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Biased-MPPI: Informing Sampling-Based Model
Predictive Control by Fusing Ancillary Controllers

Elia Trevisan

Abstract—Motion planning for autonomous robots in dynamic
environments poses numerous challenges due to uncertainties in
the robot’s dynamics and interaction with other agents. Sampling-
based MPC approaches, such as Model Predictive Path Integral
(MPPI) control, have shown promise in addressing these complex
motion planning problems. However, the performance of MPPI
relies heavily on the choice of sampling distribution. Existing litera-
ture often uses the previously computed input sequence as the mean
of a Gaussian distribution for sampling, leading to potential failures
and local minima. We propose a novel derivation of MPPI that
allows for arbitrary sampling distributions to enhance efficiency,
robustness, and convergence while alleviating the problem of lo-
cal minima. We present an efficient importance sampling scheme
that combines classical and learning-based ancillary controllers
simultaneously, resulting in more informative sampling and control
fusion. Several simulated and real-world demonstrate the validity
of our approach.

Index Terms—Motion and path planning, optimization and
optimal control, collision avoidance, sampling-based MPC, MPPI.

1. INTRODUCTION

AVIGATING autonomous robots through dense and dy-
N namic environments poses a formidable challenge due
to significant uncertainties, including the robot’s state, model,
environmental conditions, and interactions with other agents.
Achieving desired behaviors under such conditions often neces-
sitates using intricate cost functions and constraints, resulting
in complex, nonlinear, non-convex, and occasionally discontin-
uous problem formulations. The dynamic nature of the environ-
ment introduces potential unexpected changes, demanding rapid
adaptability in the robot’s actions.

To address these challenges, one approach is to cast the
problem in a stochastic optimal control setting, where they can
be mathematically represented as stochastic Hamilton-Jacobi-
Bellman (HJB) equations. However, solving these equations
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numerically can be challenging due to the curse of dimension-
ality. Pioneering work demonstrated that the stochastic HIB
equations can be linearized for control-affine systems, and their
solution can be approximated through sampling using the path
integral formulation [1]. Implemented in a receding horizon
fashion, Model Predictive Path Integral (MPPI) control [2], [3],
and its Information-Theoretic counterpart [4], [5] have been
initially used for racing a small-scale rally car. MPPI has also
been successfully applied to several other planning problems,
such as for autonomous vehicles with dynamic obstacles [6],
solving games [7], flying drones in partially observable envi-
ronments [8], performing complex maneuvers [9] and used in
combination with adaptive control schemes [10]. It has also
been adapted to multi-agent systems for formation flying [11],
cooperative behavior [12], and simultaneous prediction and
planning [13]. Furthermore, MPPI has shown promise in ma-
nipulating objects with robot arms [14] including model uncer-
tainties [15], in pushing tasks [16], [17] and planning motion
for four-legged walking robots [18]. MPPI is a model-based
approach that requires a model to forward simulate trajectories
given sampled inputs. Recent work has utilized physics engines
to simulate samples [19], [20], eliminating the need for explicitly
defining the dynamics of agents and the environment, thus
providing a significant advantage in contact-rich manipulation
tasks.

One of the critical challenges in applying MPPI to dynamic
environments is ensuring the algorithm’s performance and re-
liability. The success of MPPI heavily relies on the choice of
sampling distribution, which is crucial, especially in real-time
scenarios. Most existing literature uses the previously computed
input sequence as the mean of a Gaussian distribution for
sampling [2]. However, using the previous input sequence may
trap the algorithm in local minima and can lead to catastrophic
failures in the presence of unexpected disturbances or changes in
the environment [21] (Fig. 1). This letter explores the application
of MPPI in dynamic environments, emphasizing the need to
improve its performance and reliability in the face of unexpected
disturbances and rapidly changing conditions.

A. Previous Work

Several works tried to make the method more efficient or more
robust. Early work [22] proposed using Expectation Propagation
instead of Monte Carlo sampling, demonstrating better effi-
ciency in scenarios with hard constraints. Other works instead
accelerate the convergence of MPPI by leveraging gradient
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Fig. 1. Top: Usually, MPPI only takes samples around a previous plan. Here,
the environment changes unexpectedly, and all the sampled trajectories are in
collision, which leads to computing a new plan that also collides. Bottom: Our
biased-MPPI adds ancillary controllers to the sampling distribution, quickly
converging to a collision avoidance maneuver.

