
Physics-informed neural networks for
highly compressible flows
Assessing and enhancing shock-capturing capabilities
by Thomas Wagenaar

Physics-informed neural
networks for highly
compressible flows

Assessing and enhancing shock-capturing capabilities

Thesis report

by

Thomas Wagenaar

to obtain the degree of Master of Science
at the Delft University of Technology

to be defended publicly on September 15, 2023 at 14:00

Thesis committee:
Chair: Dr.ir. M.I. Gerritsma
Supervisor: Dr. N.A.K. Doan
External examiner: Dr. X. Wang
Place: Faculty of Aerospace Engineering, Delft
Project Duration: November, 2022 - September, 2023
Student number: 5417414

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Aerospace Engineering · Delft University of Technology

http://repository.tudelft.nl/

Copyright © Thomas Wagenaar, 2023
All rights reserved.

Preface

My fascination for machine learning started long ago, even before I started studying. At the
time, I developed an open-source machine-learning library which I initially created to train target-
tracking aircraft. Despite my interest in machine learning, I decided to pursue a bachelor’s in
Applied Physics at Eindhoven University of Technology, reasoning that it is more beneficial to
study a field in which machine learning can be used instead of machine learning itself. After I
obtainedmy bachelor’s degree in 2021, my growing interest in aerospace engineering persuaded
me to pursue a master’s in Aerospace Engineering at Delft University of Technology.

During both degrees, I tried to take as many courses on machine learning and artificial intelli-
gence as possible, while at the same time working on various personal projects in the same
fields. Towards the end of my master’s degree, it was time to select a thesis topic. Although
machine learning was still one of my biggest interests, I was not sure I wanted to pursue a thesis
involving it. My bachelor’s thesis on convolutional neural networks for turbulence measurements
taught me that big machine-learning projects involve lots of hyperparameter tuning and conse-
quently lots of waiting while models are training.

Nevertheless, other potential topics did not interest me enough. When I saw the thesis on compet-
itive physics-informed neural networks for fluid dynamics proposed by Dr. Doan, I was immedi-
ately persuaded. While the initial thesis aimed to compare the recently introduced and promising
competitive physics-informed neural networks to conventional physics-informed neural networks,
the first results quickly tempered our expectations. However, one of the comparisons on highly
compressible problems showed interesting and most importantly counterintuitive results, which
sparked a change in topic.

Before you lies the resulting master thesis, ”Physics-informed neural networks for highly com-
pressible flows”. It is not only targeted at those who involve themselves with physics-informed
neural networks but also at those who have an interest in highly compressible flows. The results
provide a first step in the direction of fast and errorless shock-capturing methods. Based on
my experience, I believe that physics-informed neural networks or a future variant thereof will
become the future standard of such simulations.

I would like to thank my supervisor, Dr. Doan, for the independence he has given me while at
the same time providing guidance whenever I needed it. While this thesis did not turn out to be
what we intended, I undoubtedly think its findings are an interesting experience for both of us. I
would also like to thank my family and the friends I have made along the way for their support.

Enjoy the read!

Thomas Wagenaar
Eindhoven, August 14th, 2023

i

Abstract

While physics-informed neural networks have been shown to accurately solve a wide range of
fluid dynamics problems, their effectivity on highly compressible flows is so far limited. In partic-
ular, they struggle with transonic and supersonic problems that involve discontinuities such as
shocks. While there have been multiple efforts to alleviate the nonphysical phenomena that arise
on such problems, current work does not identify and address the underlying failure modes suffi-
ciently. This thesis shows that physics-informed neural networks struggle with highly compress-
ible problems for two independent reasons. Firstly, the differential Euler equations conserve
entropy along streamlines, so that physics-informed neural networks try to find an isentropic so-
lution to a non-isentropic problem. Secondly, conventional slip boundary conditions form strong
local minima that result in fictive objects that simplify the flow. In response to these failure modes,
two new adaptations are introduced, namely a local viscosity method and a streamline output
representation. The local viscosity method includes viscosity as an additional network output
and adds a viscous loss term to the loss function, resulting in localized viscosity that facilitates
the entropy change at shocks. Furthermore, the streamline output representation provides a
more natural formulation of the slip boundary conditions, which prevents zero-velocity regions
while promoting shock attachment. To the author’s best knowledge, this thesis provides the first
inviscid steady solutions of curved and detached shocks by physics-informed neural networks.

ii

Table of contents

Preface i

Abstract ii

Nomenclature iv

1 Introduction 1

I Background 3
2 Physics-informed neural networks 4

2.1 Fundamental principles . 4
2.2 Limitations and adaptations . 8
2.3 Adversarial training . 15

3 Compressible fluid dynamics 22
3.1 Euler equations . 22
3.2 Physics-informed solutions. 23
3.3 Compressible phenomena . 25

II Results 28
4 Failure mode analysis 29

4.1 Riemann problem . 29
4.2 Discontinuities and entropy . 32
4.3 Failure mode alleviations . 34
4.4 Steady waves . 37

5 Shock-capturing methodology 44
5.1 Local viscosity . 44
5.2 Streamline representation . 45
5.3 Assessment framework . 47

6 Results 49
6.1 Oblique shock wave . 49
6.2 Curved shock wave . 52
6.3 Detached shock wave. 58

III Closure 64
7 Conclusion 65

8 Recommendations 67

References 74

A OpenFOAM simulations 75

iii

Nomenclature

List of abbreviations
ACGD Adaptive Competitive Gradient De-

scent

Adam Adaptive moment estimation

BFGS Broyden-Fletcher-Goldfarb-Shanno

CFD Computational Fluid Dynamics

CGD Competitive Gradient Descent

CPINN Competitive Physics-Informed Neural
Network

GAN Generative Adversarial Network

LAAF Locally Adaptive Activation Function

PDE Partial Differential Equation

PINN Physics-Informed Neural Network

RANS Reynolds-Averaged Navier-Stokes

List of symbols
λ PDE parameters

θ Model parameters

η Learning rate

a Activation values

b Biases

f Frequencies

u Dependent variables

v Velocity

x Spatial variables

I Identity matrix

W Weights

α Hyperparameter

β Wave angle, momentum decay

δ Shock detachment distance

ϵ Small constant

γ Heat capacity ratio

λ Residual loss multiplier

B Bézier curve

d Discriminator parameters

g Generator parameters

m Moment estimates

ν Viscosity

Ω Spatial domain

Φ Potential

ϕ Flow direction

ρ Density

θ Surface inclination

a Slope recovery term

c Speed of sound

cp, cv Specific heat capacity

D Discriminator, Hessian

E Total energy

e Specific internal energy

f Activation function

G Generator

L Loss

L2 Error

M Mach number

n Slope recovery multiplier

P Partial differential equation

p Pressure

R Ideal gas constant

S Surface

s Entropy

T Temperature

t Time

u Horizontal velocity

V Volume

v Vertical velocity

w Loss term weight

x Horizontal coordinate

y Vertical coordinate

z Bézier parameter

iv

”Much of computational fluid dynamics today is still
more of an art than a science; each different problem
usually requires special thought and originality in its
solution.”

- John D. Anderson

v

1
Introduction

In recent years, the development of machine-learning methods has accelerated and the state-of-the-art
has now reached a point where it is becoming the cornerstone of many disciplines. However, the field
of Computational Fluid Dynamics (CFD) has remained relatively unaffected by these developments and
machine-learning methods have been at most instrumental but not necessarily a replacement of traditional
methods (Brunton et al., 2020). Although attempts have beenmade to use neural networks for simulations
directly (Lagaris et al., 1998), they have not been able to compete with traditional solvers. It is only recently
that this paradigm has started to shift, after the introduction of Physics-Informed Neural Networks (PINNs)
by Raissi et al. (2018).
These PINNs work fundamentally differently than traditional solvers, as they do not rely on a discrete
mesh and can produce a continuous solution. Furthermore, they are able to include measurement data
or handle missing boundary conditions without significant effort, which is currently not possible with tradi-
tional solvers. While neural networks are complex mathematical structures, high-level machine-learning
libraries allow them to be used by a wide audience. This contrasts with traditional solvers, which require
significant background knowledge by the user to set up correctly. Despite these advantages, PINNs
are relatively slow and cannot provide the same accuracy as traditional methods due to numerous fail-
ure modes (Krishnapriyan et al., 2021). Nevertheless, their simplicity compared to traditional solvers is
appealing, and as a result, research is focused on fixing the failure modes.
Consequently, significant advancements have been made in identifying and fixing these failure modes,
allowing a wide range of problems to be tackled by PINNs. For example, they have successfully been
used for everything from electromagnetic analysis (Khan et al., 2022) to modeling of gravitational fields
(Martin et al., 2022). Interestingly, it seems like fluid dynamics is a natural candidate as most papers that
discuss features and properties of PINNs do so by applying them to fluid dynamics problems. In fact, the
foundational paper by Raissi et al. (2018) that preceded the original PINN paper by Raissi et al. (2019)
only considered fluid dynamics problems such as vortex shedding around a cylinder and an internal flow
around an object. Nevertheless, both of these papers involved data assimilation and inverse problems,
which rely on partial knowledge of the solution, unlike forward problems.
The first laminar forward problems were treated by Rao et al. (2020), who considered the Navier-Stokes
equations at low Reynolds numbers to simulate the flow around a cylinder. While both steady and transient
behavior is considered, it did not involve unsteady vortex shedding phenomena that occur at certain
Reynolds numbers (Kármán, 1911). However, this was successfully done by Jin et al. (2021), who also
showed that the results improved when larger weights are used for the initial and boundary conditions.
Although laminar cylinder flows are relatively simple, their setup can easily be extended to more complex
objects. For example, both Ang et al. (2022) and Sun et al. (2023) have shown that PINNs can successfully
model the laminar flow around airfoils of various shapes and sizes at different angles of attack.
Naturally, the flow becomes more complex at larger Reynolds numbers as the onset of turbulence begins.
Even for traditional CFD solvers these flows are troublesome and require either a very fine discretization or
the usage of the Reynolds-AveragedNavier-Stokes (RANS) equations with empirical models of turbulence.
These methods can certainly be combined with PINNs too, for example Eivazi et al. (2022) has shown
that PINNs with RANS can successfully simulate boundary layers, even without the specification of a
turbulence model. Instead, the fluctuation terms are specified at the boundaries and the PINN is free to
devise its own turbulence model.

1

When simulating the Navier-Stokes equations directly, PINNs struggle due to the causality issues that
arise from the strong transient nature of turbulence. Turbulence is a chaotic process, implying that a small
difference in the past flow state can have large implications on the future flow state. Since PINNs minimize
the residual uniformly over the temporal domain and do not take into account causality, they converge
slowly. Nevertheless, Jin et al. (2021) have shown that a turbulent channel flow can be successfully
simulated over short time intervals. Furthermore, the causality alleviations by for example Wang et al.
(2022a) are promising and provide indications that PINNs can sustain accurate turbulence predictions
over longer time intervals.

In terms of highly compressible flows, Mao et al. (2020) have shown that PINNs can capture both unsteady
and steady oblique shocks, although they only treated those that arise directly from boundary conditions
and not around objects. A slightly more applied shock is considered by Laubscher et al. (2022), namely an
oblique shock over a wedge. They show that PINNs fail on such a problem, although some adjustments
can lead to more accurate shocks. Furthermore, while simulations of more complicated detached shocks
exist, they rely on partial knowledge of the solution (Cai et al., 2021; Wassing et al., 2023) or on modifica-
tions of the Partial Differential Equations (PDEs) (Liu et al., 2022). In short, the current state-of-the-art in
terms of highly compressible flows is limited, despite their relatively low complexity. While multiple authors
have proposed adaptations to achieve the capture of more complex shocks, their underlying theories are
very diverse. From a global point of view, they form pieces of a puzzle that is yet to be solved.

Research objectives
In short, the research objectives of this thesis are:

To provide a unifying theory on why PINNs fail on highly compressible problems and to
design new adaptations that can alleviate these failure modes to allow for the simulation
of more complex shocks such as curved and detached shocks.

These objectives can be divided into three fundamental research questions, namely:

1. Why do PINNs fail on highly compressible problems? Although PINNs suffer from a large
range of failure modes, unique failure modes seem to arise on highly compressible problems. To
answer this question, it is important to understand the general PINN failure modes so that they can
be isolated from highly compressible failure modes.

2. How do existing adaptations relate to these failure modes? Multiple authors have proposed
PINN adaptations that promise to improve their performance on highly compressible problems,
although each of them is based on a different explanation. It is therefore important to relate these
adaptations to the failure mode theory to correctly understand why they work but also to formulate
their advantages and disadvantages.

3. What adaptations can alleviate these failure modes? While existing adaptations enhance the
performance of PINN on highly compressible problems, they have still not been shown to simulate
complex shocks. Therefore new adaptations must be designed that not only anchor themselves in
the failure mode theory but also allow for the simulation of curved and detached shocks.

Thesis outline
The fundamental principles of PINNs are explained in Chapter 2, along with an overview of their known
general failure modes. In addition, a new variant of PINNs is discussed as it displays interesting behavior
on highly compressible problems. Afterward, Chapter 3 provides an overview of compressible flow theory,
together with a summary of phenomena that can arise in highly compressible flows. It also shows how
PINNs can be used to simulate highly compressible flows. Then, Chapter 4 applies PINNs to simple
compressible problems to form a theory on their failure modes, which is related to existing adaptations.
This theory is used in Chapter 5 to design novel adaptations that can alleviate the failure modes, which
are then applied to oblique, curved and detached shocks in Chapter 6. Lastly, the findings are concluded
in Chapter 7 and recommendations for further research are made in Chapter 8.

2

Part I
Background

3

2
Physics-informed neural networks

While PINNs can successfully solve a wide range of fluid dynamics problems, they are certainly not perfect
and suffer from a large catalog of failure modes. Therefore, it is important to understand their fundamental
principles and general failure modes before trying to explain their behavior on highly compressible prob-
lems. This also allows to separate the general failure modes from the highly compressible failure modes,
paving the way for tailored adaptations. The purpose of this chapter is to provide such an overview, as
well as discuss the various general adaptations that have already been proposed. The fundamental princi-
ples of PINNs are introduced in Section 2.1, followed by an overview of failure modes and corresponding
adaptations in Section 2.2. In addition, one recent adaptation is highlighted in Section 2.3 as it turns out
to be beneficial for highly compressible problems.

2.1 Fundamental principles
The first step in understanding PINNs is to define a generic problem described by PDEs. First of all, each
problem involves a domain Ω that is enclosed by a surface ∂Ω, which can consist of both exterior and
interior surfaces as shown in Fig. 2.1. Inside the domain, there is a set of variables u that is governed by
a set of PDEs {Pi}, typically the Euler or Navier-Stokes equations in case of fluid dynamics problems. As
a result, the variables may vary over both space, x ∈ Ω, and time, t ∈ R+. These variations should satisfy
the PDEs, which essentially specify that some combination of the variables and their derivatives should
be zero, giving rise to the first equation in Eq. (2.1).

(a) Irregular domain (b) Hollow domain

Figure 2.1: Examples of two-dimensional domains.

Generally, the set of PDEs alone does not uniquely prescribe the solution for u(x, t) (Haberman, 2014).
Instead, they must be accompanied by a set of boundary conditions and a set of initial conditions. The
boundary conditions ub(x, t) prescribe the value of the variables or their derivatives at the surface ∂Ω and
may vary as a function of time, while the initial conditions u0(x) prescribe the value of the variables on
the entire domain Ω at t = 0. When the initial and boundary conditions are formulated in such a way that
they confine the problem to having a single unique solution, the problem defined in Eq. (2.1) is well-posed.

4

2.1 Fundamental principles 5

Note that such problems are generally not solved for all times t, but rather until some fixed end time.

∀iPi(u(x, t)) = 0, x ∈ Ω, t ∈ R+,

u(x, t) = ub(x, t), x ∈ ∂Ω, t ∈ R+,

u(x, 0) = u0(x), x ∈ Ω.

(2.1)

Traditionally, these problems are solved by either finite element methods (Reddy, 2019), finite difference
methods (Versteeg et al., 2007) or spectral methods (Canuto et al., 2012). Each of these methods sub-
divides the domain Ω into many smaller subdomains, after which the discretized system of equations is
iteratively solved. While this approach is reliable, it involves complex numerical schemes and requires
considerable manual work to set up. Furthermore, the accuracy of the resulting solution is inherently
limited by the resolution of the mesh. For turbulent flows, this can be detrimental because the smallest
scales are of vital importance for the overall solution (Nieuwstadt et al., 2018). Nevertheless, advances
in turbulence modeling allow for fairly accurate results even for turbulent flows.

xx

Figure 2.2: A layered neural network with inputs (x, t) and outputs u = [u1, u2, ...].

Recently, Raissi et al. (2019) proposed a new method based on the original idea of Lagaris et al. (1998).
Instead of discretizing the domain and the governing PDEs, they proposed to represent the solution u(x, t)
with a neural network as shown in Fig. 2.2. Neural networks consist of neurons that are connected to each
other through weights. Each neuron calculates its state by summing the product of activation values of
incoming connections with these weights, after which a typically nonlinear activation function is applied
to attain its activation value. The neurons are generally grouped in layers, where all neurons from one
layer are connected to all the neurons of the succeeding layer as shown in Fig. 2.2. At the first layer,
the activation functions are set to the input variables. In other words a0 = [x1, x2, ..., t], where a0 are the
activation values of the first layer. For each layer i after the input layer, Eq. (2.2) is used where f is the
activation function, W is a weight matrix and b is a bias vector. If the activation functions are continuous,
the outputs of the neural network will also be continuous. This is a significant advantage compared to
traditional solvers, which only provide a discretized solution at specific locations on a mesh.

ai = f(Wi−1,iai−1 + bi) (2.2)

The nonlinearity of the activation functions allows neural networks to approximate complex functions and
they have even been proven to be universal function approximators (Cybenko, 1989; Hornik et al., 1989).
In other words, they can in theory approximate any function to any desired accuracy given the neural
network consists of enough neurons. The process of approximating a given function is done through
a loss function, which measures how well the neural network approximates the function. Given certain
inputs, the loss of the neural network can be calculated based on its corresponding outputs. This loss can
then be backpropagated so that the gradient of each of the weights and biases with respect to the loss
is known. Through gradient descent algorithms, this gradient can be used to incrementally change these
parameters θ to minimize the loss. For a neural network to learn the solution to a PDE problem, the loss
must thus express how wrong its current solution is. Since the target solution is not known, Raissi et al.

2.1 Fundamental principles 6

(2019) introduced the loss function

L = L0 + Lb + Lr,

L0 = ∥u(x, 0)− u0(x)∥2, Lb = ∥u(x, t)− ub(x, t)∥2, Lr = ∥P (u(x, t))∥2.
(2.3)

Essentially, it consists of three different terms which respectively represent the loss over the initial condi-
tions, the boundary conditions and the PDEs. The initial and boundary losses are calculated by taking the
squared difference of the current solution with the prescribed conditions, while the PDE loss is calculated
by taking the squared residuals. The residuals are the values that remain on the right-hand side when
applying the PDEs to a trial solution; lower residuals imply that the trial solution satisfies the PDEs better.
Note that it is typical for losses to be expressed in squared instead of absolute differences because the
loss remains differentiable when the difference is zero. In addition, it also penalizes outliers. Neural net-
works that are trained using the above loss function are referred to as PINNs because the loss contains
a term that is based on physical PDEs.

(a) Irregular domain (b) Hollow domain

Figure 2.3: Examples of collocation points for two-dimensional domains, excluding the initial condition points.

In practice, it is unfeasible to calculate the exact values of the loss terms in Eq. (2.3) through integration
because neural networks are highly nonlinear, making it hard to obtain a primitive of the loss function in
terms of their parameters. Therefore, each loss term has an associated set of collocation points that are
spread over space and time, as shown in Fig. 2.3. At these points, the local loss is calculated to estimate
the overall loss as is done in Eq. (2.4). The different sampling methods that can be used to generate the
collocation points are discussed in Section 2.2.1, along with their advantages and disadvantages.

L = L0 + Lb + Lr,

L0 =
1

n0

n0∑
i=1

∥u(xi, 0)− u0(xi)∥2, Lb =
1

nb

nb∑
i=1

∥u(xi, ti)− ub(xi, ti)∥2, Lr =
1

nr

nr∑
i=1

∥P (u(xi, ti))∥2.

(2.4)
One might argue that the usage of collocation points bears similarities with the discrete meshes used
in traditional solvers, but there is an important difference. While the usage of meshes requires the dis-
cretization of derivatives in the PDEs, introducing discretization errors into the solution, the derivatives
of the solution provided by the neural network can be calculated analytically. Although the activation
functions of neurons are nonlinear, they are generally differentiable to allow for backpropagation of the
loss. As a result, the derivatives of the solution with respect to the spatial and temporal variables can
also be calculated through repeated application of the product rule. If all the activation functions in the
neural network are differentiable up to the same order as the PDEs, the derivatives are also continuously
defined. This process is called automatic differentiation (Baydin et al., 2017) and is a key advantage of
PINNs. Note that automatic differentiation is different from symbolic differentiation, as the full neural net-
work is never differentiated symbolically but rather the derivatives are calculated at each computational
node during forward passes as shown in Fig. 2.4.

2.1 Fundamental principles 7

x

Symbolic

Automatic

Numerical
(e.g.)

Figure 2.4: Comparison of symbolic, automatic and numerical differentiation.

However, similar to meshes, the number and placement of collocation points influence the accuracy of
the obtained solution. This is because the neural network only minimizes the loss at the specified points,
and not necessarily over the whole domain. When the loss over the set of collocation points used for
training is significantly lower than over a different set of collocation points, the neural network is said to
be overfitting. This can be monitored by keeping track of the loss on a separate set of collocation points
that is not used for gradient descent. Alternatively, if the exact solution is available, the L2 error can be
calculated via Eq. (2.5) to monitor the deviation with respect to the true solution.

L2 =

√√√√ 1

n

n∑
i=1

∥u(xi, ti)− utrue(xi, ti)∥2 (2.5)

The error defined in Eq. (2.5) and the residual used in the loss function in Eq. (2.3) are generally not
proportional to each other, although they are related. When the residuals are low, it only implies that the
obtained solution satisfies the PDEs and is therefore physical. Nevertheless, if the initial and boundary
conditions losses are large, the solution will be incorrect because it is a physical solution to a different
set of initial and boundary conditions. But even when all losses are relatively low, locally high residuals
can lead to incorrect propagation of the boundary conditions to the rest of the domain. Therefore, only
uniformly low residuals lead to a low error with respect to the true solution. However, keep in mind that the
relationship between the loss and error is nonlinear due to the nonlinear nature of PDEs, although some
authors are investigating alternative loss definitions to linearize this relationship (Taylor et al., 2023).

2.1.1 Data assimilation and inverse problems
Problems that have a loss function of the form given in Eq. (2.3) are called forward problems and are
most similar to traditional CFD methods. Essentially, they involve finding a physical solution to a set of
initial and boundary conditions. However, one of the main advantages of PINNs is that their loss function
is flexible, implying it can also incorporate additional loss terms. This allows PINNs to be applied to data
assimilation problems for example, which are problems where additional knowledge on the solution or its
derivatives is available at some points in the domain.

(a) Unknown inlet and outlet conditions (b) Unknown surface conditions

Figure 2.5: Sketch of two-dimensional data assimilation problems with unknown boundaries.

2.2 Limitations and adaptations 8

The mentioned knowledge could be provided by other numerical methods, but more interestingly it could
come from experimental measurements. While this knowledge can help the convergence of PINNs on
well-posed problems, it also allows solutions to be found to underdetermined problems where the initial
and boundary conditions are partly unknown or simply uncertain. Furthermore, data assimilation can also
be applied as a physics-informed interpolation scheme to provide super-resolution on existing provided
numerical or experimental data, which has been performed by both Jiang et al. (2020) and Wang et
al. (2020). A more practical example is visualized in Fig. 2.5a, where the inlet and outlet conditions
might be uncertain but measurements are conducted inside the domain at various locations. To include
measurements or any additional knowledge, an extra term can be added to Eq. (2.4) of the form

Ld =
1

nd

nd∑
i=1

∥u(xi, ti)− ud(xi, ti)∥2. (2.6)

where ud(xi, ti) is the known value of the solution or its derivatives provided at some position xi at some
time ti. Of course, it does not make much sense to apply data assimilation on problems with unknown
inlet conditions since the PDEs often also contain constants based on these conditions. This could be
for example the density or viscosity of the fluid or the dimensionless Reynolds number. Since the PDEs
are usually nonlinear, a small change in such a constant could have a large consequence on the flow
phenomena. As a result, it might not even be possible to perform data assimilation if the incorrect values
for these constants are assumed. Therefore, an approach is used based on the field of model identification
(Wang et al., 2018), where the model constants are learned during training as well. They are simply
considered additional parameters to be learned during backpropagation and gradient descent, similar to
the parameters of the neural network. This class of problems is called inverse problems since the goal
is to infer the PDEs from flow phenomena instead of the other way around. Note that this introduces no
additional loss term in Eq. (2.3), as the model constants are already part of the PDEs required to calculate
the residual loss term.

2.2 Limitations and adaptations
Although PINNs have been shown to effectively solve a wide range of fluid dynamics problems, they
require various tweaks and tricks to do so. This is because PINNs suffer from two issues: first of all,
Markidis (2021) has shown that PINNs are generally slower than traditional solvers based on iterative
methods. Second of all, they are generally unable to easily reach the same residuals and therefore errors
as traditional solvers. In the case of highly compressible fluid dynamics, the lack of applied cases is
likely related to the latter issue. Therefore, this section provides an overview of the current knowledge of
the failure modes that underlay this issue, as well as the methods that have been proposed to mitigate
their effects. For more information about the failure modes that affect the computational cost of PINNs,
the reader is referred to domain decomposition (Karniadakis, 2020; Han et al., 2023) and meta-learning
(Markidis, 2021; Liu et al., 2022) methods.

2.2.1 Sampling methods
Although PINNs provide continuous solutions, a finite number of collocation points is used to assess the
loss function as shown in Eq. (2.4). Similar to the quality of meshes in traditional solvers, the placement
of these collocation points has a large influence on the error of the obtained solution. As mentioned, this
is partly a consequence of PINNs minimizing the residuals rather than the errors, since low residuals
only imply that the solution at the collocation points satisfies the PDEs. When the residual points fail
to sufficiently map regions with high gradients, Daw et al. (2022) argue that the boundary corrections
incorrectly propagate to the rest of the domain, leading to low residuals yet high errors. In other words,
the solution is physical but represents different boundary conditions. This can not only occur in the spatial
domain but also in the temporal domain: when initial conditions incorrectly propagate because of bad
sampling, (Wang et al., 2022a) argue that the principle of causality is violated and the errors at future times
can be high despite low residuals. To counteract this, several sampling methods have been proposed.

2.2 Limitations and adaptations 9

(a) Grid sampling (b) Uniform random sampling (c) Latin hypercube sampling

Figure 2.6: Selection of uniform non-adaptive sampling methods.

The first class of sampling methods involves static or non-adaptive sampling methods, which provide
collocation points independent of the problem. An extensive overview of these methods is provided byWu
et al. (2023), who identify six main methods that are visualized in Fig. 2.6 and Fig. 2.7 and apply these to a
set of problems to compare their performance. The first method is grid sampling, where points are placed
at the nodes of a regular lattice. This method has the worst performance, which also explains why there
are not many papers using it. The second method is uniform random sampling, where points are sampled
independently from a uniform distribution. It performs slightly better and is more consistent, perhaps
because it is invariant to rotations. Nevertheless, uniform random sampling can lead to large regions
without any collocation points because they are independently sampled, which can worsen propagation
failures. It is therefore no surprise that this method only appears in literature to highlight its problems (e.g.
Mao et al. (2020)). The third method is Latin hypercube sampling, which is similar to uniform random
sampling but makes sure that the samples uniformly cover the ranges of both variables. Interestingly,
Wu et al. (2023) do not find it to improve over uniform random sampling, but this sampling method is
particularly prevalent and is used by for example Raissi et al. (2019) and Rao et al. (2020).

