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Summary

Solid round bars with a shoulder fillet are frequently used in engineering structures because
it facilitates a smooth transition in thickness. However, the presence of shoulder fillets is
currently neglected in the prediction of Fatigue Crack Growth (FCG) in engineering practice.
Since stress concentrating locations like a shoulder fillet can have a significant effect on the
FCG behaviour, neglecting the presence of a shoulder fillet may introduce unacceptable in-
accuracies in the current FCG predictions done in solid round bars with a shoulder fillet.

Experimental research was done on characterizing the effect of shoulder fillets on the FCG be-
haviour in solid round bars loaded in tension. The problem was approached from two points
of view: the conventional stress intensity approach and a novel energy approach. Proven
methodologies were used for the stress intensity approach, the energy approach had a more
exploratory character.

The first goal of the research was to investigate the influence of a shoulder fillet on the
FCG behaviour in solid round bars loaded in tension. The influence of a shoulder fillet was
quantified by the development of a Stress Intensity Factor (SIF) solution based on the results
of FCG experiments. The developed SIF solution was implemented in an FCG prediction
model for solid round bars with a shoulder fillet loaded in tension.

The SIF range ∆K is conventionally used as similarity parameter to predict FCG. An issue
with this similarity parameter that has received a lot of attention in the past decades is the
effect of the stress ratio. Empirically derived equations are proposed in literature to take the
effect of the stress ratio into account for FCG predictions. Recent literature suggests that
this effect of the stress ratio is a reflection of the inadequacy of the SIF range ∆K to uniquely
describe the applied load cycle; it was suggested that these stress ratio correction equations
mostly compensate for the fact that cyclic stress has been used in a methodology where cyclic
energy should have been used instead.

The second goal of the research was to investigate how the energy used for a fatigue crack
to grow in a complete load cycle relates to the FCG rate. A prediction methodology was
developed based on the energy released in a complete fatigue cycle rather than at maximum
and/or minimum load as is the case in the conventional stress intensity approach. It was
found that the average cyclic Strain Energy Release Rate (SERR) Gavg,cyc could be used as
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similarity parameter in the developed methodology. The methodology was used to develop
an FCG prediction model for solid round bars with a shoulder fillet loaded in tension.

As a result of the research project, it was concluded that the developed FCG prediction
model, which makes use of the developed SIF solution, is able to predict FCG for different
shoulder fillet geometries at one stress ratio; it was less accurate at other stress ratios. It is
recommended to do further research to validate the developed SIF solution.

Next to that, it was concluded that the proposed prediction methodology with the aver-
age cyclic SERR Gavg,cyc as similarity parameter was able to predict FCG independently of
the applied stress ratio and shoulder fillet geometry. Points of further research are identified
to continue the development of the average cyclic SERR Gavg,cyc as similarity parameter for
the prediction of FCG in general.
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Chapter 1

Introduction

That fatigue cracks can initiate, grow and cause catastrophic failure under the repeated load-
ing of a metallic structure below its static strength is a widely recognized phenomenon in
engineering practice [1]. The initiation and growth of fatigue cracks under repeated loading is
taken into account during the structural design of a metallic structure. It is only possible to
allow that fatigue cracks will grow in a structure, if an accurate prediction of the crack growth
under the expected repeated loading can be done. An accurate Fatigue Crack Growth (FCG)
prediction is essential to be able to determine appropriate inspection intervals of the struc-
ture to detect fatigue cracks before they grow to a critical size and to repair the structure
accordingly.

The initial problem that created the need for a research project is the possible inaccuracy
of current FCG predictions in solid metallic round bars with a thickness step in current en-
gineering practice. Currently, in frequently used FCG prediction models that are used in
engineering practice, the possible influence that a thickness step has on the FCG behaviour is
neglected. The research focussed on solid round metallic bars under Constant Amplitude (CA)
tension loading having a specific notch type as thickness step: a shoulder fillet, which is illus-
trated with its characteristic dimensions D1, D2 and r with a crack with length a in figure 1.1.

Figure 1.1: Fatigue crack present in a smooth solid round bar (left) and in a solid round bar
with a shoulder fillet (right).



2 Introduction

The problem of FCG through a solid round bar with a shoulder fillet was approached from two
point of views: the conventional stress intensity approach and a novel energy based approach.
The first goal of the research was to investigate the effect of a shoulder fillet on the FCG
behaviour and to develop a FCG prediction model using the conventional stress intensity ap-
proach accordingly. The second goal was to develop a novel FCG prediction methodology on
the basis of the energy released in a complete load cycle rather than the conventional stress
intensity approach. Experimental work has been done on characterizing FCG in a solid round
bar with a shoulder fillet and for both approaches, the predictions done with both developed
prediction models were compared with the test results.

This thesis is structured as follows, in chapter 2, literature on FCG in metallic materials,
and especially in solid round bars, is reviewed. On the basis of this literature review, a
research approach is outlined in chapter 3. Chapter 4 discusses the experiments that were
designed and executed for the research. The results of the experiments are presented in chap-
ter 5. The developed prediction models, one on the basis of the conventional stress intensity
approach and one on the basis of the energy approach, are discussed in chapter 6. Chapter
7 discusses the results of the research project. The conclusions and recommendations are
presented in chapter 8.



Chapter 2

Literature Review

In this chapter, the current state of the art in the field of Fatigue Crack Growth (FCG) in
metallic materials and in solid round metallic bars in particular, is reviewed. This literature
review was done to get an accurate and up-to-date overview of the research field in which this
research project was conducted.

First, current practice on how FCG in metallic materials is characterized and predicted un-
der Constant Amplitude (CA) fatigue loading is discussed in section 2.1. Next, literature on
FCG in solid round metallic round bars is reviewed in section 2.2. After that, literature on
the influence of a circumferential stress concentration on the FCG behaviour in solid round
metallic bars is reviewed in section 2.3. Lastly, recent literature on a cyclic energy concept,
rather than the cyclic stress intensity concept to characterize fatigue crack growth is discussed
in section 2.4.

2.1 Fatigue crack growth in metallic materials
The fatigue life of a structure is usually divided in two different phases: the initiation period
and the crack growth period. Differentiation between the two periods is important because
several surface conditions do have effect on the initiation period, but have a small or negligible
effect on the crack growth period [1]. The research project was limited to the crack growth
period of the fatigue phenomenon.

To describe the severity of the stress distribution around a crack tip, the concept of the
Stress Intensity Factor (SIF) is widely used and the accepted current practice; the develop-
ment was done through early work of Irwin [2]. The components of the stress around the
crack tip can be expressed using a polar coordinate system as defined in figure 2.1. The stress
components are a function of the distance from the crack r, angle θ, remote stress S and
crack length a. For a mode I crack (as illustrated in figure 2.2) in an infinite sheet under
tension, the stress components can be expressed as in equation 2.1. This equation is only
valid considering its analytical limit for a relatively short distance of a point to the crack tip,
i.e. a short distance compared to the crack length: r << a.
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σi,j = S
√
πa√

2πr
fi,j(θ) (2.1)

Where:
S
√
πa = K (2.2)

The function fi,j(θ) determines the shape of the stress distribution around the crack tip, K
represents the severity of the stress around the crack tip and 1√

2πr indicates how the stress
components decrease away from the crack tip with the distance r. Equation 2.2 defines the
stress intensity factor K, which is the characteristic parameter for the stress intensity around
the crack tip.

Figure 2.1: Polar coordinate system around the crack tip.

For a mode I crack, as illustrated in figure 2.2, the stress intensity factor KI can be expressed
as function of the remote stress and crack length as defined in equation 2.3. The subscript I
refers to the opening mode of the crack.

KI = βS
√
πa (2.3)

In equation 2.3, S is the remote stress, a is the crack length and β is a dimensionless factor
depending on the geometry of the crack problem; β is equal to 1 for a mode I crack in an
infinite sheet loaded in tension as shown in the definition of the stresses around the crack tip
in equation 2.2.

In principle, fatigue crack growth in mode II and III as illustrated in figure 2.2 is possi-
ble, but experience has shown that that small fatigue cracks which nucleate under cyclic
shear stress in mode II or mode III quickly transform to fatigue crack growing in mode I, this
is thus the most relevant mode for fatigue cracks [1]. In the rest of this thesis, only crack
opening mode I is considered and the stress intensity factor K is used as the stress intensity
factor for a crack in opening mode I, KI .
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Figure 2.2: The three crack opening modes.

2.1.1 The similarity principle based on the stress intensity factor for fatigue crack
growth

The concept of the SIF K is applied to FCG data and is used to predict FCG using a simi-
larity principle. In an early paper of Paris et al.[3] it was recognized that similar FCG rates
occur under a different applied stress amplitude (but same ratio between the minimum and
maximum stress), although at different values of the crack length a itself. This observation
led to the development of the similarity principle for FCG based on the SIF K.

Fatigue loads are defined as cyclic loads between a maximum stress Smax and a minimum
stress Smin as illustrated in figure 2.3. The mean stress is indicated with Sm, the stress
amplitude with Sa and the stress range with ∆S = Smax − Smin.

Figure 2.3: Definition of the stress levels in a load cycle.

Cyclic loads introduce a cyclic stress intensity at the crack tip. This cyclic stress intensity
will vary between Kmax and Kmin corresponding with the applied stress cycle between the
maximum stress Smax and minimum stress Smin. This stress intensity range, ∆K, is defined
in equation 2.4 and equation 2.5.

∆K = Kmax −Kmin = βSmax
√
πa− βSmin

√
πa (2.4)

Or:
∆K = β∆S

√
πa (2.5)

The stress ratio R, which also applies to the corresponding stress intensities, is defined as the
ratio between the minimum and maximum stress in equation 2.6.

R = Smin
Smax

= Kmin

Kmax
(2.6)
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According to the similarity principle, it appears to be correct to assume that the FCG rate,
which is defined as the crack extension length in a load cycle da

dN , is a function of ∆K and R:

da

dN
= f(∆K,R) (2.7)

The similarity principle can be used to predict fatigue crack growth in another specimen or
structural component, it says [1]:

”Similar cyclic conditions (∆K and R) applied to fatigue cracks in different specimens or
structures of the same material should have similar consequences, i.e. similar crack

extensions per cycle, thus the same da
dN ”

Although that this similarity principle is a physically sound concept, it remains always a ba-
sic problem if the physical FCG conditions are similar (enough) in experiments and real-life
structures. This similarity is required to be able to do accurate predictions in actual struc-
tures based on FCG data obtained with experiments.

An important and widely observed phenomenon is the often in literature called ’thickness-
effect’ on FCG. Fatigue cracks in thick plates and thin plates under similar ∆K and R
conditions will not grow with the same FCG rate because of a phenomenon called plasticity
induced crack closure. A larger plastic zone around the crack tip in thinner plates compared
to thicker ones is caused by a different state of stress at the crack tip: in thicker plates the
lateral contraction at the crack tip will be largely restrained and plane strain conditions ap-
ply, where in thinner plates the lateral contraction cannot effectively be constrained and the
crack tip will largely be in plane stress. Different FCG rates should be expected in cracks
under similar ∆K and R conditions but a different state of stress due to plasticity induced
crack closure, a phenomenon discussed in section 2.1.3. In general, larger plastic zone sizes
occur under plane stress conditions making the effect of plasticity induced crack closure larger
which results in lower crack growth rates than under plane strain conditions, where smaller
plastic zones sizes occur. To apply the above stated similarity principle successfully, the state
of stress of the crack tip in crack growth experiments and real-life structures should also be
comparable to be able to do valid and accurate predictions.

2.1.2 Crack growth regions and prediction of fatigue crack growth

When the FCG rate of a growing fatigue crack is plotted against the stress intensity range
∆K at the crack tip, typically three different regions can be identified as illustrated in figure
2.4. The curve as illustrated in figure 2.4, illustrates typical FCG behaviour of a metallic
material, note that both axes of the graph are on logarithmic scale.
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Figure 2.4: The three different crack growth regions on a log-log scale plot.

The first region, region I, is called the threshold region and this is the area where (very) low
FCG rates are observed. The SIF range from which fatigue cracks start to grow, the threshold
SIF range, is indicated with ∆Kth. The second region, region II, is called the Paris region
and can be described with the well-known Paris equation. According to Paris [4], the relation
between da

dN and ∆K can be described by a power-law (as indicated by the straight line on a
log-log scale plot) given in equation 2.8. Region III is the stable tearing region with relative
higher FCG rates, failure occurs when Kmax equals the critical stress intensity Kc. Often, the
plane strain fracture toughness KIc is used here since this is the lower bound of the critical
stress intensity factor Kc and is considered as a material property [1].

da

dN
= C∆Km (2.8)

In equation 2.8, C and m are the Paris equation parameters which are considered as material
constants but are also dependent on the stress ratio R which will be discussed in section 2.1.3.

With knowledge of the stress intensity factor range ∆K at the tip of a fatigue crack, repre-
senting the crack driving force, and the characteristic da

dN curve of the considered material as
illustrated in figure 2.4, representing the crack growth resistance of the material, crack growth
predictions can be done. In general, crack growth predictions under CA loading are done as
illustrated in figure 2.19.

Figure 2.5: Prediction of fatigue crack growth under constant amplitude loading.
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Over the past decades, there are numerous crack growth equations like equation 2.8 proposed
to take the lower and upper asymptotic behaviour, in region I and III, into account in a single
equation. Some proposed equations, like the NASGRO equation, take the effect of the stress
ratio R also into account; the effect of the stress ratio R on the crack growth behaviour is
discussed in section 2.1.3. With an equation like the NASGRO equation, taking the asymp-
totes and the stress ratio effect into account, the relation between da

dN and ∆K is considered
as material property and can be used in FCG predictions. Note that all of these proposed
equations have no physical background and are proposed to agree with observed test results.

SIF solutions for specific crack problems are expressed in literature as values of the geo-
metrical factor β. The solution of the dimensionless geometrical factor β in the definition
of the stress intensity factor range ∆K for a certain fatigue crack configuration is a prereq-
uisite to be able to do FCG predictions. For simple fatigue crack configurations, exact SIF
solutions are derived analytically and can be found in various handbooks, of which the Stress
Analysis of Cracks Handbooks by Tada et al. [5] is frequently used in engineering practice.
For more complex configurations, solutions are derived using Finite Element (FE) techniques
or experimental methods.

2.1.3 The effect of the stress ratio and plasticity induced crack closure

The crack growth curve as illustrated in figure 2.4 is only valid at one applied stress ratio
R. How the applied stress ratio R typically effects the FCG rate curve is illustrated and
compared with the curve for R = 0 in figure 2.6.

Figure 2.6: The effect of the R-ratio on the crack growth rate curve [6].

As can be seen in figure 2.6, the stress ratio R has a significant effect on the crack growth
rate. The SIF range ∆K only is apparently not able to characterize the FCG rate at dif-
ferent stress ratios. To be able to predict FCG at different stress ratios, research has been
done to find an expression which takes the stress ratio effect into account and to condense



2.1 Fatigue crack growth in metallic materials 9

the FCG rate curves at different stress ratios to a single and unique curve for a given material.

Elber was one of the first to observe that a fatigue crack closed before the tension stress
became zero during unloading a fatigue crack growth specimen [7]. This had a great impact
on fatigue crack growth predictions and this effect referred to in literature as plasticity in-
duced crack closure. Since the concept of the SIF is only valid for an open crack, it was found
that when only the portion of the stress range when the crack is open ∆Seff as illustrated
in figure 2.7 is taken into account in the definition of the SIF, the stress ratio effect seems to
disappear in the FCG curve. It was concluded by Elber that the stress at which the crack
opens Sop, only depends on the applied stress ratio R and empirical relationships have been
derived in literature for different materials to take this phenomenon into account.

Figure 2.7: Illustration of the range in which the crack is open during a stress cycle [1].

When the plasticity induced crack closure concept is applied to the SIF range ∆K, an effective
SIF range ∆Keff is defined as the SIF range during the effective stress cycle ∆Seff as given
in equation 2.9.

