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Preface

An all-important step in the ambitious pursuit towards autonomous networks has been the introduction of

Software Defined Networking which has advocated the concept of separating a network’s control plane from

the data plane and creating a programmable controller with a wider view of the network. This innovation
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my work together with my daily supervisor Chenxing Ji, often called Gabe. I have come in contact with

them after taking their course on High Performance Data Networking which I have genuinely enjoyed.

The subject of my thesis lies at the intersection of two fields, namely computer networks and program

synthesis. As an expert on the latter, Dr. Sebastijan Dumančić has given me valuable research ideas and

feedback on my work which I am very grateful for. In fact, Dr. Dumančić has recommended me the original

research on Probe which I improved upon and used for my final solution.

Ever since I was a kid I have had the ambition to study abroad at a reputable university. With the graduation

date in sight, I would like to thank my uncle, Marco, for allowing me to live in his house for so many years

and for helping me so often that it is difficult to count. I would also like to thank my cousin for always

bringing my favorite food and my friends and brothers for keeping me company. Last but not least, I
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1
Introduction

Recent years have seen a major push within the networking domain to make computer networks self-

configurable, self-optimizing and self-healing in an attempt to relieve some of the burden usually carried by

the network administrators. Aside from the rapid growth of devices requiring connectivity, networks also

have to deal with higher demands in terms of bandwidth, latency and availability. As the costs associated

with building and maintaining such networks increase, network service providers are in a constant search

to make their networks more autonomous. Most notably, the field of mobile networks has seen research

on this topic that dates back to the development of the Long Term Evolution standard (LTE) and it has

continued to be an important area of research ever since [1].

An autonomous network is more efficient both in terms of resource utilization and cost-effectiveness. With

such significant benefits, there is much interest around this topic both from the industry as well as from the

academic environment. Unfortunately, one cannot make a network autonomous if most of its infrastructure

is based on fixed hardware solutions, collectively called Application Specific Integrated Circuits (ASICs).

Traditionally network devices were designed as ASICs by various manufacturers, and they carried out

fixed functionalities which was also reflected in their names, such as switch, bridge, repeater, firewall,

router, etc. For a long time, the performance benefits of using ASICs outweighed their inflexibility but they

proved to be a barrier in the pursuit for programmable networks.

A significant step forward was made with the invention of the Software Defined Network accompanied by

the introduction of the OpenFlow protocol [2]. The SDN concept separated the control-plane from the data

plane, often referred to as the forwarding plane. The responsibilities of the control-plane were assigned to

a central controller with a wide view of the network. The data plane would be relieved of many of the more

complex tasks allowing it to focus on its core strength, namely forwarding packets at line rate.

With a solution found for the previous issue, the road to programmable networks was still blocked by the

fixed data plane. Progress was made by Bosshart et al. [3] who designed the Reconfigurable Match Table

(RMT) architecture which was later generalised to the Protocol Independent Switch Architecture (PISA) [4]

and which, in turn, evolved into the Portable Switch Architecture (PSA) [5].

Accompanying these advances in chip architectures, came P4 [6], a language specifically designed for

defining the behaviour of programmable network devices. Despite not being Turing complete, it is a

remarkably powerful language that allows the software developer to define almost any packet-processing

program or any forwarding behavior. It abstracts away from the specifics of the hardware architecture

through a compiler that takes the high-level code and transforms it into a configuration specific to the target

platform.

P4 brought a disruption in the interplay between network providers and hardware vendors. Previously, the

network behavior was constrained by the fixed functionality of the hardware and, to make matters worse,

change cycles took far too long. Empowered by P4, SDNs enable network administrators to define the

network behavior in a top-down manner since both the controller plane and the forwarding plane can be

adapted to fit the high-level desired behavior.

1.1. Problem Definition
Despite its many benefits, P4 brings with it an additional layer of complexity for the network administrators.

As networks continue to grow in complexity, effective management becomes increasingly more challenging.

1



1.2. Research Question 2

Network administrators may find themselves overwhelmed by having the task of learning a new program-

ming language, added to their growing list of responsibilities. Moreover, fixed hardware solutions were

extensively tested by their vendors. One cannot expect a network administrator to do the same amount of

testing on their own P4 code.

To mitigate the aforementioned problem, researchers have proposed the concept of Intent-Based Network-

ing which allows the developer to provide his/her intent to a system which then automatically generates

a complying program. In this report, we describe a tool that is aligned with the goals of Intent-Based

Networking with the distinguishing feature that the intent is given in the form of input-output examples.

We firmly believe that defining a program by means of input-output examples is highly intuitive for human

beings. Furthermore, this form of program specification fits our problem domain very well as we shall

explain later.

1.2. Research Question
Considering the problem described above, the main aim of this work is stated as follows:

Build a proof-of-concept that is capable of synthesizing P4 code for programmable switches

using example traces of input-output packets.

Research Objective

As shall be explained in chapter 2, there are multiple ways to express a program specification and input-

output examples is one such method that seems very suitable for the problem at hand. The first research

question explores the correctness of our intuition.

Are traces of input packets and their corresponding output packets, an effective way to specify

what a P4 program should do?

Research Question 1

The second research question is self-explanatory and directly concerns the stated objective:

Given a program specification in the form of a set of input-output packets, can we synthesize a

P4 program in reasonable time that, when run on a programmable switch, will comply with the

specification?

Research Question 2

Suppose a solution is found but it is a lot longer or less efficient than a solution written by a software

engineer who is proficient in the P4 language. In that case, the network administrator may still refuse to

deploy it in a real-world environment. The third research question aims to evaluate the solutions generated

by such a P4 synthesizer.

If a complying P4 program is found, how does it compare to a solution written by an expert?

Research Question 3

The thesis resides at the juncture of two separate areas of research: computer networks and program

synthesis. The field of program synthesis concerns itself with the automatic generation of programs that are

provably compliant with a pre-defined specification. To this end, it often restricts itself to domain specific

languages (DSL) that are conceptual or simplified in some capacity. Research question 4 tries to bridge

the gap between program synthesis and real-world by using a state-of-the-art enumerative synthesizer

to generate programs in a DSL that is actually used in practice. Compared to widely used programming

languages such as C/C++ and Python, the P4 language is rather limited, making it an easier candidate to

make such an assessment.
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Can the state-of-the-art enumerative program synthesizer be used for generating solutions in a

DSL used in the real world?

Research Question 4

1.3. Thesis outline
The remainder of this report is structured in five main chapters which are briefly described below.

• Chapter 2. Background and context provides the needed contextual information for the readers

that are less familiar with the topics of SDN and/or program synthesis. The chapter also includes

a brief review of some of the preliminary research that is relevant to the main topic of the thesis.

Specifically, the literature review shall provide a quick dive into the novel concept of intent-based

networking before describing prior attempts at P4 code generation followed up by a brief discussion

on the topic of P4 testing and verification.

• Chapter 3. The Probe-cpp synthesizer describes the first major component of the final solution.

Probe-cpp is a improved version of the Probe synthesizer, originally proposed by Barke et al. [7]. The

original algorithm is discussed, followed by a detailed description of the improved implementation.

The chapter ends with a performance comparison between the two implementations.

• Chapter 4. Synthesizing P4 code delves into all the relevant details of the main deliverable of

this project. The main concept and its implementation are discussed at length, including the main

challenges that arose from adapting Probe-cpp to synthesize programs in the quite complex P4

language. The final solution is entitled G4BE which is an abbreviation of Generating P4 By Examples.

• Chapter 5. G4BE’s evaluation presents the approach taken to evaluate the final solution. The

measurements from the evaluation are plotted and interpreted to determine G4BE’s viability and

performance in terms of execution time and memory usage.

• Chapter 6. Closure ends this report with a comprehensive discussion on the various aspects of

G4BE, including an overview of its limitations and suggestions for future improvements.



2
Background and Context

Before discussing the details of our own contributions, it is important to clarify the context and provide a

brief review on the relevant research that has been conducted in the past. In addition, it is important to

understand what the state-of-the-art is and identify some of the research gaps that should be explored

further. This chapter is divided in four sections with the first three providing basic background information

on software defined networking, programmable data-planes, and program synthesis respectively. The

last section takes a closer look at the more recent publications that are directly relevant to our research

questions.

2.1. Software Defined Networking
It is impossible to get a precise view of the internet, but it is widely known that current networks follow the

TCP/IP model which splits the responsibility of the network onto four layers: link, internet, transport, and

application [8]. In spite of this logical separation of concerns, current networks do not make an explicit

distinction between two types of responsibilities which have minimal overlap. Computer networks adhere

to a distributed design in which network devices are responsible for both the quick forwarding of packets

and the coordination & processing necessary for implementing the overall network functionality that the

network operator requires. In other words, the network functionality is split among the independent network

devices which are also concurrently responsible for packet forwarding.

In a common network that is tasked with routing packets from any two endpoints, network devices forward

packets based on routing tables that are populated and maintained by the devices themselves using

algorithms such as Open Shortest Path First (OSPF), Border Gateway Protocol (BGP), Intermediate

System to Intermediate System (IS-IS) or others. These algorithms are distributed, causing significant

communication overhead that is needed to ensure that all participants exchange information (such as

link-state updates or distance vectors) and eventually end up with a consistent view of the network. In

link-state routing algorithms such as OSPF, the link-state updates are flooded all over the network and

devices accumulate all the information and apply a variant of the Dijkstra’s algorithm [9] to find the shortest

path to any other point. Since every device executes this shortest path algorithm locally but on slightly

different input, there is quite some redundant computation. To make matters worse, changes in the

topology and traffic patterns cause the network to adapt slowly which can create temporary disruptions of

connectivity. This problem is especially relevant for distance vector routing protocols which suffer from the

so-called counting to infinity problem [10].

Attributing routing algorithms to one of the four layers is at times a matter of debate. Some people consider

such algorithms to be part of the application layer [11] while others argue that they modify the routing

behavior and thus should be included in the internet layer [12]. Furthermore, different algorithms that

accomplish similar goals may be attributed to different layers depending on the required protocols stack

(e.g., BGP runs on top of TCP).

SDN represents an architectural shift relative to the traditional network, an approach that explicitly separates

the control-plane from the data-plane. The control-plane is run on a central programmable controller, and it

is in charge of all the decision making while the data-plane is simply responsible for fast packet forwarding.

For instance, the controller will maintain a global view of the network and will install the forwarding rules

4
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Figure 2.1: Illustration of simple interaction in a network supporting OpenFlow

in the switches (i.e., the devices forming the data-plane), removing the communication and computation

overheads mentioned earlier.

With the network functionality more centralized, modifications are easier to deploy since they can be

done on the controller alone unlike for the traditional networks which require most devices to be modified.

Hardware interoperability also becomes less of a challenge since network devices on the data-plane do

not need to communicate with each other but only with the orchestrating controller. This is in contrast to

traditional networks, in which devices from different vendors are often incompatible, constraining network

operators into situations known as vendor lock-in.

OpenFlow [2] is the de-facto standard protocol used to facilitate communication between the controller and

each switch. At start up, switches may be configured to forward to the controller any packets that do not

match any other entries from the routing table. The switch will wrap the original packet into a PacketIn

message and send it to the controller. Based on this message, the controller may decide to install a new

flow/path in the network by sending FlowMod messages to all switches involved. Afterwards, the controller

forwards the packet back to the last switch on the installed path through a PacketOut message. In the

future, similar packets that match the same chosen criteria are going to be forwarded through the new

flow without involving the controller. This behavior is illustrated in figure 2.1 and it is just one of the many

possible functionalities that one could implement with OpenFlow.

Another benefit of SDN is that it makes the task of monitoring the network traffic a lot easier. In a network

that supports OpenFlow, the controller could, as an example, send a OFPFlowStatsRequest to one of the

switches in order to receive specific flow statistics such as byte count, packet count, duration, match criteria

and so on. Another example use case could be installing a flow that begins and ends in the controller and

then sending out a probe packet to measure the delay along that path.

As to be expected, SDN also has some drawbacks, not the least of which is the introduction of a single

point of failure. This single controller can also become a performance bottleneck for large networks leading
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to reduced scalability. These issues have been researched [13] and the proposed solution is to use multiple

cooperating controllers, although that comes with its own set of drawbacks. A distributed controller is more

difficult to implement since it has to solve the same problems faced by any distributed system: coordination,

reaching consensus, synchronization, etc.

2.2. Programmable data-planes and P4
As Bosshart et al. [6] point out, a concerning problem with OpenFlow is the ever-increasing number of

header fields as a consequence of the increased requirements coming from the hardware vendors. These

vendors want the OpenFlow protocol to support features that enable the capabilities of their latest switches.

However, changes to the protocol are implemented slowly and must first be agreed upon by a consortium

of users. Moreover, extending the protocol repeatedly is not a sustainable solution.

The programmable controller has many benefits, but the added flexibility is hampered by the rigidity of

the data-plane. Switches implemented solely on hardware have a fixed functionality and although they

operate only within the data-plane, they constrain the functionality that the controller can implement and by

extension, the overall behavior of the network.

Instead of continuously extending OpenFlow, Bosshart et al. researched the possibility of making the

data-plane programmable by first designing the Reconfigurable Match Tables architecture [3]. RMT is a

flexible design for switching chips that is capable of changing the forwarding behavior without modifying the

hardware and without conceding any performance or energy usage. Making forwarding devices flexible has

always been possible and in fact, software implementations of switches running on top of general-purpose

CPUs [14] do exist. However, these solutions have always struggled to match the throughput and latency of

a switch implemented in hardware (i.e., an ASIC). This consideration is important since forwarding devices

should not become a bottleneck and cause congestion by operating at a lower rate than the maximum

data transfer rate of its physical interfaces, also known as line rate.

