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ABSTRACT

Al-generated music is a huge research field with many different
approaches and models being the result of it. One such model is
the ProceduraLiszt model, which utilizes the Wave Function Col-
lapse algorithm, an algorithm similar to constraint programming,
to generate its music. This research builds upon that model. It does
so by trying to reverse engineer a given piece of music into a set of
satisfied constraints that the model is compatible with. We present
an approach that allows for the inference of constraints of a given
music file that adheres to the MIDI format called MidiAnalyser.
We run our model on a set of music files and analyze the inferred
constraints. The constraints include aspects like key and note range.

CCS CONCEPTS

« Applied computing — Sound and music computing; - The-
ory of computation — Constraint and logic programming.
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1 INTRODUCTION

Music is a widely popular art form that can be appreciated by prac-
tically anyone, even those who have no talent for making music,
and yet it allows for a near-infinite amount of nuance. this, how-
ever, can make it difficult to define properly what music is. There
are of course plenty of ways to write music down, music sheets
have been around for thousands of years but this only goes for
individual pieces of music. How, for example, would one define
the features of a certain "style" or "genre" of music? And more
importantly, how would you extract these features from a piece
of music if given an example? Wave Function Collapse (WFC) is
an algorithm that has proven to be very promising when it comes
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to procedurally generating music. WFC works in a similar way
as constraint programming by splitting the result that has to be
produced (in this case a piece of music) into a bunch of variables
and subsequently defining constraints between neighbouring ones.
Initially, every variable is a superstate in which it can take every
value of its original domain, but as neighbouring variables have
their domain reduced, it eventually collapses into a single value.
The constraints determine which combination of variable values
are allowed and they usually represent the problem that has to be
solved.

this however begs the question: if we can generate music using
constraints, could we then take a given piece of music and retrieve
the constraints? What constraints can we find in different pieces
of music? Are there any patterns? The aim of this research is to
analyze different pieces of music to see if there are any patterns in
the we can find in the constraints that they adhere to.

2 RELATED WORK

2.1 Music information retrieval

Extracting features from music pieces is a field of science that has
been extensively studied and is referred to as the field of Music
Information Retrieval (MIR). Ryan Stables et al [1] for example
introduces the "SAFE" system which allows for the extraction of
semantical descriptions of musical timbre within a given piece of
music.

2.2 Applying Constraint programming to
generating music

Additionally, there have been multiple studies done on the poten-
tial constraint programming has when it comes to procedurally
generating music. Constraint programming is a paradigm used for
solving combinatorial problems. it does so by defining the problem
space as a set of variables and subsequently applying constraints to
subsets of those variables. These constraints prohibit the affected
variables from taking on certain combinations of values. Constraint
programming can be applied to music generation by translating
fundamental music rules into sets of constraints. Notably, Anders,
T. and Miranda, E. R, [2] present a formal model for producing
convincing chord root progression by defining constraints between
chord pitch class sets and roots.

2.3 MIDI

All of the musical analysis that was done throughout this paper
was performed on Musical Instrument Digital Interface (MIDI) files
as our model was, at the time of our experiments, not compatible
with any other music formats.
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Figure 1: Basic HWFC model for procedural music genera-
tion, proposed by Varga and Bidarra [4].

MIDI files are a standard format used for communicating and stor-
ing musical performance data. Instead of storing raw audio like
most music storage formats, they instead store a series of messages
that dictate how music should be played. These messages include
notes, velocity, tempo, and control signals.

2.4 Wave Function Collapse and Hierarchical
WEFC

Wave Function Collapse (WFC) is an algorithm that has shown a
lot of promise when it comes to the field of Procedural Content
Generation (PCG). Its inspiration comes from the field of quantum
mechanics and the concept of wave functions. Wave functions
represent the infinite amount of states that a quantum particle can
have as one superstate using a probability function. Eventually, the
superposition collapses and the particle takes on a singular value.
The original WFC algorithm was conceptualized by Maxim Gumin
[3]. The algorithm operates by representing whatever has to be
generated as a grid of cells. A common example would be the
generation of a digital image, which WFC would represent as a grid
of pixels. Subsequently, a set of constraints are applied to subsets of
the grid space. These constraints are usually derived from a given
input and they limit the combinations of values that the cells can
take. If the model was given an image of an empty chessboard, it
would for example derive the constraint that tiles cannot neighbor
tiles of the same color (as is the case on a chessboard). The algorithm
collapses each of the cells into a value until either every cell is
collapsed or it discovers that there is no combination of values that
satisfies all constraints.

