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Abstract

Recently, deep generative models have been shown to achieve state-of-the-art performance on semi-supervised

learning tasks. In particular, variational autoencoders have been adopted to use labeled data, which allowed

the development of SSL models with the usage of deep neural networks. However, some of these models rely

on ad-hoc loss additions for training, and have constraints on the latent space, which effectively prevent the

use of recent developments in improving the posterior approximations.

In this paper, we analyse the limitations of semi-supervised deep generative models based on VAEs, and

show that it is possible to drop the assumptions made on the latent space. We present a simplified method

for semi-supervised learning which combines the discriminative and generative loss in a principled manner.

Our model allows for straightforward application of normalizing flows and achieves competitive results in

semi-supervised classification tasks.
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1 Introduction

Semi-supervised learning (SSL) considers the problem of classification where only a limited number
of the observations have the corresponding class labels, and the remaining data does not have labels.
Such problems are common in practice, as it is often relatively simple to obtain data, but expensive
to label it. One example is fake news detection [9], where labeling data involves difficult and time-
consuming manual labour, while obtaining the data can be automatic and is therefore almost free.
Semi-supervised learning has a wide range of applications, ranging from the aforementioned fake-
news detection [9] and cancer prediction [29], through speech recognition [26], to image segmentation
[22].

Semi-supervised methods have been extensively studied for many years [4], and classical examples
include generative mixture models, self-learning [1] or tSVM [28]. Recently, due to the abundance
of the data and the decreasing cost of computing power, many approaches on SSL for classification
have been adjusted to use deep models.

In this work, we focus on the approach developed by Kingma et al. [13], which uses a deep generative
model to perform classification, therefore considering the SSL problem as a missing data imputation
task [16]. The approach is based on variational autoencoder (VAE) [12], a model whose goal is to
find a lower-dimensional representation of the dataset (latent space). Kingma et al. [13] expanded
the VAE by assuming an extra latent variable which is corresponding to the labels and introducing
an additional discriminative loss, thus making it suitable for semi-supervised learning. Maaløe et al.
[18] later improved upon that work by adding an auxiliary variable, which allowed the model to fit
more complex latent distributions.

We analyse the SSL model developed by Kingma et al. [13], and show that the information meant to
be contained in the extra latent variable is also captured in the original part of the latent space. We
reason that it is possible to perform classification on such latent space without any further assump-
tions. Moreover, we show that the performance of the model is closely related to reconstruction
error. We also demonstrate that the model may converge to a solution in which the classifier does
not perform any meaningful task, even when trained with supplementary discriminative loss as sug-
gested by Kingma et al. [13]. These observations lead us to hypothesize that assumptions introduced
by Kingma et al. [13] can be lifted, while not degrading the performance of the model. We introduce
a modified model, which optimises the evidence lower bound (ELBO) directly, and encompasses a
more principled discriminative loss. The proposed model achieves classification accuracy of 92.3%
which is comparable to that of Kingma’s, and shows that it is the conditional generative setup used
in both models that is the main contributor to their success, similar to mixture models [30].

1.1 Outline

In Section 2, we begin by establishing notation and introducing the necessary background material.
Section 3 contains our analysis of the model proposed by Kingma et al. [13], exposing underlying
assumptions and motivating the contribution. In Section 4 we state the pursued research questions
and propose a new model. In Section 5 we evaluate the proposed model and analyse the experimental
results. Finally, in Section 6 we reflect on the findings, provide additional insights and propose a
further research direction. Appendix A contains proofs for our propositions. Hyperparameters used
for all the experiments are listed in Appendix B, unless explicitly stated otherwise.
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2 Preliminaries

2.1 Semi-supervised learning

Supervised learning considers the problem of finding the best prediction model f : x → y that maps x
to y, where x is the random sample from an unknown distribution (such as images, sequences, sets of
features etc.) and y is the associated class label. The model can be found using traditional supervised
learning methods by using the set of labeled data tuples L = (Xl,Y) = {(x1, y1), ..., (xl, yl)}. In
semi-supervised learning, the same problem is considered, but with an extra set of unlabeled data,
U = (Xu) = {xl+1, ...,xl+u}. This set does not contain the labels, but can be used to extract the
underlying structure of the inputs x.

A common approach to this problem is maximum weighted likelihood estimation [5], where the
objective is the following:

argmax
Θ

(log p({xi, yi}
l
i=1|θ) + λ · log p({xi}

l+u
i=l+1|θ)),

where λ is a hyper-parameter that controls the relative weight of the labeled and unlabeled likelihood
function.

2.2 Variational autoencoders

Variational autoencoders are a type of latent variable models of the form p(x, z) = p(x|z)p(z), where
z is the latent, p(x|z) is the posterior distribution, and p(z) is the prior. VAEs are typically trained
by maximizing the evidence lower bound (ELBO) objective,

log p(x) ≥ Eqφ(z|x)[log pθ(x|z)+log p(z)−log qφ(z|x)] = Eqφ(z|x)[log pθ(x|z)]+KL[qφ(z|x)‖p(z)], (1)

introducing an approximation to the posterior distribution qφ(z|x). Posterior approximation qφ(z|x)
can also be called an inference model or an encoder - it infers the hidden representation of the data.
pθ(x|z) is the corresponding generative model or decoder, which decodes the data from the latent.
The goal of variational autoencoders is usually the inference of the latent variables. The evidence
lower bound is normally optimised using the reparametrization trick [12].

The loss of variational autoencoders can be interpreted as the sum of reconstruction error (first term
in Equation 1) and Kullback-Leibler divergence between the approximate posterior and the prior
distributions (second term in Equation 1). One of the common choices for the family of output
distributions for non-binary data is multivariate Gaussian distribution, pθ(x|z) ∼ N (x|f(z; θ), σ2I),
with σ a hyper-parameter. This is the choice we use in this work. The mean of the normal distri-
bution f(z; θ) is parameterized by neural networks with parameters θ. When choosing the normal
distribution as output distribution, the first term in the ELBO is given by [7]:

log pθ(x|z) = C −
1

2σ2
‖x− f(z; θ)‖22, (2)

where C is a constant independent of σ. Notice that 1
σ
acts as a parameter that weighs the relative

cost of the reconstruction error compared to the Kullback-Leibler divergence, as appearing in the
loss of variational autoencoder. KL divergence is often recognized in this context as a regularization
term [12], and σ can be interpreted as the relative weight between the reconstruction error and the
regularizer. A similar idea of weighing the two terms is also presented by Higgins et al. [10]. We
show that the weighing of the two losses happens to be crucial to the success of the semi-supervised
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(a) (b)

Figure 1: Probabilistic graphical models of M1 and M2 [13]. The dashed lines indicate inference
models (encoders), the solid lines indicate the generative models (decoders). Grey background on
elements y corresponds to operations only on observed labels, and split background indicates the
semi-supervised setup.

models introduced by [13]. The details are discussed in Subsection 3.1. Note that qφ and pθ depend
on parameters φ and θ. In order to simplify notation in further sections, we omit the parameter
subscripts.

