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ABSTRACT

This paper proposes Quantum Neural Networks (QNNs) as a data-
driven approach for predicting fuel consumption. We utilize vari-
ous layer architecture designs available in the Torchquantum frame-
work, including both entangled and non-entangled circuit designs.
In general, QNNs can achieve comparable Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE) with signifi-
cantly fewer trainable parameters. Neither pure QNNs nor hybrid
QNN models exhibit the underfitting tendencies seen in classical
neural networks (CNNs). Notably, one of the most significant find-
ings of this work is that hybridizing or ”dressing” the quantum cir-
cuit leads to substantial improvements in RMSE and MAPE for pure
QNNs. These promising results suggest potential optimizations for
reducing emissions in green shipping.

Index Terms— Classical neural network, quantum neural net-
work, parameterized quantum circuit, NISQ devices, digital twin,
fuel consumption, modeling.

1. INTRODUCTION

The maritime industry produces extensive data related to vessel op-
erations, route specifics, port activities, and more. However, much of
this data remains underutilized, primarily due to challenges such as
manual processing and limited application beyond specific purposes
like incident assessment or environmental impact measurement [1].
To address this challenge, researchers recommend focusing research
and innovation in digitalization and data usage within the shipping
industry, exploring technologies such as artificial intelligence, aug-
mented reality, virtual reality, high-performance computing, and big
data analytics [1, 2]. These technologies hold potential for various
maritime applications throughout the whole lifecycle of a ship, from
design to operational phase. An example of such technology is a
digital twin (DT).

A DT is model based systems engineering approach where a
physical entity is represented by a virtual model and connected by
a bi-directional data link [3]. A DT is capable of handling big data
and allows for performing simulations. Even though DTs are al-
ready being considered mainly during certain operations, it also hold
great potential to be implemented during the design of a ship for in-
vestigating possible designs. The Digital Twin for Green Shipping

This work was supported by the EU Horizon Europe projects DT4GS
(ID:101056799) and OASEES (ID:101092702).

(DT4GS) project, funded by the European Union’s Horizon research
program, investigates the potential of DT to be used for green ship
design and operation. Within the project, operational data from four
distinctive ship types is available to be used for DT purposes. In sup-
port of the DT4GS project, [4, 5] investigated the potential of oper-
ational data originating from a 300m bulk carrier within the project
to be applied for the construction of a fuel consumption model. This
fuel consumption model is selected to be the basis for the potential
DT. Due to the vast amounts of available data, a CNN was origi-
nally selected as the model to predict the fuel consumption of the
respective vessel.

Quantum Machine Learning (QML) is rapidly emerging as a
powerful computational tool, as detailed in [6]. Recently devel-
oped quantum-based neural networks, such as Dissipative Quantum
Neural Networks (DQNN), Quantum Recurrent Neural Networks
(QRNN), and Quantum Convolutional Neural Networks (QCNN)
or Quanvolutional Neural Networks, have demonstrated promising
potential and efficiency for future applications [7, 8, 9, 10]. Fur-
thermore, research by [11] has confirmed the feasibility of running
QML algorithms on classical computers. This paper aims to ex-
pand those earlier studies by exploring the use of QML and com-
pare its performance to the CNN. Recent studies [12, 13, 14, 15]
have demonstrated that both purely quantum and hybrid classical-
quantum machine learning approaches surpass the efficiency of tra-
ditional classical methods.These studies have motivated us to em-
ploy QNN, which may lead to a further reduction in fuel consump-
tion through more accurate predictions. Another interesting point is
that the efficacy of QNNs can now be evaluated using the metric of
effective dimension, which is related to the Fisher information ma-
trix [14]. Essentially, the greater the effective dimension, the better
the performance of the neural networks. While CNNs typically op-
erate in very high-dimensional parameter spaces, their true size, as
represented by the effective dimension, is usually much smaller [14].
The primary objective of this paper extends beyond merely testing
and comparing the performance of CNNs and QNNs using the spec-
ified dataset; we also broaden the investigation to include hybrid
models that combine both approaches. Note that quantum compu-
tation is currently performed on Noisy Intermediate-Scale Quantum
(NISQ) devices [16]. This advancement has made quantum compu-
tation feasible and has inspired the research community to develop
hybrid classical-quantum approaches. The contributions of this re-
search are threefold:

• Performance Evaluation: We analyze the performance ofIC
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CNNs and QNNs, specifically in terms of the achievable loss
rates, including Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE).

