

Delft University of Technology

Exploring grid topology reconfiguration using a simple deep reinforcement learning
approach

Subramanian, S.M.; Viebahn, Jan; Tindemans, S.H.; Donnot, Benjamin; Marot, Antoine

DOI
10.1109/PowerTech46648.2021.9494879
Publication date
2021
Document Version
Final published version
Published in
2021 IEEE Madrid PowerTech, PowerTech 2021 - Conference Proceedings

Citation (APA)
Subramanian, S. M., Viebahn, J., Tindemans, S. H., Donnot, B., & Marot, A. (2021). Exploring grid topology
reconfiguration using a simple deep reinforcement learning approach. In 2021 IEEE Madrid PowerTech,
PowerTech 2021 - Conference Proceedings Article 9494879 (2021 IEEE Madrid PowerTech, PowerTech
2021 - Conference Proceedings). https://doi.org/10.1109/PowerTech46648.2021.9494879
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/PowerTech46648.2021.9494879
https://doi.org/10.1109/PowerTech46648.2021.9494879

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Exploring grid topology reconfiguration using a
simple deep reinforcement learning approach

Medha Subramanian
Dept. of Electrical Sustainable Energy

Delft University of Technology
Delft, The Netherlands

medha.subramanian@smartwires.com$

Jan Viebahn
Digital and Process Excellence

TenneT TSO B.V.
Arnhem, The Netherlands

jan.viebahn@tennet.eu

Simon H. Tindemans
Dept. of Electrical Sustainable Energy

Delft University of Technology
Delft, The Netherlands
s.h.tindemans@tudelft.nl

Benjamin Donnot
RTE

Paris, France
benjamin.donnot@rte-france.com

Antoine Marot
RTE

Paris, France
antoine.marot@rte-france.com

Abstract—System operators are faced with increasingly volatile
operating conditions. In order to manage system reliability in
a cost-effective manner, control room operators are turning to
computerised decision support tools based on AI and machine
learning. Specifically, Reinforcement Learning (RL) is a promis-
ing technique to train agents that suggest grid control actions to
operators. In this paper, a simple baseline approach is presented
using RL to represent an artificial control room operator that
can operate a IEEE 14-bus test case for a duration of 1 week.
This agent takes topological switching actions to control power
flows on the grid, and is trained on only a single well-chosen
scenario. The behaviour of this agent is tested on different time-
series of generation and demand, demonstrating its ability to
operate the grid successfully in 965 out of 1000 scenarios. The
type and variability of topologies suggested by the agent are
analysed across the test scenarios, demonstrating efficient and
diverse agent behaviour.

Index Terms—Reinforcement learning, power system opera-
tion, decision support, control room operators

I. INTRODUCTION

Operators of electricity transmission and distribution net-
works are responsible for the safe and reliable operation of
these networks. This task grows progressively more challeng-
ing due to the increasing presence of renewable generation
and power-electronics-based resources on the grid. Both trends
conspire to make power flows in the network more variable,
less predictable and sensitive to disturbances. Network control
rooms are staffed by operators who rely on their experience
to anticipate and resolve undesirable system behaviour. Faced
with an increasingly volatile network, continuing this mode
of operation is likely to reduce system security, or greatly
increase costs of operation.

In recognition of this trend, there is an increasing reliance
on ICT and smart grid technology in the control room [1].

$ The research was carried out as an intern at TenneT for an MSc thesis
project. MS is currently employed at Smart Wires Inc.

In particular, researchers and system operators have proposed
machine learning to anticipate risks, notably in the context
of online dynamic security assessment (transient stability
analysis) [2], [3]. However, even when the performance of
such anticipatory systems is adequate, additional complexities
must be tackled when they are used as the basis for operator
decisions [4].

In recent years, Reinforcement Learning (RL) has emerged
as a powerful approach to automated decision making.
Through iterative experimentation, RL arrives at policies that
aim to maximise a numerical reward signal. The basic RL
framework is applicable to a tremendous range of settings
including the control of electricity grids [5]. One important
initiative in the context of RL for grid operation are the
Learning To Run a Power Network (L2RPN) challenges organ-
ised by RTE [6], the French Transmission System Operator.
This competition was conducted with the primary goal of
introducing and recognising the potential of AI and ML based
tools to support control rooms and assist in making optimal
decisions. The first edition of this competition was held in
2019 [7]. The L2RPN competition focuses on learning a
subset of actions that can be taken by grid operators, namely
topological changes. These can often be implemented at no or
low cost, and provide significant flexibility to avoid violation
of operational constraints by manipulating power flows in the
grid.

