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Abstract
The selection of uncertainty structures is an important aspect of system iden-
tification for robust control. The aim of this paper is to provide insight into
uncertain multivariable systems for robust control. A unified method for visu-
alizing model sets is developed by generating Bode plots of multivariable uncer-
tain systems, both in magnitude and phase. In addition, these model sets are
compared from the viewpoint of the control objective, allowing a quantitative
analysis as well. An experimental case study on an automotive transmission
application demonstrates these connections and confirms the importance of the
developed framework for control applications. In addition, the experimental
results provide new insights into the shape of associated model sets by using the
presented visualization procedure. Both the theoretical and experimental results
confirm that a recently developed robust-control-relevant uncertainty structure
outperforms general dual-Youla-Kučera uncertainty, which in turn outperforms
traditional uncertainty structures, including additive uncertainty.

K E Y W O R D S

Bode plot, control applications, identification for control, multivariable control systems, robust
control, uncertain systems

1 INTRODUCTION

Model errors are a principal aspect of the modeling of physical systems. For instance, in the mechatronic industry, mod-
els are becoming increasingly important for control. In particular, stringent demands regarding speed and accuracy leads
to the situation where multivariable controllers are required.1 Model-based controllers effectively deal with inherently
multivariable systems.2 However, discrepancies between the model and the true system may lead to a dramatic deterio-
ration of performance and even instability when implementing a model-based controller on the true system.3 This paper
focuses on robust control which explicitly deals with systematic model errors by designing a controller that stabilizes and
achieves a certain guaranteed performance for a model set.4

The availability of reliable and systematic robust control algorithms has spurred the development of identification
approaches of multivariable model sets for robust control. It has led to approaches that consider parametric uncertainty
that is directly applicable to ∞ optimization.5 In References 6 and 7, connections to the prediction error framework
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have been established. Besides the use of parameter uncertainty, uncertainty structures in robust control have been fur-
ther developed towards system identification. First, (inverse) additive and multiplicative uncertainty structures have been
developed, for example, Reference 8. These uncertainty structures have been extended towards (normalized) coprime fac-
tor perturbations, see References 9 and 10, to deal with closed-loop operation and to accommodate the control goal. These
coprime factor-based uncertainty structures have been further refined towards dual-Youla-Kučera uncertainty struc-
tures, see References 11-14, that improve the connection between identification and control by explicitly considering the
closed-loop operation of the system. Recently, in References 15 and 16, these coprime factor-based uncertainty structures
are further refined to explicitly connect the size of uncertainty and the control criterion. An essential advantage of the
latter structure is that it provides an inherent scaling of the uncertainty channels that is essential for the nonconservative
identification of model sets.

Over the last decades, many uncertainty structures for robust control have been developed, however, generic guide-
lines, analysis, and comparison of the practical implications of the selection of uncertainty structures have not been
thoroughly developed. In Reference 17, several uncertainty structures are experimentally compared on an automotive
application. However, no explicit connection is established with identification and the results are not theoretically sup-
ported. In Reference 14, it is observed that if the nominal model and the weighting filters are allowed to vary, then many
of these uncertainty structures can be explicitly related in terms of circular bounds in the frequency domain. However,
such a frequency domain analysis does not explicitly address stability aspects, which is essential if ∞-norm-bounded
uncertainty is used. In addition, this paper aims to address uncertainty structures for a fixed nominal model, as this is a
common scenario in identification for robust control approaches, including15,18,19

Although uncertainty structures for robust control are significantly developed and their theoretical advantages on
an abstract level have been well established, generic methods to analyze their advantages, consequences, and detailed
insights for practical robust control applications are still limited. In particular, the trend toward more advanced uncer-
tainty structures and the multivariable aspects complicate comparison and hampers insight into the underlying structure
in view of robust control. The aim of this paper is to develop a generic visualization method for providing practical insight
into the performance and robustness characteristics of uncertain multivariable systems for robust control in the setting
presented in for example, Reference 20.

The main aim of this paper is visualization which is a principal part of extracting insight, comparison, robustness and
performance analysis of control systems. A key example is the Bode plot.21,22 The Bode plot of SISO systems is based on
the polar description of the complex number. Consequently, the Bode plot contains the magnitude and phase. In addition,
the polar decomposition naturally connects the Bode plot with the Nyquist plot which is widely used for stability, and
robustness analysis.20 The close relationship between magnitude and phase is underlined by the Bode gain-phase relation
and robustness criteria such as gain and phase margin.20 Frequency response function-based approaches are also used in
for example, for nonlinear systems23 and LPTV systems.24

The Bode plot of SISO systems has been extended in several directions to multivariable systems without uncertainty.
Often an element-wise Bode plot is considered based on the elements of the frequency response function. However,
the element-wise Bode plot becomes unclear as the number of plots inflates if the number of inputs and outputs
increases. In Reference 22, the principal magnitude and phase, that is, a multivariable magnitude and phase, are intro-
duced based on the multivariable polar decomposition in Reference 25. The principal magnitude coincides with the
wide-accepted multivariable magnitude definition based on the singular values.20 The combination of the principal mag-
nitude and phase allows for the generation of a generalized Nyquist plot and the analysis of robustness by gain and phase
margins.22

Despite its relevance, a generic method multivariable Bode analysis method for uncertain multivariable systems is not
available in its full generality. In the SISO case, uncertainty structures reduce to a Möbius transformation that allows com-
puting the magnitude and phase analytically.26 However, extending the Möbius transformation to multivariable systems
is not straightforward. In Reference 26, generalizations of the multivariable magnitude are made based on the generalized
and skewed structured singular values.4 However, a (multivariable) phase counterpart is lacking. The principal phase is
a suitable measure of the multivariable phase, yet extending the principal phase to uncertain systems is not straightfor-
ward. Alternatively, uncertain systems are analyzed in the quadratic constraint framework.27 The quadratic constraint
framework is used to analyze uncertain systems for robust control, for example, in Reference 28 to analyze multivariable
phase margins, in Reference 29 to study robustness, and in Reference 30 to study robustness with phase information. The
key obstruction of the principal phase for uncertain systems is that the underlying eigenvalue problem is not necessar-
ily convex. Eigenvalues can be approximated by the numerical range, which is convex.25 The numerical range is used for
stability analysis with phase information of uncertain systems in References 28-30.
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9638 TACX and OOMEN

The main contribution of this paper is the development of a unified method for constructing multivariable Bode plots
in magnitude and phase sense of uncertain multivariable systems with the following subcontributions.

(C1) A generic method for multivariable uncertain Bode plots.
(C1.1) Element-wise Bode magnitude and phase.
(C1.2) Multivariable Bode magnitude and phase.

(C2) Experimental case study.
(C2.1) CVT application.
(C2.2) Overview of uncertainty structures for robust control.
(C2.3) Overview of considerations.

The novelty in this paper lies in the derivation and application of a generic method for Bode plots of multivariable
uncertain systems to enhance insight in uncertain systems for robust control which, while making use of the previous
result,31 has not been published in its full generality. The results in References 28-31 can be retrieved as a special case. This
paper extends to the previous results in Reference 26 by proposing a generic method for Bode plots, in both magnitude
and phase sense, of uncertain multivariable systems. Although the results in this paper can be generalized to nonsquare
systems, in this paper square systems are considered throughout since the aim is to provide practical insight regarding both
performance and robustness. For analyzing robustness, the loop gain should be considered which is square by definition.
To facilitate the exposition, most of the results are stated in the continuous time domain. However, all results are directly
applicable to the discrete-time systems as well, especially since most computations here involve complex matrices and
can be applied to discrete-time frequency response functions directly.

Notation. A matrix A ∈ H is a Hermitian matrix, that is, a square complex matrix that is equal to the conjugate
transpose (A = A∗). The eigenvalues of a matrix square matrix G ∈ Cn×n are denoted by 𝜆(G). The singular values of a
(non)square matrix B ∈ Cn×m are denoted by 𝜎(B). The largest and smallest singular values are denoted by 𝜎(B) and 𝜎(B).
The function spacen×m

∞ are all complex-valued matrix functions which are analytic in the open right-half complex plane
C+ and have a finite∞-norm (i.e., ||G||∞ sup

𝜆>0,𝜔∈R
𝜎(G(𝜆 + i𝜔)) < ∞). The function spacen×m

∞ ⊂ 
n×m
∞ is the sub-

space of all real-rational and proper transfer matrices without poles in the closed right-half plane. The pair {N,D} is an
RCF of P if i) P = ND−1, ii) N,D ∈ ∞, and iii) ∃X ,Y ∈ ∞ such that XN + YD = I. The pair {Ñ, ̃D} is an LCF of
P if {Ñ∗

,
̃D∗} is an RCF of P∗. The LCF is a normalized LCF if, in addition, DD∗ + NN∗ = I. The pair {Ñ, ̃D} is an LCF

with co-inner numerator of P if it is an LCF of P and, in addition, ÑÑ∗ = I. The matrix blockdiag(A1,A2, …) denotes a
block diagonal matrix whose diagonal blocks are A1,A2, … . The upper linear fractional transformation (LFT) is given by
u( ̂H,Δ) = ̂H22 + ̂H21Δ

(
I − ̂H11Δ

)−1
̂H12.

