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Abstract

We have developed a new, robust, curvature esti-
mator. It is based on ”fitting” circular segments
to a curve using a generalised Radon transform.
The key step in the approach is that the fitting op-
eration is not done in the original image, but in
a transformed version, called Orientation Space.
The original curve is transformed into another

curve in Orientation Space. Apart from the origi-
nal spatial dimensions, Orientation Space has one
extra dimension: orientation. A given point on
the curve in Orientation Space contains informa-
tion both about the original position of the point,
but also about the orientation of that point.
This explicit representation of orientation al-

lows us to incorporate it as a contraint in the fit-
ting stage, where curves corresponding to circular
segments in the original image are fitted to the
data. The estimated curvature is the reciprocal of
the radius of the best fitting segment.
The method performs well on noisy (synthetic)

data and should work correctly on intersecting
curves as well. The performance of the estimator
has not yet been compared to existing approaches
in the litature.
The method is a demonstration of a novel, gen-

eral, approach to incorporating constraints in the
Radon Transform.

1 Introduction

Traditional curvature estimators are based on bi-
nary representations. A segmentation step to ob-

tain a binary representation of the image is re-
quired. Vital information is lost in the segmenta-
tion step.

Curvature estimators that operate directly on
a gray value image were introduced in [7, 1]. In
a recent series of papers [8, 2, 3, 9] a number
of new, robust, curvature estimators were intro-
duced. These estimators estimate the curvature
of a curved pattern, rather than of an individ-
ual curve. Prototypes of both image types are
depicted in figure 1.
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Figure 1: Left: a single curve. Right: a curved
pattern.

In the current paper we extend the set of curva-
ture estimators with one that deals with individ-
ual curves, while retaining much of the robustness
of the estimators for curved patterns. The esti-
mator is based on some of the same principles as
the pattern based estimators. We start therefore
with an overview of these estimators:

• The estimator in [9], which supercedes [8], lo-
cally optimises the local anisotropy by vary-
ing the parameters (φ, κ) of a local coordi-
nate transformation. The anisotropy is max-
imal when the parameters of the transfor-
mation coincide with those of the pattern
(φp, κp). This estimator will be refered to
as the MAC estimator.
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• The estimator in [3] uses two stages to esti-
mate curvature. In the first stage the local
orientation is obtained using a robust orien-
tation estimator, for instance the structure
tensor [4]. In the second stage the curvature
is estimated by measuring the change in ori-
entation along a straight axis. We will refer
to this estimator as the ODC estimator.

• The estimator in [2] is based on the same
idea as the ODC estimator. Two stages
are involved; in the first stage an Orienta-
tion Space is computed. Orientation Space
is explained in more detail in the next
section. Curved patterns manifest them-
selves as tilted response planes in Orienta-
tion Space. The tilt corresponds to the cur-
vature of the pattern. The tilt can be esti-
mated using an orientation estimator. The
key difference with the previous method is
its ability to deal with overlapping patterns.
This estimator will be refered to as the OSC
estimator.

There are two important reasons why these esti-
mators are not applicable to individual curves:

• The MAC and ODC estimators gather (aver-
age) information over a rather large window.
This is a desirable property for estimating
the curvature of a pattern. In the case of
an individual curve only a small part of the
window contains useful information. Using a
large window merely decreases the signal to
noise ratio in this case.

• The ODC and OSC estimators compute cur-
vature by measuring the change in orien-
tation. This is possible when a complete,
consistent, orientation field is available. In
the case of a curve, orientation information
is present only along the curve rather than
throughout the analysis window.

Our proposed curvature estimator combines two
essential properties of the MAC and OSC estima-
tors. To make the estimator robust, the analysis
window should be large, but as explained above,
non-isotropic. The elongated filters used to com-
pute Orientation Space are suitable for this pur-
pose.

The next step is to adopt a model for the
curve. A circular segment is used as the model.
The model has two parameters; the curvature κ
and the orientation φ of the normal vector of the
curve. The next step is, just as for the MAC esti-
mator, the optimisation of the parameters of the
model so it best fits the data. The κ that opti-
mises the model is an estimate for the curvature.

