
Faster R-CNN as an Application for Object Detection of Scattered LEGO Pieces

Hiba Abderrazik1 , Jan van Gemert1 , Attila Lengyel1
1TU Delft

habderrazik@student.tudelft.nl, {j.c.vangemert, a.lengyel}@tudelft.nl

Abstract
The benchmarks for the accuracy of the best
performing object detectors to date are usually
based on homogeneous datasets, including ob-
jects such as vehicles, people, animals and foods.
This excludes a whole set of scenarios contain-
ing small, cluttered and rotated objects. This
paper selects a state-of-the-art object detection
model, Faster R-CNN, and investigates its per-
formance on several custom datasets of scattered
LEGO pieces. We discover that the model reaches
a high F1 score on data with images contain-
ing up to 13 bricks and that data manipulation,
such as cropping, can further improve this per-
formance. Furthermore, we evaluate how this
model can be optimized to perform better on a
more complex dataset, showing that tweaking the
Faster R-CNN RPN layer results in a higher F1

score for images containing up to 50 bricks. In
conclusion, tweaking the RPN layer allows the
Faster R-CNN model to reach high performance
on datasets containing cluttered images of small
LEGO bricks. All data is on the TU Delft server
and all code is available at https://gitlab.com/lego-
project-group/faster rcnn lego.git.

Keywords: Computer Vision, Object Detection, LEGO
recognition

1 Introduction
Object detection methods have reached high accuracies [17]
and are widely applied to different areas of work, but their
performance is still poor when applied to crowded images
with similar objects [11]. An instance of this could be an
image of a pile of LEGO pieces. This paper is partially
motivated by the struggles that many LEGO builders face,
like wading through piles of LEGO pieces for hours just to
find a missing piece, or worse, discovering the piece was not
even there to begin with. Essentially, this can be mapped to
a problem of object detection, i.e. identifying and localizing
a LEGO piece in a pile of different pieces. By solving this
problem of distinguishing between objects of similar colors,
shapes and sizes to localize a specific piece, we can create

a more robust framework for object detection that can be
applied to other fields as well. For example, in manufacturing
assembly lines where manual checking is still necessary to
ensure that all pieces are present, or finding someone in a
cluttered scene of people [19].

Current research on the use of object detection models
for automated LEGO recognition is limited. The most no-
table project that uses deep learning to recognize individual
pieces of LEGO is the ”LEGO sorter” built by Daniel West.
This sorter makes use of ResNet-50, a Convolutional Neural
Network (CNN) method for image classification [21]. Since
no work is done on localizing LEGO pieces in a scene of
multiple pieces there is no baseline for the performance of
object detection methods on similar data.

However, extensive work on the topic of object detec-
tion is present. A few years ago Regional Convolutional
Neural Networks (R-CNNs) were introduced as an improve-
ment to object detection methods using CNNs. R-CNN relies
on the assumption that only one single object of interest
will dominate in a given region. It combines CNN with the
principle of region proposals [7]. This is a two-stage process
where the first step is the generation of a set of possible object
locations and the second step classifies each location as a
fore- or background class using a CNN [16]. This framework
currently dominates when looking at the COCO benchmark
[17]. Most state-of-the-art object detectors rely on R-CNN.
Faster R-CNN combines the training of Regional Proposal
Networks (RPNs) and Fast R-CNN [6] to share convolutional
features, resulting in a low-cost region proposal computation
[23]. Mask R-CNN extends Faster R-CNN by creating masks
of regions of interest, allowing for alignment between input
and output images [8]. Feature Pyramid Networks (FPN)
can also be used by different R-CNN methods, introducing
a multi-scale pyramidal hierarchy to increase the robustness
of object detection on different scales [15]. Lastly, different
from the aforementioned two-stage models, YOLO (You
Only Look Once) is the state-of-the-art in single-stage object
detection, using a single CNN to both localize and classify
data [22].