2.3 Semi-supervised learning with deep generative models

Kingma et al. [13] introduced two approaches to semi-supervised learning by using the variational
autoencoder, which can be seen in Figure 1. The first one (called M1) consists of two steps: initially,
a variational autoencoder is trained to extract a lower dimensional latent feature z, using both
labeled and unlabeled data. As a second step, a classifier is trained on the features extracted by the
variational autoencoder in either fully supervised or semi-supervised setting.

The second model from the same authors (called M2) extends the variational autoencoder with
labels, in order to use it for semi-supervised classification. The authors assume that the labels
are part of the underlying latent space from which the dataset is generated, i.e. z = [y, z′]1.
Then, just like in the VAE, a posterior approximation q(z|x) is introduced, which is factorized as
q(z|x) = q(z′|x, y)q(y|x). This is done so that q(y|x) can be used for classification during test time
by inferring the class labels using this distribution. While there are no restrictions on the posterior
approximation q(z′|x, y), the posterior q(y|x) is assumed to be in the categorical family in order to
make the classification possible, q(y|x) = Cat(y|f(x)). Class specific information can be modeled
through y, and z′ is meant to capture unspecified factors of variation, which are dependent on the
domain. In the example of written digits (MNIST [15]), one of the unspecified factors could be
the writing style. Now, because of the semi-supervised setup, the class labels are sometimes given,
and in that case the inference process for them is not necessary. The given labels can be used in
the generative process immediately. This results in a different ELBO for labeled data, L(x, y), and

1Note that in Kingma et al. [13] the authors denote the latent space as z and y. Here we use z
′ and y to indicate

the difference from the latent space of traditional VAE, z.
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Figure 2: Images from MNIST dataset, along with their synthetic analogies generated by M2 [13]
with the same inferred style (z), but with a changed label (y). In the left column are the orig-
inal images, and each following column corresponds to analogies with labels 0-9. Note how the
reconstructions on the diagonal match the original image the best.

unlabeled data, U(x) [13]:

log p(x, y) ≥ Eq(z′|x,y)[log p(x|z
′, y) + log p(y) + log p(z′)− log q(z′|x, y)] = L(x, y)

log p(x) ≥ Eq(z′|x,y)[log p(x|z
′, y) + log p(y) + log p(z′)− log q(z′, y|x)]

=
∑
y

q(y|x)(L(x, y)) + Eq(y|x)[− log q(y|x)] = U(x)
(3)

The authors also note that the discriminative term q(y|x) which is used for classification appears
only in the unlabeled loss, and introduce an explicit classification loss in order to help with training.
This results in the objective of:

J α = L({x, y}li=1) + U({x}l+ui=l+1) + α · Ep̃l [log q(y|x)]

where α is a hyper-parameter controlling the relative weight of discriminative and generative learn-
ing.

3 Motivating observations

In Figure 2, we show the result of the model M2 trained on the MNIST dataset, with limited
number of labeled samples (100). In the figure, we can see analogies generated by fixing the inferred
z′ part of the latent space for a given digit, and varying the class y. We can see that the model
perfectly reconstructs the original digits (as seen on the diagonal), while the analogies are less
sharp. Furthermore, the model treats the latent space according to our intuition, i.e. behaves like
a conditional generative model - freezing inferred z and varying y for generation produces analogies
of digits with the same style. When analysing the loss of M2, we can see in U(x) (Equation 3) that
the classifier, q(y|x), weighs the labeled loss when evaluated with different y (with a regularization
term). Therefore, this loss is minimized when the classifier outputs the label corresponding to the

4



(a) Training dataset (b) Reconstruction with σ
2 = 1 (c) Reconstruction with σ

2 = 0.1

(d) Reference classifier (NN) (e) q(y|x) trained with σ
2 = 1 (f) q(y|x) trained with σ

2 = 0.1

Figure 3: Comparison of classifiers resulting from different settings. Red and blue points indicate
data points and reconstructions from different classes. Grey points indicate unlabeled data points.
The background is colored with respect to classification confidence. σ2 can be interpreted as the
trade-off parameter between reconstruction and regularization. Note that in (b) all the blue points
are concentrated in one point.

best reconstruction. Intuitively, this works because the model achieves the best reconstruction when
the label is correct, and so this loss is aligned with the more traditional discriminative loss - it
is minimized when the classifier outputs the true label. However, this formulation introduces two
implicit assumptions, namely:

1. the model is able to do reconstruction,

2. the model behaves like a conditional generative model, i.e. interprets y as the label and uses
it for generation.

In the following subsections, we analyse each of the assumptions, showing that invalidating either
of these leads to a classifier that performs worse than the supervised baseline. Note that these
observations are mostly related to the generative loss, and the loss of M2 also contains a discrimina-
tive term weighed by parameter α. It is therefore possible that when this parameter becomes large
enough, the entire model regresses into a purely discriminative setup, in which case the following
observations might not hold.

3.1 Generative loss of M2 needs good reconstruction

Based on the choice of the output distribution parameters as discussed in Subsection 2.2 (σ2 in
Equation 2, or the choice of β [10]), the behaviour of the M2 model changes. In Figure 3, we show a
toy dataset (concentric circles from [23], Figure 3a) on which we show the behaviour of the model.
The dataset consists of 50 labeled (25 from each class), and 9950 unlabeled data points. For this
experiment, we use a multi-layer perceptron (MLP) with 1 hidden layer of 50 units as a classifier,
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Figure 4: Reconstruction loss (blue) and classification accuracy (red) of M2 model trained with
different weights σ2. The experiment was performed with α = 0.1.

and the encoder and decoder is an MLP with 3 hidden layers of 50 units each. The latent space z′

is 1-dimensional.