3 RELEVANT MUSIC THEORY

Music is a form of art that is constructed using sound. It consists
of multiple elements that work together to create its composition.
The primary building blocks that make up music are known as
measures, chords, and notes.

o Notes: Notes are the fundamental pieces that make up even
the simplest of music. They represent the distinct sound that
is being played along with its duration. Each note also has a
pitch, which represents how high or low the note sounds.

e Chords: Chords are combinations of notes that are played
simultaneously. They are responsible for the overall harmony
of the song. Usually, the notes that make up a chord are of a
lower pitch than the ones that make up the melody as the
chords are intended to serve as a sort of background noise.

e Measures (or bars): Measures are a unit of time music uses.
They are primarily responsible for ensuring that the song
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has a consistent tempo by organizing the notes and chords
within them. The time signature of the song determines how
many beats are in one measure. Practically every song can
be divided into a certain amount of measures.

4 REPRESENTING MUSIC

The musical structure of a song can vary greatly. Be it in terms of
beats per minute, chord progressions, or overall melody. Neverthe-
less, to properly infer a set of constraints from a piece of music, we
need some kind of universal representation that we can transform
a given piece into. That way we can define a set of general con-
straints that we can check on any piece. If we were to use multiple
representations, than inferring a specific constraint in one piece
could mean something else in another.

Varga and Bidarra [4] introduced a model for procedural music
generation, based on Wave Function Collapse. Instead of a sin-
gle canvas, this model features three levels (sections, chords and
melody), with each cell on the upper levels being associated with an
entire canvas of cells on the level below (see Figure 1). The level be-
low is formed from the concatenation of all of these canvases, with
each one belonging to a single cell on a higher level, but containing
multiple cells. The specific layers are as follows:

e Sections: at the top level, the overarching structure of the
piece is laid out. This is where, for example, an intro section
is placed before the first verse, or the bridge is followed by
one last chorus.

e for each section, a canvas of chords is created, each of its
slots representing one chord. For the sake of simplicity, we
can think of the duration of one chord as one measure in the
piece.

e at the lowest level, for each measure, a canvas of notes is
available, which will give us a short segment of the melody.

Constraints can be specified by the composer, either by directly
filtering the domain, or by drawing up certain relations that neigh-
boring cells should obey. Some parameters of some constraints may
depend on values chosen for the cells above in the hierarchy. So-
called prototypes can also be defined, and when these are chosen
for a value of a given cell, the canvases underneath this cell in the
hierarchy may get new constraints, the ones specified with the
prototype.

The main benefit that this representation of music provides is that
it allows us to separate the individual notes of a song into a set of
cells while still being able to conserve information about the rela-
tion between notes. This representation achieves this through the
notion of having notes be neighbors of other notes and by having
them be a part of the same chord or section. This is useful for the
purposes of our research because it allows us to infer constraints
that span multiple notes by simply checking the notes that belong
to the same higher-level cell. For these reasons, we decided that
our approach would be based on this representation of music.

5 TRANSLATING MUSIC INTO OUR
REPRESENTATION
Creating music is a process that can have a large amount of vari-

ance. It requires the composer to determine things like the beats
per minute the song will use, the chord progression, or how long
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Figure 2: Structure used by the MidiAnalyser to model arbi-
trary piece of music

the song will be, among other things. This variance, however, can
make it quite tricky to translate an arbitrary piece of music into
our own music representation.

We had to modify some of the assumptions used by the original
music generation model. For example, in the original model, we
structure our music so that it consists of a set of sections, which in
turn consist of chords, which in turn have an associated melody.
In an arbitrary piece of music, however, we cannot assume that
the song adheres to this hierarchical structure. For example, it is
common for there to be parts of a song during which no chords are
being played. These parts would then only consist of a set of notes
that make up the melody. Alternatively, a song might have parts
with multiple chord changes happening within the same measure.
In such a case, the melody of the measure would play during multi-
ple different chords.