∆Keff = β∆Seff
√
πa (2.9)

The ratio between the effective range of the stress (intensity) and the total range of the stress
(intensity) was found to be dependent on the stress ratio R as defined in equation 2.10.

∆Keff

∆K
= ∆Seff

∆S
= U(R) (2.10)

Where U(R) was empirically determined by Elber for the aluminium alloy 2024-T3 within a
range of R-values of 0.1 to 0.7 [7]:

U(R) = 0.5 + 0.4R (2.11)

Various empirical equations for U(R) like equation 2.11 have been derived for different ma-
terials and stress ratio ranges. The use of ∆Keff condenses the crack growth rate data of a
material into one unique curve as illustrated in figure 2.7, which makes it possible to do FCG
predictions independently of the applied stress ratio R.
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Figure 2.8: An example of the application of the effective stress intensity factor range ∆K to
crack growth data [8]. Left, the crack growth data as function of the stress intensity factor range
∆K for different stress ratios fall all on a unique curve when the data is plotted as function of
∆Keff on the right.

As can be seen in figure 2.8, da
dN is directly related to ∆Keff for multiple stress ratios and

this implies that da
dN is dependent on ∆Keff only. The similarity principle for fatigue crack

growth can now be stated as [1]: a similar ∆Keff in a cycle occuring in different specimen
or structures should give the same da

dN in that cycle. Crack growth predictions under constant
amplitude loading using this similarity principle can be done as illustrated in figure 2.9.

Figure 2.9: Prediction of fatigue crack growth under constant amplitude loading.

Some FCG equations, like the NASGRO equation, relate da
dN to ∆K for a certain range of

stress ratios without the explicit use of the effective stress intensity factor range. The material
dependent parameters in those equations are determined using extensive regression analysis
on a wide range of FCG data at different stress ratios, obtaining a closed-form equation valid
for a range of stress ratios.
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In section 2.4, it is questioned by a paper of Alderliesten if the empirical derived correction
equations U(R) in literature for the stress intensity range ∆K actually correct for plasticity
induced crack closure only. It is shown that when considering cyclic energy instead of cyclic
stress, a large part of these corrections can be explained by the fact that the cyclic stress ∆S
only is not able to describe the applied load cycle correctly.

2.2 Fatigue crack growth in solid round bars
There are different kind of fatigue cracks possible in a structure: a through crack, which is
through the entire thickness of the structure and part-through cracks, which can be corner
cracks or surface cracks as illustrated in figure 2.10

Figure 2.10: Different type of cracks in structures [1]

When a fatigue crack is present in a solid round bar, this is a typical surface crack as illus-
trated in figure 2.11. The prediction of the growth of a part-through crack is a more complex
problem because the SIF K will vary along the crack front. This implies that the FCG rate
da
dN will also vary along the crack front.

Figure 2.11: A surface crack in a solid round bar

A typical phenomenon observed in the fatigue growth of surface cracks is that the crack front
near the material surface is lagging behind the rest of the crack front as illustrated in figure
2.12. This can be explained by the fact that at the outer material surface, the crack front
is in a plane stress state which causes larger plastic zone sizes which results in lower crack
growth rates because of more plasticity induced crack closure. The crack front, which is
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deeper into the material is in a plane strain state which results in a smaller plastic zone size
and thus higher crack growth rates due to less plasticity induced crack closure. However, in
the prediction of FCG of surface cracks, the deviations in the shape of the crack front caused
by this effect are usually ignored.

Figure 2.12: A surface crack in a plate showing that the crack at the surface lags behind [1].

The main focus in literature on FCG in solid round bars is on the determination of SIF
solutions (in the form of a β factor) to be able to do FCG predictions. The different type
of SIF solutions found in literature are shortly reviewed in section 2.2.1. Next to that, an
experimental method to determine SIF solutions is discussed in section 2.2.2. At last, different
methods found in literature to predict FCG in solid round bars is discussed in section 2.2.3.

2.2.1 Stress intensity factor solutions for solid round bars

The SIF of a surface crack in a round bar depends on the relative crack depth, crack shape
(aspect ratio) and the position along the crack front. In general, the SIF solutions found and
derived in literature can be divided into one- ,two- and three-parameter solutions of β. In a
recent paper by Toribio et al.[9], a large amount of different stress intensity factor solutions
of fatigue cracks in solid round bars subjected to tension loading found by several authors are
analysed and compared.

One-parameter SIF solutions are only valid for a certain crack shape and one location on
the crack front, which is often the deepest point of the crack. The SIF solution is only depen-
dent on the relative crack depth of the crack a

D . A standard SIF solution for a surface crack
in a solid round bar which is used by FCG prediction software like NASGRO and AFGROW
is derived by Forman et al.[10]. For this solution, it is assumed that the crack front shape is
circular and always intersects perpendicular with the free surface of the bar during the whole
period that the crack grows through the bar as illustrated in figure 2.13.

Figure 2.13: Crack shape assumed in the solution of Forman et al. [10]
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Two-parameter SIF solutions are dependent on the crack shape (aspect ratio) and relative
crack depth for a single point on the crack front, which is often either the surface point or the
deepest point of the crack. For example, Carpinteri obtained SIF solutions using numerical
techniques for semi-elliptical shaped crack fronts at point A and point C on the crack front
as illustrated in figure 2.14 [11]. The SIF solution for either point A or C is dependent on
the relative crack depth a

D and crack aspect ratio a
b .

Figure 2.14: Semi-elliptical crack shape assumption and incremental crack front propagation by
Carpinteri [11]

Three-parameter SIF solutions are dependent on the location along the crack front, relative
crack depth and crack shape (aspect ratio) of the crack. A recent SIF solution was derived
by Shin and Cai using numerical and experimental techniques [12]. The solution assumes a
semi-elliptical shaped crack and is dependent on the relative position along the crack front x

h ,
the relative crack depth a

D and on the crack shape aspect ratio a
b as illustrated in figure 2.15.

Figure 2.15: Semi-elliptical crack shape assumption by Shin and Cai. [12].

The SIF solutions in literature obtained with numerical techniques are always derived for a
discrete amount of the dependent parameters (crack depth, crack aspect ratio and location).
With the different combinations of the dependent parameters, this gives often a large data
set of SIF values (or β factors) that are determined. To obtain practical expressions that can
be used in the prediction of FCG, the discrete amount of SIF results derived are often used
in a polynomial fitting technique to obtain closed-form expressions for the SIF solution.

Often, the SIF is not determined exactly where the crack intersects the outer surface of
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the bar, as can be seen at with the 2-parameter solution of Carpinteri in figure 2.14: the
surface point C where the SIF is determined is not present at the intersection of the crack
with the outer surface of the bar. The meaning of the SIF breaks down at the surface point
because of the complex singularity state there [13]. FCG is most often predicted at more
inner points along the crack front and with fitting techniques through those inner points a
complete crack front is reconstructed.

2.2.2 Experimental method to determine stress intensity factors

In this section, a method to experimentally determine SIFs from FCG experiments is reviewed.
In this technique, with the use of FCG rates observed in FCG experiments and baseline FCG
data of the same material, SIFs can be derived. The process is illustrated in figure 2.16 for
a corner crack and was successfully applied in an investigation of Shin [14]. This method is
also called the backtracking technique or the James-Anderson method, because the method
was originally developed by James and Anderson [15]. The method is used to experimentally
derive SIF solutions by several researchers in different studies for different types of part-
through fatigue cracks [16] [17] [18].

Figure 2.16: Experimental method to derive stress intensity factors from a part-through fatigue
crack [14]

To be able to derive FCG rates along the crack front from surface cracks, crack fronts have
to be reconstructed from the fracture surface since the (complete) crack is not visible from
the outer surface of the specimen as with through cracks. Fractography can be used to
inspect the fracture surface and reconstruct crack fronts. This can be done by making use of
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marker loads in the load spectrum which will leave observable darker bands on the fracture
surface when inspected using microscopic techniques. Different studies have been done to the
implementation of marker loads in FCG experiments and were able to successfully reconstruct
fatigue crack growth paths of part-through cracks [19] [20] [21]. For example, in the study by
Schijve [21], a spectrum which is illustrated in figure 2.17 was used in FCG experiments on
thick plates with countersunk holes made from aluminium 7075-T6 and 2024-T3. The marker
load cycles were implemented as relatively small overloads of 15 MPa in comparison to the
baseline loads; the minimum load of the marker load cycles were equal to the minimum load
of the baseline cycles. Furthermore, the marker load cycle frequency was 1 Hz, where the
baseline loads were applied at 10, 15 and 20 Hz. The marker loads were applied in three blocks
of 10 overload cycles with 50 baseline cycles in between to make sure it is clearly observable
using a Scanning Electron Microscope (SEM). The application of the spectrum illustrated in
figure 2.17, made it possible to reconstruct the shape of the crack front using the SEM. The
three marker load blocks can be observed as three bands on the fracture surface in the SEM
illustrated in figure 2.18.

Figure 2.17: Marker load spectrum used in a study by Schijve. [21]
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Figure 2.18: Picture of the fracture surface made with the SEM clearly shows the three marker
load blocks close to each other. [21]

2.2.3 Prediction of fatigue crack growth in round bars

Roughly, the prediction of FCG in a solid round metallic bar is done with three different
approaches in literature. Which one to use in engineering practice, is a trade-off between the
required accuracy and complexity of the prediction. The three different approaches found will
be discussed here. In widely used FCG prediction software like NASGRO and AFGROW, the
first and most simple approach is used for fatigue cracks in solid round bars and is accepted
current practice in industry:

1. Prediction of crack growth at the deepest point of the crack

In this approach, a closed-form one-parameter SIF solution for the deepest point of the crack
is used (point A in figure 2.13). This SIF solution is only dependent on the relative crack
depth a

D . This makes the FCG prediction relatively simple because the prediction is only
done for the deepest point of the crack, making it practically the same as a FCG prediction
as done for through the thickness cracks. Roughly, such a FCG prediction is done for CA
loading as illustrated in figure 2.19.
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Figure 2.19: Prediction of fatigue crack growth under constant amplitude loading.

2. Prediction of crack growth at multiple points along the crack front

Figure 2.20: Incremental crack front propagation
procedure by Torbio [22]

In this approach, a closed-form SIF solution
is used to obtain the β factors at a discrete
amount of locations along the crack front,
consequently local growth is calculated for
each of those points using the procedure il-
lustrated in figure 2.19. A curve-fit through
the new positions of the crack front is done
to be able to calculate calculate new β fac-
tors using the SIF solution. For example, in
a study of Carpinteri[11], the local growth
of point A and C is calculated as illustrated
in figure 2.14. A two-parameter SIF solution
was used for both point A and C, depending
on the relative crack depth a

D and crack as-
pect ratio a

b . It is assumed that the crack can
always be described as semi-elliptical, and
after the local growth in point A and C is calculated a semi-elliptical crack front is fitted
through the new points after which new β factors with the SIF solutions and local growth
can be calculated for point A and C.

Another example of this method is shown in the work of Torbio [22] on the fatigue crack
path of a growing fatigue crack through a round bar under cyclic tension loading. The same
principle is used but at multiple points along the crack front. The three-parameter SIF solu-
tion determined in the study of Chin and Cai [12] is used in the numerical procedure . The
incremental procedure to predict the crack growth is similar to the one used by Carpinteri
and is shown in figure 2.20.

3. Fully automated crack growth simulations using finite element techniques

In this approach of predicting FCG, the crack is modelled with FE using special crack tip
elements simulating the behaviour of a real-life crack. The FCG simulation is also incremental
and the SIF values along a discrete amount of points along the crack front is subtracted from
the FE model after which local growth of those points is calculated using a FCG equation.
After this, the crack is advanced in the FE model and new SIF values can be calculated
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along the crack front for the new crack configuration. This specific method is applied in
several studies of Lin and Smith [23] [24] [25]. The largest difference with the previous two
methods is that no crack shape assumption is done as in the previous two approaches in
order to obtain β values with a SIF solution of points along the crack front. The K values
are calculated numerically at a discrete amount of points along the crack border with FE
techniques and subsequently local crack growth is calculated with a FCG equation. With
automatic re-meshing techniques this procedure is repeated and no fitting through the newly
predicted crack front points is not necessary since the K values are calculated instantaneously
during the analysis.

2.3 Fatigue crack growth in solid round bars with a circumferential
stress concentration

That fatigue cracks emanate most often from stress concentrating locations in engineering
structures is a well-known phenomenon [1]. Solid round metallic structures are widely used
and often have circumferential notches where stress will concentrate when loaded. Some
often encountered circumferential notches in solid round structures are illustrated in figure
2.21. Since this type of structures are widely used in engineering environments, the growth
of fatigue cracks in solid round bars with a circumferential notch have been subject of several
studies over the past years. Literature on this subject will be briefly reviewed in this section.

Figure 2.21: Fatigue crack emanating from different circumferential notch shapes in solid round
bars [26].

Over the past decades, studies have been done to the effect of one specific circumferential
notch geometry (and thus one specific corresponding Stress Concentration Factor (SCF)) on
the FCG behaviour in a solid round metallic bar loaded in cyclic tension [27] [28] [29] [30]
[31]. The general trend found in all of these studies is that fatigue cracks in a round bar
with a circumferential stress concentration grows faster than in a smooth solid round bar
without circumferential stress concentration: the fatigue crack growth life is lower. Next to
that, it is observed that the crack shape develops in a different way through a solid round
bar with a circumferential stress concentration than without as illustrated in figure 2.22. It
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can be observed that the crack tends to grow faster along the outer surface of the bar when a
circumferential notch is present, which can be explained by the fact that the circumferential
notch raises the stress along the outer surface of the bar.

Figure 2.22: Influence of a circumferential stress concentration (left) on the fatigue crack shape
development compared to a smooth bar (right) loaded in cyclic tension [29].

Where the majority of studies investigate the effect of one specific circumferential notch geom-
etry (which results in one specific stress concentration factor) on the FCG behaviour, it would
be of practical interest to know how a range of circumferential SCF values affects the FCG
behaviour in solid round structures. The benefit would be that it would be able to do FCG
predictions in circumferential notched solid round bars within a range of SCF values rather
than just a single specific SCF value. Surprisingly, a very limited amount of studies have
been done to the effect of a range of circumferential stress concentration factors on the FCG
behaviour in a solid round metallic bar. Only a few numerical studies have investigated how
a range of stress concentration factors influences the FCG behaviour, which will be shortly
discussed here.

In a numerical study of Carpinteri [32][33] it is investigated what the influence of circular-arc
shaped notches with different radii ρ, as illustrated in figure 2.23, is on the FCG behaviour.
The investigation was done for three different notch radii ρ and a smooth bar as comparison.
The resulting SCFs introduced under tension loading by the different notch radii (and the
smooth bar) were: 1, 1.316, 1.591 and 2.262. The general trend observed by this paper was
that the higher the SCF, the higher the FCG rates were, and thus the lower the fatigue crack
growth lives. It was also investigated how the crack shape development is influenced by the
different stress concentration factors. No attempt was made in this paper to compare the
numerically found influence of the SCF on the FCG behaviour to experimental results.
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Figure 2.23: Fatigue crack emanating from circumferential circular-arc notch used in a paper of
Carpinteri [33].

In a numerical study of Guo [26], two different types of circumferential notches were con-
sidered: U-shaped and V-shaped notches as illustrated in figure 2.24. It was concluded that
the type of notch, U-shaped or V-shaped, did not make a difference but that the resulting
SCF from the circumferential notch resulted in the same FCG behaviour. The investigation
was done for notches resulting in the following values of the SCF: 1, 2.5, 4 and 5. The main
result found was in agreement with what was found in the study of Carpinteri: the higher the
SCF, the higher the FCG rates, especially for when the relative crack length is small. The
numerically found influence of the SCF on the FCG behaviour was compared to experimental
results for a single SCF. The experimental and numerical found influence of the SCF on the
FCG behaviour were in agreement.