In Figure 3d we show the result of a neural network that was trained on the labeled data points
only, as a baseline. This classifier finds the optimal classification boundary, which shows that such
a simple 1 layer network is powerful enough to model the data well. In Figure 3e, the same neural
network is used as a classifier, this time trained based on the M2 model loss in the semi-supervised
variational autoencoder setting, with a common choice of σ2 = 1. The model fails to reconstruct the
data well (as seen in Figure 3b) due to overregularization, which further leads to a less-than-optimal
classification boundary. This can be fixed with re-weighing the reconstruction loss compared to the
Kullback-Leibler divergence by tuning σ2 as shown in Figure 3c and Figure 3f. In Figure 4, we show
the classification accuracy and reconstruction loss with different weighing parameters σ2.

The experiment for the case shown in Figure 3b and Figure 3e was also performed with a classifier
initialized to optimal values, in order to rule out the effects of bad initialization for the setup. Even
in this case, the model was drawn away from the optimal solution by the generative loss, resulting
in a solution similar to the one shown in Figure 3e. What is more, the model did not stay in the
optimal solution even though the training was done with the discriminative loss. This was only fixed
in further experiments when the relative weight of discriminative loss to the generative loss (α) was
sufficiently large. These experiments show that the reconstruction performance plays a crucial role
in utilizing the generative loss for the optimal classifier.

3.2 Pretraining encoder-decoder without classifier makes the model fail

One of the scenarios where M2 does not work is when the latent variable z is ignored. It has been
noted previously that variational autoencoders do not necessarily behave like classical autoencoders
[7], and do not autoencode in general [6]. This means that there is a possibility that pθ(x|z)
converges to the true p(x) while ignoring the latent space z. In that case the decoder qφ(z|x) simply
becomes the same as the prior, p(z), due to KL divergence term in the loss. It is clear that in such
a situation, the posterior approximation does not encode any information, and so does not serve
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(a) (b)

Figure 5: Illustration of the scenario in which the classifier from M2 converges to the wrong solution.
In a), we show reconstruction of the digits based on the weights from pretrained VAE. In b),
reconstruction from M2 after training with initialization of those weights, freezing z′ and changing y

in each column. We can see that the best reconstruction is in the column corresponding to the label
6. This suggests that the classifier converged to output the label 6 for all images, which renders it
useless.

any meaningful purpose. A scenario where this happens is with a very powerful decoder which is
able to model the data directly, such as an autoregressive RNN [6]. In such a scenario, the M2
model may struggle to find the desired solution. This is because part of the posterior approximation
q(y, z′|x) = q(y|x)q(z′|x, y) acts as the classifier, and when the latent space is ignored, the classifier
does not get any meaningful training signal - the reconstruction is no longer based on y.

However, it might be possible that M2 does not ignore the full latent z and the classifier still does
not perform well. The usefulness of the generative part of M2 model loss relies on the assumption
that the decoder does not ignore the information contained in the part of the latent space y, and
performs conditional generation. This intuitively means that if there is no available class information
in the latent z′, the optimal choice is to use the information in y. This is desirable, because a wrong
inferred y allows for the classifier to learn - the reconstruction based on the wrong label in this case
is a lot worse than reconstruction based on the right class label.

Yet, it might be the case that the latent z′ does contain all the information necessary to reconstruct
the given input, which is the other scenario when the classifier does not perform well. A practical
example of this can be seen in Figure 5. In this experiment, we trained a variational autoencoder on
unlabeled data, and initialized the M2 model with the corresponding weights. As a result, the model
was able to reconstruct the inputs without the use of extra latent space y, and the decoder did not
converge to behave like a conditional generative model. Since the reconstruction did not depend
on y anymore, the classifier’s output was not used and it eventually converged to a solution which
was worse than the baseline supervised model, even when trained with a small added discriminative
loss. This shows that if the latent z′ contains enough information for the decoder to be able to
reconstruct the data, the setup may converge to a wrong solution. This observation is crucial for
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the right setup of the model, as it shows improving the flexibility of the approximations for q(z′|x)
may in fact lead to worse classification performance. This is especially significant because many of
the recent improvements in variational inference focus on improving the posterior approximations,
e.g. by the use of normalizing flows [2, 14, 24].

We would like to note that the same experiment performed with parameter α high enough did
not result in deterioration of the classifier, which suggests that the additional discriminative loss is
essential for training and performance of the model. We return to this observation in Section 6.

3.3 Latent space of M2 is not disentangled

Disentanglement of the latent space means that distinct aspects of the data are encoded into separate
variables in the hidden representation [3, 17, 20]. Such a representation helps with understanding
of the inputs, and is one of the factors that allows for manipulation of high-level attributes of
the generated data, in other words conditional generation. As shown in Subsection 3.2, successful
conditional generation is also fundamental to the usefulness of the generative loss.

In Figure 2, we can see that even though the model has learned to conditionally generate the
analogies of digits in most cases, some of the information about the original image remained in z′,
the part of latent space that should model the unspecified factors of variation. This can be observed
clearly in the generation of digit 1, where the model did not condition on the given label and instead
generated digits similar to the original. This observation suggests that the latent space of M2 is
not disentangled, as the decoder was able to reconstruct digit 1 purely based on z′. We have also
performed an experiment to judge this quantitatively. We train the M2 model in the SSL setting
with varying levels of the discriminative loss, and subsequently transformed the training data into
the z′ part of the latent space using all possible labels. Finally, we trained a classifier based on
that encoded representation z′ with the original labels, and tested the accuracy on the test set.
If the latent space were truly disentangled, such a classifier would have accuracy close to random.
Yet, the experiment has resulted in accuracy over 85%, regardless of parameter α. This means that
the classifier was able to determine the original label based on the encoded representation in vast
majority of the cases, suggesting that the latent space is not disentangled.

4 Proposed model

As discussed in Subsection 3.3, even though a separate part of latent space y is used to model the
information about the class label, the remaining latent z′ may also contain some of that information.
As shown in the experiment described in Subsection 3.2 with the results illustrated in Figure 5, this
can potentially stop the classifier from converging to the optimal solution. This motivates the
following questions:

1. Given that latent space z′ contains label information, is it possible to construct a classifier
based on z′ without using the additional part y? Furthermore, is it possible to do so while
keeping conditional generation in order to use reconstruction based loss as a guide for the
classifier, similar to the SSL M2 setup?

2. Conversely, is it possible to remove the label information from z′, and is doing so beneficial
for training the classifier in the M2 model setup?