(a) Halton sampling (b) Hammersley sampling (c) Sobol sampling

Figure 2.7: Selection of low-discrepancy non-adaptive sampling methods.

While the above uniform sampling methods are simple to use, they do not take into account that the sam-
pled points are used to approximate an integral of the loss function in Eq. (2.3). There are in fact several
sampling methods that optimize the placement of points for faster convergence to the true value of inte-
grals. An example is the Sobol sampling method, which is a quasi-random low-discrepancy sequence.
Wu et al. (2023) show that this method and the other low-discrepancy methods in Fig. 2.7 improve the
accuracy greatly over a large class of problems. Markidis (2021) confirms this finding, although the im-
provement is less pronounced which is argued to be the result of a larger number of collocation points.
This is understandable because, in the limit of infinite collocation points, all the mentioned static methods
essentially uniformly cover the domain. Therefore, there will be little difference between the sampling
methods if the collocation point density is far higher than the feature density in the solution.

2.2 Limitations and adaptations 10

(a) Iteration i (b) Iteration i+ 1 (c) Iteration i+ 2

Figure 2.8: Resampling collocation points at each iteration using a uniform random sampling method.

The comparison of sampling methods so far assumes that the set of collocation points is fixed. However, it
is also possible to resample the collocation points at fixed intervals during the iterative training procedure,
as shown in Fig. 2.8. As a result, the mean value of the loss over different iterations converges to the
true value in the limit of many iterations because the domain is more uniformly sampled. In addition, the
stochasticity of the resulting gradient descent may drive the neural network out of local minima, which are
further elaborated upon in Section 2.2.2. Wu et al. (2023) have shown that combining uniform random
sampling with resampling leads to a considerable improvement over a large variety of problems.
While resampling leads to a significant accuracy increase, it is not clear why an approximately uniform
set of collocation points would lead to the lowest error. In fact, Mao et al. (2020) show that they can
achieve a considerable performance increase by clustering more collocation points near large gradients
in the solution, as shown in Fig. 2.9 for a shock in a highly compressible flow. Intuitively this makes sense
because fewer collocation points are necessary to accurately approximate the loss function in areas where
there are low gradients compared to areas where there are high gradients. Based on this finding, multiple
adaptive sampling methods have been developed that continuously add or relocate collocation points to
achieve better accuracy.

(a) Uniformly sampled points (b) Clustered points (c) Obtained solution

Figure 2.9: Uniform sampled points versus clustered points (Mao et al., 2020).

The first class of adaptive methods are based on the residuals at the collocation points and are hence
named residual-based adaptive methods. Lu et al. (2021) proposed a method that regularly samples new
points uniformly and then selects those with the highest residual to be added to the current set of collo-
cation points. A more sophisticated approach is proposed by Daw et al. (2022), who use an evolutionary
algorithm to select and remove collocation points based on a fitness proportional to their residual value.
Although both these methods adaptively place points in areas with high residuals, Wu et al. (2023) argue
that this approach is too greedy and can cause low residual areas to become underrepresented. A less
greedy approach is proposed by Nabian et al. (2021), who sample new collocation points from a proba-
bility density function that is proportional to the residuals, as shown in Fig. 2.10. Since sampling from a
probability density function can be expensive, Tang et al. (2023) have proposed to use a deep generative
model to generate samples instead.

2.2 Limitations and adaptations 11

(a) Piecewise probabilities (b) Sampled collocation points

Figure 2.10: Sampling from a residual-based piecewise probability density function (Nabian et al., 2021).

While the residual-based adaptive methods provide better results than their non-adaptive counterparts,
Wu et al. (2023) show that the accuracy increase is not significant when compared to resampling. In addi-
tion, these methods fail to account for the principle of causality: solutions at future times depend on earlier
solutions, therefore it is not useful to place many collocation points in the future even though the residuals
there are large since lowering the residuals will not necessarily lead to a low error. This has led to the time
marching approach by Wight et al. (2021), where collocation points are spread progressively as shown in
Fig. 2.11. Intuitively, this method seems most relevant for highly unsteady fluid dynamics problems such
as those involving turbulence. However, keep in mind that for steady highly compressible problems in the
hypersonic regime, spatial variables can turn time-like as is demonstrated by the hypersonic equivalence
principle (Anderson, 2006).

t

x

(a) Start of training

t

x

(b) Halfway through training

t

x

(c) End of training

Figure 2.11: Progression of residual points when using the time marching technique by Wight et al. (2021).

2.2.2 Loss simplification
Although advanced sampling methods increase the accuracy of PINNs, Zeng et al. (2022) note that the
errors obtained rarely reach machine-precision levels, even on simple problems. This is interesting be-
cause, in theory, there exists a solution that exactly satisfies the constraints in Eq. (2.1) given that the
problem is well-posed. Intuitively, one might argue that the universal approximation property of neural
networks only holds in the limit of infinite neurons (Hornik et al., 1989). Nevertheless, the typical sizes
of the networks in PINN papers should give enough expressive power for far better accuracies, giving
reason to believe that there is a different issue. A more compelling argument is given by Krishnapriyan
et al. (2021), who argue that the residual loss term in Eq. (2.3) complexifies the loss landscape. Since
gradient descent algorithms are prone to local minima, they might converge at relatively high loss values.
Although Choromanska et al. (2015) argue that convergence to local minima is not inherently disadvanta-
geous because the global minimum might lead to overfitting and thus bad generalization, a balance must
be sought between a low loss and proper generalization.

Since the residual loss term complexifies the loss landscape, Wang et al. (2022b) considered a weighted
variant of the loss function as shown in Eq. (2.7) and studied the effect of varying just the residual loss

2.2 Limitations and adaptations 12

weight wr. In theory, this should not affect the optimal solution although it can reshape the loss land-
scape. Interestingly, they found that lower weights lead to a lower final L2 error. Intuitively this can be
understood with the propagation failure theory discussed in Section 2.2.1: if the boundary conditions are
hardly satisfied, it makes little sense to start minimizing the residual because it will lead to a solution that
satisfies other boundary conditions. This is especially problematic because gradient descent algorithms
can converge to a local minimum before the boundary conditions are reasonably satisfied. By increasing
the relative importance of the boundary conditions, the correct boundary conditions can propagate before
the residual is minimized. As a result, a lower final error is generally obtained.

L = w0L0 + wbLb + wrLr (2.7)

While lowering the weight of the residual loss term generally improves the error, the optimal value is
highly problem dependent and can depend on the magnitude of the solution if it is not made dimension-
less. Therefore, multiple adaptive weighting methods have been developed that automatically adjust the
weights of the different loss terms. Wang et al. (2021a) proposed to balance the loss terms in such a
way that their contribution to the backpropagated parameter changes is approximately equal, as shown in
Fig. 2.12. They showed that this indeed leads to a larger weighting of the initial and boundary conditions,
resulting in better overall losses on selected problems. Nevertheless, it is not clear why balancing the
contributions to weight changes is the optimal strategy.

−1.0 −0.5 0.0 0.5 1.0
Gradient

0

100

101

102

D
en

si
ty

∇θL0

∇θLb

∇θLr

1(a) No loss balancing

−1.0 −0.5 0.0 0.5 1.0
Gradient

0

100

101

102

D
en

si
ty

∇θw0L0

∇θwbLb

∇θwrLr

1(b) Loss balancing

Figure 2.12: Distribution of backpropagated gradients in a single layer, with and without the loss balancing
technique proposed by Wang et al. (2021a).

Another weighting approach is introduced by Liu et al. (2021), who instead propose to adapt the weights
using a competitive minimax game. In this game, the relative weights of the loss terms are varied in such
a way that the total loss is maximized, as shown in Eq. (2.8). The weights are essentially considered to
be parameters that are also updated but using gradient ascent instead of gradient descent. Unfortunately,
this approach does not improve the L2 error significantly, although it converges considerably faster.

min
θ

max
w0,wb,wr

L = w0L0 + wbLb + wrLr,

w0 + wb + wr = 1.
(2.8)

A more refined approach that uses a similar strategy is introduced by McClenny et al. (2022), who instead
weigh the contribution of individual collocation points to the loss function instead of the contribution of entire
loss terms. The weights can also be provided by spatiotemporal weighting functions w(x, t) as shown in
Eq. (2.9), which are represented with Gaussian processes. The parameters of these Gaussian processes
are then optimized using a minimax game, resulting in an L2 error that can be orders of magnitude lower
compared to no weighting. This considerable increase is likely not only the result of a better loss landscape
but also of the fact that the neural network can be punished for having locally high losses. As a result, the
network equalizes its loss over space and time which reduces propagation failures.

min
θ

max
w0,wb,wr

L = L0 + Lb + Lr,

L0 = w0(x)∥u(x, 0)− u0(x)∥2, Lb = wb(x, t)∥u(x, t)− ub(x, t)∥2, Lr = wr(x, t)∥P (u(x, t))∥2.
(2.9)

2.2 Limitations and adaptations 13

Note that the approach of McClenny et al. (2022) bears similarities with self-paced learning methods for
neural networks (Kumar et al., 2010), which start by using easy samples for the loss and progressively
include harder samples. A self-paced adaptive method has been applied to PINNs by Gu et al. (2021),
resulting in the error improving by an order of magnitude. Another example of a self-paced weighting
method for PINNs is the casual approach by Wang et al. (2022a), although it was developed to alleviate
temporal propagation failures. This method applies a weighting function to each collocation point that
depends on the loss at earlier collocation points, as shown in Eq. (2.10) with ϵ a small constant and
ti+1 > ti. It is designed to respect causality, as small weights are given to collocation points further in the
future, but their weights progressively increase between training iterations. Again, this temporal weighting
method can not only be relevant for fluid dynamics problems involving turbulence but also for steady highly
compressible flows in the hypersonic regime.

Lr =
1

nr

nr∑
i=1

wiLr,i, Lr,i = ∥P (u(xi, ti))∥2, wi = exp

(
−ϵ

i−1∑
k=1

Lr,k

)
. (2.10)

Instead of using weighting methods to alleviate the loss landscape issues, it is also possible to consider
more advanced gradient algorithms. In particular, to mitigate convergence to local minima, it is possible
to select a different algorithm or even switch between different algorithms during training. The most basic
gradient descent algorithm is simple gradient descent as given in Eq. (2.11) (Ruder, 2016), where the
update of the parameters θ only depends on the current gradient of the loss with respect to the parameters.
The learning rate η dictates how large the parameter updates should be. Generally, lower learning rates
lead to earlier convergence to local minima. On the other hand, a lower learning rate is also necessary to
make fine adjustments towards the center of minima once the loss is sufficiently low. If the learning rate
is too large, the parameter updates will ”jump” over these minima causing the loss to stagnate.

θi+1 = θi − η∇θL(θi) (2.11)

To avoid premature convergence to local minima, many adaptive gradient descent algorithms have been
proposed. One example is Adaptive Moment Estimation (Adam), which has been introduced by Kingma
et al. (2014) and has been used by most authors when training PINNs. Similar to other adaptive gradient
descent algorithms (Ruder, 2016), it keeps track of themomentum of previous gradients. Its workings are
given by Algorithm 1, where β1 and β2 are hyperparameters that dictate how fast the contribution of past
gradients and squared gradients should decay respectively. Furthermore, ϵ is a small non-zero value to
avoid division by zero. By using momentum, Adam is more likely to pass over premature local minima.

Algorithm 1: Adaptive Moment Estimation (Kingma et al., 2014)
1 require base learning rate η
2 require exponential decay rates β1, β2

3 require loss function L(θ)
4 require initial parameters θ0
5
6 initialize moment estimates m1 = 0, m2 = 0
7
8 for i in {0, 1, ...} do
9 m1 = β1m1 + (1− β1)(∇θL(θi))
10 m2 = β2m2 + (1− β2)(∇θL(θi))

2

11 m1 = m1/(1− βi
1)

12 m2 = m2/(1− βi
2)

13 θi+1 = θi − ηm1/(
√m2 + ϵ)

Despite the popularity of the Adam optimizer in literature, the resulting accuracy when using it for PINNs is
limited. Therefore, multiple authors such as Markidis (2021) and Jin et al. (2021) have opted to combine
Adam with the second-order L-BFGS optimizer, introduced by Liu et al. (1989). In particular, Adam is
used as the gradient descent algorithm in the first stage, after which L-BFGS is used to further refine
the solution when the loss stagnates. As a result, the loss might decrease by a further two orders of
magnitude. In short, the L-BFGS optimizer is a limited-memory version of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, which is essentially a second-order gradient descent algorithm. Instead of just

2.2 Limitations and adaptations 14

using the gradient to determine the descent direction, it also computes the Hessian matrix which includes
all second-order derivatives and can be used to estimate the curvature of the loss function. In other
words, it also takes into account how much changing a parameter affects the gradients of all parameters.
The update rule is given in Eq. (2.12), where D2

θθL(θi) is the Hessian. In practice, the limited-memory
approximation of BFGS is often used because the Hessian matrix grows squared with the number of
neural network parameters.

θi+1 = θi − ηD2
θθL(θi)∇θL(θi) (2.12)

2.2.3 Network architecture
Given that an appropriate sampling method is used, smoothening the loss landscape can certainly benefit
the accuracy of PINNs. However, it is important to remember that although the PDEs complexify the loss
landscape, this landscape itself is expressed in terms of the model parameters. Instead of smoothening
the landscape by adapting the loss function, one can therefore also use a different network architecture
to change how the loss function is parameterized. In fact, many breakthroughs in machine learning are
the result of discipline-specific architectures, such as convolutional neural networks for image processing
(O’Shea et al., 2015) and transformers for natural language processing (Vaswani et al., 2017). Therefore,
this section gives an overview of the various architectural developments for PINNs.

(a) Iteration 100 (b) Iteration 1000 (c) Iteration 10000 (d) Iteration 80000

Figure 2.13: An illustration of spectral bias adapted from Rahaman et al. (2019), where the blue line is the target
function consisting of a superposition of sine waves with different frequencies and the green line is the neural
network approximation. It shows how low frequencies are learned first and high frequencies only afterward.

Neural networks inherently suffer from spectral bias, which can greatly decrease their convergence rate.
In short, it is a bias towards learning lower frequency components in the solution over higher frequency
components (Rahaman et al., 2019), as illustrated in Fig. 2.13. This can be especially problematic for flow
problems involving turbulence, where solutions consist of a wide range of frequencies that interact with
each other. Because the different frequencies are not learned at the same rate, the solution converges
slowly or does not converge at all. Interestingly, McClenny et al. (2022) have shown that spectral bias is
partly addressed by adaptive loss balancing methods. However, a more direct solution is Fourier feature
networks introduced by Tancik et al. (2020), which transform the network inputs to a higher-dimensional
feature space by applying a Fourier transformation to them as shown in Eq. (2.13), where f is a set of
frequencies that is predefined or trainable. By applying this transformation to the spatial and temporal
inputs of PINNs, both Wang et al. (2021b) and Hennigh et al. (2021) have shown to obtain errors that are
orders of magnitude smaller with a faster convergence.

x̃ = [sin(2πf× x); cos(2πf× x)]T (2.13)

Note that spectral bias is primarily an issue when the target solution consists of a wide range of frequencies,
which can be determined by taking its Fourier transform. Again, it is natural to take turbulence as a prime
example of a flow consisting of a wide range of frequencies, as it involves an energy cascade consisting
of eddies of many scales (Nieuwstadt et al., 2018). Nevertheless, highly compressible flows often involve
discontinuities that are essentially step functions, which in the Fourier domain are also represented by a
wide range of frequencies.

While Fourier feature networks transform the inputs of a neural network, they do not modify the rest of their
architecture. A different approach is taken by Wang et al. (2021a), who use the transformer architecture
of Vaswani et al. (2017) from the natural language processing field. Essentially, this architecture converts
the spatial and temporal inputs to highly-dimensional feature spaces that are connected to future hidden

2.3 Adversarial training 15

layers through residual connections, as shown in Fig. 2.14. Similar to Fourier feature networks, they
have been shown to obtain an improvement of two orders of magnitude on the L2 error compared to
conventional layered networks. Furthermore, Hennigh et al. (2021) combine Fourier feature networks
with the transformer architecture, using the Fourier transformed inputs as the transformer feature space.
Compared to plain Fourier feature networks, the performance of these modified Fourier feature networks
is only marginally better.

Input
Repeat for

each hidden
layer

Output

Input
Repeat for

each hidden
layer

Output

Figure 2.14: Comparison of a standard neural network architecture (top) to a transformer architecture (bottom),
dashed arrows indicate matrix multiplications while solid arrows indicate value transfer. Here F1 and F2 are layers
representing feature spaces and Z1 is an intermediate layer.

Apart from input transformations and alternative architectures, one can also consider different activation
functions for the neurons. Although there is a wide range of activation functions that can be chosen
(Lederer, 2021), a class of activation functions has been designed by Jagtap et al. (2020b) for PINNs
specifically. These Locally Adaptive Activation Functions (LAAFs) take any activation function f(x) and
transform it as shown Eq. (2.14), where a is a continuous parameter that is learned through gradient
descent and n ≥ 1 is an integer hyperparameter. These two parameters can either be defined for the
whole network (Jagtap et al., 2020a), per layer or for each neuron. The main motivation of the extra
parameters is that they can increase the gradient of the activation functions, potentially mitigating the
vanishing gradient problem (Pascanu et al., 2013) leading to faster convergence. Generally, the larger n
is chosen, the faster the convergence, up and until a critical value. Furthermore, a slope recovery term
can be added to the loss function that rewards the network for larger values of a.

f(x) ⇒ f(nax) (2.14)

Although the additional parameters increase the computational cost slightly, Jagtap et al. (2020b) and
Markidis (2021) have shown that all variants of LAAFs lead to drastically faster convergence compared
to using non-adaptive activation functions. In general, using LAAFs with parameters for each neuron
leads to faster convergence than using LAAFs with layer-shared parameters, which leads again to faster
convergence than using LAAFs with network-shared parameters. However, it is important to reiterate that
using LAAFs can also lead to a performance decrease if the value for n is chosen too large.

2.3 Adversarial training
Section 2.2.1 shortly discussed someweighting methods that are based onmaximizing andminimizing the
loss at the same time, which are also known as adversarial training methods. Recently, a more compelling
adversarial training method was introduced by Zeng et al. (2022), which redefines the foundation of PINNs
while maintaining their fundamental principles and desirable properties. These so-called Competitive
Physics-Informed Neural Networks (CPINNs) were actually the starting point of this thesis as they show
interesting behavior on highly compressible problems, which will be further analyzed and discussed in

2.3 Adversarial training 16

Chapter 4. In short, CPINNs are similar to the self-adaptive PINNs of McClenny et al. (2022), but they use
a second neural network instead of a Gaussian process to weigh the collocation points. Furthermore, the
loss function no longer involves squared but rather pure differences and residuals, leading to Eq. (2.15).

max
d

min
g

L = L0 + Lb + Lr,

L0 = D(x, 0)(u(x, 0)− u0(x)), Lb = D(x, t)(u(x, t)− ub(x, t)), Lr = D(x, t)P (u(x, t)).
(2.15)

Thus, instead of only involving a single neural network, this loss function involves a discriminator network
D(x, t) as shown in Fig. 2.15 and a generator network G(x, t) = u(x, t) which is architecturally equivalent
to the PINN in Fig. 2.2. These two neural networks play a competitive game, where the discriminator
is tasked with predicting the mistakes of the generator. The loss is now defined as a minimax problem,
where the discriminator optimizes its parameters d to maximize the loss and the generator optimizes its
parameters g to minimize the loss. Essentially, the discriminator is placing bets on whether the generator
will over- or undershoot the initial conditions, boundary conditions and PDEs. A correct bet results in a
reward for the discriminator and a penalty for the generator, whereas a wrong bet has the reverse impact.
Most importantly, the game has a Nash equilibrium at G(x, t) = utrue(x, t) and D(x, t) = 0, where the
generator produces the exact solution to the problem given enough collocation points are used.

xx

Figure 2.15: Architecture of a discriminator network with inputs (x, t). It has an output for every initial condition,
boundary condition and PDE in order to evaluate the loss term in Eq. (2.15).

At the time of writing, the only examples involving CPINNs are provided by Zeng et al. (2022) who show
that CPINNs can reach an error that is several orders of magnitude lower compared to PINNs. Never-
theless, the results are somewhat limited because they are achieved on univariate problems that only
involve a single PDE. Furthermore, the problems are either unsteady and one-dimensional or steady and
two-dimensional. In other words, they involve only two independent variables. Therefore, one must be
careful to extrapolate these results to typical fluid dynamics problems, which involve multiple PDEs and
often many more variables. In addition, the authors do not sufficiently elaborate on how the output of the
discriminator should be structured when more complex boundary conditions are prescribed. For exam-
ple, it is straightforward to use a single output for the initial condition of a continuous domain as shown
in Fig. 2.16. However, it remains unclear if the discriminator should have a separate output for each
boundary segment in case directional boundary conditions such as Neumann conditions are prescribed
on a non-differentiable boundary, for example on the surface of the square. A single output introduces
discontinuities in the loss function that could worsen the loss landscape, while separate outputs increase
the network complexity.

2.3 Adversarial training 17

−0.5

0.0

0.5 G
(x
,0)−

u
0 (x

)

1(a) Initial condition difference

−1.0

−0.5

0.0

0.5

1.0

D
0 (x

,0)

1(b) Discriminator prediction

−0.2

0.0

0.2

0.4
L
0

1(c) Initial condition loss field

Figure 2.16: Example of the calculation of the adversarial loss for some initial condition u0(x).

While CPINNs seem to have the ability to drastically improve over the performance of conventional PINNs,
it is important to note that it is not clear yet why exactly they do so. At the start of this section, it was men-
tioned that CPINNs are similar to the self-adaptive PINNs introduced by McClenny et al. (2022), except for
two differences. Since these differences are relatively subtle, it could be argued that CPINNs are simply
a weighting method. However, Zeng et al. (2022) attribute the success of CPINNs to the replacement of
the least-squares problem by a competitive game without any squared error terms. They argue that when
the squared loss function in Eq. (2.3) is used for a PDE of order n, minimizing it involves solving a system
of order 2n. As a result, the condition number of the problem is squared, which is indicative of the sensi-
tivity of the loss with respect to the parameters. In essence, the authors claim that the competitive loss
leads to a significant simplification of the complex loss landscape as discussed in Section 2.2.2, effectively
reducing the probability that gradient descent algorithms prematurely converge to local minima.

2.3.1 Failure modes
Although CPINNs seem to address one or more failure modes of PINNs, one might argue that CPINNs
themselves might suffer from other undiscovered failure modes. There is certainly an element of truth
in this rhetoric, but it is good to realize that the competitive loss function is based on the loss function of
Generative Adversarial Networks (GANs), which were introduced by Goodfellow et al. (2014) almost a
decade ago and have since matured. This class of neural networks is used to generate samples from a
probability distribution that must be inferred from a dataset, for example to generate new faces based on
a dataset of real faces. Similarly, training them involves a generator network and discriminator network,
where the generator is responsible for generating new samples, as shown in Fig. 2.17. The discriminator
is then randomly given a real sample from the dataset or a fake sample from the generator, and it must
give the probability that the sample is real or fake.

Real images

Generator

Discriminator

Discriminator
loss

Generator loss

Real sample

Fake sampleRandom input

Figure 2.17: Architecture of a GAN setup involving a generator and discriminator, example data by Deng (2012).

Theoretically, this game also results in a Nash equilibrium where the generator perfectly mimics the prob-
ability distribution of the dataset and the discriminator outputs 1

2 on both real and fake samples. This
adversarial setup works remarkably well, and it resulted in the first photorealistic generated faces (Karras
et al., 2017). One theory that attempts to explain this success is called implicit regularization (Schäfer
et al., 2020b), which postulates that the generator is forced to generalize better because overfitting on
simple patterns in the dataset also makes it easy for the discriminator to understand how the generator

2.3 Adversarial training 18

operates. Nevertheless, GANs also suffer from their own failure modes (Wiatrak et al., 2019). Since they
might also manifest in CPINNs, it is instrumental to understand them.

(a) Target distribution (b) Iteration i (c) Iteration i+ 5000 (d) Iteration i+ 10000

Figure 2.18: Example of mode collapse on a 2D target probability distribution, adapted from Metz et al. (2016).
During training, the generator keeps moving to a new subspace and fails to sample the full probability distribution.

In particular, GANs suffer from three main failure modes, namely mode collapse, instability and vanishing
gradient (Saxena et al., 2020). Mode collapse occurs when the generator only generates samples with
limited diversity, which might be beneficial because the generator has control over which fake images the
discriminator sees. In other words, the generator can focus its limited approximation capacity on a sample
subspace, without having to suffer the consequences of not sampling the full probability distribution. As a
result, the generator and discriminator play a cat-and-mouse game where the generator keeps changing
to a different subspace and the discriminator trails behind, as illustrated in Fig. 2.18. Fortunately, CPINNs
do not suffer from this since the generator does not decide on which regions of the domain the loss is
evaluated, as this is determined by the collocation points that should uniformly cover the domain.

Unlike mode collapse, instability and vanishing gradient can occur within CPINNs. The former is related
to the fact that the Nash equilibrium is essentially a saddle point on the loss landscape, so applying
simultaneous gradient descent as given in Eq. (2.16) might not pave the way to this optimum. Instead,
oscillations can occur and the loss might even diverge from the Nash equilibrium completely, as shown in
Fig. 2.19. In addition, when the discriminator overpowers the generator with excellent predictions, it results
in a vanishing gradient for the generator causing the learning process to stagnate. To avoid instability and
vanishing gradient, one must carefully select the hyperparameters of the networks. In particular, the
learning rates of the networks have the most effect on the learning dynamics. In practice, this is a tedious
procedure, which is one of the reasons why GANs have been superseded by a new class of generative
models, namely diffusion models introduced by Sohl-Dickstein et al. (2015).

gi+1 = gi − ηg∇gL(gi,di)

di+1 = di + ηd∇dL(gi,di)
(2.16)

2.3.2 Adversarial gradient descent
Unfortunately, the subtle differences between CPINNs and GANs do not allow diffusion-like training to
be applied to CPINNs. Therefore, Zeng et al. (2022) have had to look elsewhere to mitigate the instabil-
ity issues that occur as a result of adversarial loss functions. One prevalent method is to use gradient
descent algorithms that model the interaction between the two networks (Liang et al., 2018), unlike the
individualistic approach described in Eq. (2.16). One algorithm is proposed by Yadav et al. (2017), where
the generator updates its parameters normally, but the discriminator uses a prediction of the generator
parameters to update its parameters based on the resulting predicted loss as given in Eq. (2.17). This
approach bears similarities with implicit derivative schemes (Butcher, 2003), which are often used in tra-
ditional solvers because they are more stable than their explicit counterparts.

gi+1 = gi − ηg∇gL(gi,di)

g∗ = gi+1 + (gi+1 − gi)

di+1 = di + ηd∇dL(g∗,di)

(2.17)

2.3 Adversarial training 19

An extension of this algorithm is given in Eq. (2.18) and was proposed by Metz et al. (2016), who let the
discriminator make multiple projected parameter updates after which the generator makes a parameter
update based on the resulting projected loss. As a result, the discriminator is not likely to overpower the
generator which avoids the vanishing gradient failure mode. They also postulate that this method could
be applied to both networks, resulting in a recursive gradient descent algorithm where the generator and
discriminator makemoves that are optimal over a finite horizon. While there are other effective gradient de-
scent algorithms, such as consensus optimization byMescheder et al. (2017), these implicit algorithms are
most prevalent and are essentially variations of the classic extragradient method by Korpelevich (1977).

di+1 = di + ηd∇dL(gi,di)

d∗ = di

d∗ = d∗ + ηd∇dL(gi,d∗), repeat k times
gi+1 = gi − ηg∇gL(gi,d∗)

(2.18)

While extragradient-based methods are successful, they are essentially using implicit schemes to turn
first-order gradient descent schemes into higher-order schemes. Furthermore, it is tedious to figure out
how many steps to project gradients and the optimal settings depend on the problem at hand. As a result,
Schäfer et al. (2020a) have introduced Competitive Gradient Descent (CGD) which inherently incorporates
second-order effects by using the Hessian that contains the interaction effect of the two networks on the
loss. The performance of different gradient descent algorithms on CPINNs was investigated by Zeng
et al. (2022), showing that CGD performs orders of magnitude better compared to the other methods. It
appears that CGD is a vital ingredient to the effectivity of CPINNs, hence it is instrumental to understand
its workings and limitations.