This paper aims to measure and optimize the perfor-
mance of a state-of-the-art object detection model on scenes

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

Figure 1: Simple flowchart depicting the research structure.

with multiple LEGO pieces. The approach is two-fold:
firstly, a literature review will be conducted to analyze
different object detection methods, their features and how
they will potentially perform on the LEGO data. Secondly,
an experiment will be performed to measure and optimize
the performance of the aforementioned method, using the
PyTorch frameworks for object detection [1]. The following
questions are investigated:
• Which state of the art model in object detection is most

suitable to be applied to scattered LEGO scenes?
• What parameters of the data should be tweaked to im-

prove its performance on LEGO scenes?
• What parameters of the model should be tweaked to im-

prove its performance on LEGO scenes?
The main contributions of this research are a literature review
selecting an object detection method to apply to a new LEGO
dataset, a performance analysis of Faster R-CNN on this
dataset and optimizing the model for cluttered scenes of
small LEGO bricks (Figure 1).

The related work discusses and compares the state-of-
the-art object detection techniques and relates them to the
application specific to this paper, namely LEGO scenes and
the Faster R-CNN model and architecture are explained.
Subsequently the experimental setup is discussed. This
section specifies the methods of data collection, annotation
and preprocessing, explains the module, hyperparameters
and optimization technique used for the model implemen-
tation, and discusses evaluation methods of the experiment.
Furthermore, the reproducibility and ethics of the experiment
are reflected upon, followed by a display and discussion of
the results and the conclusion. This includes future work to
be done in testing and improving the performance of object
detection methods on LEGO scenes.

2 Related Work
To decide which model will give a desirable speed vs. accu-
racy trade-off for the LEGO dataset, the following sections
give a brief overview of the timeline of object detection his-
tory, which can roughly be divided in three groups.

2.1 Classic Object Detectors
Most early-day object detectors make use of the sliding
window paradigm, meaning that every region in an image
is considered as relevant and possibly containing an ob-
ject. Furthermore, there a few machine learning-based (or
pre-deep learning) approaches for calculating representative

features, which is step two of the object detection pipeline
(Figure 2).

Figure 2: The general object detection pipeline, retrieved from [5]

A noteworthy early implementation of object detection
is the Viola-Jones object detection framework using HAAR
features [27]. Dalal and Triggs were able to significantly
increase the performance of pedestrian detection by using
HOG (Histogram of Gradients) [3]. Additionally by taking
a dynamic programming approach to implement a cascade
classifier, object detectors reached a higher performance on
more object classes [4]. These methods are slow and are
not widely implemented anymore in present-day computer
vision tasks. However, soon a leap was taken towards a
more efficient and accurate method of object detection,
using deep learning-based approaches [7]. This meant that
typically CNN’s could be used to facilitate end-to-end object
detection, without having to specifically define features.

2.2 Two-stage Object Detectors
Two-stage detectors split up the detection process in two
parts. As introduced with selective search [26], the first
stage identifies candidate object locations while filtering out
as many irrelevant regions as possible. This means that the
model does not need to consider every single part of the im-
age in a sliding window manner anymore. The second stage
then classifies those regions into foreground or background
classes. The second stage saw a big improvement in accuracy
with the introduction of R-CNN. Leading methods in this do-
main of two-stage detectors include Fast R-CNN, Faster R-
CNN and Mask R-CNN, each one an extension of its prede-
cessor. Though a massive speed-up was achieved from the
aforementioned classic methods, these two separate stages
require the image to be ”looked” at twice by the algorithm.
One-stage detectors, described next, only require a sample
to be ”looked” at once by the algorithm, thus resulting in an
even bigger speed-up.

2.3 One-stage Object Detectors
SSD, YOLO and RetinaNet are prominent one-stage de-
tectors [16; 18; 22]. These methods are significantly faster
than Faster R-CNN for example, but score worse in terms
of accuracy. Furthermore, this work shows that two-stage
detectors such as Faster R-CNN can achieve similar speeds
by reducing the image resolution and number of region
proposals [9]. There are scenarios where one could wish to
trade accuracy for speed, but considering the new LEGO
dataset proposed in this paper and the complex attributes of
this dataset, the experiments will focus more on achievable
accuracy rather than speed.