2 PROBLEM FORMULATION AND OUTLINE

2.1 Robust control setup

The robust control approach in Reference 20(section 8.6) is adopted which is specified by the∞-norm-based criterion

 (P,C) ∶= ||WT(P,C)V ||∞, (1)

where W = blockdiag(Wy,Wu), V = blockdiag(V2,V1), and W ,V ,W−1
,V−1 ∈ ∞ are user-defined weighting filters.

The closed-loop feedback interconnection T(P,C), see Figure 1, is defined as

T(P,C) ∶

[
r2

r1

]

→

[
y
u

]

=

[
P
I

]

(I + CP)−1
[

C I
]

. (2)

Herein, u denotes the plant input, y denotes the output, r2 denotes the reference signal, and r1 denotes the feed-
forward signal. The criterion (1) in conjunction with the four-block interconnection encompasses many relevant
∞-design problems, including the loop-shaping approach in Reference 32, and facilitates the synthesis of internally
stabilizing controllers. The criterion (1) is formulated such that it is to be minimized for the true system Po, that is,
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TACX and OOMEN 9639

F I G U R E 1 Closed-loop feedback interconnection.

Co = arg minC  (Po,C). In general, a full description of the true system Po is not available. Consequently, Co cannot be
determined explicitly.

Alternatively, the controller Co can be approximated by a parametric nominal model ̂P of the true system Po, that is,
̂C = arg minC  ( ̂P,C). However, discrepancies between the nominal model and the true system may lead to robustness
and stability issues.

The key idea in robust control is to consider a model set  that encompasses the true system Po, that is, it satisfies

Po ∈  . (3)

Associated with the model set is the worst-case performance criterion

WC( ,C) ∶= sup
P∈
 (P,C).

Consequently, by minimizing the worst-case performance criterion

CRP = arg min
C
WC( ,C) (4)

it is guaranteed that

 (Po,CRP) ≤ WC( ,CRP). (5)

The key point is that robust performance, see for example Reference 20(section 8.6), is guaranteed by (5). The model set
is constructed by considering a perturbation Δ around a nominal model ̂P

 =
{

P||
|
P = u( ̂H,Δ),Δ ∈ 𝚫

}

. (6)

The transfer matrix ̂H, see Figure 2, is based on the upper linear fractional transformation

̂H ∶

[
p
u

]

→

[
q
y

]

=

[
̂H11 ̂H12

̂H21 ̂H22

]

, (7)

where p and q denote the exogenous input and output respectively. The transfer matrix ̂H contains the (multivariable)
nominal model ̂P and determines the internal structure of the model set. The perturbation set is a norm-bounded subset
of∞

𝚫 =
{

Δ ∈ ∞
|
|
|
‖Δ‖∞ ≤ 𝛾, blockdiag(Δ1, … ,Δnu)

}

. (8)

The parameter 𝛾 defines the ∞-norm bound. The uncertainty set can be subject to additional constraints, such as
parameter uncertainty from a polytope.27,33 Note that (8) encompasses unstructured uncertainty

𝜟u =
{

Δu ∈ ∞
|
|
|
||Δu||∞ ≤ 𝛾

}

. (9)
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9640 TACX and OOMEN

F I G U R E 2 Upper LFT plant setup.

T A B L E 1 Comparison of uncertain model sets.

Candidate open-loop models P in (6) Worst-case closed-loop performance


Add, see (15) ̂P + Δu WC(Add

,Cexp) ≤ supΔu∈𝚫u
|| ̂M22 + ̂M21Δu(I − ̂M11Δu)−1

̂M12||∞


dY, see (18)

(
̂N + DcΔu

) (
̂D − NcΔu

)−1
WC(dY

,Cexp) = supΔu∈𝚫u

‖
‖
‖
̂M22 + ̂M21Δu ̂M12

‖
‖
‖∞

Throughout, unless otherwise stated, unstructured uncertainty perturbations are considered to improve the readability
of the results.

2.2 Motivating example

The main motivation for this paper stems from the observation that the resulting performance guarantee in (5) hinges
on the shape and size of the model set  . In particular, the choice of uncertainty structure influences the worst-case
performance criterion (5). The control criterion (5) is related to the interconnection of the model set and the controller

WC( ,C) = sup
Δu∈𝚫u

‖
‖
‖
u

(
̂M,Δu

)‖
‖
‖∞

.

Here, the matrix ̂M depends on the internal structure of the uncertainty structure determined by (7) and the controller C.
Commonly, additive and multiplicative uncertainty structures are considered. However, also more refined uncertainty

structures are considered based on the dual-Youla-Kučera structure, see Table 1. The dual-Youla-Kučera-based model
sets possess specific advantageous properties when compared to traditional uncertainty structures that are outlined in
Section 3. Roughly speaking, these structures lead to an affine expression in Δu on closed-loop performance. However,
since ̂HdY

11 ≠ 0, the open-loop model characteristics in (6) involve the general form of an LFT and do not reduce to an
affine expression as with, for example, additive uncertainty structures. A key consequence of Table 1 is that it is not
straightforward to interpret the certain and uncertain open-loop model aspects associated with the model set dY. This is
confirmed by the following example.

Example 1. Consider a model ̂P = 3 and controller C with coprime factor frequency response function eval-
uated at a single frequency 𝜔 given by ̂N = 2, ̂D = 1, Nc = − 5

2
, Dc = 9

4
. To illustrate the results with respect

to the minimum and maximum gain, the norm-bound and the perturbation model is varied, that is, Δu ∈ C,
𝜎(Δu) ≤ 𝛾 , 𝛾 = {0.1, 0.4, 1}. Random realizations of admissible perturbationsΔu are generated that satisfy the
norm-bound 𝛾 . The corresponding models P ∈ Add and P ∈ dY, see Table 1, are depicted in Figure 3 and 4
respectively.

Example 1, and in particular Figures 3 and 4, reveal that the dual-Youla-Kučera model setsdY exhibits a significantly
different behavior when compared model sets based on additive uncertainty structures, for example, Figure 3. Indeed,
for additive structures, the nominal model ̂P is the center of the circular model set, independent of the∞-norm bound
𝛾 . The size of the model set grows proportional to 𝛾 . Interestingly, this specific behavior is not necessarily present for
dual-Youla-Kučera-based structures, see Figure 4.

1. For 𝛾 = 0.1: the dual-Youla-Kučera model set is circular yet centered around 2.08, which is not equal to the nominal
model response ̂P = 2.
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TACX and OOMEN 9641

F I G U R E 3 Generated candidate additive models P ∈ Add corresponding to Example 1.

F I G U R E 4 Generated candidate dual-Youla-Kučera models P ∈ dY corresponding to Example 1.

2. For 𝛾 = 0.4, the model set dY is still circularly shaped yet with an infinite radius. Still, the lower bound on the gain is
bounded by 1.45, whereas the upper bound has become infinite.

3. For 𝛾 = 1, the candidate models of the dual-Youla-Kučera model set are located everywhere except in a circle of radius
0.5 and centered at 0.7. Indeed, the circles in terms of Δu are still mapped onto circles in terms of P, however, the
interior of the circles in the Δu-plane is mapped onto the exterior of circles into the P-plane.

The particular behavior can be explained by the Möbius transformation. The Möbius transformation is a mapping on
the extended complex plane of the form

f (z) = az + b
cz + d

, (10)

where z ∈ C, and a, b, c, d ∈ C satisfy ad − bc ≠ 0. Observe that in the SISO case, the LFT-based uncertainty structures,
(6), are of the form (10). The Möbius transformation can be decomposed into a mapping of elementary sub transformations
that are explained in Appendix A. In view of the selected norm-bound 𝛾 on the uncertainty Δu, the specific interest is
in the transformation of a disc in the complex plane hence disc-shaped regions for each frequency. By decomposing the
Möbius transformation into elementary transformations in the complex plane, it is immediate that this transformation
maps circles into circles in the complex plane. It is emphasized that this encompasses also the results of Example 1. In
particular, the dual-Youla-Kučera structure with 𝛾 = 0.4 where a circle of finite radius is mapped into a circle with infinite
radius, that is, a line. A consequence of the Möbius transformation is that amplitude and phase bounds can be computed
analytically for SISO systems and provides insight into the behavior of these refined uncertainty structures. However, this
approach cannot be generalized directly to multivariable systems.

2.3 Problem formulation

Robust control performance crucially depends on the shape and size of the model set. In particular, the perfor-
mance guarantee (5) hinges on the selection of the underlying uncertainty structure. Traditionally, model sets for
robust control are based on additive or multiplicative uncertainty structures. However, also more refined coprime
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9642 TACX and OOMEN

factor-based and dual-Youla-Kučera-based uncertainty structures have been developed. As indicated in Section 2.2,
dual-Youla-Kučera-based uncertainty structures possess specific advantageous properties compared to traditional uncer-
tainty structures, for example, additive or multiplicative uncertainty structures. In particular, closed-loop performance
expressions are affine. However, in contrast to traditional structures, open-loop model characteristics involve general
LFT-based expressions. Example 1 confirms that these general LFT-based expressions involve complicated behavior
which hampers insight into the underlying open-loop characteristics, and comparison of uncertainty structures.