descent updates [23]. Another option to be more reactive to
environmental changes is to iteratively converge to a solution
through adaptive importance sampling [24]. This, however,
requires multiple iterations between each planning time step,
diminishing the parallelizability of MPPI. Many other works
propose improving the algorithm’s convergence by somehow
changing its sampling distribution. This can be done by substitut-
ing the Gaussian used for sampling with a different hand-crafted
distribution [25] or by directly learning a distribution from
data [26], [27]. Given that MPPI allows for tuning the variance of
the sampling distribution [3], some works sought to improve the
efficiency of the scheme by adapting the covariance online via
covariance steering [28], [29]. Other ways to improve efficiency
can be to fit splines to the sampled inputs [ 14] or to constrain the
distribution to sample areas that are known to contain low-cost
trajectories [18]. Previous works have also experimented with
ancillary controllers. In [30], authors propose to sample inputs
around a path previously computed by RRT. Other works in-
stead robustify MPPI by switching to an iLQG controller [21]
or by integrating one into the system’s model [31]. Previous
work also compares an MPPI that samples around a previously
computed input, an input sequence computed by a sequential
linear-quadratic MPC, and a learned sampling policy [18]. In
general, however, the original derivations of MPPI [5] only allow
samples to be drawn from a uni-modal Gaussian distribution,
usually centered around the previous control sequence, which
can hamper performance and reduce reactivity to unexpected
changes in the environment.

B. Contributions

We propose a Biased-MPPI, for which we provide mathemat-
ical derivations that allow for arbitrary changes to the sampling
distribution. We discuss the impact of introducing biases in the
sampling distribution on the overall method. We experiment
with an importance sampler that utilizes multiple classical and
learning-based ancillary controllers simultaneously to take more
informative samples, which can be seen as a control fusion
scheme. Through simulated and real-world experiments, we
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demonstrate the impact of taking suggestions from several un-
derlying controllers on robustness to model uncertainties and
local minima, reactivity to unexpected events, and sampling
efficiency.

II. PRELIMINARIES

In this section, we provide a concise introduction to the key
concepts of MPPI within the Information-Theoretic framework.
For more details, we direct the reader to prior research [S5]. We
begin by defining a function:

F(S,P,20,4) = —Alog <]EP {exp <is<v>)]> (1)

which we will denote as the free energy of the system. Here,
V' represents a sequence of inputs, P is a base measure, A is a
tuning parameter, S(V/) is a cost, and x represents the system’s
initial state. It can be shown that:

F(S, P, z0,1) < Eg[S(V)] + AKL(Q|[P). 2)

Here, QQ represents a probability measure that characterizes the
controlled input distribution, and KL(Q||P) denotes the KL-
Divergence between the base measure and the controlled mea-
sure. Equation (2) signifies that the free energy serves as a lower
bound for the expected cost under the controlled distribution
plus a control cost represented by the KL-Divergence. Hence,
determining a control distribution that achieves this lower bound
minimizes the expected cost and control cost. We can define a
control distribution Q* through its Radon-Nikodym derivative
to the base measure:

dQ _ exp(~LS(V))
P~ Exlexp(—LS(V))]

Substituting Q with Q* in (2), we can prove that Q* is an optimal
control distribution in the sense that it achieves the lower bound.
The idea is now to align our control distribution Q with the
optimal distribution Q* though KL minimization, which results
in the optimal input sequence U*:

U™ = arg min, KL(Q"||Q). 4)
Now, considering a discrete-time system:
Vg ~ N(Ut, E) (5)

Here, x; € R™ represents the state vector at time step ¢, F'(-) is
the state transition model, v; € R™ denotes the noisy input, u; €
R™ is the commanded input, and > corresponds to the natural
input variance of the system. If I’ and Q are the uncontrolled and
controlled measures, respectively, we can define them through
their probability density functions:

3)

Ty = F(xg,v1),

T-1
1 Tx—1
w0~ I e o (-2:757)
(VIU) = H

(27) m|2| 1/2

X exp (-é(w ) TS (- ut)) .
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It can be proven from (4) that the optimal control input at time
t is the mean input under the optimal distribution:

@zéqmmwv ®)

We can estimate such mean sampling from our controlled dis-
tribution via importance sampling:

= / qﬁ%}) (VU0 dV

= Eqlw(V)u, )

with the importance sampling weight w (V) being:
<= (i) = (i) (o)
A
2

1 1
= 77] exp (_)\, (S(V) + U?271Ut + 2u?216t>> .

