]
TUDelft

—Xact macnine
earning

Improving space and speed of MaxSAT
solvers for correlation clustering

by
M. Marchal

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Friday 27" of August, 2021 at 9:30 AM.

Student number: 4360842

Project duration: November, 2020 — August, 2021

Thesis committee: Dr. Ir. Leo J. J. van lersel Associate Professor
Dr. E. Demirovig, Assistant Professor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Acknowledgements

I would like to thank Emir Demirovi¢ for tirelessly assisting me with this thesis. He has provided me with
useful feedback, comments and suggestions during every stage of this project. Due to the pandemic,
we have not been able to meet in person but thanks to our weekly zoom meetings, this has not posed
a problem.

Finally, 1 would like to thank Ingela and René, my parents, who have supported me throughout my
academic career and beyond.

Preface

If you want to solve problems, you don'’t just solve the ones that are there. You find
and make more, and go after the impossible ones. Fostering a love and obsession with
problems is how you solve problems.

by Michael Stevens a.k.a. Vsauce

Abstract

Clustering is an important unsupervised learning task, with many applications in machine learning,
computer vision, formal program verification and finance. Heuristic approaches such as local search
are an excellent strategy for estimating the optimal solution, but they run the danger of getting stuck in
local optima. Furthermore, it is non-trivial to add user-specific constraints or other objectives to these
approaches without compromising their functionality, which makes them inflexible. Generic optimisa-
tion techniques such as MaxSAT and Integer Programming are more versatile, but they scale poorly
on bigger datasets. Additionally, the fact that the search space of correlation clustering is inherently
symmetric only exacerbates the scalability issue, especially for exhaustive search strategies.

In this work, a novel customised search algorithm for correlation clustering is proposed. It aims to
unite the flexibility of exhaustive optimisation techniques with an improved scalability and the possibility
to declaratively specify domain specific knowledge in the form of a propagator interface. The algorithm
uses a specialised hybrid MaxSAT solver with a symmetry-free encoding. Traditionally, this encoding
would restrict scalability due to the prohibitive space complexity. However, this problem is avoided
by using lazy data structures to represent key components of the encoding, which reduces the space
requirement by several orders of magnitude. In addition, a novel encoding is presented that drastically
reduces the runtime for sparse graphs. The algorithm employs incremental bounding techniques that
under certain conditions reduce the number of decisions required by the solver to prove optimality.

Vi

Acknowledgements

Abstract

1

Introduction

1.1 Exactoptimisation
1.2 Contributions L L.
1.3 Organisation

Problem setting

201 Graphs
2.0.2 Clustering.
2.0.3 Mathematical optimisation
204 SAT e
205 SATsolving.
20.6 MaxSAT.
2.0.7 MaxSATsolvers
21 Problemstatement.

Related work

3.1 SAT . . . e
311 Solvers
3.2 Correlationclustering.

Encoding

41 Lazyencoding
411 Propagatorinterface
41.2 Implementation.
4.1.3 Synchronisation.

42 Sparseencoding
421 Explanations

Lower bounding

51 Whybounds?.
52 Trianglecounting.
5.21 Lambda-triangles.
5.2.2 Delta-triangles,
523 Explanation.
5.2.4 Inferences throughbounds.

Experimental evaluation

6.1 Setup.
6.1.1 Metrics used for evaluation
6.1.2 Benchmarks
6.1.3 Hardware
6.14 Software

6.2 Results
6.21 LazyEncoding
6.2.2 Sparseencoding
6.23 Bounds L.

Contents

Contents

Discussion 53
7.1 Theorising about noteworthy results. oo L 53
7.2 Reflection. e e 53
Conclusion and future work 55
8.1 Recommendations for furtherresearch 55
8.1.1 Sparse: unique paths are relativelyrare 55
8.1.2 Tree-width. 55
8.1.3 Applications to otherproblems. L L. 56

Appendix 57

Introduction

Clustering is one of the core problems in the field of data analysis. The objective of clustering is to
divide data points into groups in a way that unveils an underlying structure in the data. Clustering is
a versatile tool and it can be applied to many different contexts due to the fact that it does not require
the dataset to contain explicit labels. Rather, it requires a notion of similarity; similar data points are
mostly placed in the same cluster, while dissimilar points are not. Examples of fields using clustering
are pattern recognition, machine learning, image analysis, bioinformatics and finance. For example,
in the field of finance, the set of stocks can be clustered in order to obtain a classification of stocks
into different sectors. In machine learning, clustering can be used to preprocess the data and remove
outliers. Figure 1.1 shows an example of a graph which we might want to analyse using a clustering
technique. Given the similarities between nodes (indicated by colours of the edges), the question is:
which nodes belong to which group?

Links / edges

Nodes / vertices

Figure 1.1: An example of a clustering problem: which nodes (labelled A through F) belong to which cluster? Based on the
similarities between nodes, indicated by colour, we might discover an underlying structure.

There are several types of clustering definitions. For example, in some definitions, clusters are
‘fuzzy’ and data points can belong to multiple clusters with differing degrees of membership. Other
types of clustering include hierarchical clustering, where clusters are subdivided into a hierarchical

1

2 1. Introduction

Clustering A Clustering B

" = = = = = W " = = = = = w
* * *

o, @g

A = m = ®m m m ®m

4 m = = ®m ®m =

-

.

L

L]

Ll

[l

. L}
.

« " ® ® ® m mw
¢ = ® ®E ® ® mm
a4 m = = = ®m &®m

Figure 1.2: An example to illustrate the symmetry that is inherent to clustering: dashed blue boxes indicate a cluster, and the
number inside represents the cluster index. Clustering A and B are clearly different, but they are simply different appearances
of what is essentially the same thing.

structure. Interestingly, one thing that all clustering paradigms have in common is that the set of all
possible clusterings is highly symmetric, meaning that many different clusterings in the space of all
clusterings are essentially the same thing. This is because relabeling the indices of clusters has no
real effect on the semantics. Figure 1.2 illustrates this by showing two distinct clusterings A and B. We
can argue that A and B differ in the same way that your right and left hands differ: they are mirrorimages
of what is essentially the same thing. Generally speaking, a symmetric search space is troublesome
for search algorithms.

Correlation clustering In this thesis, we investigate the weighted variant of the correlation clustering
paradigm by Bansal et al., 2004. Given a network of data points with links between points either labelled
‘positive’, ‘negative’ or ‘neutral’, divide these points into non-overlapping groups in such a way that the
number of negative links within groups and the positive links between groups is minimised. Contrary to
popular clustering algorithms like k-means, k-sum and k-center, correlation clustering does not require
specifying a number of clusters a priori; rather, the number of clusters is part of the optimal solution
(Becker, 2005). This definition is useful for tasks where it is difficult to determine an upper bound on
the number of clusters, such as clustering web pages (Becker, 2005) or detecting communities online.

Solving correlation clustering Correlation clustering can be solved in many different ways. Broadly
speaking, we can distinguish two categories: heuristic and exact approaches. The former approach
attempts to find a sufficiently good solution without worrying about whether there are better solutions,
whereas the latter is concerned with finding (one of) the best solutions. Correlation clustering is NP-
complete (proven by Bansal et al., 2004), which means the runtime of any exact approach is expected
to be exponential in the input size (assuming P # NP). Nevertheless, with current technology and ad-
vances in the field of optimisation, it is possible to solve moderately sized problems within a reasonable
time. Additionally, there are several strong benefits to solving a problem to optimality, instead of rely-
ing on heuristics. These facts together warrant further investigation into the efficiency and scalability
of exact approaches for correlation clustering.

Optimisation The intersection of data analysis and constraint programming has been identified as a
promising and high-potential research field. Berg and Jarvisalo, 2017 has demonstrated that a Boolean
optimisation strategy called MaxSAT is competitive in the space of exact solvers for the problem of

1.1. Exact optimisation 3

correlation clustering. However, there are several drawbacks associated with the model proposed by
Berg and Jarvisalo, 2017. In this thesis, we discuss these limitations and suggest novel techniques to
mitigate their impact.

1.1. Exact optimisation

Using a heuristic strategy is a natural response when presented with a problem that is NP-complete.
Understandably so, since the exponentially scaling runtime of exact algorithms and our limited time
on this planet are not a great combination. However, there are several serious drawbacks associated
with heuristic methods, both from a strategic as well as an ethical standpoint. We introduce these
shortcomings here, and we motivate how and why exact approaches are effective at countering them.
We subsequently motivate the reason for choosing a MaxSAT based approach instead of other exact
methods.

Shortcomings of non-exact methods

Suboptimality Approximative methods (or: approximation algorithms) typically have a very short run-
time, but this comes at a cost of solution quality. It is possible for such an algorithm to have some type
of quality guarantee. For example, Bansal et al., 2004 proposes an O(logn) approximation algorithm,
meaning that the optimal solution is at most O(logn) times better than the solution produced by the
algorithm. However, not every approximative method has such a guarantee; it is often a non-trivial task
to derive and prove such a property. In the case where there is no quality guarantee, this puts us at a
strategic disadvantage: a possible competitor, who is also attempting to solve the problem, may have
a solution that is significantly better than the one produced by our algorithm. Hebrard and Katsirelos,
2020 give a compelling argument in favor of having a provably optimal solution, namely that when
there is a very large sum of money (or, more generally: resources) involved, the difference between an
almost-optimal and a truly optimal solution is significant. The problem of suboptimality is not an issue
when using exact algorithms since we know for an absolute fact that the solution produced by an exact
algorithm cannot be improved any further.

Imposing constraints Another disadvantage of non-exact methods, heuristics in particular, is their
inflexibility with regards to imposing constraints on the solutions that the algorithm produces. A heuris-
tic is a procedure that builds a solution by making local, greedy decisions. In general, these greedy
decisions do not respect any additional constraints imposed on the problem, which means the heuristic
algorithm will violate them. Of course, it might be possible to modify the heuristic so that it does re-
spect the constraints, but this is not straightforward and essentially comes down to developing a whole
new algorithm. Moreover, if the original heuristic algorithm had any performance guarantees, the new
heuristic will not possess these.

Why would one want to impose additional constraints on a problem? The reason for this is the
mismatch between an abstract model of a problem and its real-world counterpart. For correlation
clustering, there are several examples of constraints that one might want to impose on the problem:

1. Disallowing any clusters from having more (or fewer) than x points in them.

2. Disallowing certain specific combinations of points to be co-clustered. For example, due to ex-
ternal factors, it is required to not have points a, b and c in the same cluster.

3. Demanding that the number of clusters is exactly equal to some number y.
4. Demanding that the number of negative links within a cluster is no more than z.

With the increasing prevalence of decision-making algorithms in modern society, it is of utmost im-
portance to ensure that these algorithms do not put individuals at a disadvantage by discriminating
against them based on socially sensitive features. Imposing constraints on the problem can be an
effective tool in reducing this type of harmful effects. Another example of an undesirable solution is the
following example:

4 1. Introduction

Suppose we are trying to partition a team of people into groups in which they will work together on a
project. We know that some pairs of people enjoy working together, and some don’t. In order to solve
the problem and create desirable groups of people, we can cast it as a correlation clustering problem.
However, in this setting, we would like to add an additional constraint to the problem, namely: groups
of people should be at least of size two. Otherwise, we would have people working alone on the project
and this is undesired.