Alongside the advances in switching chip designs, the P4 language was developed that would allow network

operators to program the behavior of any P4-enabled switch. The first version of P4 (P414) compiled to

a configuration for a specific architecture (a generalization of RMT called PISA) but the second version

(P416) was designed to target a variety of different architectures. The authors had three main objectives

during the design of the P4 language: reconfigurability, protocol independence and target independence.

Reconfigurability implies that changes to the switch behavior should be possible upon request. Protocol

independence ensures that P4 remains agnostic to any specific header structure. Lastly, P4 should abstract

away from the hardware details of the target platform, a concept referred to as target independence. In

essence, this means that the network operator can focus on implementing the desired functionality in P4,

offloading the task of generating platform-specific code/configurations to the compiler.

Legacy switches had to perform many functions to accommodate every possible use case, leading to

designs that were too complex for what they were ultimately used for. On the other hand, programmable

switches can be programmed to contain only the required functionalities together with the minimal set of

header definitions that are needed to perform the said functionalities.

Throughout this project, we only use the v1model architecture1. Each P4 program for the v1model consists

of the following six programmable blocks in the order of their execution: parser, checksum verification,

ingress processing, egress processing, checksum computation and deparser. P4 also allows to define

custom data types, custom metadata structures and, most importantly, custom header fields and header

structures. Having custom headers and being able to read, match and modify them as if they were standard

headers, guarantees that P4 fulfills the protocol independence objective.

The parser block is essentially a state machine that is capable of interpreting the header structure of the

received packet. The two checksum blocks allow the developer to control which header fields should be

considered for the checksum computation (either for verifying it or updating it) and which hashing algorithm

should be used. The ingress and egress blocks are the control components that are responsible for most

of the packet processing as implemented by the developer. Lastly, the deparser is responsible for emitting

the headers and in the right order.

1The v1model can be found at https://github.com/p4lang/p4c
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Within the ingress and egress blocks the developer can define actions (similar to functions in other

languages), match-action tables, registers, meters & counters coupled to entries in the tables, etc. These

must all be defined before the apply block which contains the actual packet processing logic. This inner

block may contain assignment instructions, conditional instructions, instructions that call actions or apply

tables and so on.

Kfoury et al. [15] provides an exhaustive survey of all the applications of P4-enabled networks that have

been researched in the recent years. One of the most prominent applications is In-Band Network Telemetry

(INT) [16] which allows for fine-grained telemetry measurements through customer headers that are added

by the switches themselves.

In-network computation is another emerging concept that proposes offloading some of the upper-layer

logic from the end hosts to a network of P4 switches. This concept alone can be used for a variety of

applications, ranging from reaching consensus in a distributed system [17] to machine learning [18].

The authors mention many more uses of P4-enabled switches, but the list is too long to describe thoroughly.

Other notable examples included in this list are pub/sub systems without brokers, packet aggregation for

Internet-of-Things (IoT) devices, heavy hitter detection, cryptography at line rate, etc.

2.3. Program Synthesis
Considered to be a major challenge within the field of Computer Science, program synthesis is a branch

of Artificial Intelligence that concerns itself with the automatic generation of executable code that is

provably compliant with a given high-level specification. The specification can take many forms and it is a

representation of the user’s intent.

One of the reasons why program synthesis is such a daunting task, is the fact that for any non-trivial

language, the space of possible solutions grows exponentially with the size of the solutions. Therefore, if

one wants the guarantee that a solution will be found (if one exists), one needs to perform an exhaustive

search on the solution space and accept that the synthesizer will have an exponential time-complexity in

the size of the smallest solution.

Another reason that makes program synthesis difficult, is brought by the ambiguity of the user’s intent.

High-level specifications may be too comprehensive, allowing for very different programs to be considered

as valid solutions. At the same time, specifications may be incomplete, not fully grasping the intended

behavior of the desired program, due to its high complexity. Writing a specification that covers all the

implementation details may require the same amount of effort as writing the program itself.

Throughout the literature, there are two recurring criteria that are frequently used to categorise synthesizers:

the format of the specification and the technique deployed to generate programs. Gulwani et al. [19]

distinguish four main state-of-the-art techniques for program synthesis: enumerative search, constraint

solving, stochastic search and deduction-based programming. Subsection 2.3.2 covers enumerative

search in more detail while the others are briefly explained below.

Constraint-solving is a common technique used to find concrete values for the free variables in a formula

such that the formula becomes true. In the context of program synthesis, the user’s intent is expressed in

terms of mathematical constraints and added to a formula together with other free variables that encode

the structure of the solution. One notable synthesizer that uses this technique is SKETCH [20], a tool that

takes a partial program (i.e., a sketch) written by the developer and resolves all so-called holes such that

the final program satisfies some specification.

Stochastic search is a diverse category of strategies that leverage randomness to guide the search process

towards regions of the solutions space that are more likely to contain programs that comply with the given

specification. Often times, they offer no guarantees in terms of finding a solution, if one exists, but they are

relatively fast and work surprisingly well.

Genetic programming [21] is one such example of a stochastic synthesizer which uses concepts inspired

from the theory of evolution. It finds the solution to a problem by creating an initial population of random

programs which evolve genetically from generation to generation to better suit the environment. The

program specification is encoded into a fitness measure that quantifies how well a candidate algorithm fits

the user’s intent. New algorithms are formed through operations such as reproduction, crossover, and
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mutation. The fitter the algorithm, the higher the chance it gets to produce offsprings or to reproduce to the

next generation.

An interesting division of stochastic synthesizers is formed by algorithms that incorporate machine learning

techniques in their approach. One instance of this is DeepCoder [22], a synthesizer that trains two neural

networks using a large set of programs and corresponding input-output examples. After being trained,

these neural networks find a probability distribution over the set of possible instructions, conditioned on the

given program specification. These probabilities are used to steer the enumerative search while clever

heuristics are being applied to prune away faulty and redundant candidates.

As the name suggests, deductive search makes use of deductive reasoning to transform in an iterative

fashion, the given logical specification into a valid solution. The proof of correctness lies in the very manner

in which the programs are constructed with every iterative step following strict deductive rules [23]. It is

often paired with more formal specification formats such as logical models containing clauses that cover

the desired properties.

There are many different ways to capture the user’s intent into a program specification and each has an

influence on the kind of synthesizers that can be used. Some of the formats used by previous researchers

have been: input-output examples, models containing logical formulas, descriptions in informal natural

language, sketches and impartial programs. Some methods are more formal than others and require

more effort from the user. On the other hand, a format as informal as natural language adds a lot of

complexity to the synthesizer as it is far more difficult to parse natural language due to its expressiveness,

redundancy, and overall lack of structure. Some synthesizers allow users to articulate their intent through

an intermediary language that is more restricted and structured than natural language but it is still intuitive

and easy to use.

2.3.1. Programming By Examples
The user’s intent needs to be provided at a level that is detailed enough to define the behavior accurately

while also being abstract enough to require as little effort as possible from the user. Programming-By-

Examples (PBE) is an intuitive concept that enables the user to define the behavior of a program by means

of input-output pairs. This approach comes as very natural to us humans, as we use it instinctively for a

variety of reasons, from explaining mathematical concepts to describing the functionality of a product and

everything in between.

The PBE concept is akin to a team leader using input-output examples to communicate and assign a

programming task to a software developer. The team leader will give enough examples to cover the

desired functionality while avoiding examples that are completely redundant as they do not narrow down

the possible interpretations of his/her intent. If the software developer writes an implementation that is

correct with respect to the initial specification but incorrect for some unseen input-output examples, the

team leader will ask the developer to refine the implementation and additionally, he/she will provide a

counter-example that clearly points to a difference of functionality between the desired and the actual

implementation. In the context of program synthesis, this idea is referred to as Counter Example Guided

Inductive Synthesis (CEGIS) as introduced by Solar-Lezama in [20].

In the analogy above, if the task description can be interpreted in multiple ways, the software developer

will often ask the team lead for further clarifications by providing an input that exposes the ambiguity and

results in different outputs based on the different interpretations. In the field of program synthesis, this

idea is known as the distinguishing inputs technique (see [24]) and it proposes a closer human-computer

interaction where the human is queried interactively at various steps in the synthesis process. Aside

from resolving ambiguities very efficiently, this approach brings the additional benefit that the user gains

confidence in the synthesizer and the obtained solution.

PBE also allows for dividing the specification in parts by having the user provide separate sets of input-

output examples for the different components. Furthermore, if the program has a specific case for which it

must behave differently, it is far easier to incorporate that corner case in the specification with a single

example than to explain it using other formats.

One of the important advantages of PBE is the fact that it simplifies the data processing pipeline. PBE

requires little to no data pre-processing to transform it into a clean and structured format that can easily be

consumed by the synthesizer [19]. Evaluating how well a program complies with a given specification is as
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trivial as counting the number of inputs for which it produces the correct output. For synthesizers that rely

on machine learning models, input-output examples are very common form of providing training data in

the context of supervised learning.

Extracting the examples from other data sources may pose some difficulty depending on the domain

in which the synthesizer is used. While in some cases, input-output examples may be easy to obtain,

in other cases users may prefer to convey their intent by describing in natural language, the iterative

transformations that the program should perform. Extracting input-output examples from such descriptions,

adds another processing step and it may not be worth the effort. Furthermore, if the user’s requirements

change, it is far easier to change a brief informal description than to come up with an entire new set of

input-output examples.

In the domain of programmable data-planes, PBE is a rather obvious choice for specifying what a network

device should do. Routers and switches often work on a packet-basis meaning that their functionality

can almost entirely be described by the changes that a packet undergoes from the moment it is received

to the moment that it is sent back out. Irrespective of the format used for the program specification, the

most straightforward way to validate a P4 program is to install it on a P4 switch, sample input packets and

count how many times the program outputs the expected packet. This validation approach goes hand in

hand with PBE, unlike other specification formats such as natural language which would require a packet

generator that can capture the user’s intent. Other validation techniques for P4 exist and are discussed in

subsection 2.4.3.

Still, there is one roadblock to consider. Most network devices also store state for the purpose of creating

and maintaining connections between endpoints, shaping and policing network traffic, computing statistics

and so on. This apparent mismatch with the PBE paradigm can be alleviated by considering state

information as part of the input and output. The drawback of this change is that it complicates the process

of extracting input-output examples for stateful network functionalities. P4 switches in particular have

counters, meters and registers as part of their state. The entries inside the match-action tables can also

be considered as part of the state but they typically do not change from packet to packet and thus, they

can be assumed to be fixed.

To add to the list of inconveniences, the behavior of a P4 program can depend not just on the content

of the packets but also on metadata such as packet arrival time, length of the queue, ingress port and

queuing delay. Depending on the desired functionality, these factors may also need to be included in the

input-output examples.

2.3.2. Syntax Guided Enumerative Synthesis
Enumerative synthesizers perform an exhaustive search over the space of possible solutions by systemati-

cally trying all possible combinations of components and evaluating them against a given specification.

The important trick is to structure the hypothesis space in such a way that only promising candidates are

considered. The order of enumeration is another important performance factor since programs that are

more likely to satisfy the given specification, can be enumerated earlier.

Syntax Guided Synthesis (SyGuS) [25] is a technique to restrict the possible programs enumerated by a

synthesizer to only the ones that make sense from a syntactic point of view. SyGuS relies on the existence

of a context free grammar (CFG) that describes the DSL that should be used by the candidate programs.

There are two common approaches to enumerative search: top-down and bottom-up. In top-down

enumeration, the synthesizer first constructs a general skeleton before resolving the gaps recursively with

the same top-down approach. With each iteration, more detail is added to the templates obtained earlier

to obtain concrete solutions or more complete templates that can be refined further in the next iterations.

In contrast, bottom-up enumeration first obtains a few primitive programs and then it enters a recursion

that constructs larger programs by re-using the smaller programs enumerated in the previous rounds of

the recursion. Probe [7] is an example of such a bottom-up synthesizer that shall be explained in detail in

chapter 3.

Enumerative search is a rather simple concept to understand but quite powerful for relatively small

search spaces. Many variants exist as a consequence of its flexibility and extensibility. It can be used in

combination with other techniques and it is agnostic on the specification format. Domain-specific knowledge

can easily be integrated into the synthesis process thereby filtering on semantics the programs that are
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being considered. As an example, if the specification describes a transformation of the input that one

knows it is only obtainable by applying a specific pattern of instructions, one can limit the synthesizer to

only consider candidates with those particular instructions. On the flip-side, without the use of effective

heuristics and pruning techniques, enumerative search can suffer from poor scalability. A bare-bones

enumerative synthesizer will have poor performance for programs larger than a few instructions for any

non-trivial language.

2.4. Relevant prior research
In this section, we shall explore some of the research conducted in the recent past that directly concerns

our stated objective.

2.4.1. Intent-based networking
A concept that is gaining momentum in the networking field is called Intent-Based Networking (IBN). IBN

enables administrators to specify policies, configurations settings, and desired network functionality through

intents which are often defined as business-level goals expressed in natural language, abstracting away

from the nitty-gritty details of implementation [26]. The network adapts itself to find the right parameters

such that the network satisfies the user’s desired functionality.

Han et al. [26] apply the IBN philosophy in the context of network virtualization in an effort to create a

platform that allows tenants of the physical network to express high-level intents which are subsequently

used by the platform to automatically manage their respective virtual networks (VN). The proposed solution

performs the functions of a SDN controller and simultaneously the functions of a network hypervisor such

as VN provisioning, modification, and removal. The authors do not describe in details how intents are

represented but they do point out that an accurate intent contains four contextual attributes: resources

(i.e., the type and number of requested resources), conditions (i.e., the criteria that must be fulfilled for

activating the intent), priority and instructions (i.e., the actions are that should be applied to the packets

that satisfy the conditions).