In the following subsections, we answer the first question by deriving and evaluating the model
based on the latent space in Subsection 4.1. We leave the second question for the discussion, with
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a preliminary solution of an adversarial approach to remove the label information from z′ proposed
in Appendix E.

4.1 Semi-supervised learning based on latent space

In order to answer the first question, we start with the following proposition:

Proposition 1 Let x̂ = [x, y], the concatenation of a data point and its label. Introduce a posterior
approximation q(z|x̂) and assume q(z|x̂) ≈ q(z|x). Then log p(x̂) for a single tuple (x, y) has an
evidence lower bound (ELBO) expressed as:

log p(x̂) = log p(x, y) ≥ Eq(z|x)[log p(x|y, z) + log p(y|z) + log p(z)− log q(z|x)] = Lour(x, y)

This defines a lower bound which we can maximise, using the same techniques as in variational in-
ference. Note that it includes both the conditional generative model p(x|y, z) and the discriminative
term p(y|z) as desired.

For unlabeled data, we use a similar variational bound as in variational autoencoders (Equation 1),
with the only change motivated by the observation that log p(x|z) ≥ Ep(y|z)[log p(x|y, z)] which is
formalised in the following proposition:

Proposition 2 The ELBO of variational autoencoders for a single data point x can be lower bounded
by:

log p(x) ≥ Eq(z|x)[log p(x|z) + log p(z)− log q(z|x)]

≥ Eq(z|x)[Ep(y|z)[log p(x|y, z)] + log p(z)− log q(z|x)] = Uour(x)

The additional inequality provides a less tight lower bound to the log-likelihood, yet maximising
an objective with this inequality (Uour) is aligned with the original goal of maximising ELBO.
The inequality allows us to use the same p(y|z) as in the labeled case. Such approximation is
potentially beneficial as p(y|z) acts as a classifier, and by using this additional bound we can train
this classifier also in the unlabeled case. This observation also makes the model training dependent
on the conditional generation, which was one of the objectives of the first research question.

Based on the propositions, we construct a model which optimizes a lower bound for likelihood of the
data, and after introducing λ as a hyper-parameter to weigh labeled and unlabeled loss, the final
maximisation objective becomes:

Jour = λ · Lour({x, y}
l
i=1) + Uour({x}

l+u
i=l+1)

The model is shown graphically in Figure 6a. We can see that it has similar properties to M2
from Kingma et al. [13]. Indeed, we can see the classifier is based on conditional reconstruction
due to p(x|y, z). Yet, unlike Kingma’s model, our model does not require an ad-hoc addition
of discriminative loss, as both labeled and unlabeled objectives already contain the classification
model. We introduce λ to control the relative weight of labeled and unlabeled data as has been
previously suggested [5].

While the models share many similarities, the one we propose does not introduce any assumptions
for the latent space, contrary to the M2. Specifically, in M2 the latent space was split in two parts,

9



(a) (b)

Figure 6: Probabilistic graphical models (ours). The dashed lines indicate inference models (en-
coders), the solid lines indicate the generative models (decoders). Grey background on elements
y corresponds to operations only on observed labels, and split background indicates the semi-
supervised setup.

one of which was required to be categorical. In our model, there are no such restrictions. As a
result, application of modern techniques for improving the posterior approximation - such as those
presented in [2, 14, 24] - is straightforward and does not require any further assumptions. These
techniques have been shown to improve the flexibility of the posterior approximation, resulting
in a tighter lower bound for the likelihood. Maaløe et al. [18] have shown that improving the
ability to fit complex posteriors can also lead to better classification performance in the SSL setting.
Such methods can also potentially improve the robustness of the model: a more flexible posterior
approximation can better fit the prior, and as a result the model may be less constrained by the
regularizing KL divergence term in the loss. What is more, lifting the restriction that part of the
latent space is categorical allows for the use of more complicated priors, which have been shown to
further improve the log-likelihood of the model [27] and can help with the problem of ’component
collapse’ [19].

Now, due to the observations in Subsection 3.1, we note that generative loss as seen in this model
can also make the classifier perform worse. As shown in Subsection 3.2, one of the reasons for
such behaviour could be the dependence of the model on conditional generation. Therefore, we
propose introducing an additional assumption, p(x, y|z) ≈ p(x|z)p(y|z), which simplifies the model
by removing the link which supports the conditional generation. Because the conditional generation
is removed, the model becomes potentially more robust against bad initializations, such as that one
described in Subsection 3.2. This results in a model shown in Figure 6b, which we call simplified.
As can be seen in the figure, it resembles M1 from Kingma et al. [13]. Yet, the classifier in our setup
is also trained alongside the variational autoencoder (instead of in two steps like in M1).

5 Evaluation

5.1 Experimental setup

We evaluate the performance of our models on MNIST [15] dataset. For the experiments, we
normalize intensity of the images to the range [0, 1] and split the dataset into train, validation and
test sets, containing 50000, 10000 and 10000 data points respectively. We use 100 randomly selected
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λ or α M2 ours ours, simplified

0 88.6 (± 5.0) - -

0.001 90.3 (± 3.5) 72.2 (± 3.7) 82.1 (± 1.9)

0.1 91.4 (± 2.2) 91.7 (± 3.6) 80.4 (± 0.7)

0.5 91.7 (± 2.5) 92.3 (± 2.8) 79.5 (± 1.1)

1 92.0 (± 2.6) 88.2 (± 3.6) 78.7 (± 0.7)

10 92.6 (± 2.5) 78.1 (± 1.3) 76.7 (± 0.3)

100 93.3 (± 2.0) 80.2 (± 0.9) 75.9 (± 0.8)

10000 93.7 (± 2.5) 70.9 (± 0.4) 72.4 (± 0.9)

Table 1: Benchmark results of semi-supervised classification on MNIST with 100 labels (accuracy).

labeled data points from the training data set, 10 from each class. The remaining data in the
training set is treated as unlabeled. The batch sizes for the training are chosen to be 100 labeled
and 100 unlabeled data points. The hyperparameters of the networks are listed in Appendix B and
are taken from [13]. Training was stopped after 500 epochs, and the best performance was chosen
based on the validation set. As a baseline, we use a fully supervised neural network trained only on
the 100 labeled data points. For M2 model we performed a grid search for the best parameter α,
with the possible values coming from the set {0, 0.001, 0.1, 0.5, 1, 10, 100, 10000}. For our model, we
performed a similar grid search for parameter λ.