Figure 2.24: Fatigue crack emanating from circumferential stress concentrating notches used in
a paper of Guo [26].

Both the studies by Carpinteri and Guo are numerical studies and the results are only com-
pared to experimental results in the investigation of Guo [26]. This experimental study only
investigates one specific circumferential notch, and thus one specific circumferential SCF.
Next to that, the geometry of the circumferential notches investigated in the two studies were
circular-arc, V-shaped and U-shaped. Research that investigates the effect of different shoul-
der fillet radii, causing different SCFs, have not been done. lastly, both studies by Carpinteri
and Guo are numerical types of studies, no experimental study where the effect of a range of
circumferential SCFs on the fatigue crack growth has been done.
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2.3.1 Fatigue crack growth in solid round bars with a shoulder fillet

Because the research project was focussed on the influence of a shoulder fillet on the fatigue
crack growth behaviour in a solid round metallic bar, studies that investigated the influence
of this specific notch type are discussed here. The research done to the effect of this specific
notch, a shoulder fillet, in a solid metallic round bar is rather limited: two different studies
investigated the effect of a shoulder fillet in a solid round bar on the fatigue crack growth.

In an early study of Hjfeldt [34] it was investigated how a fatigue crack grows through a
solid round metallic bar with a shoulder fillet with the dimensions given in figure 2.25. The
bar was loaded in cyclic bending and the crack was located at 10 degrees into the fillet as
illustrated in figure 2.26 as the highest stress loaded in bending was expected there. In this
research only bending loads were considered and no comparison was made to the case of a
smooth solid round bar. FCG was predicted using a computational procedure and experi-
ments were conducted in laboratory environment, both results were found to be in excellent
agreement.

Figure 2.25: Shoulder fillet geometry investigated by Hjefeldt [34].

Figure 2.26: Location of the highest stress and initial crack [34].

Research done by Thompson investigated the effect of a shoulder fillet in a solid metallic
round bar on the FCG loaded in cyclic tension and cyclic torsion [35] [36]. The investigated
shoulder fillet geometry is illustrated in figure 2.27. The initial crack was located at the root
of the shoulder fillet with a fillet radius of 3.2 mm. Both numerical research and experimental
research was conducted in this study, of which the results are in good agreement. The result
is compared with the FCG in a smooth solid round bar and it was concluded that the FCG
through the solid round bar with the shoulder fillet is significantly quicker than through a
solid round bar without a shoulder fillet.
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Figure 2.27: Shoulder fillet geometry investigated by Thompson, starter crack was located at
the root of the 3.2 millimeter radius [35][36].

Both studies done to fatigue crack growth in a solid round metallic bar with a shoulder fillet
were limited to a single shoulder fillet geometry. The study done by Thompson [35][36] is the
most relevant for the proposed research project since it is the only study which investigates
the behaviour under cyclic tension loading, which will be the type of loading for the proposed
research project. In both studies no attempt was made to derive SIF solutions that can be
used in the prediction of FCG.

2.4 Energy considerations for fatigue crack growth
As discussed before, the SIF ’K’ is an important and frequently used quantity for the predic-
tion of fatigue crack growth. Next to this stress based approach, an energy based approach
is also used in literature. This energy approach for crack growth (not necessarily fatigue
crack growth), was originally developed by Irwin. He proposed that to propagate a crack, the
amount of supplied energy to the crack tip has to be equal to the surface energy of the mate-
rial multiplied by the area of the newly created fracture surfaces plus the energy dissipated
by plastic deformation. The most frequently used quantity in this energy approach is the
Strain Energy Release Rate (SERR) ’G’, which is the energy dissipated during the fracture
per unit of new created fracture surface area (dUdA ).

In a later study by Irwin [2], the equivalence of the SERR G and the SIF K is shown,
which is derived using Westergaard stress functions. The equivalence of the SERR G and the
SIF K can be expressed as in equation 2.12.

G = K2

E′
(2.12)

In equation 2.12, G is the SERR, K is the SIF and E′ a stiffness term that depends on the
stress/strain state at the crack tip. When the crack tip is in plane stress E′ = E and when the
crack tip is in plane strain E′ = E

1−v2 where E is the Young’s modulus and v is the Poisson’s
ratio of the material [1].

With the equivalence known using equation 2.12, the strain energy release rate ’G’ is also
an often used quantity in literature for the prediction of FCG. Often similar equations like
the well-known Paris equation (equation 2.8) are proposed in literature, using the SERR G
instead of the SIF K.

That the FCG rate is not only dependent on the SIF range ∆K but also dependent on
the stress ratio R received a lot of attention over the years as discussed in section 2.1.3 and is
often attributed to the effect of plasticity induced crack closure. The stress ratio issues with
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the current approach using the SIF (or equally the SERR) concept led to the hypothesis that
the FCG rate is correlated to the total amount of energy lost in the complete fatigue cycle
rather than to the amount of energy that would be released by a crack growth increment
under the instantaneous load conditions at one point in the load cycle, e.g. Gmax and/or
Gmin. In a recent paper of Alderliesten, it is disputed that the correction for the stress ratio
R is needed because of the crack closure phenomenon only [37]. It is stated that these correc-
tions mostly try to compensate for the fact that cyclic stress has been used in a methodology
where cyclic energy should have been used instead, rather than actually correcting for crack
closure alone. In a recent paper about fatigue disbond growth by Pascoe [38], it was found
that the disbond growth rate of a crack was very strong correlated to the amount of cyclic
energy released during a complete cycle dUcyc

dN ; almost no influence of the applied stress ratio
is observed in the test results.

2.5 Synthesis
From the literature reviewed in this chapter, it becomes clear that very little research has been
conducted to the effect of a shoulder fillet on the FCG behaviour in a solid round metallic
bar. The only research work done to the influence of a shoulder fillet on the FCG behaviour
of a crack in a solid round bar loaded in tension [36] is limited to a single specific shoulder
fillet geometry as illustrated in figure 2.27 and thus only a single SCF.

Limited numerical research was done to determine the effect of a range of circumferential
SCFs on the FCG behaviour. The result of the numerical research done was only compared
to a limited number of experimental observations for a single SCF in the work of Guo [26]. No
experimental research has been done to the FCG behaviour of cracks in solid round metallic
bars at a range of different SCFs.

Since there is no experimental research done to investigate the effect of different shoulder
fillet radii (and thus different SCFs) on the FCG behaviour of a crack in a solid round bar
under tension loading, this was one of the key points to investigate during this research.

As shown by Alderiesten [37], the nature of stress ratio corrections used in current practice
in FCG predictions to correct for plasticity induced crack closure, can partly be explained by
considering cyclic energy rather than cyclic stress. So another, more fundamental, key point
that was investigated during this research was on how FCG can be described and predicted
with the concept of cyclic energy.
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Chapter 3

Research Approach and Theory

In this chapter, the research approach and theory behind the research project is discussed.
The problem of Fatigue Crack Growth (FCG) through solid round metallic bars with a shoul-
der fillet was approached from two different point of views: the conventional stress intensity
approach and an energy approach. Before the research approaches are discussed, the investi-
gated problem and the scope of the research is discussed in section 3.1. After that, the theory
and research approach used for the two point of views is discussed in section 3.2 and section
3.3. The overall research approach is discussed in section 3.4.

3.1 Problem Description and Scope of Research
In this section, the problem that was investigated in this research is outlined. Also, the scope
of the research is discussed.

The problem that initiated this research project was that in current predictions of FCG
through solid round metallic bars with a shoulder fillet, the presence of the shoulder fillet is
neglected: the FCG prediction is done under the assumption that the fatigue crack grows as
if it is present in a solid round metallic bar without shoulder fillet. The goal of this research
project was to investigate and quantify the influence of a shoulder fillet on the FCG behaviour
in a solid round metallic bar to be able to do more accurate predictions. To be able to im-
prove FCG predictions, a Stress Intensity Factor (SIF) solution for solid round bars with a
shoulder fillet was developed using FCG experiments. With the developed SIF solution, a
FCG prediction model was developed which takes the presence of shoulder fillets into account.

An additional point that was investigated in this research was more fundamental about FCG
in general. In recent research work, it is shown that the SIF range ∆K is unable to correctly
describe a load cycle. It is argued that stress ratio correction equations that are used for
the prediction of FCG as proposed in literature, which claim to correct purely for plasticity
induced crack closure, actually correct mainly for the fact that the SIF range ∆K is unable
to describe the applied load cycle correctly. The hypothesis is that when considering the
energy used for FCG during a complete load cycle, this correlates directly to the FCG rate
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without any stress ratio influence. This hypothesis was investigated in this research project,
furthermore it was investigated how a prediction methodology based on this knowledge could
be developed.

When considering a solid round bar with a shoulder fillet, which is illustrated with its char-
acteristic dimensions D1, D2 and r in figure 3.1, it is important to understand that every
discontinuity in a structure causes a concentration of stress at that location when loaded.
The severity of this concentration of stress is indicated with the Stress Concentration Fac-
tor (SCF), which is defined as the ratio between the peak stress at the discontinuity and
the nominal stress which would be present if the discontinuity would not be present in the
structure. Since a shoulder fillet is a circumferential discontinuity in a round bar, this causes
a circumferential stress concentration. In this research it was assumed that a shoulder fillet
could be characterized with the resulting SCF. It is assumed that when having a different
shoulder fillet geometry, but with the same resulting SCF, the same influence on the FCG
behaviour can be expected.

Figure 3.1: A solid round bar with small diameter D1, large diameter D2, shoulder fillet with
radius r and fatigue crack with length a.

It was decided to limit the research project to FCG under Constant Amplitude (CA) tension
loading, the influence of variable amplitude or other types of loading (e.g. bending or torsion)
was not taken into account in this research project and the developed prediction models. The
FCG behaviour in five geometrically different solid round metallic bars was investigated: a
straight solid round metallic bar without shoulder fillet, and four different solid round metallic
bars with different shoulder fillet geometries resulting in a SCF under tension loading of 1.5,
2, 3 and 4.1. It was decided not to investigate higher values of the SCF since this is practically
never encountered in engineering practice. Furthermore, it was decided to define the initial
crack as straight because of the ease of production; different initial crack shapes were not
considered. In this thesis, the crack length a, crack area A and diameter of the bar at the
location of the crack D are defined as in figure 3.2.

Figure 3.2: The definition of the crack length a, crack area A (grey shaded) and diameter of
the bar at the location of the crack D.
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3.2 Stress Intensity Approach
The SIF range ∆K is conventionally used as similarity parameter in engineering practice
when predicting FCG. Theory have been developed over the past decades to determine SIF
solutions for specific crack problems to be able to predict FCG. SIF solutions are expressed
as values of β as defined in equation 3.1, since β captures the influence of the geometry on
the SIF.

∆K = β∆S
√
πa (3.1)

Since only tensional loads were considered in the research project, it was assumed that FCG
only occurs in opening mode I. No subscript for ∆K or β is used to indicate the opening
mode in this thesis. To be able to investigate and quantify the influence of shoulder fillets
on the FCG behaviour, a SIF was determined using FCG experiments. The methodology
that was used to determine SIF values using FCG experiments was successfully applied in
earlier studies as discussed in section 2.2.2. First, FCG data was gathered from solid round
bars without shoulder fillets (straight solid round bars): with a known one-parameter SIF
solution for fatigue cracks in straight solid round bars from literature, baseline FCG data of
the tested material was gathered. The one-parameter SIF solution used for the straight solid
round bars without a shoulder fillet was determined by Forman et al [10]; this solution is
used in frequently used FCG prediction software in engineering practice like NASGRO and
AFGROW. The SIF solution is only dependent on the relative crack depth λ = a

D , where
a is the crack length and D is the diameter of the bar, and is given in equation 3.2. With
FCG data gathered from experiments on solid round bars with shoulder fillets, SIF values
can be determined using the baseline data. This methodology to determine the SIF values
from experiments is visualized in the flowchart in figure 3.3. The experimentally determined
SIF values are expressed as a solution of the geometry factor β.

β (λ) = g

[
0.752 + 2.02λ+ 0.37

(
1− sin

(
πλ

2

))3]
(3.2)

Where:

g =
0.92

(
2
π

) [ (tan(πλ2 ))
πλ
2

]0.5

cos(πλ2 )
(3.3)

With λ as the normalized crack depth:

λ = a

D
(3.4)

With the experimentally determined SIF values for solid round metallic bars with shoulder
fillets with four different values of the circumferential SCF under tension, an FCG prediction
model was developed as will be discussed in chapter 6. The determined SIF solutions were
implemented in the prediction model in such a way that FCG can be predicted in solid round
metallic bars with a shoulder fillet loaded in tension.
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Figure 3.3: Methodology to determine SIF values from FCG experiments.
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3.3 Energy Approach

The Strain Energy Release Rate (SERR) G is just as the SIF K a commonly used similarity
parameter for FCG predictions. Since those two parameters are directly related as shown
by Irwin [2], Paris-like equations are often proposed in literature for the prediction of FCG
using the SERR. In literature often instead of the SIF range, the maximum SERR or the
SERR range is used in such equations. In recent research work on fatigue disbond growth by
Pascoe [38], it was shown that the disbond growth rate under fatigue loading is related to the
total amount of cyclic energy released during a complete load cycle, and not the amount of
energy that is released by a crack growth increment under the instantaneous load conditions
at one point in the load cycle e.g. at maximum and/or minimum load. This statement was
supported by experimental evidence; it was found that the relation between loss of cyclic
strain energy and the disbond growth rate was independent of the applied stress ratio, where
in the relationship between the disbond growth rate and the maximum SERR or SERR range
a clear influence of the stress ratio was observed.

In this research, it was investigated if this correlation was also apparent in FCG through
a metallic solid round bar. Furthermore, it was investigated how this knowledge could be
used in the development of a prediction methodology based on the energy used for crack
growth in a complete load cycle. Since the amount of energy used in a complete fatigue
cycle is something which can be determined after a FCG test, but not on beforehand, it
was still an open question how this could be predicted on beforehand. For an FCG predic-
tion methodology based on the energy used for a crack to grow in a complete fatigue cycle,
it is necessary to be able to predict the amount of energy used in a fatigue cycle on beforehand.

The process of FCG can be described in terms of energy: there must be an energy bal-
ance between loading and unloading a specimen with a growing fatigue crack. This energy
balance can be written for a single load cycle as done in equation 3.5.

Uin = Uout + dU

dN
(3.5)

In equation 3.5, Uin is the strain energy supplied to the specimen during loading the specimen
and Uout is the strain energy supplied back during unloading. dU

dN is the energy used in that
load cycle for the creation of crack area and plasticity. Because it is difficult to measure the
difference between Uin and Uout during a FCG experiment, it was decided to measure the
supplied strain energy Uin only. This will result, in the case of load-controlled experiments,
in an increase of supplied energy with a growing crack because of the increase in displacement;
a growing crack reduces the stiffness of the specimen. When the supplied strain energy Uin
is plotted against the number of applied load cycles N , the derivative can be taken to obtain
dU
dN . This is only true under the assumption that Uout of cycle N is equal to Uin of the cycle
N + ∆N as written in equation 3.6. With this assumption, measurements of the supplied
strain energy during the FCG experiments give enough information to derive dU

dN .

[Uout]N = [Uin]N+∆N (3.6)

The increase in supplied strain energy Uin in the case of load-controlled fatigue experiments
is a measure for the energy used in the growth of a fatigue crack, since the energy used for a
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crack to grow (and formation of plasticity) between the applied load cycles N and N +∆N
is equal to the work done due to the increase in displacement by the external forces minus
the difference in strain energy. This is also stated in equation 3.7.