Shortcomings of exact methods

The arguments presented above give reasons for using exact methods over approximate ones. Unfor-
tunately, exact methods have several problems, primarily regarding the scalability of such approaches.
For example, the Integer Linear Programming (ILP) formulation for correlation clustering is proposed in
Ailon et al., 2005 and Gael and Zhu, n.d. This formulation eliminates a large portion of the symmetries
that are inherent to clustering, but Berg and Jarvisalo, 2017 remark that it scales poorly due to the fact
that the number of constraints is cubic in the number of points. Another approach is the Quadratic
Integer Programming (QIP) formulation by Bonizzoni et al., 2008. The number of constraints of this
formulation scales better than the ILP formulation under certain conditions, but Berg and Jarvisalo,
2017’s findings suggest that it scales poorly on larger datasets in practice. In their experiments, the
QIP formulation was unable to solve any of the instances with more than 50 points. The authors con-
jecture that this is due to the non-convexity of the objective function. Another possible explanation is
that this QIP formulation does not eliminate symmetries in the search space.

MaxSAT approaches Bergand Jarvisalo, 2017 propose three MaxSAT encodings of correlation clus-
tering which resemble the ILP and QIP formulations. They find that all three encodings are superior to
the QIP and ILP formulations in their runtime experiments.

The first encoding is based on the ILP formulation, and we will refer to it as the transitive encoding. Sim-
ilar to its ILP-cousin, this encoding suffers greatly from scalability due to the cubic number of clauses
required to represent an instance of correlation clustering. The second encoding resembles the QIP
formulation, and will be referred to as the unary encoding. This encoding allows us to specify an upper
bound on the number of clusters. It requires slightly fewer variables and clauses under certain con-
ditions, and it becomes slightly more compact as the graph’s density decreases. The third and final
encoding represents the cluster index of data points using boolean variables. This encoding is more
compact than unary, requiring significantly fewer variables and clauses.

1.2. Contributions

In this work, we propose a MaxSAT solver that is specifically engineered for correlation clustering.
Features of the solver include a highly compact way of lazily storing clauses, a novel encoding that
(under certain conditions) sharply reduces the number of variables required and a technique that can
incrementally compute bounds on the problem.

The research questions are the following:

» How can we improve scalability of representational complexity for correlation clustering instances
in MaxSAT?

» How can we leverage the domain knowledge of a problem-specific solver?

Scalability This work proposes novel techniques that aim to improve the runtime and space require-
ments for larger datasets. The runtime is reduced by using a novel encoding and by dynamically
computing bounds. Furthermore, the scalability is addressed by using a lazy internal representation of
the problem.

Hybrid problem-specific solver The algorithm that is used here maintains a representation of the
graph while solving. This makes the algorithm a hybrid solver, because pure MaxSAT solvers can only
reason about their basic elements: variables, literals and clauses. The graph representation is able
to derive lower bounds (see chapter 5) and it is used to create clausal explanations for the sparse
encoding (see chapter 4).

1.3. Organisation 5

1.3. Organisation

This thesis is organised as follows. In chapter 2, we state the problem formally and define any techni-
cal terms from the fields of graph theory, (Max)SAT and clustering. In chapter 3, we discuss relevant
scientific work and relate it to the research questions. Chapters 4 and 5 explain the technical aspect of
the contributions of this thesis; the former explains the novel contributions to the encoding by Berg and
Jarvisalo, 2017 and the latter presents a novel bounding algorithm for correlation clustering. Chapter 6
features an experimental evaluation of the performance of our work on real-world datasets, comparing
it to the baseline by Berg and Jarvisalo, 2017. Furthermore, the efficacy of the bounding techniques
presented in chapter 5 is evaluated using appropriate metrics. Chapter 8 summarises the most impor-
tant findings of the experimental evaluation and draws conclusions. Finally, chapter 7 speculates on
promising directions for future work and reflects on the findings of the experimental evaluation.

Problem setting

Preliminaries

This thesis makes contributions to MaxSAT solving for correlation clustering. In this chapter, we formally
define concepts related to (Max)SAT and clustering; in the second part we define the problem formally
with examples.

2.0.1. Graphs

A graph G is a tuple (V, E). V is the set of nodes (or vertices) and can be any set of distinct identifiers.
Sometimes, integers are used to identify nodes, but any symbol or sequence of symbols can be used
to identify a node in a graph. A common convention is to let N = |V|. E is the set of edges of the
graph. An edge represents a relation between two vertices. In general, an edge can have any number
of properties (for example: capacity, weight, color, etc.). In correlation clustering, the only relevant
property of an edge is the weight (or similarity). We assume that the similarity is symmetric which im-
plies that an edge from u € V to v € V is the exact same thing as an edge from v to u. In this work, it
is assumed that not necessarily every pair of nodes u,v € V have an edge between them. Finally, a
common convention is to let |[E| = M.

Graphs are commonly used to represent relations between objects. A well-known alternative name for
graphs is a network. Graphs can be directed, meaning that edges are a ‘one way street’, or undirected;
in the latter case, the edge going from i to j is considered equivalent to the edge going from j to i. In
our setting of correlation clustering, edges represent similarities between objects. Since similarity is a
symmetric property, we assume in this work that graphs are undirected. Bansal et al., 2004’s definition
of correlation clustering does allow for asymmetric similarities, but Berg and Jarvisalo, 2017 shows that
the assumption of symmetric similarities can be done without loss of generality. We refer the interested
reader to Berg and Jarvisalo, 2017 section 2.2.

Types of graphs Graphs can be classified based on different properties, such as edge density, con-
nectedness or maximum path length. For this thesis, it is important to discuss one particular type of
graph: the tree. A tree graph G = (4, Er) has several properties:

1. If || = N, then |Ef| =N — 1.
2. For every v;, vj € Wy, there is exactly one path from v; to v; and vice-versa.
3. Gy is connected, and removing any edge from E; would disconnect the graph.

A special type of tree is the spanning tree. Suppose we have a graph G, = (1}, Ey), which is not a tree.
Then we can define a spanning tree over Gy. Call it Gspanning = Vspanning, Espanning)s then Gspanning
has the following properties:

1. Gspanning is a tree.

8 2. Problem setting

2. Vspanning =M.
3. Espanning c EO-

In chapter 4, we make use of this concept by introducing an algorithm that computes a spanning tree
over a cluster using a partial solution.

2.0.2. Clustering

Clustering is a broad term used to describe a large number of problems that are all related by their
general objective: dividing points up in a group in some optimal way. Clustering models can vary wildly
and clustering definitions are sometimes the origin of confusion. Estivill-Castro, 2002 argues that this
is the case because the notion ‘cluster ’ cannot be well-defined, and that the problem of clustering is
highly context-dependent. Estivill-Castro, 2002 gives further recommendations for classifying cluster-
ing models, and we refer the interested reader to their work. In this thesis however, we adopt one
specific clustering model coined by Bansal et al., 2004.

Correlation clustering Bansal et al., 2004 define the problem of correlation clustering. It is a variant
with qualitative similarity information, hard clusters and a specific objective function. We define them
here.

The similarity matrix W is a matrix that carries the information about edge similarities. W is square
and symmetric, and its elements are members of {—1,1,0}. A similarity of —1 indicates that the two
endpoints of the edge are dissimilar, while a value of 1 indicates they are similar. If, for u,v € V, there
is no edge between u and v, the similarity value for these two points is 0.

A solution for correlation clustering is any function f : V — W that partitions V. That is, f should
assign every v € V to exactly one cluster.

The cost of a clustering f is defined in terms of ‘mistakes * made by f. A good clustering will assign
points with high similarity to the same cluster, while assigning points with high dissimilarity to different
clusters. The cost of a solution is the total number of mistakes made by f. There are two types of
mistakes:

» A positive mistake: the case where the edge is labelled positive, yet the endpoints of the edge
are assigned to different clusters. The right image in figure 2.1 shows an example of a positive
mistake.

* A negative mistake: the case where the edge is labelled negative, yet the endpoints of the edge
are assigned to the same cluster. The left image in figure 2.1 shows an example of a negative
mistake.

Figure 2.1: Visual representation of the objective function shown in equation 2.7. Dashed blue boxes indicate a cluster. The
left hand side shows a negative mistake (a negative edge within a cluster) and the right hand side shows a positive mistake (a
positive edge between clusters).

2.0.3. Mathematical optimisation
Mathematical optimisation is an umbrella term for any technology that selects a best element from a
set of alternatives. The topic of this thesis is concerned with finding an optimal clustering from the large

set of all possible clusterings, and can therefore be considered a mathematical optimisation problem.
We briefly describe the most commonly used techniques in this section. The optimisation technique
that is used in this thesis is discussed later in more detail.

Constraint programming Constraint programming is a generic, declarative technique that is used
to model real-world problems. It can be seen as a cousin of the algorithm; an algorithm specifies how
to find a solution to a problem, whereas a constraint program only specifies properties of a valid and
desirable solution.

A constraint program typically consists of a set of core elements:

1. Variables
2. A domain for every variable. A domain is a finite set of values that a variable can take.

3. A set of constraints. A constraint can be seen as a ‘joint domain’ of a set of variables, forbidding
certain combinations of value assignments to these variables. An example of a constraint is
X1 + X <5.

4. An objective function. This is a function mapping the set of variables to a real number. The
objective can be to either minimise or maximise this function.

Integer Linear Programming (ILP) & Quadratic Integer Programming (QIP) ILP and QIP are tech-
niques used to solve optimisation problems. The techniques are characterised by the fact that variables
are discrete, meaning they can only take on integer values, and the fact that constraints are a linear
combination of the variables. QIP allows for an objective function with quadratic terms, whereas ILP
restricts the objective function to be a linear combination of the variables. For example, the expression
4x,x, + 2x, is a valid QIP objective, but not a valid ILP objective.

2.0.4. SAT

The satisfiability problem is arguably the most fundamental problem in theoretical computer science. It
was used in the first NP-completeness proof by Cook, 1971 and consequently spawned a new area of
research: complexity theory. Practical applications of SAT are plentiful, ranging from formal program
verification to scheduling.

Conventions and nomenclature The Satisfiability problem is concerned with whether there exists
an assignment of values to variables {x4, x,, ..x)} such that ¢(x;, x5, ..xy) evaluates to true. A short
overview of commonly used terms in SAT is the following:

 Variable: the fundamental atom of a SAT formula. It can be assigned true or false. In the context
of SAT-solving, a variable can also be unassigned.

* Literal: either a variable, or its negation. If x; is a variable, then x; and —x; are literals. If x; is
assigned false, then the literal —x, is considered to be true.

» Clause: a disjunction of literals.

» Unit clause: a clause containing only one literal.

* (Boolean) formula / proposition: a conjunction of clauses.

+ SAT/Satisfiable: When a boolean formula has an assignment that causes it to evaluate to true.

+ UNSAT/Unsatisfiable: When every possible assignment to variables leads to the boolean formula
evaluating to false.