It is tempting to extrapolate these efforts and envision
RL agents that control the grid autonomously. However, for
the control of critical infrastructure it is both undesirable to
place responsibility in the ‘hands’ of an algorithm and –
for the foreseeable future – it is infeasible to achieve the
required degree of accuracy and dependability. Instead, the
goal is to develop RL agents that can act in conjunction with
human network operators in the form of decision support
tools. In particular, such agents may identify and suggest
control actions that human operators and traditional solution
techniques are unaware of or unaccustomed to [5], [8].978-1-6654-3597-0/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 M
ad

rid
 P

ow
er

Te
ch

 |
97

8-
1-

66
54

-3
59

7-
0/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

Po
w

er
Te

ch
46

64
8.

20
21

.9
49

48
79

Authorized licensed use limited to: TU Delft Library. Downloaded on July 05,2022 at 06:33:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The adapted IEEE 14 bus network including substations (blue dots),
loads (red circles), and generators (panels). Green lines represent transformers.

This paper describes a lightweight approach to train agents
of the latter type, specifically one that proposes topology
control actions to a system operator. Such an agent could serve
as a baseline for other studies with more elaborate methods.
The main contributions of this paper are:
• Development of a simple, yet mostly successful, cross-

entropy agent that is trained on only a single well-chosen
scenario.

• In-depth analysis of the performance and sequential de-
cisions made by this agent.

II. POWER SYSTEM FRAMEWORK

A. Power grid model

The power grid model considered in this study is a slightly
adapted version of the IEEE 14-bus network, as it was created
for the L2RPN challenge 2019 [6]. Figure 1 sketches the main
elements of the grid: 20 lines, 11 loads and 5 generators.
Generation includes a wind power plant and a solar in-feed
next to a nuclear generator and two thermal generators to
represent the current energy mix. We modified part of the
thermal current limits of the lines, as shown in Table I, to
make the difference between the transmission (lower) and
distribution (upper) sections of the grid (indicated by the two
circles in Fig. 1) more pronounced. The transformers to step
down the voltage from the transmission side to the distribution
side are modelled as lines and are represented in green in
Fig. 1.

The power grid model is available within the Python module
Grid2Op [9] that provides an environment for development,
training or evaluation of ‘agents’ or ‘controllers’ that act on
a power grid in different ways. It uses Pandapower [10] as
a backend for power flow computations and the package is
compatible with Open-AI gym [11]. The module also comes
with datasets representing realistic time-series of operating
conditions. The dataset for the IEEE 14-bus model contains
1000 scenarios with data for 28 continuous days in a 5-
minute interval. Each scenario includes pre-determined load

TABLE I
LINE THERMAL LIMITS

Line Thermal
limit (A) Line Thermal

limit (A)
0 1000 10 380
1 1000 11 380
2 1000 12 760
3 1000 13 760
4 1000 14 380
5 1000 15 760
6 1000 16 380
7 760 17 380
8 450 18 2000
9 760 19 2000

variations and generation schedules which are representative
of distributions of the French grid [7]. In this study only the
first week of each scenario will be used.

B. Objective and constraints

The main objective is to create an agent that is able to
operate the power grid successfully for as many scenarios as
possible, using only topology adjustment actions (described in
detail in section III-A). In doing so, the agent must respect a
number of operational constraints [9]. Hard constraints, which
trigger an immediate “game over” condition if violated, are:
(a) system demand must be fully served;
(b) no generator may be disconnected;
(c) no electrical islands are formed as a result of topology

control;
(d) AC power flow must converge at all times.
In contrast, soft constraints have less severe consequences:
Transmission lines with a current exceeding 150% of their
rated capacity are tripped immediately, and can be recovered
after 50 minutes (10 time steps). When lines are overloaded
by a smaller amount, the agent has 10 minutes (2 time
steps) to mitigate this. If lines remain overloaded after this
time, they are disconnected and will be reconnected after
50 minutes. In addition, substations are subject to a practi-
cal ‘complexity’ constraint that only one substation can be
modified per timestep and a ‘cooldown time’ (15 minutes)
needs to be respected before a switched node can be reused
for action. Both soft and hard constraints make the problem
more practical and close to real-world grid operation.