Ufracture+plasticity = P [dN+∆N − dN ]− 0.5P [dN+∆N − dN ] (3.7)

Which results in:
Ufracture+plasticity = 0.5P [dN+∆N − dN ] (3.8)

Where P is the applied load and d the resulting displacement. So, when the supplied strain
energy Uin = 0.5Pd is calculated for any cycle during a load-controlled FCG experiment and
plotted versus the number of cycles N , the derivative dU

dN is a measure for the amount of
energy used for the growth of the fatigue crack and formation of plasticity. The amount of
energy used during a fatigue cycle dU

dN can be written as function of the energy used to create
a certain crack area dU

dA times how much crack area is created during that fatigue cycle dA
dN ,

which is expressed in equation 3.9.
dU

dN
= dU

dA

dA

dN
(3.9)

It has to be noted that the term dU
dA in equation 3.9 relates to the total energy used for the

growth of a certain crack area during complete a fatigue cycle; it is a different quantity than
the conventional used SERR which is only valid at an instantaneous point in the load cycle
(e.g. at maximum or minimum applied load Smax or Smin). The term dU

dA as used in equation
3.9 will be referred to as Gavg since it can be seen as the average SERR during a complete
fatigue cycle. When an FCG experiment is done, and the energy used during a cycle dU

dN and
the corresponding crack growth rate dA

dN is known, this average SERR can be calculated using
equation 3.9. It still was an open question at the beginning of this research project if and
how this quantity Gavg could be used in the prediction of FCG.

It has to be noted that during this research project, no distinction was made between the
energy used during FCG for plasticity (and other dissipative processes) and the formation of
crack area.

3.4 Overall Research Approach
The research project took two different approaches looking at the problem of FCG through
solid round bars with a shoulder fillet. Where the stress intensity approach uses an already
proven methodology to investigate the influence of shoulder fillets on the fatigue crack growth
behaviour, the energy approach had a more exploratory character since no proven prediction
methodologies exist in current literature.

Furthermore, the research had a highly experimental character. The influence of shoulder
fillets on the FCG behaviour was purely be based on experimental results. For the energy
approach, a simple Finite Element (FE) model was created to investigate the relation be-
tween the crack area A and the energy input Uin as part of a pre-study to the possibility to
characterize FCG using the energy approach. The amount of energy supplied to the speci-
men was also measured using force and displacement measurements during the experiments.
Both the FCG prediction models that were developed, were mathematical models based on
experimental results.



Chapter 4

Experiments

In this chapter, the experimental part of the research is discussed. During the research,
Constant Amplitude (CA) Fatigue Crack Growth (FCG) experiments were conducted to gain
the necessary FCG data. The design of experiments is discussed, as well as the specimen
design, load spectrum design and experimental set-up. During the research, two different
types of specimens were tested: straight solid round bars (without shoulder fillet) and solid
round bars with shoulder fillet. The straight solid round bars were tested to obtain baseline
FCG data of the material. The specimens with a shoulder fillet, of the same material, were
tested to investigate the influence of a shoulder fillet on the FCG behaviour. Section 4.1
discusses the design of the experiments. After that, a pre-study to the energy approach using
the FCG prediction software AFGROW and a Finite Element (FE) model is discussed in
section 4.2.

4.1 Design of Experiments
To investigate the influence of a shoulder fillet on the FCG behaviour, it was decided to test
specimens with different shoulder fillet radii, which caused different circumferential Stress
Concentration Factor (SCF) values under tension loading. The values of the circumferential
SCF under tension loading tested were: 1 (no shoulder fillet), 1.5, 2, 3 and 4.1. It was decided
not to investigate higher values of the SCF since this is practically never encountered in en-
gineering practice. Initial cracks with a depth of 1 mm were made with Electrical Discharge
Machining (EDM) at the location in the shoulder fillet where the stress concentrates under
tension loading.

Where in FCG experiments with a through-the-thickness fatigue crack the crack length a
can be observed and measured during the experiment from the outer surface of the specimen,
this is not possible in the case of a growing fatigue crack in a round bar. To be able to
reconstruct how the fatigue crack grew through the solid round specimens, marker loads were
implemented in the load spectrum, which became visible as clear bands on the fracture surface.
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Furthermore, maximum and minimum applied force and resulting displacement are mea-
sured throughout the experiments to be able to analyse the amount of supplied energy to
the specimens. Lastly, every designed specimen was produced twice to be able to analyse
potential stress ratio effects. It was decided to test every designed specimen at two (very)
different stress ratios: 0.5 and 0.05.

4.1.1 Specimen Design

Specimens were specifically designed for this research project. The most important criterion
for the specimen design was the ability to test all the different specimens in a fatigue machine
which was available in the Delft Aerospace Structures and Materials Laboratory (DASML)
of the Aerospace Engineering (AE) faculty. Furthermore, the design of the specimens was as
similar as possible to exclude any influence of other factors than the change in shoulder fillet
geometry. All the specimens were produced from aluminium alloy 7075-T651 (the material
certificate of the supplier can be found in appendix B). This material was chosen because
marker loads were successfully used in this material to reconstruct how a part-through fa-
tigue crack grew in a study of Schijve [21]. The specimens were produced from two different
batches of the same material, in the test matrix in section 4.1.4 it is indicated which specimens
are produced from which batch to be able to identify the possible influence of the different
batches on the FCG behaviour.

The specimens with a shoulder fillet, are designed as illustrated in figure 4.1. To investi-
gate the influence of different values of the circumferential SCF caused by a shoulder fillet
under tension, it was chosen to vary only the fillet radius between the five different specimen.
By only varying the fillet radius (and not the outer diameters of the bar) to obtain different
circumferential SCFs, the different specimen could be very similar which makes the test pro-
cedure for the different specimen the same. The value of the circumferential SCF caused by a
certain shoulder fillet geometry in a solid round bar is calculated using closed-form equations
derived by Tipton [39] and the values for every specimen are indicated in the test matrix in
section 4.1.4.

Figure 4.1: Design of specimen 1B40 and 2B40 with shoulder fillet, all values are in mm, the
radius of 4 mm will vary between specimen variants, see section 4.1.4.

The smooth solid round bar without shoulder fillet, was very similar to the specimens with
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a shoulder fillet and is illustrated in figure 4.2. All the specimen drawings can be found in
appendix A.

Figure 4.2: Design of the specimen without shoulder fillet, all values are in mm.

4.1.2 Location of the initial crack

An initial crack with a length of 1 mm was machined with EDM perpendicular to the axis of
rotation of the solid round bar as illustrated in figure 4.3 to minimize the fatigue initiation
life. The EDM machine used a thread thickness of 0.1 mm, making the thickness of the initial
crack also approximately 0.1 mm. The location of the initial crack was in the shoulder fillet
where the highest stress concentration is present according to Tipton [39]. This location of the
highest stress concentration in the shoulder fillet will vary for every specimen and is indicated
with the angle ’φ’ as defined in figure 4.3. The location of the highest stress concentration,
and thus the initial crack, for every specimen is indicated in the test matrix in section 4.1.4
and on the specimen drawings in appendix A.

Figure 4.3: The angle ’φ’ which indicates where the highest stress concentrates in the fillet
according to Tipton[39]. The dashed line indicates where the 1 mm deep initial crack was
machined with EDM (drawing is not to scale).

4.1.3 Load spectrum design

The load spectrum was designed in such a way that FCG would occur from the initial crack
machined with EDM. The specimens were loaded with a CA tensional load spectrum with
a maximum stress Smax of 100 MPa, since an initial crack of 1 mm deep started to grow
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for both stress ratio’s for this material according to AFGROW. To be able to reconstruct
how the fatigue crack grew after the specimen failed, marker loads were implemented in
the load spectrum to create marker bands on the fracture surface. The marker loads were
implemented using a study of Schijve [21]. In this study it was shown that by applying marker
loads with an increased maximum stress of only 15 MPa higher than the baseline cycles, the
marker loads could easily be recognised on the fracture surface as ’bands’ using a Scanning
Electron Microscope (SEM). It is well known that the overloads to create marker bands can
lead to crack growth retardation in the subsequent CA baseline cycles because of plasticity.
However, as shown in the same study by Schijve [21], an overload of 15 MPa caused negligible
delay effects in the fatigue growth. Since this was concluded by Schijve for an overload of
15 MPa where the maximum stress of the baseline cycles was 60 MPa, it was assumed no
delay (retardation) effects would occur when the maximum stress is equal to 100 MPa since
the overload of 15 MPa is a relatively smaller overload in this case. The applied marker load
block consisted out of 10 cycles and was repeated 3 times (with 50 baseline cycles in between)
to make sure it could not be missed when inspecting the fracture surface. The applied CA
load spectrum is visualized in figure 4.4. The amount of baseline cycles was chosen to get
approximately 20 marker bands visible on the fracture surface of every specimen. Since it
was not known on beforehand how fast the crack would grow under the applied loading in
the tested material, the amount of baseline cycles was adjusted after the first couple of tests.
The amount of baseline cycles that were applied for every specimen is indicated in the test
matrix 4.1.4.

Figure 4.4: The load spectrum applied to the specimens, the amount of baseline cycles was
different for every specimen, see the test matrix, and R is the applied stress ratio.

The stresses were converted to loads by multiplying the stress with the cross sectional area
of the 40 mm diameter solid round bar. The load cycles applied were sinus-shaped with a
frequency of 10 Hz for the baseline cycles and 1 Hz for the marker load cycles. The axial
displacement between the clamps d and applied force P were measured at maximum and
minimum applied load every 100th load cycle using the calibrated sensors of the MTS fatigue
machine. To be able to analyse the amount of strain energy supplied to the specimen in a
complete load cycle, during the last 5 cycles of every baseline block the displacement and
force was measured at 10 points in every cycle. This was done to more accurately consider
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the supplied strain energy rather than assuming linear force-displacement behaviour of the
specimen between maximum and minimum applied load.

4.1.4 Test matrix

All the specimen that will be tested with corresponding applied load spectrum can be found
in the test matrix given in table 4.1.

Table 4.1: The test matrix with tested specimens.

Specimen
ID

Fillet
radius
[mm]

Stress
concen-
tration
factor
Kt [-]
[39]

Stress
concen-
tration
location
φ [deg.]
[39]

Material
Batch

Maximum
applied
stress
Smax
[MPa]

Stress
ratio R
[-]

Amount
of base-
line
cycles [-]

1B - 1 - B 100 0.5 25000
1Z - 1 - Z 100 0.5 10000
1B116 11.6 1.5 11.1 B 100 0.05 3000
2B116 11.6 1.5 11.1 B 100 0.5 5000
1B40 4.0 2 16.7 B 100 0.05 3000
2B40 4.0 2 16.7 B 100 0.5 10000
1Z13 1.3 3 22.3 Z 100 0.05 3000
2Z13 1.3 3 22.3 Z 100 0.5 10000
1Z06 0.6 4.1 25.8 Z 100 0.05 3000
2Z06 0.6 4.1 25.8 Z 100 0.5 10000

4.1.5 Experimental Set-Up and Procedure

The experiments were conducted on a 1000kN MTS fatigue machine which is available in
the DASML lab of the AE faculty. During the experiments, which were be load controlled,
the force and displacement measurements were conducted using the calibrated sensors of the
MTS fatigue machine. The specimens were designed in such a way that when clamping the
specimen in the machine, the initial crack was located approximately in the middle between
the clamps. The specimen is clamped using the hydraulic clamps of the machine over a length
of 75 mm at both ends. The clamping of the outer 75 mm on both sides of the specimen
was not an exact process and this ’clamping length’ varied a bit for every specimen. The
tensional load spectrum was applied to the specimens until failure of the complete specimen
occurred because of the growing fatigue crack. A failed specimen in the test set-up is shown
in figure 4.5. After the specimen failed, the fracture surface was inspected using an Optical
Microscope (OM) to identify the marker loads on the fracture surface to be able to reconstruct
how the fatigue crack grew.
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Figure 4.5: A failed specimen clamped in the 1000kN MTS fatigue machine.

Test procedure
1. Zero the force measurement before placing a specimen in the machine.
2. Clamp the outer 75 mm on both ends of the specimen using the hydraulic clamps.
3. A negative force will occur because of plastic deformation of the ends of the bar during
the clamping process; when fully clamped, control the machine to zero Newton.
4. Let the machine auto-tune to be able to determine the appropriate parameters controller
to control the desired applied force.
5. Control to zero Newton and assign 0 mm to the axial displacement.
6. Start the experiment. Apply the load spectrum and repeat it until failure of the specimen
occurs.

4.2 Pre-study using FE and AFGROW
In preparation of the experiments, a short investigation was done using a simple FE model
and the FCG prediction software AFGROW. FCG through a straight solid round bar was
considered, of which a one-parameter Stress Intensity Factor (SIF) solution discussed in sec-
tion 3.2 is implemented in AFGROW. The goal of this prestudy was to investigated if there
was a possible correlation between the average Strain Energy Release Rate (SERR) Gavg, and
the FCG rate dA

dN . A simple FE model was created to obtain a relation between the crack
area A and supplied strain energy Uin. AFGROW was used to simulate the FCG process,
the crack length a (which can be converted to cracked area A using the shape assumption of
the SIF solution), number of applied load cycles N and the resulting FCG rate da

dN (which
can be converted to dA

dN using the shape assumption) were taken from these simulations.

With data available on both of these aspects, it was investigated how the crack growth rate
dA
dN was correlated with an average SERR for several loading conditions. Furthermore, it was
the question how this average SERR could be determined on beforehand; this is necessary to
be able to do predictions of FCG based on the hypothesis that the total amount of energy
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used during a cycle dU
dN for a fatigue crack to grow relates directly to the FCG rate dA

dN .

To be able to calculate the average SERR Gavg, the energy balance as discussed in section
3.3 is considered. The energy balance of a single fatigue cycle is stated in equation 4.1.

Uin = Uout + dU

dN
(4.1)

The assumption that the strain energy that comes back during unloading Uout at a certain
crack area A is equal to the strain energy putted in Uin at the next cycle (and thus at the
crack area A+ dA

dN ) can be written as formulated in equation 4.2.

[Uout]A = [Uin]A+ dA
dN

(4.2)

Now, the parameter F is introduced that describes how the strain energy input Uin changes
with a growing crack area A compared to the energy input without a crack present, as written
in mathematical form in equation 4.3.

[Uin]A = [Uin]A=0 F (A) (4.3)

Equation 4.1 can be rewritten using the assumption in equation 4.2 and the introduced
parameter in equation 4.3:

[Uin]A=0 F (A) = [Uin]A=0 F

(
A+ dA

dN

)
+ dU

dN
(4.4)

Rewriting gives:
dU

dN
= [Uin]A=0

[
F (A)− F

(
A+ dA

dN

)]
(4.5)

Or:
dU = [Uin]A=0 [F (A)− F (A+ dA)] (4.6)

If both sides of equation 4.6 are divided by dA, an expression for the average SERR is obtained:

Gavg = dU

dA
= [Uin]A=0

dF (A)
dA

(4.7)

A parameter H is introduced which is equal to dF
dA , this makes the equation for Gavg more

convinient:
Gavg = dU

dA
= [Uin]A=0H(A) (4.8)

A FE model was created to find an expression for the introduced parameter F in equation
4.3. This was done by calculating the energy input Uin at different crack areas A as will be
discussed in section 4.2.2. By taking the derivative with respect to the crack area A of this
function F , H as function of the crack area A was derived. By simulating the FCG process
using AFGROW, it was investigated how the FCG rate dA

dN was related to Gavg for different
loading conditions (e.g. different applied maximum stresses Smax and stress ratios R).
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4.2.1 The AFGROW simulations

The FCG process was simulated using AFGROW. A solid round bar of 40 mm with an
initial crack depth of 1 mm was chosen and an CA load spectra were applied with several
different maximum stresses and stress ratio’s. The material chosen in AFGROW was 7075-
T6511_Extr_L-T and the NASGRO equation was used for the prediction of FCG. The
material properties of the used material are stated in table 4.2. A module in AFGROW for
simulating FCG through a solid round bar was used. This module uses a one-parameter SIF
solution only dependent on the relative crack depth a

D and is derived by Forman et al.[10];
the solution is stated in equation 3.2. This SIF solution assumes that the fatigue crack
front always intersects perpendicular with the outer surface of the bar during the growth as
illustrated in figure 4.6. Using this shape assumption, a crack area A was calculated using
the crack length a and diameter D.