SAT problems are logical propositions that are specified using clauses. It is a common convention to
assume the clauses are represented in conjunctive normal form (CNF), i.e. an AND of ORs. A clause
consists of a finite number of literals; a literal is either a variable, or its negation.

10 2. Problem setting

Example of a SAT problem Equation 2.1 shows an example of a logical proposition in CNF. The
boolean formula has seven variables and four clauses.

¢ = (=x1 Vay Vxg) A(mxy Vaxy) A(xz Vxg V—xs) A (—xy) (2.1)

The right-most clause, —x,, only contains one literal and it is a common convention to call this a unit
clause. ¢ is satisfiable because we can find values for {x1,..x,} such that ¢ evaluates to true. For
example, if we set x,, x3, x5, x¢ to true while setting x1, x4, x, to false, the formula will evaluate to true.
Note that this solution is not unique; there are others.

2.0.5. SAT solving

One of the reasons for the widespread use of of SAT in many applications is that Confiict-Driven Clause
Learning-SAT solvers are so effective in practice (Biere, Heule, et al., 2009). In this section, we discuss
several core concepts that are needed in order to grasp the concept of CDCL. Biere, Biere, et al., 2009
gives an excellent high-level description of the CDCL algorithm; we repeat the pseudocode here and
refer to it throughout this section.

DPLL DPLL, named after its inventors Davis et al., 1962, is a search strategy specifically engineered
for SAT problems. It works by selecting any ‘unconsidered’ literal x and assigning it to true. It then
simplifies the formula given the chosen literal and its value, then recursively solves the new boolean
formula. If the new formula is unsatisfiable (specifically: not all clauses are satisfied, and the domain
of one or more variables is empty), the algorithm assigns x to false, simplifies the formula and tries to
solve it again. This way, the search space is exhaustively searched. If both the ‘true’ and ‘false’ branch
report unsatisfiability, the program returns UNSAT. Simplification of a formula is done by removing any
satisfied clauses from ¢ and eliminating false literals from clauses.

Propagation An important concept in SAT solving is propagation. Propagation lies at the core of
modern SAT algorithms, since it cuts down the search space by inferring information from a partial
solution, as well as detecting conflicts when one occurs. Propagation is done at two places in the CDCL
algorithm: firstly at the beginning, in order to check whether the formula is UNSAT without making any
assumptions, and secondly deeper in the loop in order to infer unit information and detect conflicts.
Propagation is done by the UnitPropagation(¢, A) procedure in algorithm 1.

Suppose there is a unit clause, w = x;. We know that if we assign x; to false, w will evaluate to
false, and so the formula becomes unsatisfiable. Therefore, we are certain that if the formula has a
satisfying solution, it will assign x; to true. Therefore, we can infer that x; must be true. Propagation
is the event where we can infer the value of certain literals as a result of assigning a value to another
literal. Consider the following example, where we start with the following boolean formula:

¢ = (x1 \Y xz) A (—|x1 \% _lxz) (22)
Now suppose we assign x; to true; simplification of the formula yields ¢':

¢ =(TVx)ALVxy)

= (%) @3
Now, ¢’ has a clause that is unit, so we can say that as a result of assigning x, to true, we have inferred
that x, must be false. Moreover, the explanation for x, becoming false is given by the conjunction of
literals that led to x,’s falsehood. In our example here, the explanation for —x, would be x;. Note that
an explanation can consist of more than one literal.

Propagation can sometimes lead to conflicts. Suppose that we have two clauses w; = (x; V x3)
and w, = (x; V =x;). Now suppose the solver decides to set x; to false; this causes both w,; and
w, to become unit, leading to the propagation of unit information. However, the unit information is
contradictory: w; will infer that x, is true, but w, will cause x, to be false. This is what is called a
conflict, and the solver will have to backtrack to resolve the conflict.

11

CDCL Conflict-driven clause learning, or CDCL, is a technique proposed by Marques and Silva, 1996
and Bayardo Jr and Schrag, 1997. It greatly improves the speed of SAT solvers by learning from
conflicts that happen during search. Suppose that unit propagation of the current partial assignment
leads to a conflict. Naturally, this is the result of the current partial solution A being unsatisfiable. Not
every assigned literal x € A is responsible for the conflict, but a subset A’ € A is. Since A’ caused a
conflict, we know that the following is true:

/\ x | — UNSAT (2.4)

x€eA’

Now, we consider the contrapositive of the proposition, which is logically equivalent:

SUNSAT — o[/\ x
xeA’ (2.5)
= SAT — \/ —x

x€A’

The bottom equation reads: if there is a satisfying assignment, then the disjunction V,c4 —x must
be true. A disjunction of literals is a clause, and that is exactly what CDCL ‘learns’ as a result of the
conflict. Algorithm 1 gives the pseudocode for CDCL SAT-solvers, which is taken from Biere, Heule,
et al., 2009. The procedure of extracting a clause from a conflict is performed by the subprocedure
ConflictAnalysis(¢, A) in algorithm 1. A refers to the solver’s current partial solution, B refers to the
decision level to which the solver should backtrack after a conflict and finally dl stands for the current
decision level.

Algorithm 1: Pseudocode for a typical CDCL algorithm. This pseudocode was adopted from
Biere, Biere, et al., 2009.
Result: True if ¢ is SAT, and false otherwise.
if UnitPropagation(¢, A) yields a conflict then
| return UNSAT
end
dl <0;
while NotAllVariablesAssigned(¢p, A) do
(x, v) «SelectBranchingVariable(¢, A);
dl «dl + 1;
A —A U(x,v);
if UnitPropagation(¢, A) yields a conflict then
B —ConflictAnalysis(¢, A);
if B < 0 then
| return UNSAT
end
else
BackTrack(¢, A, B);
dl B
end
end
end

For completeness, we provide a short summary of the subprocedures in algorithm 1. The short sum-
maries are also by Biere, Heule, et al., 2009 and we paraphrase them here.

» UnitPropagation(¢, A): iteratively applies the unit clause rule to clauses. When a conflict is de-
tected, this procedure returns false.

12 2. Problem setting

* PickBranchingVariable(¢, A): selects a variable from the set of unassigned variables, and assigns
it a value.

» ConflictAnalysis(¢, A): analyzes the most recent conflict and learns a clause from it, which it adds
to the clause database. Returns the decisions level B to which the solver should backtrack after
processing the conflict.

» Backtrack(¢, A, B): instructs the solver to backtrack to the decision level given by B, undoing all
variable assignments in A that belong to a higher decision level that B.

 AllVariablesAssigned(¢, A): tests whether all variables have been assigned. If this is the case,
then that means the solver has found a solution and it should return SAT.

CDCL is extremely effective at solving SAT problems. Open source SAT solvers are able to solve
real-world boolean formulas consisting of millions of variables. However, since SAT is NP-complete,
it is guaranteed that there are instance classes which are hard to solve (unless P = NP). Ganesh and
Vard, n.d. investigate the reasons for why SAT solvers perform so well on real-world instances, but they
do not give a definitive explanation.

Building your own solver Eén and Sérensson, 2004 Implementing a SAT solver is by no means a
trivial task. Fortunately, Eén and Sérensson, 2004 gives a detailed step-by-step explanation for imple-
menting one. For this thesis, the SAT solver proposed by Eén and Sérensson, 2004 was implemented
in C++ as a preparatory task.

2.0.6. MaxSAT

MaxSAT is the optimisation variant of SAT: the goal is to find an assignment that maximises the number
of satisfied clauses. MaxSAT is an excellent tool to solve mathematical optimisation due to its ability to
both translate constraints and objectives as clauses.

Variations There are different variants of MaxSAT. For example, in weighted MaxSAT, every clause
has a weight and the goal is to maximise the weight of the satisfied clauses. Partial weighted MaxSAT
is a variant where the set of clauses consists of hard and soft clauses; the goal is to find an assignment
satisfying all hard clauses while minimising the number of falsified soft clauses. This variant is useful
for modelling problems, because it allows us to translate constraints as hard clauses, while encoding
the objective function using the soft clauses. As such, we make use of the partial weighted MaxSAT
variant in this thesis.

2.0.7. MaxSAT solvers

Most MaxSAT solvers are developed for general purposes and aim to optimise performance on a large
set of benchmarks from a variety of domains. According to Cai and Zhang, 2020, the most popular and
effective approach for MaxSAT is the SAT-based approach, which transforms the optimisation problem
into a sequence of SAT decision problems.

SAT-based approaches for MaxSAT can be divided into two categories: iterative search and core-
guided search. lterative search uses a SAT-solver as a subroutine, and iteratively attempts to find an
assignment satisfying at least k soft clauses. Depending on the direction of this linear search, k is
either increased or decreased in every iteration. In the case of a bottom-up linear search, optimality
is reached at k = k' — 1 whenever the the formula becomes unsatisfiable at k = k’. In the top-down
approach, optimality is reached when the formula with k = k' + 1 clauses is UNSAT, but is SAT with
k=k.

2.1. Problem statement

Given a graph ¢ = (V,E), we are looking for a function f : V — N that partitions V in a way that
minimises the number of mistakes. Recall that a partition over a set of objects, in this case V, assigns
exactly one number to each v € V. In predicate logic, this is defined as follows:

fisapartiionof V & vv eV, anf(v) =n (2.6)

2.1. Problem statement 13

The number of mistakes, or: the cost of f is defined as follows:

«H= D Ae@=cil+ D e # c()] @7

i,jEVS.t.Wi,j<0 l',]'EVS.t.WiJ'>0

Here, the indicator function 1[.] is used. It is a function that returns 1 if its argument evaluates to true,
and 0 otherwise.

Equation 2.7 is composed of two parts. The left hand term penalises putting two dissimilar points in
a cluster, whereas the right hand term penalises putting similar points in different clusters. Figure 2.1
shows these two types of mistakes. Figure 2.2 shows four different clusterings of some arbitrary graphs;
the reader is encouraged to verify that the number of mistakes is the same as the number written in the
caption.

From data to similarity matrix Correlation clustering requires a qualitative notion of similarity be-
tween any two points. An N-by-N matrix with entries W ; € {0, +1, —1} is often used for this. One can
assume that this matrix is given, without giving much thought from whence it came. However, this work
features an empirical analysis of real-world datasets, and similarity matrices don’t appear from thin air:
one has to construct them. A dataset is a collection of datapoints, where each datapoint is a vector in
R%. d is the dimensionality of the datapoint. Section 6 describes the procedure for converting a dataset
into a similarity matrix.

14 2. Problem setting

(a) A clustering with zero mistakes. All green edges are contained (b) A clustering with one mistake: the green edge between node
within a cluster, and every red edge crosses a cluster boundary. 1and 2.

:
=
[}
[l
.

(c) A clustering with two mistakes: the red edge between node 2 (d) A clustering with five mistakes: edge {1, 2}, {2, 6}, {3,6}, {3,4}
and 4, and the green edge between node 3 and 4. and {4, 5}.

Figure 2.2: Different examples of clustering different graphs. Blue circles indicate nodes, red lines indicate a negative edge
and green lines indicate a positive edge. The number of mistakes is written in the subcaption, along with the edges that are
responsible for the mistake.