Due to this variance in music compositions, we had to make some
moderate changes to the way we represented music. Instead of
positioning chords as higher-level cells and melodies as lower-level
cells, we disassociate the two and instead group them by the mea-
sure during which they are played. The way this is structured can be
seen in Figure 2. In this new structure, we can still represent songs
that solely consist of a melody, without the need to accommodate
for the missing chords.

6 METHODOLOGY

6.1 MidiAnalyser

We introduce the MidiAnalyser model. This model uses a slightly
different representation of music compared to the one that the
original ProceduralLiszt uses. In the original model, we define a
hierarchical structure in which we assume that every chord in a
piece of music has a set of notes that are played at the same time.
This chord and the accompanying notes then make up what we
would call a measure. When dealing with arbitrary music pieces,
however, this is an assumption we cannot make. Often times music
pieces will have sections in which there simply aren’t any chords,
but only a melody. Or alternatively, you might encounter pieces
with multiple chords in a single measure.

After we successfully divided the music into chords and notes we
ran our model. For each section or note we checked for each con-
straint if the part satisfied the constraint. The following constraints
were the ones used for the chords:
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e Chord in key constraint: Checks if the chord is in a given
musical key. A musical key is a set of notes that usually form
the basis of a piece of music.

The following constraints were used for the melodies:

e melody in range constraint: checks if all of the notes are
within a certain range of pitches (for example: are all of the
notes of this melody in between C5 and C67?).

o descending melody constraint: checks if the pitches in the
melody are descending.

e ascending melody constraint: checks if the pitches in the
melody are ascending.

Some of the variables require a given variable to be checked, for
example, the MelodyInRangeConstraint requires two input notes to
check if the entire melody is within those notes. In cases like these,
we simply check what the strictest variables are that the music part
adheres to as that implies that the part also adheres to more relaxed
MelodyInRangeConstraints.

The research was mainly performed on MIDI files from the NES
music repository [5]. The advantage of using these songs is that
they have relatively simple melodies and chords alongside usually
having a single instrument.

6.2 Music21

Running the constraint inferrer requires the given piece of music to
be in a format that is compatible with our hierarchical model. This
however requires us to isolate notes and chords from the music
piece. While MIDI files list the individual notes that make up the
music, chords are only represented if they are manually annotated
in the file, something that is very rarely the case. For this reason,
we use the Python package "Music21" [6]. Music21 allows us to
parse a given MIDI file and convert it into a Stream. A Stream in
this context refers to the way Music21 represents music. Streams
essentially act as containers that can hold things like music parts
and measures. The measures in turn then contain notes and chords
that we can use for our model.

6.3 ProceduralLiszt

The ProceduraLiszt model presented by Varga and Bidarra in which
the MidiAnalyser is implemented comes with a fully functional
GUL To perform the analysis, it requires the following input

¢ A music file encoded in the MIDI (Musical Instrument Digital
Interface) format

o The selected pre-defined constraints that the user wishes to
infer from the music file.

upon performing the analysis the model outputs the following:

e For each measure, the selected constraints that the chord
and melody within that measure fulfill.

o Avisual representation of the Notes. The different chords and
melody parts are made visible through the use of coloring.

7 EXPERIMENTAL WORK

We first run the MidiAnalyser on pieces of music generated by
the Proceduraliszt model. We do this to verify that the constraints
found by our model are valid. Since we know which constraints
were used to generate the music, we can check if our model finds
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the same constraints when we give the generated music as input.

we generate three songs using the Proceduraliszt model with vary-
ing parameters to showcase that our model is capable of handling
music of different kinds:

o The first song will have an equal number of sections, chords,
and melody length along with a melody with pitches in the
range of C5 to Cé6.

o The second song will have an equal amount of sections and
chords, but varying melody lengths throughout the measures

The first song we generated was done so with the following
parameters:
e Bpm: 120
e Number of sections: 4
e Number of Chords: 4
e Melody length: 4
o Constraints: melody in key constraint (C Major), melody in
range (C5 to C6), ascending melody
Parameters for the second generated song:
e Bpm: 90
e Number of sections: 4
e Number of Chords: 3
e Melody length: 3
e Constraints: melody in key constraint (D minor), melody in
range (C5 to C6), melody starts on note (C)
To clarify what this means, generating a song using the model
with the parameters of the first song will result in a song with
4 sections, each consisting of 4 chords. Each chord in turn has a
melody consisting of 4 notes. Considering that the original model
considers each measure to contain one chord, this will result in a
song with 16 measures.
After this, we ran the MidiAnalyser on various songs from the NES
music library to discover what constraints we could find. We chose
this library because of the relative simplicity of the songs within
it since these songs tend to use a singular instrument. We ran the
MidiAnalyser on the following songs from the library:

e 037_BoobyKids_09_10EvilDante.mid
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8.2 NES music files