At the same time, robust control designs are often based on frequency domain-based requirements, for example,
loop-shaping-based weighting filters, which underline the importance of frequency domain analysis of the underlying
uncertainty structure. An important approach to analyzing and comparing these model sets is to compute bounds on rel-
evant system properties, and the construction of a Bode plot by visualizing frequency-dependent amplitude and phase
characteristics. In fact, the Bode plot is a crucial tool in control engineering and provides essential information regarding
performance, stability, and robustness.

This paper aims to provide practical insight into the performance and robustness characteristics of uncertainty struc-
tures for robust control by providing tools to visualize uncertain multivariable systems and comparing uncertainty
structures in a relevant case study. To facilitate comparison, a theoretical analysis and an overview of uncertainty struc-
tures are provided in Section 3. In Section 4, the generic method is developed to generate multivariable Bode plots
of uncertain multivariable systems. The uncertainty structures introduced in Section 3 are analyzed and compared in
an industrial case study in Section 5. In particular, the generic method in Section 4 is employed to generate practical
insight into the performance and robustness characteristics of the considered multivariable uncertainty structures. Final,
conclusions are provided in Section 6.

3 IDENTIFICATION-RELATED UNCERTAINTY STRUCTURES FOR
ROBUST CONTROL

A key observation is that the robust control performance crucially depends on the considered uncertainty structure. In
this section, several uncertainty structures that arise in robust control are introduced, analyzed an compared from a
theoretical point of view in their (i) capability to satisfy (3), and (ii) associated worst-case performance in (5). Section 3.6
provides an overview of the comparison and underlines the importance of the development of a generic method for Bode
analysis of uncertain multivariable systems. The analysis and comparison in this section are confirmed and extended in
a practical case study in Section 5 by employing the generic method for Bode analysis of uncertain multivariable systems
in Section 4.

3.1 Towards theoretical analysis and comparison of uncertainty structures for robusts
control

An underlying theoretical framework is essential for the analysis and comparison of uncertainty structures for robust
control. From the point of the control goal, the aim is to minimize the upper bound in (5). The closed-loop expression
in (5) is complicated, since it depends on the experimental conditions and specific application, and related to this the
optimal robust control CRP that follows from synthesis. To further provide a general analysis, in many cases identification
is performed in a closed-loop, both from a safety and performance perspective.6,18,34 Hence, uncertainty is modeled with
a given, nonoptimal Cexp.

Next, suppose that a certain uncertainty structure is selected that leads to a model set such that (3) is satisfied. Then,
an approach to compare different model sets is to evaluate their worst-case performance

WC( ,Cexp). (11)

The motivation for considering (11) stems from the fact that (4) directly implies the bound

WC( ,CRP) ≤ WC( ,Cexp). (12)

Thus, given two model sets 1 and 2, if WC(1
,Cexp) < WC(2

,Cexp), then (12) implies that 1 has a tighter upper
bound compared to2 regarding the resulting robust performance. Note that this upper bound does not imply an ordering
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TACX and OOMEN 9643

in the robust performance as is achieved by CRP(1) and CRP(2). However, extensive experimental results, as is also
supported by the results in Section 5, reveal that WC(1

,Cexp) < WC(2
,Cexp) typically leads to WC(1

,CRP(1)) <
WC(2

,CRP(2)).
Furthermore, the minimization of (11) over , subject to (3), is at the heart of iterative identification and robust control

approaches, including.18,35 An important advantage of criterion (11) is that the robust control design (4) and identification
problem (11) may be solved alternately, leading to a monotonously converging iterative procedure.36 In this paper, the
criterion (11) is adopted to evaluate the consequences of the choice of uncertainty structure, see (6), for a pre-specified
model ̂P.

Hence, the performance of the model set, interconnected with Cexp follows from the construction of a generalized
plant, see Reference 20(Section 3.8)

WC( ,Cexp) = sup
Δ∈𝚫u

||u( ̂M,Δu)||∞, (13)

where

̂M( ̂H,Cexp) =

[
̂M11 ̂M12

̂M21 ̂M22

]

. (14)

The matrix ̂M in (14) depends on the uncertainty structure ̂H (7). In the forthcoming sections, several uncertainty
structures in identification for robust control are evaluated in their (i) capability to satisfy (3), and (ii) associated worst-case
performance in (11) and (13).

3.2 Traditional uncertainty structures for robust control

Commonly, (inverse) additive and (inverse) multiplicative uncertainty structures are used in robust controller designs.
First, consider a multivariable model set based on additive uncertainty that is given by


Add ∶= {P|P = ̂P + Δu,Δu ∈ 𝚫u}, (15)

where all considered systems have appropriate dimensions. The corresponding ̂H( ̂P) is given by

̂HAdd =

[
0 I
I ̂P

]

,

whereas direct computations reveal that the worst-case performance in (13) is given by

WC(Add
,Cexp) = sup

Δu∈𝚫u

‖
‖
‖
̂MAdd

22 + ̂MAdd
21 Δu(I − ̂MAdd

11 Δu)−1
̂MAdd

12
‖
‖
‖∞

, (16)

for a certain ̂MAdd, see (14), with in general ̂MAdd
11 ≠ 0. Hence, the worst-case performance associated with Add, see

(16), is thus arbitrary and may in fact become unbounded for a bounded Δu ∈ 𝚫u due to the inverse in (16). From this
perspective, such additive uncertainty structures do not always provide a useful bound in (12). In fact, similar results hold
for all uncertainty structures in Reference 4(tab. 9.1), including (inverse) multiplicative structures.

Besides the absence of a finite upper bound in (12), a key shortcoming of additive and multiplicative uncertainty
structures involves the fact that the constraint (3) may not hold if such uncertainty structures are used. For instance, from
(15) it is immediate that the additive uncertainty structure cannot deal with uncertain unstable poles of ̂P, for example, if
Po is unstable, then for a stable model ̂P, it holds that ̂P + Δu ∈ ∞, hence (3) cannot be satisfied.

3.3 Towards coprime-factor based uncertainty structures

To ensure that the constraint in (3) holds for a certain 𝚫u, perturbations on coprime factors can be considered, that is,


CF = {P|P = ( ̂N + ΔN)( ̂D + ΔD)−1

, ||

[

ΔT
N ΔT

D

]T
||∞ ≤ 𝛾}, (17)
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9644 TACX and OOMEN

where { ̂N, ̂D} is an RCF of ̂P. In fact, certain coprime factorizations have a close connection to robustness in the graph and
(𝜈-) gap metric, see Reference 37 and normalized coprime factorizations.38 Although the guarantee that the constraint (3)
is satisfied for at least oneΔu ∈ ∞, such uncertainty structures lead to the general worst-case performance expression
in (16). This result follows immediately since if ̂P ∈ ∞, then { ̂P, I} is an RCF of ̂P. Hence, the coprime factor uncer-
tainty structure encompasses additive uncertainty as a special case. Summarizing, the key point of coprime factor-based
uncertainty is that the true system is guaranteed in the model set, that is, Po ∈ CF, for some finite overbound 𝛾 , however,
this does not necessarily lead to a finite bound in the sense of (12).

3.4 Dual-Youla-Kučera uncertainty structures

To ensure that both the constraint (3) holds and that the bound in (12) is finite, the dual-Youla-Kučera uncertainty
structure has been considered in, for example, References 12 and 14. Specifically,


dY ∶=

{

P||
|
P =

(
̂N + DcΔu

) (
̂D − NcΔu

)−1
,Δu ∈ 𝚫u

}

, (18)

where the pairs { ̂N, ̂D} and {Nc,Dc} are any RCF of ̂P and Cexp, respectively. In particular, the model set contains all
candidate models that are stabilized by Cexp. This means that the bound (12) is always bounded and that a finite bound
can always be obtained such that Po ∈ dY. The model set dY leads to

̂HdY =

[
̂D−1Nc ̂D−1

Dc + ̂PNc ̂P

]

and

̂MdY( ̂P,Cexp) =

⎡
⎢
⎢
⎢
⎢
⎣

0 ( ̂D + Cexp
̂N)−1

[

Cexp I
]

V

W

[
Dc

−Nc

]

WT( ̂P,Cexp)V

⎤
⎥
⎥
⎥
⎥
⎦

. (19)

Interestingly, (19) can be written as

WC(dY
,Cexp) = sup

Δu∈𝚫u

‖
‖
‖
̂MdY

22 + ̂MdY
21Δu ̂M

dY
12
‖
‖
‖∞

, (20)

which is an affine function ofΔu and hence bounded for allΔu ∈ 𝚫u. However, it is emphasized that ̂MdY
12 and ̂MdY

21 in (20)
are frequency-dependent and multivariable transfer function matrices. Consequently, the bound in (20) and (12) is finite
but in general arbitrary. Summarizing, the dual-Youla-Kučera model uncertainty structure, which connects the pertur-
bations on the coprime factors in (17) through the controller Cexp, is especially useful from a robust stability perspective
since it excludes candidate models that are not stabilized by Cexp.

3.5 Uncertainty structures for achieving robust performance

In Reference 15, a new model uncertainty structure has been presented that has distinct advantages from a robust per-
formance perspective. A key ingredient of this uncertainty structure is a new coprime factorization that arises in a novel
connection between control-relevant identification of nominal models and coprime factor identification, extending and
providing new insights in earlier results, including.34 This robust-control-relevant coprime factorization of ̂P is given by

[
̂NRCR

̂DRCR

]

=

[
̂P
I

]

( ̃De + Ñe,2V−1
2
̂P)−1

,
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TACX and OOMEN 9645

where the pair (
[
Ñe,2 Ñe,1

]
,
̃De) is an LCF with co-inner numerator of Cexp, see Reference 39. A second ingredient is a

certain (Wu,Wy)-normalized RCF. Specifically, the pair {N(Wu,Wy)
c ,D(Wu,Wy)

c } is a (Wu,Wy)-normalized RCF of C if it is an
RCR and, in addition, (WuNc)∗WuNc + (WyDc)∗WyDc = I, see Reference 15.