5.2 Results

The baseline model resulted in accuracy of 74.74± 1.16%. When evaluating M2, we found that the
model highly benefits from the added discriminative learning and achieves the best performance of
93.7 ± 2.5% with α = 10000. Our model achieved the accuracy of 92.3 ± 2.8% with λ = 0.5. We
report full results in Table 1.

The models achieve similar peak performance, yet when removing the conditional generation link,
the accuracy drops. Because of this, and the fact that the models share very similar structure,
we believe that conditional generation is the main reason of good accuracy for both M2 and our
model.

The proposed achieves the best performance with λ = 0.5, which suggests that it works best with
relatively balanced labeled and unlabeled loss. This shows that the model benefits highly from
discovering the underlying structure of the data based on the unlabeled samples. Yet, we would like
to note that tuning this parameter may greatly change the performance of our model, more than
tuning α in M2. We return to this observation in Section 6.

Considering that the best performance of M2 also comes from the highest setting of α, this further
confirms that the extra discriminative loss is essential to its success. This also highlights the differ-
ence between two models: while our model benefits from modeling the underlying representation of
the data, the M2 model relies more on the initial classification, making it more akin to self-learning
[1].

Furthermore, we tested our model with the extra assumption, p(x, y|z) ≈ p(x|z)p(y|z), the simplified
version. In Table 1 we can see that the model benefits only slightly from the unlabeled data, resulting
in at most 82.1± 1.9% with λ = 0.001. This means that the model did not improve much over the
baseline. The reason for it is that with such a small amount of labeled data, the classifier overfits
in the first few iterations, and later the model improves only the reconstruction ability. The peak
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performance was achieved with λ = 0.001, which suggests that it is beneficial for this setup to first
learn the best encoding of all the data before training a labeled classifier, similar to M1 by Kingma
et al. [13].

We also performed an experiment with setup similar to the one in Subsection 3.2, where we pretrained
the unlabeled part of both versions of our model. In such a scenario, the model without simplification
failed to beat the baseline, yet the simplified model achieved accuracy of 81.6±1.2%, comparable to
the scenario without pretraining. This confirms that conditional generation is one of the reasons of
the good performance of our model, and the improvement over the baseline of our simplified model
comes from discovering the hidden structure of the data.

6 Discussion and Conclusion

In this work, we started out by analysing the behaviour of the M2 model [13] and highlighting its
strengths and weaknesses. In particular, we argued that the main reason for its performance is
conditioning reconstruction of the data on the label, and as such the model needs to be able to
reconstruct the data well. Next, we showed that the initialization of this model is crucial for the
classifier to converge to the right solution. We also showed that the M2 model is highly dependent
on the auxiliary discriminative loss.

Based on these observations, we derived a new model, which does not impose any assumptions on
the latent space. The proposed model optimizes a principled lower bound to the log-likelihood,
similarly to M2 benefits from conditional generation, and does not require the ad-hoc addition to
the objective function.

During the experimentation, we noted that the M2 model is highly dependent on the auxiliary
discriminative loss, and we showed that the model does not recover from bad initialization without
the addition. What is more, the model achieves best performance with the highest tested setting
of α. We note that such behaviour makes it similar to self-learning [1], perhaps a version with
”soft” labels. We believe that the classifier learns to assign the true labels to the labeled data
because of high discriminative loss. Then it assigns ”soft” labels to unlabeled data and improves
the results based on the reconstruction. As can be seen from the loss (Equation 3), the model’s
reconstruction loss in the unlabeled case is weighted according to the soft labels, and therefore the
gradients for reconstruction of different labels are also updated in the same manner. This resembles
the aforementioned self-learning setup, where the most confident predictions are considered valid,
and the next iteration of algorithm is using them as true labels. In particular, generative mixture
models can be considered as a special case of such ”soft” self-training [30]. Interestingly, mixture
models assume a model of p(x, y) = p(y)p(x|y), similar to the conditional generation of M2. They
may also be prone to local maxima with bad initializations [21], which we experimentally found to
be the case for the Kingma’s model. It would be interesting to further analyze and compare the two
models, using the knowledge gathered from the extensive research about the classical method.

By introducting a new model, we showed that the assumptions made on the latent space by Kingma
et al. [13] are not necessary. We would like to remark that it is possible for our model to resemble
that of [13], by introducing similar assumptions. Yet, even in that case, our model does not need
an ad-hoc addition to the objective function. We discuss the details in Appendix C. What is more,
we argue that the M2 model does implicitly depend on a parameter λ similar to the one in our
setting, and so it is more difficult to fine-tune, especially in the SSL setting. The extra parameter
is due to batch sizing. Indeed, when using equal sized batches of labeled and unlabeled data in
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the most common batch gradient descent setting, the optimizer effectively performs u
l
times more

gradient updates based on the labeled data, where l and u are the number of labeled and unlabeled
data points respectively. More generally, if nl, nu are the batch sizes of labeled and unlabeled data,
the optimizer performs nl·u

nu·l
gradient updates based on the labeled data for 1 update based on

the unlabeled data. While the effect is not exactly the same as applying a single gradient update
multiplied by a constant, this suggests that different batch sizes may influence the performance of
the M2 model, similarly to parameter λ of our model. This is also confirmed in an experiment we
performed, results of which can be found in Appendix D.

The absence of assumptions on the latent space in our model allows for a straightforward application
of recent developments in posterior approximation and different priors [27], [19]. In particular, we
would like to highlight one of the recent developing fields of normalizing flows [2, 14, 24] which allow
for better posterior approximations, which could be applied to our model directly. Such application
could lead to richer latent representations. More complex posterior approximations have been shown
to also improve the classification performance [18], yet as we reasoned in Subsection 3.2, improving
posterior approximation may also lead to a deteriorated performance, because the model may be
prone to local maxima.

Finally, we reasoned that one of the ways to reduce the susceptibility to bad initialization of M2
could be better disentanglement of its latent space. We raised the question of whether this would also
benefit the classification ability of such model. We leave this question for future work, yet preliminary
results suggesting that adversarial methods could be used, together with initial experiments can be
found in Appendix E.