In conclusion, related work shows that both classic and
one-stage object detectors respectively have a lower effi-
ciency and accuracy than desirable for the LEGO datasets.
Mask R-CNN, though an extension of and reaching a higher
accuracy than Faster R-CNN, is more costly to implement
because it requires and returns additional information,
namely object masks, that are not relevant to the first
iteration of this project. Therefore, Faster R-CNN is the ideal
trade-off when considering speed, accuracy, accessability
and understandability.

3 Faster R-CNN
To better understand Faster R-CNN in the context of the
following experiments, a short description will be given of
the working of the model.

As the name suggests, Faster R-CNN is the successor
of Fast R-CNN (Figure 3).

Figure 3: Fast R-CNN architecture [6].

Fast R-CNN uses a single CNN to extract features for the
entire image and also creates a set of RoIs (Region of Interest)
using selective search. The RoI layer is a special case of the
Spacial Pyramid Pooling (SPP) layer with only one pyramid
level. This pooling layer extracts fixed-length feature maps
from the features in every RoI. The Fully Connected (FC)
layer then produces two outputs, using softmax probability to
classify the object and a regressor to localize the object.

Figure 4: Faster R-CNN architecture [23].

The main improvement made by Faster R-CNN is that the
expensive selective search is replaced by a Region Proposal

Network (RPN) (Figure 4). RPNs make use of so-called
”anchor boxes” of different aspect ratios and sizes to go
over the image and create region proposals. The RPN
shares convolutional features with a CNN object detector,
performing binary classification to classify whether the
region in an anchor box contains an object or no object. This
method creates much less region proposals and with a higher
accuracy.

Although Faster R-CNN reaches top accuracy on the
COCO benchmark, the COCO dataset used to evaluate the
performance of object detectors has different properties than
scenes of scattered LEGO pieces [17]. Therefore, a high per-
formance on the COCO dataset might not be translatable to
an equally high or even sufficient performance on the LEGO
dataset. Faster R-CNN does not address challenges intro-
duced by small objects, cluttered arrangement and arbitrary
orientations. There are models that have modified the Faster
R-CNN framework to be suitable for small object detection,
however these are not tested well enough to be considered
reliable and to be recognized as ”state-of-the-art”. The
first experiments will start by comparing the performance
of a state-of-the-art method as recognized by the COCO
benchmark. Based on the evaluation of the performance of
Faster R-CNN, future experiments can be designed to test
the performance of modified Faster R-CNN models, models
built on the Faster R-CNN model (such as Mask R-CNN)
and even one-stage detectors such as YOLO or RetinaNet.

4 Experimental Evaluation of Faster R-CNN
The experiments designed to evaluate the performance of
Faster R-CNN on new datasets have several different phases.
The following sections provide insight into the dataset gener-
ation, data preprocessing, the model implementation and how
the performance was evaluated.

4.1 Data collection and annotation
To test the performance of object detection models on a new
dataset, said dataset first needs to be created. A set of param-
eters was set up in order to have more control over the data,
namely lighting, camera angle, background, quality and num-
ber of bricks in an image. Furthermore, we can distinguish
between three different types of data. The ”real” dataset,
consisting of manually taken pictures of LEGO bricks, the
synthetic dataset, consisting of rendered images containing
3D models of LEGO bricks and the so called ”cut and paste”
dataset, where pictures of individual bricks are cut out and
photoshopped over a background. These different methods
of data collection vary in efficiency and cost but give differ-
ent levels of control over the aforementioned parameters. The
time and cost constraints of this research did not allow for ro-
bust and generous collection of a real dataset. One of the
disadvantages of speeding up data collection was a repetitive
dataset, essentially choosing a large, angle-varied dataset over
smaller, brick-varied dataset (Figure 16).