Figure 4.6: Crack shape assumed in the solution of Forman et al. [10]

Since AFGROW provides the FCG rate of the crack length da
dN , the FCG rate of the crack

area dA
dN at a certain load cycle N was calculated using the ratio between the crack length a

and crack area A at that load cycle N as stated in equation 4.9.[
dA

dN

]
N

=
[
A

a

]
N

[
da

dN

]
N

(4.9)

Table 4.2: Material properties of 7075-T6511 in AFGROW.

Young’s Modulus [MPa] Poissons ratio [-] Shear Modulus [MPa]
71705.5 0.33 26957.0

4.2.2 The FE model

An FE model was created using Patran to obtain the function H as stated in equation 4.8, the
FE analysis itself was done with Nastran. Only a quarter of a solid round bar with a diameter
of 40 mm and length of 180 mm was modelled due to the symmetry of the problem. Solid
finite elements were used and the material properties as used in the AFGROW simulation
were used for all elements in the FE model and are given in table 4.2. A load in the axial
direction of the bar (positive x-direction) was applied on a node located next to the bar which
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was aligned with the centre of the bar. The node at which the load was applied was attached
to all the nodes at one end of the bar, illustrated as ’loaded side of the bar’ in figure 4.7, with
a Rigid Body Element (RBE). The applied load had a magnitude to introduce a stress of 100
MPa at that end of the bar. Symmetry boundary conditions were applied along the necessary
surfaces of the bar and a crack was modelled by not applying symmetry constraints over the
area of a certain part of the crack plane as illustrated in figure 4.7.

Figure 4.7: The FE model of a quarter bar with the applied boundary conditions because of
symmetry and to model the crack.

Different cracks with different crack areas A were modelled while the applied load was kept
constant, the supplied energy to the specimen Uin was calculated with the applied load P
and resulting axial displacement (in positive x-direction) of the node at which the load was
applied d: Uin = 0.5Pd. With the supplied strain energy when no crack was present [Uin]A=0,
the earlier introduced parameter F as function of the crack area A could be calculated using
equation 4.10. This was done for several modelled cracks with corresponding crack areas A,
of which the results are visualized in figure 4.8.

F (A) = [Uin]A
[Uin]A=0

(4.10)

A 4th order polynominal function was fitted through the data points to obtain a closed form
equation for F as stated in equation 4.11, the derivative with respect to A gives the function
H as function of the crack area A and is stated in equation 4.12.

F (A) = p1A
4 + p2A

3 + p3A
2 + p4A+ p5 (4.11)

H(A) = dF (A)
dA

= 4p1A
3 + 3p2A

2 + 2p3A+ p4 (4.12)
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Figure 4.8: The values of F as calculated with equation 4.10 and the fitted fourth-order poly-
nomial equation through the data indicated with the dotted line.

The fitted equation 4.10 is plotted in figure 4.8, and the parameters for the fitted equation
are given in table 4.3.

Table 4.3: Fit coefficients and goodness of the fit for equation 4.11.

Fitted equation R2

Equation 4.11 1.000
Coefficient Value

p1 2.366E-12
p2 -8.543E-10
p3 6.018E-7
p4 1.062E-5
p5 1.000

It has to be noted here, that where in the experiments the ends of the bar were fully clamped
because of the hydraulic clamps, and thus the rotation of the ends of the bar because of the
growing crack was constrained, this was not the case in this FE model: the ends were free to
rotate with a crack present. The goal of this pre-study was not to simulate the experiments,
but to investigate if there was a correlation between the FCG rate and an average SERR
through a round bar in general. The experimental part of this thesis was done after this pre-
study to further investigate the results of this pre-study and to provide experimental evidence
of the findings.

4.2.3 Results of the Pre-study

AFGROW simulations were done for a fatigue crack in a solid round metallic bar with an
initial crack of 1 mm. Several stress ratios R and maximum applied stresses Smax to generate
some simulated FCG data. To be able to calculate Gavg, H as function of A as stated in
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equation 4.12 was used.

It was argued that for the energy input at zero crack length [Uin]A=0 in equation 4.13, the
strain energy density input at zero crack length as defined in equation 4.14 or equation 4.15
can be used (instead of the strain energy) since the volume of the specimen does not change
during the FCG process.

Gavg = [Uin]A=0H(A) (4.13)

Which results in, when using the strain energy density:

Gavg,tot = S2
max

2E H(A) (4.14)

Or, when considering the cyclic energy density input:

Gavg,cyc = S2
max

2E
(
1−R2

)
H(A) (4.15)

In both of above equations, Smax is the maximum applied stress in MPa, E is the Young’s
Modulus of the material in MPa and R is the stress ratio which is equal to Smin

Smax
. It has to be

noted that the unit of Gavg is mJ
mm5 when using the strain energy density input for [Uin]A=0.

It indicates how much strain energy density is used for the growth of a certain fatigue crack
area (in mm2) during a complete load cycle.

When the FCG rate dA
dN is plotted against Gavg,tot as defined in equation 4.14, the curves

in figure 4.9 are derived. When the FCG rate dA
dN is plotted against Gavg,cyc as defined in

equation 4.15, the curve in figure 4.10 are derived.

Figure 4.9: The crack growth rate versus the total energy used during the formation of crack
area.
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Figure 4.10: The crack growth rate versus the cyclic energy used during the formation of crack
area.

When comparing the graphs in figure 4.9 and figure 4.10, it can be observed that when
considering the cyclic energy almost a single curve is obtained for the different load cases.
It seems that the crack growth rate dA

dN correlates better with the average cyclic energy
(density) used for the formation of crack areaGavg,cyc during the complete load cycle than with
the total energy (density) used for the formation of crack area Gavg,tot during the complete
load cycle. This observation was further investigated using FCG experiments in chapter 4
and 5. Furthermore, it was investigated how this observation could be used in a prediction
methodology for FCG in chapter 6.



Chapter 5

Results

The results of the experiments are discussed in this chapter. The two main results are the
crack growth measurements and the energy measurements which are discussed separately.
First of all, some general remarks are made about the tested specimens in section 5.1. Then,
the process of digitizing the fracture surface to obtain data about the crack length a and crack
area A is explained in section 5.2. After that, the obtained crack length and crack area data
is presented in section 5.3 and Stress Intensity Factor (SIF) solutions for the specimens with
shoulder fillets are determined in section 5.4. The influence of the stress ratio is discussed in
section 5.5 and how the crack shape developed during growth for the different specimen is
discussed in section 5.6. The energy data is discussed in section 5.7 and the correlation with
the Fatigue Crack Growth (FCG) rate is shown in section 5.8.

5.1 Test Results
In this section, the general test results are discussed, an overview is given in table 5.1. For
specimen 1B, the force and displacement data was not successfully retrieved during the exper-
iment and energy calculations were not possible. During the test of specimen 1Z06, multiple
fatigue cracks initiated (next to the initial crack) in the shoulder fillet of the bar, as can be
seen in figure 5.2. This made it not possible to compare it to the other specimen where this
phenomenon did not occur: the fracture surfaces of all the other specimen had the charac-
teristics as can be seen in figure 5.1. That this phenomenon happened for this specimen can
be explained by the fact that is was loaded with a low stress ratio R (0.05) and had a high
circumferential Stress Concentration Factor (SCF) (4.1). A low stress ratio means a high ap-
plied stress amplitude and fatigue cracks initiate quicker at higher applied stress amplitudes
than lower applied stress amplitudes. Furthermore, fatigue cracks initiate quicker when a
higher SCF is present. The combination of both of these factors caused that multiple fatigue
cracks initiated next to the initial crack. Specimen 1B was not taken into account for the
energy considerations since no data was gathered and specimen 1Z06 was not considered at
all in further analysis of the test results.
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Table 5.1: Test results.

Specimen
ID

Stress
ratio R
[-]

SCF Kt

[-]
Material
Batch

Applied
cycles at
failure
Nf [-]

Remarks

1B 0.5 1 B 933098 No energy data retrieved
1Z 0.5 1 Z 910170 -
1B116 0.05 1.5 B 61370 -
2B116 0.5 1.5 B 351928 -
1B40 0.05 2.0 B 99430 -
2B40 0.5 2.0 B 303771 -
1Z13 0.05 3.0 Z 95900 -
2Z13 0.5 3.0 Z 237372 -
1Z06 0.05 4.1 Z 61963 Multiple fatigue cracks
2Z06 0.5 4.1 Z 228169 -

The amount of applied cycles when failure did occur Nf in table 5.1 can be somewhat mis-
leading since this also included the amount of cycles needed for the initiation of a fatigue
crack from the initial crack made with Electrical Discharge Machining (EDM). It was not
possible to detect when FCG exactly started to occur during the test. Marker loads were im-
plemented in the load spectrum to be able to reconstruct how the fatigue crack grew during
the experiment and this will be discussed in the next section.

Figure 5.1: Overview of the fracture surface of specimen 2B116; the fracture surfaces of the
other specimen had the same characteristics (except for specimen 1Z06).
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Figure 5.2: Overview of the fracture surface of specimen 1Z06 where multiple fatigue cracks
initiated.

5.2 Digitizing the Fracture Surface
Data on the crack length a and crack area A were retrieved by inspecting the fracture surface
of the specimens. The marker loads that were implemented in the applied load spectrum were
clearly visible as darker bands on the fracture surface using an Optical Microscope (OM). As
example, a picture of the fracture surface as seen with an OM of specimen 2B40 is shown in
figure 5.3.

Figure 5.3: Picture of the fracture surface of specimen 2B40 seen with an OM, the applied
marker loads clearly visible as darker bands.
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The lens of the OM was always perpendicular positioned with respect to the fracture surface
when a picture was made. Furthermore, it was made sure that the initial crack was always
vertical positioned in every picture to be able to find the correct location of the reference
point. Using the software of the OM, which takes into account at which magnification the
picture is taken, the correct x- and y- location of a point manually indicated on a picture
can be retrieved. This is done manually for several points along every marker band observed
on the fracture surface. Because of the magnification of the OM, not the complete fracture
surface was visible: the crack front near the outer edge of the bar was not visible as can be
seen in the picture of the fracture surface of specimen 2B40 in figure 5.3. It is important that
the x- and y-location of the reference point is also known for every picture made; then the
location of every marker band on the fracture surface can be reconstructed. The reference
point for every picture was on the outer edge of the round bar, in the middle of the initial
crack as indicated in figure 5.4.

Figure 5.4: Schematic overview (not to scale) of the fracture surface with reference point and
points along a marker band indicated with marks.

With knowledge of the x- and y- location of the reference point and several points along
the marker bands, the fracture surface was digitized using MATLAB. The outer diameter
of the bar at the location of the crack was plotted (this is a different diameter for every
specimen because of the location of the initial crack at the highest stress concentration), the
coordinates of the middle point of the bar was chosen to be (0,0). The marked points for every
marker band observed were plotted at the correct location with respect to the outer diameter
using the reference point. By fitting a second order polynomial equation through every set
of points corresponding to a marker band, the complete crack front was reconstructed. The
fitted equation is given in equation 5.1, this equation was chosen since the marker bands were
symmetric with respect to the y-axis. An example of a completely digitized fracture surface is
given in figure 5.5. It has to be noted that the to closer to the initial crack, the more difficult
it became to recognize marker bands on the fracture surface using the OM.

y = c1x
2 + c2 (5.1)
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Figure 5.5: Digitized fracture surface of specimen 2B.4,0 with fitted equations to reconstruct
marker bands.

Using the digitized fracture surfaces of the tested specimens, the crack length a and crack
area A were obtained using MATLAB.

Fracture surface inspection procedure
1. Make sure that the fracture surface is perpendicular with respect to the lens of the OM.
2. Make sure that a picture is made with the initial crack positioned vertical.
3. Adjust the lightning and magnification in a way that the marker bands become visible.
4. Check the correct magnification is selected in the software and make a picture.
5. Use the software to mark points (the software saves the x- and y-location of every point
marked automatically) on the picture where a marker band is visible.
6. Make sure that for every picture made, the reference point is marked and the x- and
y-location is known.

5.3 Crack Growth Rate Data
With the process discussed in the previous section, the fracture surface of every tested spec-
imen was digitized. For every digitized marker band on the surface, a crack length a and
crack area A were calculated from the digitized image using MATLAB. The amount of load
cycles applied N at every marker band observed is retrieved from the data file of the MTS
machine. Since the marker load block was applied in three separate blocks of 10 cycles with
50 baseline cycles in between (in total 130 cycles), there was some uncertainty in the amount
of cycles corresponding which corresponded to the marker band observed. It was chosen to
take the amount of applied cycles half-way through the applied marker block of 130 cycles,
which is indicated as example as Nmarker in figure 5.6.
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Figure 5.6: Applied load spectrum with cycle Nmarker indicated which is assigned to a marker
band observed on the fracture surface.

The second order exponential equations 5.3 and 5.5 were fitted through both data sets for
every specimen. To obtain better fitting, the number of cycles were shifted along the x-axis
in such a way that the first marker observed, the closest to the initial crack, on the fracture
surface was assigned 1 number of shifted cycles, this shifted amount of cycles Ns was calcu-
lated using equation 5.2. The growth rates da

dN and dA
dN were obtained by differentiating the

fitted second order exponential equation. The crack length a and crack area A plotted against
the amount of shifted cycles Ns and fitted second order exponential equation is shown for
specimen 2B40 in figure 5.7 and figure 5.8. The parameters for both fitted equations can be
found in tables 5.2 and 5.3.

Ns = Nmarker −min(Nmarker) + 1 (5.2)
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Figure 5.7: Crack length versus the shifted amount of cycles for specimen 2B40

a = c1e
c2Ns + c3e

c4Ns (5.3)

da

dN
= c1c2e

c2Ns + c3c4e
c4Ns (5.4)

Table 5.2: Fit coefficients and goodness of the fit for equation 5.3 for specimen 2B40.

Fitted equation RMSE R2

Equation 5.3 (and 5.4) 0.0473 0.9998
Coefficient Value 95% Confidence Bounds

c1 2.443 2.489
2.397

c2 6.804E-6 7.117E-6
6.491E-6

c3 2.919E-3 4.939E-3
8.989E-4

c4 3.948E-5 4.277E-5
3.619E-5
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Figure 5.8: Crack area versus the shifted amount of cycles for specimen 2B40

A = c1e
c2Ns + c3e

c4Ns (5.5)

dA

dN
= c1c2e

c2Ns + c3c4e
c4Ns (5.6)

Table 5.3: Fit coefficients and goodness of the fit for equation 5.5 for specimen 2B40.

Fitted equation RMSE R2

Equation 5.5 (and 5.6) 2.1797 0.9996
Coefficient Value 95% Confidence Bounds

c1 26.67 27.57
23.78

c2 9.524E-6 1.057E-5
8.479E-6

c3 0.0453 0.08945
0.001154

c4 4.434E-5 4.897E-5
3.971E-5

This process was repeated for every tested specimen to obtain the necessary data on the FCG
rates. All the test results can be found in appendix C.
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5.4 Development of a Stress Intensity Factor Solution
Using the gathered baseline FCG data, SIF values for the solid round bars with a shoulder
fillets causing different values of the circumferential SCF under tension loading could be de-
termined.

Baseline FCG data was derived using the same one-parameter SIF solution as used in com-
monly used FCG prediction software like AFGROW and NASGRO. This SIF solution is
derived by Forman et al. [10] and stated in equation 5.8. When applying this SIF solution to
the FCG data gathered with the experiments on the specimens without shoulder fillets, the
crack growth rate as function of the SIF range ∆K is found as shown in figure 5.9.