Next, by employing the specific robust-control-relevant coprime factorization { ̂NRCR
,
̂DRCR} of ̂P in conjunction with

a (Wu,Wy)-normalized RCF of Cexp, and (18), a new model set is obtained:


RCR ∶=

{

P||
|
P =

(
̂NRCR + D(Wu,Wy)

c Δu

)(
̂DRCR − N(Wu,Wy)

c Δu

)−1
,Δu ∈ 𝚫u

}

, (21)

The robust-control-relevant model set RCR leads to

̂HRCR =

[
( ̂DRCR)−1N(Wu,Wy)

c ( ̂DRCR)−1

D(Wu,Wy)
c + ̂PN(Wu,Wy)

c ̂P

]

and

̂MRCR( ̂P,Cexp) =

⎡
⎢
⎢
⎢
⎢
⎣

0 ( ̂DRCR + Cexp
̂NRCR)−1

[

Cexp I
]

V

W

[
D(Wu,Wy)

c

−N(Wu,Wy)
c

]

WT( ̂P,Cexp)V

⎤
⎥
⎥
⎥
⎥
⎦

. (22)

The result (22) leads to a significantly stronger result when compared to (20). Specifically, a main result of Reference 15
reveals that

WC(RCR
,Cexp) ≤ || ̂MRCR

22 ||∞ + sup
Δu∈𝚫u

||Δu||∞

=  ( ̂P,Cexp) + 𝛾,
(23)

where 𝛾 is defined in (9). The robust-control-relevant model uncertainty structure associated with RCR connects the
size of model uncertainty and the control criterion. This has significant advantages when compared to alternative model
uncertainty structures, including Add and RCR. First, the robust-control-relevant model uncertainty structure intro-
duces an appropriate frequency scaling of the model uncertainty channels, hence ̂MRCR

12 and ̂MRCR
21 do not appear in (23).

Second, the robust-control-relevant model uncertainty structure introduces an appropriate scaling of the model uncer-
tainty channels for multivariable systems by scaling these with respect to the control criterion. Indeed, the scaling of
different inputs and outputs is considered important in control system design, see, for example, Reference 20(section
1.4). The appropriate scaling enables the nonconservative use of unstructured model uncertainty, which has signif-
icant advantages for certain uncertainty modeling procedures, see, for example, Reference 40, and robust controller
synthesis.

3.6 Comparing uncertainty structures: Overview

Traditional uncertainty structures, for example, additive and multiplicative, typically exhibit affine open-loop character-
istics in the uncertaintyΔu. However, their closed-loop expressions are complicated, that is, involve the general LFT form.
As a result, the worst-case performance may become arbitrary or even unbounded indicating that the resulting robust
controller may not necessarily achieve a high performance. Besides, an additional drawback of these traditional uncer-
tainty structures is their potential inability to satisfy (3), that is, capture the true system, which is critical to guarantee
robust performance.

In sharp contrast to the traditional uncertainty structures, dual-Youla-Kučera uncertainty structures achieve affine
closed-loop expressions in the uncertaintyΔu. Consequently, their worst-case performance may be finite in general. How-
ever, the frequency-dependent matrices ̂MdY

12 and ̂MdY
21 in (20) lead to an arbitrary worst-case performance indicating that
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9646 TACX and OOMEN

the resulting robust controller does not necessarily achieve a high performance. In contrast to traditional uncertainty
structures, dual-Youla-Kučerauncertainty structures exclude any models that are not stabilized by the controller Cexp,
which is a considerably useful advantage for achieving robust performance.

The robust-control-relevant uncertainty structure extends to the dual-Youla-Kučerauncertainty structure by employ-
ing a specific coprime factorization which provides a finite and useful bound of the worst-case performance (23) which
indicates that the resulting robust controller may achieve a high performance. However, in sharp contrast to the tradi-
tional uncertainty structures, the open-loop expressions of the dual-Youla-Kučera-based uncertainty structures involve
the general form of an LFT and do not reduce to the affine expressions. Although these coprime factor-based uncertainty
structures offer significant advantages for robust control, their complicated open-loop characteristics hamper insight into
the underlying structure, as shown in Table 1. This underlines the importance of the development of a unified approach
for Bode plots of uncertain multivariable systems to gain insight into the underlying uncertainty structure from a robust
performance perspective, which is the aim of the following section.

4 BODE PLOTS OF UNCERTAIN MODEL SETS

In this section, a generic method is developed for Bode analysis, in both (multivariable) magnitude and phase sense,
of uncertain multivariable systems. First, suitable measures for multivariable magnitude and phase are introduced.
Second, the multivariable magnitude and phase measures are extended to uncertain multivariable systems. Third, an
algorithm based on the full-block s-procedure is developed that allows for accurate computation of the multivariable mag-
nitude and phase of uncertain multivariable systems on a frequency-by-frequency basis. The approach applies to general
identification-related uncertainty structures, including (6), (15), (17), (18), (21). The proposed generic method for Bode
analysis of uncertain multivariable systems constitutes contribution C1.

The general LFT-based structure (6) is used throughout Sections 4.2 and 4.3 to enhance the generality of the results. In
addition, to improve generality of the proposed approach, a general uncertainty block based on (8) is considered that may
involve highly structured perturbations, for example, References 2 and 41. The unstructured uncertainty perturbation (9)
is directly recovered as a special case.

4.1 Towards multivariable Bode plots of uncertain multivariable systems

4.1.1 Multivariable magnitude and phase of nominal systems

The Bode plot of a scalar LTI system with the transfer function P(s) ∈  is a graphical representation of the complex
frequency response of the system. The Bode plot is a combination of the Bode magnitude and phase plot which are
constructed by plotting the magnitude |P(s)| and phase arg(P(s)) on s = j𝜔 for a grid of frequencies𝜔 ∈ Ωd. The frequency
grid Ωd is defined by the control engineer based on the frequency range of interest and should be sufficiently dense
to capture potential resonances. Essentially, the magnitude and phase are based on the polar description of a complex
number

z = r exp(j𝜃), (24)

where r > 0 denotes the magnitude and 𝜃 ∈ [0, 2𝜋) denotes the phase. The Bode plot is related to the Nyquist plot through
the polar decomposition. In particular, the Nyquist plot is the polar plot of the magnitude and phase for frequencies along
the Nyquist D-contour.

The Bode and Nyquist plots are widely used in control engineering for robustness and performance analysis of nom-
inal systems. The close relationship between the polar decomposition, Nyquist plot, and Bode plot is underlined by
performance and robustness measures including gain and phase margin.20

The key aim of developing a multivariable Bode magnitude and phase plot is to compare uncertainty structures in
terms of performance and robustness. Consequently, similar to the Bode plot of SISO systems, a close relationship between
the multivariable polar decomposition, the Bode plot, and the Nyquist plot is required. For this reason, analogous to the
polar form of a scalar, the polar decomposition of a square system P(j𝜔) ∈ Cn×n for a fixed frequency 𝜔 ∈ Ωd is defined
as Reference 42(section IX.12)
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TACX and OOMEN 9647

P = UHR, (25)

P = HLU, (26)

where U is unitary and the matrices HR and HL are Hermitian. It is emphasized that the polar decomposition in (25) and
(26) holds for a fixed frequency𝜔 and a frequency-by-frequency approach is pursued to generate Bode plots. Further ideas
will be developed for a fixed frequency and the frequency dependence is dropped to improve the readability of the results.

Notice that if a SISO system is considered, the multivariable polar decomposition in (25) and (26) reduce the SISO
polar decomposition, that is, (24). The matrices U, HR, and HL can be determined from the singular value decomposition

P = ΦΣΨ∗

where U = ΦΨ∗, HR = ΨΣΨ∗, and HL = ΦΣΦ∗. The multivariable magnitude of P are the eigenvalues of the Hermitian
part HL or HR of the polar decomposition42(section IX.12)

𝜎(P) = 𝜆(HR) = 𝜆(HL) ≥ 0. (27)

The multivariable phase based on the multivariable polar decomposition, that is, principal phase,9 is defined as the
arguments of the eigenvalues of the unitary part U

𝜓(P) = arg {𝜆(U)} . (28)

A multivariable Bode plot can be constructed by computing the principal magnitude and phase for each frequency in the
frequency grid Ωd.

4.1.2 Multivariable magnitude and phase: Interpretation

An important aspect of a Bode plot is its interpretation. A key property of the multivariable magnitude (27) and phase
(28) is their relation to robustness analysis. Specifically, the characteristic loci are related to the multivariable magnitude
and phase.

Lemma 1. The magnitude of the eigenvalues of a square system P ∈ Cn×n are bounded from above and below
by the multivariable magnitude (27)

𝜎(P) ≤ |𝜆(P)| ≤ 𝜎(P). (29)

Proof. The proof is based on Weyl’s Theorem, see for example Reference 43. ▪

The relation between the eigenvalues and minimum and maximum singular value, that is, (29), can be used to define
an annular region in the complex plane within which the eigenvalues must lie. Next, the relation of the multivariable
phase with the eigenvalues is investigated.