Starting the experiment on synthetic data (rendered and
photoshopped) was more efficient with getting initial results,

Figure 5: Three separate images from the real dataset, showing the
same bricks from several angles.

since real data generation took longer to be ready, but it can
also aid in testing and verifying the results on real data. More
details about the conditions and methods of data collection
can be found in Dataset Generation Methods for Multi-Label
Images of LEGO Bricks [13].

The data annotation is again done using different meth-
ods, as described in Evaluating Methods for Improving
Crowdsourced Annotations of Images Containing Lego
Bricks. [20]. An annotations contains the name of the image
and for each object in this image its brick id (i.e. the label)
and the (x1, y1, x2, y2) coordinates representing its bounding
box.

4.2 Data preprocessing
There is not a lot of data preprocessing or augmentation de-
scribed in the original paper. Faster R-CNN is originally
trained and tested on images resized to 500 × 375, so all
LEGO images are first resized to 500× 375 before being fed
to the detector. Resizing the data also allows for a more effi-
cient training and testing process. Furthermore, the PyTorch
object detection model ensures that the data is normalized and
horizontally flipped for a more robust detector [1]. For ren-
dered data the bricks became extremely small due to a far
camera angle combined with the resizing, so for this dataset
the images were also cropped down to the bricks.

4.3 Faster R-CNN implementation
For the evaluation of an ”out-of-the-box” Faster R-CNN
model, as many hyperparameters as possible are set to match
the originally published values. An SGD optimizer is used
from the torch.optim package to reduce the loss. The loss is
essentially a penalty for a bad prediction, which has a differ-
ent value for different model parameters. The loss function
for Faster R-CNN combines both the losses from classifica-
tion (cls) and regression (reg) by comparing each predicted
classification label to its ground truth for each anchor, and
the same for each predicted bounding box. The function is
defined as

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i) +

λ

Nreg

∑
i

p∗iLreg(ti, t
∗
i)

(1)

,where pi, p∗i , ti and t∗i are the predicted probability
for anchor i being an object, the ground truth label, the
predicted bounding box coordinates and the ground truth
bounding box coordinates respectively. Ncls, Nbox and λ are
normalizing terms and a balancing parameter preset to 256,

2400 and 10, in line with the original paper.

Suppose we have a model parameter weight w1, Stochastic
Gradient Descent (SGD) computes a gradient at a specific
point of the loss curve over a single image from the dataset,
which can point us in the right direction for an optimal value
for w1. The size of the steps taken in that direction are
depicted by the learning rate (lr). Since SGD only uses a
batch size of one it is noisy, but also efficient. The lr was
set to 0.005 with a step size of 3, meaning that the lr is
decreased by 10× every three epochs. The momentum and
weight decay are set to 0.9 and 0.0005, again, matching the
parameter settings in the original Faster R-CNN model [23].

The torchvision.models.detection.fasterrcnn resnet50 fpn()
module is used for executing this experiment. This module
implements a Faster R-CNN model with ResNet-50-FPN as
the backbone, an image classifier using 50 layers. ResNet
(Residual Network) is similar to a plain CNN, but provides
shortcuts between layers. Essentially, if the output to a
certain layer matches the input of a couple layers further
ResNet skips over these to reduce the training cost but also
increase accuracy [14]. The FPN is a feature extractor which
creates feature maps at different scales and feeds them to
the RPN to create anchor boxes. The FPN makes the model
more robust against scale variation [10].

In training mode, the model expects two inputs, a list
of images in the format [number of color channels, height,
width] and a list of ”targets”, containing the information
for each image that we want to train on, i.e. bounding
boxes depicting the location of each object and labels
indicating the class of each object. During training the
classification and regression losses are returned (Equation
1). In evaluation mode the model takes an image as an
input and outputs a prediction for the image, contain-
ing the predicted bounding boxes and labels for each object
in the image as well as a confidence score for each prediction.

Additionally, instead of training the torchvision Faster
R-CNN model from scratch, we finetune the model from the
pretrained version, trained on the COCO dataset. By using
transfer learning one enables their custom model to inherit
knowledge from being trained on a large dataset (Figure 6).
This is especially beneficial for training and testing on small
custom datasets.