T-1

t=0
(®)
We can, therefore, sample K noisy input sequences:
vk = [vé,v’f,...,vf,...,v%{]
oF ~ N(ug, X) )

where ¢ is a time step and T’ is the planning horizon. A practical
choice often made in MPPI is to take u; as a time-shifted version
of the previously computed approximation of the optimal control
sequence. We roll out the sampled V'* into state trajectories using
the system’s model F'(-), evaluate their cost S(V'), compute the
weights w(V), get a new estimate of the optimal input sequence
U* via (7) and iterate. In (8), the control cost is multiplied and
divided by A. Not having control over the magnitude of the
terms at the exponential can cause numerical issues. A change
of base measure P can solve the problem [5]. One might also
need a higher variance X, for sampling compared to the natural
variance of the system X [32]. This again introduces terms at
the exponential independent from A. Moreover, introducing an
arbitrary, potentially multi-modal sampling distribution Q; is
difficult. All these issues stem from the ratio p(v)/q(V|U) in
(8). Our approach addresses this by showing that accepting a
bias in the solution can eliminate the ratio and allow for arbitrary
sampling distributions.

III. PROPOSED APPROACH
A. Biased-MPPI

Let us first redefine the cost function as:

S(V) = S(V) + Alog (p(v) ) . (10)

qs(V)
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We then define the free-energy with this new cost:

F(S,P,x0,1) = —rlog <]EP {e"p (_ig(v))D
—1log (E@ {exp <_)1LS(V)> ZE“QD

oo (L0 23] -

IN

(1)

where, as in [5], we applied Jensen’s inequality. We can simplify
the right-hand side as follows:

i s ()

o ) o )
— Eq [S(V)] + AEg {log ( p(V) q(V) )]

a5(V) p(V)
= Eq [S(V)] 4+ AKIL(Q||Qs)-
The free energy inequality is then:
F(S,P,20,4) < Eq [S(V)] + AKL(Q[|Qs)-

12)

Thus, while we start with S(V'), the free energy serves as a
lower bound for the expected original cost S(V') under the
controlled distribution plus lambda times the KL-Divergence
between the controlled and sampling distribution. An optimal
control distribution achieving the lower bound would minimize
the original cost S(V') while pushing the controlled distribution
to align with the sampling distribution, effectively introducing
a bias toward the sampling distribution. We define a controlled
distribution Q* as:

dQ* _ exp(—35(V))
dP Eplexp(—3S(V))]
Under QQ*, the KL-Divergence becomes:

KL(Q"[|Qs) = Eg- {log (ZEQH

e (S5 )|+ Pos (257
= —Eq [S(V)] - 1o (EP {exp <_is (V))D

*@%(i%%>}

Substituting into (12) and simplifying leads to:

F(S,P,x0,) < —2log <EP [exp <_iS(V)>D

= F(S,P, zo, 1).

This proves that Q* is the optimal distribution in that it achieves
the lower bound in (12). Following the steps in [5], we can align
our controlled distribution Q to Q* as in (6), except we can now
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use our sampling distribution:
u; = Eq,[w(V)vr], (13)

with importance sampling weights:

w(V) = %exp HSW)) <p<V> )

qs(V)

n py
<o (s (2175
! (14)

Note that our change of cost (10) resulted in the optimal control
being biased towards the sampling distribution, as shown in (12).
However, this simplified the weights w(V") and allowed us to
design arbitrary sampling distributions Q. In [5], S(V') was
defined as the state-dependent cost. However, this restriction
was made to relate the approach to path integral control [1].
Such relation was only shown exactly when P is the distribution
induced by an uncontrolled continuous-time control-affine sys-
tem. This restriction is not required in the Information-Theoretic
framework, which allows for a larger class of systems, and one
can add input costs in S(V).

B. Sampling From Ancillary Controllers

There are several ways one could design an arbitrary sampling
distribution. This letter focuses on taking most samples around a
previously computed input distribution and some samples from
hand-crafted policies.

In particular, we design a set of task-specific ancillary con-
trollers, these being, e.g., open-loop motion primitives, refer-
ence tracking feedback controllers, or learning-based strategies
to propose .J input sequences U7 = [uf, uf, ..., uj,. .., u}p ].
These ancillary controllers are described for each experiment
in Sections IV and V. We then choose the K sampled input
sequences V¥ as,

ifk <J

k_
Vs = ifk > J,

S

5)

U7, withj =k
V¥, asin (9)

meaning that, at each time step, we take one sample from each
of the J ancillary controllers, and the remaining ' — J samples
are taken according to the classical MPPI strategy.

C. Autotuning the Inverse Temperature

As in [20] and similarly to [18], we autotune the inverse
temperature A online based on the normalization factor 7).

0.9A; 1f77 > Tmax
12)\.[» 1f7] < Nmin
At otherwise

(16)

A1 =

In all experiments, this can roughly keep the number of samples
with a significant weight between 7, and 7 ax.-

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 6, JUNE 2024

\/

S}

Fig.2. Left,Quanser Qube-Servo, and right, its diagram. The arm’s rotation, 6,
is the actuated angle. The angle between the pendulum and the upright position,
«, is not actuated.