Figure 2.19: Comparison of CGD to other gradient descent algorithms on a simple problem with a Nash equilibrium
at (0, 0) (Schäfer et al., 2020a). The learning rate increases from left to right. Notice that all gradient descent
algorithms diverge for a high learning rate, while CGD converges.

As explained earlier, in simultaneous gradient descent as given by Eq. (2.16) the parameter updates do
not take any interaction into account. This is quite naive because both networks in fact ”know” what
parameter update the other network is going to take. Without using this knowledge, the networks fail to
take into account each other’s future parameter updates, which can result in oscillations and divergence
as shown in Fig. 2.19. The emergence of this behavior can be better explained by recasting the parameter
updates into the form given below.

gi+1 = argmin
g

+∇gL(gi,di)(g− gi) +
1

2η
||g− gi||2

di+1 = argmin
d

−∇dL(gi,di)(d− di) +
1

2η
||d− di||2

(2.19)

This form shows how the learning rate is essentially a parameter that indicates the confidence in the local
gradient. Since the local gradient is only a first-order approximation of the loss function, a learning rate that
is too large results in overconfidence and can cause stability issues. While decreasing the learning rate
might avoid divergence, it does not necessarily guarantee convergence to the Nash equilibrium because
the parameter updatesmight circle around it since no interaction is taken into account. To take into account

2.3 Adversarial training 20

interaction, Schäfer et al. (2020a) included mixed second derivatives as shown in Eq. (2.20).

gi+1 = argmin
g

+∇gL(gi,di)(g− gi) + (g− gi)
TD2

gdL(gi,di)(d− di) +
1

2η
||g− gi||2

di+1 = argmin
d

−∇dL(gi,di)(d− di)− (d− di)
TD2

dgL(gi,di)(g− gi) +
1

2η
||d− di||2

(2.20)

Although the updates in Eq. (2.20) contain the unknown future parameters of the other network, it is
possible to solve the system for the local Nash equilibrium which results in CGD as shown in Eq. (2.21).
Notice how it contains the matrix inverse of a matrix with dimensions equal to the number of parameters
of the model, which together with the calculations of the Hessians greatly increases the computational
cost compared to simultaneous gradient descent. Furthermore, the matrix inverse is also the reason that
no pure second derivatives such as D2

gg and D2
dd are used in Eq. (2.20), as Schäfer et al. (2020a) argue

they can ill-condition the matrix or even make it singular.

∆gi+1 = −η(I + η2D2
gdL(gi,di)D

2
dgL(gi,di))

−1(∇gL(gi,di) + ηD2
gdL(gi,di)∇dL(gi,di))

∆di+1 = +η(I + η2D2
dgL(gi,di)D

2
gdL(gi,di))

−1(∇dL(gi,di)− ηD2
dgL(gi,di)∇gL(gi,di))

(2.21)

Although CGD has proven to be effective on problems where simultaneous gradient descent results in di-
vergence, it requires some adaptations when applied to neural networks in an adversarial training setting
for better performance. Recall that momentum is combined with simultaneous gradient descent to im-
prove its convergence properties, as is done with the Adam optimizer introduced in Algorithm 1. Similarly,
Schäfer et al. (2020b) combined momentum with CGD to form Adaptive Competitive Gradient Descent
(ACGD) which is shown in Algorithm 2. Unlike Adam, it only uses the momentum of the squared gradient,
similar to the non-adversarial gradient descent algorithm RMSprop, introduced by Tieleman et al. (2012).

Algorithm 2: Adaptive Competitive Gradient Descent (Schäfer et al., 2020b)
1 require base learning rate η
2 require exponential decay rate β
3 require loss function L(g,d)
4 require initial parameters g0,d0

5
6 initialize second moment estimates mg = 0, md = 0
7
8 for i in {1, 2, ...} do
9 mg = βmg + (1− β)(∇gL(gi,di))

2

10 md = βmd + (1− β)(∇dL(gi,di))
2

11 mg = mg/(1− βi)
12 md = md/(1− βi)
13 ηg = η/(

√mg + ϵ)
14 ηd = η/(

√md + ϵ)
15

16 ∆gi = −η
1/2
g,i (I + η

1/2
g,i D

2
gdηd,iD

2
dgη

1/2
g,i)

−1η
1/2
g,i (∇gL(gi,di) +D2

gdL(gi,di)ηd,i∇dL(gi,di))

17 ∆di = +η
1/2
d,i (I + η

1/2
d,i D

2
dgηg,iD

2
gdη

1/2
d,i)

−1η
1/2
d,i (∇dL(gi,di)−D2

dgL(gi,di)ηg,i∇gL(gi,di))

18 gi = gi−1 +∆gi

19 di = di−1 +∆di

Essentially, computing the parameter updates boils down to solving the two linear systems of the form
Ax = b as highlighted in Eq. (2.22). Fortunately, it is sufficient to solve only one of the systems and
use the resulting updated parameters for one network to calculate the parameters for the other network
using simple gradient descent. Nevertheless, solving such a system is computationally expensive as
direct algorithms typically scale as O(n3), where n is the dimension of the system (Ferziger et al., 2012).
However, this computational cost can be reduced by using approximate iterative solvers that solve the
systems up to a specified tolerance, similar to what is done in traditional CFD solvers. Nevertheless,
the derivation of the full Hessian required to calculate the matrix to be inverted in the first place is a

2.3 Adversarial training 21

computationally intensive but also memory-intensive procedure.

(I + η2D2
gdL(gi,di)D

2
dgL(gi,di))∆gi+1 = −η(∇gL(gi,di) + ηD2

gdL(gi,di)∇dL(gi,di))

(I + η2D2
dgL(gi,di)D

2
gdL(gi,di))︸ ︷︷ ︸

A

∆di+1︸ ︷︷ ︸
x

= +η(∇dL(gi,di)− ηD2
dgL(gi,di)∇gL(gi,di))︸ ︷︷ ︸
b

(2.22)

Fortunately, most iterative matrix inverse methods such as the conjugate gradient method (Shewchuk,
1994) and the generalized minimal residual method (Saad et al., 1986) only involve vector-matrix products
with the Hessian matrix. This allows for a computational trick in most neural network libraries, where
the Hessian vector product can be calculated incrementally without having to store the entire matrix in
memory (Martens, 2010). Nevertheless, CPINNs remain considerably more computationally expensive
than PINNs since they involve two neural networks. In addition, the computational cost increases as the
loss decreases because the linear systems in Eq. (2.22) tend to require more iterations to be solved up
to the same threshold.

3
Compressible fluid dynamics

Now that an overview has been provided on the fundamental principles, limitations and possible adapta-
tions to PINNs, the next step is to understand what highly compressible flows are and how PINNs can be
used to simulate them. In short, the field of compressible fluid dynamics concerns flows that involve large
changes in density, which most commonly occur around objects that travel near or beyond the speed of
sound. The theoretical foundations of such flows are explained in Section 3.1, followed by a brief explana-
tion of how PINNs can be used to simulate them in Section 3.2. Furthermore, the various phenomena that
occur in these flows are explained in Section 3.3, which is relevant to understand the behavior of PINNs
on highly compressible problems in the upcoming chapter. Note that in essence, a selection of relevant
theories from Anderson (2006) and Anderson (2021) are considered in this chapter. For a more elaborate
explanation, the reader is referred to these books.

3.1 Euler equations
In practice, it is possible to simulate highly compressible flows using either the Navier-Stokes equations or
the Euler equations. The difference between the two is that the Euler equations assume that the fluid is not
viscous, and as a result complex phenomena such as boundary layers and turbulence are not modeled.
Nevertheless, the Euler equations are useful because they are easier to simulate and therefore allow
for faster iterations in the design of objects subjected to highly compressible flow. To the authors’ best
knowledge, there are currently no papers that apply PINNs to the compressible Navier-Stokes equations
to solve supersonic flows. This is no surprise given the lack of complex supersonic flows simulated with
the Euler equations in literature. Therefore, this thesis will focus on the Euler equations, although most of
the findings are also relevant to simulations with the Navier-Stokes equations.

d
dt

∫
V

ρ dV +

∫
∂V

ρv · n dS = 0,

d
dt

∫
V

ρv dV +

∫
∂V

(p+ ρ|v|2) · n dS = 0,

d
dt

∫
V

ρE dV +

∫
∂V

(p+ ρE)v · n dS = 0.

(3.1)

The integral form of the Euler equations is given in Eq. (3.1), which can be derived by taking some volume
element V and applying conservation of mass, momentum and energy over it respectively. Note that it
is assumed that there are no viscous and body forces, as well as that no heat is added to the fluid. By
assuming that the density ρ, pressure p, velocity v and total energy E vary smoothly (LeVeque, 1992),
the divergence theorem and gradient theorem can be applied to derive the differential form of the Euler
equations, namely

∂ρ

∂t
+∇ · (ρv) = 0,

∂(ρv)
∂t

+∇ · (p+ ρvvT) = 0,

∂(ρE)

∂t
+∇ · ((p+ ρE)v) = 0.

(3.2)

22

3.2 Physics-informed solutions 23

Notice that the above PDEs have more variables (ρ, p, E, v) than equations, making the system underde-
termined. To admit a unique solution, an equation of state is required. It is common to use the ideal gas
law for this, of which one form is p = ρRT with R the ideal gas constant and T the temperature. Using
this ideal gas law together with the other relations in Eq. (3.3), Eq. (3.4) can be derived. Note that e is
the specific internal energy, E is the total energy, cp and cv are the specific heat capacities at constant
pressure and volume respectively, and γ is the heat capacity ratio.

p = ρRT, e = cvT, E = e+ 1/2||v||2, γ = cp/cv, R = cp − cv (3.3)

ρE =
p

γ − 1
+

1

2
ρ||v||2 (3.4)

3.2 Physics-informed solutions
By using Eq. (3.4) and defining the set of variables as u = [ρ, p, v], Eq. (3.2) can be used to provide the
residuals for the residual loss as given in Eq. (2.3), which is visualized in Fig. 3.1 for a two-dimensional
domain. Typically, the activation functions of the neurons corresponding to the density and pressure
output are chosen to be positive to avoid nonphysical negative values. Note that Eq. (3.2) is written in the
conservative form, as the different terms are grouped based on their derivatives. The conservative form is
often also used in traditional solvers because it improves the capability of numerical discretization schemes
to capture shocks. However, this is not relevant for PINNs because they can be differentiated without
discretization errors through automatic differentiation. Nevertheless, it is possible to use the conservative
variables u = [ρ, ρE, ρv] as the output of the PINN as is done by Jagtap et al. (2022), but no comparison
is done to using the primitive variables. Note that using the conservative variables involves division by
the density ρ to obtain the primitive variables, which could lead to numerical issues.

xx

Figure 3.1: Example of a PINN applied to the two-dimensional Euler equations.

There are many more forms of the Euler equations and their associated variables u, such as the char-
acteristic form treated by Jagtap et al. (2022) or the vorticity form. Each of these forms can affect the
loss landscape and consequently simplify or complexify the problem at hand. One interesting form is
often used for incompressible flows, where it is possible to define the velocities as a derivative of some
potential Φ to inherently satisfy and thus eliminate the continuity equation. For a two-dimensional flow,
Eq. (3.5) can be used and the variables become u = [p,Φ]. The concept can also be extended to eliminate
the continuity equation for three-dimensional flows, but it requires more derivatives. Raissi et al. (2019)
has successfully combined this potential approach with the Navier-Stokes equations, but it can also be
combined with the Euler equations.

u =
∂Φ

∂y
, v =

∂Φ

∂x
(3.5)

A similar approach can also be applied to compressible flows by simplymodifying the equations to Eq. (3.6)
and using the variables u = [ρ, p,Φ]. The primitive velocities can then be obtained by dividing the con-
servative velocities by the density, which could again cause problems if the density is near-zero. To the
authors’ best knowledge, there are no counts of using this compressible potential form in literature. While
eliminating an equation may seem desirable, note that it requires extra derivatives, increasing the compu-
tational and memory demands. Furthermore, hard-constraining the continuity equation could potentially

3.2 Physics-informed solutions 24

complexify the loss landscape, preventing convergence. Since the effect of the different formulations of
the Euler equations and corresponding variables is not well-researched, the remainder of the thesis will
use the conservative form for the residual losses and the primitive variables for the network outputs.

ρu =
∂Φ

∂y
, ρv =

∂Φ

∂x
(3.6)

3.2.1 Boundary conditions
As mentioned in Chapter 2, the Euler equations must always be accompanied by a domain with appro-
priate boundary conditions to ensure that a unique solution exists. Typical domains for two-dimensional
highly compressible problems are shown in Fig. 3.2, one without a symmetry plane and one with a symme-
try plane. The different boundaries can impose different kinds of constraints on the variables u, depending
on the physical behavior that the boundary should emulate. Typically, each boundary applies a constraint
to all of the variables to make the problem well-posed.

Surface

Surface

Surface

OutletInlet

(a) Without symmetry plane

Symmetry

Symmetry
Surfac

e

Inlet Outlet

(b) With symmetry plane

Figure 3.2: Examples of boundary conditions on two-dimensional domains for highly compressible problems.

An overview of the constraints for different physical boundaries is given in Table 3.1. At the inlet, the
values of the variables u are prescribed through Dirichlet boundary conditions, essentially specifying the
free-stream flow. At physical surfaces, slip boundary conditions prescribe that the surface is impenetrable
through both Dirichlet and Neumann boundary conditions. For the top and bottom boundaries, it is also
possible to use a symmetry boundary condition, which acts like a ”mirror”. However, in the case of inviscid
flow, it is identical to the slip boundary condition. When the flow at the outlet is subsonic, Neumann
boundary conditions are applied to all variables except for the pressure. In case the flow is supersonic,
extrapolative Neumann conditions are applied to all variables, since no information enters the domain
from the outlet (Liepmann et al., 2001). While a more general form of these boundary conditions would
be characteristic boundary conditions (Pulliam, 1981), they are beyond the scope of this thesis.

Table 3.1: Overview of relevant boundary conditions. Subscripts n and t specify the normal and tangential
components respectively.

Variable Inlet Surface Symmetry Outlet (subsonic) Outlet (supersonic)
ρ ρ = ρ∞ ∂nρ = 0 ∂nρ = 0 ∂nρ = 0 ∂nρ = 0

p p = p∞ ∂np = 0 ∂np = 0 ∂np = 0 p = p∞

E E = E∞ ∂nE = 0 ∂nE = 0 ∂nE = 0 ∂nE = 0

v v = v∞ vn = 0, ∂nvt = 0 vn = 0, ∂nvt = 0 ∂nvn = 0 ∂nvn = 0

Note that the formulation of these boundary conditions is based on their implementation in traditional
solvers, which require constraints to make sure the solved linear system is not underdetermined. Inter-
estingly, while there is plenty of research on findings ways to analytically impose boundary conditions on
PINNs (Sukumar et al., 2022; Berrone et al., 2022), there is little research on their importance or even
necessity since PINNs do not solve a linear system. While the absence of certain boundary conditions al-
lows PINNs to choose any boundary condition they desire, their strong tendency to generalization avoids

3.3 Compressible phenomena 25

producing overly complicated solutions. For example, the outlet boundary conditions for supersonic flow
merely serve as extrapolation and PINNs will likely converge to the correct solution without them. Indeed,
Jin et al. (2021) show that the removal of certain boundary conditions hardly affects the errors obtained
on a simple problem described by the Navier-Stokes equations.

3.3 Compressible phenomena
Before applying PINNs to problems described by the Euler equations, it is important to discuss the various
phenomena that occur in highly compressible flows. The first step is to define when a flow is highly
compressible, in other words, when variations in density start to play a significant role. Typically this
threshold is established at the empirical value ofM ≈ 0.3 (Anderson, 2021), whereM is the Mach number
defined as M = ||v||/c with c the speed of sound. When an ideal gas is assumed, the speed of sound is
given by Eq. (3.7). Under this threshold, the density is almost homogeneous and there is little difference
between the solutions obtained from the incompressible and compressible Euler equations.

c =
√

γp/ρ (3.7)

Above the threshold, the flowwill compress and subsequently expand around an object causing the density
to vary more significantly. The variation in density is reversible, implying that the processes are isentropic
so that the isentropic relations in Eq. (3.8) can be used to determine the pressure, temperature and density
based on the local Mach number. Here pt, ρt and Tt are the total pressure, density and temperature
respectively, which are obtained when the flow is stagnated isentropically. Note that isentropic expansion
and compression are smooth phenomena, so they do not involve discontinuities.

(a) Subsonic, M∞ < Mc (b) Transonic, M∞ > Mc (c) Supersonic, M∞ > 1

Figure 3.3: Flow phenomena on a subsonic, transonic and supersonic airfoil.

When the free-stream Mach number is increased even more, compressibility effects around objects be-
come more pronounced. Each object has a subsonic critical Mach number Mc, above which the flow
expands so rapidly that it becomes locally supersonic. Since the flow properties must return to super-
sonic free-stream conditions far away from the object, the flow must recompress at some point. This
transition of a supersonic flow to a subsonic flow can only occur through a shock wave, resulting in a
normal shock on the surface of the object as shown in Fig. 3.3b. Such flows are generally called transonic
flows because they involve both subsonic and supersonic regions.

p

pt
=

(
1 +

γ − 1

2
M2

)− γ
γ−1

T

Tt
=

(
1 +

γ − 1

2
M2

)−1

ρ

ρt
=

(
1 +

γ − 1

2
M2

)− 1
γ−1

(3.8)

Essentially, a shock is a sharp compression wavewhere the fluid instantaneously compresses and deceler-
ates. This process is no longer isentropic and the entropy increases, implying that the isentropic relations
can no longer be used. Instead, the differential form of the Euler equations in Eq. (3.2) must be integrated
over an infinitesimal shock to obtain the jump relations or Rankine-Hugoniot equations (Evans, 2022). By

3.3 Compressible phenomena 26

assuming an ideal gas, these can be converted to the normal shock relations as given in Eq. (3.9), with
subscript 1 indicating the pre-shock values and subscript 2 the post-shock values. Note that velocities
and Mach numbers in these equations are in the frame of reference of the shock itself, which may travel
at some velocity with respect to an external observer. Interestingly, in the reference frame of the shock,
the velocity component tangential to the shock does not change.

p2
p1

= 1 +
2γ

γ + 1
(M2

1 − 1)

ρ2
ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

T2

T1
=

(
1 +

2γ

γ + 1
(M2

1 − 1)

)
2 + (γ − 1)M2

1

(γ + 1)M2
1

M2

M1
=

√
M2

1 + 2/(γ − 1)

2γ/(γ − 1)M4
1 −M2

1

(3.9)

When the free-stream Mach number is increased even further so that M∞ > 1, the flow is said to be
supersonic. Instead of a shock occurring on the bottom or top surface of the object, it occurs at the tip of
the object due to the sudden deceleration required to reach the subsonic stagnation conditions, as shown
in Fig. 3.3c. The resulting shape and strength of the shock are completely determined by the geometry of
the object. For a sharp object with an infinitesimal tip, the shock can be attached or detached depending
on the angle θ of the tip. The maximum angle θmax for which a shock remains attached can be determined
using the θ-β-M relation in Eq. (3.10). If the shock is detached, this equation has no solution for the wave
angle β. If the angle is small enough so that θ < θmax, an oblique shock wave will attach to the tip as
shown in Fig. 3.4a and the equation generally has two solutions for β. The small value is referred to as
the weak shock solution and the large value is referred to as the strong solution. In the absence of strong
back pressure, the weak solution emerges and the post-shock flow generally remains supersonic.

tan(θ) = 2 cot(β) M2
1 sin

2(β)− 1

M2
1 (γ + cos(2β)) + 2

(3.10)

Since the oblique shock forms an angle β with the flow, the jump equations in Eq. (3.9) can be converted
to the oblique shock relations simply by substituting M1 = M1 sin(β) and M2 = M1 sin(β − θ). If θ > θmax
or if the tip of the object is blunt, a detached shock will occur that is no longer oblique but rather curved
as shown in Fig. 3.4b and Fig. 3.4c. The detachment distance δ and the curvature of the shock cannot
be solved analytically and depend on the size and shape of the body. However, it is possible to use
experimental or numerical methods to obtain empirical correlations for classes of objects, as is done by
Billig (1967) and Anderson et al. (1968) respectively. A general rule of thumb is that blunter objects have
a larger shock detachment distance.

(a) Attached shock over sharp body (b) Detached shock over sharp body (c) Detached shock over blunt body

Figure 3.4: Attached and detached shocks over sharp and blunt bodies, based on Anderson (2021).

Apart from shocks, other discontinuities can also emerge in solutions of the Euler equations. Since there is
no viscosity, there are no shear stresses and hence a discontinuity may exist where there is a jump in the
tangential velocity. Such a discontinuity is called a shear wave, and it is shown in Fig. 3.5b. Furthermore,
it is also possible that contact discontinuities arise in flows with constant velocity and pressure. These

contact discontinuities may show a jump in density, energy and even entropy. Nevertheless, they should
not be confused with shocks as the normal velocity does not jump across a contact discontinuity. Note
that a shear wave and contact discontinuity may also be combined.

(a) Shock wave (b) Shear wave (c) Contact discontinuity

Figure 3.5: General types of discontinuities that can emerge in solutions of the two-dimensional Euler equations.

As a last remark, note that Eq. (3.9) is mathematically valid for M1 < 1, which corresponds to an ”ex-
pansion shock” as shown in Fig. 3.6a for a one-dimensional flow. However, such shocks are not seen in
nature and instead, expansion always occurs through an isentropic rarefaction wave. To understand why
expansion shocks are nonphysical, refer to the second law of thermodynamics, which essentially dictates
that entropy must either remain constant or increase along a streamline. For a calorically perfect gas, the
change in entropy across a shock is given by Eq. (3.11). When substituting the ratios from Eq. (3.9), it
shows that the entropy change is negative when M1 < 1, which violates the second law of thermodynam-
ics. Therefore, the pre-shock flow velocity must be supersonic with respect to the shock, implying that
M2 ≤ 1, p2/p1 ≥ 1, T2/T1 ≥ 1 and ρ2/ρ1 ≥ 1, which are also referred to as entropy conditions.

s2 − s1 = cp ln
T2

T1
−R ln p2

p1
(3.11)

(a) Nonphysical expansion (b) Physical expansion

Figure 3.6: Comparison of a nonphysical expansion shock to a physical rarefaction wave (Evans, 2022).

27

Part II
Results

28

4
Failure mode analysis

Asmentioned in the introduction, PINNs appear to struggle with capturing shocks despite their advantages
compared to traditional solvers. This chapter aims to answer the first two research questions, namely
why PINNs fail on highly compressible problems and how existing adaptations relate to the failure modes.
In Section 4.1, PINNs are applied to a simple problem, revealing some counterintuitive behavior. This
behavior is related to the theory in the previous chapters in Section 4.2, leading to the identification of
a first failure mode. Afterward, Section 4.3 introduces various existing adaptations and their underlying
rationales to show that they unknowingly treat this failure mode. Lastly, a set of problems that isolate
compressible phenomena is considered in Section 4.4 to show that a second failure mode may arise.

4.1 Riemann problem
Consider the one-dimensional Riemann problem given in Eq. (4.1) and its solution illustrated in Fig. 4.1.
Essentially, this problem represents a tube in which a high-pressure fluid is separated from a lower-
pressure fluid by a membrane. At t = 0 the membrane is removed, which creates an expansion wave
traveling to the left and a compression or shock wave traveling to the right. In addition, a contact discon-
tinuity travels to the right, following the shock wave. The solution of such problems can be calculated
without error using exact Riemann solvers, interested readers are referred to Toro (2009).

Initial conditions
ρ(x, 0) = 1.0 if x < 0.5, 0.125 if x ≥ 0.5

p(x, 0) = 1.0 if x < 0.5, 0.1 if x ≥ 0.5

u(x, 0) = 0.0

Boundary conditions
∂xρ(x, t) = 0 at x = 0.0, 1.0

∂xp(x, t) = 0 at x = 0.0, 1.0

∂xu(x, t) = 0 at x = 0.0, 1.0

(4.1)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

ρ

I II III IV V

1(a) Density

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

p

I II III IV V

1(b) Pressure

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

u

I II III IV V

1(c) Velocity

Figure 4.1: The exact solution of the Riemann problem in Eq. (4.1) at t = 0.2. A left-traveling expansion wave is
located in region II, a contact discontinuity separates regions III and IV, and a compression wave (shock) separates
regions IV and V. The regions I and V are undisturbed.

Riemann problems often consist of different wave types, making them excellent for assessing and com-
paring the capabilities of shock-capturing methods. They are extensively treated in literature on traditional
methods, essentially serving as a standardized test. For the physics-informed approach, a PINN is set up

29

4.1 Riemann problem 30

as given in Fig. 3.1, featuring 4 layers of 100 neurons. The tanh activation function is used for all neurons
except the outputs, where linear is used for the velocities and exp is used for the density and pressure.
A total of 10,000 residual points are sampled in the domain (x, t) ∈ [0, 1]× [0, 0.2] using the Hammersley
sequence introduced in Section 2.2.1. Furthermore, 1,000 initial condition points are linearly sampled in
x ∈ [0, 1]. Note that Neumann boundary conditions are not considered, technically making the problem
underdetermined. However, they do not affect the solution significantly and can actually complexify the
loss landscape as mentioned in Section 2.2.2. Furthermore, a weighted loss function is used with a vari-
able weight w0 for the initial condition loss term. Finally, the PINN is trained using the L-BFGS optimizer
designed by Liu et al. (1989) with a learning rate of 0.1 until the loss no longer improves. The simulations
are performed using the PyTorch machine learning library (Paszke et al., 2019) for Python.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(a) w0 = 1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(b) w0 = 10

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(c) w0 = 100

Figure 4.2: Density solutions at t = 0.2 of PINNs applied to the Riemann problem with different loss weights w0.

The results are shown in Fig. 4.2, revealing that the PINN does not produce a correct solution to the
problem. Increasing the weight of the initial condition loss improves the accuracy of the solution slightly,
but it is still far from perfect. The PINN struggles mainly with the contact discontinuity and shock wave on
the right side of the domain, while it has no issues with the expansion region on the left side of the domain.
In particular, a distinct peak and dip form around the contact discontinuity, which has also been observed
by Papados (2021). At first, it seems as if the PINN has converged to a local minimum as the residuals
are fairly high: on the order of 10−3, 10−2 and 10−1 for the different weights respectively. Based on this
intuition, numerous adaptations have been proposed that aim to improve the convergence pathology.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(a) Clustered points

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(b) More points

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(c) Domain extension

Figure 4.3: Density solutions at t = 0.2 of PINNs with adaptations applied to the Riemann problem with w0 = 100.