4.4 Scaling up and optimization
To test the performance of an existing object detection model
on a new dataset, especially one as complex as in the LEGO
use case, one must start with a simplified version of this
dataset, containing up to 13 bricks in this case. However,
considering that the use case is a situation where one is
looking for a specific brick in a pile of LEGO pieces, we also
performed the same experiment on a small dataset consisting
of 1,191 rendered images containing 50 bricks per image.

As well as looking at how changing the dataset to be
more complex influences the performance results, it is

Figure 6: The concept of transfer learning [12].

also interesting to see how changing the model itself can
change the results. Since the biggest difference between the
LEGO datasets and COCO dataset is the number and size
of objects in the images, which is the challenge addressed
in this research, tweaking the anchor box generator in the
RPN layer is expected to have the largest impact on the
performance of the Faster R-CNN model. The original paper
uses the aspect ratios 2:1, 1:1 and 1:2, which correspond to
the shapes of the LEGO objects in the images, but uses the
sizes (1282, 2562, 5122) pixels (Figure 7). The objects in the

Figure 7: Anchor box sizes and aspect ratios set in the original model
[23].

LEGO datasets can have areas down to 42 pixels, so if many
of these are cluttered in a small space they all fall within
one anchor box and RoI. By tweaking these parameters to
include smaller anchor boxes, the performance of Faster
R-CNN might improve on datasets with small objects.

4.5 Method of evaluation
For each dataset a train-val-test set approach will be used,
where the model will be trained on 80% of the data, vali-
dated on 10% of the data and tested on the remaining 10% of
the data. By looking at train and validation learning curves
we can see if the model is overfitting. Since the objectives
of object detection are localization and classification, both of
these tasks need to be taken into account when evaluating the
model. A common metric for evaluating the localization ac-
curacy is the Jaccard index, or Intersection over Union (IoU)
[25]. When considering two bounding boxes P (prediction)
andG (ground truth), the IoU can be determined with the for-
mula IoU = |P∩G|

|P∪G| , indicating how much of the area of P
overlaps with the area of G.
Evaluating the performance of the Faster R-CNN model on
the given datasets is done by looking at the following metrics.
• Precision P = TP

TP+FP

• Recall R = TP
TP+FN

• F1 score = 2 ∗ P∗R
P+R

Figure 8: Using the IoU metric to evaluate localization [24].

TP (True Positives) indicates the number of bricks success-
fully detected by the model. FP (False Positives) indicates
the number of non-brick objects that are falsely detected
as bricks and FN (False Negative) indicates the number
of bricks in the ground truth that the algorithm did not
detect. A prediction is only considered a TP if the IoU of
the bounding boxes is > 0.5 (localization) and the predicted
label for the object corresponds to the ground truth label
(classification). The precision score then tells us how the
model performed relative to how many object it detected
in total (decreases if FP increases) and recall indicates how
the model performed relative to the total amount of object it
should have recognized. The F1 score is the harmonic mean
of the previous two metrics.

The benefit of displaying both the precision and recall
separately instead of only the harmonic mean of the two is
that it allows one to determine if the model performs better
in one than the other. The F1 score is useful for seeing the
overall performance of the model in one glance.

Predictions are first filtered on their confidence scores.
Since the model predicts many bounding boxes for each
brick (Figure 9), the chance that one of them also has the
right label is higher, which can give a false indication of the
performance of the model. To filter out these coincidental
results, predictions are only taken into account if they have
a confidence score > 0.5, i.e. if the model is over 50% sure
that it has the correct prediction (Figure 10).

Figure 9: Before thresholding
the confidence scores on cut
and paste data.

Figure 10: After thresholding
the confidence scores on cut
and paste data.

5 Responsible Research
Throughout this project consistent effort was put in to ensure
the ethical integrity from the first experiment design all the
way through to processing the results of the experiment. The
following two sections address and reflect upon certain con-
cerns that came up during the project.