Lemma 2. If the phase spread, that is, the difference between the multivariable phases, is less than 𝜋, then,
the argument of the eigenvalues of a matrix P ∈ Cn×n are bounded from above and below by the multivariable
phase (28)

𝜓(P) ≤ arg{𝜆(P)} ≤ 𝜓(P) (30)

where 𝜓() and 𝜓() denote the minimum and maximum multivariable phase respectively.

Proof. A proof is provided in Reference 22(Theorem 2). ▪
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9648 TACX and OOMEN

F I G U R E 5 Illustration of the annular sections defined by the multivariable magnitudes and phases (orange), union of annular
sections, that is, principal region (gray), and eigenvalues (black cross).

The minimum and maximum multivariable phase in Lemma 2 can be used to define a cone in the complex plane
centered in the origin based on the minimum and maximum phase in (30) within which the eigenvalues of the matrix
must lie. Consequently, the combination of Lemma 1 and 2 can be used to span annular sections in the complex plane
that contain the eigenvalues as indicated in Figure 5.

If the difference between the minimum and maximum phase, that is, phase spread, is larger than 𝜋, then the eigen-
values are contained in an annular region defined by the minimum and maximum singular values. By continuing the
analysis along the Nyquist D-contour, a region is drawn within which the characteristic loci must lie, that is, principal
region.22 Application of the generalized Nyquist criterion leads to an alternative Nyquist criterion.22 Consequently, anal-
ogous to the Bode magnitude and phase plot of SISO systems, the multivariable Bode magnitude and phase plot can be
used for a wide variety of applications such as stability analysis, robustness analysis, gain margin, phase margin, and
performance analysis.

Remark 1. The principal magnitude and phase can be extended to nonsquare systems by adding auxiliary
zero columns and rows such that a square system is obtained. In this case, the multivariable magnitude relates
to the singular values of the systems which have a clear performance interpretation, that is, minimum and
maximum gain of the system. The multivariable phase gets particularly interesting when considering the loop
gain which is square by definition. In this case, analogously to the scalar case, the multivariable magnitude
has a clear performance interpretation. Since this paper considers robustness and performance properties
through visualization, square systems are considered throughout. It is emphasized that the tools presented in
this paper can be used for nonsquare systems by adding auxiliary zero columns or rows such that a square
system is obtained.

4.2 Multivariable magnitude and phase of uncertain systems

4.2.1 Multivariable magnitude

The key idea for the computation of the multivariable magnitude of uncertain systems according to (6) is to compute the
minimum and maximum singular value of the uncertain system for each frequency in the frequency grid.

Definition 1. Let  be an uncertain system according to (6). For a fixed frequency 𝜔 the minimum and
maximum magnitude are defined as
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TACX and OOMEN 9649

F I G U R E 6 Union of numerical ranges(P),∀P ∈  (orange) and cone defined by the multivariable phases 𝜙 () and 𝜙() (grey).

𝜉() = inf
P∈

𝜎 (P(j𝜔)) , (31)

𝜉() = sup
P∈

𝜎 (P(j𝜔)) . (32)

By calculating 𝜉() and 𝜉() for each frequency in the frequency range of interest, a multivariable Bode magnitude
plot is constructed.

4.2.2 Multivariable phase

In this section, the multivariable phase is defined for uncertain systems, building on the ideas of the principal phase.
A direct extension of the principal phase is not immediate, since an explicit expression for the matrix spectrum is not
directly available for general complex matrices. For this reason, the numerical range

(P) =
{

x∗Px||
|
x ∈ C

n
, ‖x‖ = 1

}

is considered, see References 30 and 42 for details. The key benefit of the numerical range is that the set(P) is convex.
Furthermore, the numerical range is known to contain the spectrum of a matrix.42 The key idea of using numerical range
is to generate a multivariable phase definition that approximates the principal phase of uncertain systems.

To construct a multivariable phase definition of uncertain systems, the numerical range is extended to the uncertain
case by considering the union of the numerical ranges(P) for P ∈  . To define the multivariable phase based on the
numerical, consider a cone centered in the origin that contains the union of numerical ranges of the uncertain system
 . The cone is described by two angles 𝜙 () and 𝜙() as indicated in Figure 6. The key challenge is to find the smallest
cone that contains the union of numerical ranges. The angles 𝜙 () and 𝜙() define the multivariable phase.

Definition 2. Let  be an uncertain system according to (6). Assume that for a given frequency 𝜔 the union
of numerical ranges of  to be in the right half-plane. For a fixed frequency 𝜔 the minimum and maximum
multivariable phase are defined as

𝜙() = inf
P∈

{

inf
𝜅∈(P)

arg {𝜅}
}

, (33)

𝜙() = sup
P∈

{

sup
𝜅∈(P)

arg {𝜅}
}

. (34)

Throughout, the numerical range is assumed to be contained in the right half-plane. This assumption is nonrestrictive,
since if the numerical range is not in the right half-plane, the system is rotated by an angle 𝜈 such that(exp(j𝜈)P(j𝜔0))
is in the right half-plane for all P ∈  .
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9650 TACX and OOMEN

Remark 2. If the phase spread, that is, the difference between the minimum and maximum phase, is larger
than 𝜋, the numerical range must contain the origin. Consequently, the phase is contained in a range of 2𝜋.

Remark 3. The multivariable phase based on the numerical range approximates the principal phase. Specifi-
cally, the numerical range-based phase bounds the principal phase from below and above

𝜙(P) ≥ 𝜓(P), 𝜙(P) ≤ 𝜓(P).

If the matrix P is normal, then the inequalities become equalities. In this case, the numerical range is the
smallest convex set that contains the spectrum of P, that is,(P) equals the convex hull of the spectrum of P.30

Consequently, if a SISO, diagonal, or element-wise system is considered, the numerical range-based phase is
exact.

4.2.3 Element-wise magnitude and phase

Consider the uncertain system  according to (6). The ijth element of  is defined as

ij =
{

Pij
|
|
|
Pij ∈ u∗i uj

}

, (35)

where ul denotes a vector of appropriate length with the lth element equal to one and all other elements zero. The multi-
variable magnitude of Definition 1 and phase of Definition 2 are easily extended to the element-wise case by considering
the elements (35). As indicated in Remark 3, the numerical range-based phase is exact with respect to the principal phase
in the element-wise case. The element-wise Bode magnitude and phase plot are also valid for nonsquare systems.

4.3 Multivariable Bode plots of uncertain systems: Algorithm

The key step in the development of a magnitude and phase algorithm is to capture the multivariable magnitude and phase
in terms of input and output relations. The interconnection in (6) is said to satisfy the quadratic constraint with respect
to the performance matrices

{
Πp,11,Πp,12,Πp,22

}
if for every nonzero z,w in (7)

(
z
w

)∗(
Πp,11 Πp,12

Π∗p,12 Πp,22

)(
z
w

)

≺ 0, (36)

where the matrices Πp,11,Πp,12,Πp,22 ∈ H determine the performance characteristics. The performance criterion (36) can
be generalized to the IQC framework by including the frequency dependence, see for example Reference 27. However, it
is emphasized that a frequency-by-frequency approach is pursued to generate Bode plots. For this reason, the results are
developed for a fixed frequency.

Essentially, the performance criterion (36) depends on the uncertainty Δ which makes analysis of (36) not straight-
forward. The following theorem is an essential result for the performance analysis of uncertain systems.

Theorem 1. The performance specification (36) holds for all Δ ∈ 𝚫 if and only if there exist multipliers
Πp,11,Πp,12,Πp,22 ∈ H such that

(
Δ
I

)∗(
Π11 Π12

Π∗12 Π22

)(
Δ
I

)∗

≺ 0 and (37)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

̂H11 ̂H12

I 0
̂H21 ̂H22

0 I

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∗

(
Π 0
0 Πp

)
⎛
⎜
⎜
⎜
⎜
⎜
⎝

̂H11 ̂H12

I 0
̂H21 ̂H22

0 I

⎞
⎟
⎟
⎟
⎟
⎟
⎠

≺ 0.
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TACX and OOMEN 9651

Proof. Theorem 1 is based on the full-block s-procedure, see References 44(appendix B) and 45 for a proof. ▪

Theorem 1 provides a necessary and sufficient condition for the uncertain system to satisfy the performance criterion
(36). Validating if the uncertain system satisfies the performance criterion is an optimization problem in the matrices
Π. However, since (37) needs to hold for all Δ ∈ 𝚫, the optimization problem is infinite-dimensional. For typical model
uncertainty, such as unstructured uncertainty or parameters from a polytope, the matrices {Π11,Π12,Π22} are available,
for example, in Reference 27. In case unstructured uncertainty is considered, see (9) without any structural constraints,
then (37) holds for the matrix

Πu = blockdiag
(

I,−𝛾2I
)
.

For uncertainty structures for which such a multiplier set is not available, the multiplier set can be approximated, see for
example, Reference 27. In this case, Theorem 1 provides a sufficient condition.

In the following, the performance criterion (36) and Theorem 1 are used to develop an algorithm to compute the
multivariable magnitude and phase.