Related work

In this section, we treat recent scientific works that are relevant to our research questions.

3.1. SAT

The Satisfiability problem, one of the most fundamental problems in computer science, is introduced in
chapter 2 as a theoretical problem. However, SAT-related techniques have gotten increasing interest
due to their applicability in developing generic approaches to solve common data analysis problems.
Here, we describe relevant scientific work that has harnessed the power of SAT solvers.

Work using SAT Hebrard and Katsirelos, 2020 proposes a method to solve the graph colouring
problem using (Max)SAT techniques combined with CDCL. Among others, Hebrard and Katsirelos,
2020 introduce a datastructure which is responsible for propagating transitivity constraints. This idea
is used as a foundation for our lazy encoding of correlation clustering into MaxSAT, which is further
explained in chapter 4.

An older but relevant work is Goldberg et al., 2001, who use SAT for combinational equivalence
checking, a key problem in verification methods for digital systems. In short, the problem addresses
the question whether two logic circuits are logically equivalent. This question can be answered by
formulating it as a SAT formula; let f; and £, be the logical functions implemented by the two circuits.
We then want to know whether there exists an input to these functions such that f; (input) # £, (input).
This is the same as computing whether —(f; © f,) is SAT. In Goldberg et al., 2001’s work, a speedup
of two orders of magnitude is achieved by using a SAT-based approach.

Propagation rules A minor but very relevant contribution by Hebrard and Katsirelos, 2020 is the
transitivity propagation rules that they propose. Their work aims at solving the graph colouring problem
using a hybrid CP/SAT method. Since the relation ‘x has the same colour as y’ and ‘x is co-clustered with
y’ are both equivalence relations, they are bound by transitivity constraints. Hebrard and Katsirelos,
2020 explain how to propagate transitivity whenever a variable is assigned a value. Their propagation
rules are implemented by maintaining a graph H that is updated as the partial assignment of values to
variables grows. H contains a mapping b : V. — V" which assigns an index to every node. Whenever
a literal becomes true (call this literal p), the propagator is invoked. When p = x,, ,,, which corresponds
to the nodes u and v getting the same colour, then for all v' € b(v) and u’ € b(u), x,,,» becomes true.
Similarly, when p = —x,,,,, for all u’ € b(u), v’ € b(v), x,,» becomes false. We use these propagation
rules in our lazy encoding in chapter 4.

In addition to inferring which literals can be inferred, Hebrard and Katsirelos, 2020 also show what
the explanations for these inferences are. It is important to distinguish between a reason and an ex-
planation: the reason for a propagations is the entire clause which caused the propagation to trigger,
whereas an explanation is the conjunction of literals that implies the inferred literal. The difference
between reasons and explanation is minor. Hebrard and Katsirelos, 2020 use the transitivity clauses
as the reasons for inferences; since it is a rather straightforward process, we do not repeat it here.

15

16 3. Related work

3.1.1. Solvers
A surprising property of the SAT problem is that it is intractable, yet very large formulas with millions
of variables (taken from industrial benchmarks) have been solved using SAT solvers. Buss and Nord-
strom, 2021 provide insight into this remarkable result by analyzing SAT using proof complexity. A talk
by Ganesh and Vard, n.d. attempts at providing answers through a more empirial approach, but the
unreasonable effectiveness of SAT solvers remains an open question to this day. Here, we describe
some of the scientific work that has led to modern SAT solvers.

Davis et al., 1962 proposed an algorithm for solving SAT, and it has seen widespread use since
its inception. Another important step in SAT solvers was the work of J. M. Silva and Sakallah, 1997
who proposed GRASP, a search algorithm for satisfiability that used Conflict Driven Clause Learning
(CDCL), which catapulted the efficiency of SAT solvers.

CDCL CDCL is an important component of modern SAT solvers. During search, the solver will make
assumptions about the solution (‘decisions’) in an attempt to find a satisfying assignment. These as-
sumptions frequently lead to cases where the assumptions will cause the formula to become unsat-
isfiable, and the solver has to undo some assumptions. These cases are called conflicts, and CDCL
learns from these by extracting the ‘root cause’ for the conflict. It then forces the solver to not make this
mistake again by disallowing the specific circumstances that led to the conflict. In chapter 2, CDCL is
explained in more detail.

3.2. Correlation clustering

Encodings
Here we describe Berg and Jarvisalo, 2017’s encodings in more detail. These are relevant since they
form the basis for the lazy encoding and the sparse encoding in chapter 4.

Transitive The transitive encoding proposed by Berg and Jérvisalo, 2017 uses variables x,, ,V u,v €
V with the semantics that x,, ,, is true if and only if u and v are co-clustered. The objective function is
given by the following expression:

max z X + Z (1= xu) (3.1)
Wiy >0 Wy p<0

Finally, the only constraint is the transitivity constraint. This constraint forces the solution to be a legal
clustering. It is defined for every triple u, v, w of vertices:

Transitivity : V distinct u,v,w € V (mXyp V Xy V Xy w) (3.2)

This constraint may seem foreign when it is presented in conjunctive normal form; rewriting it as an
implication makes it easier to identify the semantics:

Transitivity : v distinct u,v,w € V Xup N Xpw — Xyw (3.3)

Two notable pieces of scientific work that improve upon the transitive encoding are by Miyauchi and
Sukegawa, 2015 and subsequently Miyauchi et al., 2018, who propose improvements to the ILP for-
mulation. The first paper identifies a subset of transitivity constraints that is redundant and by doing
so, they reduce the prohibitive number of constraints required to represent the problem. Specifically,
they show that the number of constraints is of order O(nm.,), where n is the number of nodes and
ms, is the number of edges with non-negative weight. Miyauchi et al., 2018 then take advantage of
their previous work by perturbing all zero-weighted edges in the graph in such a way that the optimal
solution remains the same. By perturbing zero weight edges, they reduce m.,, which in turn reduces
the number of transitivity constraints.

Unary The unary encoding proposed by Berg and Jarvisalo, 2017 uses variables y*, i€V,1<k <
K. The interpretation is that y/* is true if and only if node i is assigned to cluster k. Berg and Jarvisalo,
2017 define several derived variables in order to define the objective function. These details are omitted

3.2. Correlation clustering 17

and we only give the constraints for this encoding: the ExactlyOne constraint. This constraint ensures
that every node is assigned to exactly one cluster, and it is given by the following expression:

ExactlyOne : Vi € V 2 yk =1 (3.4)
1sksK

The constraint is not yet in clausal form. Berg and Jarvisalo, 2017 omit the details for converting this ex-
pression into clausal form, but it can be done using two constraints: MoreThanZero and LessThanTwo.
Together, they enforce ExactlyOne.

MoreThanZero : Vi € V \/ vk (3.5)
1<k<K

The LessThanTwo constraint is given by Sinz, 2005.

Binary The binary encoding proposed by Berg and Jarvisalo, 2017 uses boolean variables to repre-
sent the cluster index of a vertex as a binary number. As such, the variables are yl-",i eV, 1<k<a
and y¥ represents the k'" bit of the binary representation of i’s cluster index. There are several derived
boolean variables which are used to represent the objective function, but these are omitted here.

Bounds and approximations

Bansal et al., 2004 shows that there is a trivial 0.5-approximation by either putting all nodes in one
cluster, or each node in a separate cluster. They also propose an O(logn) approximation algorithm
which uses linear programming combined with region-growing techniques. Bansal et al., 2004 proposes
a Polynomial Time Approximation Scheme (PTAS) as well, making it possible to get close to the optimal
solution at the cost of increased runtime.

Bansal et al., 2004 also shows that a certain substructure in a similarity graph can give a lower
bound on the number of mistakes made by the optimal solution. This bound is static, meaning it can
be computed before commencing the solving process. In chapter 5, we propose a method that goes
beyond this idea by identifying two additional substructures with the same property.

The work by Hebrard and Katsirelos, 2020 is concerned with graph colouring, a different graph
problem where the objective is to assign partition a graph into ‘colours’ such that no two adjacent
vertices have the same colour. They compute dynamic bounds for the problem in two different ways.
The first one is a greedy algorithm, which finds a ‘good ’ clique in the graph, which is used to give a lower
bound on the minimum number of colours required. The other method is similar to the one proposed
by Bansal et al., 2004, since it identifies a substructure in the graph which gives a lower bound on the
number of colours. The substructure here is a Mycielskian subgraph, which was proposed by Mycielski,
1955.

Encoding

The encodings described here are a hybrid between a constraint program and a MaxSAT problem. In
a regular MaxSAT problem, clauses are responsible for propagating unit information, but we instead
let a propagator fulfil the role of clauses instead.

The first encoding is an adaptation of Hebrard and Katsirelos, 2020’s work on graph colouring. The
second encoding is inspired by Hebrard and Katsirelos, 2020, who state that “the main drawback of
this model [the transitive encoding] is that we need a large number of variables. This is especially
problematic for large sparse graphs where the number of non-edges is quadratic in the number of
vertices and significantly larger than the number of edges”.

4.1. Lazy encoding

Motivation The need for a lazy encoding stems from the fact that a purely clausal encoding requires
O(JV|3) clauses. Specifically, the number of transitivity clauses required is given by (V|3 — 3|V|? +
2|V])/2 1. Transitivity clauses contain exactly three literals. If we assume that a literal requires 4 bytes
to store (one 32-bit integer), then a graph with 500 nodes already requires 750 MB just to store the
transitivity clauses. The lazy encoding only invokes these clauses on demand, meaning the clauses
do not have to be generated a priori. Instead, we store the edge list of the graph which requires O(|E|)
space, which is almost negligible compared to 0(V3).

4.1.1. Propagator interface

The representation of the graph structure fully replaces the transitivity clauses and this means that the
responsibilities of these clauses must be fulfilled by the lazy encoding. Recall from chapter 2 that the
Job of a clause is to propagate unit information. As soon as all but one of the literals of a clause are
false, we know that the last, unassigned literal must be set to true. If not, the clause would evaluate to
false, making the solution unsatisfiable. The rules for deciding which literals become true as a result
of the propagated literal are already given by Hebrard and Katsirelos, 2020 in chapter 3 so we do not
repeat them here. Instead, we describe the propagator interface that is used in the solver’s code. In
the next subsection, we give implementation details for the underlying graph structure, which is integral
to implementing the lazy encoding.

Propagator interface The propagator interface defines the responsibilities of a propagator. This
interface is part of a MaxSAT solver by one of the authors of this thesis (Emir Demirovi¢); it is not yet
published.

* PropagatelLiteral(x, ,): accepts a literal and returns false iff assigning this literal to true would
lead to a conflict. Modifies the internal state of the propagator in order to reflect the fact that x,, ,,
has been assigned true by the solver.

"This expression was determined empirically by fitting a third order polynomial through the number of transitivity clauses for
different instances.

19

20 4. Encoding

» Synchronise: synchronises the propagator’s internal state with the solver’s partial assignment.
This function is usually called after a conflict has occurred.