We ran the MidiAnalyser on various music files from the NES music
Library. The following examples are meant to showcase various
constraint patterns our model is capable of finding.

e Booby Kids Evil Dante: The results are depicted in Figure 6.
According to our model, we find that the melody of every
measure in the song falls in the range of C5 to C6 and we
also discover that most of the melody is in the key of C Major.
We also see that some of the measures have an ascending
melody while others have a descending melody. It is possible
for a measure to adhere to both of these at the same time.
This generally means that the entire melody consists of the
same note.

e Digital Devil Story Megami Tensei Last Battle Last Boss: The
results are depicted in Figure 7. According to our model, we
find that the melody of every measure in the song falls in
the range of C3 to C6 and we also discover that measures
9 through 22 have a melody that is in the key of C Major.
Additionally, we see that some of the measures have an
ascending melody while others have a descending melody,
although a noticeable pattern is difficult to discern.

e ArumananoKisekiOpening: The results are depicted in Fig-
ure 8. According to our model, we find a repeating pattern
when it comes to the key of the melodies. We see the (albeit
short) pattern of the first measure not being in C major while
the following two are.

e 071_DigitalDevilStory_MegamiTensei_17_18LastBattlelLastBoss.

mid
e 018_ArumananoKiseki_00_010pening.mid

8 RESULTS
8.1 Generated Music

When running the MidiAnalyser on the music that was generated
by the WFC model, we see that it correctly identified all of the
constraints that were used to generate the music. In Figure 3 we
see that it detected that the melody of every measure was in the
correct key of C Major and it detected that all of the melody notes
were in the range of C5 to C6. Similarly in Figure 4, we see that the
MidiAnalyser identifies that the melodies are in the key of D Minor,
the melody range being in C5 to C6, and that every melody started
with the note C#. To showcase the results of the MidiAnalyser when
run with constraints that it should fail, we analyzed our second
generated song twice, but this time with the chord in key constraint
of C4 to C5. Subsequently, none of the measures are in that range
as is depicted in Figure 5
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Figure 3: MidiAnalyser results from the first generated song
shown in the interface of the constraint analyzer within
the ProceduraLiszt app. The x-axis depicts the different con-
straints we selected while the y-axis depicts all the measures
of the song
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Figure 4: MidiAnalyser results from the second generated
song shown in the interface of the constraint analyzer within
the ProceduraLiszt app. The x-axis depicts the different con-
straints we selected while the y-axis depicts all the measures
of the song

Figure 5: MidiAnalyser results from the second generated
song shown in the interface of the constraint analyzer within
the ProceduraLiszt app. This time the analyzed melody in
range constraint is set to C4 to C5 while the song was gen-
erated with C5 to C6. The x-axis depicts the different con-
straints we selected while the y-axis depicts all the measures
of the song
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Figure 6: MidiAnalyser results from BoobyKidsEvilDante
shown in the interface of the constraint analyzer within
the ProceduraLiszt app. The x-axis depicts the different con-
straints we selected while the y-axis depicts all the measures
of the song. The melodyKey is C Major and MelodyRange is
C5to Ceé
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Figure 7: MidiAnalyser results from DigitalDevilSto-
ryMegamiTenseiLastBattleLastBoss shown in the interface
of the constraint analyzer within the ProceduraLiszt app.
The x-axis depicts the different constraints we selected
while the y-axis depicts all the measures of the song. The
melodyKey is C Major and MelodyRange is C3 to C6
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Figure 8: MidiAnalyser results from ArumananoKisekiOpen-
ing shown in the interface of the constraint analyzer within
the ProceduraLiszt app. The x-axis depicts the different con-
straints we selected while the y-axis depicts all the measures
of the song. The melodyKey is C Major and MelodyRange is
C5to Cé6
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9 DISCUSSION
9.1 Limitations