• Quantum Circuit Architectures: We examine various pa-
rameterized quantum circuit (PQC) architectures, focusing on
different layer designs, which include non-entanglement cir-
cuits, circuits with entanglement and single-qubit gates, and
entangled-circuits with two-qubit gates.

• Hybrid CNN-QNN Models: We explore the potential of hy-
brid models combining CNNs with quantum circuits, particu-
larly focusing on enhancing quantum circuits with additional
classical layers.

2. DATA PRE-PROCESSING AND MODEL
CONSTRUCTION

The operational data used in this work originates from the bunker
delivery notes (BDNs) of a 300m bulk carrier which is one of the
living labs in the DT4GS project. BDNs are one of the acceptable
data collection methods by the International Maritime Organization
(IMO) for the yearly Carbon Intensity Indicator (CII) calculation,
mandatory for most transport ship types. The CII expresses the en-
vironmental impact of ship with regard to its operational profile per
calendar year. This dataset was first used in [5] where the objective
was to investigate the potential of this data to be used for model-
ing construction achieving emission reduction through design. The
model selection for this investigation resulted in a fuel consumption
model representing the respective ship and composed of a CNN, in
combination with wind assisted ship propulsion models which are
based on physical principals.

The BDNs contained over 129,000 data points, with a time in-
terval of 5 minutes during the period between 02/06/’22 - 30/09/’23,
where each data point contained over 100 different data types, such
as ship speed, main engine power or fuel consumption. For the CNN
input selection a Spearman rank correlation analysis was performed,
identifying the data types which have a strong correlation with the
ship’s main engine fuel consumption, resulting in 7 input parame-
ters for the CNN. An additional input value for the CNN was cal-
culated by a resistance model, resulting in a total of 8 input values
for the CNN. After applying the adopted preprocessing framework,
the number of data points was reduced to 5,678 representing ‘pure’
sailing hours of the vessel. Additional information regarding the
original model architecture, data preprocessing, model input selec-
tion and the case-study performed with the constructed models is
provided in [4, 5].

3. PARAMETERIZED QUANTUM CIRCUIT

In quantum computation and information, the qubit (quantum bit) is
the basic unit of information, analogous to the classical bit in tradi-
tional computing. However, unlike classical bits, which can be in
a state of 0 or 1, qubits can exist in a superposition of both states
simultaneously, and which is a linear combination of |0⟩ and |1⟩
states. For instance, a state of a qubit can be expressed as |Ψ⟩ =
α |0⟩+ β |1⟩, where α and β are normalized complex numbers, sat-
isfying ||α||2 + ||β||2 = 1. With this special property, along with
entanglement and quantum interference, enables quantum comput-
ers to perform certain types of computations much more efficiently
than classical computers.

The manipulation of quantum states is carried out using a quan-
tum gate, which acts as a unitary quantum operator and can be math-
ematically described by a unitary matrix. On the other hand, the

Bloch Sphere provides a visual representation of the dynamical evo-
lution of a qubit state. In quantum computing, commonly used gates
in PQC or variational quantum circuit (VQC) include single-qubit
gates Rx(θ), Ry(θ), and Rz(θ), which induce the rotation of a qubit
state around the corresponding axes by an angle θ. The universal
single-qubit rotation gate is known as U3(θ, ϕ, λ) where θ, ϕ, and
λ are the Euler angles. However, the complexity of these opera-
tions goes beyond what can be fully explained using the relatively
simple Bloch sphere diagram. Notably, all these gates maintain an
equal number of inputs and outputs, ensuring that no information is
lost within the quantum system. Examples of two-qubit gates are
Controlled-Not (CNOT) Gate that operates on two qubits i.e., a con-
trol qubit and a target qubit; SWAP gate exchanges the states of two
qubits; RZZ gate that performs rotations about the Z axis on two
qubits; and etc.