∆K = β∆S
√
πa (5.7)

With, for a solid round bar:

β (λ) = g

[
0.752 + 2.02λ+ 0.37

(
1− sin

(
πλ

2

))3]
(5.8)

With g defined as:

g =
0.92

(
2
π

) [ (tan(πλ2 ))
πλ
2

]0.5

cos(πλ2 )
(5.9)

Where λ is the relative crack length:
λ = a

D
(5.10)
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Figure 5.9: FCG baseline data

It can be observed that the two straight specimen from a different batch of material show
FCG behaviour that is very similar at lower crack growth rates and at higher crack growth
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rates a difference is observed. This difference can be explained by the fact that specimen 1B
only had 3 observable marker bands on the fracture surface (see appendix C). To make fitting
through the crack length versus amount of cycles possible, an extra data point had to be
added for specimen 1B: the crack length at final failure. The process to determine the crack
length at final failure was less accurate than for the marker bands: the marker bands were
better visible than the exact location of the final fracture. That this extra data point had to
be added for specimen 1B, could be an explanation for the difference in FCG behaviour at
higher crack growth rates. It was decided to fit a power-law curve through the FCG data of
both specimen to obtain one closed-form equation for the baseline FCG data. It is assumed
that FCG occurred in the ’Paris-law’ region and the power-law equation stated in equation
5.11 is fitted through the baseline data. The fitted equation was used as baseline FCG data
to be able to calculate SIF values for the specimens with a shoulder fillet.

da

dN
= C∆Km (5.11)

The fitted equation in figure 5.9 and stated in equation 5.11 has the C and m values as stated
in table 5.4. The goodness of the fitted equation is indicated by the adjusted R-squared (R2)
value and the Root Mean Squared Error (RMSE).

Table 5.4: Fit coefficients and goodness of the fit for equation 5.11.

Fitted equation RMSE R2

da
dN = C∆Km 2.1397E-5 0.9078
Coefficient Value 95% Confidence Bounds

C 3.318E-10 5.375E-10
1.261E-10

m 2.317 2.425
2.209

The fitted Paris-law equation 5.11 with the parameters as defined in table 5.4 was used as
baseline to develop SIF values for the specimens with shoulder fillets using the methodology
described in section 3.2. Only the specimens tested with a stress ratio of 0.5 were used to
determine SIF values, the specimens tested at the stress ratio of 0.05 were used in section 5.5
to investigate the influence of the stress ratio. The experimentally determined SIF values for
the specimens with a shoulder fillet are visualized in figure 5.10.
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Figure 5.10: The determined SIF solutions expressed as values of β.

Now, a new parameter βcorr is introduced which is defined as the determined β value divided
by the β value for a solid round bar without shoulder fillet (Kt = 1), in mathematical form
stated in equation 5.12.

βcorr = β

βKt=1
(5.12)

This parameter is introduced because it enables that the current SIF solution for a solid
round bar without shoulder fillet can be used in FCG predictions, but have to be adjusted
with βcorr when a shoulder fillet is present. The SIF range ∆K for a solid round bar with a
shoulder fillet can be calculated using βcorr as defined in equation 5.13.

∆K = ββcorr∆S
√
πa (5.13)

The SIF values for a solid round bar with shoulder fillet expressed as values of βcorr are
visualized in figure 5.11.
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Figure 5.11: The determined correction factors βcorr.

It can be seen in figure 5.11 that the higher the SCF Kt, the larger the correction factor βcorr
is. Also, the smaller the (normalized) crack depth, the larger the influence of the SCF on
βcorr. This result can be explained by the fact that when the (normalized) crack length is
lower, a large part of the crack front is closer to the shoulder fillet which causes a concentra-
tion of stress which is higher when the SCF is higher. When the fatigue crack grows, a large
part of the crack front grows away from the shoulder fillet and this decreases the influence of
the shoulder fillet on the FCG behaviour.

All the data in figure 5.11 was used in a two-parameter fitting technique to obtain a closed-
form equation for the correction factor βcorr as function of the normalized crack length λ = a

D
and the SCF Kt. The fitted equation is given in equation 5.14 and visualized in figure 5.11.
The corresponding goodness of the fit and values for the fit coefficients is given in table 5.5.

βcorr (λ,Kt) = p00 + p10λ+ p01Kt + p20λ2 + p11λKt + p02K2
t + p30λ3

+ p21λ2Kt + p12λK2
t + p03K3

t + p40λ4 + p31λ3Kt + p22λ2K2
t + p13λK3

t + p04K4
t (5.14)

The fitted equation for βcorr as defined in equation 5.14, was used in the developed prediction
model as discussed in section 6.1. The fitted equation βcorr as defined in equation 5.14, is
considered valid between a SCF of 1 and 4.1 and relative crack depth λ of 0.05 and 0.45 since
there is only experimental data available between those limits.
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Table 5.5: Fit coefficients and goodness of the fit for equation 5.14.

Fitted equation RMSE R2

Equation 5.14 0.0164 0.9802
Coefficient Value 95% Confidence Bounds

p00 0.8864 1.027
0.7463

p10 -4.495 -3.359
-5.63

p01 0.4676 0.7359
0.1993

p20 27.6 34.43
20.78

p11 1.492 2.162
0.8222

p02 -0.302 -0.1186
-0.4855

p30 -72.37 -54.06
-90.68

p21 -0.8863 0.7841
-2.557

p12 -0.8267 -0.622
-1.031

p03 0.1137 0.1658
0.06153

p40 72.07 90.1
54.04

p31 -4.963 -3.225
-6.701

p22 1.064 1.258
0.8704

p13 0.05621 0.08007
0.03235

p04 -0.01338 -0.008135
-0.01862
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5.5 Influence of the Stress Ratio
The SIF solution stated in equation 5.14 was determined using the specimens tested at a
stress ratio of 0.5. Now, the developed SIF solution as stated in equation 5.14 is applied to
all the specimens tested (also at the specimens tested at a stress ratio of 0.05) and the FCG
rate da

dN versus the SIF range ∆K is plotted in figure 5.12.
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Figure 5.12: All the test data plotted with the determined βcorr solution of equation 5.14.

As expected, a stress ratio effect is observed in figure 5.12. The specimens tested at a stress
ratio of 0.5 condense to a single curve and the specimens tested at a stress ratio of 0.05
condense to a single curve (except for specimen 1B116, with a Kt = 1.5 and R = 0.05, which
is considered as outlier). To be able to predict FCG at different stress ratios, a correction
equation is proposed to condense the gathered FCG data at the two stress ratios on a single
curve. The correction equation proposed is one derived by Schijve for 2024-T3 as stated in
equation 5.15 [40]. Although the tested material is a different aluminium alloy, a large part of
the stress ratio effect disappears when equation 5.15 is applied as visualized in figure 5.13. It
is believed that this can be explained by the fact that these correction equations don’t correct
for crack closure only, but largely correct for the fact that the SIF range is not able to describe
the load cycle correctly. Since a large part of the stress ratio effect disappeared with the use
of equation 5.15, it was assumed that this correction equation for the stress ratio R could
be used in a prediction model based on the stress intensity concept and will be discussed in
section 6.1. That the FCG data obtained at both stress ratios do not fall exactly on a single
curve, there is still some scatter present when applying the correction equation, has an effect
on the FCG predictions done with the developed model as will be discussed in chapter 6.

∆Keff

∆K = 0.55 + 0.33R+ 0.12R2 (5.15)
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Figure 5.13: All the test data plotted with the determined βcorr solution of equation 5.14 and
corrected to obtain an effective SIF range with equation 5.15.

Excluding the specimen with Kt = 1.5 and tested at a stress ratio R = 0.05, the power
law equation stated in equation 5.16 is fitted through the data in figure 5.13. The resulting
coefficients for C and m in equation 5.16 were used in the developed prediction model that is
discussed in section 6.1.

da

dN
= C∆Km

eff (5.16)

Table 5.6: Fit coefficients and goodness of fit for equation 5.16

Fitted equation RMSE R2

C∆Km
eff 2.2715E-5 0.9660

Coefficient Value 95% Confidence Bounds

C 5.615E-10 6.612E-10
4.617E-10

m 2.336 2.367
2.305

5.6 Crack shape development
Since the presence of a circumferential stress concentration not only influences the FCG rate
da
dN , but also how the crack shape develops when growing, this was investigated in this section.
The test results results were used to derive an empirical based equation between the relative
crack depth λ = a

D and shape of the crack for the different stress concentration factors Kt.
This empirical derived equation will be used in the developed prediction model to be able to
also a crack shape and not only the crack depth.
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The shape of the crack front is determined by a second order polynomial equation, as fit-
ted through every marker band observed on the fracture surface with equation 5.17 and
visualized in figure 5.14. In this equation, c2 indicates the length of the crack and c1 indicates
the shape of the crack. How this shape, captured by the coefficient c1, changes with the
relative crack depth for the different specimens, is plotted in figure 5.15. When c1 is equal
to 0, the crack front is straight, as is the case for the initial cracks. The more negative c1 is
(higher absolute value), the more circular-shaped the front crack is.

y = c1x
2 + c2 (5.17)
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Figure 5.14: Digitized fracture surface of specimen 2B.4,0 with fitted equations to reconstruct
marker bands.
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Figure 5.15: The crack shape parameter versus the normalized crack depth for the specimens
tested.
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In figure 5.15, it can be seen that all the cracks become more circular shaped (the absolute
value of c1 increases) from the straight initial crack until a normalized crack depth of approx-
imately 0.13 is reached. When the relative crack depth becomes larger, the crack front tends
to become more straight in all cases (the absolute value of c1 decreases). It can also be seen in
figure 5.15 that the higher the SCF, the crack shape stays more straight (the absolute values
of c1 are lower for a higher SCF).

A two-variable fitting technique through all the data was used to obtain a closed-form equa-
tion for c1, which indicates the shape of the crack, as function of the normalized crack depth
λ = a

D and SCF Kt. The fitted equation is given in equation 5.18 and visualized in figure
5.15. The values of the coefficients and the goodness of the fit is given in table 5.7.

c1 (λ,Kt) = p00 + p10λ+ p01Kt + p20λ2 + p11λKt + p02K2
t + p30λ3

+ p21λ2Kt + p12λK2
t + p03K3

t + p40λ4 + p31λ3Kt + p22λ2K2
t + p13λK3

t + p04K4
t (5.18)

The fitted equation for the crack shape c1 as defined in equation 5.18, was used in the
developed prediction model as discussed in section 6.1. The fitted equation c1 as defined in
equation 5.18, is considered valid between a SCF Kt of 1 and 4.1 and relative crack depth λ
of 0.05 and 0.45 since there is only experimental data available between those limits.
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Table 5.7: Fit coefficients and goodness of the fit for equation 5.18.

Fitted equation RMSE R2

Equation 5.18 0.004009 0.8927
Coefficient Value 95% Confidence Bounds

p00 -0.03275 0.02961
-0.09511

p10 -2.085 -1.803
-2.367

p01 0.1286 0.2498
0.007418

p20 11.36 13.28
9.444

p11 0.7152 0.9495
0.4809

p02 -0.08944 -0.008315
-0.1706

p30 -25.77 -20.2
-31.33

p21 -1.834 -1.299
-2.369

p12 -0.136 -0.0535
-0.2186

p03 0.02431 0.04703
0.001594

p40 21.74 27.69
15.78

p31 1.425 2.036
0.8128

p22 0.1535 0.2253
0.08164

p13 0.008816 0.01895
-0.001315

p04 -0.002287 -3.334e-05
-0.00454

5.7 Energy Data
With the measured maximum and minimum force and displacement for every 100th applied
load cycle, the total strain energy Utot and cyclic strain energy Ucyc for every 100th applied
load cycle could be calculated. Linear force-displacement behaviour was assumed between
minimum and maximum applied load and the supplied energy is calculated as area below
this curve. This assumption was verified by the force and displacement measurements done
during the last five cycles of a baseline block. The force and displacement was measured
10 times during every cycle in the last 5 cycles; when the applied force and corresponding
displacement is plotted, linear behaviour can be observed. These measurements are shown for
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the first baseline and last baseline block in figure 5.16 for specimen 1B40. All tested specimen
showed this linear load-displacement behaviour. Since the measurements of the first and last
baseline block showed linear load-displacement behaviour, linear load-displacement behaviour
was assumed for every load cycle applied during the FCG experiment.
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Figure 5.16: Linear load-displacement behaviour of specimen 1B40.

Now this linear behaviour was assumed and verified by measurements, the total and cyclic
energy supplied to the specimen were calculated using the measured maximum and minimum
value of the applied force and corresponding displacement. Since this linear curve did not
necessarily pass through the origin when extrapolated, the location where this linear curve
intersects with the displacement-axis d∗ as visualized in figure 5.17 had to be calculated for
a correct calculation of the total and cyclic energy.
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Figure 5.17: Linear load-displacement behaviour where d∗ indicated the location of the inter-
section with the displacement axis.

With the two data points measured for a load cycle as indicated in figure 5.17, the point where
the load-displacement curve intersects the displacement-axis d∗ is calculated using equation
5.19.

d∗ = dmin −
(
dmax − dmin
Pmax − Pmin

)
Pmin (5.19)

Now, the total energy Utot can be calculated with equation 5.20 and the cyclic energy Ucyc
with equation 5.21.

Utot = 0.5Pmax (dmax − d∗) (5.20)

Ucyc = Utot − 0.5Pmin (dmin − d∗) (5.21)

When the total and cyclic energy is calculated for every measured load cycle, the total and
cyclic energy is plotted versus the amount of applied cycles and it was possible to fit a second
order power-law equation as stated in equation 5.23 through the data. To ensure better
fitting, the amount of cycles N was translated with equation 5.22. The energy data versus
the amount of cycles N with fitted equations is plotted for specimen 2B40 in figure 5.18 to
coefficients of the fitted equations are shown in table 5.8 and 5.9. The amount of strain energy
used in a complete load cycle dU

dN is obtained by taking the derivative of the fitted equation
as stated in equation 5.24. For some specimens, two different power-law equations were fitted
through the energy data to obtain better fitting.

N∗ = (max(N) +min(N))−N (5.22)

U = c1N
c2
∗ + c3 (5.23)

dU

dN
= c1c2N

c2−1
∗ (5.24)
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Figure 5.18: Cyclic and total energy versus the amount of cycles with fitted power-law equations.

The derivatives dUtot
dN and dUcyc

dN give information about how much (total or cyclic) energy was
used during that complete cycle for the fatigue crack to grow. How this correlates to the FCG
rate is discussed in section 5.8.

Table 5.8: Fit coefficients and goodness of the fit for equation 5.23 fit through total energy
data for specimen 2B40.

Fitted equation RMSE R2

Utot = c1N
c2
∗ + c3 0.0185 0.9996

Coefficient Value 95% Confidence Bounds

c1 -15.86 -14.07
-17.64

c2 0.042 0.04549
0.0385

c3 49.83 51.71
47.95
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Table 5.9: Fit coefficients and goodness of the fit for equation 5.23 fit through cyclic energy
data for specimen 2B40.

Fitted equation RMSE R2

Ucyc = c1N
c2
∗ + c3 0.0145 0.9995

Coefficient Value 95% Confidence Bounds

c1 -5.972 -5.446
-6.498

c2 0.06718 0.07096
0.06341

c3 30.96 31.55
30.37

5.8 Relation Between the Fatigue Crack Growth Rate and Energy

To investigate if the FCG rate dA
dN correlates with the total or cyclic energy used in the com-

plete fatigue cycle, the data gathered in the previous sections is plotted. The crack growth
rate dA

dN is plotted against the amount of total and cyclic energy used for FCG during that
complete fatigue cycle dUtot

dN or dUcyc
dN for all the specimens.

In figure 5.19, the total energy used for FCG dUtot
dN is plotted against the FCG rate dA

dN

for all the specimens. In figure 5.20, the cyclic energy used for FCG dUcyc
dN is plotted against

the FCG rate dA
dN . Note that both plots have logarithmic axes.
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Figure 5.19: The total strain energy used for crack growth in a load cycle versus the crack
growth rate.
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Figure 5.20: The total cyclic strain energy used for crack growth in a load cycle versus the crack
growth rate.