Parent and Zucker [5] describe a method for re-
trieving curves from an image. It consists of two
stages: finding a rough estimate of the orientation
(using three oriented filters) and of the curvature,
followed by a regularisation procedure to find a
smooth curve (discontinuities are allowed), using
the orientation and curvature estimates as con-
straints. The main difference is that our method
consists of a generic procedure to incorporate con-
straints for finding parameterised curves using an
intuitive geometric approach, rather than a ded-
icated approach.

The structure of the paper is as follows. In
section 2 we briefly explain the concept of Ori-
entation Space. The details of finding the best
fit of the model are given in section 3. We then
proceed with some experiments and conclusions.

2 Orientation Space

An Orientation space is an ”measurement” space
for orientation. An measurement space I [m](�x, �f)
is a space obtained by some transformation ap-
plied to the image to be analysed. Its dimensions
are those of the input image I(�x) plus one extra
dimension for each image feature we are inter-
ested in:

I(�x) → I [m](�x, �f) (1)

Where �f are the feature dimensions. The inter-
pretation of I [m] is simple; for a given feature
vector �f , the measurement space at a given lo-
cation �x tells us how much evidence there is for
that particular feature vector at that particular
location.

In contrast, the usual way to extract features
corresponds to a transformation of the following
type:

I(�x) → �f(�x) (2)

In the current paper we are interested in a single
feature, orientation. In this case the feature vec-
tor reduces to a scalar: the orientation φ. The
orientation estimator in [4] is a good example of
feature extraction of the type given in equation 2,
i.e.:

I(x, y) structure→
tensor

φ(x, y) (3)

In general, there are two arguments for using Ori-
entation Space rather than a conventional orien-
tation estimator (the same arguments hold for
any measurement space):



• The ability to deal with intersecting or over-
lapping structures. If these structures each
have a distinct orientation they will no longer
overlap in Orientation Space.

• Tracking a structure. Each added feature di-
mension constrains the search more, which
results in a more pronounced ”best track”.

In the next section, we show how we use Orienta-
tion Space to track circular segments, and thereby
obtain an estimate of the curvature.

Orientation Space I [os], an measurement space
for orientation, is obtained by a transformation of
the input image:

I(x, y) → I [os](x, y, φ) (4)

The transformation of the input image is obtained
by applying a filter bank to the image. The filter
bank consists of rotated copies of a single, orien-
tation sensitive, bandpass filter [2]. I [os] is pe-
riodical along the φ axis with period π (we do
not distinguish between a structure and the same
structure rotated over 180 degrees).

The Fourier transform over the spatial coor-
dinates of the Orientation Space can be written
as:

Ĩ [os](ωx, ωy, φ) = F̃ (ωx, ωy, φ)Ĩ(ωx, ωy) (5)

where Ĩ [os] is the Fourier transform of the orien-
tation space, F̃ the Fourier transform of the filter
and Ĩ the Fourier transform of the image. If the
Fourier transform is written in cylindrical coordi-
nates ω, θ, the following relation holds:

F̃ (ω, θ, φ) = F̃r(ω)Fa(θ − φ) (6)

Fr is the radial part of the filter. It selects a non-
symmetric frequency band ”centered” at ωc with
width σr. It is given by:

F̃r(ω;ωc, σr) = (
ω

ωc
)

ω2
c

σ2
r exp(−ω2 − ω2

c

2σ2
r

) (7)

Frequencies lie in the range (−π, π).
F̃r(0, ωc, σr) = 0 and Fr attains its maximum
value of 1 for ω = ωc.

The angular part of the filter, Fa, has a single
parameter N . The shape of this filter is Gaussian
with standard deviation σa = π/N :

Fa(α;N) = exp(− (Nα)2

2π2
) (8)
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Figure 2: The solid line shows the curve under in-
vestigation. The dashed lines are candidate circu-
lar segments. For one of the candidates we show
the full circle (dotted). The segment is traced by
θ with centre point (x1, y1).

Throughout the experiments we have set ωc =
0.6, σr = 0.5 and N = 8. The orientation selec-
tivity N = 8 sufficiently contrains the tracking
stage. The centre frequency, ωc is tuned to the
data. The σr parameter has been tuned to detect
individual lines and edges, by setting ωc/σr = 1.2,
contrary to the settings in [2], where the param-
eters were tuned to detect line bundles.

