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UNIQUE WAVELET SIGN RETRIEVAL FROM SAMPLES

WITHOUT BANDLIMITING

RIMA ALAIFARI, FRANCESCA BARTOLUCCI, AND MATTHIAS WELLERSHOFF

(Communicated by Dmitriy Bilyk)

Abstract. We study the problem of recovering a signal from magnitudes of
its wavelet frame coefficients when the analyzing wavelet is real-valued. We
show that every real-valued signal can be uniquely recovered, up to global sign,
from its multiwavelet frame coefficients

{|Wφi
f(αmβn, αm)| : i ∈ {1, 2, 3},m, n ∈ Z}

for every α > 1, β > 0 with β ln(α) ≤ 4π/(1 + 4p), p > 0, when the three
wavelets φi are suitable linear combinations of the Poisson wavelet Pp of order
p and its Hilbert transform H Pp. For complex-valued signals we find that
this is not possible for any choice of the parameters α > 1, β > 0, and for
any window. In contrast to the existing literature on wavelet sign retrieval,
our uniqueness results do not require any bandlimiting constraints or other a
priori knowledge on the real-valued signals to guarantee their unique recovery
from the absolute values of their wavelet coefficients.

1. Introduction

Wavelet phase retrieval refers to the inverse problem of reconstructing a square-
integrable function f from its scalogram; that is, from the absolute value of its
wavelet transform:

Wφf(b, a) := a−
1
2

∫
R

f(x)φ

(
x− b

a

)
dx, b ∈ R, a ∈ R+.

The wavelet transform emerged from research activities aimed at developing new
analysis and processing tools to enhance signal theory and has proved to be ex-
tremely efficient in various applications such as denoising and compression. We
refer to [7, 13, 15] for a thorough overview of wavelet analysis. However, there is
still limited knowledge of the problem of reconstructing a function from the ab-
solute value of its wavelet transform. This inverse problem arises in audio anal-
ysis and processing, and has recently received an increasing amount of attention
[2, 11, 14, 16, 19].

More precisely, wavelet phase retrieval aims at determining for which analyzing
wavelets φ, and which choices of sets Λ ⊆ R × R+ and subspaces M ⊆ L2(R) the
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forward operator

(1.1) Aφ : M/∼→ [0,+∞)Λ, Aφ(f)(b, a) := |Wφf(b, a)|, (b, a) ∈ Λ,

is injective, where f ∼ g if and only if f = eiαg for some α ∈ R. In the following,
we distinguish between continuous wavelet phase retrieval, meaning the recovery of
f (up to a global phase) from Aφ(f) when Λ has the cardinality of the continuum;
and sampled wavelet phase retrieval, i.e., the recovery of f (up to a global phase)
from Aφ when Λ is a discrete subset of R× R+.

We emphasize that in this paper we treat real-valued analyzing wavelets and
point out that whenever φ is real-valued the map

L2(R)/∼� f �→ (|Wφf(b, a)|)(b,a)∈R×R+

is not injective. To see that, we consider a function f ∈ L2(R) with Re f 	≡ 0 and
Im f 	≡ 0. Then, the functions f and g = Re f − i Im f are not equal up to a global
constant phase, i.e., f 	∼ g, but satisfy

|Wφf(b, a)| = |Wφg(b, a)|, (b, a) ∈ R× R+.

Therefore, we cannot hope to have a uniqueness result in L2(R)/∼ when the ana-
lyzing wavelet is real-valued and the restriction to the space of real-valued square-
integrable functions L2(R,R)/∼ is optimal. In this latter case, f ∼ g if and only if
f = ±g, and we refer to this problem as wavelet sign retrieval.

1.1. Prior work: Sampled wavelet sign retrieval with bandlimiting. The
existing literature on sampled wavelet sign retrieval only includes uniqueness re-
sults which require either the analyzing wavelets or the signals to be bandlimited.
In [2] the authors show that every real-valued function f ∈ L2(R) that has expo-
nential decay at infinity is uniquely determined (up to a global sign) by its wavelet
coefficients

{|Wφf(2
−mβn, 2−m)| : m ∈ N, n ∈ Z}

if φ is a real-valued bandlimited wavelet and β > 0 is a sampling parameter ex-
plicitly determined by the bandwidth of φ. Examples of real-valued bandlimited
wavelets are the Meyer wavelet and the Shannon wavelet.