4.3.1 Magnitude and phase description

An essential aspect of capturing the magnitude and phase definitions in the quadratic constraint framework (36) is
the selection of appropriate performance matrices Πp. In this section, these performance matrices are derived for the
magnitude and phase in Definitions 1 and 2.

Finding the minimum and maximum singular value in Definition 1 can be formulated by computing the largest 𝛼 and
smallest 𝛼 such that

𝛼

2w∗w − z∗z < 0, −𝛼2w∗w + z∗z < 0, (38)

where w, z refer to the signals in (7).
The parameters 𝛼 and 𝛼 define the interior and exterior respectively, of an annular region in the complex plane. The

description of the input-output behavior can be formulated as a quadratic constraint as shown in the following theorem.

Theorem 2. Let H denote the multivariable system at frequency 𝜔 of the form (7) with its input w and output
z. The inequalities in (38) hold if and only if (36) holds with the performance matrices

Πp,1 = blockdiag
(
−I, 𝛼2I

)
, Πp,2 = blockdiag

(

I,−𝛼2I
)

. (39)

Proof. Rewriting the inequalities in (38) yields

(
z
w

)∗(
−I 0
0 𝛼 I

)(
z
w

)

< 0, (40)

(
z
w

)∗(
I 0
0 −𝛼I

)(
z
w

)

< 0. (41)

Then, (40) and (41) are equal to (36) with Πp,1 and Πp,2. Similarly, consider (36) with Πp,1 and Πp,2. Then, (36)
with Πp,1 and Πp,2 is equivalent to (40) and (41). ▪

The computation of the minimum and maximum phase in Definition 2 can be reformulated by finding the largest 𝛽
and smallest 𝛽 such that

ℜ {w∗z} >
ℑ {w∗z}
tan(𝛽)

, ℜ {w∗z} <
ℑ {w∗z}
tan(𝛽)

. (42)
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9652 TACX and OOMEN

Essentially, the angles 𝛽 and 𝛽 in (42) define a cone in the complex plane. The largest 𝛽 and smallest 𝛽 correspond to the
multivariable phases in (33) and (34). The inequalities in (42) can be reformulated as a quadratic constraint as follows.

Theorem 3. Let H denote the multivariable system at frequency 𝜔 of the form (7) with its input w and output
z. The inequalities in (42) hold if and only if the quadratic constraint (36) holds with the performance matrices

Πp,3 =

(
0 −sin(𝛽) + j cos(𝛽)

−sin(𝛽) − j cos(𝛽) 0

)

, (43)

Πp,4 =

(
0 sin(𝛽) − j cos(𝛽)

sin(𝛽) + j cos(𝛽) 0

)

. (44)

Proof. Rewriting the inequalities in (42) yields

(
z
w

)∗(
0 −sin(𝛽) + j cos(𝛽)

−sin(𝛽) − j cos(𝛽) 0

)(
z
w

)

< 0 (45)

(
z
w

)∗(
0 sin(𝛽) − j cos(𝛽)

sin(𝛽) + j cos(𝛽) 0

)(
z
w

)

< 0. (46)

Then, (45) and (46) are equal to (36) with Πp,3 and Πp,4. Similarly, consider (36) with Πp,3 and Πp,4. Then, (36)
with Πp,3 and Πp,4 is equivalent to (45) and (46). ▪

Summarizing, Theorem 2 and 3 provide an essential new result for the specific purpose of Bode magnitude and phase
plots of uncertain multivariable systems. Specifically, Theorem 2 and 3 build on the general and broadly used framework
of quadratic constraints, see for example, Reference 44 and 45. In the next section, Theorems 2 and 3 are used to develop
an algorithm to generate Bode plots of uncertain multivariable systems.

4.3.2 Algorithm

In this section, the results of Theorems 1–3 are embedded in an approach to generate Bode plots of uncertain multivariable
systems.

Theorem 4. Let H be the system of the form (2), Δ ∈ 𝚫 an uncertainty block of the form (9), and consider the
fixed bounds 𝛼, 𝛼, and 𝛽, 𝛽. Suppose that (37) holds for the given matrices Π11, Π12, and Π22. The performance
matrices Πp,i, i ∈ {1, … , 4} are defined by (39), (43), and (44). The matrix inequalities

F(Πp,i) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

H11 H12

I 0
H21 H22

0 I

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∗

(
Π 0
0 Πp,i

)
⎛
⎜
⎜
⎜
⎜
⎜
⎝

H11 H12

I 0
H21 H22

0 I

⎞
⎟
⎟
⎟
⎟
⎟
⎠

≺ 0 for i ∈ {1, … , 4} (47)

hold if and only if

𝛼 ≤ 𝜉(), 𝜉() ≤ 𝛼, (48)

𝛽 ≤ 𝜙(), 𝜙() ≤ 𝛽. (49)

Proof. Consider the matrix inequality (47) to hold for Πp,i with i ∈ {1, … , 4}. By virtue of Theorem 1, the
performance criterion (36) is satisfied forΠp,i with i ∈ {1, … , 4}. Application of Theorem 2 and 3 shows that
(38) and (42) are satisfied for the bounds 𝛼, 𝛼, and 𝛽, 𝛽 which shows that (48) and (49) hold.
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TACX and OOMEN 9653

Similarly, consider (48) and (49) to hold for the fixed parameters 𝛼, 𝛼, and 𝛽, 𝛽. This shows that (38)
and (42) are satisfied. By virtue of Theorem 2 and 3, the performance criterion (36) is satisfied for Πp,i
with i ∈ {1, … , 4}. Application of Theorem 1, shows that the matrix inequality (47) holds for Πp,i with
i ∈ {1, … , 4}. ▪

Theorem 4 defines four new feasibility problems for fixed bounds 𝛼, 𝛼, and 𝛽 𝛽 for the specific purpose of constructing
Bode plots of uncertain multivariable systems that build on the broader framework of quadratic constraints for robust
control, see for example, Reference 44. The minimum and maximum magnitude and phase (31), (32), (33), and (34) are
determined by solving the following optimization problems

𝜉() = arg max
𝛼

{

𝛼

|
|
|
F(Πp,1(𝛼)) ≺ 0

}

, (50)

𝜉() = arg min
𝛼

{

𝛼

|
|
|
F(Πp,2(𝛼)) ≺ 0

}

, (51)

𝜙() = arg max
𝛽

{

𝛽

|
|
|
F(Πp,3(𝛽)) ≺ 0

}

, (52)

𝜙() = arg min
𝛽

{

𝛽

|
|
|
F(Πp,4(𝛽)) ≺ 0

}

. (53)

The new optimization problems (50), (51), (52), and (53) allow efficient and reliable computation of the multivariable
magnitudes and phases by iterating over the parameters 𝛼, 𝛼 and 𝛽, 𝛽 through bisection. The optimization problems are
convex and allow the magnitude and phase to be determined with user-defined precision. The new algorithm builds on
the general framework of linear matrix inequalities and quadratic constraints for robust control for the specific purpose of
Bode plots of uncertain multivariable systems and allows reliable computation with general software. The multivariable
Bode plot is constructed by computing the magnitude and phase for each frequency in the frequency grid. Consequently,
the computations can be executed in parallel. The computational complexity is determined by the number of inputs and
outputs, the number of iterations, and the size of the frequency grid.

5 EXPERIMENTAL COMPARISON BETWEEN
IDENTIFICATION-RELATED UNCERTAINTY STRUCTURES FOR ROBUST
CONTROL

In this section, the uncertainty structures introduced in Section 3 are analyzed and compared in a case study with the tools
provided in Section 4. The uncertainty structures are analyzed in their ability to generate high-performance robust con-
trollers with the visualization tools provided in Section 4. Also, the visualization tools provide insight into the underlying
uncertainty structure in view of robust control performance. The uncertainty structures are also tested in their ability to
achieve a small worst-case performance bound in the sense of (12) The uncertainty structures are analyzed in their ability
to achieve a small worst-case performance. To provide insight into the underlying uncertainty structures, the uncertainty
structures are visualized by the tools developed in Section 4. This section constitutes Contribution (C2.1), (C2.2), and
(C2.3).

5.1 Experimental CVT setup

The considered CVT system is depicted in Figure 7. By providing a continuous range of transmission ratios, the CVT
1. potentially reduces fuel consumption in passenger cars by allowing for optimal engine operating conditions, and 2.
improves driving comfort.

The main purpose of the CVT is power transmission, where the torque T and angular frequency 𝜔 at the primary and
secondary shaft are denoted by the subscript p and s, respectively. The torques and angular frequencies of the primary
and secondary shafts are related by the transmission ratio. A certain ratio is achieved by applying forces on the sheaves.
These forces are directly related to the pressures pp and ps in the primary and secondary hydraulic cylinders, respectively,
see Figure 7.
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9654 TACX and OOMEN

F I G U R E 7 Photograph of the experimental CVT system, where 1©: primary servo valve, 2©: secondary servo valve, 3©: pressure
measurement pp at primary hydraulic cylinder, 4©: pressure measurement ps at secondary hydraulic cylinder.

For optimal CVT operation, it is of crucial importance that certain reference pressures are achieved by the closed-loop
system. Specifically, in view of the signals in Figure 1, the error

e =

[
ep

es

]

=

[
rp

2 − yp

rs
2 − ys

]

should be small in some appropriate sense. The measured variables y are given by

y =

[
yp

ys

]

=

[
pp

ps

]

.