This paper has showcased the potential our model has when it
comes to analyzing various constraints that songs can adhere to.
However, both due to time constraints and this research being done
by one person, WE had to limit the scope of this research. For this
reason, there are still several limitations to our analysis that should
be discussed. Improvements upon these limitations could serve as
promising future research.

e When it comes to analyzing songs, the model does not per-
form well on music that is too complex. Particularly, songs
that have multiple instruments with different pitch ranges
can make it quite difficult to separate the melody notes from
the chord notes. Currently, the model uses an external li-
brary to perform this task, so future research should focus
on using more advanced music separation techniques.

e While not completely relevant to the research topic of this
paper, there are considerable improvements that could be
made to the GUI that the model uses. Most of the current
elements are essentially prototypes and were not made with
Human Computer Interface (HCI) principles in mind. Future
research regarding this topic should seek to improve upon
this and make the MidiAnalyser more accessible.

o Several constraints that the WFC model uses to generate its
music were not compatible with the music representation
that our model uses. There is for example "MelodyStart-
sOnNote" constraint for example, which allows the user to
generate music where each measure starts on a specific note.
This constraint allows the user to choose a custom note, but
in the WFC model, it also allows the user to have the melody
start on the root of the chord the melody belonged to. Due
to the MidiAnalyser no longer using a hierarchical structure,
constraints that assume a relation between the chords and
melody of a measure are not compatible. Future research
should aim to produce a model that allows for the possibility
of relations between the melody and chords of a song.

10 CONCLUSION

In this paper, we have explored the challenge of implementing a
model that is capable of inferring pre-defined constraints from var-
ious Midi music files. We have highlighted the music properties
that had to be accounted for when translating music files into our
representation, with the major one being the lack of a hierarchi-
cal structure when it comes to music in real life. We proposed a
method for analyzing music along with a new representation that
can be used to model arbitrary music. Subsequently, we analyzed a
variety of music pieces using our model and showcased the various
constraints that we were able to infer. The analyzed music pieces
included both pieces generated by the WFC model that our model
is based on and pieces acquired from the NES music library Overall,
our research contributes to a deeper understanding to the inferring
of constraints in various music files allowing composers to possibly
detect constraint patterns in music that they or others create.
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11 RESPONSIBLE RESEARCH

Transparency and Explainability: Transparency and explainability
are crucial in the deployment of Al technologies like WFC, espe-
cially in creative domains such as music composition. For WFC,
transparency means that users can understand how the algorithm
makes decisions, which patterns it chooses, and how it interprets
constraints. Explainability involves providing insights into why
certain choices are made by the algorithm—such as why a particu-
lar chord progression or melody was generated—allowing users to
trust and effectively interact with the technology. This is particu-
larly important in collaborative environments where artists may
wish to tweak algorithmic suggestions.

WFC is a white-box algorithm, meaning that given an input, anyone
could generate an output, solely based on the description of the
algorithm. This property is preserved in the hierarchical model
used for music generation.

Enhancement vs. Replacement: The mixed-initiative approach of
WEFC in music generation underscores its role as a tool for enhanc-
ing rather than replacing human creativity. In this setup, there is
an iterative loop between the user and the algorithm. The process
starts with the user defining initial constraints, which the WFC
algorithm then uses to generate a composition that adheres to these
parameters. Upon reviewing the algorithm’s output, the user can
draw inspiration and identify aspects they might want to alter, lead-
ing them to tweak the input constraints based on their creative
judgment and preferences. This iterative process allows for a deeply
interactive and collaborative form of composition, where the al-
gorithm serves as both a source of inspiration and a sophisticated
tool that extends the creative capacities of the user. By enabling a
creative dialogue between the composer and the algorithm, WFC
supports the artistic process, allowing composers to explore new
ideas and refine their work, all while ensuring that the technology
remains a helpful tool rather than taking over the creative process.
Use of Data: In the application of WFC for music generation, the
algorithm operates uniquely as it does not require any training
data or examples to function. Instead, it relies entirely on explicit
constraints and music pieces provided directly by the user. This
approach significantly shifts the data use paradigm in Al by elim-
inating the need for large datasets and the associated concerns
of data privacy and copyright infringement. By relying on user-
defined constraints and music, WFC allows composers to maintain
full control over the creative output, ensuring that the compositions
are both original and closely aligned with the artist’s intent.
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