One method was proposed by Mao et al. (2020), who observed that clustering more collocation points
around shocks can improve their simulated sharpness. Intuitively this makes sense because shocks are
very sharp features in the domain and therefore they require finer placement of collocation points, similar
to refining meshes in traditional solvers. Of course, this requires foreknowledge of the shock location.
Nevertheless, Fig. 4.3a shows that uniformly clustering half of the 10,000 collocation points in a band of
∆x = 0.1 around the shock does not improve the solution. In fact, compared to the solution in Fig. 4.2c
produced by a non-clustered but otherwise identical setup, the accuracy has deteriorated. A possible
explanation is that refining the collocation points around the shock is not sufficient and instead the entire
domain should be refined. However Fig. 4.3b shows that even with 100,000 collocation points and 10,000
initial condition points, a ten-fold increase, an accurate solution is still not obtained.

4.1 Riemann problem 31

Instead of clustering, Papados (2021) proposes to extend the domain in which the collocation points are
sampled. The rationale of this approach is that domain extension can suppress spurious oscillations, simi-
lar to domain extension methods in traditional solvers. It must be noted however that spurious oscillations
are the result of numerical discretization schemes (Shu, 1998), which are not present in PINNs. Neverthe-
less, the authors report significantly better results, specifically on the same Riemann problem as Eq. (4.1).
Fig. 4.3c shows the solution for a domain with twice the size, in other words, x ∈ [−1, 2]. To keep the
density of the collocation points identical, the number of collocation points is increased to 20,000 and the
number of initial condition points is increased to 2,000. Evidently, the solution is still far from accurate.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(a) Latest solution

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ
Reference
PINN

1(b) Best solution

0.0 0.2 0.4 0.6 0.8 1.0
x

−10

0

10

20

R
es
id
ua

l

Continuity
Momentum
Energy

1(c) Residuals of best solution

Figure 4.4: Density solutions and residuals at t = 0.2 of a CPINN applied to the Riemann problem. The best
solution is based on the lowest L2,ρ error.

The discrepancy between the obtained results and promised results with the adaptations requires some
explanation. Before diving deeper into this, it is instrumental to evaluate the performance of CPINNs
on the same problem. Essentially, the PINN setup is used together with a discriminator with 5 layers of
100 neurons with the relu activation function to replace the mean-squared error loss with an adversarial
loss as given in Eq. (2.15). It has 6 output neurons with the linear activation function, one for each
initial condition and PDE. The CPINN is trained using the ACGD optimizer introduced in Section 2.3.2 and
training is terminated after 24 hours, which is significantly longer than the approximate 30minutes required
to train the PINNs. Interestingly, a more accurate result is obtained as shown in Fig. 4.4a, although
the spurious peak at the contact discontinuity remains. Even more intriguing, the history of the error in
Fig. 4.5a shows that initially, the CPINN produces an even more accurate solution shown in Fig. 4.4b,
even though this solution has huge associated residuals near the shock wave as shown in Fig. 4.4c.

0 2000 4000 6000

Epoch

10−1

100

L
2,
ρ

1(a) Density error

0 2000 4000 6000

Epoch
10−2

10−1

100

101

L
r

1(b) Residual loss

0 2000 4000 6000

Epoch

10−3

10−2

10−1

100

L
b

1(c) Initial condition loss

Figure 4.5: Pathology of the error and losses for the CPINN solution.

Upon closer inspection of the different loss terms in Fig. 4.5, an interesting loss pathology can be observed:
instead of minimizing the residuals, the CPINN initially increases the residuals. In contrast, the initial
condition loss in Fig. 4.5c decreases as expected. To some extent, the loss pathology can be explained
by the fact that an adversarial loss does not necessarily minimize the loss directly. However, it does not
explain why the best solution in Fig. 4.4 has a substantially larger residual loss than the latest and worse
solution. This is counterintuitive because better solutions generally have lower residuals, although this is
a highly nonlinear relationship. At first glance, it is possible to argue that the CPINN is simply ”lucky” in the
initial phase. However, this pathology is consistently observed, independent of the parameter initialization

4.2 Discontinuities and entropy 32

and also the size of the networks. Based on this behavior, but also the behavior of the PINN, it seems as
if lowering the residual does not necessarily improve the solution.

4.2 Discontinuities and entropy
The latter statement is not far off from the truth. In fact, the behavior of PINN and its various adaptations
on the Riemann problem is related to a crucial fact that was purposely not mentioned in Section 3.1: the
differential form of the Euler equations is not valid at discontinuities. This is because the derivation of the
differential form from the integral form assumes smoothness of the solution, but Fig. 4.1 shows that the
solution is not smooth at the contact discontinuity and the shock. As a result, the first derivatives in Eq. (3.2)
are not defined because the jump in variables is instantaneous. If the derivatives are approximated by a
finite discretization scheme for instance, the residuals might be nonzero even for the exact solution.

0.0 0.2 0.4 0.6 0.8 1.0
x

−500

0

500

1000

R
es

id
ua

l

N = 4096

N = 1024

N = 256

1(a) Conservation of mass

0.0 0.2 0.4 0.6 0.8 1.0
x

−1000

−500

0

500

1000

1500
R
es

id
ua

l
N = 4096

N = 1024

N = 256

1(b) Conservation of momentum

0.0 0.2 0.4 0.6 0.8 1.0
x

−2000

0

2000

4000

R
es

id
ua

l

N = 4096

N = 1024

N = 256

1(c) Conservation of energy

Figure 4.6: Residuals after discretizing the solution of the Riemann problem into N chunks in space and time.

This is visualized in Fig. 4.6, which shows high residuals at the contact discontinuity and the shock, but
also small nonzero residuals at the start of the expansion wave. As the discretization is refined, the
residuals at the expansion wave decrease, while the residuals at the contact discontinuity and the shock
wave increase. One might argue that this phenomenon does not occur in PINNs because they provide a
continuous solution that can be differentiated exactly using automatic differentiation. However, numerical
discretization is only part of the explanation of why large residuals occur at discontinuities. Even for a
continuous approximation of the discontinuities, the target solution simply does not satisfy the Euler equa-
tions in Eq. (3.2). This fundamental issue becomes clear once applying the first law of thermodynamics
to the equations, as done by Liepmann et al. (2001).

Tds = de+ pd
(
1

ρ

)
Ds
Dt

=
1

T

(
De
Dt

− p

ρ2
Dρ
Dt

)
Ds
Dt

=
1

T

(
−1

ρ
∇ · pv− v · Dv

Dt
+

p

ρ2
ρ∇ · v

)
Ds
Dt

=
1

T

(
−p

ρ
∇ · v− v

ρ
· ∇p+ v · ∇p

ρ
+

p

ρ
∇ · v

)
Ds
Dt

= 0

(4.2)

Note that Eq. (4.2) uses some of the relations in Eq. (3.3) and Eq. (3.4) for the derivation. As the equation
shows, the differential form of the Euler equations prescribes that the entropy s remains constant along
a streamline, which is not prescribed by the integral form. However, as discussed in Section 3.3, an
entropy jump occurs across shocks. The fundamental issue is therefore that PINNs are trying to find an
isentropic solution to a non-isentropic problem. Expansion waves are isentropic, hence this does not pose
an issue. Although a jump in entropy can occur across a contact discontinuity, it does not happen along
the streamline so it does not violate the PDEs. Therefore, the entropy failure mode will only occur when
shock waves are present.

4.2 Discontinuities and entropy 33

To show the severity of the issue, consider a neural network that is trained directly on the known solution.
In other words, no residual loss and boundary loss are imposed, but rather a conventional target loss
is imposed of the form L = ||u − utrue||2. The solution of the trained network is shown in Fig. 4.7a,
showing that it closely resembles the target solution in Fig. 4.1. Notice also that the peak in the residuals
in Fig. 4.7b only occurs at the shock, confirming that the peak at the contact discontinuity in Fig. 4.6 is
merely a consequence of discretization. When this pre-trained network is used as the initial network for
a PINN, training it with a residual loss and boundary loss actually deteriorates the solution, as shown in
Fig. 4.7b. Again, this is because the PINN is attempting to find an isentropic solution while the target
solution is non-isentropic. This also means that any of the adaptive sampling techniques in Section 2.2.1
will only worsen the failure mode as they will place more points near the shock to enforce isentropy.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(a) Pre-trained solution

0.0 0.2 0.4 0.6 0.8 1.0
x

−200

0

200

400

600

R
es

id
ua

l

Mass
Momentum
Energy

1(b) Residuals of pre-trained solution

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(c) PINN solution

Figure 4.7: Deterioration of the solution when using a network that is pre-trained on the true solution as an initial
network for a PINN with an initial condition loss weight of w0 = 100.

Just because PINNs try to find an isentropic solution does not necessarily mean the obtained solution
will be isentropic. For example, the network may be overfitting, implying that the solution is isentropic at
collocation points but not in regions in between the collocation points. However, the network may also
be underfitting, implying that there are finite and possibly significant residuals at the collocation points.
Nevertheless, it is not likely that a PINN will purposely underfit the residual points at the shock wave
because the squared nature of the loss function tends to spread out the residuals. In addition, PINNs will
spread the residuals over the different PDEs instead of containing them in the energy equation, which
is the equation that indirectly prescribes the conservation of entropy along streamlines in the absence of
dissipation terms. Evidently, Fig. 4.4c and Fig. 4.5b show that CPINNs are initially able to underfit the
residuals to produce accurate shocks, although this is not a result of their non-squared loss but rather of
the adversarial training method which does not explicitly prescribe that the residual must be minimized.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(a) Pre-trained solution

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(b) PINN solution

Figure 4.8: Deterioration of the solution when using a network that is pre-trained on the true solution as an initial
network for a PINN with an initial condition loss weight of w0 = 100. Only 1,000 collocation points and 100 initial
condition points have been used.

Although it is not likely that a PINN underfits, it is considerably more likely that it overfits. To show this,
again consider the PINN that is initialized with the pre-trained solution. However this time, only a fraction
of the original collocation points and initial conditions points are used. As a result, it is considerably less
likely that collocation points are located at the shock. Therefore, the PINN is not aware of the large residual

4.3 Failure mode alleviations 34

peaks and therefore it does not deteriorate the solution by minimizing them, as is shown in Fig. 4.8. This
is somewhat remarkable, as the jump conditions remain to be satisfied correctly.

In real scenarios the PINN is not initialized with the correct solution, making it harder for the PINN to
produce a shock in between collocation points by overfitting. In practice, the placement of the shock is
sensitive to the density but also the placement of the collocation points. This also explains why Fig. 4.3
demonstrates that the adaptations from Mao et al. (2020) and Papados (2021) are not effective; different
sampling procedures are used. Upon closer inspection, Mao et al. (2020) clustered points around the
shock not through random sampling, but by placing them along lines parallel to the shock in space and
time as shown in Fig. 2.9b. Therefore, it is more likely that the shock locates itself between one of the
parallel lines. In addition, they considered a simple oblique shock and were able to reasonably capture
the shock already without any adaptations. Furthermore, Papados (2021) applied domain extension, but
did not change the number of residual points, effectively decreasing the density of the collocation points
almost fivefold. In addition, the author used a variant of grid sampling discussed in Section 2.2.1 which
increases the likelihood of the formation of a shock wave that does not intersect with collocation points.

4.3 Failure mode alleviations
While the adaptations proposed by Mao et al. (2020) and Papados (2021) lack a theoretical foundation,
more substantiated adaptations do exist. However, to the author’s best knowledge, none of them explicitly
mention that the fundamental issue is that the PDEs are simply not valid at the approximated shock
wave. Nevertheless, it is important to review the different methods and their rationales, placing them
in the context of the theory introduced in the previous section. Instead of changing the distribution of
the collocation points, Liu (2022) propose to alter the PDEs to suppress the residual peaks that occur at
shocks. They correctly realize that points that are placed near shocks, which they term transition points,
have a high residual. While this can be avoided by the PINN overfitting and placing the shock in between
the collocation points, they argue that this is not likely to happen due to the paradoxical status of transition
points: to make the shock thinner and fall in between collocation points, the gradients at the shock must
be increased temporarily, which increases the residuals. Since PINNs directly minimize the residuals, this
is generally not favorable. To alleviate this paradoxical status, they introduce a weight to the residual loss
as shown in Eq. (4.3).

Lr = ∥λP (u(x, t))∥2, λ =
1

ϵ (|∇ · v| − ∇ · v) + 1
(4.3)

Here ϵ is a small hyperparameter that influences the magnitude of the weight. Effectively, the denominator
resembles the rate of compressibility, since ∇ · v = 0 for incompressible flows. By taking the absolute
and subtracting the plain value, only compression (∇ · v < 0) is considered but not expansion (∇ · v > 0).
However, note that this assumes that the velocity components are positive. Introducing such a weight to
the Riemann problem gives considerably better results, as is shown in Fig. 4.9a. However, as the authors
mention themselves in their source code, while the method is highly effective at producing discontinuities,
the location of the discontinuity might not necessarily converge to the correct location. In addition, the
location seems to be highly dependent on the setup of the PINN, as is shown in Fig. 4.9 for different
collocation point sampling methods. Furthermore, it is observed that once a shock is produced, it will only
intensify and its location does not change much since the PINN is essentially overfitting.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(a) Hammersley initialization

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(b) Uniform initialization

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(c) Grid initialization

Figure 4.9: PINN solution obtained when the residuals are weighted by the compressibility term in Eq. (4.3) with
ϵ = 0.1, for different collocation point initializations. The initial condition loss weight is w0 = 10.

4.3 Failure mode alleviations 35

Nevertheless, this method performs better than the other adaptations so far and it has even been used
to simulate the first unsteady bow shock around a transonic cylinder without any data (Liu, 2022). At the
time of writing, a similar weighting as Eq. (4.3) was proposed by Ferrer-Sánchez et al. (2023), although
the authors do not elaborate much on the underlying failure mode. This weighting is given in Eq. (4.4),
with αi hyperparameters. Note that there are essentially three main differences compared to Eq. (4.3): (1)
it only applies to one-dimensional flows, (2) it considers the gradients of all primitive variables instead of
only the velocity and (3) it allows for higher-order exponents of the gradients to suppress residuals even
more. The presented results do not indicate that this weighting definition is more favorable than Eq. (4.3).
Note that both weighting definitions do not take into account the direction of the flow, implying that they
will also unnecessarily affect contact discontinuities in multi-dimensional flows. Furthermore, it remains
unclear how these methods affect regions of isentropic expansion or compression.

Lr = ∥λP (u(x, t))∥2, λ =
1

1 + α1|∂xρ|α2 + α3|∂xu|α4 + α5|∂xp|α6
(4.4)

While weighing the residuals solves the failure mode up to some extent, it is more of a remedy than a
proper solution to the underlying physical issue of entropy. A better approach can be found by realizing
that traditional solvers require seemingly no adaptations of the Euler equations to capture shocks correctly.
While some finite volume solvers essentially solve the integral form and bypass the entropy issue, even
finite difference solvers do not struggle with capturing shocks. In essence, while the lack of numerical
discretization is presented as an advantage of PINNs, it is a disadvantage in terms of their capability to
capture shocks. To illustrate this, consider a general scalar conservation law of the form

ut + F (u)x = 0 (4.5)

When such a conservation law is solved by traditional methods, discretization schemes introduce dis-
cretization errors into the PDE, which are proportional to derivatives of the conserved variable. Errors
proportional to odd derivatives introduce a dispersive effect into the equation, while those proportional to
even derivatives introduce a dissipative effect into the equation. For example, a dissipative scheme might
effectively modify the above conservation law to

ut + F (u)x = ϵuxx, (4.6)

where ϵ > 0 is a small coefficient that scales with the mesh discretizations ∆x and ∆t. This additional
term effectively represents the addition of viscosity to the solution, even though the original equations are
inviscid. Although this numerical viscosity term implies that the obtained solution is not inviscid, especially
for coarse mesh refinements, it is essential to produce discontinuities. While the addition of viscosity
smears out discontinuities over a larger area, it also provides a form of dissipation. In the case of the Euler
equations, this dissipation provides a means of entropy change which can make shocks an admissible
flow feature. Since ϵ scales with the mesh size, finer meshes will result in finer shocks and more localized
entropy changes. The vanishing viscosity theorem prescribes that solutions obtained from conservation
laws, such as the one in Eq. (4.5), are only admissible or physical if they resemble the same solution that
is obtained in the limit of vanishing viscosity (LeVeque, 1992). In other words,

uphysical = lim
ϵ→0

uϵ (4.7)

This limit is also important for satisfying the entropy conditions that were introduced in Section 3.3, as
numerical viscosity will never decrease the entropy and therefore no nonphysical expansion shocks can
occur as detailed by Evans (2022). Therefore, the physical solution given by Eq. (4.7) is often called the
entropy solution. In short, the addition of numerical viscosity has substantial benefits. While PINNs do
not involve discretization and hence do not experience numerical viscosity, a viscosity term can simply be
added to the PDEs. In fact, PINNs are still advantageous compared to traditional solvers in this sense
because the viscosity term can be set explicitly and it can even be made a function of space and time so
that its effects are only local and do not negatively affect isentropic regions of the flow. In other words,
the differential equations in Eq. (3.2) can be augmented to Eq. (4.8), where ∆ is the Laplace operator
and ν(x, t) > 0. Note that the evaluation of the right-hand sides involves an additional two derivatives per

4.3 Failure mode alleviations 36

spatial variable, which considerably increases the computational and memory requirements.

∂ρ

∂t
+∇ · (ρv) = ν(x, t)∆ρ,

∂(ρv)
∂t

+∇ · (p+ ρvvT) = ν(x, t)∆(ρv),

∂(ρE)

∂t
+∇ · ((p+ ρE)v) = ν(x, t)∆(ρE).

(4.8)

Before considering various viscosity forms proposed in literature, first consider simply that the viscosity
is constant, in other words ν(x, t) = ν. Fig. 4.10a shows that for large amounts of constant viscosity, the
dissipative effect is so strong that the solution of the viscous PDEs does not match the entropy solution.
When the viscosity is decreased, as in Fig. 4.10b, the solution closely resembles the entropy solution.
However, when the viscosity is decreased even more, the entropy failure mode resurfaces as the effect of
viscosity on the PDEs becomes negligible. A very low viscosity likely makes the target shock so thin that
it is no longer captured by the collocation points, implying that a higher density of collocation points would
possibly allow lower viscosity values. Note that this observation also suggests that the entropy failure
mode can also manifest in the Navier-Stokes equations when the viscosity is too small.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(a) ν = 1× 10−1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(b) ν = 1× 10−3

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(c) ν = 1× 10−4

Figure 4.10: Density solutions at t = 0.2 of a PINN with viscosity applied to the Riemann problem for different levels
of constant artificial viscosity ν.

Since trying out different viscosity values in a trial-and-error process is computationally expensive, Wass-
ing et al. (2023) propose a different approach. Instead, the artificial viscosity ν is made variable and it
is initialized with a relatively large value. The PINN is then trained for a large number of epochs until
reasonable convergence has been reached as in Fig. 4.10a. From that point on, the viscosity is linearly
decreased to zero. However, the authors note that in practice zero viscosity is never reached, which is
expected as Fig. 4.10 shows that the entropy failure mode reappears when the viscosity becomes too low.
Furthermore, the authors have only applied this method to subsonic flows, implying that it is not proven
to be effective at capturing shocks.

Although the approach appears more refined, it remains unclear when, how fast and to what level the
viscosity much be reduced. This introduces a large number of additional hyperparameters, which again
require a process of trial and error to optimize. Therefore, Coutinho et al. (2023) instead propose to include
the viscosity as a parameter that is optimized alongside the neural network parameters. Since a large
viscosity simplifies the target solution by diffusing it, a viscosity loss term is added to the loss function to
reward lower viscosity values. The new weighted loss function is shown in Eq. (4.9), with wν a weight that
prescribes the importance of minimizing the viscosity. Note that there are many possible choices for Lν ,
but a typical choices are Lν = ν and Lν = ν2.

L = w0L0 + wbLb + wbLr + wνLν (4.9)

While the addition of a variable viscosity term allows the PINN to automatically reduce the viscosity as
much as possible, it still includes the hyperparameter wν . As a result, behavior that is similar to using
constant artificial viscosity arises again. Fig. 4.11 shows that when the weight is too large, the viscosity
is minimized too quickly and the entropy failure mode is not avoided. When the weight is too small, the
viscosity remains large and the solution is diffused too much. Nevertheless, the method seems to be far

4.4 Steady waves 37

less sensitive to changes in wν compared to the sensitivity of the constant viscosity method to changes
in ν. This is likely because a low but nonzero viscosity turns the problem well-posed, implying that both
the residual and initial condition losses can be minimized far more effectively. Another advantage is that
a suitable weight will generally yield physical solutions with a lower viscosity than can be achieved with a
constant viscosity. In other words, they more closely approximate the entropy solution.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(a) wν = 1× 10−6, ν = 1.1× 10−3

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(b) wν = 1× 100, ν = 7.0× 10−4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Reference
Prediction

1(c) wν = 1× 106, ν = 2.2× 10−5

Figure 4.11: Density solutions at t = 0.2 of a PINN with global viscosity applied to the Riemann problem for different
viscosity loss weights wν with a viscosity loss of Lν = ν2. Note that ν indicates the final viscosity value.

While global artificial viscosity alleviates the entropy failure mode to some extent, it is an indiscriminate
method in the sense that viscosity is added everywhere in the domain instead of only at the shock. As
a result, regions that are normally isentropic become non-isentropic, such as the expansion wave to the
left of the domain. Therefore, Coutinho et al. (2023) also propose to use a parametric viscosity map of
the form ν(x, t, θ), where θ are parameters that define the shape and intensity of the map. For example,
to capture shocks one could define a linear map that has its angle and width as parameters. While this
method is effective, it requires foreknowledge of the solution which is not readily available when dealing
with more complex shocks. Last but not least, the authors also propose a residual-based approach where
the current residuals are used to assign adaptive viscosity values to the collocation points.

(a) Without symmetry plane (b) With symmetry plane

Figure 4.12: Examples of control volumes on two-dimensional domains for highly compressible problems.

Although the essence of the method is good, it involves a calculation based on neighboring collocation
points, which requires the definition of a mesh. The usage of meshes or control volumes to deal with
the discontinuities that arise in hyperbolic PDEs has earlier already been proposed by Patel et al. (2022).
Essentially, the integral form in Eq. (3.1) is applied to control volumes similar to those in Fig. 4.12 instead of
the application of the differential form to collocation points. While mesh-basedmethods certainly have their
advantages, they always involve some form of numerical discretization which clasheswith the fundamental
principles of PINNs.

4.4 Steady waves
The analysis of the Riemann problem has given valuable insights into the entropy failure mode that is
prohibiting PINNs from simulating highly compressible flows. However, its solution includes three different

4.4 Steady waves 38

wave types, which does not allow to distinguish the capabilities of PINNs capturing the waves individually.
Therefore, the purpose of this section is to judge how well PINNs can capture different individual wave
types for different numbers of collocation points, boundary weightings and viscosity levels. Interestingly,
this will reveal another failure mode. From this point on, only steady problems will be considered as it
can be expected that the Euler equations will converge to a steady solution when well-posed and time-
independent boundary conditions are considered.

Shock
Left: u = (1.0, 1.0, 2.29,−0.40)

Top: u = (1.0, 1.0, 2.29,−0.40)

Bottom: ∂yp = ∂yρ = ∂yu = v = 0

Right: ∂xu = 0

Expansion
Left: u = (1.0, 1.0, 2.54, 0.45)

Top: ∂yu = 0

Bottom: ∂yp = ∂yρ = ∂yu = v = 0

Right: ∂xu = 0

Contact discontinuity
Left: u = (1.0, 1.0, 2.05, 1.18)

Top: ∂yu = 0

Bottom: u = (2.0, 1.0, 2.05, 1.18)

Right: ∂xu = 0
(4.10)

Slip wall

Inlet

Inlet Outlet

(a) Shock

Slip wall

Outlet

Inlet Outlet

(b) Expansion

Inlet

Outlet

Inlet Outlet

(c) Contact discontinuity

Figure 4.13: Sketch of the domains for the steady waves problems.

The considered problems are all fully supersonic and defined over the domain (x, y) ∈ [0, 1] × [0, 1] as
shown in Fig. 4.13, their boundary conditions are given in Eq. (4.10) with u = (ρ, p, u, v). The shock
wave problem is equivalent to the flow over a wedge with an angle of θ = 10°, except rotated by −10°.
An oblique shock forms over the flat plate, allowing the solution to be analytically determined using the
oblique shock relations in Eq. (3.9). The expansion wave problem is similar, except the inlet flow is
angled upwards at an angle of 10°, resulting in a rarefaction wave over the flat plate. This problem is
particularly interesting because a nonphysical expansion ”shock” also satisfies the boundary conditions,
as discussed in Section 3.3. Last but not least, the contact discontinuity problem has two inlets with
different flow densities, resulting in a contact discontinuity at an angle of 30°. The respective density
solutions are given in Fig. 4.14, showing that the solutions consist of identically angled waves, namely 30°.
For the expansion fan, this is the central angle.

0 1x0

1

y

1.0

1.1

1.2

1.3

1.4

1(a) Shock

0 1x0

1

y

0.7

0.8

0.9

1.0

1(b) Expansion

0 1x0

1

y

1.0

1.2

1.4

1.6

1.8

2.0

1(c) Contact discontinuity

Figure 4.14: The analytic solutions of the densities for the steady wave problems.

For each problem, a PINN is set up with 4 layers of 50 neurons with the tanh activation function. Ex-
cept for the output neurons, where linear is used for the velocity components while exp is used for the

4.4 Steady waves 39

density and pressure to enforce positive values. Furthermore, 10,000 collocation points are sampled
from the Hammersley sequence and 1,000 boundary points are linearly sampled per boundary. Again,
the L-BFGS optimizer is used with a learning rate of 0.1. Note that Neumann conditions are not imposed,
technically making the problems underdetermined. However, it is observed that including these conditions
can worsen the solutions by complexifying the loss landscape mentioned in Section 2.2.2.

0 1x0

1

y

1.0

1.1

1.2

1.3

1.4

1(a) Shock
L2,ρ = 7.2× 10−2

0 1x0

1

y

0.7

0.8

0.9

1.0

1(b) Expansion
L2,ρ = 3.6× 10−3

0 1x0

1

y

1.0

1.2

1.4

1.6

1.8

2.0

1(c) Contact discontinuity
L2,ρ = 1.2× 10−2

Figure 4.15: Density solutions of the steady wave problems without loss weighting or other adaptations.

Fortunately, Fig. 4.15b shows that PINNs correctly simulate the expansion wave even without a weighted
loss. This makes sense because nonphysical ”expansion shocks” involve a negative entropy change
which also conflicts with the conservation of entropy along streamlines, making them unfavorable com-
pared to isentropic rarefaction waves. In other words, the entropy condition is satisfied naturally. Further-
more, Fig. 4.15a shows that the shock is partially modeled by the PINN, becoming more diffused towards
the lower-left corner as is also observed by Mao et al. (2020). Compared to the Riemann problem, the
shock follows more directly from the boundary conditions as there is no opportunity for the temporal failure
mode discussed in Section 2.2.1 to manifest. Note that the L2,ρ error is fairly large because the shock
angle is too small. Lastly, Fig. 4.15c confirms that contact discontinuities are not problematic for PINNs.