We note that, in this study, only quasi-steady state load-
flows are used. Other aspects, such as dynamic performance,
N-1 contingency analysis, or voltage performance are not
considered.

III. REINFORCEMENT LEARNING APPROACH

The intention of this study is to apply a rather simple RL
approach which is easy to understand and can serve as a
baseline for more advanced algorithms. Hence, we consider a
severely reduced action space (III-A), a simple neural network
architecture (III-B), a simple learning algorithm (III-C), and
small training data (IV-A). We note that the formulation of
the control problem considered here as a Markov Decision
Process (MDP) can be found e.g. in [7], [12].

Authorized licensed use limited to: TU Delft Library. Downloaded on July 05,2022 at 06:33:34 UTC from IEEE Xplore. Restrictions apply.

A. Action Space

In this study we consider only one type of action, namely
bus-bar splitting. In reality a series of actions is necessary
in order to carry out bus splitting and to obtain an intended
substation configuration. However, for the RL agent we focus
only on the final substation configuration. That is, the agent
directly selects the intended substation configuration for a
given network node. In the following, we briefly describe the
action space constraints and we provide a formula to compute
the number of permissible configurations per substation.

The overall number of configurations of a specific substation
is dependent on the number of elements connected to the
substation. However, not all configurations are consistent with
power grid operations. In this study the following constraints
are incorporated:

1) Minimum Element Constraint: A minimum of two
elements (or 0 elements) must be connected to each bus-
bar.

2) One-Line Constraint: At least one of the elements
connected to a bus-bar must be a line. That is, it is not
permitted to connect only non-line elements (generators
and loads) to a bus-bar (as implied by constraint (c) in
section II-B).

We note that these constraints are local since they only
refer to the configuration of each individual substation. Global
constraints that refer to the overall grid topology induced by
the configuration of 2 or more substations are not considered
by the agent.

The total number of configurations τ of a substation satis-
fying the two local constraints can be calculated as follows:

τ = α(n)− β(n)− γ(n′) , (1)

with α(n) = 2n−1, β(n) = n−δn,2, and γ(n′) = 2n
′−1−n′,

where n is the total number of elements connected to the
substation, n′ is the number of non-line elements connected
to the substation and δn,2 is the Kronecker delta that equals 1
when n = 2 and 0 otherwise.

The reasoning is as follows: The term α gives the number
of all possible configurations of a substation with two bus-
bars and n elements without taking the local constraints into
account. An additional factor of 1

2 corrects for double-counting
of symmetrical configurations that arises because the two bus-
bars are indistinguishable. The two terms β and γ reduce the
number of configurations according to the two constraints.
The β term counts the number of substation configurations
in which only 1 element (or the symmetrical version, that is,
n − 1 elements) is connected to a bus-bar (i.e. constraint 1).
Finally, the γ term implements constraint 2. It subtracts all
states where the lines are connected to a single bus-bar and
the non-line elements are distributed in any way other than to
the same bus-bar (2n

′ −1). The term −n′ is included to avoid
double-counting with a single element (already accounted for
in β).

With (1) the number of valid configurations for each substa-
tion can be calculated as seen in Table II. In the power system

TABLE II
NUMBER OF POSSIBLE CONFIGURATIONS FOR EACH SUBSTATION

Substation
number

Number
of elements

Number
of configurations

0 3 1
1 6 25
2 4 3
3 6 26
4 5 11
5 6 25
6 3 1
7 2 1
8 5 11
9 3 1
10 3 1
11 3 1
12 4 4
13 3 1

Total substation
configurations 112

model (section II) at a single time-step only one substation
can be acted upon. Thus, at each time-step, only one of these
112 substation configurations can be chosen as an action.
We note that each number in table II also includes one do-
nothing action, namely, when the substation configuration that
is already in place is chosen. Hence, the total number of
unitary actions excluding do-nothing actions is 112−14 = 98.
Note that the combination of substation configurations results
in over 23 million possible grid topologies (some of which
may result in electrical islands).