+ ExplainLiteralPropagation(x,,,): this function is only called if the propagator has propagated x,, ,,
in the past. It returns a conjunction of literals which have caused x,, ,, to become true. That is, if
Axex X — Xy, then this function returns X.

» ExplainFailure: returns a conjunction of literals which together cause a conflict. That s, if Ayex —
1, then ExplainFailure returns X.

4.1.2. Implementation

The implementation of the internal data structure that keeps track of the clusters under the current
partial assignment closely resembles a union-find data structure. However, since the solver frequently
backtracks throughout the solving process, it is required to have an undo mechanism in place.

Graph functionality The propagator uses a graph representation with the following interface meth-
ods:
1. Contract(u, v): merges the clusters of node u and v into a new cluster.

2. UndoContraction: undoes the most recent contraction, and returns the two vertices that caused
the contraction.

AreVerticesCoClustered(u, v): returns true iff u and v are co-clustered.
Separate(u, v): separates the clusters of node u and v.
UndoSeparation: undoes the most recent separation.

AreVerticesSeparated(u, v): returns true iff u and v are separated.

N o g M ow

Find(u): returns the cluster index of node u. Note that initially, every node is assigned to a sepa-
rate cluster.

8. FindNeighbours(u): returns all nodes that are in the same cluster as u.

Whenever the top-level propagator gets invoked to propagate a literal x,, ,,, the state of the graph should
change in order to reflect the fact that x,,,, has been assigned true. Depending on the polarity of the
incoming literal, either Contract(u, v) (for a positive literal) or Separate(u, v) (for a negative literal) is
called. These methods ensure that the graph’s state is synchronised with the solver’s partial assign-
ment. Similarly, when the solver decides to backtrack, the state of the graph is kept synchronised by
invoking UndoContraction and UndoSeparation; the details for this are explained in this section as
well.

Contraction Figure 4.1 displays how the internal representation changes after Contractis called. The
middle image shows how the data structure changes after a contraction of two nodes. It can be seen
that a constant number of operations has to be performed in order to execute the contraction; first, a
new cluster object is created, which points to itself. Next, the clusters of node 1 and 2 are pointing to
this new cluster. Finally, the new cluster has references to its mergees. In conclusion, Contract is an
0(1) operation.

Whenever a contraction between u and v occurs, the graph records this transaction as a tuple (u, v)
and pushes it on an undo stack S.,ntraction- 1his allows us to undo the merging in a later stage, when
the solver backtracks.

Separation We track which pairs of nodes are separated by using an associative container : V —
P (V) where the key is a node’s index v and the value is a set containing all nodes u for which u
and v are separated. The implementation for this is simply a C++ unordered map<int, un-
ordered set<int> >, and therefore we do not include pseudocode that describes it.

Whenever a separation between u and v occurs, the graph records the transaction by pushing a
tuple (u,v) on an undo stack Sseparation- Similar to the contraction undo stack, this allows us to undo
the required separations whenever the solver backtracks.

4.1. Lazy encoding 21

Figure 4.1: Internal representation of the graph. Dashed blue boxes indicate a cluster. In the implementation, a cluster either
contains a vertex, or is empty and simply points to another cluster. Left figure: a graph without any contractions. All the nodes
have their own cluster, which points to itself. Middle: the graph after Contract(1, 2) has been called. A new cluster is allocated,
and the mergees’ clusters are pointing towards it. The new cluster points towards itself, meaning the cluster is a terminating one.
Right: the graph after Contract(1,2) and Contract(1,3) have been called.

Find The interface method Find is implemented by traveling through the chain of contractions in the
graph. The Cluster datastructure used has two types of chain links: the next link, and two prev links.
By convention, if a cluster has a next link that points to itself, then that cluster is ‘terminal’. Algorithm 2
shows the pseudo implementation of Find.

Algorithm 2: Finding the cluster index of u.

Result: The cluster index of node u
curr = InitialClusterOffu];
next = curr;
while curr.next I= curr do
curr = next;
next = curr.next;
end
yield next

FindNeighbours Findneighbours(u) finds the ‘cluster mates’ of u. That is, it returns the set {v €
V | c(v) = c(w)}. The implementation uses a recursive relation which travels backwards through the
contraction history of u’s cluster.

Contents(B) = B.content, if B.prev = null
ONLentsif) =\ contents(B.prev.left) U Contents(B.prev.right), otherwise.

Equation 4.1.2 shows the recursion for finding the contents of a cluster B. FindNeighbours(u) is
implemented by invoking Contents on Find(u). Figure 4.2 shows the recursion trace when calling Find-
Neighbours(3) on the graph.

Side note: optimisation Hebrard and Katsirelos, 2020 remark that their propagator can safely do
nothing when the incoming literal x,,,, has two endpoints for which b(u) = b(v). They call this a small
but important optimisation. However, during implementation, we have found it necessary to do nothing
when the endpoints are already in the same cluster. Failure to do so would sometimes lead to a cycle
in the implication graph, causing an infinite loop during processing of learnt clauses.

4.1.3. Synchronisation

The challenge of keeping the internal graph structure synchronised with the solver’s partial assignment
lies in the backtracking component of the MaxSAT solver. As soon as the solver orders the propagator to
synchronise, it looks at the history of assignments that were done by the solver (the trail). It searches
for two edge literals: a positive literal x,,,, and a negative literal —x, ;. It chooses those literals that

22 4. Encoding

.......

Figure 4.2: An example of what happens internally when calling FindNeighbours(3). (a) The algorithm first finds the cluster of
node 3. (b) Contents is called on node 3’s cluster. The bottom link finds a base case, whereas the top link recurses on a cluster.
(c) Contents is called on a cluster, which travels backward and finds nodes 1 and 2.

have been unassigned most recently. These are called the ‘undo destinations’. Then, it instructs the
underlying graph to perform two tasks:

1. Call UndoContraction() until this function returns (u, v), called the contraction destination. When
we've hit this literal, it means the graph’s contraction structure is synchronised in accordance with
the positive literals that are still assigned on the trail.

2. Call UndoSeparation() until this function returns (g, h), called the separation destination. Similarly,
when we’ve hit this literal, it means the graph’s separation structure is synchronised in accordance
with the negative literals that are still assigned on the trail.

Figure 4.3 depicts an overview of how these undo destinations are selected by the propagator.

4.2. Sparse encoding 23

) 10

Y
Unassigned
literals

Undo
destinations

[\

—_~ |~
.
.
~ | ~—
w

) Y

o (...) 2 <+—Backtrack
O wn
= to here
» 8 < (-..) 1
0w =
<
(...) 0

.

Figure 4.3: Depiction of the solver’s history of literal assignments, which is also referred to as the trail. Blue boxes represent literal
assignments, numbers represent position ordinals of the trail. We see that the solver will backtrack to position 2, unassigning
any literal with ordinal = 3. We see that x,,,, and —x4, are the literals that are closest to the backtrack position and are both
edge literals. These become the undo destinations for the graph.

4.2. Sparse encoding
The transitive encoding proposed by Berg and Jarvisalo, 2017 uses a boolean variable for every pair
of vertices. We repeat the set of variables that they use here:

We argue that this set of variables is redundant since it is possible to correctly solve the problem using
fewer variables. Namely, the set of variables that is used in the sparse encoding is the following:

Xi,jv 1<i S] < N s.t. {Ui,'l?j} EE (42)

Modifications The encoding requires several modifications in order to work correctly. The primary
modification is concerned with the way clausal explanations are generated for literal propagations. The
solver must make sure the explanations contain only literals x,, ,, for which there exists an edge {u, v}
in the graph. In the following subsection, we describe the procedure in more detail.

24 4. Encoding

4.2.1. Explanations

Recall from chapter 2 that in a SAT solver, a propagator must provide an explanation for anything it
infers as a result of a propagation. An explanation for an inferred literal y consists of a set of literals X
such that Ayex x — y.

Example The reason why the ‘normal’ way of creating explanations is not sufficient for the sparse
encoding is best explained using an example accompanied by a figure. Consider a cycle graph of
5 nodes. Now suppose nodes 1, 2, 3 and 4 are co-clustered, and now the solver now decides to
co-cluster node 4 and node 5. We look at what happens next:

1. The solver sets the variable x, 5 to true.

2. The solver asks the propagator to process this literal assignment, enqueue any new inferences
and return true if propagation was a success (i.e. no conflicts were detected).

3. The propagator processes x, s and infers one new literal assignment: x, 5 will become true. The
reader can verify that this is the case because nodes 1 and 4 are co-clustered, as well as nodes
1 and 5; as a result, nodes 4 and 5 must be co-clustered as well, and the inference of x, 5 is thus
valid.

4. The propagator will attempt to construct an explanation for the inference of x, s, but it fails: the
variable x, , is not defined because the edge {1,4} does not exist, and therefore x, , does not
exist either.

" " ®E ®E ®E ®E E N N N N N N N N N H
. .
* .

s @ ®m ®m % ®E W ®m N = ® ® =W

Variable that is

. Variable that is
inferred

set to true

Figure 4.4: A cycle graph with a partial assignment: nodes 1, 2, 3 and 4 are co-clustered, which is indicated by the dashed
box around these nodes. Lines between nodes indicate edges; the absence of lines means there is no edge. This example
illustrates why a regular explanation scheme is not sufficient for the sparse encoding; the missing edges between vertices will
cause issues when creating clausal explanations for inferences.

Creating the correct explanation A correct explanation for the inference of x; 5 has two components:
1. An explanation for why nodes 1 and 4 are in the same cluster

2. The literal that triggered the inference, call it the pivot literal. In this example, the pivot literal is
x1’4.

4.2. Sparse encoding 25

It is clear that explaining why nodes 1 and 4 are co-clustered involves finding a path of edges going
from node 1 to node 4, using only nodes that are in the same cluster. We can see that this is the case by
repeatedly applying the transitivity property. Let xCy be the relation “x is co-clustered with y”. Equation
4.3 shows this by repeatedly applying the transitivity property.

1C2A2C3 — 1C3

1C3 A3C4 — 1C4 (4.3)
1C2A2C3A3C4 — 1C4

A natural way of proceeding would be to devise a path-finding algorithm that is only allowed to use
edges within a cluster. Initially, we had implemented this before realising that it is very expensive to do
so, since every inferred literal requires running a path finding procedure. As a result, we have opted
for an approach that is theoretically sub-optimal, but which hugely outperforms the initial approach in
practice.

Example: spanning tree We can create a path through a cluster of nodes by leveraging the con-
traction history of that cluster. By recursively traveling through the cluster’s history of mergees, we can
construct a spanning tree over the entire cluster. Recall that a property of a spanning tree is that its
edges form a path between every single pair of nodes in the tree. Here we show how to create such a
spanning tree.

Figure 4.5 shows the contraction history of a graph of four nodes.

1. Initially, all nodes have their own cluster.

2. Then, nodes 1 and 3 are co-clustered (‘contracted’). Nodes 2 and 4 are also contracted. There
are now two clusters, containing nodes {1, 3} and {2, 4}.

3. Finally, the two clusters are merged through the edge variable x; 4. The final result is a cluster
containing {1, 2, 3, 4}.