0 1x0

1

y

p = 1000

0 1x0

1

y

p = 2000

0 1x0

1

y

p = 4000

0 1x0

1

y

p = 16000

0 1x0

1

y

p = 32000

0 1x0

1

y

p = 64000

1.0

1.2

1.4

1(a) Shock

0 1x0

1

y

p = 1000

0 1x0

1

y

p = 2000

0 1x0

1

y

p = 4000

0 1x0

1

y

p = 16000

0 1x0

1

y

p = 32000

0 1x0

1

y

p = 64000

0.7

0.8

0.9

1.0

1(b) Expansion

0 1x0

1

y

p = 1000

0 1x0

1

y

p = 2000

0 1x0

1

y

p = 4000

0 1x0

1

y

p = 16000

0 1x0

1

y

p = 32000

0 1x0

1

y

p = 64000

1.00

1.25

1.50

1.75

2.00

1(c) Contact discontinuity

Figure 4.16: Density solutions of the steady wave problems for different numbers of collocation points p.

4.4 Steady waves 40

Although the shock in Fig. 4.15a is diffused, Fig. 4.16a shows that the sharpness of the shock is sensitive
to the number of collocation points. In reality, the PINN is likely sensitive to the location of the collocation
points, as it is not always able to overfit and collapse to a sharp shock due to their paradoxical status
discussed in Section 4.3. When it is not able to do so, it deals with the high residuals by underfitting the
boundary conditions. Note that for p = 2000 a sharp shock is produced, but the jump relations are not
satisfied correctly due to the PINN overfitting incorrectly. In addition, while the shocks are all reasonably
sharp, keep in mind that the shock angles are all incorrect. While the PINNs are sensitive to the number
of points on the shock problem, it has no substantial effect on the expansion and contact discontinuity
problems, which further confirms the entropy failure mode.

0 1x0

1

y

ν = 0

0 1x0

1

y

ν = 1× 10−5

0 1x0

1

y

ν = 1× 10−4

0 1x0

1

y

ν = 1× 10−3

0 1x0

1

y

ν = 1× 10−2

0 1x0

1

y

ν = 1× 10−1

1.0

1.2

1.4

1(a) Shock

0 1x0

1

y

ν = 0

0 1x0

1

y

ν = 1× 10−5

0 1x0

1

y

ν = 1× 10−4

0 1x0

1
y

ν = 1× 10−3

0 1x0

1

y

ν = 1× 10−2

0 1x0

1

y

ν = 1× 10−1

0.7

0.8

0.9

1.0

1(b) Expansion

0 1x0

1

y

ν = 0

0 1x0

1

y

ν = 1× 10−5

0 1x0

1

y

ν = 1× 10−4

0 1x0

1

y

ν = 1× 10−3

0 1x0

1

y

ν = 1× 10−2

0 1x0

1

y

ν = 1× 10−1

1.00

1.25

1.50

1.75

2.00

1(c) Contact discontinuity

Figure 4.17: Density solutions of the steady wave problems for different artificial viscosity levels ν.

To avoid diffused shock waves, it is possible to include viscosity as was done for the Riemann problem.
Fig. 4.17 shows the effect of viscosity on each of the waves, confirming that isentropic regions of the flow
such as expansion and contact discontinuities are negatively affected by viscosity. It also shows again
how a large viscosity can negatively affect a shock, while a small viscosity has no effect. Interestingly, for
ν = 1 × 10−3 and ν = 1 × 10−2 the shock is for the first time produced at the correct angle, yielding an
accurate solution. Notice also that for ν = 1 × 10−4 the shock is sharp, but the jump conditions are not
satisfied correctly everywhere along the shock due to overfitting.

4.4 Steady waves 41

0 1x0

1
y

wb = 1× 10−1

0 1x0

1

y

wb = 1× 100

0 1x0

1

y

wb = 1× 101

0 1x0

1

y

wb = 1× 102

0 1x0

1

y

wb = 1× 103

0 1x0

1

y

wb = 1× 104

1.0

1.2

1.4

1(a) Shock

0 1x0

1

y

wb = 1× 10−1

0 1x0

1

y

wb = 1× 100

0 1x0

1

y

wb = 1× 101

0 1x0

1

y

wb = 1× 102

0 1x0

1

y

wb = 1× 103

0 1x0

1

y

wb = 1× 104

0.7

0.8

0.9

1.0

1(b) Expansion

0 1x0

1

y

wb = 1× 10−1

0 1x0

1

y

wb = 1× 100

0 1x0

1

y

wb = 1× 101

0 1x0

1

y

wb = 1× 102

0 1x0

1

y

wb = 1× 103

0 1x0

1

y

wb = 1× 104

1.00

1.25

1.50

1.75

2.00

1(c) Contact discontinuity

Figure 4.18: Density solutions of the steady wave problems for different boundary condition loss weights wb.

Since the diffused shock solution in Fig. 4.15a is underfitting the boundary conditions, it is also possible
to sharpen it by increasing the boundary condition loss weight. Indeed, Fig. 4.18 confirms that the shock
becomes sharper. Notice that the solution of each of the wave types starts to deteriorate for very large
boundary condition loss weights, as satisfying the PDEs and therefore providing a physical solution is
less important. Another phenomenon is seen in Fig. 4.18b for wb = 1× 103, where the density seems to
be uniform. Upon closer inspection of the solution in Fig. 4.19, something interesting can be noticed: a
zero-velocity region is formed instead of an expansion fan.

0 1x0

1

y

1.0

1.1

1.2

1.3

1(a) Density

0 1x0

1

y

0.90

0.95

1.00

1(b) Pressure

0 1x0

1

y

0

1

2

1(c) Horizontal velocity

0 1x0

1

y

0.0

0.2

0.4

1(d) Vertical velocity

Figure 4.19: Solution of the steady expansion problem for a boundary loss weight of wb = 1× 103.

This phenomenon has also been observed by Laubscher et al. (2022) and Wassing et al. (2023) in highly
compressible flows, particularly on skewed surfaces with a slip boundary condition. Laubscher et al. (2022)
argue that this is the result of insufficient enforcement of the boundary conditions and show that it can be
solved by not prescribing the ideal gas law explicitly but rather by including the equation as an additional
term in the residual loss. They show that this approach successfully removed the zero-velocity region in
front of wedges when simulating oblique shocks. On the other hand, Wassing et al. (2023) do not give
much explanation and simply mention that it is a nonphysical solution. They show that by adding viscosity,
the sharp interface between the zero-velocity and the rest of the flow is diffused and the nonphysical

4.4 Steady waves 42

solution is eliminated. However, they are only able to do so for subsonic flows. Upcoming chapters
confirm that such phenomena can still occur despite the addition of viscosity, as shown in Fig. 6.11.

0 2x0

2

y

2.0

4.0

1(a) Density

0 2x0

2

y
1.0

1.4

1.8

2.2

2.6

1(b) Pressure

0 2x0

2

y

0.0

1.0

2.0

1(c) Horizontal velocity

0 2x0

2

y

0.0

0.2

0.4

0.6

1(d) Vertical velocity

Preview of Figure 6.11: Solution of the PINN with global viscosity on the curved shock problem, with wν = 1× 101.

While both methods work, they fail to address the underlying issue: the slip boundary condition is not
properly designed for PINNs and can drive them into local minima. To understand this, consider the
general form of the slip condition given in Eq. (4.11). While this condition can be satisfied by aligning the
velocity with the surface angle θ, it is also satisfied by a trivial zero velocity, which is effectively the no-slip
condition. While the latter solution to the boundary conditions is nonphysical, it is easier for the PINN to
produce because it does not have to learn a dependency between the velocity components. As a result,
PINNs have an initial tendency of producing a zero velocity region at surfaces. Note that in the case of
the shock and expansion problems in Eq. (4.10) this phenomenon rarely happens because θ = 0°, so that
the slip condition simplifies to v = 0, which decouples the horizontal and vertical velocity components.

u cos(θ) + v sin(θ) = 0 (4.11)

This initial tendency to produce a zero-velocity region drives PINNs into a local minimum, which can
only be solved by forming a sharp interface as seen in Fig. 4.19. Although this solution is nonphysical
and has high associated residuals, the PINN overfits and these high residuals become located in between
collocation points. It is interesting to note that in Fig. 4.19, but also in the papers by Laubscher et al. (2022)
and Wassing et al. (2023), the zero-velocity region effectively represents a ”fake object” surrounded by a
combination of a shear wave and a contact discontinuity. The flow outside and inside this fake object is
considerably simpler, allowing the PINN to reduce the residuals easier, which increases the attractiveness
of the local minimum.

0 1x0

1

y

1.0

1.1

1.2

1.3

1.4

1(a) Shock
L2,ρ = 3.7× 10−2

0 1x0

1

y

0.7

0.8

0.9

1.0

1(b) Expansion
L2,ρ = 4.6× 10−3

0 1x0

1

y

1.0

1.2

1.4

1.6

1.8

2.0

1(c) Contact discontinuity
L2,ρ = 3.5× 10−2

Figure 4.20: Density solutions by a CPINN applied to the steady wave problems.

Given the interesting results of CPINNs on the Riemann problem, it is also worthwhile to apply them to
the wave problems. Therefore, the previous PINN setup is used as the generator and combined with a
discriminator consisting of 5 layers of 50 neurons with the relu activation function. Furthermore, it has a
total of 8 or 9 output neurons with the linear activation function, one output for each boundary condition
and PDE considered. The CPINNs are then trained using the ACGD optimizer with a learning rate of 0.001,

4.4 Steady waves 43

for a maximum time of 24 hours. Fig. 4.20 shows the results for each problem, revealing that CPINNs are
able to produce a sharper shock than the PINN in Fig. 4.15. Nevertheless, keep in mind that PINNs can
produce sharp shocks for different numbers of collocation points as shown in Fig. 4.16. Despite this, the
shock angle is closer to the true wave angle compared to any of the weighted PINN solutions.

0 1x0

1

y

10−11

10−7

10−3

101

1(a) Shock

0 1x0

1

y

10−15

10−10

10−5

100

1(b) Expansion

0 1x0

1

y

10−11

10−8

10−5

10−2

101

1(c) Contact discontinuity

Figure 4.21: Squared continuity residuals for a CPINN applied to the steady wave problems.

The CPINN solution to the expansion wave has a similar error as the PINN solution, but for the contact
discontinuity, it is considerably worse. A possible explanation is the adversarial training style of CPINNs,
which can cause the discriminator to exploit high gradients near the discontinuity to easily increase the
residuals at collocation points, which creates a noisy convergence pathology. It is again interesting to
note that for the solutions with discontinuities, CPINNs maintain high residuals instead of decreasing
them as shown in Fig. 4.22a. Similar to the Riemann problem, the high residuals are located near the
discontinuities as shown in Fig. 4.21. Furthermore, the error history in Fig. 4.22c shows that initially, the
solution for the contact discontinuity is slightly better, but it deteriorates afterward. Based on the ability of
CPINNs to underfit the residuals to circumvent the entropy failure mode, they remain interesting for shock
capturing and will therefore also be assessed and compared on the applied cases in Chapter 6.

0 10000 20000 30000

Epoch

10−5

10−3

10−1

101

103

L
r

Contact disc.
Expansion
Compression

1(a) Residual loss

0 10000 20000 30000

Epoch

10−7

10−5

10−3

10−1

101

L
b

1(b) Boundary condition loss

0 10000 20000 30000

Epoch

10−2

10−1

L
2,
ρ

1(c) Density error

Figure 4.22: Loss and error pathology for the CPINN results in Fig. 4.20.

Closing remarks
Looking back at the research questions that this chapter intended to answer, it is now clear that PINNs fail
on highly compressible problems due to two failure modes. The first, more fundamental entropy failure
mode arises from the conservation of entropy along streamlines that is prescribed by the differential Euler
equations. Unlike traditional solvers, PINNs do not use discretization and hence no numerical viscosity
enters the PDEs. As a result, PINNs try to find an isentropic solution to a non-isentropic problem which
leads to nonphysical phenomena. The second failure mode may arise on surfaces and is caused by the
ambiguity of the slip boundary condition, which is also satisfied by a trivial zero velocity. The strong local
minimum that emerges from this again leads to nonphysical phenomena, in particular fake objects that
involve considerably simplified flows. While the symptoms of these failure modes have been observed in
literature and adaptations have been proposed to alleviate them, the failure modes themselves are not
explicitly recognized.

5
Shock-capturing methodology

Although the various adaptations in literature tackle the failure modes to a certain extent, they have not
yet been successfully applied to more complex highly compressible problems. Essentially, there can be
two reasons for this. Firstly, as mentioned, most adaptations are designed without correctly recognizing
the failure modes. As a result, there might not be a proportional relationship between the parameters of
the adaptation and the alleviation of the nonphysical phenomena, making it tedious for authors to obtain
successful results. Secondly, the adaptations might simply not be sufficient to alleviate the failure modes.
To holistically answer the last research question, namely what adaptations can alleviate the failure modes,
both options must be considered. Therefore, new adaptations are proposed in Section 5.1 and Section 5.2
that may enhance the shock-capturing capabilities of PINNs by targeting the two failure modes. These are
then assessed together with selected existing adaptations using a framework that is detailed in Section 5.3.

5.1 Local viscosity
As mentioned, the addition of artificial viscosity can alleviate the entropy failure mode and thereby improve
the shock-capturing capabilities of PINNs. In particular, Section 4.3 has shown that a variable global vis-
cosity together with a viscosity loss can achieve sharp shocks and relatively low artificial viscosity levels.
However, global viscosity is indiscriminate in the sense that it affects the entire domain instead of only
shocks. In particular, it can introduce errors in regions that should be isentropic, such as rarefaction waves
or contact discontinuities. A natural solution is a local viscosity that only materializes near shocks, which
has already been proposed by Coutinho et al. (2023). Their more general method involves some para-
metric map ν(x, t, θ), with θ the parameters defining the map. However, as they mention themselves, an
effective map requires foreknowledge of the solution. Therefore, they propose a residual-based method,
however, it relies on the usage of a discretized mesh, which violates the fundamental principles of PINNs.
Their first method is certainly a step in the right direction and serves as an inspiration for the proposed
local viscosity method in Fig. 5.1, which harmonizes with the fundamental principles of PINNs.

x

Figure 5.1: Architecture of a PINN with local viscosity for the two-dimensional Euler equations.

Essentially, the parameters of the network are used to define the parametric map. The local viscosity is

44

5.2 Streamline representation 45

considered an additional output of the PINN, providing a continuous viscosity field. As a result, the same
viscosity loss as in Eq. (4.9) can be used, but now averaged over the local values at the collocation points.
Similar to the pressure and density, there are multiple activation functions that can enforce the positivity
of the viscosity. For example, in the previous chapter, the exponential activation function is used for the
pressure and density. Based on some empirical trials it is found that the pattern of local viscosity can vary
drastically depending on the choice of the activation function and the viscous loss term in Eq. (4.9). For
example, Fig. 5.2 shows that using an exponential activation function with Lν = ν2 produces viscosities
that vary similarly to the other output variables. However, when a squared activation is used with Lν = ν
the local viscosity becomes truly located at the shock. Fig. 5.2 also shows an interesting secondary benefit
of the local viscosity method; it can be used as a shock detector as well, highlighting where shocks occur
that might not be directly visible.

0 1x0

1

y

3.0

4.0

5.0

6.0

7.0

8.0
×10−4

1(a) exp, Lν = ν2, wν = 0.01

0 1x0

1

y

0.4

0.6

0.8

1.0

1.2

1.4

×10−3

1(b) square, Lν = ν2, wν = 1

0 1x0

1

y

0.0

2.0

4.0

6.0

8.0

×10−4

1(c) square, Lν = ν, wν = 1

Figure 5.2: Local viscosity solutions of the steady shock wave problem in Section 4.4, with an otherwise identical
setup. The captions indicate the activation function, viscosity loss function and viscosity loss weight respectively.

Intuitively, the addition of an extra variable will increase the complexity of the output and therefore require a
larger network. While this is true, realize that an optimal local viscosity that is only located at shocks highly
correlates with the other output variables, implying that only limited additional approximation capacity may
be necessary. This is a significant advantage of using the same neural network for the viscosity, instead
of an additional smaller one.

L = L0 + Lb + λrLr + wνLν (4.9 repeated)

5.2 Streamline representation
While Wassing et al. (2023) have shown that they can circumvent the slip failure mode by adding viscosity,
this can again negatively affect isentropic regions of the flow. More importantly, the authors themselves
note that the approach does not work on supersonic flows. To avoid the failure mode completely, the slip
condition in Eq. (4.11) must be somehow reformulated so that reducing the velocity at the surface does
not decrease the slip boundary loss. An intuitive approach is to normalize the slip condition by the velocity
magnitude, as shown in Eq. (5.1). To avoid division by zero at stagnation points, a small constant ϵ must
be added to the denominator. While this approach delays the initial formation of zero-velocity regions, they
resurface after some time because decreasing the velocity magnitude without changing the flow angle still
reduces the loss since ϵ > 0.

u cos(θ) + v sin(θ)
||u||+ ϵ

= 0 (5.1)

A better approach is to calculate the local flow angle ϕ = atan 2 (v, u) at the slip surface and to constrain
this angle instead, as done in Eq. (5.2). While division by zero is no longer an issue, atan is undefined
when both u = 0 and v = 0. Since this can for example happen at the stagnation point on an object, this
issue cannot be avoided. Even without stagnation regions in the target solution, this formulation can still
cause gradient descent algorithms to fail due to large gradients, requiring them to be re-initialized.

ϕ− θ = 0 (5.2)

5.2 Streamline representation 46

While there are many other possible formulations of the slip boundary condition, it is more natural to
consider a change from a component output representation to the streamline output representation visu-
alized in Fig. 5.3. Instead of outputting the velocity components, the PINN can be designed to output
the velocity magnitude ||u|| and direction ϕ instead, as shown in Fig. 5.4. As a result, Eq. (5.2) can be
directly applied to the outputs of the PINN. Since the flow direction is now defined even when the velocity
magnitude is zero, the previous numerical issues are avoided. Other boundary conditions can also be
converted to a streamline form, although it is also possible to convert the streamline outputs back to the
velocity components using Eq. (5.3). For the remainder of the thesis, the latter is done to isolate the ef-
fect of the reformulated slip boundary condition. To the author’s best knowledge, there are currently no
accounts of using PINNs with a streamline output representation, especially in the context of the Euler or
Navier-Stokes equations.

u = ∥u∥ · cos(ϕ)
v = ∥u∥ · sin(ϕ)

(5.3)

u
v

1(a) Component representation

∥u∥
ϕ

1(b) Streamline representation

Figure 5.3: Comparison of different output representations.

Although the streamline output representation might avoid the zero-velocity phenomenon, note that it
no longer penalizes the magnitude of the normal velocity on a slip surface. In other words, large normal
velocities are penalized just as much as small normal velocities, which can possibly give rise to new failure
modes. In addition, the magnitude of the streamline slip loss in Eq. (5.2) is lower than the component slip
loss in Eq. (4.11) if the velocity magnitude is large. Therefore, it is likely that the streamline slip condition
loss requires a larger weight to remain balanced with the other loss terms.

x

u

Figure 5.4: Architecture of a PINN with a streamline output representation.

Again, there are many possibilities in defining the activation functions of ∥u∥ and ϕ. While it may seem
logical at first to apply the exp activation function to the magnitude and a multiple of tanh to the direction

5.3 Assessment framework 47

as in Eq. (5.4), this assumes knowledge of the flow direction along the surface to evaluate Eq. (5.2). Even
though the flow along an object is mostly in the same general direction as the free-stream flow, local
backflow might occur especially for objects at high angles of attack.

∥u∥ : f(x) = exp(x), ϕ : f(x) = π tanh(x) (5.4)

Therefore, it is better to apply the linear activation function the magnitude and to restrict the flow direction
to only one side of the unit circle to avoid redundancy, as in Eq. (5.5).

∥u∥ : f(x) = x, ϕ : f(x) =
π

2
tanh(x) (5.5)

5.3 Assessment framework
To assess and compare the shock-capturing capabilities of the above adaptations, PINNs and CPINNs
will be applied to different steady shock problems. In other words, the steady Euler equations in Eq. (5.6)
will be considered. Again, the rationale is that it can be expected that the flow around an object will
converge to a steady solution when well-posed and time-independent boundary conditions are considered.
While traditional solvers often make use of this assumption to obtain a steady solution through a time-
marching technique, solving the unsteady equations to obtain a steady solution unnecessarily increases
the computational and memory requirements for PINNs. In addition, this can unnecessarily give rise to
the temporal failure mode which is mentioned in Section 2.2.1.

∇ · (ρv) = 0,

∇ · (p+ ρvvT) = 0,

∇ · ((p+ ρE)v) = 0.

(5.6)

Just like all simulations so far, the ideal gas law will be used for the equation of state to relate the energy,
pressure and density as in Eq. (3.4). The steady shock problems that are considered are, in increasing
order of difficulty, an oblique shock, a curved shock and a detached shock. The setup of these problems
will be discussed in the next chapter.

5.3.1 Cases
For each problem, a total of twelve (C)PINN setups will be considered as shown in Table 5.1. By consid-
ering these cases, it is possible to distinguish the effects of viscosity, local viscosity and the streamline
output representation. In addition, it allows for the comparisons of PINNs and CPINNs. Note that CPINNs
are not combined with local viscosity, as their adversarial loss requires the discriminator to predict the
difference between the generated viscosity and a target value, which is zero. Since the viscosity is strictly
positive, the generator can only gain an advantage by minimizing the viscosity and therefore it is quickly
nullified. Several attempts have been made to overcome this issue, for example by using the raw vis-
cosity before the positive activation function for the adversarial loss or simply allowing the viscosity to be
negative, but these were unsuccessful.

Table 5.1: Considered cases of PINN adaptations for assessment and comparison.

No. 1 2 3 4 5 6 7 8 9 10 11 12
Type PINN CPINN
Representation Component Streamline Component Streamline
Viscosity No Fixed Global Local No Fixed Global Local No Fixed No Fixed

The above cases are initialized identically for the considered shock problems. In other words, the network
architecture, initial network parameters and collocation points are identical. In the case of the CPINN, the
generator is initialized identically to the other PINN networks. Each case has a single hyperparameter that
will be varied to obtain the best results in terms of the L2,ρ error: the boundary condition loss weight wbc

for the inviscid cases, the viscosity ν for the fixed viscosity cases and the viscosity loss weight wν for the
global and local viscosity cases. For the inviscid CPINN simulations, no hyperparameter is considered

5.3 Assessment framework 48

because the adversarial training style provides a weighting mechanism of its own. While it is certainly
possible to obtain better results by also varying the boundary condition loss weights for the PINNs with
viscosity, the resulting optimization space is simply too large. Note that for the global viscosity cases
Lν = ν2 is used, while for the local viscosity cases Lν = ν is used based on the findings in Section 5.1.

Hyperparameters
Viscosity, architecture, loss weights, etc.

Boundary conditions
Inlet, outlet, symmetry, etc.

Identical initialization
Network parameters, collocation points, optimizer

Run

Terminate?
- if loss stagnated
- if loss diverged
- if 24h have passed

Figure 5.5: Overview of the assessment framework.

Furthermore, for all cases, the exp activation function is used for the pressure and density to enforce
positive values. In addition, the linear activation function is used for the velocity components while the
activation functions in Eq. (5.5) are used for the streamline components. Last but not least, the square
activation function is used for the local viscosity. The internal activation functions and the network ar-
chitecture are discussed in the next chapter as they differ for each problem considered. The PINNs are
optimized with the second-order L-BFGS optimizer with a learning rate of 0.1, although Adam is some-
times used initially until the gradients are stable. The CPINNs are optimized with the second-order ACGD
optimizer with a learning rate of 0.001. Simulations are terminated when a time limit of 24 hours has been
exceeded, which only occurs when training CPINNs, or when the loss has stagnated. An overview of the
assessment framework is shown in Fig. 5.5.

5.3.2 Software and hardware
All simulations are performed using PyTorch (Paszke et al., 2019) for Python, which has built-in automatic
differentiation. Note that a custom implementation of ACGD has been developed for the optimization
of CPINNs, which improves over existing implementations in terms of memory and speed. Simulations
are performed on different devices, in particular an RTX A1000 on a laptop, a Quadro RTX 8000 on a
workstation and a NVIDIA Tesla V100S 32GB on the DelftBlue cluster (DHPC, 2022). As a result, the
training times cannot be directly compared, although this is not a significant issue since the focus is
on assessing the qualitative shock-capturing capabilities in terms of accuracy. Furthermore, the results
across the different devices might differ since PyTorch does not guarantee determinism and might even
sample parameters and collocation points differently across devices. Therefore, groups of simulations
are performed on the same device as much as possible to not affect the comparisons significantly.

Source code
The source code for a selection of the results will be made available at
https://github.com/wagenaartje/pinn4hcf. The custom implementation of ACGD
can be found at https://github.com/wagenaartje/torch-cgd. For specific results,
feel free to contact the author via e-mail at t.wagenaar-1@student.tudelft.nl.

https://github.com/wagenaartje/pinn4hcf
mailto:t.wagenaar-1@student.tudelft.nl

6
Results

In this chapter, the methodology in the previous chapter will be used to assess and compare existing and
newly proposed adaptations to answer the last research question, namely what adaptations can alleviate
the highly compressible failure modes. For this purpose, problems involving an oblique shock, a curved
shock and a detached shock are considered, which increase in difficulty respectively. To the author’s
best knowledge, there are currently no examples in literature featuring steady curved or detached shocks.
Based on the results, an answer to the last research question will be provided at the end of this chapter.

6.1 Oblique shock wave
Although an oblique shock has already been treated in Section 4.4, this is a rather simple case for two
reasons. Firstly, the surface over which the shock is created is horizontal, which exempts PINNs from
having to learn the relationship between the velocity components to satisfy the slip condition. Secondly, the
shock emerges directly from the boundary conditions at the inlet, which avoids PINNs having to determine
where a shock should be located. Therefore, the more complex case in Fig. 6.1 is considered where a
wedge is placed at a nonzero distance from the inlet. A similar case has been considered by Laubscher
et al. (2022), who observed the zero-velocity phenomenon and subsequently alleviated it by adding the
ideal gas law as an additional residual equation. However, these results could not be reproduced.

Symmetry

Inlet Outlet

Slip wall
Symmetry

Figure 6.1: Domain and boundary conditions for the oblique shock wave problem. The Mach number is 2.0 and the
domain size is [0, 1.5]× [0, 1] with the wedge starting at x = 0.5.

The solution to the problem in Fig. 6.1 can be determined analytically through the equations in Section 3.3.
Since the wedge angle is below the maximum corner angle θmax, the shock remains attached to the tip
of the wedge. Using Eq. (3.10) with θ = 10◦, M1 = 2.0 and γ = 1.4 gives that the shock angle is
β = 39.31◦. Furthermore, the jump relations in Eq. (3.9) give ρ2 = 1.46, p2 = 1.71, u2 = 2.07 and
v2 = 0.37. The full solution is shown in Fig. 6.2. Note that Eq. (3.10) also gives a strong shock solution,

49

6.1 Oblique shock wave 50

which as mentioned only appears in nature when a strong backpressure is imposed. It is likely that the
tendency of generalization of PINNs will result in weak shock solutions as they involve smaller jumps in
variables.

0 1.5x0

1

y

1.0

1.2

1.4

1(a) Density

0 1.5x0

1

y

1.0

1.2

1.4

1.6

1(b) Pressure

0 1.5x0

1

y

2.1

2.2

2.3

1(c) Horizontal velocity

0 1.5x0

1

y

0.0

0.2

1(d) Vertical velocity

Figure 6.2: Analytical solution of the oblique shock problem in Fig. 6.1.