IV. ILLUSTRATIVE EXPERIMENT

We apply our Biased-MPPI to a rotary inverted pendulum [33]
(Fig. 2) in simulation to visualize its main features.

A. Swing-Up and Tracking

Starting at the bottom equilibrium with 8y = 0 and o9 = 7,
the task is to swing up the pendulum to «,, = 0 while keeping
the arm close to 6, = 1. Thus, the running cost is:

Cp(x(t)) = 100((0; — 0,)2 + (s — an)?) + 6 + 26,

)
The system has dynamics z(t + 1) = F(x(t), u(t)), where
the state of the system at time-step ¢ is denoted as x(t) =
(04, v, 0,, ay], and u represents the system’s input. The non-
linear model is derived from the Lagrange equations. To design
linear controllers, the model is linearized at the top equilibrium
using Euler-Lagrange’s method [34]. To showcase resilience
against model uncertainties, the parameters of the simulation’s
pendulum model are multiplied by 1 4 7 in each experiment,
where v ~ N(0,0.05). The seed is consistent across methods.
The system is dicretized and controllers run at 50 Hz, the con-
troller plans Ty = 50 steps ahead (1 s), covariance >3 = 0.5,
Tlmin = 2 and Thmax = D.

1) Ancillary Controllers: We design three ancillary con-
trollers as a baseline and to guide the sampling strategy.

a) A linear quadratic regulator (LQOR): designed using the
lgr command in Matlab, stabilizes the pendulum at the top
equilibrium.

b) A linear quadratic integral (LQI): tracks the reference
0,- while maintaining the pendulum at the top equilibrium. It is
synthesized with the 1gi command in Matlab.

c) A nonlinear energy-based controller (EBC): is designed
as in [34] to swing up the pendulum to the top equilibrium by
increasing the potential energy of the system [35].

2) Switching Controller: We introduce as baseline a switch-
ing strategy (18) that combines all ancillary controllers. It swings
up the pendulum using the input from the ECB, .., until « is
within aeqten, = 0.2 of the top equilibrium. The LQR controller,
with w4, then stabilizes the pendulum. Once the pendulum
is close to the top equilibrium (ay,qcr = 0.05) with angular
velocity below cvyyqcr; = 0.1rad/s, the LQI, with w5, is engaged
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Input and state evolution during a pendulum experiment with Biased-MPPI. We show the samples taken and the resulting planned input sequence over

the planning horizon for three instances. While we sample all ancillary controllers in each instance, we highlight the one with the most influence on the planned

input sequence.
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Fig. 4. Total cost and control effort over 50 pendulum swing-ups with ran-

domized model parameters.

for reference tracking.

Ulqiy if (|CY‘ < atrack) n (‘04| < dtrack:)
u = Ulqr, if (|Oé| < acatch) (18)
Uepe, Otherwise

3) Results: Fig.3 depicts a pendulum experiment’s input and
state evolution with Biased-MPPI, also showcasing the samples
taken and the ancillary controllers’ influence on the plan. At
the beginning of the experiment, ECB rapidly swings up the
pendulum, heavily influencing Biased-MPPI’s planned input.
Once near equilibrium, LQR provides a stabilizing sequence,
closely tracked by Biased-MPPI. As stability is achieved, LQI
suggests an input sequence swiftly bringing the arm towards
the reference, albeit with high velocities. Hence, Biased-MPPI,
while influenced by LQI, opts for a lower amplitude input
sequence due to cost function (17).

Fig. 4 displays the distribution of total costs, defined
as S.1ont Cp(x(t)) where T.,q =250 (5s) is the end of
the episode and the distribution of total efforts, defined as
Zt end lu(t)], across 50 experiments. Biased-MPPI consistently
outperforms both the switching strategy and the classic MPPI,

regardless of the number of samples used. Moreover, the results
indicate that including ancillary controllers in the proposed
Biased-MPPI vastly improves the sampling efficiency, requir-
ing fewer samples for better performance and enhancing the
algorithm’s robustness to model uncertainties.

V. SIMULATED MOTION PLANNING EXPERIMENTS

Interaction-Aware (IA) MPPI [13] is a decentralized
communication-free motion planning method that predicts
short-term goals of other agents with a constant velocity model
and, under homogeneity and rationality assumptions, each agent
simultaneously plans and predicts motions for all agents. In
its cost function, IA-MPPI encourages adherence to navigation
rules, such as giving the right-of-way to agents from the right
and preferring the right-hand side during head-on encounters.
We will investigate the effects of biasing its sampling scheme
with ancillary controllers. The agents are vessels modeled using
Roboat’s model [36]. Controllers run at 10 H z, plan T = 100
steps ahead (10 s), with X3 = diag(6,6,0.12,0.12), 9min = 5
and Npax = 10.