Then, in our recent paper [1], we prove that, for every choice of the sampling
parameters α > 1, β > 0, and for every wavelet φ ∈ L2(R) with finitely many
vanishing moments,1 all real-valued bandlimited functions f ∈ L2(R) are uniquely
determined (up to a global sign) by the measurements

{|Wφf(α
−mβn, α−m)| : m ∈ N, n ∈ Z}.

This uniqueness result can be restated as the injectivity of the operator Aφ, cf.
(1.1), for the choices

M = {f ∈ L2(R) : supp f̂ is compact} and Λ = α−N(βZ× {1}),
whenever φ has a finite number of vanishing moments. Examples of real-valued
(nonbandlimited) wavelets with a finite number of vanishing moments include the
Poisson wavelets and the nth Hermitian wavelet, i.e., the nth derivative of the

1We say that a wavelet has a finite number of vanishing moments if there exists an � ∈ N such
that

lim
ξ→0

ξ−�
̂φ(ξ) ∈ C \ {0}.
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Gaussian function, for every n ∈ N>0. In particular, n = 2 corresponds to the
Mexican hat wavelet.

1.2. Our contribution: Wavelet sign retrieval without bandlimiting. The
above-mentioned results always make a bandlimitedness assumption either on the
unknown signals or on the analyzing wavelets. In contrast to prior work, our
results here guarantee the unique recovery of real-valued signals from the absolute
value of their wavelet transform without bandlimiting constraints or other a priori
knowledge on the signals. While uniqueness results on sign retrieval from samples
for M = L2(R,R) are missing to date, the current paper proposes that a positive
uniqueness result can be established when, instead of a single wavelet, three wavelets
are employed.

We first prove Theorem 3.1 which guarantees injectivity of Aφ if Λ is a subset of
the upper half-plane with positive measure and φ is such that RanWφ ⊆ A (C+),
where A (C+) denotes the space of real-analytic functions on the upper half-plane.
Our theorem applies to the Poisson wavelet, a classical real-valued wavelet [12,
Chapter 1, §7].

However, Theorem 3.1 does not apply to the more challenging case where Λ is
a discrete set, and we address this problem in Theorem 3.3 with a multi-wavelet
approach. A hyperbolic lattice in the upper half-plane is a countable and discrete
set of the form

Λ(β, α) := {(αmβn, αm)}m,n∈Z,

with α > 1 and β > 0; see Figure 1 for an example. Theorem 3.3 shows that the
magnitudes of the multi-wavelet frame coefficients

(1.2) {|Wφi
f(b, a)| : i ∈ {1, 2, 3}, (b, a) ∈ Λ(β, α)}

uniquely determine f up to a global sign if the analytic windows φ1, φ2, φ3 are
suitable linear combinations of the Poisson wavelet, defined in the Fourier domain
by

P̂p(ξ) := (2π)p+1/2|ξ|pe−2π|ξ|, ξ ∈ R, p > 0,

and its Hilbert transform H Pp, and if Λ is a hyperbolic lattice satisfying β ln(α) ≤
4π/(1+4p). For instance, we can choose φ1 = Pp, φ2 = H Pp, and φ3 = Pp+H Pp.

As a consequence of Proposition 2.4, the set

(1.3) {TbDaPp}(b,a)∈Λ(β,α) ∪ {TbDaH Pp}(b,a)∈Λ(β,α)

forms a frame for L2(R,R) if and only if β ln(α) < 2π/p, where Tb and Da denote
the translation and dilation operators

Tbf(x) = f(x− b) and Daf(x) = a−
1
2 f

(
a−1x

)
,

respectively. Theorem 3.3 states that by taking (1+4p)/2p times the necessary den-
sity for (1.3) to constitute a wavelet frame for L2(R,R), we can achieve uniqueness
in the recovery of real-valued signals from the set of measurements (1.2). Therefore,
we need roughly 3(1 + 4p)/4p times more samples than required for signal recon-
struction using wavelet coefficients when the phases are not available. For example,
if p = 1, we would need 3.75 times more samples to obtain uniqueness. It is still
an open question whether three wavelets are indeed necessary or whether one—or
two—of the analytic wavelets Pp and H Pp (or a linear combination of the two)
could also be sufficient to obtain uniqueness.
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1.3. Other related literature. In [16] the authors prove that the magnitude of
the Cauchy wavelet transform of a signal f ∈ L2(R) uniquely determines its analytic
representation