The spanning tree is obtained by collection all the pink edges from figure 4.5. This can be done in a way
that is very similar to the FindNeighbours algorithm. Instead of collecting nodes, the algorithm travels
back through the contraction history and collects ‘pivot’ edges: edges through which the cluster was
merged with other clusters. The final result is guaranteed to be a spanning tree over the cluster! The
conjunction of edge literals from the spanning tree are used as an explanation for the co-clusteredness
of u,v € C. Algorithm 3 shows the recursive procedure that is used to compute the spanning tree.

..........

Figure 4.5: An example of the contraction history of a graph of four nodes. Edge colours are omitted for clarity, and because they
are unimportant here. Initially, all nodes are in their own cluster, indicated by the dashed blue box around them. In the second
panel, nodes 1 and 3 are merged, as well as 2 and 4. This is indicated by the bright pink line. In the third panel, we merge the
two clusters of size two by co-clustering nodes 1 and 4. This causes their clusters to be merged. The fourth panel shows the
final result: all nodes are in one cluster. We superimpose the spanning tree over the fourth panel (as pink lines); this is the set
of edges that algorithm 3 would return.

26 4. Encoding

Algorithm 3: MakeTree(C): a recursive procedure for generating a spanning tree over a clus-
ter.
input : A cluster C.
output: A collection of edges within C that span C.
if C has children then
left « C.left
right « C.right
return C.pivot U MakeTree(left) U MakeTree(right)
else
| return @
end

Lower bounding

Similar to the ideas described in chapter 4, the methods we propose here are implemented through a
propagator interface in the solver’s code. Later on in this chapter, we show how bounds can be used
in order to infer variables as a result of other variables becoming true.

5.1. Why bounds?

Finding a lower bound of a problem is a well-established way of increasing performance and reducing
the amount of work required in order to solve a problem. A bound can either be static, meaning it can be
computed at any time, independent of a partial solution. It can also be dynamic: a dynamic bounding
algorithm will generate a bound given an incomplete / partial solution.

A bound can save time. If an algorithm is building up a solution, it can invoke a bounding algorithm

which computes the minimum cost C that the solution is going to contain when it is completed. If the
algorithm has already found a solution with cost ¢’ < C, then the algorithm knows it can terminate
its current branch in the search space: it won’t find a better solution anyways. Consider the following
fictional example:
A student is preparing for a final exam. They’ve already had a midterm exam, for which they’ve scored
a disappointing 1 out of 10. In order to pass the course, they need an average grade of 6.0 out of 10.
The student reasons that in order to pass the course, they would need to score 11 out of 10 points
for the final exam. This is impossible, therefore it is impossible to pass the course this year. A clever
student would consequently spend time on other things instead of studying for the final. This is a simple
scenario where reasoning about bounds can save time.

What makes a good bound? A bound can save time by pruning the search space, but it also costs
time to compute. A good bound is therefore inexpensive to compute and is ‘tight’, meaning it closely
approximates the true bound.

Hybrid solver Contrary to regular MaxSAT solvers, our algorithm is hybrid, meaning it uses tech-
nigues from MaxSAT while not strictly qualifying as a MaxSAT solver. The difference lies in the fact
that our solver maintains a representation of the graph throughout the solving process whereas nor-
mally, the graph representation of the problem would get lost during the encoding step. This allows us
to design lower bounding techniques that reason about the problem on a higher abstraction level.

Explaining a bound In our algorithm, the lower bound has one purpose: whenever it sees that the
current partial solution is guaranteed to be worse than our best known solution, it should raise a conflict.
Recall from chapter 2 that (Max)SAT solvers require an explanation for a conflict, which is a conjunction
that caused the conflict to happen. In the following sections, we explain how this clausal explanation
is generated.

27

28 5. Lower bounding

5.2. Triangle counting

Previous work Theideas presented here are inspired by Bansal et al., 2004’s work. We briefly repeat
their idea here, and then introduce our proposed extension.

Bansal et al., 2004 remark that a certain type of triangle in the similarity graph can predict a lower bound
on the cost of any solution. Figure 5.1a shows this substructure. We challenge the reader to find a
clustering of this graph that respects every single edge weight, i.e. find a clustering that does not make
any mistakes. This is impossible: if we look at every possible clustering of this graph, there will always
be at least one mistake. Therefore, Bansal et al., 2004 reason, we can say that a lower bound on the
number of mistakes is 1.

(a) Bansal et al., 2004’s substructure which allows us to (b All possible clusterings of three points. Edges that incur
reason about a lower bound of the optimal solution. Red 3 penalty are indicated by a small arrow. Note that every
edges indicate a negative edge, whereas green edges rep- possible clustering of these three nodes results in a penalty
resent a positive edge. of at least one.

Partial assignment Could there be more of these triangles; ones that will guarantee we make a
mistake no matter how we cluster them? Unfortunately, there aren’t. However, if we already have a
partial solution where some pairs of vertices are already assigned a value (either co-clustered or not
co-clustered), then there are exactly two more partially assigned triangles that admit a lower bound.
We present them in the following sections.

5.2.1. Lambda-triangles

The first type of triangle is called the Lambda triangle, because of its shape (it looks like a A). Figure
5.2a shows this triangle. The nodes b and c are separated under the current partial solution (i.e. the
variable x, . is assigned false). Note that the weight w, .. is irrelevant. The other two edges are not yet
assigned, but they must have a positive weight. We leave it to the reader to verify that completing the
clustering will lead to at least one mistake in every case. This property allows us to infer that when the
similarity graph has a triangle as depicted in figure 5.2a, then the penalty will be at least one.

5.2.2. Delta-triangles

The second type of triangle is called the Delta triangle, once again because of its shape which looks
like a A. This triangle has a positive and a negative edge, and a third edge whose endpoints are already
co-clustered.

Mutual exclusivity There is a caveat associated with counting these types of triangles: you cannot
use an edge in more than one triangle. This is best explained using an example. Figure 5.3 shows an
example graph with a partial assignment: b and c are separated, as well as ¢ and d. One could argue
that this graph contains two A-triangles: triangle ABC and ACD. This would be incorrect, because these
triangles share an edge: AC. As a result, the graph in figure 5.3 contains only one valid A-triangle. In
general, we must demand that the A- and A-triangles have mutually exclusive edges. Section 5.2.3
gives a more detailed explanation of how to implement this.

5.2. Triangle counting 29

7’

(a) A A-triangle. The dashed black line between nodes b (b) A A-triangle. The dashed box indicates that a and c are

and c indicates b and c are not co-clustered under the cur- co-clustered under the current partial solution. The solid

rent partial assignment. The black solid line between b and red and green lines between a, b and b, ¢ respectively indi-

c indicates that the weight of the edge between b and c can cate the edge weight. The solid black line between a and ¢

be anything (0, +1, -1). Finally, it is a requirement that the indicates that the weight between a and ¢ can be anything.

variables x, . and x,;, are not yet assigned a value. Finally, it is required that edge variables x,;, and x; . are
not yet assigned a value.

Figure 5.2: The two types of triangles that admit a lower bound. Colours indicate edge weight, dotted lines indicate co-clusterings
and dashed lines indicate the fact that two points are not co-clustered.

~y 7~ -
h__——’ h__——‘

Figure 5.3: A case where we can identify two A-triangles, but only one counts. This is because the triangles ABC and ACD share
an edge: AC.

5.2.3. Explanation

The purpose of these bounding techniques is to detect when we are entering a branch that is ‘destined
to fail’. In other words, a branch whose partial solution indicates that the minimum penalty in this branch
is going to be greater than the best known solution so far. In this case, we raise a conflict in the solver.
Recall from chapter 2 that a conflict requires an explanation in the form of a conjunction of literals. In
this section, we explain how to create such an explanation for a bound that is computed using A- and
A-triangles.

Future and direct cost Suppose we know that the current partial assignment has cost C. C is com-
posed of two components:

+ Direct cost: this is the sum of mistakes made by the partial solution. It consists of all edge
assignments that contradict the weight of the edge. Formally, this is the set of literals {x,, €

30 5. Lower bounding

Assigned |wy,, < 0} U {—x,,, € Assigned |w,, > 0}. The explanation for this type of cost is
simple: the literal that violates the edge.

» Future cost: this is the number of triangles that are counted in the partially assigned graph. The
explanation for these triangles is the edge of the triangle that is already assigned. In the A-triangle
of figure 5.2a, this would be the edge BC. In the A-triangle of figure 5.2b, this would be the edge
AC.

The full explanation for a bound computed using these triangles is the conjunction of the direct and the
future cost:

Explanation(X) = /\ Xyp | A /\ Xyv (5.1)

xy,pEFuUture Xy, pEDirect

For the interested reader The interested reader may wonder why the explanation for the A- and
A-triangles is valid. Here we show why that is the case for the A-triangle; the proof for the A-triangle is
very similar.
Recall that the transitivity constraint holds for every triple of nodes, and so also for a, b and ¢ which
make up the A-triangle.:

Xgp VXpeV Xg (5.2)

We rewrite this as an implication, with —x,, . on the left hand side:

ﬁxb,c — 7 (xa’c A xa,b) (5 3)

—Xpe — WXgc \Y —Xa,b

Thus, we see that —x;, . causes either —x, . or —x,,. Recall that in a A-triangle, w, . = w,, = 1.
Combining this with the definition of the objective function (see chapter 2 equation 2.7, or chapter 3
equation 3.1), we see that the edges will contribute at least 1 point of penalty to the cost.

Implementation details

The ideas presented here are implemented in the solver in the form of a propagator. First, we give the
high-level overview of the propagator implementation. Then, we give the details of how to detect new
A- and A-triangles. Finally, we show how to detect invalidated triangles.

Propagator implementation
The propagator interface requires us to consume a literal and return false if the literal causes a conflict,
and true otherwise. Algorithm 4 shows how the bounds propagator consumes literals.

Incremental detection

Instead of looking at the partially assigned graph and counting the triangles in it, we would like to
incrementally keep a tally of encountered triangles. Fortunately, this can be done in O(d) time per
propagated literal, where d is the maximum degree of any node in the graph. We give detection algo-
rithms for both A- and A-triangles here.

Detecting A-triangles Whenever the propagator is asked to propagate a negative literal —x,, ,,, the
A-detection algorithm is invoked. If it finds any triangles, it ‘locks’ the edges participating in the triangle.
This way, edges are not used twice in a triangle (which would give incorrect behaviour). Algorithm 5
shows the pseudocode for the detection algorithm. The most expensive operation is computing N;f
and N;}, which costs 0(d), where d is the maximum degree of the graph.

Detecting A-triangles Whenever the propagator is asked to propagate a positive literal x,, ,,, the A-
detection algorithm is invoked. Algorithm 6 shows the pseudocode for this algorithm. Note that it is
longer than algorithm 5; this is due to the fact that A-triangles are not symmetric, so we have to check
for both the original triangle as well as the mirror image.

5.2. Triangle counting 31

Algorithm 4: Propagating a literal in the bounds propagator. This algorithm mutates the state;
it increments the LB variable, adds and removes literals from the conflict explanation and
(un)locks edges.