A. Solving an Intersection

Anissue that can arise with classical MPPI formulation, which
only takes samples around what was previously considered to
be optimal, is the difficulty, once in one, of jumping out of
local minima. This is particularly evident in IA-MPPI, especially
in a crossing scenario. In this experiment, depicted in Fig. 5,
two identical vessels start with zero velocity and have to cross
each other’s paths. In their cost function, described in previous
work [13], the decentralized and communication-free IA-MPPI
is encouraged to get each of the vessels across the intersection
while being penalized for not yielding to the agent coming from
the right-hand side.

1) Ancillary Controllers: To help switch out of local minima
and improve sampling efficiency, four ancillary controllers are
sampled using the proposed Biased-MPPI.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2024 at 12:48:11 UTC from IEEE Xplore. Restrictions apply.
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(b) Using the proposed Biased-IA-MPPI, the orange agent gives way to the blue agent as soon as it is clear that both agents want to cross.

Fig. 5.

Two vessels cross each other’s path while penalized when not giving the right-of-way to agents coming from their right. The large circles are the agents’

true local goals extracted from a global path. IA-MPPI is decentralized and communication-free, so the small dots are the goals vessels estimate of one another
using constant velocity. The trajectories in blue are those the blue agent has planned for itself and predicted for the other, and the same goes for the orange agent.

a) Go-slow: a sequence of inputs commanding a small
amount of thrust to the vessel’s side thrusters.

b) Go-fast: commands a large thrust.

c) Braking: gives a zero velocity reference.

d) Go-to-goal: computes a velocity reference that takes each
vessel towards its corresponding local goal at each time step of
the planning horizon.

The velocity references proposed by the Braking and Go-to-
Goal maneuvers are converted to input thrusts with a linear H,
controller, which is robust to model non-linearities, designed
using the musyn command in Matlab.

2) Results: With an initial velocity of zero, each agent antic-
ipates an unobstructed intersection crossing. This expectation
is based on a constant velocity prediction, as they assume the
opposing agent will remain stationary. In Fig. 5(a), the classic
IA-MPPI fails to switch from planning to cross first to a slower
maneuver that yields since all of the samples are taken around
the previous plan, leading to a collision. In Fig. 5(b), our Biased-
IA-MPPI approach can swiftly switch between modes when it
becomes evident that the vessel with the right-of-way will cross
the intersection.

In Table I, we see that in 50 experiments, our Biased-IA-
MPPI achieves zero collisions and rule violations for any number
of samples, compared to the IA-MPPI based on the classical
MPPI sampling scheme, which results in several. Thanks to the
ancillary controllers, our Biased-IA-MPPI also travels straight
to the goal, reducing the distance traveled. While our Biased-
IA-MPPI has a lower variance in arrival times, it is not always
faster on average. This confirms the results proved in (12), i.e. the
Braking and Go-Slow maneuvers are biasing towards a slower
trajectory.

B. Interaction-Aware Planning With Four Vessels

To further test Biased-IA-MPPI, we run 50 experiments with
randomized initial conditions and goals, where four agents have

TABLE I
RESULTS OF 50 CROSSINGS FOR AN INCREASING NUMBER OF SAMPLES K

Experiments  Average Average

K Method Collisions With Rule Time to Distance
Violations  Arrival [s] Traveled [m]
o [A-MPPI 4 9 16.41 + 10.10 21.89 + 8.433
' Biased-IA-MPPI 0 0 17.64 + 3.128 19.13 + 2.466
o IA-MPPI 10 4 12.77 £ 9.323 19.99 + 10.16
& Biased-IA-MPPI 0 0 12.66 + 1.902 18.07 + 2.012
o IA-MPPI 7 11 11.02 + 2.731 18.70 4+ 3.518
@ Biased-IA-MPPI 0 0 11.43 + 1.541 17.58 + 1.880
S IA-MPPI 10 15 11.78 £ 3.823 19.31 + 3.539
< Biased-IA-MPPI 0 0 11.00 + 1.309 17.35 + 1.625
S IA-MPPI 7 15 11.10 £ 4.101 19.72 + 5.038
S Biased-IA-MPPI 0 0 10.68 + 1.24517.27 + 1.716

Metrics are reported for successful runs.

Fig. 6.
website.

Four agents navigating in the Herengracht. Video available on paper’s

to navigate in cooperation in the Herengracht, an urban canal
in Amsterdam, challenging due to its narrow sections under two
bridges. The canal map and an example of successful navigation
are shown in Fig. 6.