Jacobs et al. [27] describe the design of a system capable of turning user utterances in natural language

into configurations commands for the SONATA NFV platform [28]. The system is composed out of three

components: a chatbot based on Google’s DialogFlow2, an intent translator and an intent deployer. The

first component processes the user’s intent and extracts a set of entities that are then passed on to the

second component. The second component consists of a pre-trained sequence-to-sequence algorithm

[29] that outputs an intent expressed in the Nile, a new high-level yet non-ambiguous intent definition

language. The benefit of this approach is that intents are much easier to parse and deploy but they can

still be read and understood by the untrained user. This consideration is important since the next step

taken by the proposed solution is to show the processed intent to the user and ask for confirmation. If the

user confirms that the processed intent is equivalent with the original intent, the last component will deploy

it by creating commands for the SONATA NFV platform.

The authors manage to obtain near perfect translation accuracies with training datasets of few thousand

entries. Furthermore, the authors show empirically that incorporating the user’s feedback leads to a

considerable improvement in accuracy.

P4I/O [30] is an IBN framework that builds on top of Nile [27] to create an extensible intent-definition

language (IDL) that allows the user to import custom actions into the intent and apply them. More importantly,

P4I/O is capable of transforming the user’s intent, expressed in the extended IDL, by rendering and merging

templates taken from its own repository of P4 code. If users modify their intents, P4I/O will re-parse and

install them dynamically on the switch without affecting its prior state and with minimal disruptions to the

traffic flow [30].

The drawbacks of the approach proposed by P4I/O is that the set of intents that can be realized is limited

by the set of templates stored in the repository and by the actions that can be imported. Furthermore,

while Nile makes it easier for the user to express his/her intent, it is still a structured language that the user

must learn as opposed to natural language.

2https://cloud.google.com/dialogflow
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2.4.2. Program Synthesis in computer networks
This work tackles a relatively novel concept but in spite of that, there are quite a few researchers that have

explored similar ideas in the past that could prove insightful for our stated objectives. The most comparable

research to ours is represented by the work of Riftadi et al. [31] who proposed a system called GP4P4

which applies the concepts of genetic programming to the field of programmable data-planes to obtain

P4 programs that comply with the user’s intents. The program specification in GP4P4 is expressed in a

structured format consisting of behavioral rules on the attributes of the packet.

Given a program specification and a set of primitive blocks, GP4P4 creates an initial population of solutions

and evaluates them using a simulator to obtain the fitness value for each candidate. Afterwards, two

tournaments are held and the winners are used to create offsprings which replace the losing programs.

Mechanisms of genetic programming, namely crossover and mutation, are applied to the tournament

winners in order to create the new generation.

Deriving the fitness value of a program is done by generating traces of input packets, simulating the P4

code on the generated input and then counting how many rules from the program specification hold. In

terms of performance, GP4P4 is capable of synthesizing small programs of a few instructions in a matter

of seconds to minutes.

Although our goal is quite similar to that of GP4P4, the format of the user’s intent is very different and

so is the method used for generating new programs, as shall be explained in chapter 3. To the best of

our knowledge, we are the first to attempt synthesizing P4 programs using only examples of input-output

packets while offering the guarantee that if a solution exist, it will be found by our system.

Gao et al. [32] explores the same overlapping space between program synthesis and programmable

networks but for different reasons. Traditional compilers translate higher-level code into lower-level code

through a static set of rules. In contrast, Geo et al. propose a novel compiler called Chipmunk that applies

program synthesis to generate the machine code while the original high-level code acts as the program

specification. To understand the advantages of this approach, consider a program that cannot be compiled

due to resource constraints or computational limits such as the incapability of processing packets at line

speed. Although the rule-based compiler may fail to compile, Chipmunk may find an equivalent solution

that is more efficient and does not suffer from the same limitations. Therefore, Chipmunk will find valid

compilations more often than the rule-based compilers.

Chipmunk uses the SKETCH engine [20] to synthesize the machine code and a clever idea to speed up

the compilation time, called slicing. With slicing, the synthesis problem for generating code for the switch

pipeline is decomposed into a collection of independently synthesizable subproblems called slices. In

each slice, Chipmunk synthesizes a sub-implementation that has the same behavior as the specification,

but just on a single packet field or state variable from the specification. These sub-implementations can be

directly “stacked” on top of each other to form the full pipelined implementation.

More recently, Beurer-Kellner et al. [33] point out that researched methods to synthesize network configura-

tion parameters have mostly relied on Satisfiability Modulo Theory (SMT) solvers which are slow and suffer

from scalability issues. Instead, the authors propose relaxing the correctness guarantees and implement a

system that generates approximate configurations that are very useful even when incomplete or incorrect.

The users provide the specification through a set of requirements in the form of logic predicates which are

added to a fact base that also contains predicates about the topology of the network. The parameters that

need to be synthesized are also included in the fact base as ”holes”.

A generated configuration is tested against the specification and its consistency is measured as the number

of requirements that hold. The system generates configurations that are roughly 92% consistent with

the specifications while being orders of magnitude faster than SMT-based solvers. Under the hood, the

proposed system follows the neural algorithmic reasoning concept [34], consisting of two graph neural

networks which encode and process the fact base and multiple perceptron models that are responsible for

predicting the values of the unknown parameters.

As mentioned earlier, one drawback of programmable networks is the fact that network operators must

learn new languages to implement the desired network functionalities. Pereira et al. [35] make the

same observation and they additionally point out that each programmable platform comes with its own

programming language and hardware features which the network operator is expected to master. Their
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solution is called SyNAPSE, a platform to implement network functions (NF) in C which are then used to

synthesize programs for both the controller and the switch.

The key idea behind SyNAPSE is the components API which defines an abstract interface that the users

can use to define network functions. Behind this API, there is a pool of implementations for the exposed

data structures and functions implemented by platform experts and the hardware vendors. Multiple

implementations can exist for the same abstraction, and they may differ in how they choose to divide the

workload between the control-plane and data-plane. Moreover, there should be implementations for all

types of switch architectures as well as general-purpose CPUs.

A developer will write an NF in C using the SyNAPSE component API and additionally, he/she will specify

a performance objective (minimize resource usage, limit CPU usage, etc). Afterwards, SyNAPSE will

synthesize the programs for both planes, choosing the right implementations such that the performance

objectives are met. SyNAPSE accomplishes this by first using symbolic analysis to obtain a tree of code

paths and then relying on heuristics and static rules to gradually replace the nodes in that tree with the

right components while taking in consideration the target platforms and the chosen performance objective.

In the research paper authored by Angi et al. [36], a unique solution is described for configuring P4-enabled

switches by providing intents in natural language. Their solution, entitled NLP4, relies on techniques from

the Machine Learning (ML) field and it is composed of three components. The first component makes

use of Natural Language Processing (NLP) to preprocess the user’s intent into a vector of tokenized

and encoded words that are all consistent with a dictionary of words. The second component passes

the obtained vector through a trained MultiLayer Perceptron (MLP) whose output is another vector that

encodes the action that must be performed, on what elements and how. The third component is an API

that receives the output of the MLP component and converts it into configuration files for the P4-enabled

switches.

The execution time of NLP4 is in the order of milliseconds even for large networks of 100 switches.

Unfortunately, the authors mention very little in terms of how their machine learning algorithms were

trained. It is also unclear how effective NLP4 is and in how many scenarios it can be of use to the network

administrator.

2.4.3. P4 code testing and validation
The topic of verifying whether a P4 program is bug-free and exhibits the desired behavior has been

extensively researched in the recent years [37]–[43]. We dedicate some attention to this topic because

it is important to properly test the correctness of the synthesized solutions and to evaluate the general

performance of the synthesizer.

Lopes et al. [37] propose a solution for verifying that a P4 network is free of two classes of bugs, namely

reachability and well-formedness. The authors point out that the emergence of programmable switches,

introduces a new class of bugs that they refer to as well-formedness bugs. These bugs occur when the

switches/hosts in a P4 network have different header definitions or parse the packet differently because

they expect a different order of the header. These bugs lead to packets being dropped due to errors that

occur during parsing. The authors verify the well-formedness in a P4 network by testing whether any

packet sent through an egress edge (an edge leaving the backbone of the P4 network) can be parsed at

any of the input edges.

Their solution is composed of multiple parts: a topology generator, a table generator, a P4-to-Datalog

compiler, the Datalog solver and a query generator. The user must provide parameters for the first two

components which are used to generate the network topology as well as the set of forwarding tables

referenced by the P4 program. The compiler transforms the P4 program that should be installed on each

switch, into a set of Datalog rules. Lastly, the query generator translates human readable queries to

queries for the Datalog engine. With all information converted into Datalog rules, the solver is used to

verify the network for reachability and well-formedness bugs.

P4pktgen is an open-source tool proposed by Nötzli et al. [38] which can be used for automatic generation

of test cases for P4 programs. P4pktgen takes as input the JSON file generated by p4c, the reference

compiler for P4. It then finds concrete paths in the program and for every given path it generates a

packet that exercises that path. To achieve this, a packet has to be crafted that triggers the correct parser

transitions, the correct conditional branches and the correct table actions. Using symbolic execution,
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these requirements are translated into a set of constraints for a SMT solver which determines whether the

constraints can be satisfied and if so with what values. In other words, if a given path can be reached, the

SMT solver will return concrete values for the symbolic inputs which can be used to construct the packet

and the table entries needed to ensure that the program takes the path in question.

By using P4pktgen, test cases can be generated for each possible path that consist of pairs of input-output

packets. The input packet is generated by p4pktgen while the output packet is obtained from running the

P4 program on the input packet. One way to use p4pktgen is to validate that P4 programs act as intended

on their target devices, by running the same test packets through a software reference implementation

and the target hardware and comparing the output of the two configurations.

Freire et al. [39] propose ASSSERT-P4, a tool to annotate P4 programs with correctness and security

assertions which are then verified compile time. To realize this, ASSERT-P4 introduces an intuitive

language grammar that allows developers to add to their P4 programs two types of assertions: location-

restricted and unrestricted invariants. A location-restricted assertion tests the value of a variable at a

specific point in the execution while an unrestricted one checks whether a condition holds during the

entire execution. ASSERT-P4 first translates the annotated code to the C language through a set of static

translation rules. Then, it uses symbolic execution to check whether there are no assertion violations.

Without the contents of the match-action tables, the behavior of a programmable switch running a P4

program is not fully specified. The approaches described thus far circumvent the issue by relying on

symbolic execution or by inferring them from the topology information that is provided by the user. Liu et al.

[41] develop a verification tool for data-planes called P4V that allows the developer to define control-plane

interfaces that make assumptions about the rules that may be installed on the P4 switch. If a verified P4

program is paired with a control plane that complies with these assumptions, the behavior of the resulting

network will be as expected.

P4V is built to verify a few classes of properties: safety properties (checking header validity, checking

overflow for arithmetic operations), architectural properties and program specific properties. Besides

defining control-plane interfaces, the user can directly annotate the P4 code with assertions.

Under the hood, P4V first translates the P4 code to the Guarded Command Language [44]. Afterwards,

the control-plane interfaces, which can be stored in a separate file, are weaved into the P4 program. From

the outcome, P4V generates a formula and checks whether it is valid using the Z3 [45] theorem prover. If

the formula is not valid, a counter-example is generated specifying a concrete trace through the program

that can be used for debugging.



3
The Probe-cpp Synthesizer

Considering the end objectives set in the first chapter, a general concept was needed to describe, at an

abstract level, how to go from examples of inputs and outputs to a P4 solution. A synthesizer needed to

be implemented that is compatible with the problem at hand. The synthesizer is a major part of the final

solution, and it impacts not just the runtime performance but also the number of compute resources needed,

the amount of information needed from the user, the format of the input and outputs and everything in

between. To illustrate, a synthesizer using artificial neural networks such as [22] and [46], requires a large

corpus of code to train the underlying neural network. Considering that P4 is a recent development, and

it is used only in the specific context of programmable switches, it would be rather challenging to obtain

such a corpus.

The overall complexity of the synthesizer was also an important factor due to the fact that implementing a

complex synthesizer or setting it up for our purposes could take too much time considering the scope of

this project.

3.1. The choice for Probe
Developed by Barke et al., Probe [7] is a state-of-the-art synthesizer that proved to fit most of our criteria.

However, during the later stages of the development, we did discover some minor incompatibilities which

shall be discussed in chapter 4. In order to work, Probe needs a set of input-ouput examples and a

Probabilistic Context Free Grammar (PCFG) which is a CFG for which every production rule has an

assigned probability. As explained previously, the programming-by-examples paradigm suits our problem

domain rather well.

Probe enumerates programs bottom-up while also dynamically learning what production rules to prioritize by

modifying their assigned probabilities. Because of the bottom-up nature of the algorithm, every subprogram

synthesized by Probe needs to be evaluated and thus, it must be executable and lead to an observable

output. On top of that, Probe’s performance is greatly increased if evaluations of subprograms can be

cached and reused to determine the output of a bigger program. This consideration poses both a drawback

and an opportunity.

Interpreting a synthesized P4 program can easily be the most time-consuming task in the synthesis process.

This step entails running a P4 switch emulator, compiling the code and transferring it to the switch, and

finally running it for all input-output pairs. Even if done efficiently, performing this step for all synthesized

solutions is going to severely affect runtime performance. Furthermore, a full-fledged interpreter cannot

evaluate incomplete solutions and it cannot reuse the evaluations of partial programs to efficiently evaluate

the program composed of the smaller parts.

The implementation of a lightweight simulator seems to be unavoidable regardless of the choice of

synthesizer. Nonetheless, Probe’s performance dependency on the method used to interpret and evaluate

programs provides an additional incentive to implement a simulator tailored to leverage the strengths of

bottom-up enumeration.