When comparing both graphs, it can be noted that in the total energy used for FCG a stress
ratio effect can be observed, and the cyclic energy used almost no stress ratio effect is present
and the data almost falls on a single curve. Furthermore, it can be observed that no clear
influence of the specimen with a different SCF is observed in the graphs.

Using equation 5.25, the FCG rate dA
dN is plotted against dUtot

dA in figure 5.21 and dUcyc
dA in

figure 5.22.
dU

dN
= dU

dA

dA

dN
(5.25)
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Figure 5.21: The total strain energy used for crack growth in a load cycle versus the crack
growth rate.
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Figure 5.22: The total cyclic strain energy used for crack growth in a load cycle versus the crack
growth rate.

Again it is noted that a larger effect of the stress ratio is present when comparing the total
energy in figure 5.21 with the cyclic energy in figure 5.22. It seems that the cyclic energy
used for FCG correlates better with the FCG rate than the total energy used. The same was
observed in the pre-study using a Finite Element (FE) model and AFGROW in section 4.2.

For a FCG prediction model, knowledge about the correction parameter H as introduced
in section 4.2 and as defined in equation 5.26 is a prerequisite. This parameter H as function
of the (normalized) crack area can be derived from the test results using equation 5.27.

dU

dA
= [Uin]A=0H(A) (5.26)

Or, rewritten to obtain H:

H(A) =
dU
dA

[Uin]A=0
(5.27)

Since dU
dA is already known from experiments (see figure 5.21 and 5.22), only the term [Uin]A=0

was needed to be able to derive H values from the experiments. Values for H could be calcu-
lated using the cyclic energy Ucyc or the total energy Utot, which didn’t make a difference in
the values for H as long as one of both is consistently used for both terms dU

dA and [Uin]A=0
in equation 5.27.

The term [Uin]A=0, is the (total or cyclic) energy input at zero crack area. This quantity
was determined using the measured energy versus the corresponding crack area A. Since the
specimens contained an initial crack, this quantity could not be directly measured during the
experiments but was determined by extrapolating a fitted curve through the measured data.
As example, the measured cracked area A versus the measured cyclic energy input Ucyc for
specimen 2B40 and a fitted curve through the data is visualized in figure 5.23.
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Figure 5.23: The cyclic strain energy input versus the crack area for specimen 2B40.

A fourth order polynomial equation was fitted through the data in figure 5.23 to find the
cyclic energy input at zero crack area [Ucyc]A=0. This was done for all specimens and was
used to determine H values with equation 5.27. The derived H values as function of the
normalized crack area for all the specimens is visualized in figure 5.24. The normalized crack
area, Λ, is defined as the crack area A divided by the total cross-sectional area of the bar at
the location of the crack with diameter D:

Λ = A

π
(
D
2

)2 (5.28)
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Figure 5.24: Experimental H versus normalized crack area Λ for all specimen with fitted curve.
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As can be seen in figure 5.24, there is quite some scatter in H for the different specimen. The
scatter is thought to be the same as observed in figure 5.22 for the different specimen and will
be discussed in chapter 7. A third-order polynomial equation was fitted through all the data
to obtain a single closed-form equation for the correction function H for all the specimens.
The fitted equation 5.29 is visualized in figure 5.24 and the fit coefficients and goodness of
the fitted equation is given in table 5.10.

H(Λ) = p1Λ3 + p2Λ2 + p3Λ + p4 (5.29)

Table 5.10: Fit coefficients and goodness of the fit for equation 5.29.

Fitted equation RMSE R2

Equation 5.29 2.5970E-05 0.8730
Coefficient Value 95% Confidence Bounds

p1 0.002645 0.005486
-0.000196

p2 0.002086 0.00351
0.0006612

p3 -7.277E-06 0.0001887
-0.0002033

p4 5.691E-05 6.368e-05
5.013e-05

The closed-form equation for the correction function H as function of the normalized crack
area Λ was now used to calculate Gavg,cyc based on the energy density with equation 5.30.
When Gavg,cyc is plotted versus the FCG rate dA

dN , the graph in figure 5.25 is obtained.

Gavg,cyc = S2
max

2E
(
1−R2

)
H(Λ) (5.30)

In this equation Smax is the maximum applied stress, which was 100 MPa for all specimens,
R the stress ratio, which is 0.5 or 0.05 for the different specimen, en E the Young’s Modulus
which is 71700 MPa for the material of the specimen, Aluminium 7075-T6511.
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Figure 5.25: Crack growth rate versus the average cyclic energy release rate for all specimen.

It can be seen in figure 5.25 that there is still a stress ratio effect present; the data for the
two tested stress ratios don’t fall exactly on a single curve. This effect was also observed in
the pre-study and it remains the question if the average cyclic energy release rate Gavg,cyc as
derived in this thesis is indeed a correct similarity parameter to predict FCG. To be able to
develop a FCG prediction model with Gavg,cyc as similarity parameter, a linear equation as
defined in equation 5.31 is fitted through the data to obtain a closed-form and single relation
between Gavg,cyc and the crack growth rate dA

dN . The fitted equation 5.31 is visualized in figure
5.25 and the goodness of the fitted equation and the corresponding values for the coefficients
F and K are given in table 5.11.

dA

dN
= F +KGavg,cyc (5.31)

Table 5.11: Fit coefficients and goodness of the fit for equation 5.31.

Fitted equation RMSE R2

Equation 5.31 0.0016 0.9022
Coefficient Value 95% Confidence Bounds

F -0.003144 -0.002935
-0.003352

K 1240 1272
1209

The closed-form relation between Gavg and dA
dN as expressed in equation 5.31, and the closed-

form equation for the correction function H as function of the normalized crack area Λ as
expressed in equation 5.29 were the basis for a FCG prediction model based on the energy
concept. The developed energy based FCG prediction model is discussed in section 6.2.
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Chapter 6

The Prediction of Fatigue Crack
Growth

In this section, the developed prediction models for Fatigue Crack Growth (FCG) through
a solid round metallic bar with a shoulder fillet is discussed. Based on the results of the
experiments, a closed-form Stress Intensity Factor (SIF) solution was derived in chapter 5.
This closed-form SIF solution was used in a FCG prediction model for solid round bars with
a shoulder fillet and is discussed in section 6.1. Furthermore, an FCG prediction model
for a solid round bar with a shoulder fillet with the average cyclic Strain Energy Release
Rate (SERR) Gavg,cyc as similarity parameter was developed and is discussed in section 6.2.
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6.1 Stress intensity based FCG prediction model
The developed SIF solution and parameters C and m for the Paris-equation obtained in
chapter 5 were used to develop a FCG prediction model for solid round metallic bars with a
shoulder fillet. The model works according to the flowchart diagram in figure 6.1.

Figure 6.1: Flowchart of SIF based FCG prediction model which predicts the crack length a and
crack shape c1 as function of the number of applied load cycles N .

The initial values are loading parameters (of a Constant Amplitude (CA) tensional load
spectrum), geometrical parameters and run parameters. The loading parameters are the
maximum stress Smax acting away from the crack in the smallest diameter of the bar D1 and
the stress ratio R. The geometrical parameters are the diameter of the bar at the location
of the crack D, the Stress Concentration Factor (SCF) Kt and the initial crack length ai.
The run parameters are the step size of the model ∆N , and the maximum applied number
of cycles Nmax after which the prediction is stopped.

The model uses iterative numerical integration to predict the crack length a and crack shape
c1 as function of the number of applied cycles N . The algorithm as visualized in figure 6.1
was implemented in a MATLAB code which gives as output a vector of crack lengths a, crack
shapes c1 for each number of cycle increment. Another output of the model is a graph of the
crack length a and crack shape c1 versus the number of applied load cycles N to visualize the
FCG process.
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6.2 Energy based prediction model
The experimentally derived correction function H, and the experimentally derived relation
between the similarity parameter Gavg,cyc and the FCG rate dA

dN in chapter 5 were used to
develop a FCG prediction model for solid round metallic bars with a shoulder fillet. The
model works according to the flowchart diagram in figure 6.2.

Figure 6.2: Flowchart of energy based prediction model which predicts the crack area A as
function of the applied number of load cycles N .

The initial values are loading parameters (of a CA tensional load spectrum), geometrical pa-
rameters and run parameters. The loading parameters are the maximum stress Smax acting
away from the crack in the smallest diameter of the bar D1 and the stress ratio R. The
geometrical parameters are the diameter of the bar at the location of the crack D, the initial
crack area Ai and the Young’s Modulus of the material E. The run parameters are the step
size of the model ∆N , and the maximum applied number of cycles Nmax after which the
prediction is stopped.

The model uses iterative numerical integration to predict the crack area A as function of
the number of applied cycles N . The algorithm as visualized in figure 6.2 was implemented
in a MATLAB code which gives as output a vector of crack areas A for each number of cycle
increment. Another output of the model is a graph of the crack area A versus the number of
applied load cycles N to visualize the FCG process.
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6.3 Comparison Between Predictions and Experiments
In this section, it is compared how both models predict FCG compared with the some of the
test results. This is not a validation of the models, since the models are based on the test
result with which the predictions are compared, but the comparisons give can give an insight
into the behaviour of the models.

It was chosen to compare how the models predict FCG with the test results of the speci-
men listed in table 6.1. Those specimen were chosen because they cover all the tested values
of the SCF and stress ratio.

Table 6.1: Specimen of which the test results are compared with the prediction.

Specimen
ID

Applied
Max-
imum
Stress
Smax
[MPa]

Applied
Stress
Ratio R
[-]

SCF Kt

[-]
Material
Batch

2B116 100 0.5 1.5 B
1B40 100 0.05 2.0 B
1Z13 100 0.05 3.0 Z
2Z06 100 0.5 4.1 Z

How well the SIF based model and energy based model predict FCG compared to the test
results is discussed in the next two sections.

6.3.1 Predictions with the stress intensity based model

For all the specimen listed in table 6.1, FCG is predicted using the model as described in
section 6.1. How well the model predicts the crack length a and crack shape c1 compared
with the test results is shown in graphs.

Crack length predictions

The predictions of the crack length a are done with the SIF based FCG model as discussed in
section 6.1. As observed in the graphs, the prediction of the crack length a for the specimens
tested at a stress ratio of 0.5 (2B116 and 2Z06) are more accurate than for the specimens
tested at a stress ratio of 0.05 (1B40 and 1Z13). This is caused by the scatter in the ∆Keff

versus da
dN data: it can be observed that the FCG data of the specimen tested at 0.05 is

consistently higher than the fitted curve (which results in the parameters C and m) which is
used for the prediction.
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Figure 6.3: Prediction of the crack length a compared with the test result of specimen 2B116.
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Figure 6.4: Prediction of the crack length a compared with the test result of specimen 1B40.
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Figure 6.5: Prediction of the crack length a compared with the test result of specimen 1Z13.
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Figure 6.6: Prediction of the crack length a compared with the test result of specimen 2Z06.
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Crack shape predictions

The prediction of the crack shape c1 is quite accurate for the specimen tested at 0.5 as can
be seen in the graphs in figure 6.7 and figure 6.10. Only at higher crack lengths, a steep
increase in c1 is observed in the prediction which is not present in the test results. The order
of the fitted equation (4th) which is used to obtain a closed-form equation for c1 could be
the explanation for this behaviour; a lower order might improve the shape predictions. The
comparison with the specimens tested at the stress ratio of 0.05 (1B40 and 1Z13) are quite
inaccurate. Since the experimentally derived closed-form equation for c1 is only based on the
test results of the specimen tested at 0.5, there might be an influence of the stress ratio on
how the crack shape c1 which is not taken into account currently.
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Figure 6.7: Prediction of the crack shape c1 compared with the test result of specimen 2B116.
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Figure 6.8: Prediction of the crack shape c1 compared with the test result of specimen 1B40.
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Figure 6.9: Prediction of the crack shape c1 compared with the test result of specimen 1Z13.
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Figure 6.10: Prediction of the crack shape c1 compared with the test result of specimen 2Z06.
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6.3.2 Predictions with the energy based model

For all the specimen listed in table 6.1, FCG is predicted using the model as described in
section 6.2. How well the model predicts the crack area A compared with the test results is
shown in the graphs in this section.

As can be observed in the graphs in this section, the prediction of the crack area A based on
the energy method is quite accurate for all specimens.
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Figure 6.11: Prediction of the crack area A compared with the test result of specimen 2B116.
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Figure 6.12: Prediction of the crack area A compared with the test result of specimen 1B40.
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Figure 6.13: Prediction of the crack area A compared with the test result of specimen 1Z13.
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Figure 6.14: Prediction of the crack area A compared with the test result of specimen 2Z06.



Chapter 7

Discussion

In this section, the results of the research project are discussed. The research approached
the problem of Fatigue Crack Growth (FCG) through a solid round bar with a shoulder fillet
from two different point of views: the conventional stress intensity approach and an energy
approach. For the energy approach, a prediction methodology was proposed with the average
cyclic Strain Energy Release Rate (SERR) Gavg,cyc as similarity parameter. For both point
of views, a FCG prediction model for solid round bars with a shoulder fillet loaded in tension
was developed. The results of the stress intensity approach are discussed in section 7.1, the
results of the energy approach in section 7.2 and the results of the research in general are
discussed in section 7.3.

7.1 Stress intensity approach
For the stress intensity approach, an experimental technique was used to determine Stress
Intensity Factor (SIF) values for solid round bars with a shoulder fillet using baseline FCG
data. The baseline FCG data was obtained with FCG experiments on straight solid round bars
without shoulder fillet, of which a SIF solution was available from literature. A closed-form
SIF solution for solid round bars with a shoulder fillet was obtained by fitting a two-parameter
equation through the experimentally determined SIF values. The derived closed-form SIF
solution for solid round bars with a shoulder fillet under tension loading was expressed as
values of an extra correction factor βcorr for the presence of the shoulder fillet. The developed
FCG model based on the stress intensity approach can predict FCG for different values of
the Stress Concentration Factor (SCF) caused by the presence of the shoulder fillet. When
comparing the FCG predictions done with the developed model with the test results, it
predicts FCG quite well for the specimens tested at a stress ratio of 0.5; it predicts less
accurate for the specimens tested at a stress ratio of 0.05. That the developed model predicts
FCG less accurate at a stress ratio of 0.05 is attributed to the scatter that is present between
the FCG rate da

dN and effective SIF range ∆Keff for the two tested stress ratios. A point of
discussion that deserves attention for the results of this stress intensity approach is:

• Fitted equations for the crack shape c1 and correction factor βcorr
To be able to predict FCG at all in-between values of the tested SCF and normalized
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crack depth λ, a two-parameter equation was fitted through the test data. For both the
correction factor βcorr and shape of the crack front c1 a two-parameter equation, where
the parameters were the SCF and the normalized crack depth λ, was fitted through
the test data. Both equations were 4th order equations for both parameters. This
order of fitting was chosen because it resulted in a reasonable fit for both βcorr and c1
through the test data. It has to be noted that the 4th order of the fitted equation for
c1 might be not appropriate since the fitted equation shows a upwards curvature for
higher normalized crack lengths λ which is not in agreement with the measured data.
In general it should be investigated if the fourth-order fitted equations through the test
data for c1 and βcorr give reasonable results when comparing the predictions with more
test results, which is necessary for validation. It could also be interesting to investigate
if other fitted equations (of a lower order) through the test data of βcorr and c1 give
very different prediction results.

7.2 Energy approach
For the energy approach, a prediction methodology was proposed where the average cyclic
SERR Gavg,cyc is used as similarity parameter. This similarity parameter was proposed after
the observation that the cyclic energy used for FCG during a complete load cycle correlates
strongly with the FCG rate dA

dN . It was observed that the stress ratio R still had some influ-
ence on this correlation, but that effect was neglected in the developed FCG model. When
comparing the FCG predictions done with the developed model with the test results, the
model can predict FCG quite well independently of the applied stress ratio R or SCF.