Data: Incoming literal x,, ,,.
Similarity matrix W.
Cost of best solution so far UB
Result: False if the literal caused a conflict, true otherwise. Updates the LB variable.
changelnBound « 0;
directPenalty < 0O;
numbLambda « O;
numDelta « 0O;
numinvalidatedLambda « O;
numlinvalidatedDelta « O;
if x,,, is a positive literal and W (u,v) < 0 then
| directPenalty « |W (u,v)|;
end
if x,, ., is a negative literal and W (u,v) > 0 then
| directPenalty « W (u, v);
end
if x,,, is a positive literal then
| numLambda « CountLambda(x;,,);
end
else
| numDelta < CountDelta(x,, ,,);
end
numinvalidatedDelta « CountinvalidatedDelta(x,, ,);
numinvalidatedLambda < CountlnvalidatedLambda(x,, ,,);
LB « LB + (numLambda + numDelta + directPenalty) ;
LB « LB - (numinvalidatedLambda + numinvalidatedDelta);
if (numDelta > 0) or (numLambda > 0) or (directPenalty > 0) then
| Add x,, to the conflict explanation
end
if LB > UB then
| return False This is a bounds conflict
end
else
| return True
end

Detecting invalidated triangles Another caveat of the triangle-counting scheme is that triangles
can be ‘invalidated’ as a result of other literals becoming true. The reason for this is quite involved:
a triangle (A or A) predicts a penalty in the future. If that penalty eventually happens as a result of a
literal assignment, the prediction has come true, which means the prediction is no longer valid. Recall
from previous sections that the bound that is computed by the propagator consists of direct and future
cost; a triangle being invalidated comes down to cost flowing from the future component to the direct
component.

We can reason about which literal assignments invalidate which triangles. Together with the locking
scheme, we can easily determine whether a literal assignment invalidates any triangles. In figure 5.2a,
—1Xqp OF X4 Would invalidate the triangle. In figure 5.2b, —x,, . or x,, would invalidate the triangle.
Algorithms 7 and 8 show the pseudocode for detecting invalidated triangles.

5.2.4. Inferences through bounds

A bounds propagator consumes propagated literals and raises a conflict if it sees that the lower bound
of the number of mistakes exceeds the number of mistakes of the best solution so far. However, a
bounds propagator can also infer the value of literals if the lower bound is slightly below the upper

32 5. Lower bounding

Algorithm 5: CountLambda: incrementally detecting new A-triangles. This algorithm has side
effects: it mutates the Locked and Pairs variable.
Data: Incoming literal —x,, ,,.
Similarity matrix /.
Set of edges E.
Set of vertices V.
Set of Locked edges Locked.
Result: The number of A-triangles that are created by —x,, ,,.
Ni «{weV|{w,u} € EAWW,u) > 0A{w,u} & Locked A x,,,, ¢ Assigned};
Ny «{weV|{w,v} € EAW(W,v) > 0A{w,v} ¢ Locked Ax,,, & Assigned};
T « N nNJ;
fort €T do
Lock edge {u, t};
Lock edge {v, t};
Register ({u, t},{v, t}) as a dual pair in Pairs.
end
return |T|

bound. In this section, we explain how this is done.

Off-by-one Consider the scenario where the bounds propagator consumes a literal which causes
the lower bound to get bumped to LB = UB — 1. This is a crucial value, because if another literal
comes along and also increases the lower bound, we will have to raise a conflict. A clever propagator
will conclude that there can be no more mistakes in the future: every literal that is associated with a
weighted edge must agree with the weight on its edge. If not, we will certainly have a conflict. Let z,,,,
be an incoming literal which we are about to consume. The set of literals that we can infer whenever
LB = UB — 1 is the following:

Inferred(z,,,) = {x;; | W(i,j) > 0 Ax;; & Assigned }U {-x:i; IW(i,j) <OAx;; & Assigned } (5.4)

Caveats A subtle problem with this approach of inferring literals is an interaction with the triangle
counting methods discussed in previous sections. Itis nottrue in general that, foran edge {i, j} s.t. W(i,j) >
0, assigning z; ; to false will lead to an increase in the lower bound. Itis possible that z; ; partakes in a A-

or A-triangle and therefore, its penalty is already accounted for (it was predicted by the triangle). There-
fore, equation 5.4 is not correct whenever triangle counting is enabled. The correct way of determining
the set of inferred literals is given by the following expression. Note that CountInvalidatedTriangles(z,)
is implicitly the sum of invalidated lambda and delta triangles.

@ CountInvalidatedTriangles(z,,) # 0
Inferred(z,,) CountinvalidatedTriangles(z,,) =0

5.2. Triangle counting

Algorithm 6: CountDelta: incrementally detecting new A-triangles. This algorithm has side
effects: it mutates the Locked and Pairs variable.

Data: Incoming literal —x,, ,,.

Similarity matrix W.

Set of edges E.

Set of vertices V.

Set of locked edges Locked.

Set of dual edge pairs Pairs.

Set of assigned variables Assigned.

Result: The number of A-triangles that are created by —x,, ,,.

Ny «{weV|{wu} e EAW(Ww,u) <0A{w,u} € Locked A x,,,, & Assigned};
Ny « {weV|{w,v} € EAW(W,v) > 0A{w,v} & Locked Ax,,,, & Assigned};
T, « N; N NJ;

fort €T, do

Lock edge {u, t};

Lock edge {v, t};

Register ({u, t},{v, t}) as a dual pair in Pairs.

end

Ni «{weV|{w,u} € EAWW,u) > 0A{w,u} & Locked A x,,,, ¢ Assigned};
N, «{weV|{iw,v} EEAWW,v) <0A{w,v} & Locked Ax,,,, ¢ Assigned};
T, « N} nN;;

fort €T, do

Lock edge {u, t};

Lock edge {v, t};

Register ({u, t}, {v, t}) as a dual pair in Pairs.

end

return |T;| + |T3|

Algorithm 7: CountlnvalidatedDelta: an algorithm for detecting invalidated A-triangles.

Data: Incoming literal x,, ,.
Set of locked edges Locked.
Set of dual-locked pairs Pairs. Similarity matrix .
Result: 1if —x,, ,, invalidates a A-triangle, 0 otherwise. This algorithm has side effects: it
mutates Locked and Pairs
Remove {u, v} from Locked,;
if W(u, v) > 0 then
if x,,, € Locked then
{u',v'} « Pairs[u, v];
Remove {u, v} and {u’,v'} from Pairs;
return 1
end

end

34

5. Lower bounding

Algorithm 8: CountlnvalidatedLambda: an algorithm for detecting invalidated A-triangles.

Data: Incoming literal x,, ,,.
Set of locked edges Locked.

Set of dual-locked pairs Pairs. Similarity matrix W.

Result: 1if —-x,, ,, invalidates a A-triangle, 0 otherwise. This algorithm has side effects: it

mutates Locked and Pairs
if W(u, v) > 0 and x,,,, is a negative literal then
if {u,v} € Locked then
{u',v'} « Pairs[u,v];
Remove {u, v} and {u’,v'} from Pairs;
Remove {u, v} and {u’,v'} from Locked;

return 1
end

end
if W(u, v) <0 and x,,,, is a positive literal then
if {u,v} € Locked then
{u',v'} « Pairs[u,v];
Remove {u, v} and {u’,v'} from Pairs;
Remove {u, v} and {u’,v'} from Locked,;

return 1
end

end
return O

Experimental evaluation

In this experimental evaluation, we do an empirical analysis on the effectiveness of the techniques
proposed in chapters 4 and 5. We use real-world problem instances to evaluate the efficacy of our
methods, and we compare them to the baseline encodings by which the ideas in this thesis are inspired.

6.1. Set up

In this section, we describe the data, conditions and parameters which we used to evaluate the perfor-
mance of our proposed techniques.

6.1.1. Metrics used for evaluation

Time In the domain of exhaustive search, a natural metric for performance is the time required for
the solver to find the optimal solution and prove its optimality. However, we are not interested in the
physical quantity of time itself, because this would depend on the hardware platform used: a researcher
with a faster or slower computer would find different results than the ones presented here. Instead, we
use the notion of normalised time. The normalised time is a quantity t,,,,-m» € [0,1]. It is computed as
follows.

Let Solvers be the set of solvers that are compared, let Instances be the set of benchmarks. Let
s € Solvers and i € Instances.

t(s,i)

maXg/esorpers L(S', instance)

(6.1)

thorm(s, 1) =

Decisions Another notion of performance is the number of decisions that is required to solve the
problem to optimality. The reason for using this metric is motivated by the fact that MaxSAT solvers are
pieces of highly optimised software. Small details in the implementation can make a lot of difference
in the time required to solve instances. This work does not focus on writing high performance code;
rather it makes a conceptual contribution. Therefore, we would like a metric that abstracts away from
not only the hardware, but also the software. The number of decisions is the appropriate metric for this,
since it is independent of the implementation in code.

Number of instances solved A commonly used metric that is used for evaluating the speed of solvers
is the number of instances that it can solve given a certain time budget. Among others, Berg and
Jarvisalo, 2017 uses this type of metric. Formally, this metric can be expressed as a function of the
timeout. Let Solvers be the set of solvers that are compared, let Instances be the set of benchmarks.
Let T : S Xx I — R be the function mapping a solver-instance pair to the time it takes for that solver
mode to solve the instance to optimality.

Ngoea(t,s) = | {i € Instances|T(s,i) < t}| (6.2)

35

36 6. Experimental evaluation

6.1.2. Benchmarks

The benchmarks that are used are similar to the ones used by Berg and Jarvisalo, 2017 and Miyauchi
et al., 2018. All of the datasets were taken from the UCI Machine Learning Repository Dua and Graff,
2017. For the purpose of exploring extreme cases of sparse graphs, we have created several synthetic
benchmarks as well. A brief description of the used datasets can be found in table 6.1. For a more
detailed description of the instances used in the dataset ‘Original’, see table 6.2.

We have deliberately opted for using real-world datasets for several reasons:

1. The applicability of the work in the real-world is better evaluated using data from said real-world.
Moreover, (Max)SAT solvers have shown excellent performance on real-world benchmarks (see
Ganesh and Vard, n.d. for a treatise on why this is the case)

2. The datasets are publicly available, making it easier to verify our findings.

We do realise that twenty datasets is on the low side. This is due to the fact that we had to select
datasets that were ‘within the realm of solvability’ for our solvers, meaning that the runtime was some-
where between one and ten thousand seconds. Moreover, each dataset required some form of manual
processing due to heterogeneous data formats. Lastly, the environment in which we ran our experi-
ments featured a 5GB storage limit. This, combined with the fact that the baseline encodings (Transi-
tive, Binary, Unary) were rather large (even in their compressed form), it would have been unviable to
use a much larger number of instances.

A collection of real-world instances used to
evaluate the performance of our proposed algorithm.
An inflated version of the Original dataset which is used to investigate
the relation between graph properties
Inflated 189 and our algorithm’s runtime.
The dataset is created by taking instances from Original and
randomly removing edges.
A collection of trees used to investigate the
Trees 20 performance of our algorithm on very sparse graphs.
Tree sizes range from 50 to 350 nodes

Original 20

Table 6.1: A short description of the instances used in the experimental evaluation.