Last but not least, Probe is rather deterministic as it performs an exhaustive search on the solution space.

However, its performance can be enhanced by adapting it to make use of probabilistic components. Its

performance can be improved further by incorporating domain knowledge in its internal mechanisms such

14
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Figure 3.1: Abstract syntax tree for a program that repeats a string four times

that it leverages the particularities of the P4 environment. One example of this is modifying the initial

probabilities of the production rules depending on what parts of the output packet are different from the

corresponding input packet.

In summary, Probe was chosen as a synthesizer for this project because of its flexible and simple yet

powerful design. It is aligned with the PBE concept and all it requires in terms of input is a set of input-output

examples and the grammar of the language to be used by the synthesized programs. It is compatible with

our objectives in spite of some minor conflicts that can be resolved.

3.2. Original algorithm
Bottom-up synthesizers create larger programs by combining the smaller programs that were previously

enumerated. This is in contrast to top-down enumeration which first defines the outlines of the program

and then divides it into smaller parts that are recursively refined. Syntax guided synthesizers represent

programs as abstract syntax trees (AST) for which every node corresponds to the use of a production rule

from the grammar.

Creating a larger problem is simply a matter of selecting a grammar rule, creating a corresponding root

level node and finding already-enumerated sub-solutions that can act as children to the chosen production

rule. Figure 3.1 illustrates this by showing a program that repeats a string four times by reusing a program

that repeats it twice. The root level node uses the production rule S −→ (concat S S) from the grammar

shown below which is a reduced version of the full grammar shown in appendix A. This particular program

is composed by applying this specific production rule and retrieving subtrees from a bank of previously

synthesized programs. The element arg0 is a terminal and is replaced by a given program argument

during the evaluation step.

S −→ arg0 the input to the program

| ( replace S S S ) finds the first occurrence of S2 in S1 replaces it with S3

| ( concat S S ) concatenates two strings

| ( ite B S S ) if B yields true, return S1, otherwise return S2

B −→ ( contains S S ) checks whether S1 contains S2

A major benefit of using bottom-up enumeration is precisely the possibility of re-using sub-solutions.

Unfortunately, the space of possible solutions remains exponential but composing an individual program

has constant time-complexity. What is even more, subtrees one and two in figure 3.1 are, in fact, two

different pointers to the same program. Because this program is already stored in memory, the larger

program only needs a constant amount of space to store the information about the root node and some
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Figure 3.2: Observationally equivalent program for the program in figure 3.1

pointers to the subtrees. In other words, the space requirements of bottom-up enumeration grow linear

with the number of programs.

Another benefit of bottom-up enumeration is the possibility to discard programs that are not promising.

If a program is equivalent in functionality to another, but it is longer, it can and will be thrown away. In

general, the problem of deciding whether two programs are equivalent is undecidable. However, if the set

of possible inputs is finite, two programs can be deemed observationally equivalent relative to this set of

inputs, if they lead to the same output for all inputs from the finite set. In our case this holds true because

the set of inputs and outputs is given as part of the problem specification. Figure 3.2 depicts a program

that is observationally equivalent to the program in figure 3.1. Depending on the order of enumeration, one

of them will be discarded.

A naive implementation of Probe evaluates each synthesized program individually, interpreting each

program from scratch. This leaves performance on the table since evaluations of larger programs can

make use of the evaluations of their subtrees. Let us illustrate this by looking again at figure 3.1. Let us

assume the program specification contains a single input-output pair: (”P4”, ”P4P4P4P4”). When fed the

input, the program represented by subtrees one and two produces the output ”P4P4”. To evaluate the

larger program, one merely needs to take the evaluations of the two subtrees and perform the operation

that is represented by the root-level node. In this case, this boils down to concatenating two instances of

the string ”P4P4” to form the desired output.

By integrating the interpreter into the grammar and assigning an executor to every production rule, we avoid

the unnecessary re-computation of subtrees. As the synthesizer enumerates larger and larger programs,

the time spent evaluating will remain the same. That is to say, the time complexity of the evaluation of a

program is constant irrespective of the height of its AST. That is in contrast to an inefficient standalone

interpreter for which larger programs take longer to execute.

At an algorithmic level, Probe starts with a PCFG that has an uniform distribution of probabilities. For

every rule, a cost is derived that is inversely dependent on the rule’s probability. The cost of a program is

the sum of the costs of the rules that were used to synthesize it. Probe populates a bank of synthesized

solutions that is indexed by cost. This bank is filled incrementally, from the lower to the higher costs. At

any point in time, Probe tries to enumerate a program of a specific cost by iterating through the production

rules and for each one, searching through the sub-solutions stored in the bank. The aim is to find right

subtrees such that an AST can be formed that is syntactically correct, and whose total cost adds up exactly

to the target cost. If no program is found, Probe increments the target cost, and the search continues.

Probe also maintains a bank of previously seen evaluations. When a new program is synthesized, the

evaluations bank is searched to check whether the program is observationally equivalent to a previously

enumerated program, in which case it is discarded.
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3.2.1. Probe’s guarantees
The Probe synthesizer offers two strict guarantees, namely soundness and completeness. The first

guarantee ensures that if a solution is found, it is correct syntax-wise and it is compliant with the program

specification that was provided. The second guarantee tells us that if there exists a solution that can be

expressed with the given grammar, Probe will eventually find it, or it will find an equivalent solution.

Aside from these guarantees, Probe will also find the smallest solution in terms of the total cost of the

program. If the cost of every production rule is the same and it is never modified, then Probe will certainly

find the smallest solution in terms of the number of nodes in the AST. However, these costs are potentially

updated by the learning feature of Probe and as a consequence, longer programs can actually be considered

cheaper and enumerated earlier. Still, compared to other synthesizers, Probe finds solutions of optimal or

near-optimal size (see chapter six from [7]).

3.2.2. Cost-based versus height-based enumeration
Standard bottom-up synthesizers enumerate programs in order of increasing height. This means that

two programs that are very different in size can be enumerated during the same step despite one being

much larger than the other. In the examples shown in figures 3.1 and 3.2, the program represented by

subtrees one and two is a promising sub-solution that is one layer away from the final solution. However, a

height-based enumerator will first search programs of the same height but with far more nodes before

finally incrementing the target height. In contrast, Probe derives a cost for each rule and enumerates

programs in order of their total cost. If the PCFG has a uniform distribution of probabilities, the total cost of

a program is equal to a constant (the only possible cost) multiplied with the number of nodes in its AST.

The effect of this change is that Probe prioritizes programs whose ASTs are tall and narrow as opposed to

short and wide. The authors show empirically that this is a more efficient approach which leads to more

useful programs.

3.2.3. Just-in-time learning
An important feature of Probe, called Just-In-Time learning, is the ability to dynamically learn and adjust

the probabilities of the grammar rules in order to steer the search towards regions of the solution space

that seem more interesting. The search remains exhaustive but the solutions that seem promising are

given priority. The general algorithm is split in two alternating phases, namely the synthesis phase and the

learning phase. During the synthesis phase, Probe enumerates programs bottom-up, from lower costs to

higher. Promising solutions that are unique and solve at least one of the input-output examples, are stored

in the bank and also in a separate data structure. The synthesis phase ends after reaching the specified

target cost.

During the learning phase, Probe loops through the promising solutions found during the synthesis phase

and selects the most promising ones according to a pre-defined selection policy. The selected programs

are used to update the grammar by changing the probabilities assigned to every rule and implicitly the

costs. The intuition is that the rules used by the promising solutions are more useful for the problem at

hand and are more likely to lead to the final solution. If no promising solutions are found then no changes

are made to the grammar, the learning phase ends and the synthesis phase continues where it left off. In

the event of a grammar update, the subsequent synthesis phase must reset the two banks and restart the

enumeration due to the fact that changing the rule costs will change the computed costs of the programs

stored in the solutions bank. This occurrence invalidates the bank’s indexing and re-indexing can prove to

be more expensive than starting from scratch.

To illustrate the learning feature of Probe, let us assume the program in figure 3.1 is considered a

promising solution to a larger problem. The production rules that are contained in this program, namely

S −→ (concat S S) and S −→ arg0 will have their probabilities increased and thus, their costs decreased.

Because the probabilities are normalised, the other rules will have their cost increased. The amount of

change is relative to the number of inputs for which the selected program yields the expected output. In

the following synthesis phase, the enumeration restarts, and the same selected program will be found

earlier in the enumeration process and potentially used sooner to build larger solutions closer to the final

solution. It is important to not allow programs which were selected in the past to further bias the PCFG.

Therefore, any such program is cached and ignored in subsequent learning phases.

The authors discuss and compare three policies for selecting promising solutions: largest subset, first
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cheapest and all cheapest. Ideally, the selection policy should select only the rules that seem necessary

while simultaneously not becoming too biased towards one approach when multiple are possible. The

authors show empirically that the most efficient policy is the first cheapest which selects the cheapest

solutions that satisfy (i.e., are correct with respect to) a unique subset of the input-output examples.

3.3. Improved implementation
Although the original implementation was available online, we made the decision to implement it from

scratch for reasons that are explained next. First, the original Probe uses the SyGuS language standard to

express in one file, both the grammar as well as the input-output examples [47]. This format did not seem

very adequate because we preferred to separate the more general grammar from the particular problem

specifications which, in our case, would include not just the input-output examples but also additional

information about the execution context as well as some potential parameters for the interpreter.

Second, the authors of Probe focused on writing the research paper and not so much on following good

software engineering practices to deliver well-structured and clean code. Understanding it and adapting it

would have taken about as much time as implementing it anew.

Third, re-implementing it gave us the opportunity to improve it and customize it to fit our objectives.

Most notably, we managed to obtain significant speed-ups by parallelizing the synthesis phase while still

maintaining the original guarantees explained in subsection 3.2.1.

3.3.1. Differences to the original algorithm
Probe-cpp is written with modularity in mind and does not fix the format for the grammar or problem

specification. Nonetheless, it comes with one default grammar parser which expects a grammar expressed

in the same form as used by the Bison parser generator. The grammar notation used by Yac/Bison is

a variant of to the Backus-Naur Form, a simple and clear notation, widely used to describe context-free

grammars. In fact, P4’s language specification is also available in Yacc/Bison language1.

A concept explored in the early phases of the development was to use Bison to generate an interpreter

which could be used by the synthesizer to evaluate the enumerated programs. The user would only need

to provide a context-free grammar with semantic actions which would then be used by both Probe-cpp

and Bison. The concept was implemented and it worked but it was too slow and inefficient for reasons

explained in section 3.1.

The choice was made to provide the problem specification in the ubiquitous JSON format because of its

flexibility and simplicity. Since the inputs and outputs to the conceptual P4 synthesizer would contain byte

strings of actual network packets, we imagined a feature for automatically transforming traces of captured

packets into JSON files containing input-output examples for the synthesizer. Such a feature could be

useful if one would want to port the functionality of a traditional fixed-purpose switch onto a programmable

one. He/She would capture input and output packets and would use the P4 synthesizer to generate a

solution that complies with the examples given in the captured traces.

Unlike the original implementation, Probe-cpp indexes the bank not just by cost but also by the start symbol

(i.e., the non-terminal that is on the left-hand side of the production rule represented by root of the AST).

For the small grammar shown above, the bank separates the programs by their costs and whether they

result in one of the non-terminals S or B. If, for instance, the enumerator is considering a production rule

which requires a sub-program of a specific cost that outputs a B, only the right part of bank needs to be

considered. In contrast, the original implementation performs unnecessary filter operations on the list of

programs of a specific cost to find suitable candidates. Similarly, equivalence between two programs only

needs to be checked if the two programs have the same start symbol. For this reason, the data structure

storing the evaluations in Probe-cpp is also indexed by start symbol.

Aside from code-level improvements, Probe-cpp also comes with enhancements at the algorithm level.

Probe-cpp’s policy for choosing promising solutions is called Dominant Sets because it selects the cheapest

solutions that are not dominated by others. A solution is said to be dominated if there exists another

solution that satisfies a proper superset of the input-output pairs satisfied by the former. If multiple solutions

satisfy the same set, only the one enumerated first is selected. The intuition behind this policy is that

1https://p4.org/p4-spec/docs/P4-16-v1.2.4.html#sec-grammar
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Probe-cpp should not reward rules that are used by sub-solutions that are objectively worse than others.

Different approaches are still considered but only if it they satisfy different sets of input-output examples.

The Dominant Sets selection policy is similar to the first cheapest policy but different in one important

aspect. To illustrate, assume that the list of promising solutions at the end of the synthesis phase includes

program P1 and P2 and that the input examples are e1, e2 and e3. Consider a case in which P1 satisfies e1
while P2 statistifes e1 and e2. Unlike Dominant Sets, the first cheapest policy will select both solutions and

potentially reward irrelevant rules that are used by P1 and not P2.

Because the two implementations have different selection policies, they often follow different execution

paths and may obtain different but equivalent solutions. Furthermore, Probe-cpp tries to update the

grammar much more frequently which could even lead to programs that are slightly longer but considered

cheaper due to the more biased state of the grammar.

Significant speed-ups were obtained by modifying the algorithm slightly to allow for parallel execution

of the synthesis phase. As explained earlier, the synthesis phase progresses in steps with each step

corresponding to a target cost. At each step, the enumerator tries all possible grammar rules and all

sub-solutions enumerated earlier to create programs of the desired cost before advancing to the next

step by incrementing the target cost. Profiling Probe-cpp on a single thread showed that almost all of the

execution time is spent inside the execution of a step and thus, dividing this workload on multiple threads

would bring great benefits.