A Proofs

Proof of proposition 1:

We start with the usual variational bound for data, defining x̂ as concatenation of the data with the
label, i.e. x̂ = [x, y].

log p(x̂) = log

∫
p(x̂, z)dz

= log

∫
p(x̂|z)p(z)dz

= log

∫
q(z|x̂)

q(z|x̂)
p(x̂|z)p(z)dz

= logEq(z|x̂)[
p(x̂|z)p(z)

q(z|x̂)
]

= logEq(z|x,y)[
p(x, y|z)p(z)

q(z|x, y)
]

(4)
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Now, using the assumption that q(z|x, y) ≈ q(z|x), we have:

logEq(z|x,y)[
p(x, y|z)p(z)

q(z|x, y)
] ≈ logEq(z|x)[

p(x, y|z)p(z)

q(z|x)
]

= logEq(z|x)[
p(x|z, y)p(y|z)p(z)

q(z|x)
]

≥ Eq(z|x)[log
p(x|z, y)p(y|z)p(z)

q(z|x)
]

= Eq(z|x)[log p(x|z, y) + log p(y|z) + log p(z)− log q(z|x)] = Lour(x, y)

(5)

using Jensen’s inequality.

Proof of proposition 2:

We note that

p(x|z) =

∫
p(x, y|z)dy =

∫
p(x|y, z)p(y|z)dy

= Ep(y|z)[p(x|y, z)]

(6)

Using Jensen’s inequality, we have log p(x|z) ≥ Ep(y|z)[log p(x|y, z)]. The result follows naturally by
substituting log p(x|z) in the ELBO as appears in [12].

B Hyperparameters for experiments

For all of the experiments, we used the hyperparameters listed in this section, unless specified
otherwise. We used Adam optimizer [11] with a learning rate of 0.001, and the weights of the
networks were initialized with Xavier initializer [8]. Each of the networks that was part of the
generative and inference models was a fully connected neural network (MLP) with a single hidden
layer of 500 units, using softplus activation functions. We used a 50-dimensional latent space.
Parameter α was set to 1.

C Special case of our model is similar to the M2 model

Kingma et al. [13] assume that the latent space z consists of two parts, z′ and y, corresponding to
unspecified factors of variation and factors of variation defining the class label. Our model does not
have such assumptions, yet by introducing z = [zu, zy], assuming q(zu, zy|x) = q(zu|zy,x)q(zy|x),
p(x, y|z) = p(x|z)p(y|z) and restricting p(y|z) to p(y|zy) we can see that the objective becomes:

Lour(x, y) = Eq(z|x)[log p(x|y, z) + log p(y|z) + log p(z)− log q(z|x)]

= Eq(z|x)[log p(x|z) + log p(y|zy) + log p(z)− log q(zu|zy,x)− log q(zy|x)]
(7)

While the connection to the M2 model is not immediately obvious, it might be better understood
by looking at Figure 7. We can see that similar links for both the inference and generation are
supported. One of the differences is the lack of generative model for y in M2 (which was fixed with
auxiliary loss), and the other can be seen in the classifier, which in this special case for our model
becomes p(y|zy)q(zy|x), i.e. contains a stochastic unit. This suggests it could potentially be more
robust to noise in the inputs, yet we leave the evaluation for future work.
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(a) (b)

Figure 7: Probabilistic graphical models of M2 [13] and ours with multiple extra assumptions. The
dashed lines indicate inference models (encoders), the solid lines indicate the generative models
(decoders). Grey background on elements y corresponds to operations only on observed labels, and
split background indicates the semi-supervised setup.

D Batch size setting may influence the performance

In order to show quantitatively that batch size settings may influence the performance of the model,
we have trained the M2 model in two different settings: with 100 labeled and 100 unlabeled data
points in a batch; and 1 labeled and 499 unlabeled data points in a batch. The results can be seen
in Figure 8. We can see that the model’s performance is changing depending on the ratio of labeled
data points to unlabeled data points in a batch.
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Figure 8: Performance of the M2 model with different batch size settings. The red line corresponds
to the setting of 100 labeled and 100 unlabeled points in a batch, and the blue to 1 labeled and 499
unlabeled points in the batch.
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E Adversarial semi-supervised learning with deep generative

models

In order to answer the second question in Section 4 we introduce an adversarial classifier fψ(y|z
′)

to the M2 model setup, with the goal of removing the label information from the part of the latent
space which is meant to model the unknown factors of variation, z′. We define the objective as

min
ψ

max
θ,φ

J α
θ,φ + Eqφ(z′|x,y)[− log fψ(y|z

′)],

where J α
θ,φ is the objective of the M2 model (with φ, θ parameters of encoder and decoder respec-

tively) and Eqφ(z′|x,y)[− log fψ(y|z
′)] is the objective of adversarial classifier. This loss can be better

understood as a game, where the networks in the M2 model try to find the best ELBO approxima-
tion, while the adversarial classifier is trying to detect whether there is any information about the
label in z′. The model is shown in Figure 9. We can see that the equilibrium could be found by
removing the label information from z′ and instead modeling that part of data through y. In other
words, this setup may in theory force a disentangled representation, which in turn may alleviate the
problem shown in Subsection 3.2.

Figure 9: M2 model [13] with added adversarial connection. The dashed lines indicate inference
models (encoders), the solid lines indicate the generative models (decoders), and the dashed-dotted
line indicates an adversarial classifier. Grey background on elements y corresponds to operations
only on observed labels, and split background indicates the semi-supervised setup.

We performed preliminary experiments using this extended loss, yet we were not able to find any
difference in the model’s performance. However, we note that adversarial setups are known to be
difficult to train [25] and so we believe further analysis is necessary in order to determine whether
or not the extended loss may improve the classification performance of the model.
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Supplementary Material

This supplementary material is meant to complement the main thesis form. It is written in a
more informal way, aimed to improve the understanding and intuition behind the ideas presented
previously. In the first section, we include more information about latent variable models and
variational autoencoders, the knowledge of which should be helpful to understand the main text.
The second part contains an explanation of normalizing flows, which we investigated prior to the
main question answered in the thesis. While they do not play a central role in the main part of the
report, they form the foundation of the motivation for the ideas researched. Finally, we include a
crude section with plots that did not fit into the main paper but are also interesting, and we include
some partially explored ideas.

1 Extended background

1.1 Latent variable models

Latent variable models are statistical models, which assume that the data (observable variables)
were generated from a set of hidden variables, called latent variables. In the case of very-high
dimensional data (such as images), these latent variables are usually assumed to be coming from
a lower dimensional distribution. In other words, the latent variables can be understood as the
”high-level” characteristics of the data. One of the (indirect) goals of latent variable models can be
to discover such characteristics, i.e. find the posterior distribution of the latent variables. This may
be desired for example to better understand the data, or boost the performance of further operations
on the data by obtaining a lower dimensional representation. Usually, latent variable models are
optimized to maximize the likelihood of the data, i.e. find the best fit to the marginal distribution
p(x) over the observable variables, which often makes it easy to retrieve the posterior.