f̂+(ξ) := 2f̂(ξ)1ξ>0, ξ ∈ R,

up to a global constant phase factor. Here, 1Ξ denotes the characteristic function
of the set Ξ. Since real-valued functions are uniquely determined by their ana-
lytic representation, one would be tempted to conclude that the magnitude of the
Cauchy wavelet transform uniquely determines real-valued signals up to a global
sign. However, the analytic representation f+ up to a global phase factor does not
uniquely determine the real-valued signal up to a global sign. Indeed, it is possible
to construct real-valued functions f, g ∈ L2(R) which do not agree up to a global
sign but satisfy g+ = eiαf+ for some α ∈ R; see [1, Remark 12]. In contrast with
[16], our uniqueness theorem guarantees the unique recovery of the real-valued sig-
nals themselves, instead of their analytic representations. Moreover, the result in
[16] is a uniqueness result in the semidiscrete regime, while our main result is in
the fully discrete setting.

Building on the results in [16], in [1] we restrict the signal class to analytic
bandlimited signals to obtain a uniqueness result from sampled Cauchy wavelet
transform measurements. Again, the bandlimitedness assumption plays a crucial
role to obtain a full sampling result.

Finally, we point out that our result is reminiscent of the recent work in [9], where
the authors prove uniqueness results from magnitudes ofmulti-window Gabor frame
coefficients. In particular, the argument in the proof of Theorem 3.3 to obtain
equation (3.1) has been inspired by the results in [9].

Notation. We set R+ := (0,+∞). For any p ∈ [1,+∞], we denote by Lp(R) the
Banach space of functions f : R → C which are p-integrable with respect to the
Lebesgue measure, and we use the notation ‖ ·‖p for the corresponding norms. The
Fourier transform on L1(R) is defined by

f̂(ξ) :=

∫
R

f(x)e−2πixξ dx, ξ ∈ R,

and it extends to L2(R) by a classical density argument. Finally, we denote by
ξ �→ sgn(ξ) the sign function.

2. Preliminaries

2.1. Frames in Hilbert spaces. The notion of a frame, which generalizes that
of a Riesz basis in Hilbert spaces, is due to Duffin and Schaffer [8]. Let H be
a separable Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. A countable
sequence of vectors {fi}i∈I in H is a frame for H if there exist constants A,B > 0
such that for all f ∈ H

A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2.

A direct consequence of the lower inequality is that every f ∈ H is uniquely deter-
mined by its frame coefficients {〈f, fi〉}i∈I , that is

〈f, fi〉 = 0, ∀i ∈ I =⇒ f = 0.
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If a frame is obtained via translated and scaled versions {TbDaφ}(b,a)∈I of a fixed
function φ, the analyzing wavelet, we call it a wavelet frame. A generalization of
wavelet frames is obtained by considering k ∈ N, k > 1, analyzing wavelets instead
of a single one. In this latter case, we talk about multi-wavelet frames. We refer to
[6, 7] for an introduction to frame theory and an overview on wavelet frames.

2.2. Weighted Bergman spaces. We denote by C+ the upper half-plane,

C+ = {z ∈ C : Im z > 0},

and by O(C+) the space of holomorphic functions on C+. For every w > 1, we
define the weighted Bergman space Bw(C

+) by

Bw(C
+) :=

{
F ∈ O(C+) :

∫
R×R+

|F (x+ iy)|2yw−2 dx dy < ∞
}
.

We say that a discrete subset Λ of C+ is a set of sampling for Bw(C
+) if there exist

positive constants A and B such that

A

∫
R×R+

|F (x+ iy)|2yw−2dxdy ≤
∑

zj=xj+iyj∈Λ

|F (xj + iyj)|2ywj

≤ B

∫
R×R+

|F (x+ iy)|2 yw−2 dx dy,

for every F ∈ Bw(C
+).

Theorem 2.1 ([18, Theorem 1.1]). Let w > 1. For every α > 1 and β > 0, the
discrete set

Γ(β, α) = {αm(βn+ i)}m,n∈Z

is a set of sampling for Bw(C
+) if and only if

β ln(α) < 4π/(w − 1).