B. Observations, neural network, reward

Before we can consider the actual learning algorithm in the
next section we need to specify the observations provided to
the agent at each timestep, the neural network architecture used
to compute the action probabilities, and the reward function.

The agent receives a partial observation of the power system
state. We did not apply any reduction technique to the state
space, opting to include almost all available observations
at the current time step, but no observations from previous
time steps, i.e. no memory. The agent observes the following
324 features: generators’ voltages (V), active powers (P) and
reactive powers (Q) (5×3 = 15), loads’ P, Q, V (11×3 = 33),
lines’ P, Q, V, I for both origins and extremities (40×4 = 160),
lines’ loading (20), topology vector (bus-bar index for each
element: 5 + 11 + 40 = 56), line status (20), and number of
time steps a line is overloaded (20).

In order to model the policy of the agent we use a simple
feed-forward neural network (NN) with two hidden layers. The
input layer of the NN has the size of the state space (i.e. 324).
Each hidden layer consists of 300 neurons. The size of the
output layer corresponds to the size of the action space (i.e.
112).

Finally, we use the same reward function as defined in [7],
[12]. That is, the immediate reward at each time step reflects
the remaining available transfer capabilities. It combines the
loading of all lines and it increases (decreases) if the loading
of the network decreases (increases). Note that this indirectly

Authorized licensed use limited to: TU Delft Library. Downloaded on July 05,2022 at 06:33:34 UTC from IEEE Xplore. Restrictions apply.

favours successful operation of the grid, because (i) overloads
are discouraged and (ii) a “game over” case stops the accu-
mulation of reward. For more details we refer to [7], [12].

C. Cross-Entropy Method

The cross-entropy method (CEM) is a Monte Carlo tech-
nique based on importance sampling; it belongs to the class
of model-free, policy-based, on-policy RL methods [13], [14].
Its main strength is simplicity: it is intuitive and easy to
implement. In essence, the method samples a number of
episodes and subsequently selects the best ones for training.
Note that an episode is a sequence of states, actions, and
rewards from an initial state to a terminal state in which the
agent either succeeded or failed to operate the grid for the
duration of a specific scenario (see II-B).

More precisely, Figure 2 shows a flowchart illustrating the
logic of the CEM. A batch is created by generating N episodes
using the current policy. For each episode, the total reward is
computed and a set of elite episodes is identified: all episodes
with a total reward that exceeds a predefined reward boundary
(usually some percentile of all batch rewards). If the stopping
criterion has not been satisfied, the policy is updated (i.e. the
NN is trained via supervised learning) using the elite episodes
and cross-entropy loss. Subsequently, the next batch is created
using the updated policy and the loop starts again.

The training is manually stopped when the reward boundary
has (visually) saturated and the difference between reward
boundary and mean reward is less than 2% (see e.g. Fig. 4 in
the next section). The hyperparameters used for training are
N = 20 as batch size, the 75th percentile as reward boundary
(i.e. the elite episodes are the 5 best episodes of a batch), and a
learning rate of 1e-4. For details of the NN we refer to section
III-B.

Finally, we adapt the the vanilla CEM in two ways. A simple
but crucial modification is that we include an activity threshold
(AT = 0.95) which is inspired by the warning flag used in
[12]. That is, the agent only executes actions if the current
highest line loading in the power grid exceeds 0.95, otherwise
the grid topology remains unchanged. Applying an activity
threshold significantly improves the learning behaviour since
learning of appropriate behaviour in low-loading situations can
be omitted. The second and less important modification is that
we make batch size and reward boundary slightly dependent
on the results of the current batch and the previous batch.
Specifically, we assure by continued sampling that either the
total reward of the 5th best episode (i.e. the new reward
boundary) exceeds the previous reward boundary or the 5
best episodes all complete successfully. The effect of this
modification is to make the learning curves (see e.g. Fig. 4
in the next section) a bit smoother.

IV. RESULTS

A. Training of the agent

In this study we specify the training data not in a statistical
way but guided by expert knowledge, which simplifies the
training procedure and drastically reduces its computational

Fig. 2. Implementation logic of the Cross-Entropy Method.

