimation,
and FP PCSBL shows results similar to those of EM PCSBL. The proposed algorithm is
then tested on mouse brain imaging data to see if pattern coupling enhances the re-
construction performance of the SBL algorithm with fixed-point iterations. While the
method eliminates the grainy structure observed in the vasculature, it does not improve
the visualization of the detailed structure. Finally, this chapter suggested using the cor-
relations between hyperparameters of each pixel instead of only a simple dependence.

To answer Q2, Chapter 6 proposed a correlated sparse Bayesian learning (SBL) al-
gorithm for block sparse signal reconstruction with unknown partition. This algorithm
is proposed as a computationally more efficient version of EBSBL by explaining the un-
derlying relation between these two algorithms. We assume that neighboring sparse co-
efficients are correlated, resulting in a tridiagonal correlation matrix. We proposed an
approximate solution as the inverse of a tridiagonal matrix is cumbersome. The sparse
reconstruction performance of the algorithms is evaluated for randomly generated syn-
thetic data and DOA, focusing on the amplitude estimation problem. The proposed
block sparsity algorithm outperforms EBSBL and methods that do not rely on corre-
lations, such as CSBL and PCSBL. Furthermore, the proposed algorithm recovers both
block patterns and isolated coefficients.

We also noted that a two-dimensional version of the algorithm can be derived. How-
ever, the correlation matrix becomes block tridiagonal with tridiagonal blocks to cap-
ture the correlation with the pixels in the horizontal and vertical directions. Such an
approach requires further discovery on the estimation of the parameters. We decided
not to pursue that approach due to the computational inefficiency of the SBL algorithms
with the EM method for the two-dimensional ultrasound imaging data. As in Chapter 5,
the fixed-point iterations version of the correlated SBL algorithm can be derived. How-
ever, since the previously proposed algorithms, such as classical SBL and PCSBL, did
not significantly contribute to the image quality, we also did not pursue that direction.
Henceforth, we decided to continue our search for improved image quality through the
design of coded transmissions.
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To answer Q3, Chapter 7 addressed the optimization of coded excitation schemes
with a generalized encoding matrix in a linear signal model. Initially, we employed the
minimization of the CRB matrix’s maximum eigenvalue, determinant, and trace, but the
high computational complexity made this approach infeasible for large areas. Instead,
the maximization of the trace of the FIM is proposed, simplifying the problem by find-
ing the eigenvector of the largest eigenvalue in a small matrix. First, a tight array is used
to compare the performance of the CRB minimization and the FIM maximization for
point scatterer data. Thanks to the computational simplicity, the suboptimal FIM-based
method is chosen to be compared with the state-of-the-art such as plane-wave imaging,
Barker codes and random codes. While the SNR increases, resolution decreases as the
autocorrelation property is ignored. Testing the FIM-based method with a clinical trans-
ducer exhibited a tradeoff between SNR and resolution, and the LSQR method improved
resolution at a small expense of SNR. Lastly, blood flow simulations demonstrated that
the optimized code consistently offers higher SNR and CNR among different noise lev-
els. This chapter also noted that future work should investigate optimization strategies
to balance SNR and resolution enhancement. Moreover, multiphase encoding can be
focused on in addition to the bi-phase encoding.

8.2. FUTURE WORK

Here, we present the limitations and future work regarding image reconstruction algo-
rithms presented in Chapters 3, 4, 5 and 6, and ultrasound transmission in Chapter 7.

8.2.1. IMAGE RECONSTRUCTION ALGORITHMS

This thesis focused on enhancing image quality (SNR and resolution) and reducing ar-
tifacts to overcome model-based vascular ultrasound imaging challenges. However, the
improvements achieved with deterministic and statistical priors were not sufficient to
reveal the detailed structure of the vasculature and were computationally expensive.

Firstly, the way of incorporating deterministic and statistical priors can be improved.
We first determined the number of tissue-related components using empirical obser-
vations on the matched filter data in deterministic and probabilistic cases. Then, we
separated the tissue via SVD filtering from the RF measurements as it is a linear oper-
ation. Finally, we enforced joint sparsity in Chapters 3 and 4 or jointly block sparsity
in Chapter 5. Although this procedure is theoretically convenient, the linearity of the
SVD filtering might be distorted by the noise present in the RF data. Thus, selecting the
tissue-related components was applied as an empirical procedure, and the exact num-
ber of tissue-related components in the SVD filtering step was determined roughly. In
future work, this issue can be addressed by integrating tissue-related priors with blood
flow-related priors. Instead of separating the tissue with an SVD filter on the RF data,
tissue separation can be handled during the inverse problem solution step. In the deter-
ministic approach in Chapter 3, the tissue-related components can be represented with
a smooth prior, such as low-rankness, as in [156]. This approach may provide flexibility
in extracting the vasculature data.

Another drawback of the proposed deterministic approach is that considering the
tissue-separated vasculature as purely joint sparse or jointly block sparse in the spatial
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domain is not proven empirically and remains an assumption. Note that rapid temporal
fluctuations can be present in the data, which may violate the joint-sparsity assumption.
Therefore, searching for a transform domain may produce a better sparse representation
for the unknown vectorized image stack S as given with the following formulation:

A 1
S=argminsEIIZ—ASII%+MITS|IO (8.1)

or
A 1
S=arg minSEIIZ—ASII%+/1||TS||2,1 (8.2)

where T represents a suitable transform. This can be handled by a standard known
transform. For instance, [156] considered taking the temporal Fourier transform of the S
where Doppler shifts can be represented by few spectral samples. Still, such an approach
has not been proven to be the most efficient way of exploiting suitable prior information.
To mitigate this, a dictionary or transform learning step for the ultrasound images can
be implemented [96, 97]. Moreover, deep learning can be an alternative solution [157].
However, the common pitfall of learning-based approaches is the computational com-
plexity of the large imaging data in vascular ultrasound imaging. Still, since the learning
step can be applied once to the training data, extra costs would not be incurred when
solving the inverse problem in real-time.