Furthermore, we say that a discrete subset Λ of C+ is a uniqueness set for
Bw(C

+) if for every F ∈ Bw(C
+) it holds that

F (λ) = 0, ∀λ ∈ Λ =⇒ F ≡ 0.

Clearly, sampling sets are also uniqueness sets.

Theorem 2.2 ([18]). Let w > 1. For every choice of α > 1 and β > 0 satisfying

β ln(α) = 4π/(w − 1),

the discrete set

Γ(β, α) = {αm(βn+ i)}m,n∈Z

is a uniqueness set for Bw(C
+).

A general treatment of sets of sampling for weighted Bergman spaces can be
found in [17].

The weighted Bergman spaces appear in the characterization of the range of
the wavelet transform for a special choice of the analyzing wavelets: the so-called
Cauchy wavelets.
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Figure 1. The lattice Λ(β, α) with β = 4π/5 ln(2) and α = 2
constitutes a uniqueness set for the weighted Bergman space
B6(C

+).

2.3. Cauchy wavelets. The Cauchy wavelets are progressive wavelets, i.e., wave-
lets with only positive frequencies, with real-valued Fourier transforms defined by

ψ̂p(ξ) := (2π)p+1/2ξpe−2πξ1ξ>0, ξ ∈ R,

where p > 0. We abbreviate the case p = 1 by ψ = ψ1. The wavelet transform with
respect to any Cauchy wavelet is referred to as the Cauchy wavelet transform and
is defined by

Wψp
f(b, a) := (2πa)

1
2+p

∫ +∞

0

f̂(ξ) e2πi(b+ia)ξ ξp dξ, (b, a) ∈ R× R+.

The Cauchy wavelets satisfy the admissibility condition

Cψp
=

∫ +∞

0

|ψ̂p(ξ)|2
ξ

dξ < ∞,

and consequently, the Cauchy wavelet transform is a multiple of an isometry from
H+(R) into L2(R× R+, db da/a

2),

(2.1) ‖Wψp
f‖2L2(R×R+,db da/a2) = Cψp

‖f‖22,

where H+(R) denotes the Hardy space,

H+(R) := {f ∈ L2(R) : ∀ξ < 0, f̂(ξ) = 0}.
The weighted Bergman spaces relate to the Cauchy wavelet transform as the Barg-
mann–Fock space does to the Gabor transform. Indeed, the map

(2.2) H+(R) � f �→ F : C+ → C, F (b+ ia) = a−( 1
2+p)Wψp

f(b, a),
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defines a multiple of an isometry from H+(R) onto the weighted Bergman space
B2p+1(C

+), ∫
R×R+

|F (b+ ia)|2a2p−1 db da = Cψp
‖f‖22,

see [10, §3.2] and the references therein.

2.4. Poisson wavelets. The Poisson wavelet is a real-valued wavelet with real-
valued Fourier transform given by

(2.3) P̂ (ξ) =
√
2π|ξ|e−2π|ξ|, ξ ∈ R,

see, e.g., [12, Chapter 1, §7]. Equation (2.3) implies that the Poisson wavelet is
related to the Cauchy wavelet via

2ψ = P+ = P + iH P,

where H denotes the Hilbert transform. We recall that the Hilbert transform is a
unitary operator on L2(R) defined by

(H ϕ)̂(ξ) = −i sgn(ξ)ϕ̂(ξ), for a.e. ξ ∈ R.

In particular, the Hilbert transform of a real-valued function remains real-valued.
In general, for every p > 0, we can define the Poisson wavelet of order p as

P̂p(ξ) := (2π)p+1/2|ξ|pe−2π|ξ|, ξ ∈ R,

which is equivalent to

(2.4) 2ψp = Pp + iH Pp.

Proposition 2.3 shows that the wavelet transform of any real-valued signal with
respect to a Poisson wavelet corresponds to the real part of its Cauchy wavelet
transform. Analogously, the wavelet transform of any real-valued signal with re-
spect to the Hilbert transform of a Poisson wavelet relates to the imaginary part of
its Cauchy wavelet transform.