1) Ancillary Controllers: We use all of the ancillary con-
trollers described in Section V-Al. Additionally, we use a
learning-based trajectory prediction model adapted and trained
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TABLE II
RESULTS FOR 50 RUNS OF FOUR-AGENT EXPERIMENTS IN THE HERENGRACHT
WITH RANDOMIZED INITIAL CONDITIONS AND GOALS FOR AN INCREASING
NUMBER OF SAMPLES K

Experiments

K Method Successes Deadlocks Collisions With Rule
Violations

o I[A-MPPI 34 0 16 22

' Biased-IA-MPPI 40 10 0 18

=) TIA-MPPI 43 1 6 34

& Biased-IA-MPPI 46 1 3 28

o IA-MPPI 47 0 3 36

# Biased-TA-MPPI 49 0 1 35

S TA-MPPI 45 0 5 36

S Biased-IA-MPPI 50 0 0 33

S IA-MPPI 47 0 3 36

& Biased-IA-MPPI 49 0 1 34

for urban vessels [37]. However, we do not use this model for
predictions. We track the trajectories it provides with an H.,
controller to generate input sequences, which Biased-MPPI can
consider in its sampling scheme.

2) Results: In Table II, results from 50 experiments show
that with 50 samples, our Biased-IA-MPPI is cautious, leading
to 10 deadlocks, possibly biased by the Braking maneuver.
In contrast, the conventional IA-MPPI approach, without the
ancillary controller, results in 16 collisions.

As the number of samples increases, the bias from the ancil-
lary controllers diminishes, causing Biased-IA-MPPI to behave
less conservatively. Consequently, the number of deadlocks
approaches zero, but a few collisions may occur. With both
methods, over half of the successful experiments incur at least a
rule violation. In these crowded scenes, violations are common,
e.g., not stopping to yield to an agent with priority when it
is still relatively far away. Still, in both collision counts and
the number of experiments resulting in rule violations, our
Biased-IA-MPPI consistently outperforms IA-MPPI using the
traditional sampling method.

Fig. 7 displays both methods’ quartiles, min, max, and outliers
of successful experiments. The ancillary controllers direct the
sampling distribution towards lower-cost areas of the state space,
significantly reducing travel distances. Despite this, as predicted
by (12), Biased-IA-MPPI also exhibits a bias towards slightly
slower movement due to “Braking” and “Go-Slow” maneuvers,
resulting in similar travel times as the regular IA-MPPI.

VI. REAL-WORLD MOTION PLANNING EXPERIMENT

A Clearpath Jackal robot attempts to drive to a goal as fast
as possible (~ 2 m/s) while avoiding a box. Halfway through,
the box is thrown in front of the robot. The position and the
velocity of the box and the robot are estimated using information
from a motion capture system. The velocity-controlled robot
is modeled as a unicycle, and the box’s position is propagated
through the planning horizon using a constant velocity model.
The cost function is defined as,

Ci(@(t)) = llpe.r = pgll +100([[pt.r — prpll < 0.5)  (19)

5877
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Fig. 7. Agents’ traveled distance and travel time over 50 experiments in the

Herengracht. Metrics are reported for experiments that were successful with
both methods.

Fig. 8. Visualized are the top 50 sampled trajectories, color-graded by their
cost. (a) Classic MPPI is about to crash. (b) Our Biased-MPPI avoids collision.
Video and code are available on paper’s website.

where p; ., pgy and p; ;, are the position of the robot, the goal, and
the box, respectively, at time ¢. Controllers run at 10 Hz, plan
Ty = 50 steps ahead (5 s), with K = 300 samples, covariance
Y = 0.5+ Iox2, Nmin = b and Nyax = 10.

1) Ancillary Controllers: We sample a Braking maneuver,
i.e., a zero velocity reference throughout the horizon.

2) Results: Fig. 8 shows the top 50 sampled trajectories
sampled by (a), MPPI, and (b), our proposed Biased-MPPI.
When the box is unexpectedly thrown in front of the robot, MPPI
only samples trajectories that collide with the box. Given the
cost function, MPPI prefers the samples that remain in collision
for the least time. On the other hand, sampling also a zero
velocity reference, Biased-MPPI quickly converges to a braking
maneuver, avoiding the collision altogether. MPPI resulted in six
collisions over ten experiments, while Biased-MPPI resulted in
none.