For each PINN case in Table 5.1, 10,000 collocation points are sampled using the Hammersley sequence
and 750 boundary conditions points are linearly sampled per boundary. Collocation points inside the
wedge are removed, so the effective amount is slightly smaller. The network architecture consists of
4 layers of 50 neurons, each with the tanh activation function. Furthermore, the Neumann boundary
conditions in Fig. 6.1 are ignored and so are the Dirichlet boundary conditions at the top symmetry plane.
While excluding these boundary conditions certainly affects the results and technically makes the problem
underdetermined, it does not considerably affect the comparison between the different adaptations. Last
but not least, note that the Neumann outlet condition for the pressure is locally converted to a Dirichlet
boundary condition prescribing p = 1.00 when the flow is locally subsonic. Such a dynamic approach to
transonic outlet boundary conditions in PINNs has not yet been treated in literature and is therefore novel
in its own right. However, it is also highly experimental because it can create a non-differentiable loss
landscape that breaks memory-based optimizers such as L-BFGS, necessitating the usage of Adam until
the solution at the outlet has stabilized.

0 1.5x0

1

y

1.0

1.2

1.4

1(a) No viscosity

0 1.5x0

1

y

1.0

1.2

1.4

1(b) Fixed viscosity

0 1.5x0

1

y

1.0

1.2

1.4

1(c) Global viscosity

0 1.5x0

1
y

1.0

1.2

1.4

1(d) Local viscosity

Figure 6.3: Density solutions for the oblique shock problem by PINNs with different viscosity methods.

Table 6.1: Errors and viscosity levels of the various PINN solutions for the oblique shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v ν̄

PINN wbc = 1e+1 4.55e-2 7.00e-2 1.51e-2 1.82e-1 -
PINN + viscosity ν = 1e-3 1.68e-2 2.38e-2 5.68e-3 8.97e-2 1.0e-3
PINN + global viscosity wν = 1e+2 1.66e-2 2.34e-2 5.64e-2 8.93e-2 9.1e-4
PINN + local viscosity wν = 1e+1 1.58e-2 2.22e-2 5.27e-3 8.47e-2 2.5e-5

Fig. 6.3 shows that PINNs can create a shock without a zero-velocity region given a sufficiently large
boundary condition weight. This is likely because the constant surface inclination makes it easier to
produce the correct solution to the slip condition. In addition, previous and upcoming results show that
zero-velocity regions are naturally wedge-like, making them unlikely to form over actual wedges. Never-
theless, the accuracy of the shock drastically improves when viscosity is added, as shown in Table 6.1.
It is interesting to note that the optimal viscosity level is found to be ν = 1 × 10−3, which is similar to the
optimal values observed in Chapter 4. This is likely because approximately the same collocation point

6.1 Oblique shock wave 51

density has been used. Furthermore, the table shows that a global variable viscosity results in a lower
viscosity level, although the errors hardly change. Using local viscosity results in an even better solution
and the average viscosity decreases drastically. In general, it is interesting to note that the addition of
viscosity allows an accurate solution to be formed without a large boundary condition weight, implying that
it simplifies the loss landscape by making the problem more well-posed.

0 1.5x
0

1

y

0.0

1.0

2.0

×10−3

1(a) Early local viscosity

0 1.5x
0

1

y

0.0

2.0

4.0

6.0
×10−4

1(b) Final local viscosity

0 1.5x
0

1

y

0−3

−5

0

5

1(c) Final inviscid continuity residual

Figure 6.4: Local viscosity evolution of a PINN with wν = 1× 101 and the resulting inviscid continuity residual.

The local viscosity method is not considerably more accurate than the other viscosity methods despite
its drastically lower average viscosity because the viscosity at the shock itself has a similar magnitude
as the other viscosity methods, as shown in Fig. 6.4b. While the viscosity is zero outside the shock,
this has virtually no effect on the error since the solution is constant in these regions implying that the
second derivatives are zero. As a result, viscosity does not enter the PDEs outside of a correctly modeled
oblique shock. This can be confirmed by calculating the inviscid residuals, which are the residuals of the
PDEs without the viscosity term. Fig. 6.4c shows indeed that these are only significant around the shock,
indicating that elsewhere viscosity plays a negligible role. Note that the residuals vary from positive to
negative along the streamwise direction because the density increases across the shock, so that ∂xxρ > 0
before the shock and ∂xxρ < 0 after the shock.

0 1.5x0

1

y

1.0

1.2

1.4

1(a) No viscosity

0 1.5x0

1

y

1.0

1.2

1.4

1(b) Fixed viscosity

0 1.5x0

1

y

1.0

1.2

1.4

1(c) Global viscosity

0 1.5x0

1
y

1.0

1.2

1.4

1(d) Local viscosity

Figure 6.5: Density solutions for the oblique shock problem by streamline PINNs with different viscosity methods.

Table 6.2: Errors and viscosity levels of the various streamline PINN solutions for the oblique shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v ν̄

PINN wbc = 1e+3 4.68e-2 6.94e-2 1.69e-2 2.32e-1 -
PINN + viscosity ν = 1e-3 1.53e-2 2.24e-2 4.80e-3 7.62e-2 1.0e-3
PINN + global viscosity wν = 1e-1 2.05e-2 2.90e-2 6.76e-3 1.09e-1 1.8e-3
PINN + local viscosity wν = 1e+0 1.87e-2 2.77e-2 5.69e-3 9.15e-2 9.3e-5

Fig. 6.5 and Table 6.2 show the results for the PINNs with a streamline output representation, which do
not differ significantly from the results for the PINNs with a component output representation. This is
expected to some extent because the streamline output representation is designed to tackle the zero-
velocity phenomenon, which is not observed in the latter results. Furthermore, it is interesting to note
that the viscosity levels for global and local viscosity in Table 6.2 are considerably higher than those in
Table 6.1, even though the error of the solution is not considerably worse. It is therefore likely that the
streamline PINNs satisfy the slip condition better leading to a slightly better positioning of the shock.

6.2 Curved shock wave 52

0 1.5x0

1
y

1.0

1.2

1.4

1(a) Component & no viscosity

0 1.5x0

1

y

1.0

1.2

1.4

1(b) Component & viscosity

0 1.5x0

1

y

1.0

1.2

1.4

1(c) Streamline & no viscosity

0 1.5x0

1

y

1.0

1.2

1.4

1(d) Streamline & viscosity

Figure 6.6: Density solutions for the oblique shock problem by CPINNs with different adaptations.

Table 6.3: Errors and viscosity levels of the various CPINN solutions for the oblique shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v

CPINN - 8.98e-2 2.06e-1 5.13e-2 1.35e-1
CPINN (lowest L2,ρ) - 1.57e-2 2.26e-2 8.10e-3 7.98e-2
CPINN + viscosity ν = 1e-3 1.68e-2 2.45e-2 5.16e-3 8.27e-2
CPINN + streamline - 5.19e-2 8.60e-2 1.67e-2 3.13e-1
CPINN + streamline + viscosity ν = 1e-3 1.51e-2 2.22e-2 4.62e-3 7.49e-2

Last but not least, the previous PINN architecture is used as the generator network in a CPINN setup
together with a discriminator architecture consisting of 5 layers of 50 neurons with the relu activation
function. The discriminator has a total of 9 outputs with the linear activation function, consisting of one
output for every boundary condition and PDE considered. Fig. 6.6 and Table 6.3 show an interesting
difference compared to PINNs, namely that a sharp shock is produced even in the absence of viscosity,
although the resulting jump in variables is not always correct as shown in Fig. 6.6a. The addition of viscos-
ity again drastically improves the final results, but no improvement is obtained compared to PINNs with
viscosity, although significantly more computational time is required. Note that without viscosity, CPINNs
might produce better results earlier on in the training process as they underfit the residuals at this point.
For example, Fig. 6.7 shows the checkpoint of the CPINN at which L2,ρ is smallest, which has similar
errors as the final viscous solutions.

0 1.5x0

1

y

1.0

1.2

1.4

1(a) Density

0 1.5x0

1

y

1.0

1.2

1.4

1.6

1(b) Pressure

0 1.5x0

1

y

2.1

2.2

2.3

1(c) Horizontal velocity

0 1.5x0

1

y

0.0

0.2

1(d) Vertical velocity

Figure 6.7: Lowest L2,ρ solution obtained by the CPINN without viscosity on the oblique shock problem.

6.2 Curved shock wave
Although it is impressive that PINNs can simulate an oblique shock wave despite the entropy failure mode,
analytical solutions already exist for such problems and the shocks around practical supersonic objects
are usually not oblique. Therefore, it is more interesting to consider curved shocks, which can for example
appear around curved supersonic objects. These are more complicated to model by PINNs as the vari-
ables after the shock are not homogeneous. In particular, the curved shock has a varying strength which
results in a non-homentropic rotational flow behind the shock. To assess the shock-capturing capabilities
of PINNs with and without the considered adaptations, the problem in Fig. 6.8 is considered.

6.2 Curved shock wave 53

Symmetry

Inlet OutletOutlet

Symmetry

Slip wall

Symmetry

Figure 6.8: Domain and boundary conditions for the curved shock problem. The Mach number is 2.5 and the
domain size is [0, 2]× [0, 2] with the object starting at x = 0.5.

The shape of the object is defined by a quadratic Bézier curve defined in Eq. (6.1) with points P0 = (0.5, 0),
P1 = (1.0, 0.25) and P2 = (2.0, 0.25). The advantage of a Bézier curve is that its position and slope are
continuously defined, allowing it to be discretized to any desired degree. The surface inclination at the tip
of the chosen Bézier curve is θ = 26.6◦, which is below θmax so that the shock remains attached. Since the
surface inclination decreases in the streamwise direction, so does the shock wave angle, resulting in a
curved shock. While it is possible to solve these flows using fast methods such as the (rotational) method
of characteristics (Shapiro, 1976), not many public solvers are available. Therefore, a reference solution
is simulated via OpenFOAM (Weller et al., 1998), for which setup details are given in Appendix A.

B(z) = (1− z)2P0 + 2(1− z)zP1 + z2P2, 0 ≤ z ≤ 1 (6.1)

The OpenFOAM solution is shown in Fig. 6.9, showing a sharp shock followed by a steady expansion
due to the receding angle of the object. The solution is not perfect, partly because the solver has not
converged to zero residuals but also because of the numerical viscosity resulting from the discretization
schemes as discussed in Section 4.3. Nevertheless, it is important to reiterate that to the author’s best
knowledge, there are currently no documented PINN solutions for steady curved shocks. Therefore, the
reference solution is sufficient to assess shock-capturing capabilities on a qualitative level. However, do
keep in mind that the L2 errors will be calculated with respect to these imperfect reference solutions and
it is therefore not useful to compare errors below a certain threshold.

0 2x0

2

y

1.0

1.5

2.0

2.5

1(a) Density

0 2x0

2

y

1.0

2.0

3.0

4.0

1(b) Pressure

0 2x0

2

y

2.0

2.5

3.0

1(c) Horizontal velocity

0 2x0

2

y

0.0

0.5

1.0

1(d) Vertical velocity

Figure 6.9: Reference solution to the curved shock problem in Fig. 6.8.

The base PINN setup consists of 10,000 collocation points that are sampled using the Hammersley se-
quence, any points inside the object are removed. Furthermore, 500 boundary conditions points are

6.2 Curved shock wave 54

linearly sampled per boundary, except for the object. For the object, 1,000 points are sampled by linearly
sampling the Bézier curve parameter z, which results in a slightly higher density of points near the tip
of the object. Although the point nonuniformness is small, it can improve the obtained results because
the tip angle completely determines the initial shock angle and thus if the shock remains attached or not.
The network architecture again consists of 4 layers of 50 neurons, each with the tanh activation function.
Furthermore, the Neumann boundary conditions as well as the Dirichlet boundary conditions of the top
symmetry plane and possibly subsonic outlet are ignored, unless specified otherwise.

0 2x0

2

y

1.0

1.5

2.0

1(a) No viscosity

0 2x0

2

y

1.0

1.2

1.5

1.8

1(b) Fixed viscosity

0 2x0

2

y

2.0

4.0

1(c) Global viscosity

0 2x0

2

y

1.0

1.5

2.0

1(d) Local viscosity

Figure 6.10: Density solutions for the curved shock problem by PINNs with different viscosity methods.

Table 6.4: Errors and viscosity levels of the various PINN solutions for the curved shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v ν̄

PINN wbc = 1e+0 1.65e-1 2.69e-1 7.74e-2 5.72e-1 -
PINN + viscosity ν = 1e-1 3.80e-1 7.73e-1 2.39e-1 1.39e+0 1.0e-1
PINN + global viscosity wν = 1e+1 5.45e-1 5.52e-1 2.24e-1 1.08e+0 6.0e-3
PINN + local viscosity wν = 1e-1 2.29e-1 3.54e-1 9.01e-2 7.89e-1 4.3e-3

Fig. 6.10 shows the best results for PINNs without the streamline output representation, which reveals
zero-velocity regions for the inviscid method and the global viscosity method. In Fig. 6.10a a small zero-
velocity region occurs in front of the tip, which results in an oblique shock followed by a curved shock over
the object. However, a much larger zero-velocity region forms in Fig. 6.10c. Upon closer inspection of
this solution in Fig. 6.11, it even shows that a correctly angled oblique shock forms over the zero-velocity
region. Note that this zero-velocity region is larger than the one observed in Fig. 6.10a because the
pressure outlet condition is not satisfied, as the flow is subsonic and the Dirichlet boundary condition is
not enforced. When enforcing the outlet condition, a zero-velocity region only forms at the tip. In general,
it is observed that including the Dirichlet outlet condition in case the outlet flow is locally subsonic does
not transform an incorrect solution into a correct solution.

0 2x0

2

y

2.0

4.0

1(a) Density

0 2x0

2

y

1.0

1.4

1.8

2.2

2.6

1(b) Pressure

0 2x0

2

y

0.0

1.0

2.0

1(c) Horizontal velocity

0 2x0

2

y

0.0

0.2

0.4

0.6

1(d) Vertical velocity

Figure 6.11: Solution of a PINN with global viscosity on the curved shock problem, for wν = 1× 101.

Zero-velocity regions do not form in Fig. 6.10b and Fig. 6.10d because the (local) viscosities are very
large, on the order of 10−2 to 10−1. This confirms the findings of Wassing et al. (2023), who show that

6.2 Curved shock wave 55

the zero-velocity region can be avoided by adding a sufficient amount of viscosity. However, in the case
of the curved shock, the level of viscosity must be so large that the entropy solution is not approximated
properly and the errors in Table 6.4 show only a slight improvement. Interestingly, Fig. 6.12 shows that the
viscosity forms a boundary layer that creates a fictive, blunter object, resulting in a detached shock over
the actual body. Therefore, it can be concluded that a low viscosity fictively sharpens the object, while a
large viscosity fictively blunts the object.

0 2x0

2

y

1.0

1.2

1.5

1.8

1(a) Density

0 2x0

2

y

1.0

2.0

3.0

4.0

1(b) Pressure

0 2x0

2

y

1.0

2.0

1(c) Horizontal velocity

0 2x0

2

y

0.0

0.2

0.4

0.6

1(d) Vertical velocity

Figure 6.12: Solution of a PINN with fixed viscosity on the curved shock problem for ν = 1× 10−1.

0 2x
0

2

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

×10−2

1Figure 6.13: Local viscosity profile of the PINN with local viscosity for wν = 1× 10−1.

Interestingly, Fig. 6.13 reveals that the PINN with local viscosity does not only produce a large viscosity
at the shock but also in the region in front of the tip. This is likely related to the symmetry conditions,
which prescribe that v = 0 at the centerline even though u = 0 is prescribed at the stagnation point of
the object on that same centerline. In other words, the flow must somehow decelerate from free-stream
conditions to stagnation conditions without escaping upwards, which violates continuity. In reality, the
centerline is infinitely thin and the stagnation point is infinitely small, but this might be hard for the PINN
to model. Instead, the PINN opts to produce a large local viscosity so that stagnation is achieved through
heat dissipation instead.

0 2x0

2

y

1.0

1.2

1.4

1(a) No viscosity

0 2x0

2

y

1.0

1.5

2.0

1(b) Fixed viscosity

0 2x0

2

y

1.0

1.5

2.0

1(c) Global viscosity

0 2x0

2

y

1.0

1.5

2.0

1(d) Local viscosity

Figure 6.14: Density solutions for the curved shock problem by streamline PINNs with different viscosity methods.

6.2 Curved shock wave 56

Table 6.5: Errors and viscosity levels of the various streamline PINN solutions for the curved shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v ν̄

PINN wbc = 1e-1 2.01e-1 3.26e-1 5.47e-2 7.01e-1 -
PINN + viscosity ν = 5e-3 3.89e-2 6.41e-2 8.53e-3 1.21e-1 5.0e-3
PINN + global viscosity wν = 1e-1 3.45e-2 5.68e-2 7.64e-3 1.07e-1 5.2e-3
PINN + local viscosity wν = 1e-2 4.91e-2 8.01e-2 1.09-2 1.55e-1 5.2e-3

In contrast to plain PINNs, the results for the streamline PINNs in Fig. 6.14 are considerably better and
show that the curved shock is accurately captured when viscosity is included. Even when viscosity is not
included, the zero-velocity region is no longer present. Interestingly, the most accurate result is produced
by the global viscosity method instead of the local viscosity method. Upon inspecting the profile of the
local viscosity in Fig. 6.15a, it appears that viscosity is also located at the bottom right corner instead of
only at the shock. However, this phenomenon lessens when the viscosity loss weight is increased, as
shown in Fig. 6.15c. In other words, the viscosity at the corner is not necessary to capture the shock but
it is likely a result of the correlation of the viscosity output to the other network outputs.

0 2x
0

2

y

0.0

0.5

1.0

1.5

×10−2

1(a) wν = 1× 10−2

0 2x
0

2

y

0.0

2.0

4.0

6.0

×10−3

1(b) wν = 1× 10−1

0 2x
0

2

y

0.0

1.0

2.0

3.0

4.0

×10−3

1(c) wν = 1× 100

Figure 6.15: Local viscosity profile for the streamline PINN with local viscosity for different viscosity loss weights.

Although streamline PINNs produce a nicely attached shock, the curvature of this shock is highly depen-
dent on the level of viscosity. Fig. 6.16a shows that for a large fixed viscosity, a thick and diffused shock
is produced similar to the plain PINN. By decreasing the viscosity a more accurate shock is produced, but
if it is decreased too much the shock loses its curvature and becomes oblique. The shock likely becomes
so thin that it becomes located in between the collocation points, which can lead to overfitting so that the
jump conditions are no longer satisfied. Behavior like this is problematic when the solution is not known
because each of these solutions has low residuals and therefore it is hard to determine which one is cor-
rect. However, from these results and previous results it appears that the viscosity level that leads to the
best solution is fairly constant. In other words, there is likely a relation between the optimal viscosity level
and the density of the collocation points.

0 2x0

2

y

0.8

1.0

1.2

1(a) ν = 1× 10−1

0 2x0

2

y

1.0

1.5

2.0

1(b) ν = 1× 10−2

0 2x0

2

y

1.0

1.5

2.0

1(c) ν = 1× 10−3

0 2x0

2

y

1.0

1.2

1.5

1.8

1(d) ν = 1× 10−4

Figure 6.16: Density solutions for the curved shock problem by streamline PINNs with different fixed viscosity levels.

6.2 Curved shock wave 57

For the CPINN results, a discriminator with 5 layers of 50 neurons with the relu activation is again consid-
ered. Fig. 6.17 and Table 6.6 show that without viscosity, both the component CPINN and the streamline
CPINN produce zero-velocity regions, although the latter produces a smaller one. These regions are
produced early on in the training process so that, unlike the oblique shock case, the CPINNs do not ini-
tially produce an accurate shock. However, with the addition of viscosity, both output representations
result in accurate shocks. Nevertheless, the component representation produces a low-density streak
near the surface. In contrast, the streamline CPINN with viscosity produces the best results for all PINN
adaptations considered.

0 2x0

2

y

0.5

1.0

1.5

1(a) Component & no viscosity

0 2x0

2
y

1.0

1.5

2.0

1(b) Component & viscosity

0 2x0

2

y

0.5

1.0

1.5

1(c) Streamline & no viscosity

0 2x0

2

y

1.0

1.5

2.0

1(d) Streamline & viscosity

Figure 6.17: Density solutions for the curved shock problem by CPINNs with different adaptations.

Table 6.6: Errors and viscosity levels of the various CPINN solutions for the curved shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v

CPINN - 2.66e-1 3.99e-1 1.24e-1 9.58e-1
CPINN + viscosity ν = 5e-3 7.68e-2 7.45e-2 1.72e-2 1.54e-1
CPINN + streamline - 1.82e-1 2.82e-1 9.62e-2 5.88e-1
CPINN + streamline + viscosity ν = 5e-3 3.03e-2 4.85e-2 7.61e-3 9.62e-2

The reason that CPINNs can produce a better solution than PINNs is due to their inherent ability to balance
the different loss terms. In particular, the discriminator assigns larger weights to the slip condition near
the tip, which reduces the errors significantly compared to PINNs as shown in Fig. 6.18. Essentially, the
generator is forced to model the tip region correctly despite its small size and negligible contribution to the
loss function. This leads to a considerably better performance because the tip region is of vital importance
to the overall curvature and placement of the shock. Note that the large deviation near x = 0.5 is a result
of the ambiguous slip condition at the tip of the object, where the surface inclination is undefined due to
the symmetry boundary conditions.

0.50 0.52 0.54 0.56 0.58 0.60
x

−14

−12

−10

−8

−6

−4

−2

0

ϕ
−
θ
(◦
)

PINN + global viscosity
PINN + viscosity
CPINN + viscosity

1

Figure 6.18: Difference between the flow angle and the surface inclination of the object for streamline (C)PINNs.

6.3 Detached shock wave 58

6.3 Detached shock wave
The streamline PINN and CPINN results for the curved shock wave problem are promising and give
reason to attempt even more complex cases. To the author’s best knowledge, no literature exists on the
simulation of a steady bow shock with PINNs. In particular, current methods rely on known data (Cai
et al., 2021; Jagtap et al., 2022) or can only simulate unsteady transonic shocks (Liu, 2022). To assess
the performance of the considered adaptations, the problem in Fig. 6.19 is considered. It is essentially
equivalent to the curved shock problem, except with a smaller Mach number such that θtip > θmax, resulting
in a detached shock. The reference solution is again calculated with OpenFOAM, details can be found in
Appendix A.

Symmetry

Inlet Outlet

Symmetry
Slip

Figure 6.19: Domain and boundary conditions for the detached shock wave problem. The Mach number is 1.5 and
the domain size is [0, 2]× [0, 4] with the object starting at x = 0.5.

The reference solution is shown in Fig. 6.20, showing that the shock detaches at approximately δ = 0.16
from the tip of the object. As a result, a small subsonic region is present near the tip. In particular, a smooth
stagnation point now occurs at the tip which might provoke the creation of a zero-velocity region. After
the subsonic tip region, the flow is expanded so that the flow at the outlet is completely supersonic again.
The base PINN setup is identical to the curved shock problem, except for the domain being expanded to
(x, y) ∈ [0, 2] × [0, 4]. Furthermore, the number of collocation points is doubled to 20,000 to maintain the
same point density. The number of boundary condition points is not increased, as the domain expansion
only affects the boundary point density at the inlet, which has a negligible effect because the boundary
conditions are uniform there.

6.3 Detached shock wave 59

0 2x
0

2
y

1.0

1.2

1.4

1.6

1.8

2.0

2.2

(a) Density

0 2x
0

2

y

1.0

1.5

2.0

2.5

3.0

(b) Pressure

0 2x
0

2

y

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(c) Horizontal velocity

0 2x
0

2

y

0.0

0.1

0.2

0.3

(d) Vertical velocity

Figure 6.20: Reference solution of the detached shock problem in Fig. 6.19.

Interestingly, Fig. 6.21 shows that even without viscosity a detached shock wave can be produced by
PINNs. However, this is only the case for very large boundary condition weights as evident from Table 6.7.
The addition of viscosity greatly improves the shape of the produced shock wave, although all viscosity
adaptations struggle with the stagnation zone in front of the tip. This is the result of the initial tendency
to produce a zero-velocity region around the object, which also creates a low-density streak on the top
surface. The local viscosity method produces the most accurate result overall, possibly owing due to its
slightly better-modeled expansion region. Nevertheless, the detachment distance is far from correct and
the shock is more diffused compared to the other viscosity methods.

0 2x
0

2

y

1.0

1.2

1.4

1.6

1.8

(a) No viscosity

0 2x
0

2

y

0.8

1.0

1.2

1.4

1.6

(b) Fixed viscosity

0 2x
0

2

y

0.8

1.0

1.2

1.4

1.6

1.8

(c) Global viscosity

0 2x
0

2

y

1.0

1.2

1.4

1.6

(d) Local viscosity

Figure 6.21: Density solutions for the detached shock problem by PINNs with different viscosity methods.

Table 6.7: Errors and viscosity levels of the various PINN solutions for the detached shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v ν̄

PINN wbc = 1e+4 1.33e-1 1.94e-1 9.17e-2 4.56e-1 -
PINN + viscosity ν = 1e-2 9.64e-2 1.25e-1 6.23e-2 3.00e-1 1.0e-2
PINN + viscosity + Neumann ν = 5e-3 1.18e-1 1.71e-1 8.73e-2 4.23e-1 5.0e-3
PINN + global viscosity wν = 1e+0 8.37e-2 1.17e-1 5.76e-2 2.80e-1 6.4e-3
PINN + local viscosity wν = 1e-2 8.07e-2 1.13e-1 5.99e-2 2.55e-1 3.8e-3

6.3 Detached shock wave 60

Upon inspection of the local viscosity profile of the PINN with the local viscosity method in Fig. 6.22a, a
high viscosity region occurs in front of the tip similar to what is seen for the attached shock in Fig. 6.13. To
reiterate, the bottom symmetry conditions cannot be properly satisfied due to the zero-velocity tip region
in Fig. 6.22c. As a result, the PINN tries to solve this by adding viscosity in front of the tip so that the flow
can stagnate through heat dissipation (friction).

0 2x
0

2

y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(a) Local viscosity

0 2x
0

2

y

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

(b) Pressure

0 2x
0

2

y

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(c) Horizontal velocity

0 2x
0

2

y

0.00

0.05

0.10

0.15

0.20

0.25

(d) Vertical velocity

Figure 6.22: Solution of a PINN with local viscosity on the detached shock problem for wν = 1× 10−2.

It is interesting to note that the local viscosity PINN solution is not fully symmetric at the bottom symmetry
plane, similar to the fixed viscosity PINN solution in Fig. 6.21b. This is a direct consequence of not en-
forcing the Neumann boundary conditions. While excluding them makes the problem underdetermined,
it does not mean that including them will necessarily improve the solution, as it can change the loss land-
scape. In fact, it is observed that the solutions hardly change when including these boundary conditions,
although something interesting happens in the case of the fixed viscosity method. Fig. 6.23 shows that
the stagnation region is modeled slightly better, although the solution overall is worse based on Table 6.7.

0 2x
0

2

y

1.0

1.2

1.4

1.6

1.8

2.0

(a) Density

0 2x
0

2

y

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

(b) Pressure

0 2x
0

2

y

0.6

0.8

1.0

1.2

1.4

1.6

(c) Horizontal velocity

0 2x
0

2

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(d) Vertical velocity

Figure 6.23: Solution of a PINN with fixed viscosity and Neumann boundary conditions on the detached shock
problem for ν = 5× 10−3.

Unlike on the curved shock problem, the solutions obtained with streamline PINNs deteriorate on the
detached shock problem. Although Fig. 6.24 shows that sharp shocks are produced when including
viscosity, they are attached and the errors in Table 6.8 are worse than before. This is because the PINNs
are initially eager to fit the slip boundary conditions, but fail to detach the shock afterward as it requires a
sharp transition of ϕ in front of the tip. In other words, streamline PINNs are prone to a new local minima.