To achieve parallel execution, the key idea is to split the grammar and make each of the available thread

responsible for a subset of the production rules. Take, as an example, a division of the grammar shown

above where the first thread is assigned all rules with an S on the left-hand side. This thread will only

generate programs that have S as a start symbol but it may need sub-solutions that have B as a start

symbol, which is assigned to a different thread. Although this may seem like an obstacle, threads will only

need sub-solutions generated by other threads that are of smaller costs than the current target cost. If

threads wait for each other before incrementing the target cost, it cannot be the case that a sub-solution

that is needed by one thread has not yet been enumerated by the responsible thread. In other words,

the threads must synchronize at the end of every step. Aside from this constraint, the sub-solutions bank

needs to be made thread-safe and shared by all threads. An alternative implementation would have each

thread populate its own partial bank which would be merged into the central bank at the end of the step,

reducing the need for mutual exclusion.

3.3.2. Architecture
This subsection dives a little deeper in the architecture of Probe-cpp. The building blocks of Probe-cpp

can be divided into four categories depending on their responsibility: parsing the grammar & program

specification, representing ASTs, program synthesis and caches for sub-solutions & evaluations. This

subsection will describe each of these blocks separately. A UML diagram of the full architecture is included

in appendix A.

Figure 3.3 shows the components of Probe-cpp responsible for parsing the grammar and reading the

program specification. The default formats accepted is Bison for the CFG and JSON for the program speci-

fication. However, the user could extend Probe-cpp with other parsers that implement the GrammarParser

or IOReader interface. Aside from the input-output pairs, the program specification may include additional

literals that are not general enough to be included in the grammar file but are specific to the program that

needs to be synthesized.

A solution is represented in Probe-cpp with the AstNode class shown in figure 3.4, together with the

representation of a production rule and a PCFG. A program takes a constant amount of space regardless of

the size because it stores pointers to its sub-solutions that are already saved in the bank. Each AstNode has

a corresponding grammar rule and each grammar rule can be assigned an executor by an ExecutorFactory

but it is not mandatory. An executor is merely a function pointer or a lambda expression that performs the

operation specific to the grammar rule.

The way an synthesized program is evaluated is dependent on the interpreter. The basic interpreter used

by Probe-cpp assumes that all grammar rules are executable and by extension every AstNode. When an

instance of AstNode is executed, it takes the evaluations of its children and feeds them as input to the

executor corresponding to the rule pointed at by rulePtr. Along with the outputs of the sub-solutions, the
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Figure 3.3: Components that read and parse the grammar and problem specification

executor also requires as input, the program arguments from the program specification (i.e., the values for

arg0, arg1, etc).

For every enumerated program, a check needs to be made to verify that it is not observationally equivalent

to another already found program. This check is a rather expensive operation, which makes an efficient

implementation all the more important for the overall performance. Likewise, the solutions bank is iterated

over during every step and potentially by multiple threads simultaneously. Choosing an inefficient underlying

data structure or overusing mutual exclusion could significantly affect performance. The implementation of

both data structures is sketched in figure 3.5.

The evaluations bank is implemented as a hash map with separate chaining. A custom hashing function

is used to map program evaluations to their respective buckets. Unlike the original Probe, evaluations

are not checked for equivalence against all other evaluations seen but only against the ones who map

to the same bucket. Probe-cpp is optimized for runtime performance so it allocates more buckets than

necessary, but that increases the chance that all calls to insert and contains take a constant time.

As explained earlier, the solutions bank is divided by start symbol and once more by cost. The programs

belonging to the same group (i.e., having the same cost and start symbol) are stored in a separate instance

of ProgramList. Hash maps are used to find the right instance of ProgramList in O(1) time. To deal with
the issue of concurrent access, a program list has only two modes: write-only or read-only. A program list

starts in write-only mode and threads must acquire a lock in order to insert a program. Each program list

has its own lock which is why it is unlikely that threads will hinder each other too much, also considering

that the chance of two threads accessing the exact same program list at the same time is rather small.

After all programs of a specific cost have been enumerated, Probe-cpp moves on to the next target cost.

Hence, the solutions bank can mark the old cost as ”closed” and all respective program lists as read-only.

The benefit of this change is that program lists that are marked as read-only can be read concurrently

without the acquisition of a lock. Concurrent access for both read and write operations would not be

possible without the use of mutual exclusion. Furthermore, threads need to read from multiple program

lists at once. Forcing them to acquire multiple locks could lead to the dining philosopher’s problem.

Figure 3.6 contains a UML diagram of the components responsible for enumerating programs and updating

the PCFG. If a user wants to apply Probe-cpp to a custom CFG, he/she must provide an implementation to

either the ExecutorFactory interface or to the Interpreter interface. The BasicInterpreter is a rather simple

class that relies on the ExecutorFactory to assign executors to each grammar rule. However, one could,

as an example, implement a different interpreter that retrieves the string representation of a synthesized

program and passes it to an external simulator.
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Figure 3.4: The representation of a program in Probe-cpp
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Figure 3.5: Data structures for storing the enumerated programs and their evaluations

Figure 3.6: The components of Probe-cpp responsible for enumerating programs



3.4. Evaluation 23

Synthesizer Solution

Original Probe (substring arg0 (indexof (replace arg0 ” ” (int2str (length arg0))) ” ” 1) 4)

Probe-cpp (substring arg0 (+ (indexof arg0 ” ” (+ (indexof arg0 ” ” 1) 1)) 1) 4)

Table 3.1: Difference in obtained solutions for the stackoverflow10 benchmark

3.4. Evaluation
This section presents an overview of the measurements that were conducted to assess and compare

the performance of Probe-cpp against the original implementation. The original Probe implementation

(simply referred to as Probe) is written in Scala and it is open-source1. As the name suggests, Probe-cpp

is implemented in C++20 and it will also be made publicly available2.

To make an accurate comparison of the two implementations, we have chosen eight random benchmarks

and three criteria: execution time, the number of AST nodes of the solution and the memory usage. The

benchmarks were taken from the Probe repository which in turn, were taken from the Euphony Benchmark

Suite3. With this goal in mind, the implementations were ran 20 times for each of the eight benchmarks.

All measurements were done on the same system which runs a Linux-based operating system and has

8GB of DDR3 memory and a quad-core CPU with Hyper-Threading, each core running at a maximum

frequency of 3.6 GHz.

Averaging out the observed speed-ups for all benchmarks, Probe-cpp is 8.5 times faster than the original

implementation. A direct comparison of the average execution times per benchmark is shown in figure

3.7 (note the logarithmic scale). The highlighted region below and above the dotted line represents one

standard deviation on each side. Figure 3.8 contains boxplots showing the execution time of the original

Probe implementation for the eight benchmarks. Likewise, figure 3.9 shows Probe-cpp’s performance for

the same benchmarks.

Looking at these figures, two aspects stand out. First, Probe-cpp is significantly faster for all benchmarks,

and while multithreading speeds up the computation substantially, it is not the only factor. Second, there

is more variation in the execution times if multithreading is used. This should come as no surprise since

parallel execution is known to be prone to timing issues. However, this effect is reinforced by the fact that

different runs of multithreaded synthesizer can actually take different execution paths and even lead to

different solutions. At first, this may seem like a problem, but it has a rather simple explanation.

The order of execution of threads can be different from run to run and each thread is responsible for

searching in one region of the solution space. Two programs that are observationally equivalent, have

the same cost but are discovered by two separate threads, may be discovered in different orders across

different runs. This may lead to a divergence of the execution paths. Different production rules may be

considered more promising during the learning phase, perpetuating the divergence. Nevertheless, Probe’s

guarantees would not be violated by such an occurrence. Both programs have an equivalent program of

the same cost (approximately the same size) that can be used to build larger solutions. The search is still

exhaustive, but the order of enumeration may be slightly different causing minor variations in performance.

Figure 3.10 plots the average number of AST nodes contained in the final solution of every benchmark.

Once again, the multithreaded Probe-cpp shows slight variations due to the effect explained earlier. The

two implementations yield solutions of the same size with the exception of two benchmarks for which the

difference is small. To illustrate, table 3.1 contains two solutions synthesized for stackoverflow10 which

describes a program that can extract the year out of a string like ”February 7 1892 Verona Township”. The

solution obtained by Probe-cpp is slightly longer but it is enumerated first because it is considered cheaper

for reasons explained in subsection 3.3.1.

Figure 3.11 shows a comparison of thememory usage of the two implementations. However, the information

contained in the figure is quite misleading. Unlike Probe-cpp, the original implementation runs on top of the

Java Virtual Machine (JVM) which has its own memory footprint and does its own memory management.

1https://github.com/shraddhabarke/probe
2https://gitlab.tudelft.nl/lois/probe-cpp/
3https://github.com/wslee/euphony/tree/master/benchmarks
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Therefore, it is difficult to accurately estimate the memory requirements and make a like-to-like comparison.

It is also difficult to measure the memory overhead caused by the JVM because the JVM may allocate

more memory than needed. For these reasons, the plot does not account for JVM’s memory overhead

which would otherwise make original Probe’s measurements appear worse. Nonetheless, Probe-cpp’s

memory efficiency could be improved as well. It uses many instances of std::array whose size needs to be

known at compile time, leading to frequent over-sizing.

Figure 3.7: Runtime performance comparison for the eight benchmarks



3.4. Evaluation 25

Figure 3.8: Execution times for the original Probe implementation for eight benchmarks

Figure 3.9: Execution times for Probe-cpp for eight benchmarks
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Figure 3.10: Average number of AST nodes of the final solution for Probe and Probe-cpp

Figure 3.11: Memory usage comparison between the original Probe and Probe-cpp



4
Synthesizing P4 code

Having implemented a fast and flexible synthesizer, the challenge now becomes using it for the purpose

of synthesizing code for programmable data-planes. The solution that we describe in this chapter is

called G4BE1 which stands for Generating P4 By Examples. Section 4.1 dives into the details of G4BE’s

architecture, describing at length the different obstacles that we faced during the implementation. Section

4.2 explores the idea of mining code snippets from a P4 code corpus or having the user provide them in

order to enhance the performance of G4BE. Section 4.3 ends the chapter with an explanation of how the

synthesized match-action tables are populated.

4.1. Architecture
Going from the idealised CFGs that are usually used in program synthesis to a DSL that is actually

used in practice, requires extensive adaptations to the synthesizer in order to capture the quirks of the

underlying language and its execution environment. The P4 language in particular, together with the P4

runtime environment, includes many features that set it apart from regular general-purpose programming

languages.

4.1.1. Input-output format
The first important aspect of the P4 environment that G4BE must be aware of, is that the input and output to

every synthesized solution is a network packet, which essentially is a byte string representing a composite

object and not merely a primitive type such as a string, integer or boolean. In fact, packets can vary in

size, content and even in structure. Herein lies the first hurdle on the way towards synthesizing P4 code.

The parser component of every P4 program is responsible for casting the input from an unstructured format

into a structured one, where bytes are grouped into fields with each having their own separate meaning.

Usually, the structured format follows one of the standardised headers described by organisations such as

the Internet Engineering Task Force (IETF) through documents called Request For Comments (RFC). One

of the advantages of P4 is that it allows the developer to define custom packet headers, as well as a custom

state machines for the parser and deparser blocks. The way one defines these custom components is in

line with his/her interpretation of what the bytes represent at the different offsets in the packet. In other

words, the parser component does not limit the possible functionalities of the control block, it is merely

a way of enforcing a structure on the input that is easy to understand from a human perspective. If the

program specification contains only input-output pairs in the form of byte strings, it is impossible to know

what the correct implementation is for the parser since it is entirely relative, and the specification format

does not capture the original interpretation as intended by the user. For these reasons, we have decided

to hard-code the implementation of the parser to only accept packets with the following combinations of

headers: ethernet, ethernet & IPv4, ethernet & IPv4 & TCP, ethernet & IPv4 & UDP.

As mentioned in subsection 2.3.1, a P4 synthesizer needs not just the bytes in the packet but context

information about the receival of the packet as well as information about the state of the device prior to the

receival. For the sake of simplicity, G4BE can only synthesize programs that are not dependent on such

context information.

1https://gitlab.tudelft.nl/lois/g4be
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Unlike for Probe-cpp, two synthesized solutions may be both correct with respect to the program specifica-

tion, but they may not be equivalent. A P4 program is considered correct if the right bytes are being sent

via the correct output port. However, the P4 language has many instructions that do not directly lead to

an observable output. Consider the two programs in listings 4.1 and 4.2. Although they lead to the same

packet being sent via the same port, the two programs are not equivalent, and both should be stored in

the bank as promising sub-solutions. One counts the number of packets seen while the other stores the

old source MAC address in a temporary variable. Hence, both could be used in the future as subtrees of

bigger programs. We call these programs weak-equivalent.

Listing 4.1: Program 1

1 standard_metadata.egress_spec = 1;
2 bit<48> tmp;
3 tmp = hdr.ethernet.srcAddr;
4 hdr.ethernet.srcAddr = hdr.

ethernet.dstAddr;

Listing 4.2: Program 2

1 meta.counter = meta.counter + 1;
2 hdr.ethernet.srcAddr = hdr.

ethernet.dstAddr;
3 standard_metadata.egress_spec = 1;

Just like Probe, G4BE discards programs that are not promising but only if they are strong-equivalent

to an already-seen program. Strong equivalence implies the same observable behavior and the same

side-effects. In our case, two P4 programs are strong-equivalent if they output the same packet via the

same port and additionally, they bring the P4 device in the same state.

4.1.2. Evaluating candidate P4 programs
Since G4BE is based on Probe-cpp, all subtrees must be executable and must return values in a format

that can be processed further by a larger program. Therefore, each subtree must represent a standalone

program that can be integrated into a larger program. However, the P4 language has components that are

mutually dependent but reside on different regions of the code. For instance, the tables being referenced

in the control block are not declared in the control block but above it.