VII. CONCLUSION

In this letter, we have derived a sampling scheme for Model
Predictive Path Integral (MPPI) control that removes compu-
tationally problematic terms and allows for the design of arbi-
trary sampling distributions as long as a bias in the solution
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is allowed. We proposed using classical and learning-based
ancillary controllers for several control and motion planning
experiments to bias the sampling distribution and achieve more
efficient sampling and better performances. We demonstrated
how the proposed algorithm can act as a control fusion scheme,
taking suggestions from an arbitrary number of controllers and
improving upon them. The resulting Biased-MPPI was shown
to be better performing and more robust to model uncertainties
compared to classical controllers and the baseline MPPI method,
achieving faster swing-ups for a rotational inverted pendulum as
well as safer, closer to optimal trajectories in interaction-aware
motion planning experiments in constrained multi-agent envi-
ronments, all while requiring less samples. The overall gains in
safety, performance, and sample efficiency come at the expense
of a potentially harmful bias, as shown with the sampling of
Braking and Go-Slow maneuvers, which can result in slower
trajectories. In the future, our approach could be employed as a
potential solution to complex multi-modal problems. For exam-
ple, a higher-level task planner could propose several ancillary
controllers and alternative plans to be sampled to achieve global
solutions.

REFERENCES

[1] H. J. Kappen, “Path integrals and symmetry breaking for optimal con-
trol theory,” J. Stat. Mechanics: Theory Experiment, vol. 2005, no. 11,
pp. 205-229, Nov. 2005.

[2] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in Proc.
1EEE Int. Conf. Robot. Automat., 2016, pp. 1433-1440.

[3] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive path
integral control: From theory to parallel computation,” J. Guid., Control,
Dyn., vol. 40, no. 2, pp. 344-357, Feb. 2017.

[4] G. Williams et al., “Information theoretic MPC for model-based rein-
forcement learning,” in Proc. IEEE Int. Conf. Robot. Automat., 2017,
pp. 1714-1721.

[5] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and 1. A. Theodorou,
“Information-theoretic model predictive control: Theory and applications
to autonomous driving,” IEEE Trans. Robot., vol. 34,no. 6, pp. 1603-1622,
Dec. 2018.

[6] D. Pérez-Morales and V. Fremont, “Information-theoretic sensor-based
predictive control for autonomous vehicle navigation: A proof of concept,”
in Proc. IEEE Int. Intell. Transp. Syst. Conf., 2021, pp. 879-884.

[7]1 G. Williams, B. Goldfain, P. Drews, J. M. Rehg, and E. A. Theodorou,
“Best response model predictive control for agile interactions between
autonomous ground vehicles,” in Proc. IEEE Int. Conf. Robot. Automat.,
2018, pp. 2403-2410.

[8] I.S.Mohamed, G. Allibert, and P. Martinet, “Model predictive path integral
control framework for partially observable navigation: A quadrotor case
study,” in Proc. 16th Int. Conf. Control, Automat., Robot. Vis., 2020,
pp. 196-203.

[9] J. Pravitra, E. A. Theodorou, and E. N. Johnson, “Flying complex ma-

neuvers with model predictive path integral control,” in Proc. Amer. Inst.

Aeronaut. Astronaut. Scitech Forum, 2021, pp. 1-12.

J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan, and E. A.

Theodorou, “L1-Adaptive MPPI architecture for robust and agile control

of multirotors,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,

pp. 7661-7666.

V. Gémez, S. Thijssen, A. Symington, S. Hailes, and H. J. Kappen,

“Real-time stochastic optimal control for multi-agent quadrotor systems,”

in Proc. Int. Conf. Automated Plan. Scheduling, 2016, pp. 468-476.

N. Wan, A. Gahlawat, N. Hovakimyan, E. A. Theodorou, and P. G.

Voulgaris, “Cooperative path integral control for stochastic multi-agent

systems,” in Proc. Amer. Control Conf., 2021, pp. 1262-1267.

L. Streichenberg, E. Trevisan, J. J. Chung, R. Siegwart, and J. Alonso-

Mora, “Multi-agent path integral control for interaction-aware motion

planning in urban canals,” in Proc. IEEE Int. Conf. Robot. Automat., 2023,

pp. 1379-1385.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 6, JUNE 2024

M. Bhardwaj etal., “STORM: An integrated framework for fast joint-space
model-predictive control for reactive manipulation,” in Proc. 5th Annu.
Conf. Robot Learn., 2021, pp. 750-759.

I. Abraham, A. Handa, N. Ratliff, K. Lowrey, T. D. Murphey, and D.
Fox, “Model-based generalization under parameter uncertainty using path
integral control,” IEEE Robot. Automat. Lett., vol. 5,no. 2, pp. 2864-2871,
Apr. 2020.

E. Arruda, M. J. Mathew, M. Kopicki, M. Mistry, M. Azad, and J. L.
Wyatt, “Uncertainty averse pushing with model predictive path integral
control,” in Proc. IEEE-RAS 17th Int. Conf. Humanoid Robot., 2017,
pp. 497-502.

L. Cong, M. Grner, P. Ruppel, H. Liang, N. Hendrich, and J. Zhang, “Self-
adapting recurrent models for object pushing from learning in simulation,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 5304-5310.
J. Carius, R. Ranftl, F. Farshidian, and M. Hutter, “Constrained stochastic
optimal control with learned importance sampling: A path integral ap-
proach,” Int. J. Robot. Res., vol. 41, pp. 189-209, 2022.