6.3 Detached shock wave 61

0 2x
0

2
y

1.0

1.2

1.4

1.6

1.8

(a) No viscosity

0 2x
0

2

y

1.0

1.2

1.4

1.6

1.8

(b) Fixed viscosity

0 2x
0

2

y

1.0

1.2

1.4

1.6

1.8

2.0

(c) Global viscosity

0 2x
0

2

y

1.0

1.2

1.4

1.6

1.8

2.0

(d) Local viscosity

Figure 6.24: Density solutions for the detached shock problem by streamline PINNs with different viscosity methods.

Table 6.8: Errors and viscosity levels of the various streamline PINN solutions for the detached shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v ν̄

PINN wbc = 1e+1 1.38e-1 2.02e-1 9.21e-2 4.83e-1 -
PINN + viscosity ν = 1e-2 1.49e-1 2.17e-1 1.13e-1 5.53e-1 1.0e-2
PINN + global viscosity wν = 1e-1 1.75e-1 2.54e-1 1.19e-1 6.42e-1 2.0e-3
PINN + local viscosity wν = 1e-4 1.70e-1 2.47e-1 1.12e-1 6.27e-1 2.4e-3

This behavior can be mitigated by including the Neumann boundary conditions at the bottom and object
surface, as it prevents the initial attachment of the shock wave. This is clearly shown in Fig. 6.25, showing
that all solutions with viscosity methods have now detached. As a result, the errors have significantly
decreased, as shown in Table 6.9. It is particularly interesting to note that the fixed viscosity methods
nicely model the stagnation region, although the errors are higher compared to some of the PINN results in
Table 6.7. While the detachment that occurs by enforcing the Neumann boundary conditions is beneficial,
the strong tendency of attachment displayed by the streamline representation is likely why it performed
so well on the attached shock problem in the previous section.

0 2x
0

2

y

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(a) No viscosity

0 2x
0

2

y

1.0

1.2

1.4

1.6

1.8

2.0

(b) Fixed viscosity

0 2x
0

2

y

1.0

1.2

1.4

1.6

1.8

(c) Global viscosity

0 2x
0

2

y

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(d) Local viscosity

Figure 6.25: Density solutions for the detached shock problem by streamline PINNs with Neumann boundary
conditions for different viscosity methods.

6.3 Detached shock wave 62

Table 6.9: Errors and viscosity levels of the various streamline PINN solutions with Neumann boundary conditions
for the detached shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v ν̄

PINN wbc = 1e+2 1.35e-1 1.99e-1 9.08e-2 4.79e-2 -
PINN + viscosity ν = 5e-3 9.10e-2 1.32e-1 5.95e-2 3.33e-1 5.0e-3
PINN + global viscosity wν = 1e-1 1.30e-1 1.90e-1 9.07e-2 4.77e-1 1.1e-2
PINN + local viscosity wν = 1e-1 1.29e-1 1.85e-1 8.70e-2 5.19e-1 1.4e-3

In contrast to streamline PINNs, streamline CPINNs do not produce an attached shock wave as shown
in Fig. 6.26d, resulting in the best result so far as is evident from Table 6.10. It is therefore likely that the
streamline PINNs are underfitting some boundary conditions to produce an attached solution, which can
be successfully alleviated by employing a discriminator to weigh these points more heavily. The other
CPINN solutions are not successful and the simulations without viscosity completely fail. Furthermore,
Fig. 6.26b shows a zero-velocity region with an oblique wedge over it.

0 2x
0

2

y

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(a) Component & no viscosity

0 2x
0

2

y

0.8

1.0

1.2

1.4

(b) Component & viscosity

0 2x
0

2

y

0.6

0.8

1.0

1.2

1.4

1.6

(c) Streamline & no viscosity

0 2x
0

2

y
0.8

1.0

1.2

1.4

1.6

(d) Streamline & viscosity

Figure 6.26: Density solutions for the detached shock problem by CPINNs with different adaptations.

Table 6.10: Errors and viscosity levels of the various CPINN solutions for the detached shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v

CPINN - 2.30e-1 2.72e-1 1.31e-1 6.30e-1
CPINN + viscosity ν = 1e-3 1.11e-1 1.44e-1 7.63e-2 3.84e-1
CPINN + streamline - 2.34e-1 2.95e-1 1.49e-1 7.89e-1
CPINN + streamline + viscosity ν = 5e-3 7.57e-2 1.00e-1 4.40e-2 2.61e-1

Similar to PINNs, CPINNs are sensitive to the choice of included boundary conditions and output rep-
resentation. In particular, it is observed that including the Neumann boundary conditions at the bottom
boundaries results in a breakdown of the solution similar to the inviscid CPINN solutions. However, it is im-
portant to reiterate that the discriminator network needs an additional output for each boundary condition
considered, so the discriminator may lack the approximation capacity to correctly involve the additional
Neumann boundary conditions. Nevertheless, to show that CPINNs can also nicely resolve the stagnation
region, consider the alternative formulation of the streamline representation in Eq. (5.4).

∥u∥ : f(x) = exp(x), ϕ : f(x) = π tanh(x) (5.4 repeated)

This minor change results in a much better solution, as shown in Fig. 6.27. In fact, this is the best solution
overall for the detached shock problem as shown in Table 6.11. The reason that this alternative streamline

representation yields better results is likely because it more easily satisfies the Neumann conditions. This
assumption is based on the large negative velocities that are produced by the CPINN in Fig. 6.26d below
y = 0 (not visible), which does not occur in the CPINN solution shown in Fig. 6.27. Note again that
this does not mean that this alternative streamline representation is better than the original one, it simply
indicates how sensitive (C)PINNs are to even minor changes.

0 2x
0

2

y

1.0

1.2

1.4

1.6

1.8

2.0

2.2

(a) Density

0 2x
0

2

y

1.0

1.5

2.0

2.5

3.0

(b) Pressure

0 2x
0

2

y

0.6

0.8

1.0

1.2

1.4

1.6

(c) Horizontal velocity

0 2x
0

2

y

0.0

0.1

0.2

0.3

(d) Vertical velocity

Figure 6.27: Solution of a CPINN with an alternative streamline formulation, fixed viscosity and Neumann boundary
conditions on the detached shock problem for ν = 5× 10−3.

Table 6.11: Errors and viscosity levels of the CPINN solution with an alternative streamline formulation, fixed
viscosity and Neumann boundary conditions for the detached shock problem.

Hyperparameter L2,ρ L2,p L2,u L2,v

CPINN + alt. streamline + viscosity ν = 5e-3 5.30e-2 7.75e-2 3.27e-2 1.82e-1

Closing remarks
While existing adaptations can simulate an oblique shock reasonably, the accuracy is slightly improved
when using the local viscosity method. However, the difference compared to the global viscosity method is
minimal on all problems considered. While the absence of viscosity in isentropic regions is beneficial, the
effects are limited because the problems involve isentropic regions with low gradients. The local viscos-
ity method will likely have a more pronounced impact when considering isentropic discontinuities such as
contact discontinuities and shear waves. In contrast, existing adaptations fail on the curved shock problem
when not combined with the streamline output representation, which successfully alleviates the formation
of zero-velocity regions. However, these regions are less pronounced in the detached shock wave prob-
lem and the streamline output representation can actually worsen results due to its strong tendency of
attachment. Nevertheless, this effect can be partly mitigated by including the Neumann boundary condi-
tions. Overall, the best results are obtained when combining CPINNs with viscosity and the streamline
output representation, although at a much larger computational cost.

In short, the proposed local viscosity and streamline output representation adaptations successfully im-
prove the shock-capturing capabilities of PINNs and for the first time allow accurate simulations of curved
and detached steady shocks. While the results are promising, only a single problem is considered for
each shock class, so one must be careful about drawing general conclusions from these results.

63

Part III
Closure

64

7
Conclusion

In recent years, PINNs have been shown to tackle a wide range of fluid dynamics problems despite
suffering from many failure modes. This is because the failure modes have been well-documented and
many adaptations have been proposed to alleviate them. However, the simulation of highly compressible
flows involves unique failure modes that have not yet been properly identified. Therefore, the goal of
this thesis was to provide a unifying theory on why PINNs fail on highly compressible problems and to
design new adaptations that can alleviate these failure modes to allow for the simulation of more complex
shocks such as curved and detached shocks. For this purpose, the following research questions are
answered. Note that the Euler equations are considered since there is little reference literature using the
Navier-Stokes equations.

Why do PINNs fail on highly compressible problems?

Essentially, two failure modes have been identified that prohibit PINNs from effectively simulating highly
compressible flows. The first, more fundamental failure mode is related to the differential nature of PINNs.
In particular, analysis of the differential Euler equations shows that entropy is conserved along streamlines,
even though shocks are not isentropic phenomena. Hence, PINNs suffer from the entropy failure mode
because they try to find an isentropic solution to a non-isentropic problem. As a result, the simulation of
problems involving shocks can lead to nonphysical phenomena that bear little resemblance to the physical
solution. Note that the simulation of other highly compressible features such as expansion waves and
even contact discontinuities is no issue to PINNs, since they are isentropic. Interestingly, CPINNs can
temporarily cope with the entropy failure mode by not satisfying the Euler equations at shocks, producing
locally high residuals. While this results in an accurate solution initially, the failure mode resurfaces once
the residuals decrease further on in the training process.

The second, more applied failure mode is related to the ambiguous nature of the slip boundary conditions.
While these boundary conditions aim to constrain the flow direction in a tangential direction along the
surface, they do so by penalizing the normal component of the velocity. As a result, a trivial zero velocity
is also a solution to the boundary conditions even though this is usually only valid for stagnation points. The
simplicity of this trivial solution compared to learning the dependency between the velocity components
creates a strong local minimum, which can cause PINNs to initially produce zero-velocity regions over
the surfaces of objects. Interestingly, this slip failure mode leads to the creation of fictive objects that are
delineated by a combination of shear waves and contact discontinuities. The flow around this fictive object
is physical, although it is drastically simpler than the flow around the original object. Overall, this failure
mode prevents PINNs from being able to simulate highly compressible flows over curved objects, even in
the absence of shocks.

How do existing adaptations relate to these failure modes?

The symptoms of both failure modes have certainly been observed in literature, although they have only
been treated with limited success. This is mainly because the underlying rationales of the proposed
adaptations do not sufficiently identify the above failure modes, so some of the successful results are only
obtained by luck. A prime example is the domain extension method by Papados (2021), which promises

65

66

to eliminate the nonphysical phenomena arising from the entropy failure mode by extending the domain to
suppress spurious oscillations. Although it improves the results, it is actually because the collocation point
density is reduced which makes it less likely that points are located near the shock so that the entropy
failure mode cannot manifest. A different adaptation by Liu (2022) suppresses the high residuals to allow
for sharp discontinuities, which led to the first PINN simulation of an unsteady curved shock. However,
this method is more of a remedy, as it makes no notion of entropy and stimulates overfitting. In addition,
it also affects other discontinuities such as contact discontinuities and shear waves.

Another class of adaptations is based on the addition of viscosity to the PDEs, which mimics the numerical
viscosity that manifests in traditional solvers allowing them to capture shocks. Since viscosity allows for
dissipation, it also provides a mean of entropy increase and thus the avoidance of the entropy failure
mode. However, when the viscosity is too small it has no effect and when the viscosity is too large the
solution is diffused too much. The former also gives reason to believe that the entropy failure mode can
manifest in the Navier-Stokes equations too, despite the presence of a dissipation term. In addition, it not
only affects shocks but also other regions of the flow that would otherwise be isentropic. Nevertheless,
the results indicate that a fixed viscosity allows for the accurate capture of shocks. To avoid selecting
the viscosity level manually, both Wassing et al. (2023) and Coutinho et al. (2023) propose methods that
automatically reduce the viscosity. While these vanishing viscosity methods are effective, the authors do
not mention that viscosity below a certain threshold leads to the resurfacing of an entropy failure mode.
Lastly, the addition of viscosity is also used to alleviate symptoms of the slip failure mode by Wassing et al.
(2023), although this is only effective on subsonic flows without shocks.

What adaptations can alleviate these failure modes?

Current viscositymethods are effective at suppressing the entropy failuremode, but they are indiscriminate
in the sense that viscosity also affects isentropic regions of the domain. While Coutinho et al. (2023) have
proposed local viscosity methods, they either rely on foreknowledge of the solution or on a discretized
mesh. Therefore, a truly local viscosity method is proposed that includes the viscosity as an additional
output of the PINN. By adding a viscous loss term to the loss function, large diffusive viscosities are
prevented. The results show that this method can accurately localize the viscosity at shocks, leading to
a substantially lower average viscosity. Nevertheless, its results are often only marginally better than an
existing similar global viscosity method. This is likely because global viscosity only has a limited negative
effect on isentropic regions since the gradients there are substantially lower than at shocks. However,
problems involving other discontinuities would likely benefit significantly from a local viscosity method
because global viscosity cannot differentiate between isentropic and non-isentropic discontinuities.

To counteract the slip failure mode, a streamline output representation is proposed that allows for a more
natural formulation of the slip boundary conditions. This new formulation does not penalize normal ve-
locities, but rather the misdirection of the flow. As a result, the adapted PINNs are able to accurately
capture steady attached curved shocks which is otherwise not possible. In addition, while the results
show that CPINNs are able to capture curved shocks without this new output representation, their per-
formance significantly improves when using it. Nevertheless, the streamline output representation is so
effective at producing attached shocks that it fails to detach shocks when necessary. This strong tendency
of attachment can be alleviated by including Neumann boundary conditions, which results in reasonably
accurate detached shocks. However, the best results are obtained by combining the streamline output
representation with CPINNs.

Interpretation
All in all, a theory on highly compressible failure modes is presented that leads to the introduction of new
adaptations that significantly improve the shock-capturing capabilities of PINNs. In fact, to the author’s
best knowledge, the results provide the first successful simulations of steady curved and detached shocks
by PINNs. Nevertheless, it is important to state that the adaptions still do not provide a consistent method
of capturing complex shocks, as a slight change in the boundary conditions or network outputs can lead
to drastically different results. As John Anderson said, “Like all computational fluid dynamics applications,
solutions are frequently more of an art than a science.”. It is therefore not wise to draw strong conclusions
on the general performance of these adaptations, but they are certainly a step in the right direction.

8
Recommendations

While the results are promising, they perhaps provide more questions than answers. In particular, the
introduced adaptations are based on empirical observations and there are certainly more possible def-
initions or even entirely new adaptations that can achieve the same effects. This chapter provides an
overview of possible future research directions that could further enhance the usage of PINNs for highly
compressible flows. However, this list is certainly not exhaustive.

8.1 Design of viscosity
8.1.1 Relation viscosity and collocation points
The results show that the minimum viscosity level that admits physical shocks is fairly
consistent. Since the same density of collocation points was used across the consid-
ered problems, it may indicate that there is a relation between the two. Therefore, a
future point of study could be the investigation of how the minimum viscosity level de-
pends on the density and placement of collocation points.

8.1.2 Other forms of viscosity
All the viscosity methods considered in this thesis have the form ν∆u, with u the con-
served variable. However, there might be more suitable definitions. For example, it may
be possible to add a viscosity term to the energy equation alone, as the conservation
of entropy originates from it. A starting point is a review of discretization schemes in
traditional solvers since they are carefully designed to result in numerical viscosity that
satisfies certain criteria. The complete freedom that PINNs offer in the modification of
the solved equations could potentially allow even better forms of artificial viscosity.

8.2 Boundary conditions
8.2.1 Importance of boundary conditions
For most problems considered in the thesis, certain boundary conditions were omitted
because they can complexify the loss landscape and prevent suitable convergence.
This is conflicting, as they should be included to make the problem well-posed and
guarantee the existence of a unique solution. Therefore, it is valuable to investigate
what the effect is of including or excluding certain boundary conditions. Perhaps it is
possible to include a weaker form of certain boundary conditions, where they are only
included if they are violated significantly.

8.2.2 Alternative definitions
Similar to the streamline output representation for the slip boundary condition, there
could be alternative definitions of the outputs that lead to more natural formulations
of other boundary conditions. An example could be using the characteristic form and
variables of the Euler equations, allowing a more natural definition of outlet boundary
conditions by means of characteristic boundary conditions.

67

68

8.3 Integral solvers
8.3.1 Finite volume PINNs
Although Section 4.3 mentions that traditional solvers can capture shocks due to the
presence of numerical artificial viscosity, this is only true for finite difference solvers.
Finite volume solvers use the integral conservation laws instead, which means the
Rankine-Hugoniot jump relations are satisfied naturally. While PINNs are fundamen-
tally based on a differential approach, there is active research on the design of finite
volume PINNs (Praditia et al., 2021; Patel et al., 2022; Papados, 2022). These meth-
ods can completely mitigate the entropy failure mode, although they likely still suffer
from the zero-velocity failure mode.

8.4 Applications
8.4.1 Full body simulations
The considered oblique, curved and detached shock problems are all symmetric and
concern only the frontal parts of objects. It is interesting to investigate if the proposed
framework and adaptations are also effective at simulating full bodies, which would
include for example shocks at trailing edges. Such simulations were not considered
for this thesis as they require more computational resources and come with their own
peculiarities.

8.4.2 Shock wave interactions
Only single shock waves were considered in this thesis, but it is also possible that shock
waves intersect and interact. These points of intersection could be more challenging
to PINNs as they occur at a singular point, possibly far away from collocation points.
Furthermore, they create contact discontinuities as some streamlines pass through two
shocks while some only through one. A simple problem that features such an interaction
is the double wedge problem.

References

Anderson, John D. (2006). Hypersonic and high-temperature gas dynamics. 2nd ed. AIAA education series. OCLC:
ocm68262944. Reston, Va: American Institute of Aeronautics and Astronautics.

Anderson, John David (2021). Modern compressible flow: with historical perspective. eng. Fourth edition. New York,
NY: McGraw Hill.

Anderson, John David, Lorenzo M. Albacete, and Allen Edward Winkelmann (1968). On Hypersonic Blunt Body Flow
Fields Obtained with a Time-dependent Technique. en. United States Naval Ordnance Laboratory.

Ang, Elijah and Bing Feng Ng (Jan. 2022). “Physics-Informed Neural Networks for Flow Around Airfoil”. In: AIAA
SCITECH 2022 Forum. American Institute of Aeronautics and Astronautics. DOI: 10.2514/6.2022-0187. URL:
https://doi.org/10.2514/6.2022-0187.

Baydin, Atılım Günes et al. (Jan. 2017). “Automatic differentiation in machine learning: a survey”. In: The Journal of
Machine Learning Research 18.1, pp. 5595–5637.

Berrone, S. et al. (2022). “Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational
physics-informed neural networks”. In: DOI: 10.48550/ARXIV.2210.14795. URL: https://arxiv.org/abs/2210.
14795 (visited on 07/09/2023).

Billig, Frederick S. (June 1967). “Shock-wave shapes around spherical-and cylindrical-nosed bodies.” en. In: Journal
of Spacecraft and Rockets 4.6, pp. 822–823. DOI: 10.2514/3.28969. URL: https://arc.aiaa.org/doi/10.
2514/3.28969 (visited on 07/04/2023).

Brunton, Steven L., Bernd R. Noack, and Petros Koumoutsakos (2020). “Machine Learning for Fluid Mechanics”. In:
Annual Review of Fluid Mechanics 52.1, pp. 477–508. DOI: 10.1146/annurev-fluid-010719-060214. eprint:
https://doi.org/10.1146/annurev- fluid- 010719- 060214. URL: https://doi.org/10.1146/annurev-
fluid-010719-060214.

Butcher, J.C. (June 2003). Numerical methods for ordinary differential equations. en. Nashville, TN: John Wiley &
Sons.

Cai, Shengze et al. (Dec. 2021). “Physics-informed neural networks (PINNs) for fluid mechanics: a review”. en. In:
Acta Mechanica Sinica 37.12, pp. 1727–1738. DOI: 10.1007/s10409-021-01148-1. URL: https://doi.org/10.
1007/s10409-021-01148-1.

Canuto, Claudio et al. (2012). Spectral methods in fluid dynamics. Springer Science & Business Media.

Choromanska, Anna et al. (Jan. 2015). The Loss Surfaces of Multilayer Networks. arXiv:1412.0233 [cs]. DOI: 10.
48550/arXiv.1412.0233. URL: http://arxiv.org/abs/1412.0233.

Coutinho, Emilio Jose Rocha et al. (Sept. 2023). “Physics-informed neural networks with adaptive localized artificial
viscosity”. In: Journal of Computational Physics 489, p. 112265. DOI: 10.1016/j.jcp.2023.112265. URL: https:
//doi.org/10.1016/j.jcp.2023.112265.

Cybenko, G. (Dec. 1989). “Approximation by superpositions of a sigmoidal function”. en. In: Mathematics of Con-
trol, Signals and Systems 2.4, pp. 303–314. DOI: 10.1007/BF02551274. URL: https://doi.org/10.1007/
BF02551274.

Daw, Arka et al. (Oct. 2022).Mitigating Propagation Failures in PINNs using Evolutionary Sampling. arXiv:2207.02338
[cs]. DOI: 10.48550/arXiv.2207.02338. URL: http://arxiv.org/abs/2207.02338.

Deng, Li (2012). “The mnist database of handwritten digit images for machine learning research”. In: IEEE Signal
Processing Magazine 29.6, pp. 141–142.

DHPC (2022). DelftBlue Supercomputer (Phase 1). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1.

Eivazi, Hamidreza et al. (July 2022). “Physics-informed neural networks for solving Reynolds-averagedNavier–Stokes
equations”. In: Physics of Fluids 34.7, p. 075117. DOI: 10.1063/5.0095270. URL: https://doi.org/10.1063/5.
0095270.

Evans, Lawrence C. (2022). Partial differential equations. eng. Second edition. Graduate studies in mathematics 19.
Providence, Rhode Island: American Mathematical Society.

69

https://doi.org/10.2514/6.2022-0187
https://doi.org/10.2514/6.2022-0187
https://doi.org/10.48550/ARXIV.2210.14795
https://arxiv.org/abs/2210.14795
https://arxiv.org/abs/2210.14795
https://doi.org/10.2514/3.28969
https://arc.aiaa.org/doi/10.2514/3.28969
https://arc.aiaa.org/doi/10.2514/3.28969
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.48550/arXiv.1412.0233
https://doi.org/10.48550/arXiv.1412.0233
http://arxiv.org/abs/1412.0233
https://doi.org/10.1016/j.jcp.2023.112265
https://doi.org/10.1016/j.jcp.2023.112265
https://doi.org/10.1016/j.jcp.2023.112265
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.48550/arXiv.2207.02338
http://arxiv.org/abs/2207.02338
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://doi.org/10.1063/5.0095270
https://doi.org/10.1063/5.0095270
https://doi.org/10.1063/5.0095270

References 70

Ferrer-Sánchez, Antonio et al. (2023). Gradient-Annihilated PINNs for Solving Riemann Problems: Application to
Relativistic Hydrodynamics. DOI: 10.48550/ARXIV.2305.08448. URL: https://arxiv.org/abs/2305.08448.

Ferziger, Joel H and Milovan Peric (Dec. 2012). Computational methods for fluid dynamics. en. 3rd ed. Berlin, Ger-
many: Springer.

Geuzaine, Christophe and Jean-François Remacle (May 2009). “Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities”. In: International Journal for Numerical Methods in Engineering 79.11,
pp. 1309–1331. DOI: 10.1002/nme.2579. URL: https://doi.org/10.1002/nme.2579.

Goodfellow, Ian J. et al. (2014). Generative Adversarial Networks. DOI: 10.48550/ARXIV.1406.2661. URL: https:
//arxiv.org/abs/1406.2661.

Gu, Yiqi, Haizhao Yang, and Chao Zhou (Sept. 2021). “SelectNet: Self-paced learning for high-dimensional partial
differential equations”. In: Journal of Computational Physics 441, p. 110444. DOI: 10.1016/j.jcp.2021.110444.
URL: https://doi.org/10.1016/j.jcp.2021.110444.

Haberman, Richard (2014). Applied partial differential equations with fourier series and boundary value problems.
eng. 5th edition, Pearson new international edition. OCLC: 973285331. Harlow: Pearson.

Han, Jihun and Yoonsang Lee (2023). “Hierarchical Learning to Solve PDEs Using Physics-Informed Neural Net-
works”. In: Computational Science - ICCS 2023. Springer Nature Switzerland, pp. 548–562. DOI: 10.1007/978-
3-031-36024-4_42. URL: https://doi.org/10.1007/978-3-031-36024-4_42.

Hennigh, Oliver et al. (2021). “NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework”. In: Com-
putational Science – ICCS 2021. Springer International Publishing, pp. 447–461. DOI: 10.1007/978- 3- 030-
77977-1_36. URL: https://doi.org/10.1007/978-3-030-77977-1_36.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (Jan. 1989). “Multilayer feedforward networks are universal
approximators”. In: Neural Networks 2.5, pp. 359–366. DOI: 10.1016/0893- 6080(89)90020- 8. URL: https:
//doi.org/10.1016/0893-6080(89)90020-8.

Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis (Mar. 2020a). “Adaptive activation functions ac-
celerate convergence in deep and physics-informed neural networks”. In: Journal of Computational Physics 404,
p. 109136. DOI: 10.1016/j.jcp.2019.109136. URL: https://doi.org/10.1016/j.jcp.2019.109136.

Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis (July 2020b). “Locally adaptive activation functions
with slope recovery for deep and physics-informed neural networks”. In: Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 476.2239, p. 20200334. DOI: 10.1098/rspa.2020.0334. URL:
https://doi.org/10.1098/rspa.2020.0334.

Jagtap, Ameya D. et al. (Oct. 2022). “Physics-informed neural networks for inverse problems in supersonic flows”. In:
Journal of Computational Physics 466, p. 111402. DOI: 10.1016/j.jcp.2022.111402. URL: https://doi.org/
10.1016/j.jcp.2022.111402.

Jiang, Chiyu ”Max” et al. (Nov. 2020). “MeshfreeFlowNet: a physics-constrained deep continuous space-time super-
resolution framework”. In: Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. SC ’20. Atlanta, Georgia: IEEE Press, pp. 1–15.

Jin, Xiaowei et al. (Feb. 2021). “NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incom-
pressible Navier-Stokes equations”. en. In: Journal of Computational Physics 426, p. 109951. DOI: 10.1016/j.
jcp.2020.109951. URL: https://www.sciencedirect.com/science/article/pii/S0021999120307257.

Karniadakis, Ameya D. Jagtap & George Em (June 2020). “Extended Physics-Informed Neural Networks (XPINNs):
A Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial Differ-
ential Equations”. In: Communications in Computational Physics 28.5, pp. 2002–2041. DOI: 10.4208/cicp.OA-
2020-0164. URL: http://global-sci.org/intro/article_detail/cicp/18403.html.

Karras, Tero et al. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation. DOI: 10.48550/
ARXIV.1710.10196. URL: https://arxiv.org/abs/1710.10196.

Khan, Arbaaz and David A. Lowther (Sept. 2022). “Physics Informed Neural Networks for Electromagnetic Analysis”.
In: IEEE Transactions on Magnetics 58.9, pp. 1–4. DOI: 10.1109/tmag.2022.3161814. URL: https://doi.org/
10.1109/tmag.2022.3161814.

Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Optimization. DOI: 10.48550/ARXIV.1412.
6980. URL: https://arxiv.org/abs/1412.6980.

https://doi.org/10.48550/ARXIV.2305.08448
https://arxiv.org/abs/2305.08448
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1016/j.jcp.2021.110444
https://doi.org/10.1016/j.jcp.2021.110444
https://doi.org/10.1007/978-3-031-36024-4_42
https://doi.org/10.1007/978-3-031-36024-4_42
https://doi.org/10.1007/978-3-031-36024-4_42
https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1098/rspa.2020.0334
https://doi.org/10.1098/rspa.2020.0334
https://doi.org/10.1016/j.jcp.2022.111402
https://doi.org/10.1016/j.jcp.2022.111402
https://doi.org/10.1016/j.jcp.2022.111402
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.jcp.2020.109951
https://www.sciencedirect.com/science/article/pii/S0021999120307257
https://doi.org/10.4208/cicp.OA-2020-0164
https://doi.org/10.4208/cicp.OA-2020-0164
http://global-sci.org/intro/article_detail/cicp/18403.html
https://doi.org/10.48550/ARXIV.1710.10196
https://doi.org/10.48550/ARXIV.1710.10196
https://arxiv.org/abs/1710.10196
https://doi.org/10.1109/tmag.2022.3161814
https://doi.org/10.1109/tmag.2022.3161814
https://doi.org/10.1109/tmag.2022.3161814
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980

References 71

Korpelevich, G. M. (1977). “The extragradient method for finding saddle points and other problems”. In: vol. 13. 4,
pp. 35–49.

Krishnapriyan, Aditi S. et al. (Nov. 2021). Characterizing possible failure modes in physics-informed neural networks.
arXiv:2109.01050 [physics]. DOI: 10.48550/arXiv.2109.01050. URL: http://arxiv.org/abs/2109.01050.

Kumar, M. Pawan, Benjamin Packer, and Daphne Koller (2010). “Self-Paced Learning for Latent Variable Models”.
In: Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 1.
NIPS’10. Vancouver, British Columbia, Canada: Curran Associates Inc., pp. 1189–1197.

Kármán, Th. von (1911). “Ueber den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit
erfährt”. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische
Klasse 1911, pp. 509–517. URL: http://eudml.org/doc/58812.

Lagaris, I.E., A. Likas, and D.I. Fotiadis (1998). “Artificial neural networks for solving ordinary and partial differential
equations”. In: IEEE Transactions on Neural Networks 9.5, pp. 987–1000. DOI: 10.1109/72.712178. URL: https:
//doi.org/10.1109/72.712178.

Laubscher, Ryno, Pieter Rousseau, and Chris Meyer (June 2022). “Modeling of Inviscid Flow Shock Formation in a
Wedge-Shaped Domain Using a Physics-Informed Neural Network-Based Partial Differential Equation Solver”.
In: Volume 10C: Turbomachinery - Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and
Component Interactions. American Society of Mechanical Engineers. DOI: 10.1115/gt2022-81768. URL: https:
//doi.org/10.1115/gt2022-81768.

Lederer, Johannes (2021). Activation Functions in Artificial Neural Networks: A Systematic Overview. DOI: 10.48550/
ARXIV.2101.09957. URL: https://arxiv.org/abs/2101.09957.

LeVeque, Randall J. (1992). Numerical Methods for Conservation Laws. Birkhäuser Basel. DOI: 10.1007/978- 3-
0348-8629-1. URL: https://doi.org/10.1007/978-3-0348-8629-1.

Liang, Tengyuan and James Stokes (2018). “Interaction Matters: A Note on Non-asymptotic Local Convergence of
Generative Adversarial Networks”. In: DOI: 10.48550/ARXIV.1802.06132. URL: https://arxiv.org/abs/1802.
06132.

Liepmann, H. W. and A. Roshko (2001). Elements of gasdynamics. Mineola, N.Y: Dover Publications.

Liu, Dehao and Yan Wang (Apr. 2021). “A Dual-Dimer method for training physics-constrained neural networks with
minimax architecture”. In: Neural Networks 136, pp. 112–125. DOI: 10.1016/j.neunet.2020.12.028. URL:
https://doi.org/10.1016/j.neunet.2020.12.028.

Liu, Dong C. and Jorge Nocedal (Aug. 1989). “On the limited memory BFGS method for large scale optimization”. en.
In: Mathematical Programming 45.1, pp. 503–528. DOI: 10.1007/BF01589116. URL: https://doi.org/10.1007/
BF01589116.

Liu, Li (June 2022). “Discontinuity Computing with Physics-Informed Neural Network”. In: DOI: 10.36227/techrxiv.
19391279. URL: https://doi.org/10.36227/techrxiv.19391279.

Liu, Xu et al. (May 2022). “A novel meta-learning initialization method for physics-informed neural networks”. In:
Neural Computing and Applications 34.17, pp. 14511–14534. DOI: 10.1007/s00521-022-07294-2. URL: https:
//doi.org/10.1007/s00521-022-07294-2.

Lu, Lu et al. (Jan. 2021). “DeepXDE: A Deep Learning Library for Solving Differential Equations”. In: SIAM Review
63.1, pp. 208–228. DOI: 10.1137/19M1274067. URL: https://epubs.siam.org/doi/10.1137/19M1274067.

Mao, Zhiping, Ameya D. Jagtap, and George EmKarniadakis (Mar. 2020). “Physics-informed neural networks for high-
speed flows”. en. In: Computer Methods in Applied Mechanics and Engineering 360, p. 112789. DOI: 10.1016/j.
cma.2019.112789. URL: https://www.sciencedirect.com/science/article/pii/S0045782519306814.

Markidis, Stefano (2021). “The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear
Solvers?” In: Frontiers in Big Data 4. URL: https://www.frontiersin.org/articles/10.3389/fdata.2021.
669097.

Martens, James (2010). “Deep Learning via Hessian-Free Optimization”. In: Proceedings of the 27th International
Conference on International Conference on Machine Learning. ICML’10. Haifa, Israel: Omnipress, pp. 735–742.

Martin, John and Hanspeter Schaub (Mar. 2022). “Physics-informed neural networks for gravity field modeling of the
Earth and Moon”. In: Celestial Mechanics and Dynamical Astronomy 134.2. DOI: 10.1007/s10569-022-10069-5.
URL: https://doi.org/10.1007/s10569-022-10069-5.

https://doi.org/10.48550/arXiv.2109.01050
http://arxiv.org/abs/2109.01050
http://eudml.org/doc/58812
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1115/gt2022-81768
https://doi.org/10.1115/gt2022-81768
https://doi.org/10.1115/gt2022-81768
https://doi.org/10.48550/ARXIV.2101.09957
https://doi.org/10.48550/ARXIV.2101.09957
https://arxiv.org/abs/2101.09957
https://doi.org/10.1007/978-3-0348-8629-1
https://doi.org/10.1007/978-3-0348-8629-1
https://doi.org/10.1007/978-3-0348-8629-1
https://doi.org/10.48550/ARXIV.1802.06132
https://arxiv.org/abs/1802.06132
https://arxiv.org/abs/1802.06132
https://doi.org/10.1016/j.neunet.2020.12.028
https://doi.org/10.1016/j.neunet.2020.12.028
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.36227/techrxiv.19391279
https://doi.org/10.36227/techrxiv.19391279
https://doi.org/10.36227/techrxiv.19391279
https://doi.org/10.1007/s00521-022-07294-2
https://doi.org/10.1007/s00521-022-07294-2
https://doi.org/10.1007/s00521-022-07294-2
https://doi.org/10.1137/19M1274067
https://epubs.siam.org/doi/10.1137/19M1274067
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.cma.2019.112789
https://www.sciencedirect.com/science/article/pii/S0045782519306814
https://www.frontiersin.org/articles/10.3389/fdata.2021.669097
https://www.frontiersin.org/articles/10.3389/fdata.2021.669097
https://doi.org/10.1007/s10569-022-10069-5
https://doi.org/10.1007/s10569-022-10069-5

References 72

McClenny, Levi and Ulisses Braga-Neto (Apr. 2022). Self-Adaptive Physics-Informed Neural Networks using a Soft
Attention Mechanism. arXiv:2009.04544 [cs, stat]. DOI: 10.48550/arXiv.2009.04544. URL: http://arxiv.org/
abs/2009.04544.

Mescheder, Lars, Sebastian Nowozin, and Andreas Geiger (2017). The Numerics of GANs. DOI: 10.48550/ARXIV.
1705.10461. URL: https://arxiv.org/abs/1705.10461.

Metz, Luke et al. (2016). Unrolled Generative Adversarial Networks. DOI: 10.48550/ARXIV.1611.02163. URL: https:
//arxiv.org/abs/1611.02163.

Nabian, Mohammad Amin, Rini Jasmine Gladstone, and Hadi Meidani (Apr. 2021). “Efficient training of physics-
informed neural networks via importance sampling”. In: Computer-Aided Civil and Infrastructure Engineering
36.8, pp. 962–977. DOI: 10.1111/mice.12685. URL: https://doi.org/10.1111/mice.12685.

Nieuwstadt, F.T.M., Jerry Westerweel, and B.J. Boersma (2018). Turbulence: introduction to theory and applications
of turbulent flows. eng. OCLC: 1042117849. Place of publication not identified: Springer.

O’Shea, Keiron and Ryan Nash (2015). An Introduction to Convolutional Neural Networks. DOI: 10.48550/ARXIV.
1511.08458. URL: https://arxiv.org/abs/1511.08458.

Papados, Alexandros (Aug. 2021). “Physics-Informed Deep Learning and its Application in Computational Solid and
Fluid Mechanics”. In: URL: https://github.com/alexpapados/Physics-Informed-Deep-Learning-Solid-
and-Fluid-Mechanics.

Papados, Alexandros (2022). “Finite-Volume Physics-Informed Neural Networks”. en. In: DOI: 10.13140/RG.2.2.
19087.05286. URL: https://rgdoi.net/10.13140/RG.2.2.19087.05286.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). “On the Difficulty of Training Recurrent Neural Net-
works”. In: Proceedings of the 30th International Conference on International Conference on Machine Learning -
Volume 28. ICML’13. Atlanta, GA, USA: JMLR.org, pp. III–1310–III–1318.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: Proceed-
ings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran
Associates Inc.

Patel, Ravi G. et al. (Jan. 2022). “Thermodynamically consistent physics-informed neural networks for hyperbolic
systems”. In: Journal of Computational Physics 449, p. 110754. DOI: 10.1016/j.jcp.2021.110754. URL: https:
//doi.org/10.1016/j.jcp.2021.110754.

Praditia, Timothy et al. (2021). Finite Volume Neural Network: Modeling Subsurface Contaminant Transport. DOI:
10.48550/ARXIV.2104.06010. URL: https://arxiv.org/abs/2104.06010.

Pulliam, T. H. (Oct. 1981). “Characteristic Boundary Conditions for the Euler Equations”. en. In: Numerical Boundary
Condition Procedures. URL: https://ntrs.nasa.gov/citations/19810025322 (visited on 07/09/2023).

Rahaman, Nasim et al. (2019). “On the spectral bias of neural networks”. In: International Conference on Machine
Learning. PMLR, pp. 5301–5310.

Raissi, M., P. Perdikaris, and G.E. Karniadakis (Feb. 2019). “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations”. In: Journal
of Computational Physics 378, pp. 686–707. DOI: 10.1016/j.jcp.2018.10.045. URL: https://doi.org/10.
1016/j.jcp.2018.10.045.

Raissi, Maziar, Alireza Yazdani, and George Em Karniadakis (2018). Hidden Fluid Mechanics: A Navier-Stokes In-
formed Deep Learning Framework for Assimilating Flow Visualization Data. DOI: 10.48550/ARXIV.1808.04327.
URL: https://arxiv.org/abs/1808.04327.

Rao, Chengping, Hao Sun, and Yang Liu (Mar. 2020). “Physics-informed deep learning for incompressible laminar
flows”. en. In: Theoretical and Applied Mechanics Letters 10.3, pp. 207–212. DOI: 10.1016/j.taml.2020.01.039.
URL: https://www.sciencedirect.com/science/article/pii/S2095034920300350.

Reddy, J. N. (2019). Introduction to the finite element method. Fourth edition. Mechanical engineering. OCLC:
on1065524414. New York, NY: McGraw Hill Education.

Ruder, Sebastian (2016). An overview of gradient descent optimization algorithms. DOI: 10.48550/ARXIV.1609.04747.
URL: https://arxiv.org/abs/1609.04747.

Saad, Youcef and Martin H. Schultz (July 1986). “GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems”. In: SIAM Journal on Scientific and Statistical Computing 7.3, pp. 856–869. DOI:
10.1137/0907058. URL: https://doi.org/10.1137/0907058.

https://doi.org/10.48550/arXiv.2009.04544
http://arxiv.org/abs/2009.04544
http://arxiv.org/abs/2009.04544
https://doi.org/10.48550/ARXIV.1705.10461
https://doi.org/10.48550/ARXIV.1705.10461
https://arxiv.org/abs/1705.10461
https://doi.org/10.48550/ARXIV.1611.02163
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1611.02163
https://doi.org/10.1111/mice.12685
https://doi.org/10.1111/mice.12685
https://doi.org/10.48550/ARXIV.1511.08458
https://doi.org/10.48550/ARXIV.1511.08458
https://arxiv.org/abs/1511.08458
https://github.com/alexpapados/Physics-Informed-Deep-Learning-Solid-and-Fluid-Mechanics
https://github.com/alexpapados/Physics-Informed-Deep-Learning-Solid-and-Fluid-Mechanics
https://doi.org/10.13140/RG.2.2.19087.05286
https://doi.org/10.13140/RG.2.2.19087.05286
https://rgdoi.net/10.13140/RG.2.2.19087.05286
https://doi.org/10.1016/j.jcp.2021.110754
https://doi.org/10.1016/j.jcp.2021.110754
https://doi.org/10.1016/j.jcp.2021.110754
https://doi.org/10.48550/ARXIV.2104.06010
https://arxiv.org/abs/2104.06010
https://ntrs.nasa.gov/citations/19810025322
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.48550/ARXIV.1808.04327
https://arxiv.org/abs/1808.04327
https://doi.org/10.1016/j.taml.2020.01.039
https://www.sciencedirect.com/science/article/pii/S2095034920300350
https://doi.org/10.48550/ARXIV.1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058

References 73

Saxena, Divya and Jiannong Cao (2020). Generative Adversarial Networks (GANs): Challenges, Solutions, and Fu-
ture Directions. DOI: 10.48550/ARXIV.2005.00065. URL: https://arxiv.org/abs/2005.00065.

Schäfer, Florian and Anima Anandkumar (June 2020a). Competitive Gradient Descent. arXiv:1905.12103 [cs, math].
DOI: 10.48550/arXiv.1905.12103. URL: http://arxiv.org/abs/1905.12103.

Schäfer, Florian, Hongkai Zheng, and Anima Anandkumar (Oct. 2020b). Implicit competitive regularization in GANs.
arXiv:1910.05852 [cs, stat]. DOI: 10.48550/arXiv.1910.05852. URL: http://arxiv.org/abs/1910.05852.

Shapiro, Ascher H. (1976). The dynamics and thermodynamics of compressible fluid flow. 1. eng. 23. print. New York:
Wiley.

Shewchuk, Jonathan R (1994). An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Tech.
rep. USA.

Shu, Chi-Wang (1998). “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic
conservation laws”. In: Lecture Notes in Mathematics. Springer Berlin Heidelberg, pp. 325–432. DOI: 10.1007/
bfb0096355. URL: https://doi.org/10.1007/bfb0096355.

Sohl-Dickstein, Jascha et al. (2015). Deep Unsupervised Learning using Nonequilibrium Thermodynamics. DOI: 10.
48550/ARXIV.1503.03585. URL: https://arxiv.org/abs/1503.03585.

Sukumar, N. and Ankit Srivastava (Feb. 2022). “Exact imposition of boundary conditions with distance functions in
physics-informed deep neural networks”. en. In: Computer Methods in Applied Mechanics and Engineering 389,
p. 114333. DOI: 10.1016/j.cma.2021.114333. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0045782521006186 (visited on 07/09/2023).

Sun, Yubiao, Ushnish Sengupta, andMatthew Juniper (June 2023). “Physics-informed deep learning for simultaneous
surrogate modeling and PDE-constrained optimization of an airfoil geometry”. In: Computer Methods in Applied
Mechanics and Engineering 411, p. 116042. DOI: 10.1016/j.cma.2023.116042. URL: https://doi.org/10.
1016/j.cma.2023.116042.

Tancik, Matthew et al. (Dec. 2020). “Fourier features let networks learn high frequency functions in low dimensional do-
mains”. In:Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS’20.
Red Hook, NY, USA: Curran Associates Inc., pp. 7537–7547.

Tang, Kejun, Xiaoliang Wan, and Chao Yang (Mar. 2023). “DAS-PINNs: A deep adaptive sampling method for solving
high-dimensional partial differential equations”. In: Journal of Computational Physics 476, p. 111868. DOI: 10.
1016/j.jcp.2022.111868. URL: https://doi.org/10.1016/j.jcp.2022.111868.

Taylor, Jamie M. et al. (2023). Deep Fourier Residual method for solving time-harmonic Maxwell’s equations. DOI:
10.48550/ARXIV.2305.09578. URL: https://arxiv.org/abs/2305.09578.

Tieleman, T. and G. Hinton (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent mag-
nitude.

Toro, Eleuterio F. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Berlin Heidelberg.
DOI: 10.1007/b79761. URL: https://doi.org/10.1007/b79761.

Vaswani, Ashish et al. (2017). Attention Is All You Need. DOI: 10.48550/ARXIV.1706.03762. URL: https://arxiv.
org/abs/1706.03762.

Versteeg, H. K. andW.Malalasekera (2007).An introduction to computational fluid dynamics: the finite volumemethod.
2nd ed. OCLC: ocm76821177. Harlow, England ; New York: Pearson Education Ltd.

Wang, Chulin et al. (Dec. 2020). Physics-Informed Neural Network Super Resolution for Advection-Diffusion Models.
arXiv:2011.02519 [physics]. DOI: 10.48550/arXiv.2011.02519. URL: http://arxiv.org/abs/2011.02519.

Wang, Sifan, Shyam Sankaran, and Paris Perdikaris (Mar. 2022a). Respecting causality is all you need for training
physics-informed neural networks. arXiv:2203.07404 [nlin, physics:physics, stat]. DOI: 10.48550/arXiv.2203.
07404. URL: http://arxiv.org/abs/2203.07404.

Wang, Sifan, Yujun Teng, and Paris Perdikaris (Jan. 2021a). “Understanding andMitigating Gradient Flow Pathologies
in Physics-Informed Neural Networks”. In: SIAM Journal on Scientific Computing 43.5, A3055–A3081. DOI: 10.
1137/20M1318043. URL: https://epubs.siam.org/doi/10.1137/20M1318043.

Wang, Sifan, Hanwen Wang, and Paris Perdikaris (Oct. 2021b). “On the eigenvector bias of Fourier feature networks:
From regression to solving multi-scale PDEs with physics-informed neural networks”. In: Computer Methods in
Applied Mechanics and Engineering 384, p. 113938. DOI: 10.1016/j.cma.2021.113938. URL: https://doi.org/
10.1016/j.cma.2021.113938.

https://doi.org/10.48550/ARXIV.2005.00065
https://arxiv.org/abs/2005.00065
https://doi.org/10.48550/arXiv.1905.12103
http://arxiv.org/abs/1905.12103
https://doi.org/10.48550/arXiv.1910.05852
http://arxiv.org/abs/1910.05852
https://doi.org/10.1007/bfb0096355
https://doi.org/10.1007/bfb0096355
https://doi.org/10.1007/bfb0096355
https://doi.org/10.48550/ARXIV.1503.03585
https://doi.org/10.48550/ARXIV.1503.03585
https://arxiv.org/abs/1503.03585
https://doi.org/10.1016/j.cma.2021.114333
https://linkinghub.elsevier.com/retrieve/pii/S0045782521006186
https://linkinghub.elsevier.com/retrieve/pii/S0045782521006186
https://doi.org/10.1016/j.cma.2023.116042
https://doi.org/10.1016/j.cma.2023.116042
https://doi.org/10.1016/j.cma.2023.116042
https://doi.org/10.1016/j.jcp.2022.111868
https://doi.org/10.1016/j.jcp.2022.111868
https://doi.org/10.1016/j.jcp.2022.111868
https://doi.org/10.48550/ARXIV.2305.09578
https://arxiv.org/abs/2305.09578
https://doi.org/10.1007/b79761
https://doi.org/10.1007/b79761
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2011.02519
http://arxiv.org/abs/2011.02519
https://doi.org/10.48550/arXiv.2203.07404
https://doi.org/10.48550/arXiv.2203.07404
http://arxiv.org/abs/2203.07404
https://doi.org/10.1137/20M1318043
https://doi.org/10.1137/20M1318043
https://epubs.siam.org/doi/10.1137/20M1318043
https://doi.org/10.1016/j.cma.2021.113938
https://doi.org/10.1016/j.cma.2021.113938
https://doi.org/10.1016/j.cma.2021.113938

References 74

Wang, Sifan, Xinling Yu, and Paris Perdikaris (Jan. 2022b). “When and why PINNs fail to train: A neural tangent kernel
perspective”. en. In: Journal of Computational Physics 449, p. 110768. DOI: 10.1016/j.jcp.2021.110768. URL:
https://www.sciencedirect.com/science/article/pii/S002199912100663X.

Wang, Z. et al. (Feb. 2018). “Model identification of reduced order fluid dynamics systems using deep learning”. en.
In: International Journal for Numerical Methods in Fluids 86.4, pp. 255–268. DOI: 10 . 1002 / fld . 4416. URL:
https://onlinelibrary.wiley.com/doi/10.1002/fld.4416.

Wassing, Simon, Stefan Langer, and Philipp Bekemeyer (2023). “Artificial Viscosity in Physics-Informed Neural Net-
works for Parametric Compressible Flows”. In: SSRN Electronic Journal. DOI: 10.2139/ssrn.4353534. URL:
https://doi.org/10.2139/ssrn.4353534.

Weller, H. G. et al. (Nov. 1998). “A tensorial approach to computational continuum mechanics using object-oriented
techniques”. In: Computers in Physics 12.6, pp. 620–631. DOI: 10.1063/1.168744. URL: https://doi.org/10.
1063/1.168744.

Wiatrak, Maciej, Stefano V. Albrecht, and Andrew Nystrom (2019). Stabilizing Generative Adversarial Networks: A
Survey. DOI: 10.48550/ARXIV.1910.00927. URL: https://arxiv.org/abs/1910.00927.

Wight, Colby L. and Jia Zhao (June 2021). “Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive
Physics Informed Neural Networks”. In: Communications in Computational Physics 29.3, pp. 930–954. DOI: 10.
4208/cicp.OA-2020-0086. URL: http://global-sci.org/intro/article_detail/cicp/18571.html.

Wu, Chenxi et al. (Jan. 2023). “A comprehensive study of non-adaptive and residual-based adaptive sampling
for physics-informed neural networks”. en. In: Computer Methods in Applied Mechanics and Engineering 403,
p. 115671. DOI: 10.1016/j.cma.2022.115671. URL: https://www.sciencedirect.com/science/article/pii/
S0045782522006260.

Yadav, Abhay et al. (2017). Stabilizing Adversarial Nets With Prediction Methods. DOI: 10.48550/ARXIV.1705.07364.
URL: https://arxiv.org/abs/1705.07364.

Zeng, Qi et al. (Oct. 2022). Competitive Physics Informed Networks. arXiv:2204.11144 [cs, math]. DOI: 10.48550/
arXiv.2204.11144. URL: http://arxiv.org/abs/2204.11144.

https://doi.org/10.1016/j.jcp.2021.110768
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://doi.org/10.1002/fld.4416
https://onlinelibrary.wiley.com/doi/10.1002/fld.4416
https://doi.org/10.2139/ssrn.4353534
https://doi.org/10.2139/ssrn.4353534
https://doi.org/10.1063/1.168744
https://doi.org/10.1063/1.168744
https://doi.org/10.1063/1.168744
https://doi.org/10.48550/ARXIV.1910.00927
https://arxiv.org/abs/1910.00927
https://doi.org/10.4208/cicp.OA-2020-0086
https://doi.org/10.4208/cicp.OA-2020-0086
http://global-sci.org/intro/article_detail/cicp/18571.html
https://doi.org/10.1016/j.cma.2022.115671
https://www.sciencedirect.com/science/article/pii/S0045782522006260
https://www.sciencedirect.com/science/article/pii/S0045782522006260
https://doi.org/10.48550/ARXIV.1705.07364
https://arxiv.org/abs/1705.07364
https://doi.org/10.48550/arXiv.2204.11144
https://doi.org/10.48550/arXiv.2204.11144
http://arxiv.org/abs/2204.11144

A
OpenFOAM simulations

The reference solutions required to calculate the L2 errors for the problems in Section 6.2 and Section 6.3
are both obtained via OpenFOAM (Weller et al., 1998). For the curved shock, the blocking structure in
Fig. A.1a is used to generate a structured mesh via gmsh, a tool developed by Geuzaine et al. (2009).
Progression is used to refine the cells near the bottom boundaries. A coarse version of the resulting
mesh is shown in Fig. A.1b, which only features approximately 20,000 cells for visual purposes. The
actual mesh consists of approximately 80,000 cells.

0 2x0

2

y I II

(a) Blocks (b) Coarse mesh

Figure A.1: The blocking used to create a structured mesh for the curved shock problem and the resulting mesh.

The corresponding boundary conditions are given in Table A.1. The simulation is performed with the
rhoCentralFoam solver, an unsteady compressible flow solver. Although it can also be used to simulate
viscous effects and turbulence, the viscosity has been set to zero. Furthermore, the Courant–Friedrichs–
Lewy (CFL) number is set to 0.1, although this is only for consistency with the detached simulation so it
can certainly be increased. The simulation is terminated once a steady solution is reasonably obtained,
which is approximately at t = 6. For more information about the used numerical schemes, transport model
and other settings the reader is referred to the source code mentioned in Chapter 5.

Table A.1: Boundary conditions for the fields in the OpenFOAM solver.

Inlet Outlet Bottom Top Object
p fixedValue: 1.000 zeroGradient symmetryPlane zeroGradient zeroGradient
T fixedValue: 0.003 zeroGradient symmetryPlane zeroGradient zeroGradient
U fixedValue: (2.958, 0, 0) zeroGradient symmetryPlane zeroGradient slip

The setup for the detached shock wave problem is identical, except for an inlet velocity decrease and a
mesh extension to y = 4 as is shown in Fig. A.2. Note that the number of cells is also kept the same,

75

76

so the progression is modified to maintain reasonable aspect ratios near the bottom boundaries. The
simulation is again terminated once a steady solution is obtained, this time at t = 30 since it takes some
time before the detachment distance has converged.

0 2x0

4

y I II

(a) Blocks (b) Coarse mesh

Figure A.2: The blocking used to create a structured mesh for the detached shock problem and the resulting mesh.

	Preface
	Abstract
	Nomenclature
	1 Introduction
	I Background
	2 Physics-informed neural networks
	2.1 Fundamental principles
	2.2 Limitations and adaptations
	2.3 Adversarial training

	3 Compressible fluid dynamics
	3.1 Euler equations
	3.2 Physics-informed solutions
	3.3 Compressible phenomena

	II Results
	4 Failure mode analysis
	4.1 Riemann problem
	4.2 Discontinuities and entropy
	4.3 Failure mode alleviations
	4.4 Steady waves

	5 Shock-capturing methodology
	5.1 Local viscosity
	5.2 Streamline representation
	5.3 Assessment framework

	6 Results
	6.1 Oblique shock wave
	6.2 Curved shock wave
	6.3 Detached shock wave

	III Closure
	7 Conclusion
	8 Recommendations

	References
	A OpenFOAM simulations