To be able to use the similarity found between Gavg,cyc and the crack growth rate dA
dN in

the prediction of FCG, it was necessary to be able to calculate Gavg,cyc given the loading
condition and geometry of the crack problem. To be able to calculate Gavg,cyc on beforehand,
it was expressed as written in equation 7.1.

Gavg,cyc = S2
max

2E
(
1−R2

)
H(Λ) (7.1)

In the above equation, S2
max
2E

(
1−R2) calculates the remotely applied cyclic strain energy

density; the correction equation H takes the geometry of the crack problem into account
and is only dependent on the normalized crack area Λ. To be able to do FCG predictions,
knowledge about the correction factor H for the specific crack problem is a prerequisite. Some
points of discussion that deserves attention based on this energy approach are:

• Scatter in experimentally determined correction factor H.
There is some significant scatter in the derived correction factorH values for the different
specimen as can be seen in figure 7.1. An important source of scatter in the correction
factorH values, is the scatter in the measured energy data which introduced uncertainty
in the fitted curves through the energy data. There might also be other sources of
scatter such as different clamping lengths or that the axial location of the initial crack
was different for the different specimen. For now, an equation was fitted through all the
data to obtain a single closed-form equation for the correction equation H as function
of the normalized crack area Λ. The derived closed-form equation for the correction
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factor H worked quite well in the prediction model, but the sources of scatter should
be further investigated.

• Difference in H determined experimentally and with the Finite Element (FE)
model.
In figure 7.1 the experimentally determined values for the correction factorH are plotted
together with the values for H determined with the FE model in section 4.2.
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Figure 7.1: Experimental H values and H values determined with the FE model versus the
normalized crack area Λ.

It can be seen that the values for H determined with the FE model are in general higher
for larger (normalized) crack areas. This is attributed to the fact that in the FE model,
the end of the bar was not clamped and free to rotate because of the growing crack. The
larger the (normalized) crack area becomes, the larger the discrepancy between the two
becomes. This is attributed to the fact that the larger the crack area becomes, the more
the bar is constraint against rotation because of the clamped ends in the experiments
which is not the case in the FE model. The influence of the clamped ends during the
FCG experiments is also shortly discussed in section 7.3.

7.3 General research approach
Since the problem of FCG through a solid round bar with a shoulder fillet was approached from
two different point of views, but the results were obtained from the exact same experiments,
there are some points of discussion that deserves attention for the research approach in general:

• The influence of the initial crack shape.
The influence of the initial crack shape is not taken into account in the development
of the SIF solution. If the initial crack had a different shape, and not straight as in
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this research, this could have led to different values of the SIF. Also, it should be
investigated if a different initial crack shape has influence on the energy method and in
particular on the correction function H.

• Prediction of the crack shape in general.
In both approaches, the prediction of the crack length a or crack area A is done with
the assumption that the crack shape develops during the FCG process as observed in
the experiments. Both developed prediction models are not able to take different crack
shapes into account; they are unable to predict how the crack shape would develop in
the case of a different initial crack length or crack shape.

• The influence of clamped ends during the FCG experiments of the specimen.
That the ends of the specimen were clamped during the experiments may have a sig-
nificant effect on the absolute values of the SIF solution. Because of the clamped ends
of the bar, rotation was constrained which would not occur in the case of free ends.
For the energy approach, this could explain the large difference between the H values
derived with the FE model and experiments. It remains a question if the clamped ends
have influence on the derived correction factor βcorr for the SIF approach since both
the specimen to obtain baseline FCG data and the specimens with a shoulder fillet had
clamped ends in the FCGexperiments.

• Stress ratio effect still present in both approaches.
For both the stress intensity approach as the energy approach there is still a stress ratio
effect present using their corresponding similarity parameter:
There is an effect of the stress ratio observed in the SIF approach when using the
effective SIF range ∆Keff as similarity parameter as can be seen in figure 7.2.
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Figure 7.2: All the FCG test data plotted with the effective SIF range ∆Keff as similarity
parameter.
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There is also a stress ratio effect observed in the energy approach when using the average
cyclic SERR as similarity parameter as can be seen in figure 7.3.
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Figure 7.3: Crack growth rate versus the average cyclic energy release rate for all specimen.

Especially in the FCG prediction model based on the SIF approach, the scatter has
significant influence on the FCG predictions at an applied stress ratio of 0.05 as was
showed in chapter 6.

• Both the SIF solution and energy methodology are not validated.
The developed SIF solution to take the effect of the shoulder fillet into account is not
validated. It should by validated using more test data on different types of solid round
bars with shoulder fillets under different types of loading conditions. Also, the developed
energy methodology should be validated with FCG experiments in general.

Both developed models were able to predict FCG through solid round bars with a shoulder fil-
let under Constant Amplitude (CA) tension loading. The SIF approach needed an correction
equation for the applied stress ratio R to correct the ∆K values to ∆Keff values to be able
to do FCG predictions at different stress ratios. The energy approach uses the average cyclic
SERR as similarity parameter, only a small influence of the stress ratio was observed. It is
believed that ∆K only is not able to uniquely describe the applied load cycle and that the
stress ratio effect which is observed in this approach is a reflection of this inadequacy. From
a academical point of view, I would recommend to further investigate the energy approach
since it is able to describe the applied load cycle uniquely, which is not the case in the con-
ventional stress intensity approach. From an engineering point of view, I would recommend
Atkins, and engineering practice in general, to implement the correction factor βcorr in FCG
prediction software that is used to account for the presence of a shoulder fillet since the stress
intensity methodology is accepted current practice. More research is required to the energy
approach to validate that the average cyclic SERR is indeed a correct similarity parameter
for the prediction of FCG.
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If a different type of structure than a solid round bar with a shoulder fillet would be consid-
ered, both approaches could be used for the prediction of FCG by adjusting the prediction
models. For the SIF prediction model, a SIF solution for the specific crack problem should
be determined to be able to do FCG predictions. For the energy prediction model, the cor-
rection factor H for that specific crack problem should be determined to be able to do FCG
predictions. It should be further investigated if the correction factor H is more generic than
the SIF solutions used in the stress intensity approach.



Chapter 8

Conclusions and Recommendations

In this chapter, the conclusions of the research project are presented. Furthermore, recom-
mendations for further research are given.

8.1 Conclusions
The conclusions of this research project are given in this section.

• The marker load spectrum used in this research project was successfully applied to
reconstruct crack fronts. Markers bands became visible because of the applied marker
load spectrum and could be detected using a Optical Microscope (OM) rather than with
a Scanning Electron Microscope (SEM), which saves a lot of time when reconstructing
the fracture surface.

• The influence of a shoulder fillet on the Fatigue Crack Growth (FCG) behaviour under
tension loading is significant, especially for small (normalized) crack lengths. When the
resulting Stress Concentration Factor (SCF) of the shoulder fillet is higher, the influence
becomes larger and the fatigue crack will grow faster.

• Shoulder fillets have a significant effect on how the fatigue crack shape develops through
the solid round bar. The higher the resulting SCF, the sooner and more ’straight’ the
fatigue crack becomes when growing.

• Based on the test results, the influence of a shoulder fillet on the FCG rate could be
quantified by the developed closed-form Stress Intensity Factor (SIF) solution. This
closed-form SIF solution was used in the developed FCG prediction model.

• The developed SIF based prediction model can successfully predict FCG through a solid
round bar with a shoulder fillet under Constant Amplitude (CA) tension loading using
the developed SIF solution when comparing it with the test results tested at a stress
ratio of 0.5.
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• The influence of the stress ratio R in the SIF based model on the FCG behaviour was not
well captured by the used correction equation: FCG was consistently under-predicted
at a stress ratio of 0.05 when compared with the test results.

• The FCG rate dA
dN correlates better with the cyclic energy used during that complete

cycle dUcyc
dN than the total energy used during that complete cycle dUtot

dN .

• Although there was still some influence of the stress ratio observed, the average cyclic
Strain Energy Release Rate (SERR) Gavg,cyc was successfully used as similarity param-
eter for the prediction of FCG.

• The energy based FCG model can successfully predict the crack area A as function of
the number of applied load cycles N when comparing it with the test results at both
stress ratios and different values of the SCF.

• The SCF seems to have no effect on the energy approach: the crack area A can be
predicted independently of the SCF.

8.2 Recommendations
In this section, recommendations are given for further research.

• To be able to validate the developed SIF solution, it is recommended to do multiple
FCG experiments on solid round bars shoulder fillets causing different values of the
SCF, different sizes (different diameters D1 and D2), and different load spectra. By
comparing the test results with the predictions done with the developed SIF solution,
the SIF solution can be validated.

• It is recommended to do more fundamental research to the energy approach. There
is still a, not desired, stress ratio effect present when using the proposed similarity
parameter Gavg,cyc.

• The effect of plasticity induced crack closure is currently not taken into account in the
energy based approach. It is recommended to do further research on how to take this
phenomenon into account.

• This research was limited to investigate tensional, constant amplitude fatigue loads. It
would be of practical interest to investigate the effect of variable amplitude loading and
different types of (combined) loading (e.g. bending and/or torsion).

• It is recommended to investigate the effect of the clamped ends of the tested specimens
on the FCG rate. In real engineering structures clamped conditions at the ends may
not apply.
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Appendix A

Specimen Drawings

A.1 Straight specimen, Kt = 1
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A.2 Specimen with fillet radius of 11.6 mm, Kt = 1.5 97

A.2 Specimen with fillet radius of 11.6 mm, Kt = 1.5
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A.3 Specimen with fillet radius of 4.0 mm, Kt = 2.0
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A.4 Specimen with fillet radius of 1.3 mm, Kt = 3.0 99

A.4 Specimen with fillet radius of 1.3 mm, Kt = 3.0
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A.5 Specimen with fillet radius of 0.6 mm, Kt = 4.1

0.6
R

50
R

40

60

7
5

3
0

9
0

6 0

1
9
4
.
4

1
9
5

1
9
4
.
7
5

0
.
3
5





102 Material Certificate Aluminium 7075-T651

Appendix B

Material Certificate Aluminium
7075-T651



Appendix C

All Test Results

C.1 Straight specimens, Kt = 1

C.1.1 Specimen 1B, R=0.5

Figure C.1: Picture of the fracture surface of specimen 1B.
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Figure C.2: Plot of the digitized fracture surface of specimen 1B.
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Figure C.3: Crack length a versus the shifted amount of cycles Ns for specimen 1B.
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Figure C.4: Crack area A versus the shifted amount of cycles Ns for specimen 1B.

No energy data was gathered during the test of this specimen.

C.1.2 Specimen 1Z, R=0.5

Figure C.5: Picture of the fracture surface of specimen 1Z.



106 All Test Results

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

Digitized fracture surface − 1Z

x−coordinate[mm]

y−
co

or
di

na
te

 [m
m

]

Figure C.6: Plot of the digitized fracture surface of specimen 1Z.

0 1 2 3 4 5 6 7

x 10
4

7

8

9

10

11

12

13

14

15

16

Number of shifted cycles N
s
 [−]

a 
[m

m
]

Crack length a vs. Number of shifted cycles N
s
 − 1Z

 

 

data
fitted curve

Figure C.7: Crack length a versus the shifted amount of cycles Ns for specimen 1Z.



C.1 Straight specimens, Kt = 1 107

0 1 2 3 4 5 6 7

x 10
4

50

100

150

200

250

300

350

400

Number of shifted cycles N
s
 [−]

A
 [m

m
2 ]

Crack area A vs. Number of shifted cycles N
s
 − 1Z

 

 

data
fitted curve

Figure C.8: Crack area A versus the shifted amount of cycles Ns for specimen 1Z.
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Figure C.9: Energy data for specimen 1Z.
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C.2 Specimens with shoulder fillet, Kt = 1.5

C.2.1 Specimen 1B116, R=0.05

Figure C.10: Picture of the fracture surface of specimen 1B116.
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Figure C.11: Plot of the digitized fracture surface of specimen 1B116.

0 1 2 3 4 5

x 10
4

0

2

4

6

8

10

12

14

16

18

Number of shifted cycles N
s
 [−]

a 
[m

m
]

Crack length a vs. Number of shifted cycles N
s
 − 1B116

 

 

data
fitted curve

Figure C.12: Crack length a versus the shifted amount of cycles Ns for specimen 1B116.
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Figure C.13: Crack area A versus the shifted amount of cycles Ns for specimen 1B116.
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Figure C.14: Energy data for specimen 1B116.
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C.2.2 Specimen 2B116, R=0.5

Figure C.15: Picture of the fracture surface of specimen 2B116.
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Figure C.16: Plot of the digitized fracture surface of specimen 2B116.
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Figure C.17: Crack length a versus the shifted amount of cycles Ns for specimen 2B116.
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Figure C.18: Crack area A versus the shifted amount of cycles Ns for specimen 2B116.
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Figure C.19: Energy data for specimen 2B116.

C.3 Specimens with shoulder fillet, Kt = 2
C.3.1 Specimen 1B40, R=0.05

Figure C.20: Picture of the fracture surface of specimen 1B40.
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Figure C.21: Plot of the digitized fracture surface of specimen 1B40.
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Figure C.22: Crack length a versus the shifted amount of cycles Ns for specimen 1B40.



C.3 Specimens with shoulder fillet, Kt = 2 115
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Figure C.23: Crack area A versus the shifted amount of cycles Ns for specimen 1B40.
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Figure C.24: Energy data for specimen 1B40.
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C.3.2 Specimen 2B40, R=0.5

Figure C.25: Picture of the fracture surface of specimen 2B40.
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Figure C.26: Plot of the digitized fracture surface of specimen 2B40.



C.3 Specimens with shoulder fillet, Kt = 2 117
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Figure C.27: Crack length a versus the shifted amount of cycles Ns for specimen 2B40.
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Figure C.28: Crack area A versus the shifted amount of cycles Ns for specimen 2B40.
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Figure C.29: Energy data for specimen 2B40.

C.4 Specimens with shoulder fillet, Kt = 3
C.4.1 Specimen 1Z13, R=0.05

Figure C.30: Picture of the fracture surface of specimen 1Z13.



C.4 Specimens with shoulder fillet, Kt = 3 119
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Figure C.31: Plot of the digitized fracture surface of specimen 1Z13.
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Figure C.32: Crack length a versus the shifted amount of cycles Ns for specimen 1Z13.
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Figure C.33: Crack area A versus the shifted amount of cycles Ns for specimen 1Z13.
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Figure C.34: Energy data for specimen 1Z13.



C.4 Specimens with shoulder fillet, Kt = 3 121

C.4.2 Specimen 2Z13, R=0.5

Figure C.35: Picture of the fracture surface of specimen 2Z13.

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

Digitized fracture surface − 2Z13

x−coordinate[mm]

y−
co

or
di

na
te

 [m
m

]

Figure C.36: Plot of the digitized fracture surface of specimen 2Z13.
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Figure C.37: Crack length a versus the shifted amount of cycles Ns for specimen 2Z13.
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Figure C.38: Crack area A versus the shifted amount of cycles Ns for specimen 2Z13.



C.5 Specimens with shoulder fillet, Kt = 4.1 123
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Figure C.39: Energy data for specimen 2Z13.

C.5 Specimens with shoulder fillet, Kt = 4.1

C.5.1 Specimen 1Z06, R=0.05

No measurements done due to multiple fatigue crack initiation sites as can be seen on the
picture of the fracture surface:

Figure C.40: Picture of the fracture surface of specimen 1Z06.
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C.5.2 Specimen 2Z06, R=0.5

Figure C.41: Picture of the fracture surface of specimen 2Z06.
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Figure C.42: Plot of the digitized fracture surface of specimen 2Z06.
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Figure C.43: Crack length a versus the shifted amount of cycles Ns for specimen 2Z06.
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Figure C.44: Crack area A versus the shifted amount of cycles Ns for specimen 2Z06.
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Figure C.45: Energy data for specimen 2Z06.
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