3.1. Functioning of a PQC or VQC

PQC OR VQC consist of learnable parameters that can be manipu-
late through iterative optimizations. The loss rate calculation portion
is handled by classical computing resources. All these parameterized
will be optimized via classical machine learning such as gradient-
based and non-gradient-based algorithms. As shown in Fig. 1(a),
the design of a Variational Quantum Circuit (VQC) consists of three
distinct components: the encoding circuit, the parameterized circuit,
and the quantum measurement layer.

The first component is the state encoding module Ue(x),
which transforms classical input information x into qubit states
Ue(x) |0⟩⊗n enabling further processing in the subsequent module.
This second module is known as the variational module or ansatz
Uv . The design of the ansatz layer is arbitrary and often application-
dependent. The internal design can include either entangled or
non-entangled states. If entanglement is required, the CNOT or RZZ
gate can be used, and if qubit state rotations are needed, Rx, Ry or
Rz are deployed. It is important to note that repeating the layer de-
sign is permitted and often enhances the performance of the circuit.
This repetition allows for the incorporation of additional learning
parameters. In short, the variational module Uv can be written as
Uv(Θ) = LM (θ⃗M )LM−1( ⃗θM−1) · · ·L1(θ⃗1), where M represents
the total number of layers and Θ is the collection of all trainable
parameters in different layers {θ⃗1, θ⃗2 · · · θ⃗M}.The final module is
the measurement module M, functioning to extract the expectation
value of the qubit states within the quantum circuit. Unlike classical
computers, quantum results are obtained by running the circuit mul-
tiple times, a process known as ’shots.’ Consequently, the results are
the expectation values of each qubit. Typically, the Pauli-Z expec-
tation is a widely adopted choice in QML applications. The merit of
PQC lies in its capability to seamlessly integrate with other classical
components, such as matrix product states and deep neural networks.
This flexibility permits data pre-processing, including dimensional-
ity reduction (circuit dressing) [17], as well as post-processing to
achieve scaling objectives. The operation of the PQC used in this
work can be expressed as

−−−−→
g(x; Θ) =

(〈
Ẑ1

〉
, · · · ,

〈
ẐQ

〉)
, where〈

Ẑl

〉
=

〈
0
∣∣∣U†

e (x)U
†
v (Θ)ẐlUv(Θ)Ue(x)

∣∣∣ 0〉 and Q represents
the total number of qubits measured in the system. The expectation
values

〈
Ẑl

〉
can be obtained analytically when the circuit is simu-

lated classically. Similar to CNN, the quantum circuit parameters are
updated for each training epoch during the simulation. The quantum
circuit computation is optimized using an optimizer that guides the
search direction towards optimal values based on the target outputs.
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Table 1: Total Trainability Parameters, Quantum Circuit Depth, RMSE, and MAPE for CNNs, QNNs, and Hybrid QNNs

CNN-20 CNN-8 RYRYRY RXYZ RZZ SETH0 U3CU3 DRESSED-10 Hybrid 4Q-SETH0 Hybrid 8Q-SETH0 Hybrid 8Q-
XYZ

Total Trainable Parameters 701 185 16 48 16 32 96 210 64 212 228
Quantum Circuit Depth - - 2 22 16 18 18 18 8 18 22

RMSE (Train) 101.40 125.67 87.52 79.13 105.26 48.67 37.73 27.74 32.59 29.42 35.29
RMSE (Validation) 69.84 38.52 112.30 97.03 135.52 76.54 45.06 29.96 45.87 38.70 36.84