Let us assume a CFG that includes the production rules shown below. These rules should guide the

synthesizer to enumerate subtrees that can later be included in the larger final solution. It is important to

note that bottom-up enumeration builds subprograms without knowing the context in which they are going

to be used in the future. Hence, it is impossible to enumerate subtrees that have IngressControlBlock

as a start symbol, are independent and at the same time, apply match-action tables that are declared

elsewhere. Because the subtrees must be evaluated, not just the name of a table is required but also its

functionality and thus, one cannot assume the existence of a predefined number of tables with generic

names that are going to be synthesized at a later stage.

IngressControlBlock −→ apply { Instructions } The apply section of the ingress block

Instructions −→ Instruction A single P4 instruction

| Instructions Instruction A chain of instructions

Instruction −→ ConditionalStatement If-then-else block

| AssignmentStatement Assign value to a field, variable, etc

This problem also occurs for actions, variables, registers, and meters. The synthesizer builds actions by

choosing an action signature at the root-level of the tree and using instruction blocks that were enumerated

earlier as subtrees. At the time of their synthesis, these instruction blocks did not know about the existence

of any action parameters, their type, or their concrete values. As a consequence, an intermediate grammar

is needed that is equally expressive as the P4 grammar but circumvents these obstacles. Subsection 4.1.5

covers this idea in more detail.

G4BE uses a standardised object called ExecutionState to represent the outcome of any subtree, no

matter the start symbol. This data structure is depicted in figure 4.1 along with other structures used to

simulate the execution of a P4 program. Because of the issue explained in the previous subsection, this

class needs to be quite verbose and must account for all possible effects a subtree may have. In the

interest of simplicity, G4BE can only synthesize subtrees that return a concrete value (like the result of
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an arithmetic operation), drop packets, or modify fields in the header, metadata or standard metadata

structures.

At the start of G4BE’s execution, each input-output pair from the program specification is transformed into

a pair composed of an initial execution state and expected execution state. A synthesized program is

correct if, for each of the starting execution states, it ends in an execution state that is weak-equivalent to

the respective expected execution state. A candidate program is discarded if it leads to a set of execution

states, one for each input from the specification, that are all strong-equivalent to the ones from a different

set belonging to an already enumerated program.

In order to reduce space usage, instances of ExecutionState only store the values of the different fields

without knowing their interpretation. It does so by maintaining instances of the P4DataStructure class. The

information about a specific field, such as its name and bit width, is the same for all instances of that field

and thus, it is stored only once using the StructInfo class. One notable member of the StructInfo class is

the access variable which allows us to embed some domain knowledge into the synthesizer and steer the

enumeration process to some extent. For instance, having the synthesizer attempt to figure out when and

how to modify the total length field from the IPv4 header is wasteful since its derivation is fixed for all IPv4

packets and a hard-coded code snippet could be added to the solution.

More often than not, the bottom-up synthesizers researched within the program synthesis field rely on

domain specific languages that do not need shared or global state. The grammar shown in appendix A is a

good example since every production rule computes a single output from the outputs of a few independent

subtrees. Two subtrees of the same AST operate on completely different areas of the memory and never

interfere. Bottom-up synthesizers enumerate these subtrees separately and also evaluate them separately,

each on the original unmodified input. However, P4 programs usually work extensively with the global

state, most frequently through the header and metadata structures. This observation becomes problematic

when we consider an AST with subtrees that access the same parts of the global state. Regardless of the

order of execution, there is the risk of running into read-after-write hazards (RAW) where the one subtree

modifies a part of the global state that the other subtree depends on, invalidating its prior evaluation.

The following two subsections cover two approaches that were considered to solve this issue, namely

recomputation and reconciliation.

4.1.3. Recomputing subtrees
The most straight-forward solution to the problem mentioned above is to recompute one subtree as if it

was run right after the other one. Assuming left-to-right execution, the right sibling would be evaluated

again but starting from the final execution state of the left sibling. It should be emphasized that this is

required only in the case of a RAW hazard. If the two subtrees access different parts of the global or

shared memory, their final execution states obtained at the time of their synthesis can safely be combined

through superposition and there is no need for recomputation. Write-after-write (WAW) hazards also do

not pose any threats since the evaluation of the right sibling does not depend on that of the left sibling

whose effects are going to be overwritten anyway by the right sibling.

The same check for a RAW hazard can be applied recursively to only recompute the parts of the subtree

that actually cause the RAW hazard. Figure 4.2 illustrates this idea with a conceptual AST for which some

parts are not shown. It is important to note that P4 is a relatively complex language, making it nearly

impossible to define a non-ambiguous grammar for it. The structure of an AST depends heavily on how

the grammar was defined and on the order in which programs are synthesized. Nevertheless, the issues

and approaches discussed in this subsection and the next are agnostic on those factors.

In figure 4.2, the red nodes need to be recomputed, the yellow nodes may or may not while the gray ones

do not. The left-most subtree modifies the time to live (TTL) field from the IPv4 header and subtree 2

depends on it which means that a call will be made to subtree 2 to recompute based on the final execution

states of subtree 1. The recomputation follows a top-down path and at each step a check is made to find

potential RAW hazards. Subtree 2a does not depend on the TTL field and thus, it does not need to be

executed again. In contrast, subtree 2b reads the TTL field and assuming the branch is actually taken, a

recursive call will be made to it to recompute.

Subtree 3 does not depend on the TTL field, but it does depend on the metadata field which is potentially

modified by subtree 2. The original evaluation of subtree 3 is checked against the final execution states
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Figure 4.1: Data structures used to represent the execution of a P4 program
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Figure 4.2: Recomputation of an example AST

obtained after the recomputation of subtree 2. Although a RAW hazard may not have existed initially, it

may occur now as a consequence of the recomputation.

All in all, this efficient evaluation method alleviates much of the problem described in the previous subsection.

Looking at figure 4.1, the P4DataStructure class enables this recomputation approach with two member

variables, written and read, which are used to indicate which fields were read and/or modified during the

execution.

Unfortunately, there is a serious complication with this idea that is difficult to spot. The program that

is synthesized is not the program that is evaluated since the synthesizer generates a solution under

the assumption that all subtrees run separately and ”from scratch”. One would question whether this

has any effect, since the enumeration is still exhaustive but unfortunately that is not correct. Due to

G4BE’s observational equivalence check, the existence of a subtree is conditioned on the uniqueness

of its evaluation. Let us exemplify using the P4 code snippet shown in listing 4.3. Figure 4.3 depicts a

sketch of the corresponding AST which is purposely left incomplete because the missing details bear no

significance for this argument.

Listing 4.3: Example of an ingress control block in a P4 program

1 control MyIngress(inout headers hdr,
2 inout metadata meta,
3 inout standard_metadata_t standard_metadata) {
4 action m_action() {
5 standard_metadata.egress_spec = 1;
6 meta.counter = hdr.ipv4.ttl - 1;
7 ...
8 }
9

10 apply {
11 m_action();
12 if (meta.counter < THRESHOLD) {
13 hdr.ipv4.diffserv = 0;
14 ...
15 } else {
16 hdr.ipv4.diffserv = 10;
17 ...
18 }
19 }
20 }
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Figure 4.3: Conceptual AST of the program in listing 4.3

Let us assume the program shown is the desired solution. Recall that G4BE will enumerate programs

bottom up, composing larger programs by applying all possible production rules together with the subtrees

enumerated in the past. Assume that all subtrees in figure 4.3 that are below the dotted blue line have

already been enumerated and are stored in the bank. G4BE now has all building blocks to create the next

component of the final solution, which is the subtree with a conditional statement at its root. However, the

evaluation of this subtree will be strongly equivalent to the evaluation of the Then block since the condition

of the if statement is always true, making the Else block completely redundant. This occurs because the

initial evaluation of any enumerated program begins ”from scratch” (from the initial execution states) and

all metadata fields are set to zero by default.

The subtree at hand is discarded even though it may actually be useful in the future when a larger tree is

created that actually modifies the meta.counter field prior to the if statement. In general, the sub-solutions

that can be used to compose larger programs, are filtered based on their evaluation obtained from running

them in isolation. A discarded sub-solution may still have a unique functionality, but it may only be visible

once placed in a specific context. This approach invalidates Probe’s guarantee for completeness and, by

extension also G4BE’s. One could question whether the test for observational equivalence can be omitted

altogether and although it would solve the issue, the number of programs stored at each level would

increase drastically. The search space would explode much earlier and quicker and as a consequence,

the performance would degrade considerably.

4.1.4. Reconciling subtrees
The problem described earlier is part of a broader context. If the desired solution has a branch at the

end of a long sequence of instructions, the program that a Probe-like synthesizer will come up with will

inevitably suffer from duplication. The code snippets in listings 4.4 and 4.5 build the intuition behind this

statement. The most intuitive way to represent the program on the left would be with an AST that looks

like shown in figure 4.4a. Sadly, Probe may never find this AST because of the reasons mentioned in the

previous subsection. Moreover, if one of those instructions prior to the if statement declares a variable that

is referenced by one of the instructions in the conditional block, a synthesizer like Probe will certainly not

find it. That would require the bank to store subtrees that are self-contained, yet reference variables that

are not declared at the time of their synthesis, which is a contradiction.
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(a) Common AST for a program with an if

statement

(b) Equivalent AST enumerated by G4BE

Figure 4.4: Difference in AST brought by bottom-up enumeration paired with observational equivalence

Listing 4.4: Desired solution

1 ...
2 meta.foo = meta.foo - 1;
3

4 if (hdr.ipv4.protocol == 256) {
5 meta.bar = meta.foo * 2;
6 }
7 else {
8 meta.bar = meta.foo * 4;
9 }

Listing 4.5: Probe’s version

1 if (hdr.ipv4.protocol == 256) {
2 ...
3 meta.foo = meta.foo - 1;
4 meta.bar = meta.foo * 2;
5 } else {
6 ...
7 meta.foo = meta.foo - 1;
8 meta.bar = meta.foo * 4;
9 }

A bare-bones G4BE driven only by the Probe synthesizer will eventually synthesize an equivalent program

for which the instructions prior to the conditional statement are actually contained in each of the subtrees.

This program is depicted in listing 4.5 and its AST looks like shown in figure 4.4b. To enable this approach,

one needs to define a grammar that allows for a different form of instruction chaining compared to the way

instructions are chained by the CFG shown in subsection 4.1.2. This topic is discussed in more detail in

the following subsection. Note that this method may not directly degrade performance but it de-prioritizes

programs that exhibit the same particular pattern of branches having a common past. The duplicated

code is not synthesized multiple times, but the program stores multiple references to the same subtree

increasing its total cost and lowering its priority.

Despite all of the above, two subtrees accessing the same parts of the global/shared state is a problem

that remains unsolved. Reconciling subtrees implies adding, moving, and rewriting instructions according

to a few static rules, such that the dependencies between the siblings are resolved without the need for

recomputation. In fact, this approach accepts Probe’s synthesis and evaluation model and once a solution

is found it applies specific transformations to obtain the P4 code that is equivalent in functionality. These

transformations are not needed during the synthesis process and thus, they do not degrade performance.

Assume two subtrees that are siblings, with the left sibling writing to a field that the right one reads. By

re-using the old evaluations which are computed in isolation, G4BE essentially assumes that the two
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subtrees operate on different copies of the same field. The equivalent P4 code can be obtained by creating

a temporary variable that holds the original value of the said field before being modified by the left subtree.

The references made by the right subtree to read the field in question need to be modified to references to

the newly created variable. By doing that, a P4 program can be obtained that has the same functionality

as the synthesized AST. Furthermore, if the solution obtained by G4BE has an AST similar to the AST

shown in figure 4.4b, G4BE could detect the duplication and can move the common instructions to a single

location.

4.1.5. Intermediate grammar
The main idea behind the intermediate grammar is to define it such that all information needed by the root

of a subtree is included in that subtree. To achieve this, production rules must be written in a manner

that allows any AST node representing a P4 instruction to have as a child, a subtree representing all the

instructions preceding it. In this grammar, the closer a node is to the bottom of the tree, the earlier it comes

in the execution. ASTs generated by this type of grammar are essentially upside-down relative to the

natural top to bottom way in which programs are written.

A small part of the grammar used by G4BE is shown below with terminals being colored gray. Notice

that instructions are chained through the Operand non-terminal which has a reference to the Instruction

non-terminal. This construction allows G4BE to synthesize instructions (assignment instructions, boolean

conditions, arithmetic instructions, etc) for which the operands are the result of other subtrees. Looking at

the code in listing 4.6, the instruction on line three depends on the preceding two instructions. The AST

that corresponds to this code snippet is shown in figure 4.5.

Instruction −→ ( assign Field ArithmeticInstr ) assign a value to a field

| ( if BooleanCondition Instruction Instruction ) if-then-else block

ArithmeticInstr −→ Operand

| ( Operand + Operand ) simple addition of operands

Operand −→ ( get Field after Instruction ) get field value

| ( get @argument after Instruction ) get action argument value

| ( return Const after Instruction ) return constant value

Listing 4.6: Sample sequence of P4 instructions

1 meta.foo = hdr.ipv4.ttl - 1;
2 meta.bar = 20;
3 meta.baz = meta.foo + meta.bar;

The intermediate grammar must also address the issue of components being referenced in a different part

of the subtree than where they are declared. There are essentially two approaches, and both are used by

G4BE. The first method assumes the existence of a fixed number of instances of the needed component.

For instance, a register can be assumed to be declared at the top of the ingress block. After a solution is

synthesized, a check can be made to trim off the components that were declared in anticipation but are

not actually referenced anywhere in the solution. This method is simple and effective but has the obvious

drawback that it limits the space of possible solutions. Furthermore, it gets a little more complex when

considering the different scopes that components may have, such as temporary variables.