T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and Y.
Tassa, “Predictive sampling: Real-time behaviour synthesis with Mu-
JoCo,” Dec. 2022, arXiv:2212.00541.

C. Pezzato, C. Salmi, M. Spahn, E. Trevisan, J. Alonso-Mora, and C. H.
Corbato, “Sampling-based model predictive control leveraging paralleliz-
able physics simulations,” Jul. 2023, arXiv:2307.09105.

G. Williams, B. Goldfain, P. Drews, K. Saigol, J. Rehg, and E. Theodorou,
“Robust sampling based model predictive control with sparse objective
information,” in Proc. Robot.: Sci. Syst. XIV, 2018.

T. Mensink, J. Verbeek, and B. Kappen, “EP for efficient stochastic
control with obstacles,” Front. Artif. Intell. Appl., vol. 215, pp. 675-680,
2010.

M. Okada and T. Taniguchi, “Acceleration of gradient-based path integral
method for efficient optimal and inverse optimal control,” in Proc. IEEE
Int. Conf. Robot. Automat., 2018, pp. 3013-3020.

D. M. Asmar, R. Senanayake, S. Manuel, and M. J. Kochenderfer, “Model
predictive optimized path integral strategies,” in Proc. IEEE Int. Conf.
Robot. Automat., 2023, pp. 3182-3188.

I. S. Mohamed, K. Yin, and L. Liu, “Autonomous navigation of AGVs
in unknown cluttered environments: Log-MPPI control strategy,” IEEE
Robot. Automat. Lett., vol. 7, no. 4, pp. 10240-10247, Oct. 2022.

R. Kusumoto, L. Palmieri, M. Spies, A. Csiszar, and K. O. Arras, “In-
formed information theoretic model predictive control,” in Proc. IEEE
Int. Conf. Robot. Automat., 2019, pp. 2047-2053.

T. Power and D. Berenson, “Variational inference MPC using normalizing
flows and out-of-distribution projection,” in Proc. Robot.: Sci. Syst. XVIII,
2022.

1. M. Balci, E. Bakolas, B. Vlahov, and E. A. Theodorou, “Constrained
covariance steering based Tube-MPPL,” in Proc. Amer. Control Conf.,
2022, pp. 4197-4202.

J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras, “Trajectory distribution
control for model predictive path integral control using covariance steer-
ing,” in Proc. IEEE Int. Conf. Robot. Automat., 2022, pp. 1478—1484.

O. Arslan, E. A. Theodorou, and P. Tsiotras, “Information-theoretic
stochastic optimal control via incremental sampling-based algorithms,”
in Proc. IEEE Symp. Adaptive Dynamic Program. Reinforcement Learn.,
2014, pp. 1-8.

M. S. Gandhi, B. Vlahov, J. Gibson, G. Williams, and E. A. Theodorou,
“Robust model predictive path integral control: Analysis and performance
guarantees,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 1423-1430,
Apr. 2021.

G. R. Williams, “Model predictive path integral control: Theoretical
foundations and applications to autonomous driving,” Ph.D. dissertation,
Georgia Institute of Technology, Atlanta, GA, USA, Mar. 2019. [Online].
Available: https://smartech.gatech.edu/handle/1853/62666

Q. Inc., “QUBE - servo 2 - quanser.” Accessed: May 2024. [Online].
Available: https://www.quanser.com/products/qube-servo-2/

1. Tejado, D. Torres, E. Pérez, and B. M. Vinagre, “Physical modeling
based simulators to support teaching in automatic control: The rotatory
pendulum,” in Proc. 11th IFAC Symp. Adv. Control Educ.,2016, pp. 75-80.
K. J. Astrom and K. Furuta, “Swinging up a pendulum by energy control,”
Automatica, vol. 36, no. 2, pp. 287-295, Feb. 2000.

W. Wang et al., “Design, modeling, and nonlinear model predictive track-
ing control of a novel autonomous surface vehicle,” in Proc. IEEE Int.
Conf. Robot. Automat., 2018, pp. 6189-6196.

W. Jansma, E. Trevisan, A. Serra-Gémez, and J. Alonso-Mora,
“Interaction-aware sampling-based MPC with learned local goal predic-
tions,” in Proc. Int. Symp. Multi-Robot Multi-Agent Syst., 2023, pp. 15-21.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2024 at 12:48:11 UTC from IEEE Xplore. Restrictions apply.


https://smartech.gatech.edu/handle/1853/62666
https://www.quanser.com/products/qube-servo-2/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