In addition, the manipulated variables u are given by

u =

[
up

us

]

=

[
Vp

Vs

]

,

where Vp and Vs are the voltages corresponding to the primary and secondary servo valves, respectively. Throughout, all
considered signals and systems evolve in discrete time using a sampling frequency of 1000 [Hz], since all measurements
and controller implementations are performed in a digital computer environment.

5.2 Control goal and nominal model

Throughout this article, it is assumed that weighting filters W and V , see (1), an experimental controller Cexp, see
Section 3.1, and a nominal model ̂P, see (6), are given. Specifically, use is made of the loop-shaping-based weighting fil-
ters W and V in Reference 46 that are aimed at enhancing CVT performance. Specifically, the weighting filters aim at a
bandwidth of 6 [Hz]. In addition, the experimental controller Cexp in Reference 46 is employed. Final, in Reference 46, the
weighting filters W and V and controller Cexp is used to identify a control-relevant parametric model ̂P, which is internally
structured as a robust-control-relevant coprime factorization, that is, ̂P = ̂N ̂D−1, see also Section 3.2. Hence, by definition,
̂N, ̂D ∈ 2×2

∞ . In addition, for the specific control-relevant model of the CVT, it turns out that ̂P = ̂N ̂D−1 ∈ 2×2
∞ . It is

emphasized that there are no guarantees with respect to the open-loop stability of the model ̂P, since it is estimated in a
control-relevant manner that enforces closed-loop stability of the interconnection of ̂P and Cexp.
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TACX and OOMEN 9655

5.3 Model uncertainty structures

Three important model structures, in particular, (15), (18), and (21), are compared for clarity of exposition. Note that the
additive structure can be used in this application since the nominal model does not contain any open-loop unstable poles,
see also Reference 47(tab. 9.1). It is emphasized that in general, additive uncertainty cannot guarantee that the bound in
(3) is guaranteed for a finite 𝛾 in (9). Furthermore, for each uncertainty structure, the minimum norm-bound to satisfy
(3) is different in general, that is, for each model structure ̂H in

 =
{

P||
|
P = u( ̂H( ̂P),Δu),Δu ∈ 2×2

∞ , ||Δu||∞ ≤ 𝛾
}

, (54)

the corresponding 𝛾 bound is different. Note that in all three cases, unstructured perturbation models are considered
without any additional weighting filters.

First, the additive uncertainty structure can directly be considered using the result in (15). Second, RCFs of ̂P and
Cexp are required to construct the dual-Youla-Kučera uncertainty structure in (18). Observe that ̂P ∈ ∞, hence the
pair { ̂P, I} is an RCF of ̂P. Since the controller Cexp contains a pure integrator, Cexp

≠ ∞. Hence, Cexp cannot be used
directly as a coprime factor. To resolve this, two closed-loop transfer functions are postulated as a coprime factorization
for Cexp, that is,

[
Nc

Dc

]

=

[
Cexp

I

]

(I + ̂PCexp)−1 ∈ ∞. (55)

Clearly, by setting X = ̂P, Y = I, it appears that the Bézout identity XN + YD = I is satisfied. Hence, the pair {Nc,Dc} in
(55) indeed is an RCF of Cexp. Consequently, all RCFs of Cexp are generated by {NcQc,DcQc}, Qc,Q−1

c ∈ 2×2
∞ . Note that

these RCFs may have a McMillan degree that exceeds the McMillan degree of ̂P. However, the results that are presented
in this paper are independent of the McMillan degrees. Third, the robust-control-relevant model uncertainty structure in
(23) is constructed by employing the robust-control-relevant coprime factorization ̂P = ̂N ̂D−1 as described in Section 5.2
in conjunction with a (Wu,Wy)-normalized RCF of Cexp, which is computed using the state-space results in Reference 35,
see Section 3.5.

The required ∞-norm bound to satisfy (3) is determined based on local modeling techniques, see Reference 48 for
details. The norm bound leads to optimal results in terms of robust-control-relevant model sets.

5.4 Closed-loop analysis of identification-related model sets

The criterion in (11), that is,WC( ,Cexp) is adopted to compare the various model sets. The pursued approach to perform
the computations is to perform a sequence of 𝜇-analysis problems, see also Reference 49. In addition, since the considered
perturbation structure is 𝜇-simple, see (9) in conjunction with (54), hence the computations, which are based on upper
bounds, are exact. The resulting criterion values are given in Table 2.

First, it is observed that WC(Add
,Cexp) is unbounded. Hence, the model set contains at least one candidate model

that is not stabilized by Cexp. By virtue of (11), the model set Add does not seem to be a good candidate for robust control

T A B L E 2 Comparison of the additive, dual-Youla-Kučera and robust-control-relevant model set.


Add


dY


RCR

Open-loop uncertain model set (15) (18) (21)

Closed-loop performance bound (16) (20) (23)

𝛾 1.73 0.55 0.60

 ( ̂P,Cexp) 6.14 6.14 6.14

WC( ,Cexp) ∞ 11.06 6.73

minC WC( ,C) 3.63 3.20 2.50
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9656 TACX and OOMEN

design. Second, the controller Cexp stabilizes all candidate models in dY, which is also reflected by the affine func-
tion in (20), hence WC(dY

,Cexp) indeed is bounded. Specifically, the model set dY leads to a worst-case performance
WC(dY

,Cexp) = 11.06. It is emphasized that this value is arbitrarily large, since it depends on the transfer function
matrices ̂M12 and ̂M21 in (20), which in turn depend on the arbitrarily chosen coprime factorizations of ̂P and Cexp in
Section 5.3. By virtue of (23), the dual-Youla-Kučera model set has better properties when compared to the additive
model set Add. Third, the robust-control-relevant model set RCR achieves the smallest worst-case performance, that is,
WC(RCR

,Cexp) = 6.73. In addition, these results confirm that the bound (23) holds and is tight.

5.5 Open-loop analysis of identification-related model sets

The properties of Dual-Youla-Kučera-based uncertainty structures, as compared to traditional uncertainty structures
such as the additive uncertainty structure, have been studied in Section 3.1 and Example 1. One notable advantage of
the Dual-Youla-Kučera-based structures is that their closed-loop expressions are affine, which simplifies their analysis.
However, as seen in Example 1, the open-loop model characteristics of these structures involve general LFT-based expres-
sions that make it difficult to gain insight into the underlying uncertainty structure and to compare different uncertainty
structures.

To address this issue, this section aims to provide more in-depth insight into the underlying uncertainty structures,
investigate their implications for robust control design, and compare model sets by visualizing their open-loop character-
istics using the tools developed in Section 4. Specifically, the model sets are compared using both the multivariable and
element-wise Bode plots (Figures 8 and 9).

First, it is observed that the additive model setAdd leads to a finite multivariable magnitude in the multivariable Bode
magnitude plot (Figure 8). Also, the multivariable Bode plot indicates that there exist singular values ofAdd equal to zero
over the complete frequency range. As a consequence, the numerical range contains the origin which leads to a multivari-
able phase in the range [0, 2𝜋) in the multivariable phase plot, see also Remark 2. The multivariable magnitude plot of the
robust-control-relevant model set RCR leads to an infinite magnitude in the low- and high-frequency range. The model
quality at these frequencies typically does not influence the control performance, see also Reference 9. In contrast, around
the desired bandwidth of 6 [Hz], see Section 5.2, the robust-control-relevant model set RCR is tight and hence the uncer-
tainty is small. Thus, the multivariable Bode magnitude and phase plots reveal that the robust-control-relevant model set
is significantly smaller in the frequency range that is important for control, that is, the target bandwidth, compared to the
additive model set.

Second, it is observed that in the elements in the element-wise Bode plot (Figure 9), the additive model set Add leads
to a relatively small uncertainty in the low-frequency range. In contrast, the robust-control-relevant model set RCR leads
to infinitely large uncertainty in the low-frequency range. This effect is attributed to the control-relevant coprime factors.

Third, it is observed that the tightness of the two model sets around the desired bandwidth of 6 Hz is different for both
the multivariable and element-wise Bode plots. Specifically, it is noted thatRCR is highly accurate in this frequency range,
resulting in small uncertainties in all element-wise transfer functions. However, the same cannot be said for Add, which
exhibits significantly more uncertainty in this range, especially for the P22, P21, and PP12 elements. This high uncertainty
is associated with an inappropriate scaling of the uncertainty channels which may result in a conservative robust control
design. In contrast, RCR leads to optimal scaling of uncertainty channels from a control perspective, as shown in (23).

Fourth, in both cases, RCR and Add exhibit large uncertainty at high frequencies. However, the effect of this uncer-
tainty is different for the two model sets. ForRCR, the model quality at higher frequencies typically does not affect control
performance, see also Reference 9. However, for Add, the gain of the open-loop model ̂P is significantly smaller at higher
frequencies, which implies that the model uncertainty generally has a larger relative effect. This behavior is a concern
from a control perspective, as it may lead to a conservative robust control design.

For the sake of completeness, the model set dY is also visualized and compared, see Figures 8 and 9. The most
important difference between Add and dY involves the fact that the former model set contains at least one candidate
model that is not stabilized by Cexp, whereas the latter model set only contains candidate models that are stabilized by
Cexp and, in addition, achieve a performance that is bounded by 11.06, see Table 2.