3 Finding the optimal circular seg-
ment

Our approach to estimating curvature is based
on finding, at each spatial position, the circular
segment that best describes the curve. The recip-
rocal of the radius of that segment is an estimate
of the curvature. To estimate the curvature at
(x, y) we consider all circular segments that go
through this point:

�cs(x, y,R, φ, θ) =
(

xc + R cos(φ + π + θ)
yc + R sin(φ + π + θ)

)
(9)

with

xc = x + R cosφ
yc = y + R sinφ

(10)

where (xc, yc) is the centre of circular segment
specified by R and φ. The model is illustrated
in figure 2. There is a curve �cos in Orientation
Space that corresponds to �cs in the original image



space. We can obtain this curve by adding a third
component to �cs: the orientation as we walk along
the circle segment. The orientation at a given
point along the circle segment is simply φ + π +
θ. Taken the periodicity of I [os] into account we
obtain:

�cos(x, y,R, φ, θ) =


 xc + R cos(φ + π + θ)

yc + R sin(φ + π + θ)
(φ + θ)modπ



(11)

We now seek the parameters for which the curve
�cos best fits the data. This can be done using
a brute force search over all possible parameters.
Our fit criterion is based on finding the parame-
ters that maximises the integrated intensity along
the model curve. In analogy to the Radon trans-
form for straight lines, such a procedure is known
as a generalised Radon transform, see [6] for ex-
ample. At a given point (x, y) we seek the maxi-
mum of the function M(R,φ):

M(R,φ) =
1

β2π

∫ βπ

−βπ

|I [os]|(�cos(x, y,R, φ, θ))dθ

(12)

with β a parameter that corresponds to the frac-
tion of a full circle covered by the segment. In the
experiments we have set it to 0.25. The maximum
is found by evaluating M(R,φ) at a discrete set
of points. This leads to a quantisation error in
the estimated radius, and hence the curvature.

The scheme is rather computation intensive.
If Nx, Ny, NR and Nφ are the number of points
along the x and y axis, and the number of eval-
uated for R and φ respectively, the computation
time Tc required depends on these as:

Tc ∝ NxNyNRNφ (13)

where we have neglected the fact that the time to
evaluate M(R,φ) depends on R and φ.

We can reduce the amount of computation sig-
nificantly by noting that we can get a good esti-
mate of φmax, the value of φ at which M reaches
its maximum, directly from Orientation Space.
The following holds:

I [os](x, y, φmax) = max
φ

I [os](x, y, φ) (14)

Orientation Space does not discriminate between
an angle φ and an angle φ + π. In our case this
distinction is important, since the centre of the
best fitting circular segment can lie on either side

of the curve. Our estimate for R is now the R
that maximises:

max(M(R,φmax),M(R,φmax + π)) (15)

To compensate for small errors in φmax the search
should not be restricted to only φmax and φmax+
π, but rather to small bands around these values.

In the case of intersecting curves, M(R,φ) con-
tains more than one maximum, each correspond-
ing to one curve. Each maximum gives an esti-
mate of the curvature of the corresponding curve.
Note, however, that we cannot use the φmax esti-
mate to restrict the search in this case.

4 Experiments

To evaluate the method, we have tested it on
synthetic data, both with and without noise. In
the first experiment we have generated a disk
with a radius of 53 pixels. The search was per-
formed for radii 45, 46, · · · , 70. The search over
φ was restricted to φmax and φmax + π. Figure 3
shows the results. To get a quantitative result,
we have computed the average and standard
deviation of the estimated radius over the pixels
that lie on the edge of the disk. The resulting
estimate for the radius of the disk as a whole is:

Rdisk = (53.2± 1.2)

The position of the edge pixels considered suffers
from quantisation errors. We have therefore
generated an image I(x, y) =

√
(x2 + y2) and

computed the average and standard deviation
over the same points as above. This yields:

Rquant = (53.4± 0.5)

These values are in good agreement with each
other, although the standard deviation of the es-
timate is larger than that purely due to quanti-
sation errors in the position of the edge pixels.
To further investigate the effects of quantisation,
we have taken an arbitrary point along the disk:
(39.39, 35.46). If we optimise M(R,φ) at this
point, the estimate for R is 54. The estimate at
the closest grid point, (39, 35) is 56. This shows
that the curvature should be computed at the
true (sub-pixel) location of the curve, although
this is usually impractical.
In the second experiment we have applied the
approach to an image containing disks with
various radii and additive, Gaussian noise with
a standard deviation of 0.25. The disks have
intensity 1, the background -1. The experiment
was performed with the same parameters as in



Figure 3: Left: a disk with R = 53. Middle: the estimated radius. Right: The maximum of M(R,φ) at
each (x, y) position.