More formally, latent variable models introduce a probability distribution pθ(x, z) over the set of
observable variables x and latent variables z with some parameters θ. Such models are commonly
factorized into a conditional likelihood pθ(x|z) and a prior pθ(z):

pθ(x, z) = pθ(x|z)pθ(z) (1)

A classical example of latent variable models which may help with their understanding is a Gaussian
Mixture Model (GMM). In this model, the observations are assumed to be coming from a mixture of
Gaussian distributions. Each of the components of the mixture pθ(x|z) is assumed to be Gaussian,
and they are combined in a convex combination to form the distribution of the data. An illustration
of the Gaussian mixture can be seen in Figure 1. Intuitively, knowing the posterior distribution is
useful, as given a particular value of an observation x, we can answer the question of ”which of the
underlying mixtures did this observation likely come from?”, and therefore perform classification
(or ”soft” clustering). In the case of Gausian Mixture Models, the analytical form of the posterior
pθ(z|x) is known (it is a categorical distribution), and therefore the parameters θ can be optimized
by classical methods such as expectation-maximization (EM) [10].
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Figure 1: The probability density function of a mixture of Gaussian distributions and its two com-
ponents, N (0, 1) and N (4, 2). The weighing is chosen to be 0.6 for the first component, and 0.4 for
the second.

However, not all the latent variable models can be optimized with EM. For example, this algorithm
cannot be applied when it is impossible to compute the posterior in a closed form. This happens
for example in the case when pθ(x|z) are parameterized with neural networks with at least one
non-linear hidden layer.

1.2 Variational autoencoders

Variational autoencoders are another type of latent variable model which has the form of pθ(x, z) =
pθ(x|z)pθ(z). In contrast to GMM, the true posterior distribution is unknown, and so the optimiza-
tion by traditional EM can no longer be applied. One way of solving the problem of finding such
posterior distribution is to introduce a family D of densities over the latent variables, and perform
variational inference (sometimes also called variational EM) [2].

Figure 2: Illustration of variational inference. Instead of computing the true posterior pθ(z|x),
we introduce a variational family of distributions D, and fit the variational parameters φ to make
qφ(z) ∈ D close to the true posterior.

After introducing parametric inference model qφ(z), which comes from family D, we try to optimize
its parameters in order to find the member of that family such that it minimizes the Kullback-Leibler
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divergence to the exact posterior:

q∗φ(z) = argmin
qφ(z)∈D

KL[qφ(z)‖pθ(z|x)] (2)

This inference model in the end approximates the true posterior. This is visualised in Figure 2.

However, objective in Equation 2 is also not computable directly, due to dependence on the unknown
evidence pθ(x), which can be seen by applying Bayes’ Theorem:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
(3)

Because of that, variational inference optimizes an alternative objective that is equivalent to KL
divergence up to a constant:

ELBO(q) = Eqφ(z)[log pθ(x, z)− log qφ(z)] = log pθ(x)−KL[qφ(z)‖pθ(z|x)] (4)

This function is called the evidence lower bound (ELBO), because it is optimizing a lower bound for
log pθ(x), as can be seen in the equation. Note how maximizing ELBO is equivalent to minimizing
the KL[qφ(z)‖pθ(z|x)] which appears in Equation 2 - this is because the evidence log pθ(x) does not
depend on parameters φ, and so during such maximization, it remains constant.

Figure 3: Illustration of amortized inference. This assumption limits the family of distributions that
we assumed initially, but it makes the optimization faster. The size of the smaller class depends on
the flexibility of f [1].

Variational autoencoders optimize ELBO, making use of two extra techniques in order to make
this process scalable and faster to train. First, VAEs assume the parameters φ of qφ are based on
the data, qφ(z) = qβ(z|x;φ = fβ(x)). Without this assumption, stochastic optimization would be
required for each data point. Yet, by introducing a mapping fβ(x) from x to φ, the number of
parameters is kept constant. This assumption is often referred to as ”amortizing inference” [3, 4].
Effectively, by making such assumption, we shrink the class of variational approximations and so
this can be considered a computational-statistical tradeoff [1]. This is depicted in Figure 3.
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(a) (b)

Figure 4: Illustration of reparametrization trick [6]. Blue nodes correspond to random operations,
the grey nodes are deterministic.

Secondly, VAEs use what is known as the ”reparametrization trick” [6], in order to reduce the
variance of the gradients. This is shown in Figure 4. In short, this technique allows for faster
training due to the reduced variance of the gradients, but not without drawbacks. The technique
requires the variational approximation to have the property that we can obtain the sample from qφ(z)
by transforming noise ǫ drawn from a noise distribution s(ǫ) with some differentiable transformation
tφ, in other words:

z = tφ(ǫ) for ǫ ∼ s(ǫ) implies z ∼ qφ(z)

An example of such transformation is the reparametrization of the Gaussian distribution: starting
with noise from the standard normal distribution, ǫ ∼ N (0, 1), we can obtain any other Gaussian
distribution by applying the transformation tφ(ǫ) = µφ + σφǫ, where µφ and σφ are for example
retrieved by applying a deterministic function approximated by neural networks using the parameters
φ.

Figure 5: An example of a variational autoencoder. The neural networks are shown as a directed
graph. Note that there is no requirement for these neural networks, and almost any deep network
architecture can be applied. Note µ and σ are presented as two nodes for simplicity, yet they are
usually multidimensional and so the networks output more than two scalars. The setup can be
trained end-to-end using standard modern optimization techniques.

Finally, VAEs usually use mean-field approximation, that is assume that all the dimensions of the
latent space are independent given the parameters, qφ(z|x) = Πiqφ(zi|x). All these assumptions
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Figure 6: An example of a transformation of one density to another, from U(0, 1) in yellow to U(1, 3)
in green, by applying the mapping f(x) = 2x+ 1.

lead to a model which resembles a traditional autoencoder, shown in Figure 5, with a probabilistic
encoder and a probabilistic decoder parameterized by neural networks. Usually, the encoder is a
factorized Gaussian encoder, qφ(z|x) = N (z;µ(x), diag(σ2(x))), where µ(x) and σ2(x) are functions
approximated with neural networks. The decoder is often chosen to be a Gaussian, Bernoulli or a
categorical distribution, depending on whether the observations are continuous or discrete.