The other approach is to consider the first reference to a component to also act as the declaration. If

necessary, the information about the declared component is propagated further up the tree through the

final execution state. Action arguments form a fitting example for this method. Recall that subtrees are

built without knowing in which context they are going to be used later in the synthesis process. A subtree

can be built that makes a symbolic reference to an action argument as if it were a regular operand. The

args data structure from the ExecutionState class (see 4.1) is used to carry the information upwards about

the declaration and use of a specific argument.

G4BE could enable this approach through the use of synthesizer terminals which are terminals whose value

and meaning the synthesizer must resolve on the fly, in between the enumeration of the containing AST
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Figure 4.5: AST of the code in listing 4.6

and its evaluation. Looking at the partial grammar above, let us assume that the synthesizer constructs

an AST by taking subtrees from the bank and applying the sixth rule from the top which includes the

@argument synthesizer terminal. It then creates variations of this AST where this synthesizer terminal is

replaced with a reference to either a new argument or to an argument declared previously by the subtrees.

If a new argument is declared, further variations are made for each possible value that the argument can

take. These potential values are taken from a set of terminals provided by the user through the program

specification. All the obtained variations are then evaluated independently.

It is important to not propagate the list of action arguments outside of the scope in which they can be used.

For instance, a production rule that calls an action does not not need to pass on to the encompassing AST,

the list of arguments which were used by the action, because they fall out of scope.

Sadly, synthesizing actions is not currently implemented in G4BE but the method described above provides

a clear idea on how to do it. Nevertheless, actions can be provided by the users as code hints, a feature

that will be described in section 4.2.

Tables are defined in the same place in the tree as where they are applied. In turn, tables reference actions

whose signature and functionality is fully captured by the subtrees of the AST in question. Subsection 4.3

describes in more detail how match-action tables are synthesized and populated with data.

With the described intermediate grammar, the textual representation of a candidate program is very

dissimilar to the corresponding actual P4 program. Below a program is shown that decrements the TTL

field, and then sends the packet through the port that it was received on. Static rules can be applied to

transform the final solution from this format to valid P4 code. It is during this step that subtrees must be

reconciled as discussed in the previous subsection.

( assign standard_metadata egress_spec ( get standard_metadata ingress_port after ( assign hdr ipv4 ttl (

( get hdr ipv4 ttl after () ) - ( return 1 after () ) ) ) ) )

Unfortunately, chaining instructions as shown above causes dependencies other than RAW to also be

problematic. In fact, unless all siblings read without writing, reconciliation is needed. Figure 4.6 illustrates a
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Figure 4.6: Example of a Write-After-Write hazard

scenario in which there is a WAW hazarad that must be resolved. The issue stems from the fact that the two

subtrees write to the same field and end up intertwined in the final sequence of instructions. After executing

the instructions shown in figure 4.6, the field meta.bar will hold the value 4, while in the synthesizer’s

evaluation model, it will be 3. Reconciliation solves this mismatch by creating separate temporary variables

for both subtrees, as shown in listing 4.7.

Listing 4.7: The code represented by the AST in figure 4.6

1 aux1 = 1; // auxiliary variable for meta.foo for subtree 1
2 meta.foo = aux1;
3 aux2 = 2; // auxiliary variable for meta.foo for subtree 2
4 meta.foo = aux2;
5 meta.bar = aux1 + aux2;

4.1.6. Reducing the hypothesis space
Although it may seem insignificant at first, the layout of the grammar plays an important role in the shape

and size of the hypothesis space. Assume we modify the grammar shown above by replacing the right-hand

side of the first production rule, with a new non-terminal, IfThenElse, and we add a new production rule

that allows IfThenElse to expand to the right-hand side that was just removed. This may seem a harmless

change, but it adds to the cost of the programs that use if statements. The cost of a program is not

an indication of the time it takes to synthesize it, but rather the place it takes on the enumeration order.

Increasing the costs of all production rules simultaneously has little to no impact on the synthesizer’s

performance. However, changing the cost of just one instruction de-prioritizes programs that rely on that

instruction relative to the programs that do not. This bias in the PCFG is greater than the bias that can

be learned by the just-in-time learning feature of Probe. The grammar used by G4BE is defined with this
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consideration in mind and with the goal of minimizing the number of production rules, while keeping it

relatively intuitive.

Grammar ambiguity is another factor that has a significant impact on performance. The more ways there

are to express the same functionality, the more equivalent programs are going to found just to be discarded

by the observational equivalence check. This issue is exacerbated by the existence of any syntactic sugar

in the underlying language. Making the grammar as simple as possible and pruning away redundant

regions of the hypothesis space can significantly improve the performance of any algorithm performing an

exhaustive search on that space. Unfortunately, this topic remains mostly unexplored with some exceptions

described below.

G4BE prioritizes complete programs over longer but incomplete ones. To this end, production rules that

are unavoidable are assigned a fixed minimum cost, thereby forcing the synthesizer to try them frequently

to find potential solutions as early as possible. To illustrate, the default P4 switch will drop packets if the

output port is not explicitly set and thus, the rule that sets the output port is unavoidable. Furthermore,

the redundancy in the language is reduced by minimizing the height difference between a sequence of

instructions and the complete solution containing that sequence.

Each field (be it header, metadata, or standard metadata) is assigned an access mode which restricts

the list of instructions that can be synthesized and how they access the said field. As an example, no

instructions will be synthesized that write to a field that is marked as read-only. A field can be marked as

read-only, write-only, read-write or ignore. Some fields are assigned fixed access modes that stem from

our domain knowledge. For instance, IPv4’s checksum field is not usually read nor modified in the ingress

and/or egress blocks of a P4 program but rather in the designated blocks, one for verifying its correctness

on ingress and one for updating it at the egress. There are standard algorithms that are applied in these

blocks and therefore, we decided to reduce the hypothesis space by hard-coding these blocks and ignoring

the checksum field.

By inspecting the difference between the input and the output packets from the program specification, one

can determine which fields need to be modified and which are likely to be read. If one knows that a field

is not going to be modified because the input and output have exactly the same value for it, there is no

reason to synthesize instructions that write to it. However, the packets from the program specification

are mere byte strings and without explicit knowledge about their header structure, such a comparison is

impossible. Therefore, G4BE makes the simplifying assumption that the header structure does not change

from input to output which effectively implies that G4BE cannot synthesize programs that add new headers

or remove existing ones.

4.2. User provided code snippets
Although powerful and quite versatile, enumerative synthesizers quickly suffer from the exponential size

of the search space. Just a sequence of a few instructions and a small sized grammar can already yield

millions of possibilities. The problem only gets worse if there are also parameters and constraints that

need to be found separately such as the runtime rules described in the next section.

In order to speed-up the synthesizer, we implemented a feature that allows the user to provide code

snippets (or code hints) to the synthesizer that can be parsed into an internal format and subsequently

used to enumerate larger programs. The P4Parser component takes a string representing a snippet of P4

code and parses it into an AST using the internal P4 grammar that is also used to enumerate P4 programs.

The AST is saved in the bank of promising sub-solutions, and it is assigned a fixed low cost, independent

of the cost of the production rules that it consists of.

A code hint is provided by the user with the intention to be used anywhere in the solution. A user may

provide as a hint, an action that is needed by a table that is applied at the end of a long sequence of

instructions. The user provides the action believing it may potentially be used on top of any sequence

of instructions that the synthesizer may enumerate. However, in the evaluation model discussed in

subsections 4.1.4 and 4.1.5, any subtree (including the one representing the action) is self-contained and

is evaluated ”from scratch”, always yielding the same output no matter the context in which it is placed.

In other words, the evaluation model mentioned earlier does not match with the user’s intuition when

providing the code hints.
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To alleviate this issue, code hints are marked with the flag alwaysRecompute which ensures that the

corresponding subtrees are evaluated differently from the rest. Such subtrees are evaluated much like

explained in subsection 4.1.3, being executed as if they were an extension of their left sibling. Since this

feature does not change G4BE synthesis algorithm, it does not bring the same issues as discussed in

subsection 4.1.3.

Through this feature, we envisioned the possibility of mining a corpus of P4 code for re-usable code

snippets that are likely to be useful for the program specification at hand. This search could be made

using stochastic tools such as artificial neural networks (ANN) that learn the correlation between certain

instructions and modification patterns made to the input packet. Given the difference between the input

packet and desired output packet, the ANN could predict which code snippets may be useful, essentially

enhancing G4BE’s runtime performance while maintaining the completeness guarantee.

4.3. Enumerating the rules for the match-action tables
As mentioned earlier, the behavior of a P4 program is not solely defined by the P4 code but also by the

data contained in the used match-action tables, which we refer to as runtime rules. These table entries are

provided separately through a file at start-up or, in the context of SDN, they are installed and removed by

the orchestrating controller.

The established objective, as stated in chapter 1, requires that G4BE find a complete solution that is

provably compliant with program specification, as given by the user. Hence, one must synthesize both the

P4 code and the runtime rules if one wants to evaluate the solution and prove its correctness.

Listing 4.8 shows a JSON object that installs a rule in the ipv4_routing table. If the table is applied to a

packet with the shown destination IP address, the action forward is called with 1 as a value for its port

parameter.

Listing 4.8: Example runtime rule

1 {
2 "table": "MyIngress.ipv4_routing",
3 "match": {
4 "hdr.ipv4.dstAddr": "10.0.1.1"
5 },
6 "action_name": "MyIngress.forward",
7 "action_params": {
8 "port": 1
9 }
10 }

Let us assume a program was synthesized by applying the example production rule shown below which

declares and also applies a table that has two possible actions that can be applied. The Instruction

non-terminal on the right-hand side makes it so that instructions prior to the table are represented as

subtrees of the bigger AST. This table’s behavior can vary widely depending on how it is populated. Hence,

G4BE must enumerate all variations of this table and evaluate each of the resulting program completely

independently.

Instruction −→ ( table ( match Field after Instruction ) ( action_list Action Action )

In essence, what must be enumerated is all possible mapping between the possible match values and the

actions from the action list. One does not need to enumerate match values in a random fashion, since

they can be extracted from the execution states that are obtained after evaluating the instructions just prior

to applying the table.

Recall that the actions referenced by the table should already be evaluated independently and thus, the

values for their arguments should already be resolved by the time the encompassing table is generated.
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This is true under the assumption that G4BE synthesizes actions as described in subsection 4.1.5, which it

does not in order to reduce the hypothesis space.

G4BE relies on the user to provide actions as code hints which can be used to generate tables. These code

hints are recomputed depending on the context they end up in. With this approach, a specific variation of a

table includes not just one concrete mapping between match values and actions but also specific values

for the action parameters. The actions referenced by this specific variation are recomputed with the new

arguments specific to this variation. This makes for a more intuitive synthesis process which generates a

table and the data that populates it during the same step.



5
G4BE’s evaluation

Four benchmarks were selected to evaluate our proposed solution and showcase the potential of using

enumerative program synthesis and PBE for generating P4 code. These benchmarks are four small P4

programs that G4BE should be able to synthesize in reasonable time. The first step in our evaluation

approach is writing the desired P4 solutions by hand followed by their installation on a reference P4 switch

(the behavioral model 2). Scripts and terminal commands are used to generate traffic manually while a

packet sniffer is used to capture both the input packet to the switch and the output packet as modified by

the P4 code. The traffic consists of ICMP, TCP and UDP packets.

A script is used to find the input-output pairs from the captured traces and process them into program

specifications that can be used by G4BE. To put it concisely, we aim to let G4BE synthesize a program

that has the same behavior as the program that was written previously by hand.

Section 5.1 lists the benchmarks that were used while section 5.2 evaluates and plots G4BE’s performance

in terms of synthesis duration and memory usage. Section 5.3 ends this section with a few qualitative

remarks.

5.1. Selected benchmarks
The benchmarks chosen for the evaluation of G4BE are listed in table 5.1 in increasing order of their

difficulty. These were taken from public repositories with many examples of P4 programs1, 2. Appendix

B contains a detailed description of the basic benchmark showing parts of the program specification,

synthesized solution and runtime rules.

Benchmark Functionality

min Decrement the Time-to-live field and send packet though port 1

repeater Repeat a packet on the port that it was not received on

reflector Swap the MAC addresses and send the packet back through the same

port it was received on

basic Perform basic IPv4 routing: route the packet according to destination IP

address and decrement TTL

Table 5.1: Chosen benchmarks for evaluating G4BE

The runtime rules are an important part of the solution, and they can have large effect on the performance.

The higher the number of runtime rules that can be synthesized, the longer the execution. In the case of

the basic benchmark, the number of runtime rules is dependent on the size of the network due to the fact

that a larger network will have more MAC & IP addresses that must be accounted for. To evaluate the

impact of the network topology on the execution duration, we let G4BE synthesize basic.p4 for the three

topologies shown in figure 5.1. In all three cases, the target switch that must be programmed is S1. Note

1https://github.com/p4lang/tutorials
2https://github.com/nsg-ethz/p4-learning
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Figure 5.1: Three topologies used for the basic benchmark

that G4BE has no information about the network topology aside from the data contained in the input-output

examples and the terminals included in the program specification.

5.2. Runtime performance and memory usage
In order to accurately measure G4BE’s performance, we ran it 20 times for each benchmark and measured

the execution time and the memory usage. The first two measurements were thrown away to account for

potential warm-up effects. These experiments were performed on the same system that was described

in section . The synthesis duration for the various benchmarks are plotted in figure 5.2. Likewise, the

memory used by G4BE to synthesize the solutions is shown in figure 5.3.