Proposition 2.3. Let p > 0. For every f ∈ L2(R,R),

WPp
f = 2Re[Wψp

f ], WH Pp
f = −2 Im[Wψp

f ].(2.5)

In particular, WPp
f and WH Pp

f are real analytic functions on the upper half-plane.

Proof. Let p > 0 and f ∈ L2(R,R). By equation (2.4), and the definition of the
wavelet transform, we obtain

2Wψp
f(b, a) = 2〈f, TbDaψp〉

= 〈f, TbDa (Pp + iH Pp)〉,
= 〈f, TbDaPp〉 − i〈f, TbDaH Pp〉,
= WPp

f(b, a)− iWH Pp
f(b, a),

for (b, a) ∈ R × R+, which implies equation (2.5). Equivalently, for every (b, a) ∈
R× R+, we have that

WPp
f(b, a) = 2a

1
2+pRe[a−( 1

2+p)Wψp
f(b, a)],

WH Pp
f(b, a) = −2a

1
2+pIm[a−( 1

2+p)Wψp
f(b, a)],

which, together with equation (2.2), shows thatWPp
f and WH Pp

f are real analytic
functions on the upper half-plane. �



UNIQUE WAVELET SIGN RETRIEVAL WITHOUT BANDLIMITING 337

As a consequence of Theorem 2.1 and Proposition 2.3, the Poisson wavelet and
its Hilbert transform give rise to discrete frames for L2(R,R). More precisely, we
have Proposition 2.4.

Proposition 2.4. The set

(2.6) {TbDaPp}(b,a)∈Λ(β,α) ∪ {TbDaH Pp}(b,a)∈Λ(β,α)

constitutes a frame for L2(R,R) if and only if β ln(α) < 2π/p.

Proof. The set in equation (2.6) is a frame for L2(R,R) if and only if there exist
constants A,B > 0 such that

(2.7) A‖f‖22 ≤
∑

(b,a)∈Λ(β,α)

(|WPp
f(b, a)|2 + |WH Pp

f(b, a)|2) ≤ B‖f‖22,

for every f ∈ L2(R,R). By Proposition 2.3, equation (2.7) is equivalent to

(2.8)
A

4
· ‖f‖22 ≤

∑
(b,a)∈Λ(β,α)

|Wψp
f(b, a)|2 ≤ B

4
· ‖f‖22, for all f ∈ L2(R,R).

We recall that any real-valued function satisfies

f̂(−ξ) = f̂(ξ), ξ ∈ R.

Consequently, L2(R,R) is isomorphic to the Hardy space H+(R) via the mapping

L2(R,R) � f �→ f+ ∈ H+(R),

which satisfies

‖f‖2 =
‖f+‖2√

2
.

Furthermore, we can see that the wavelet transform with respect to a Cauchy
wavelet satisfies

Wψp
f(b, a) =

√
a ·

∫
R

f̂(ξ)ψ̂p(aξ)e
2πiξb dξ

=
√
a ·

∫ ∞

0

f̂(ξ)ψ̂p(aξ)e
2πiξb dξ

=

√
a

2
·
∫ ∞

0

f̂+(ξ)ψ̂p(aξ)e
2πiξb dξ

=
1

2
· Wψp

f+(b, a),

where the first equality follows by Plancherel’s theorem. Therefore, equation (2.8)
is equivalent to

(2.9)
A

2
· ‖f‖22 ≤

∑
(b,a)∈Λ(β,α)

|Wψp
f(b, a)|2 ≤ B

2
· ‖f‖22, for all f ∈ H+(R).

Now, since the map

H+(R) � f �→ F : C+ → C, F (b+ ia) = a−( 1
2+p)Wψp

f(b, a),
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is a multiple of an isometry from H+(R) onto the weighted Bergman space
B2p+1(C

+) (cf. equation (2.2)), equation (2.9) becomes

A

2Cψp

·
∫
R×R+

|F (x+ iy)|2y2p−1dxdy ≤
∑

x+iy∈Γ(β,α)

|F (x+ iy)|2y2p+1

(2.10)

≤ B

2Cψp

·
∫
R×R+

|F (x+ iy)|2y2p−1dxdy,

for every F ∈ B2p+1(C
+), where Γ(β, α) denotes the image of Λ(β, α) via the

isomorphism R2 � (x, y) �→ x+ iy ∈ C. Finally, Theorem 2.1 allows us to conclude
that equation (2.10) is satisfied if and only if β ln(α) < 2π/p. �

With this preparatory result, we now work towards establishing our main result.
For this, we say that a frame Φ = {ϕi}i∈I of a separable Hilbert space H does phase
retrieval if the nonlinear map

AΦ : H/∼→ RI
+, AΦ([f ]) = {|〈f, ϕi〉|}i∈I

is injective, where f ∼ g if and only if f = eiαg for some α ∈ R. Building on
Proposition 2.4, our main theorem shows that the multi-wavelet frame

{TbDaPp}(b,a)∈Λ(β,α) ∪ {TbDaH Pp}(b,a)∈Λ(β,α)

∪ {TbDa(μ1Pp + μ2H Pp)}(b,a)∈Λ(β,α)

does phase retrieval in L2(R,R) if Λ(β, α) is a hyperbolic lattice with β ln(α) ≤
4π/(1 + 4p), and if the collection of vectors

{(1, 0), (0, 1), (μ1, μ2)}
satisfies the complement property whose definition is recalled in Section 2.5.

2.5. Sign retrieval in RM . Given a collection of vectors Φ = {vn}Nn=1 in RM , we
consider the map

AΦ : RM/∼→ RN
+ , AΦ(v) = {|〈v, vn〉|}Nn=1,

where v ∼ w if and only if v = ±w. The term “sign retrieval in RM” refers to
the study of necessary and sufficient conditions on Φ under which the map AΦ is
injective. It is well known that the map AΦ is injective if and only if the collection
Φ has the complement property.

Definition 2.5. Let M,N ∈ N and let Φ = {vn}Nn=1 be a collection of vectors in
RM . We say that Φ has the complement property if, for every subset S ⊆ {1, . . . , N},
either span{vn : n ∈ S} = RM or span{vn : n ∈ {1, . . . , N} \ S} = RM .

Proposition 2.6 ([4]). Let M,N ∈ N and let Φ = {vn}Nn=1 be a collection of
vectors in RM . Then, the map

(2.11) AΦ : RM/{±1} → RN
+ , AΦ(v) = {|〈v, vn〉|}Nn=1,

is injective if and only if Φ has the complement property.

Proposition 2.6 immediately implies that the map in equation (2.11) is not in-
jective if N ≤ 2M − 2. A natural question is, therefore, whether N = 2M − 1
vectors are sufficient to yield injectivity of AΦ. This question has been answered
in [4] where the authors show that a collection of vectors Φ = {vn}2M−1

n=1 ⊆ RM
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has the complement property if and only if Φ is full spark, which means that every
subcollection of M vectors of Φ spans RM .

The complement property can be stated in the more general setting where Φ is
a collection of vectors in a separable Hilbert space H.

Definition 2.7 ([5]). Let Φ = {ϕi}i∈I be a collection of vectors in a separable
Hilbert space H. We say that Φ has the complement property if, for every subset
S ⊆ I, either span{ϕi : i ∈ S} = H or span{ϕi : i ∈ I \ S} = H.

Analogously to the finite dimensional setting, if H is a Hilbert space over R,
a collection Φ does phase retrieval if and only if Φ has the complement property.
If H is a Hilbert space over C, we only know that the complement property is a
necessary condition for uniqueness of the phase retrieval problem; see [3, 5].

3. Main results: Wavelet sign retrieval without bandlimiting

This section is devoted to presenting our contributions to wavelet sign retrieval.
The novelty of our results with respect to the existing literature lies in the fact
that we do not need any a priori knowledge about the real-valued square-integrable
signals to guarantee their unique recovery from the absolute values of their wavelet
transforms.

Recall that we distinguish between continuous wavelet sign retrieval, meaning
the recovery of f (up to a global sign) from (|Wφf(b, a)|)(b,a)∈Ω, where Ω has the
cardinality of the continuum, and sampled wavelet sign retrieval, i.e., the recovery
of f (up to a global sign) from (|Wφf(b, a)|)(b,a)∈Λ, where Λ is a discrete subset of
R× R+.

3.1. Continuous wavelet sign retrieval. We recall that A (C+) denotes the
space of real-analytic functions on the upper half-plane.