Fig. 3. For each of the 1000 1-week-long scenarios, the number of days with
loading ≥ 0.95 (horizontal) and the highest loading (vertical) are shown. The
magenta dot is related to the scenario used for training. The 35 red dots are
related to scenarios which the agent cannot operate successfully.

burden. To select the training scenario we consider the base
topology in which for each substation all elements are con-
nected to busbar 1 (this is also the default topology in Grid2Op
as well as a topology preferred by real operators). We compute
the load flow for each scenario with the grid topology being
fixed to the base topology (i.e. a do-nothing agent) and without
line tripping due to overloading (see section II-B).

Figure 3 shows for each of the 1000 1-week-long scenarios
the number of days with loading ≥ 0.95 and the highest
loading for the entire scenario. There are a number of scenarios
where the highest loading remains smaller than 1 for the entire
duration. There is even a small number of scenarios where the
highest loading stays below 0.95 (i.e. the blue dots related to
0 days). Consequently, when line tripping due to overloading
(see section II-B) is applied then simply sticking to the base
topology leads to episodes of successful operation for about
30% of the scenarios (namely for 297).

Authorized licensed use limited to: TU Delft Library. Downloaded on July 05,2022 at 06:33:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Training progress of the agent monitored by considering both the mean
reward and the reward boundary of the reward distribution of each batch.

In general, Fig. 3 depicts a correlation between the number
of days in a scenario with loading above 0.95 and the maxi-
mum load level. Further analysis shows that for each scenario
the overloading (i.e. loading larger than 1) is exclusively
related to line 9 (see Fig. 1). That is, System Operators would
face the question whether new investments are necessary or
other measures like topological reconfiguration are sufficient
to overcome line 9 becoming a bottleneck.

In this study we train an agent using our RL approach (see
section III) on a single scenario, namely, on the scenario
that appears to be most challenging in terms of maximum
overloading as indicated by the magenta dot in Fig. 3.

Figure 4 shows the training progress of the agent monitored
by considering both the mean reward and the reward boundary
of the reward distribution of each batch. Both measures
increase monotonically for the first 10-15 batches, indicating
improved performance of the agent after each training step.
After around 14 batches the reward boundary reaches a plateau
which reflects that for all elite episodes the agent successfully
operates the grid. After around 23 batches the mean reward
also reaches a plateau at a slightly lower reward value than the
reward boundary. This indicates that for almost all episodes of
a batch the agent successfully operates the grid. The slightly
lower value of the mean reward as well as its small oscillations
are due to the remaining exploration probabilities which lead
to a small number of failure episodes.

B. Evaluation of the agent

For evaluating the performance of the agent we recall the
setting in which it is to be used, namely not as an independent
decision maker, but as a decision support tool that suggests
any number of possible actions to a system operator, who can
verify these actions before implementing them. In this context,
the key performance criterion is whether a desirable action is
included in the episodes associated with a given scenario.

To evaluate the agent we generated more than 33000
episodes where the injections of each episode were randomly
chosen from one of the 1000 scenarios. This way we obtained

at least (at most) 14 (40) episodes per scenario (episodes with
the same scenario can differ due to the probabilistic nature of
the agent). We found that the agent was able to create episodes
of successful operation for 965 scenarios of the 1000 scenarios
(including the scenario used for training), that is, for 96.5% of
the 1000 scenarios. The 35 scenarios that the agent could never
operate successfully are indicated by the red dots in Fig. 3.
We note that the choice of the training scenario is crucial
since choosing other training scenarios can lead to drastically
smaller success rates (results not shown).

In this study we did not investigate how the performance
of the agent could be further improved, but we note that it
is likely that the remaining 35 scenarios can also be operated
successfully using busbar splitting. This is obvious for the
scenarios where the highest loading remains smaller than 1
in the default topology (see Fig. 3). Moreover, we trained
another agent using our RL approach (see section III) using
the scenario related to the red dot in Fig. 3 with the highest
overloading as training scenario and then we also found
episodes of successful operation for the respective scenario.

Next, we take a more detailed look at the actions taken by
the agent in different episodes of successful operation. For that
we consider for each of the 965 scenarios the episode with the
highest reward. Table III summarises the different topologies
created by the agent as well as the different sequences of their
encounter. Note that the 7 episodes that entirely remain in the
base topology are related to the scenarios for which the highest
loading is smaller than 0.95 (see Fig. 3).