2 Extended motivation

2.1 Normalizing flows

The assumptions and techniques used in variational autoencoder which allowed them to scale to
large datasets, also made the posterior approximation simpler. This is because the true posterior
might not necessarily be captured in the chosen posterior family D, and the amortization of inference
could shrink the search space even more. Also, the mean-field approximation further reduced the
space from which the posterior approximation could come from. While not all of the assumptions
are necessary and alternative optimization methods exist (e.g. black-box variational inference [12]),
very often these methods do not scale as well as variational autoencoders. Therefore, a lot of
research focuses on improving the posterior approximation, without removing the assumptions. In
the literature, two ideas of improving the posterior appear frequently: methods based on auxiliary
variables and methods based on change-of-variables [1]. The addition of auxiliary variables to semi-
supervised learning with deep generative models was already shown to improve the performance of
such models [9], and therefore our attention was brought to change-of-variable methods.

The idea of improving the posterior approximation may be based on the change of variables theorem
from statistics:

pY (y) = pX(x)
∣

∣

∣
det

df−1

dy

∣

∣

∣
= pX(x)

∣

∣

∣
det

df

dx

∣

∣

∣

−1

(5)

where pY (y) and pX(x) are densities, and f is a bijective, differentiable mapping. Using this theorem,
one may transform any density to any other density, provided that f exists. An example of such
transformation is shown in Figure 6.

First shown by Rezende and Mohamed [13], a normalizing flow “describes the transformation of a
density by a sequence of multiple such mappings”, and often these mappings are parameterized and
learnt by neural networks. Applying long chains of density changes allows for increasingly complex
and multi-modal distributions, as illustrated in Figure 7.

The key question in normalizing flows is how to define the transformation function: it has to be
bijective and differentiable. Also, since normalizing flows were designed to fix the simplifications of
posterior due to computational complexity as discussed in subsection 1.2, the implicit requirement
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Figure 7: By applying multiple transformations on the density, a more complex density can be
retrieved. Image taken from [15].

is that they do not increase the asymptotic computational complexity. This is currently a very
active area of research, and most of the recent advances in this field are based on autoregressive
transformations [5, 8, 14].

Unfortunately, due to the requirement of the transformation being bijective, normalizing flows cannot
be straightforwardly applied to discrete distributions. In the context of semi-supervised learning with
deep generative models as shown by Kingma et al. [7], this means that these techniques cannot be
implemented without changing the model - since part of the latent space which corresponds to
the labels is assumed to be categorical. Therefore, it could be beneficial to adopt the model for
semi-supervised learning in such a way that the assumption of categorical distribution is no longer
needed.
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3 Additional materials

3.1 Semi-supervised learning with generative loss from M2

Below we present some of the experimentation results with the M2 model from [7].

In this experiment, we trained the model with only generative loss, in order to better understand the
principles of semi-supervised classification of such model. During training we used KL divergence
warmup, i.e. increased the relative importance of KL divergence in the loss linearly, until it was
fully incorporated at epoch 100. In Figure 8 we can see the results of the reconstruction and the
classifier after 70 epochs, when KL divergence was not yet fully incorporated. In the last panel,
we show the classification confidence based on the reconstruction loss, which were obtained after
performing softmax function on negative reconstruction losses. This may be intuitively interpreted
as ”soft” clustering, similar to GMM. We can see that the both of the classifiers perform relatively
well, and the classification boundaries approximately coincide with the original densities.

Figure 8: Two moons dataset, along with a reconstruction from M2 model. q(y|z) shows the
classification - the background is colored with respect to the classification confidence. The last
figure shows the classification based on the reconstruction loss. The figure was created during
training with annealed KL divergence, and the classifier achieves almost accuracy of nearly 100%.

In order to better understand the reconstruction loss based classifier, we show the inner workings of
the reconstructions for each class in Figure 9, by presenting a vector field. Each vector corresponds to
a reconstruction of the datapoint at its base. In a) we assume that the datapoint belongs to the red
class, and in b) to blue class. In c) we show the figures combined, with respective colors representing
the assumed class. In the background, we plotted the original dataset as a point-of-reference.

In the plots, the direction of the arrow shows the direction of the reconstruction. The length of
the arrow is proportional to the reconstruction loss, yet the arrows do not have the exact scale
of reconstruction error, in order to keep the figure readable. Note that dots appearing in those
figures mean that reconstruction was (close to) perfect. In the panel c) we show the combined
reconstructions - note that the longer arrows correspond to higher error.
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(a) Red class reconstruction (b) Blue class reconstruction (c) Reconstruction combined

Figure 9: Reconstruction of the dataset during training, with annealed KL divergence. The di-
rection of the arrows indicates the direction of the reconstruction, and the length of each arrow is
proportional to the reconstruction error (Euclidean distance) between the original and reconstructed
point.

Below, we present similar figures, this time with fully incorporated KL divergence (regularizer). We
can see that the classification boundaries dramatically change. The figures also confirm that the
generative loss leads to a classifier which makes a ”soft” assignment based on the reconstruction
loss.

Figure 10: Two moons dataset, along with a reconstruction from M2 model. q(y|z) shows the
classification - the background is colored with respect to the classification confidence. The last
figure shows the classification based on the reconstruction loss.
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(a) Red class reconstruction (b) Blue class reconstruction (c) Reconstruction combined

Figure 11: Reconstruction of the dataset after training, with KL divergence fully incorporated in
the loss. The direction of the arrows indicates the direction of the reconstruction, and the length
of each arrow is proportional to the reconstruction error (Euclidean distance) between the original
and reconstructed point.

3.2 Realistic evaluation of SSL models

In the semi-supervised learning setup, we usually do not have access to many labels. Therefore, as
noted by Oliver et al. [11], validation sets cannot be as large as in the usual fully supervised setups.
We performed some experiments in which we selected the classifier based on the lowest achieved loss,
as opposed to the best performance on the validation set. We present the results in Figure 12.
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Figure 12: Accuracy comparison of classifiers chosen based on the validation set compared to clas-
sifiers chosen based on the lowest loss.

We can see that model selection based on the validation (early stopping) does improve the accuracy,
yet the difference in performance isn’t large. What is more, the two methods of selection similarly
benefit from the large discriminative loss. It could be interesting to see when such a model overfits,
i.e. the classification performance drops even though the model’s loss is also becoming lower.
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