For small benchmarks that require G4BE to synthesize amaximum of two to three instructions, the execution

time is almost instantaneous. However, the execution time quickly starts to grow beyond solutions of two

instructions. It is also important to note that the default P4 grammar used by G4BE is minimal, but its size

can vary. As mentioned in subsection 4.1.6, certain instructions and header fields may be ignored because

they may not be deemed useful. Furthermore, the default grammar is also expanded with the terminals

and code hints provided through the program specification.

For the basic benchmark which makes use of a match-action table, the synthesis duration is really affected

by the number of table entries that must be synthesized. G4BE must synthesize four table entries for

the pod topology, three for the triangle topology and two for the simple topology. Looking at the boxplots

in figure 5.2, one can notice that every additional runtime rule that must be synthesized increases the

execution duration with one order of magnitude.

Due to the exponential nature of the solution space, G4BE has an exponential space complexity and that

is consistent with figure 5.3. The memory requirement grows quickly for relatively small programs which

is rather worrying. The memory efficiency of G4BE is rather poor which is part in due to the large data

structure needed to store an execution state, as was explained in subsection 4.1.2. Nevertheless, the

implementation itself is far from being perfect which only aggravates the problem. It should be pointed out

that G4BE was meant only as a proof of concept and good coding practices were at times ignored due to

the limited scope of this project.

Figure 5.4 offers more insight in how the solution space grows for the various benchmarks. The figure

plots the cumulative number of programs enumerated in time, measured in the number of synthesis steps

passed. Recall from chapter 3 that every synthesis step corresponds to an increment of the target program

cost. However, the learning feature of Probe (and G4BE) may cause the enumeration to restart, resetting

the target program cost and the number of synthesized programs back to 0. This is precisely the reason

for the sudden drop in the number of enumerated programs for the repeater.

Looking at the basic benchmark, the provided code hint makes it so that a match-action table can be

enumerated rather early (i.e., at a low program cost). In general, as soon as G4BE can enumerate a

program with a match-action table, it will also enumerate all possible variations of that table that have the

same cost. For every table variation, G4BE will also synthesize all possible ways to populate it. These two

factors explain the explosion in the number of programs synthesized so early in the enumeration process.
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Figure 5.2: Runtime performance of G4BE in milliseconds for the various benchmarks

Figure 5.3: G4BE’s memory usage in MB for the various benchmarks
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Figure 5.4: Number of programs synthesized in time

5.3. Observations
What stands out from the previous section is that G4BE is not immune to the problem of state explosion.

Even though basic.p4 is rather short in terms of lines of code, the number of programs found at each cost

explode rapidly because of the many different ways to populate the match-action table. Even with a very

efficient implementation and with all the simplifications, G4BE is still not immune to the problem of state

explosion.

Let us illustrate with an example of a table with one possible action and four match values. The action takes

two arguments which in turn, can have four possible values. Doing the math, this leads to (42)4 = 65536
variations of this table that need to be considered. One needs to realize that for the same cost, multiple

programs can be created that have the same table but with a different match field. Therefore, the number

of variations derived earlier needs to be multiplied by the number of fields that can be considered for a

match. P4 also allows matching on multiple fields at once but to prevent the hypothesis space from growing

even further, G4BE only enumerates tables that match on a single field and only with the exact match type.

G4BE does not synthesize an instruction that is not needed in order to comply exactly with the program

specification, even if the instruction may be crucial in some cases. The quality of the solution is directly

correlated to the completeness of the set of examples. To illustrate, an if statement that checks the

validity of the IPv4 header before applying a table, may be omitted, if there are no examples in the

program specification without an IPv4 header. Similarly, a header field whose value is the same across all

input-output examples, may be used as an operand in instructions that are semantically unrelated.



6
Closure

In this chapter, we reflect on the performance of the proposed solution in the frame of the original research

questions stated in the introduction. Afterwards we discuss some limitations and some suggestions for

future research.

6.1. Discussion
During the development of G4BE, we have faced unexpected challenges that resulted in repeated simplifi-

cations of the scope of the project in order to keep the initial research objective attainable. Our knowledge

on the subject has changed and therefore, it is necessary to repeat the research questions stated in the

introduction and try to answer them one by one.

Q1. Are traces of input packets and their corresponding output packets, an effective way to specify what a

P4 program should do?

In retrospect, the format for the program specification is a very suitable choice for our problem domain, but

there are some limitations to consider. P4-enabled switches can hold state and their behavior is based on

both the incoming packets as well as the state of the switch at the time of receival. Therefore, input-output

examples may have to also include information about the prior state of the switch. For switches that

perform stateless functions, pairs of input-output packets can perfectly capture the desired functionality.

Q2. Given a program specification in the form of a set of input-output packets, can we synthesize a P4

program in reasonable time that, when run on a programmable switch, will comply with the specification?

G4BE is a proof-of-concept that fits the description above but only for a few small programs. Enumerative

program synthesis is a powerful technique if applied in the right context but even state of the art variants of

this synthesis method can quickly run into the problem of the exponential search space. There is certainly

potential in the use of enumerative program synthesis to automatically program P4-enabled switches, but

generating long and complex P4 programs using algorithms such as Probe [7] is rather unrealistic and

requires further research.

These enumerative techniques can be very fast, all while offering completeness and soundness guarantees.

The conditions for this to occur is that the grammar is limited in the number of production rules (unlike

P4 which is an extensive DSL) and that the desired solution has a small number of instructions. We

believe more promising results could be obtained if these techniques would be applied to a lesser extent

such as for filling in holes left by the developer, similar to SKETCH [20]. Another idea is using stochastic

approaches to mine code blocks and letting Probe enumerate all programs that can be built with these

blocks.

Q3. If a complying P4 program is found, how does it compare to a solution written by an expert?

Unfortunately, synthesizing complex programs with the use of enumerative program synthesis could

potentially take far longer than it would take an expert to write a solution by hand. However, small programs

such as basic.p4 may take seconds to synthesize automatically but minutes to write by hand. In terms of

solution size, G4BE is built on Probe which enumerates programs in increasing order of their cost/size.

However, reconciliation adds to the length of synthesized solution compared to the manually written one,

but this increase is minor.
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Q4. Can the state-of-the-art enumerative program synthesizer be used for generating solutions in a DSL

used in the real world?

A DSL such as P4 has a grammar that is much larger than the grammars used to evaluate Probe. Unfortu-

nately, the number of production rules in the grammar has a crucial effect on synthesizer’s performance

both in terms of execution duration and memory usage. However, it is not necessary for Probe to be aware

of the entire DSL in order to be useful. It is crucial to minimize the size of the grammar by removing all

syntactic sugar, all ambiguities and all the different ways to express the same program.

DSLs may often rely on the use of global state while synthesizers like Probe may find it difficult to enumerate

such programs for the reasons explained in section 4.1. Adjusting a enumerative synthesizer to account

for the inner-workings of the execution environment may prove difficult and may require workarounds.

What also must be pointed out is that throughout the research on program synthesis, the impact of

interpreting and evaluating candidate programs is often overlooked. By profiling the code, we find that

G4BE spends roughly 40% of the total execution time running functions that simulate the P4 programs.

Executing candidate programs on full-fledged emulators would have created serious bottlenecks and the

performance would have degraded immensely.

6.2. Limitations and future work
Considering the unexpected difficulties and the limited time frame of this project, some simplifying assump-

tions were made and some of the initial goals were left out. These limitations are listed below for reference.

While some limitations are just a matter of implementation, others can serve as challenges to be tackled

by future research.

• Testing and validating the final synthesized program was done by hand by running G4BE’s output on

a software switch. Preferably, G4BE should use more robust ways to validate the final generated

programs like the ones discussed in subsection 2.4.3.

• In the interest of reducing complexity, the multi-threaded feature of Probe-cpp was not added to

G4BE which essentially means that performance was left on the table.

• G4BE synthesizes the ingress control block. All other components are hard-coded.

• The grammar used by G4BE leaves out many aspects of the P4 language. As an example, G4BE can-

not synthesize programs that rely on registers, counters and/or meters. Actions are not synthesized

but they can be provided as code hints by the user.

• Each field is represented by a 64-bit value. Manipulating arrays of 64-bit variables is a lot faster than

manipulating arrays of variable length data types. In practice, some fields (such as the address fields

in IPv6) may exceed this limit.

• The structure of the packet header is assumed to remain the same from input to output. The packets

use either TCP/IP or UDP/IP. Although P4 allows to add or remove headers from the packet, G4BE

does not synthesize such programs. Aside from reducing the hypothesis space, this restriction speeds

up the comparisons between packets and by extension, the evaluation step, and the observational

equivalence check.
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A
Probe-cpp technical details

This appendix provides more details on the implementation of Probe-cpp. The full architecture diagram is

shown in figure A.1. Below, the reader can find the string processing grammar, taken from [7], which was

used to evaluate the performance of Probe-cpp and compare it to that of the original implementation. The

grammar is adapted slightly for each problem specification by the addition of certain literals specific to the

considered problem. These literals are included in the program specification provided by the user and are

added by Probe-cpp to the grammar at runtime.

S −→ arg0 | arg1 ... the inputs to the program

| ( replace S S S ) finds the first occurrence of S2 in S1 replaces it with S3

| ( concat S S ) concatenates two strings

| ( substr S I I ) returns a substring of S of length I2, from index I1

| ( ite B S S ) if B yields true, return S1, otherwise return S2

| ( int2str I ) cast integer I to a string

| ( at S I ) return character from string S at index I

B −→ true

| false

| ( = I I ) checks whether I1 is equal to I2

| ( contains S S ) checks whether S1 contains S2

| ( suffixof S S ) checks whether S1 ends with S2

| ( prefixof S S) checks whether S1 starts with S2

I −→ ( str2int S ) cast string S to an integer

| ( + I I ) add two integers

| ( - I I ) substract two integers

| ( length S ) returns the length of the string

| ( ite B I I ) if B yields true, return I1, otherwise return I2

| ( indexof S S I ) returns the index of S2 in S1, starting at index I
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Figure A.1: UML diagram of Probe-cpp’s architecture



B
Detailed benchmarks

This appendix provides more details about the basic benchmark. The input to G4BE is the program

specification which is given in the JSON format. Listing B.1 shows a part of the program specification for

the basic benchmark. These JSON objects include the pairs of input & output packets in the form of byte

strings, terminals to add to the grammar (such as MAC addresses, port numbers, etc), and any optional

code hints.

Listing B.1: Program specification for basic.p4

1 {
2 "examples": [
3 ...
4 {
5 "input": {
6 "packet": "ffffffffffff08000000022208004500003300010000400663c...",
7 "port": "2"
8 },
9 "output": {
10 "packet": "080000000111ffffffffffff080045000033000100003f0664c...",
11 "port": "1"
12 }
13 }
14 ],
15 "terminals": {
16 "number": [
17 "1", "0", "10"
18 ],
19 "macAddr": [
20 "08:00:00:00:01:11", "08:00:00:00:02:22",
21 "08:00:00:00:03:00", "08:00:00:00:04:00"
22 ],
23 "port": [
24 "1", "2", "3", "4"
25 ]
26 },
27 "hints": [
28 "action ipv4_forward(bit<48> macAddr, bit<9> port) {
29 standard_metadata.egress_spec = port;
30 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
31 hdr.ethernet.dstAddr = macAddr;
32 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
33 }"
34 ]
35 }
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Given a program specification, G4BE produces two separate outputs, namely the P4 program and a JSON

object containing the data that was used to populate the match-action tables. Listing B.2 shows a part of

the solution generated by G4BE. Note how the code hints given as part of the program specification are

included in the solution.

Listing B.2: Synthesized basic.p4

1 control MyIngress(inout headers hdr, inout metadata meta, inout
standard_metadata_t standard_metadata) {

2 action a1 (bit<48> macAddr, bit<9> port) {
3 standard_metadata.egress_spec = port;
4 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
5 hdr.ethernet.dstAddr = macAddr;
6 hdr.ipv4.ttl = hdr.ipv4.ttl-1;
7 }
8 table t0 {
9 key = {
10 hdr.ipv4.dstAddr: exact;
11 }
12 actions = {
13 a1;
14 }
15 size = 1024;
16 }
17 apply {
18 t0.apply();
19 }
20 }

For the basic benchmark, G4BE synthesizes a match-action table together with the entries in that table.

These entries are included into a JSON object which is presented as an output to the user, together with

the synthesized P4 code. For the pod topology, G4BE outputs the JSON object depicted in listing B.3.

Listing B.3: Synthesized runtime rules for basic.p4

1 {
2 "target": "bmv2",
3 "p4info": "build/switch.p4.p4info.txt",
4 "bmv2_json": "build/switch.json",
5 "table_entries": [
6 {
7 "table": "t0",
8 "match": {
9 "hdr.ipv4.dstAddr": 167773188
10 },
11 "action_name": "MyIngress.a1",
12 "action_params": {
13 "macAddr": "08:00:00:00:04:00",
14 "port": 4
15 }
16 },
17 {
18 "table": "t0",
19 "match": {
20 "hdr.ipv4.dstAddr": 167772931
21 },
22 "action_name": "MyIngress.a1",
23 "action_params": {
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24 "macAddr": "08:00:00:00:03:00",
25 "port": 3
26 }
27 },
28 {
29 "table": "t0",
30 "match": {
31 "hdr.ipv4.dstAddr": 167772674
32 },
33 "action_name": "MyIngress.a1",
34 "action_params": {
35 "macAddr": "08:00:00:00:02:22",
36 "port": 2
37 }
38 },
39 {
40 "table": "t0",
41 "match": {
42 "hdr.ipv4.dstAddr": 167772417
43 },
44 "action_name": "MyIngress.a1",
45 "action_params": {
46 "macAddr": "08:00:00:00:01:11",
47 "port": 1
48 }
49 }
50 ]
51 }
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