5.1 Ethical concerns
Data collection and annotation has been an ethically ambigu-
ous topic for a while. The data collection for this project
was done by a group of students (including myself) volun-
tarily taking, photoshopping and rendering images to create
a dataset that was sizeable enough for a first iteration of the
experiment. These images needed to be annotated however.
A quarter of these images was annotated by the aforemen-
tioned group of students, but due to heavy time constraints
the rest of the annotations were crowdsourced using Amazon
Mechanical Turk (MTurk). As discussed by Oltmans [20],
determining a minimum wage is hard, since it is unknown
where the anonymous workers live and if this is their main
source of income. Furthermore, the resources for this project
were scarce. MTurk workers do choose their ”tasks” how-
ever, which means that workers could volunteer to perform
our task and our annotations were obtained on a voluntary
basis.

5.2 Experimental reproducibility
The model used for this experiment is available as a TorchVi-
sion library and finetuning of the model was done according
to the Mask R-CNN finetuning tutorial by TorchVision [2].
Furthermore, both the code and datasets used in this paper
have been made public, as well as specifications for the condi-
tions under which the experiments were performed, enabling
the reproduction of these experiments and results.

6 Results and discussion
The experiments were performed on the HPC Cluster, using
two CPUs with 9GB memory and a GPU with CUDA 10.0
and CUDNN 7.4 to report the results. During training, a batch
size of 10 with 5 workers is used, with a batch size of 5 with
2 workers when validating and testing. The model is trained
for 20 epochs, since the F1 score did not increase with more
than 1.5% when training longer and training for longer than
20 epochs violated the time constraints of the Cluster. I.e. 20
epochs gave the best speed vs. accuracy trade-off.

Main experiments
The first experiments on the datasets are rather promising for
the cut and paste and real data, but the synthetic data has a
relatively low F1 score (Table 1).

Data size Precision Recall F1 Score
Rendered 5,000 58.69% 59.82% 59.25%
Rendered-Cropped 5,054 91.94% 96.14% 93.99%
Cut & Paste 10,000 89.38% 96.19% 92.66%
Real 3,062 81.99% 79.33% 80.64%

Table 1: Evaluation of Faster R-CNN on different datasets contain-
ing up to and including 13 bricks after training for 20 epochs

How can we improve the performance of Faster R-CNN on
rendered data?
The renders were made with a randomized camera posi-
tion to simulate as many real-life data situations as possi-
ble, which resulted in some zoomed out images which, after

down-sampling, contained bricks that were barely recogniz-
able, even to the human eye (Figure 11). There was a lot
of empty background space in these cases as well, so crop-
ping down to the bricks resulted in a more recognizable image
(Figure 12) and resulted in a higher F1 score.

Figure 11: A rendered image
after down-sampling.

Figure 12: A rendered im-
age after cropping down to the
bricks.

The significant increase in performance could be a product
of overfitting on the test set, but the rendered data actually
has a higher degree of variety in camera positions, brick
compositions, lighting and backgrounds than the real data, so
this is unlikely.

How does Faster R-CNN perform on the real data?
The real dataset is of significantly lesser quality than the
synthetic datasets, both in the uniqueness of the images and
the amount of available images. This dataset is therefore
prone to overfitting, which is slightly reflected in the gap
between training and validation losses in figure 13.

Figure 13: The train and validation learning curves for real data.

The gap is small however, and the recall for real data is lower
than expected considering the anticipated overfitting. Part of
this might be due to the fact that object detection not only
classifies but also localizes bricks. Although the real images
are shot in groups of three with the same bricks from different
angles (Figure 16) and it would be easy to overfit with the
classification, the bricks are in a different spot in every image.