Figure 4: Left: Various noisy disks. Middle: the estimated radii. Right: The maximum of M(R,φ) at
each (x, y) position.

the first experiment, but the search is performed
over radii 2, 3, · · · , 80. The following table gives
the true radius and the estimated radius of each
of the disks:

true radius estimated radius
65 66.4± 1.6
25 25.4± 1.1
10 8.7± 3.0
5 3.4± 1.4

The method seems to break down for the disks
with smaller radii. There are two reason for this.
First, there are less points to average over to re-
duce the noise. Secondly, the filters used to com-
pute Orientation Space are straight, elongated,
filters. We can expect these to perform better
on larger disks, because their edges are relatively
straight.

5 Conclusions

We have developed a new, robust, curvature esti-
mator. A few simple experiments have been per-
formed to verify the approach. Further testing
on, for example, non-circular objects should be
performed. Also, the method has not been tested
on intersecting curves yet.

The method performs well, even when the

noise level is considerable. Further evaluation of
the method in comparison with other methods,
such as [1, 5], is necessary. We are preparing a
paper in which the various estimators are evalu-
ated.

The results in the second experiment show that
the performance depends on the radius of the
curve under analysis. This is partly due to the
use of the Orientation Space filterbank. The per-
formance can be improved by directly construct-
ing an orientation/curvature space, rather than
computing curvature indirectly through Orienta-
tion Space. Efficient methods to perform such
an analysis are the topic of further research. A
brute force implementation of a combined orien-
tation/curvature space is currently prohibitively
expensive.
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versity, Sweden, 1991.



[2] M. van Ginkel, P.W. Verbeek and L.J. van Vliet,
Curvature Estimation for Overlapping Curved
Patterns using Orientation Space, in: B.M. ter
Haar Romeny, D.H.J. Epema, J.F.M. Tonino,
A.A. Wolters (eds.), Proceedings of the third an-
nual conference of the Advanced School for Com-
puting and Imaging, Lommel, Belgium, June 9-
11, 1998, pp. 173-178.

[3] M. van Ginkel, J. van de Weijer, L.J. van
Vliet, and P.W. Verbeek, Curvature estimation
from orientation fields, in: B.K. Ersboll, P. Jo-
hansen (eds.), Proceedings of the 11th Scandi-
navian Conference on Image Analysis, Kanger-
lussuaq, Greenland, June 7-11, Pattern Recogni-
tion Society of Denmark, Lyngby, 1999, 545-551.

[4] M. Kass and A. Witkin, Analyzing Oriented
Patterns, Computer Vision, Graphics and Im-
age Processing, vol. 37, 1987, pp. 362-385.

[5] P. Parent and S.W. Zucker, Trace Inference,
Curvature Consistency, and Curve Detection,
IEEE transaction on Pattern Analysis and Ma-
chine Intelligence, vol. 11, no. 8, August 1989,
pp. 823-839

[6] P. Toft, The Radon Transform - Theory and
Implementation, Ph.D. thesis, Department of
Mathematical Modelling, Technical University
of Denmark, June 1996. 326 pages.

[7] P.W. Verbeek, A class of sampling-error free
measures in oversampled band-limited images,
Pattern Recognition Letters, vol. 3, 1985, pp.
287-292

[8] P.W. Verbeek, L.J. van Vliet, and J. van de Wei-
jer, Improved curvature and anisotropy estima-
tion for curved line bundles, in: A.K. Jain, S.
Venkatesh, B.C. Lovell (eds.), Proc. 14th Int.
Conference on Pattern Recognition, Brisbane,
Aug. 16-20, IEEE Computer Society Press, Los
Alamitos, 1998, 528-533.

[9] J. van de Weijer, L.J. van Vliet, P.W. Verbeek,
and M. van Ginkel, Curvature Estimation in
Line Bundle Images using Curvilinear Models
applied to Gradient Vector Fields, IEEE Trans-
actions on Pattern Analysis and Machine Intel-
ligence, submitted.