Theorem 3.1. Let Ω ⊆ R×R+ be a set with positive measure and let φ ∈ L2(R,R)
be an analyzing wavelet such that RanWφ ⊆ A (C+). Then, the following are
equivalent for f, g ∈ L2(R,R):

(i) f = ±g,
(ii) |Wφf | = |Wφg| on Ω.

Proof. It is clear that item (i) implies item (ii). Let us, therefore, assume that
f, g ∈ L2(R,R) satisfy

|Wφf(b, a)| = |Wφg(b, a)|, (b, a) ∈ Ω.

If we consider the subset

S = {(b, a) ∈ Ω : Wφf(b, a) = Wφg(b, a)},
then the functions h1 = f + g and h2 = f − g satisfy

Wφh1(b, a) = 0, (b, a) ∈ Ω \ S,
and

Wφh2(b, a) = 0, (b, a) ∈ S.

Since Ω has positive measure, either S or Ω \ S has positive measure. Therefore,
either Wφh1 ≡ 0 or Wφh2 ≡ 0 because the zero set of a nonzero real analytic
function has zero measure. We can thus conclude that f = ±g. �
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Remark 3.2. By Proposition 2.3, Theorem 3.1 applies to the family of the Poisson
wavelets and to their Hilbert transforms.

3.2. Sampled wavelet sign retrieval. Theorem 3.1 does not apply to the case
where we only know the magnitude of the wavelet transform on a discrete set. We
recall that a hyperbolic lattice in the upper half-plane takes the form

Λ(β, α) = {(αmβn, αm)}m,n∈Z

for some values of the parameters α > 1 and β > 0. It is, therefore, a natural
question to ask under which assumptions on the analyzing wavelets and on the
sample parameters α and β we can obtain a uniqueness result as in Theorem 3.1.
We address this problem with a multi-wavelet approach.

Theorem 3.3. Let p > 0 and let α > 1 and β > 0 satisfy

β ln(α) ≤ 4π

1 + 4p
.

Furthermore, let
φi = λi,1Pp + λi,2H Pp, i = 1, 2, 3,

for a collection of full spark vectors

{λi = (λi,1, λi,2)}3i=1

in R2. Then, every f ∈ L2(R,R) is uniquely determined, up to a global sign, by the
magnitudes of the multi-wavelet frame coefficients

{|Wφi
f(b, a)| : i ∈ {1, 2, 3}, (b, a) ∈ Λ(β, α)}.

Equivalently, the multi-wavelet frame

{TbDaφ1}(b,a)∈Λ(β,α) ∪ {TbDaφ2}(b,a)∈Λ(β,α) ∪ {TbDaφ3}(b,a)∈Λ(β,α).

does sign retrieval in L2(R,R).

Proof. Let f, g ∈ L2(R,R) be such that

|Wφi
f(b, a)| = |Wφi

g(b, a)|, (b, a) ∈ Λ(β, α),

where
φi = λi,1Pp + λi,2H Pp, i = 1, 2, 3,

for a collection of full spark vectors

{λi = (λi,1, λi,2)}3i=1.

We prove that f = ±g. Let us first observe that, for every (b, a) ∈ Λ(β, α) and for
every i = 1, 2, 3, it holds that

|〈(WPp
f(b, a),WH Pp

f(b, a)), λi〉| = |Wφi
f(b, a)|

= |Wφi
g(b, a)|

= |〈(WPp
g(b, a),WH Pp

g(b, a)), λi〉|.
By hypothesis, the set of vectors {λi}3i=1 is full spark and therefore satisfies the
complement property. Consequently, for every (b, a) ∈ Λ(β, α),

(WPp
f(b, a),WH Pp

f(b, a)) = ±(WPp
g(b, a),WH Pp

g(b, a)).(3.1)

If we consider the subset

S = {(b, a) ∈ Λ(β, α) : (WPp
f(b, a),WH Pp

f(b, a)) = (WPp
g(b, a),WH Pp

g(b, a))},
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then the functions h1 = f + g and h2 = f − g satisfy

(WPp
h1(b, a),WH Pp

h1(b, a)) = 0, (b, a) ∈ Λ(β, α) \ S,

and

(WPp
h2(b, a),WH Pp

h2(b, a)) = 0, (b, a) ∈ S.