How does Faster R-CNN perform on the cut and paste
data?
The cut and paste dataset is significantly larger than the
other ones, which partially explains the high F1 score, but
about half of the cut and paste data contains samples that
are ”easier” than the real data we initially wanted to test

the model on. In some cases the bricks are significantly
larger than in the real data, which allows for variety in
the dataset on one hand but on the other hand agrees with
the pretrained anchor boxes that are used to extract RoIs
better than smaller bricks (Figures 14, 16). Furthermore,
perfectly photoshopping a brick onto a background is nearly
impossible, so in some cases there is a white ”glow” around
the brick that distinguishes the brick from the background.
This visible difference between brick and background can
also be caused by inconsistencies in lighting between the
background and bricks. Bricks in these images are easier to
localize and classify, which can cause skewed results. It is
possible to create cut and paste data that is more similar to
the real data however, as shown in figures 15 and 16.

Figure 14: An im-
age from the cut and
paste dataset, show-
ing the inconsistency
with an image from
the real dataset.

Figure 15: An image
from the cut and
paste dataset, show-
ing the similarity
with an image from
the real dataset.

Figure 16: An image
from the real dataset.

Scaling up

Data size Precision Recall F1 Score
Rendered-50 bricks 1,191 73.64% 45.70% 56.40%
Rendered-50 bricks-new RPN 1,191 81.73% 64.82% 72.30%

Table 2: Evaluation of Faster R-CNN on a rendered datasets con-
taining up to and including 50 bricks per image after training for 20
epochs

How can we improve the performance of Faster R-CNN on
rendered data with up to and including 50 bricks?
When training and testing on renders containing up to 50
bricks we see a decent precision of 73.64%, but a low recall
of 45.70% (Table 2). This indicates that the model makes
less high-confidence predictions on this dataset, lowering the
amount of FP, thus increasing the precision, but at the same
time lowering the amount of TP, thus decreasing the recall
(Figure 17). When lowering the confidence score threshold
to 0.25, significantly more correct results are shown (Figure
18).

When increasing the number of bricks in an image, the
image becomes more cluttered than before when there were
a maximum of 13 bricks in an image. Since the anchor
generator in the RPN is pretrained on less cluttered samples
with larger samples, some bricks can end up in the same
anchor box in this case. After tweaking the RPN layer a
significant improvement is achieved. Modifying the RPN
layer to accommodate for a larger number of small and
cluttered bricks by having appropriately sized anchor boxes
resulted in a 15.9% increase of the F1 score. The recall went

Figure 17: Thresholding confi-
dence scores at 0.5.

Figure 18: Thresholding confi-
dence scores at 0.25.

from 45.70% to 64.82%.

This indicates that the previous datasets with less bricks per
image were too simple for the initial use case. The bricks
in those images were large and uncluttered enough for the
Faster R-CNN model to reach high performance while being
optimized for the COCO dataset.

7 Conclusions and Future Work
In this work we measured the performance of a state-of-the-
art object detection model on a custom dataset of scattered
LEGO pieces. This was done by acknowledging which
object detection model is most appropriate to test on the new
dataset and what parameters of the data and model should be
tweaked to improve the performance. Conducting a literature
review showed that Faster R-CNN gives the ideal accuracy
vs. speed trade-off for the dataset and resources available
during this research.

In conclusion, the cropped and rendered, cut and paste,
and real data reach an average F1 score of 90%, with real
data being the smallest and worst performing set. This high
performance with the original Faster R-CNN model is due
to inconsistencies in the dataset, as shown by easier cut and
paste images skewing the performance, and limited dataset
sizes. We can clearly see the effects of data manipulation
on these datasets, where a cropping of images to be more
visible had a significant impact on the performance. When
looking at samples in a dataset with 50 bricks, we notice a
significant drop in the F1 score. Modifying the RPN layer
to accommodate for a larger number of small and cluttered
bricks, by having appropriately sized anchor boxes resulted
in a 15.9% increase, indicating that the aforementioned
datasets were oversimplifications of the real use case.

This study can be extended in a few different ways.
Firstly, one can tweak the parameters of Faster R-CNN in
this experiment. Trying a less noisy optimizer function,
like Adam, and different lr combinations can improve the
performance of the model. Secondly, one can perform the
same experiment with different object detection models, like
Mask R-CNN, YOLO or RetinaNet, to see how they compare
to the baseline performance of Faster R-CNN. Thirdly, one
can perform the same experiment on a more complex dataset,
containing images with 50+ bricks, more occlusion, etc.