When comparing dY and RCR using the multivariable magnitude and phase Bode plots, it is clear that the dY is
significantly larger compared toRCR. Interestingly, Table 2 reveals that the size of the uncertainty 𝛾 is of comparable size
for both model sets. This indicates that the scaling of the uncertainty channels of the robust-control-relevant model set is
better compared to the dual-Youla-Kučera model set.
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TACX and OOMEN 9657

F I G U R E 8 Multivariable Bode magnitude (left, orange) and phase (right, green) of the additive model set (top),
robust-control-relevant model set (center), and dual-Youla-Kučera model set (bottom). Also depicted are the nominal model ̂P (solid red) and
the frequency response function ̃Po(𝜔i), 𝜔i ∈ Ωid (blue dots) based on (27) and (28). The target bandwidth is indicated by the grey dotted line.
The nominal model is identical for each model structure, and the size of the uncertainty depends on the considered model set.
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9658 TACX and OOMEN

F I G U R E 9 Element-wise Bode magnitude (left, orange) and phase (right, green) of the additive model set (top),
robust-control-relevant model set (center), and dual-Youla-Kučera model set (bottom). Also depicted are the nominal model ̂P (solid red), the
frequency response function ̃Po(𝜔i), 𝜔i ∈ Ωid (blue dots), and the target bandwidth (grey dotted). The nominal model is identical for each
model structure, and the size of the uncertainty depends on the considered model set.
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TACX and OOMEN 9659

Similarly, when comparing dY and RCR using the element-wise Bode plots, it appears that the scaling of the uncer-
tainty channels of the model set RCR indeed is better than dY. Specifically, around 1 [Hz], the model set dY shows
a very small uncertainty in the transfer function up → pp, whereas the transfer function us → ps is highly uncertain. In
contrast, the uncertainty associated with RCR in the same frequency region is of comparable size for the different trans-
fer functions in Figure 9. This confirms that the robust-control-relevant uncertainty structure appropriately scales the
uncertainty channels with respect to the control criterion.

5.6 Robust controller synthesis

The model sets  and Add are further investigated through a robust controller synthesis. Note that the bound in (5)
holds for each of the model sets in Section 5.3. However, no explicit statements can be made regarding the ordering of the
resulting controllers in terms of worst-case performance.

First, consider the controller

CRCR = arg min
C
WC(RCR

,C)

that provides the performance guarantees

 (Po,CRCR) ≤ WC(RCR
,CRCR) ≤ WC(RCR

,Cexp) = 6.73.

Indeed, the controller CRCR leads to

WC(RCR
,CRCR) = 2.50.

Second, recall that the additive model set Add leads to an infinite worst-case when evaluated for Cexp, see Table 2, since
the model set is not robustly stable under closed-loop with Cexp implemented. Since the model setAdd is open-loop stable,
clearly a controller exists that simultaneously stabilizes all candidate models in Add. In fact, C = 0 is such a stabilizing
controller. Hence,

CAdd = arg min
C
WC(Add

,C)

always leads to a bounded worst-case performance. However, the worst-case performance is arbitrary, since
WC(Add

,Cexp) is unbounded. Analysis of the optimal controller CAdd leads to

WC(Add
,CAdd) = 3.63.

For this specific situation, the controller CAdd achieves a reasonably good performance. It is emphasized that this
is to a large extent attributed to the favorable scaling and specific properties of the open-loop model ̂P. In general,
WC(Add

,CAdd) may be significantly worse than WC(RCR
,Cexp).

Third, the controller

CdY = arg min
C
WC(dY

,C)

is computed, leading to

WC(dY
,CdY) = 3.20.

Interestingly, the ordering of Add, dY, and RCR in terms of WC( ,Cexp), that is,

WC(Add
,Cexp) ≥ WC(dY

,Cexp) ≥ WC(RCR
,Cexp) (56)
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9660 TACX and OOMEN

F I G U R E 10 Closed-loop step responses (r2 → y): initial controller Cexp (solid blue), optimal robust controller CRCR (dashed red),
optimal robust controller CAdd (dash-dotted green), optimal robust controller CdY (dotted).

corresponds to an identical ordering in terms of the optimal robust controllers CAdd, CdY, and CRCR that are based on these
model sets, that is,

WC(Add
,CAdd) ≥ WC(dY

,CdY) ≥ WC(RCR
,CRCR). (57)

It is emphasized that the ordering in (56) and (57) typically arises in robust controller synthesis, but is not guaranteed.
Final, the resulting controllers are implemented on the nominal model ̂P, see Section 5.2. The resulting step responses

in Figure 10 confirm that a reduced worst-case leads to a faster response in terms of settling time and less interaction,
hence improved performance.

6 CONCLUSIONS

The selection of uncertainty structures is a crucial step in system identification for robust control. The trend toward
multivariable systems and more complicated uncertainty structures complicates comparison, insight, and analysis of
robustness and performance. This paper compares several uncertainty structures that arise in system identification for
robust control. To facilitate comparison and analysis of uncertain model sets for robust control, a new approach is pre-
sented which allows the generation of element-wise and multivariable Bode magnitude and phase plots of uncertain
systems. The considered multivariable magnitude and phase intuitively connect to well-known concepts for performance
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TACX and OOMEN 9661

and robustness, for example, gain and phase margin. The case study illustrates the effectiveness of the proposed approach
by indicating through visualization how the shape and size of model structures influence the resulting robust control
performance.
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APPENDIX A. MÖBIUS TRANSFORMATION

The Möbius transformation (10) consists of five elementary subtransformations

f (z) = f5◦f4◦f3◦f2◦f1(z). (A1)

The five elementary transformations are defined and explained below.

• A = f1(z) = 1
z
. Consider a circle with a radius r

z = exp(i𝜃), 𝜃 = [0, 2𝜋).
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Applying f1(z) yields

A = f1(z) =
1
r

exp(−i𝜃), 𝜃 = [0, 2𝜋). (A2)

The result reveals that the interior of the circle with the radius r is mapped to the exterior of a circle with radius 1
r
.

• B = f2(A) = A + c
d

. The mapping f2(A) is clearly a translation by the complex number c
d

. Applying the transformation
(A2) yields

B = f2(A) =
1
r

exp(−i𝜃) + c
d
.

hence the center of the circle is moved away from the origin by the complex number c
d

.

• C = f3(B) = 1
B

. The mapping f3(B) is, similar to f1(z), an inversion. However, in case circles are considered, the center
of the circle need not be the origin due to the transformation f2(A). To appropriately handle this case, it is convenient
to parameterize the circle in Cartesian coordinates, that is,

(

ℜ (B) −ℜ
( c

d

))2
+

(

ℑ (B) −ℑ
( c

d

))2
= 1

r2 . (A3)

Observe that C = 1
B

and reformulating (A3) yields

⎛
⎜
⎜
⎝

ℜ(C) −
ℜ( c

d
)r2

|
|
|

c
d
|
|
|

r2 − 1

⎞
⎟
⎟
⎠

2

+
⎛
⎜
⎜
⎜
⎝

ℑ(C) −
ℑ( c

d
)r2

|
|
|

c
d
|
|
|

2
r2 − 1

⎞
⎟
⎟
⎟
⎠

2

=
⎛
⎜
⎜
⎜
⎝

r
|
|
|

c
d
|
|
|

2
r2 − 1

⎞
⎟
⎟
⎟
⎠

2

. (A4)

Clearly, (A4) describes circles in case |
|
|

c
d
|
|
|
≠ r2. In contrast, in case |

|
|

c
d
|
|
|
= r2, (A4) describes a line, which can be

interpreted as a circle with an infinite radius.
The main interpretation of (A4) is as follows. In case |

|
|

b
d
|
|
|

2
>

1
r2 , then the exterior of the circle is mapped onto the

exterior. In case |
|
|

b
d
|
|
|

2
= 1

r2 , then the exterior of the circle is mapped onto a half-plane. Final, if ||
|

b
d
|
|
|

2
= 1

r2 , then the exterior
of the circle is mapped onto the interior.

• D = f4(C) = ad−bc
d2 C. The mapping f4(C) is a homothety and rotation. Let

𝛼 exp(i𝜃) = ad − bc
d2

be the polar representation of the constant ad−bc
d2 . Applying the transformation to (A4) leads to a new circle parameter-

ized by

⎛
⎜
⎜
⎝

ℜ(C) −
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d
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. (A5)

• E = f5(D) = D + b
d

. Similar to the elementary transformation f3(B), the mapping f5(D) is a transformation by the
complex number b

d
. Applying the transformation to (A5) leads to a new circle parameterized by

⎛
⎜
⎜
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Summarizing, from the composition of the elementary mappings, see (A1), it is clear that for small enough r, the interior
of a circle in the z-plane is mapped onto the interior of a circle by the Möbius transformation. In addition, the point b

d
is

inside it. At some point, for sufficiently large r, the Möbius transformation transforms a circle to a half-plane, that is, a
circle with an infinite radius. In case r is further increased beyond this value, the interior of the circle in the z-domain is
mapped onto the exterior of the circle in the P-domain. Note that in this case, the point b

d
is in the exterior of this circle

in the P-domain, as well as all the images of smaller circles in the z-domain.
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