MAPE (Train) 5.76 7.21 5.14 4.53 6.16 2.53 1.88 1.44 1.77 1.58 1.93
MAPE (Validation) 3.37 2.18 9.52 8.46 11.15 5.21 3.07 1.94 3.24 2.61 2.77

RMSE (Test) 23.52 46.59 135.10 118.62 112.52 49.86 33.19 27.23 19.23 20.05 27.03
MAPE(Test) 1.56 3.34 8.43 9.98 9.67 4.45 2.80 2.35 1.92 1.83 2.53

(a) Generic architecture for PQC/VQC.

(b) RYRYRY

(c) RXYZ (d) RZZ

(e) U3CU3 (f) SETH0

Fig. 1: Generic architecture for PQC and various ansazt designs.
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Fig. 2: RMSE for CNNs and pure quantum circuits
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Fig. 3: RMSE for Hybrid quantum circuits
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4. SIMULATION AND RESULT DISCUSSION

Simulations for this task were carried out on a system equipped with
an Intel(R) Xeon(R) Gold 6246 CPU @ 3.30GHz and an NVIDIA
GeForce RTX 2080 GPU, both running at 3.30GHz. There are five
distinct PQC architectures with varying layer designs available in
the TorchQuantum framework [18]. As shown in Fig. 1, the en-
coders for all architectures utilize only rotation-X gates. Fig. 1(b)
represents the RYRYRY layer, which consists solely of RY (θ) gates
without any entanglement. It is important to note that the dotted
blocks can be repeated; however, in this study, we limited the rep-
etitions to two blocks throughout. Fig.1(b) is an architecture that
with RX(θ) RY (θ), and RZ(θ) gates and following with circular
entanglements. Fig.1(d) is solely based on RZZ-gate that has only
one learning parameter each. Fig. 1(e) shows a more complicated
layer design that with U3-gate that comprises 3 learning parame-
ters. Moreover, entagmglement is worked against another U3-gate
as well. Finally, the last figure show a special design that engtangled
the qubits with RZZ-gate and later each qubit is rotated by a RY (θ)
gate. Fig. 1(c) illustrates an architecture that incorporates RX(θ)
RY (θ), and RZ(θ) gates, followed by circular entanglements. Fig.
1(d) is based solely on the RZZ gate, with each gate having only one
learning parameter. Fig. 1(e) presents a more complex layer design
featuring the U3 gate, which includes three learning parameters. Ad-
ditionally, entanglement occurs between U3 gates. Lastly, the final
figure shows a specialized design where qubits are entangled using
an RZZ gate, followed by individual qubit rotations with an RY (θ)
gate.

A plot of RMSE vs number of epochs for classical neural net-
works and pure quantum neural networks approaches are depicted
in Fig.2. Using the Keras framework developed by [5], both CNNs
with 20 and 8 neurons in the hidden layers produce low RMSE but
exhibit underfitting, performing better on the validation set (10%)
than the training set (90%). According to [5], these errors occur be-
cause of the training error is measured during each epoch, while the
validation error is assessed after each epoch [19, 5]. Since data reg-
ularization is not applied during the validation phase, and the errors
are measured at different points in time, a slight shift in the error
plots may appear. It is important to note that conducting additional
cross-validation can help further validate the accuracy of the chosen
network. However, this issue is resolved when the QNN is applied.
This is evident from the remaining figures for the five previously
mentioned QNN architectures, where the loss rate stabilizes by the
end of the iterations. The advantage of CNNs is that they achieve
stable RMSE in around 50 iterations, whereas QNNs require at least
100 iterations to reach the same stability.