The main concern of future work should be alleviating the computational inefficien-
cies related to model-based imaging for real-time applications. Using fewer sensors
or taking the Fourier transform of the RF data reduces the computational complexity
arising in model-based approaches. However, DAS beamforming still seems to be the
fastest approach, and computational demands in model-based image reconstruction
techniques limit their practical usage. In the probabilistic approach, SBL requires tak-
ing the large inverse in the iterations. One approach employs an inversion-free method
to reduce the computational burden [120, 121]. In particular, for correlated SBL, the
fixed-point iterations method could be advantageous for one-dimensional and two-
dimensional scenarios. Although updating the diagonal non-zero elements of the corre-
lation matrix can be handled by simple update rules, the non-zero off-diagonal elements
require further exploration. We tried to develop the fixed-point iterations version of the
correlated SBL but have not achieved a successful result yet. Henceforth, it can be ad-
dressed as a part of future work. However, it would not yet be the most computationally
efficient algorithm even with fixed-point iterations.

8.2.2. ULTRASOUND TRANSMISSIONS

The algorithms proposed in Chapters 3, 4, 5, and 6 have shown limited improvements
with high computational cost. The main challenge is balancing the image quality
and computational efficiency. Consequently, our focus has shifted to advancements
in Chapter 7 in the transmit-receive data acquisition process by developing advanced
transmission codes instead of advancements in image reconstruction algorithms.

In Chapter 7, the proposed optimization method still poses computational chal-
lenges for one-time optimization before real-time imaging. Optimizing the coded exci-
tation matrix becomes impractical when applied to larger areas. The second challenge is
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related to the beamforming process of the optimized code transmissions. As each trans-
mitted pulse differs for the transducer elements, a traditional DAS beamformer could
not be applied, but a model-based approach has been exploited. Note that a decoding
matrix can also be designed to provide geometric focusing and proper application of an
algorithm similar to DAS. However, the design of such a decoding matrix poses a new
challenge. Unlike the transmit code design based on matched filtering, the decoding
matrix must be compatible with delay-and-sum beamforming. In matched filtering, the
focus is optimizing the transmission codes to maximize SNR by assuming a straightfor-
ward relationship between the transmitted and received signals. However, the decod-
ing matrix must account for the complex changes over the signals after transmission,
such as reflections and scattering. The decoding matrix needs to reverse these effects
while also managing the delays and geometrical properties of the system; and hence the
decoding matrix requires a more careful design. The third avenue can be incorporat-
ing multi-phase encoding, which is not explored in Chapter 7. Multi-phase encoding,
along with the phase delays in the encoding matrix, can improve the focusing and steer-
ing capacity of the transmissions and result in focused beams or angled plane waves.
Fourthly, bi-phase encoding can be considered for future work to reduce the computa-
tional complexity. It requires more sophisticated relaxation techniques but can be solved
with greedy algorithms instead of forming a semidefinite program [10]. Note that it also
provides simplicity for the Verasonics system. As a fifth suggestion, the balance between
SNR and resolution should be established. Future research could investigate optimiza-
tion techniques that use autocorrelation property constraints in the convex optimization
problem. Finally, the proposed coding scheme should be tested in experimental setups
and in-vivo.
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NOTATION

SETS

N
N

CMXN

VECTORS AND MATRICES
x, X
X
X
xT
X*
xH
diag(x)

On

On,m

Iy

trace(X)

X—l

Xt:= xHx)-1xH

X=Y
XoY
X®Y
XoY

GLOSSARY

Natural numbers.

Positive natural numbers.
Integer numbers.

Real numbers.
Nonnegative real numbers.
Real length-N vectors.

Real M x N matrices.
Complex numbers.
Complex length-N vectors.
Complex M x N matrices.

Plain lowercase and uppercase letters denote scalar.
Lowercase boldface letters denote vectors.

Uppercase boldface letters denote matrices.

Transpose of matrix X.

Complex conjugate of the elements in matrix X.

Complex conjugate transpose, i.e., Hermitian, of matrix X.
Diagonal matrix with entries on the main diagonal collected
inx.

N x 1 vector of all ones.

N x M matrix of all zeros.

N x N matrix of all ones.

Trace of matrix X.

Inverse of matrix X.

Pseudo inverse (or the left-inverse) of a full-column rank tall
matrix X.
X —Y s a positive semidefinite matrix.

Hadamard product of matrix X and matrix Y.
Kronecker product of matrix X and matrix Y.
Khatri-Rao product of matrix X and matrix Y.
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148 GLOSSARY OF NOTATION AND ABBREVIATIONS
vec(X) MN x 1 vector formed by stacking the columns of an M x N
matrix X.
NORMS
[IxIlo fy-(quasi) norm, i.e., number on non-zero entries of vector x.
Il ¢1-norm of vector x.
[Ixl2 Euclidean (or ¢,-)norm of vector x.

IXll2,1:= XN lIxill2
I1XI F:= v/ Tr(XXH)
X.

STOCHASTIC PROCESSES
EX)
Ny 2)

p(x;0)

ABBREVIATIONS
LSQR
SNR
CNR
PDI
SBL

£, norm of matrix X that has columns x;,7 =1,..., N.

Frobenious norm of matrix X.

Expected value of random vector x.

Gaussian distribution with mean vector g and covariance ma-
trix X.
Probability density function of x parameterized by 6.

least squares QR
signal-to-noise ratio
contrast-to-noise ratio
power Doppler image
sparse Bayesian Learning
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