The agent’s actions mostly (see Tab. III and also Fig. 1)
take place at either substation 3 (for T 2, T 5, and T 7) or at
substation 8 (for T 1) or at both (for all other topologies). Only
for 10 episodes substation 1 is additionally involved (for T 4).
For about one third of the episodes (namely 342) only one
topology change is performed, namely, either B → T 1 or B →
T 2. We note that the 37 episodes where B → T 2 happens are
all related to scenarios for which the highest loading in the
base topology is smaller than 1 (see Fig. 3). On the other
hand, the episodes where B → T 1 happens are related to
scenarios for which the highest loading in the base topology
is larger than 1 (not shown).

For the majority of episodes (namely 601) two topology
changes are performed leading to T 3 which combines both
T 1 and T 2. The remaining small number of episodes also
involve T 1 and/or T 2 in some form. In particular, we note that
the two episodes with four topological changes actually only
involve four or less topologies, and hence, represent episodes
in which topologies are revisited. Revisitation of topologies
only happens for three of the 965 episodes.

Finally, we quantify the extent to which different topological
states are present during an episode. One way to measure this
is by considering the topological entropy, which is computed
by turning the time spent in a given topological state (di-
vided by the episode length) into an effective probability of
encountering this topology in the respective episode. That is, it
effectively measures the topological uncertainty of an episode
and it is also shown in Table III. For example, if the topology is

Authorized licensed use limited to: TU Delft Library. Downloaded on July 05,2022 at 06:33:34 UTC from IEEE Xplore. Restrictions apply.

TABLE III
TOPOLOGIES ENCOUNTERED IN HIGHEST REWARD EPISODES:

• B: base topology
• T 1: load 5 and line 19 at busbar 2 (at substation 8)
• T 2: load 2 and line 3 at busbar 2 (at substation 3)
• T 3: T 1 and T 2
• T 4: T 3 and load 0 and line 4 at busbar 2 (at substation 1)
• T 5: lines 5 and 15 at busbar 2 (at substation 3)
• T 6: T 1 and T 5
• T 7: lines 6, 15 and 16 at busbar 2 (at substation 3)
• T 8: T 1 and T 7

Number
of episodes

Topology
sequence

Entropy
range

7 B 0
305 B → T 1 0.0043-0.6899
37 B → T 2 0.5698-0.6896
431 B → T 2→ T 3 0.0085-1.0878
170 B → T 1→ T 3 0.5734-1.0865
1 B → T 1→ B → T 2 1.0678
1 B → T 1→ T 3→ T 2→ T 3 1.235
1 B → T 2→ T 3→ T 2→ T 3 0.6767
5 B → T 2→ T 3→ T 4 1.1696-1.3241
5 B → T 1→ T 3→ T 4 0.8621-1.0957
1 B → T 5→ T 6→ T 3 1.0254
1 B → T 7→ T 8 0.365

fixed for the entire episode then the topological uncertainty is
zero. On the other hand, the more topologies are encountered
with similar probabilities the higher the topological entropy.
Consequently, the largest entropy is found for episodes with
three topological changes (B → T 2→ T 3→ T 4).

The main result here is the large variation of topological
entropy across different episodes, showing that this simple
agent is able to exhibit a diverse range of behaviour. For
the episodes with a single topological change B → T 1, the
topological entropy can be very small (0.0043, indicating that
the topological change happened very early or very late in
the episode) or relatively large (indicating that the topological
change happened near the middle of the episode). The same
holds for the episodes with the two topological changes
B → T 2 → T 3. On the other hand, for the single (double)
topological changes B → T 2 (B → T 1 → T 3) the entropy
range is much more confined. Here, we only considered the
minimum and maximum observed entropy values. Future work
could investigate the distribution and scenario-dependence of
the topological uncertainty.

V. DISCUSSION

This study presents a simple deep RL approach for power
flow control that is both easy to understand and easy to im-
plement. It shows good convergence behaviour, it generalises
well despite training on only a single well-chosen scenario,
and is self-contained with few tuneable parameters. This is
in contrast to previous studies where more complicated RL
algorithms are employed, a large amount of scenarios is used
for training, and additional techniques like imitation learning
and guided exploration are needed (e.g [7], [12]). Hence, the
RL approach presented here is well-suited as a baseline for
future studies on larger and more realistic power networks.