Figure 3 demonstrates that hybrid QNNs and heavily dressed
QNNs with SETH0, RYRYRY, and RXYZ layer designs outperform
pure QNNs in terms of RMSE. Additionally, hybrid-QNNs accel-
erate the RMSE convergence rate, reaching a level comparable to
or even faster than CNNs. The 8-qubit hybrid-QNN exhibits less
RMSE fluctuation compared to the 4-qubit version, as seen in the
top-left figure. This is because an 8-qubit design contains much
more trainable parameters than a 4-qubit design. Notably, both ar-
chitectures have only one classical layer at the input. According to
Table 1, the training/validation RMSEs at the end of the iterations
are 29.42/38.70 for the 8-qubit model and 32.59/45.87 for the 4-
qubit model, indicating that more trainable quantum parameters lead
to better results. When an additional layer is added to the quantum
circuit’s input, as shown in the top-right figure, both training and
validation RMSEs exhibit minor improvements over the single-layer
dressed 8-qubit structure, reducing to 27.74 and 29.96, respectively.

A key finding is that hybrid-QNNs significantly reduce RMSEs
for poorly performing pure QNN architectures like RYRYRY and
RXYZ. For the RYRYRY architecture, the training/validation RM-
SEs decrease from 87.52/112.30 to 30.19/42.58, while for RXYZ,
they drop from 79.13/97.03 to 35.29/36.84.

To further demonstrate the advantage of hybrid QNNs, a regres-
sion prediction plot for the remaining test dataset is shown in Figure
4. The pure quantum architecture, RXYZ, performs poorly in the
first two hundred data points compared to the ground truth. How-
ever, its performance improves significantly when hybridized with a
4-qubit dressed circuit. Both the pure U3CU3 and the 4-qubit hybrid
with a SETH0 layer architecture serve as strong predictors, closely
matching the ground truth. This is supported by the data in Table 1,
where both models achieve very low MAPEs of 2.80% and 1.92%,
respectively.

4.1. Computation Complexity Analysis

The advantages and disadvantages of CNNs and QNNs are challeng-
ing to compare directly. A common method to assess their efficacy
is by examining the number of iterations and the total number of
trainable parameters [12, 13, 20]. As shown in Table 1, CNNs with
20 hidden layer nodes achieve the best MAPE of 1.56% but have
the highest number of trainable parameters, totaling 701. As the size
or number of layers increases, the number of trainable parameters
grows non-linearly. For example, when the number of hidden nodes
increases from 20 to 50 or 100, the trainable parameters jump to
3,251 and 11,501, respectively. This non-linear increase does not
occur in QNN circuits. The Hybrid 4-qubit and 8-qubit architectures
with SETH0 layers contain only 64 and 212 trainable parameters,
respectively, compared to the best CNN configuration. These values
represent only 9.1% and 30.2% of the trainable parameters in the
CNN with 20 hidden nodes per layer, yet their MAPEs are nearly-
omparable. It’s important to note that, when viewed from a different
perspective, the Hybrid 4-qubit SETH0 architecture might be con-
sidered the best among the QNN designs. It requires fewer trainable
parameters and only has a quantum circuit depth of eight. Increasing
the quantum circuit depth could introduce more noise, potentially
leading to computation errors and an unreliable trained model.

5. CONCLUSION

This study introduced different types of QNNs and hybrid QNNs for
fuel consumption prediction. The performance in terms of RMSE
and MAPE for various QNN layer designs was thoroughly exam-
ined. Unlike CNNs, QNNs do not show signs of underfitting, which
is crucial for achieving a reliable machine learning model. Both
entangled and non-entangled QNN models can be enhanced through
the use of either hybridized or dressed circuit techniques. In fact,
QNNs offer greater design flexibility than CNNs, thanks to the
strategic arrangement of quantum gates, entanglement settings, and
level of quantum depth. Additionally, QNNs consistently require
fewer trainable parameters than CNNs to achieve comparable re-
sults. Future research could further explore the effective dimension
using the Fisher information matrix as a metric to assess the perfor-
mance of both CNNs and QNNs. This would offer more detailed
insights that could inform the design of more efficient QNN models
for optimizing emission reduction, contributing to greener shipping.
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