In all of these situations it holds that it is necessary to

create better datasets, both in terms of quality (variety and
realisticness) and quantity. Applying more complex data
augmentation for training, like noise, rotation and scaling,
will increase the robustness of the system.

References
[1] Torchvision models.
[2] Torchvision object detection finetuning tutorial.
[3] N. Dalal and B. Triggs. Histograms of oriented gradi-

ents for human detection. 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion (CVPR05), page 886–893, 2005.

[4] Pedro F. Felzenszwalb, Ross B. Girshick, and David
Mcallester. Cascade object detection with deformable
part models. 2010 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, page
2241–2248, 2010.

[5] Preferred Networks Follow. A brief history of object
detection / tommi kerola, Sep 2019.

[6] Ross Girshick. Fast r-cnn. 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), page
1440–1448, 2015.

[7] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In The IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), June 2014.

[8] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross
Girshick. Mask r-cnn. 2017 IEEE International Con-
ference on Computer Vision (ICCV), 2017.

[9] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong
Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer,
Zbigniew Wojna, Yang Song, Sergio Guadarrama, and
et al. Speed/accuracy trade-offs for modern convolu-
tional object detectors. 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[10] Jonathan Hui. Understanding feature pyramid networks
for object detection (fpn), Mar 2018.

[11] Jonathan Hui. Object detection: speed and accuracy
comparison (faster r-cnn, r-fcn, ssd, fpn, retinanet and
yolov3, Mar 2019.

[12] Integrate.ai. Transfer learning explained, Aug 2018.
[13] Berend Kam. Dataset generation methods for multi-

label images of lego bricks. 2020.
[14] Sihan Li, Jiantao Jiao, Yanjun Han, and Tsachy Weiss-

man. Demystifying resnet, 2016.
[15] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), page 936–944, 2017.

[16] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. Focal loss for dense object detection.

2017 IEEE International Conference on Computer Vi-
sion (ICCV), page 2980–2988, 2017.

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common ob-
jects in context. Computer Vision – ECCV 2014 Lecture
Notes in Computer Science, page 740–755, 2014.

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. Ssd: Single shot multibox detector. Computer Vi-
sion – ECCV 2016 Lecture Notes in Computer Science,
page 21–37, 2016.

[19] Anurag Mittal and Larry S. Davis. M2tracker: A multi-
view approach to segmenting and tracking people in a
cluttered scene. International Journal of Computer Vi-
sion, 51(3):189–203, 2003.

[20] Rembrandt Oltmans. Evaluating methods for improv-
ing crowdsourced annotations of images containing lego
bricks. 2020.

[21] Katyanna Quach. You looking for an ai project?
you love lego? look no further than this reg reader’s
machine-learning lego sorter, Dec 2019.

[22] Joseph Redmon and Ali Farhadi. Yolo9000: Better,
faster, stronger. 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), page 7263–7271,
2017.

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
39(6):1137–1149, 2017.

[24] Adrian Rosebrock. Intersection over union (iou) for ob-
ject detection, Nov 2016.

[25] Stephanie. Jaccard index / similarity coefficient, Aug
2019.

[26] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers,
and A. W. M. Smeulders. Selective search for object
recognition. International Journal of Computer Vision,
104(2):154–171, Feb 2013.

[27] P. Viola and M. Jones. Rapid object detection using
a boosted cascade of simple features. Proceedings of
the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. CVPR 2001, page
511–518, 2001.

	Introduction
	Related Work
	Classic Object Detectors
	Two-stage Object Detectors
	One-stage Object Detectors

	Faster R-CNN
	Experimental Evaluation of Faster R-CNN
	Data collection and annotation
	Data preprocessing
	Faster R-CNN implementation
	Scaling up and optimization
	Method of evaluation

	Responsible Research
	Ethical concerns
	Experimental reproducibility

	Results and discussion
	Main experiments
	Scaling up

	Conclusions and Future Work