Moreover, we present a first detailed analysis of the con-
trol behaviour of the agent whereas previous studies mainly
focused on convergence and performance measures. We find
that the agent generally identifies 2 specific substations out
of 7 controllable substations for optimal power flow control.
Most scenarios can be successfully operated by applying only
1-2 topological changes which suggests that the agent acts
rather efficiently (i.e. avoids unnecessary activity). Regarding
the timing of the topological changes the simple agent shows
very scenario-dependent behaviour.

In future work, these results can be expanded upon in
different directions, two of which are mentioned below. From
a power system perspective, it would be interesting to fur-
ther analyse the topologies proposed by the agent, to check
whether these include improved ‘base’ topologies, or whether
switching actions are unavoidable to avoid line overloading in
specific scenarios. From a RL perspective, it is interesting to
investigate how the generalisation behaviour of the proposed
approach can be further improved, without sacrificing the
overall simplicity of the method.

REFERENCES

[1] S. Stevens-Adams, K. Cole, M. Haass, C. Warrender, R. Jeffers, L. Burn-
ham, and C. Forsythe, “Situation awareness and automation in the
electric grid control room,” Procedia Manufacturing, vol. 3, pp. 5277–
5284, 2015.

[2] L. Wehenkel and M. Pavella, “Decision trees and transient stability of
electric power systems,” Automatica, vol. 27, no. 1, pp. 115–134, jan
1991.

[3] I. Konstantelos, M. Sun, S. H. Tindemans, S. Issad, P. Panciatici, and
G. Strbac, “Using vine copulas to generate representative system states
for machine learning,” IEEE Transactions on Power Systems, vol. 34,
no. 1, pp. 225–235, 2019.

[4] J. L. Cremer, I. Konstantelos, S. H. Tindemans, and G. Strbac, “Data-
driven power system operation: Exploring the balance between cost and
risk,” IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 791–801,
2019.

[5] A. Kelly, A. O’Sullivan, P. de Mars, and A. Marot, “Reinforce-
ment learning for electricity network operation,” arXiv preprint
arXiv:2003.07339, 2020.

[6] RTE France, “Learning To Run a Power Network Challenge.” [Online].
Available: https://l2rpn.chalearn.org/

[7] A. Marot, B. Donnot, C. Romero, L. Veyrin-Forrer, M. Lerousseau,
B. Donon, and I. Guyon, “Learning to run a power network challenge for
training topology controllers,” arXiv preprint arXiv:1912.04211, 2019.

[8] A. M. Prostejovsky, C. Brosinsky, K. Heussen, D. Westermann,
J. Kreusel, and M. Marinelli, “The future role of human operators
in highly automated electric power systems,” Electric Power Systems
Research, vol. 175, p. 105883, 2019.

[9] “Grid2Op.” [Online]. Available: https://github.com/rte-france/Grid2Op
[10] L. Thurner, A. Scheidler, F. Schäfer, J.-H. Menke, J. Dollichon, F. Meier,

S. Meinecke, and M. Braun, “pandapower—an open-source python tool
for convenient modeling, analysis, and optimization of electric power
systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–
6521, 2018.

[11] OpenAI, “Gym: A toolkit for developing and comparing reinforcement
learning algorithms,” library Catalog: gym.openai.com. [Online].
Available: https://gym.openai.com

[12] T. Lan, J. Duan, B. Zhang, D. Shi, Z. Wang, R. Diao, and X. Zhang,
“AI-based autonomous line flow control via topology adjustment for
maximizing time-series ATCs,” arXiv preprint arXiv:1911.04263, 2019.

[13] R. Y. Rubinstein, “Optimization of computer simulation models with
rare events,” European Journal of Operational Research, vol. 99, no. 1,
pp. 89–112, 1997.

[14] M. Lapan, Deep Reinforcement Learning Hands-On: Apply modern RL
methods, with deep Q-networks, value iteration, policy gradients, TRPO,
AlphaGo Zero and more. Packt Publishing Ltd, 2018.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 05,2022 at 06:33:34 UTC from IEEE Xplore. Restrictions apply.

		2021-07-27T13:00:31-0400
	Preflight Ticket Signature