Therefore, by Proposition 2.3, the functions h1 and h2 satisfy

(2Re[Wψp
h1(b, a)],−2 Im[Wψp

h1(b, a)]) = 0, (b, a) ∈ Λ(β, α) \ S,

and

(2Re[Wψp
h2(b, a)],−2 Im[Wψp

h2(b, a)]) = 0, (b, a) ∈ S,

or, equivalently,

Wψp
h1(b, a) = 0, (b, a) ∈ Λ(β, α) \ S, and Wψp

h2(b, a) = 0, (b, a) ∈ S.

We introduce the functions

H1(b+ ia) := a−( 1
2+p)Wψp

h1(b, a), H2(b+ ia) := a−( 1
2+p)Wψp

h2(b, a),

of one complex variable, where (b, a) ∈ R × R+, and note that H1 and H2 are
entire functions on the upper half-plane (cf. equation (2.2)). As a consequence, the
function

H = H1 ·H2

is also an entire function on the upper half-plane and

(3.2) H(b+ ia) = 0, (b, a) ∈ Λ(β, α).

Furthermore, by equation (2.1),∫
R×R+

|H(b+ ia)|2a2+4p dbda

a2
=

∫
R×R+

|Wψp
h1(b, a)|2|Wψp

h2(b, a)|2
dbda

a2

≤ ‖ψp‖22‖h1‖22
∫
R×R+

|Wψp
h2(b, a)|2

dbda

a2

= Cψp
‖ψp‖22‖h1‖22‖h2‖22,

where

Cψp
=

∫ +∞

0

|ψ̂p(ξ)|2
ω

dω < ∞,

showing that H belongs to the weighted Bergman space B2+4p(C+). By Theo-
rems 2.1 and 2.2, the image of Λ(β, α) via the isomorphism R2 � (x, y) �→ x+iy ∈ C

is a uniqueness set for B2+4p(C+) and hence equation (3.2) implies H ≡ 0. There-
fore, either H1 ≡ 0 or H2 ≡ 0, which shows that f = ±g. �

Example 3.4. Theorem 3.3 applies to the analyzing wavelets

φ1 = P, φ2 = H P, φ3 = P + H P,

together with the dyadic lattice Λ(4π/5 ln(2), 2); see Figures 1 and 2.
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Im(Ĥ P )

Figure 2. The Fourier transform of the Poisson wavelet (on the
left) and its Hilbert transform (on the right). Since the Fourier
transform of the Poisson wavelet is real-valued, the Fourier trans-
form of its Hilbert transform is purely imaginary.

Remark 3.5. More generally, we could replace the regular set of sampling Λ(β, α)
in Theorem 3.3 with any other sampling set for B2+4p(C+). We refer to [17] for a
complete characterization of sets of sampling for Bergman type spaces on the unit
disk D. We recall that the upper half-plane C+ can be mapped onto the unit disk
D under the conformal map

ϕ(z) =
z − i

z + i
,

known as the Cayley transform.

Remark 3.6. In the second part of the proof of Theorem 3.3, we actually show that,
if β ln(α) ≤ 4π/(1 + 4p), the Cauchy wavelet frame

{TbDaψp}(b,a)∈Λ(β,α)

for the Hardy space H+(R) satisfies the complement property (see Definition 2.7).
Indeed, suppose that there exists a subset S ⊆ Λ(β, α) such that

span{TbDaψp}(b,a)∈Λ(β,α)\S 	= H+(R) and span{TbDaψp}(b,a)∈S 	= H+(R).

This means that there exist two nonzero functions h1, h2 ∈ H+(R) such that

Wψp
h1(b, a) = 0, (b, a) ∈ Λ(β, α) \ S, and Wψp

h2(b, a) = 0, (b, a) ∈ S.

Then, the same argument as in the proof of Theorem 3.3 leads to the conclusion that
either h1 or h2 has to be zero and thus the complement property holds. However, in
the complex-valued case, the complement property is only a necessary condition for
uniqueness of the phase retrieval problem and we cannot conclude that the operator

(3.3) H+(R)/∼� h �→ (|Wψp
h(b, a)|)(b,a)∈Λ(β,α) ∈ RΛ(β,α)

is injective. Determining a hyperbolic lattice such that the operator in equa-
tion (3.3) is injective remains an interesting open problem.
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