Creating similarity matrices from data Correlation clustering requires a similarity matrix, while real-
world data usually appears in the form of datasets: a collection of datapoints, each consisting of a
feature vector. Berg and Jarvisalo, 2017 proposes a method to convert a dataset into a similarity
matrix. They first compute the normalised Euclidean distance between every pair of points. They then
use a linear inverse mapping to map distances to the [—0.5, 0.5] interval, which is interpreted as the
similarity between the two points. In this work, Berg and Jarvisalo, 2017’s approach is adopted.

6.1.3. Hardware
We ran the experiments described here on the Starexec service developed and maintained by Stump
et al., 2014. The Starexec compute node has the following hardware specs:

1. Operating System: CentOS Linux release 7.7.1908 (Core)

2. C++ compiler: gcc-4.8.5-39.el7.x86_64

3. CPU: Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz

4. RAM: 264 GB, of which 128GB can be used by a single program.
5

. Maximum timeout: 5 hours.

6.1. Set up 37

ID num_vertices num_edges max_degree edge density Reference

amphibians 188 12271 181 0.698 Blachnik et al., 2019
ceramic 87 2453 79 0.656 He et al., 2016

coimbra 115 4003 107 0.611 Patricio et al., 2018
colposcopy_0 | 97 2566 96 0.551 Fernandes et al., 2017
colposcopy_1 | 96 1730 66 0.380 Fernandes et al., 2017
divorce 169 9034 159 0.636 Yoéntem et al., 2019
ecoli 336 48927 335 0.869 Dua:2019

fertility 100 4241 95 0.857 Gil et al., 2012

forestfire 243 25148 238 0.855 Cortez and Morais, 2007
gastro 699 195354 673 0.801 Mesejo et al., 2016
heartfailure 298 42087 295 0.951 Chicco and Jurman, 2020
iris 150 9682 145 0.866 Fisher, 1936

leaf 340 48700 338 0.845 P. F. Silva et al., 2013
lungcancer 30 192 26 0.441 Hong and Yang, 1991
machine 209 15738 208 0.724 Bergadano et al., 1990
parkinsons 194 14042 193 0.750 Little et al., 2007

seeds 194 16032 192 0.856 Charytanowicz et al., 2010
slumptest 102 4016 98 0.780 Yeh, 2007

stoneflakes 78 2031 76 0.676 Weber, 2009

wine 178 10900 171 0.692 Aeberhard et al., 1994

Table 6.2: A more detailed description of the instances used in the ‘Original’ set of instances. All datasets were found through
the website of Dua and Graff, 2017.

6.1.4. Software

This thesis expands on Pumpkin, a MaxSAT solver developed by Emir Demirovi¢ (one of the authors of
this paper); it is yet to be published. Recall from chapter 2 that there are two flavours of MaxSAT solvers:
linear search and core-guided search. Pumpkin supports both these flavours and allows the user to
specify how much time should be spent in each mode. From initial testing, it became apparent that the
core-guided mode is unequivocally faster at solving the instances than the linear-search strategy. For
this reason, the runtime analysis is primarily focused on the performance of the core-guided solver.
The solver is written in C++14 and compiled on a virtual machine that mimics the Starexec environment.
The following flags are passed to the compiler:

+ NDEBUG: this flag disables any assertions in the code.
» O3: enables the highest level of optimisation.
Telemetry We collect data from the solver throughout the solving process. For example, the number

of decisions that the solver has made is a performance indicator, and we collect this data by using
counters in the code. We assume that the overhead imposed by these counters is negligible.

38 6. Experimental evaluation

6.2. Results
6.2.1. Lazy Encoding

The lazy encoding, as described in chapter 4, is evaluated here.

Space Recall that the lazy encoding does not require the problem to be converted into conjunctive
normal form (CNF); instead, it only stores the edges and their weights. Figure 6.1 shows the sizes of
the different encodings. It's clear that the lazy encoder is several orders of magnitude more compact.

Filesize of different encodings versus problem instance size

105 4
. L]
5 4 = ®
10 , §° . -
= L]
[} e ® 1]
10% 4 &8 '
¢ «® °
] .
v
£ 107 4
1
g . ™ "
A ™
102 4 o oo °
. ." . encoding_name
10! 4 * e ® BinaryEncoder
TransitiveEncoder
® UnaryEncoderV2
1004 ® ® LazyEncoder
50 100 150 200 250 300 350

N

Figure 6.1: File sizes of different encodings. LazyEncoder is several orders of magnitude more compact than the others.

Runtime and decisions A downside of the dense encoding is that it is less optimised than a pure
clausal representation of the problem and as a result, the runtime of the dense encoding is not as low
as it could be. However, it is still competitive compared to the three encodings proposed by Berg and
Jarvisalo, 2017; in some cases, the lazy dense encoding outperforms all other encodings. Figure 6.2
shows the runtime and the number of decisions of our lazy encoding compared to the transitive and
the unary encoding. Table ??, which is delegated to the appendix, shows the raw data, including the
number of decisions and the runtime in seconds. Also in the appendix is a table that aggregates the
data, giving the mean number of normalised decisions and time as well as the standard deviation of
these quantities. Table ?? shows these values.

6.2.2. Sparse encoding

We compared the sparse encoding to the dense encoding as well as the baseline WCNF encodings
proposed by Berg and Jarvisalo, 2017. Moreover, since the sparse encoding should theoretically per-
form better on sparse graphs, we generated new instances by ‘trimming’ some of the original instances
in order to vary the density. Finally, we showcase the performance of the sparse encoding on the most
sparse type of graph: the tree. Although it is unlikely to have a similarity graph that is a tree, it is valu-
able and interesting to see sparse’s performance on these graphs.

Baseline comparison Figure 6.2 shows the performance of the sparse propagator on the set of
instances. We see that the sparse propagator performs worse than its dense counterpart for almost
every benchmark.

6.2. Results 39

Learnt clauses The reason for sparse’s worse performance is presumably not the extra work that is
required to create explanations (see chapter 4 section 4.2.1), but the lower quality of the learnt clauses
(see chapter 2 for an explanation on what constitutes a good clause). This hypothesis is fortified by
figure 6.3. Here we see that the sparse solver mode requires far more decisions in order to solve
the problem to optimality. Recall that the number of decisions is a deterministic metric that is not
affected by ‘bad code’. The fact that sparse requires more decisions can only be attributed to the
difference between sparse and dense, which is the way they create their explanations. Indeed, figure
6.5 confirms this hypothesis. Figure 6.5 shows the average learnt clause size for every instance from
the benchmark set; we see that sparse consistently has larger learnt clauses on average. Note that the
relation between clause size and quality is not completely clear; it is often the case that a learnt clause
of size 2 is much more powerful than one of size 3, so a small difference in clause size can have a big
effect.

Influence of edge density The sparse encoding requires fewer variables than the dense encoding
as the edge density of the instance decreases. We would expect that the sparse encoding becomes
relatively more performant than the dense encoding; to test this hypothesis, we plot the relative perfor-
mance of sparse and dense on the ‘Inflated ' dataset (see table 6.1). Figure 6.6 shows the performance
of the sparse encoding relative to the dense one. We can see that as the edge density decreases, the
relative performance of sparse increases both in the required time to solve the instance as well as the
number of decisions.

Trees An extreme example of a sparse graph is a tree. We investigate the performance of the sparse
encoding when the similarity graph is a tree. The trees in this benchmark are generated synthetically
and randomly. We were unable to generate WCNF encodings for trees larger than 350 nodes, because
the program that encodes these instances ran out of memory. Moreover, the expected size of a tree with
2000 nodes in WCNF would be well over 50GB, making it hugely impractical to work with. However, it
was no problem to encode very large trees in the custom format that is used for the dense and sparse
encoding.

Figure 6.7 shows the performance of the sparse encoding on trees. We see that the sparse encoding
scales much better than the dense encoding; at 5000 nodes, sparse performs over a thousand times
better, both in terms of time as well as number of decisions. Due to aforementioned reasons, data is
missing for Transitive, Unary and Binary at higher node counts. However, even the most conservative
extrapolation of the data would conclude that Transitive and Unary scale much worse than sparse and
dense on this dataset.

6.2.3. Bounds

Unfortunately, there seems to be a negative synergy between the triangle counting bounds introduced
in chapter 5 and MaxSAT solvers using core-guided search. Figure 6.9 shows that triangle counting
methods have virtually no effect on the program execution. For this reason, we include an analysis of
the triangle counting methods with a solver that uses linear search.

Modes Recall from chapter 5 that we propose two different, independent (but similar) bounding tech-
niques. It is possible to turn them on and off independently, which means there are four different solver
modes:

1. Basic: does not use any of the techniques described in chapter 5.

2. Lambda: only uses the lambda technique.

3. Delta: only uses the delta technique.

4. LambdaDelta: uses both the lambda and delta technique.

Furthermore, each of these modes has the possibility to enable inferences (see section 5.2.4).

40 6. Experimental evaluation

Evaluation of triangle counting effectiveness

We evaluate the performance of the different triangle counting methods on a modified set of instances.
In figure 6.3, we use a collection of twenty instances; for the evaluation of the triangle counting methods,
we inflate this dataset by randomly removing a percentage of the edges. The reason for this is that we
would like to see the influence of the edge density and the maximum degree on the runtime.

Figure 6.8 shows three similar figures, each one comparing the effect of a triangle counting method
to the baseline. The y-axis represents the normalised time (where the slowest mode for that instance
gets the value 1). We can clearly see that the higher the maximum degree, the slower the solver is when
triangle counting is enabled. Recall from chapter 5 that the complexity of the triangle counting method
is a function of d,,,,,. Figures 6.8b, 6.8c and 6.8d illustrate this. Furthermore, these figures show that
the runtime is nearly always severely negatively impacted by using triangle counting methods; one
would hope that the number of decisions is lower when counting triangles. Unfortunately, this is not
the case: figure 6.9 shows the number of decisions required to solve the problem to optimality. There
are very small differences for some instances, but they are negligible. Figure 6.10 shows the effect
of the different modes of the bounds propagator on the normalised number of decisions required to
prove optimality. We reiterate that figure 6.10 uses linear search instead of core-guided search. The
figure shows that using the bounds propagator (in any of its modes) changes the number of decisions
required, but not in a convincingly good or bad way. Looking at the aggregation of the data (represented
as a distribution), we see that the differences are minor. Another notable feature is that the three graphs
seem identical.

Evaluation of inferences
In this section, we investigate the effect of using inferences in combination with the bounds propagator.
We benchmark four different modes of the solver:

1. Sparse: the sparse encoding without any bounds inferences.
2. Dense: the dense encoding without any bounds inferences.

3. Sparse-infer: the sparse encoding with bounds inferences enabled. Note that this mode does not
make use of any triangle counting methods.

4. Dense-infer: the dense encoding with bounds inferences enabled. Note that this mode does not
make use of any triangle counting methods.

For each of these modes, we investigate their effects when using core-guided search as opposed to
using linear search.

Figure 6.11 shows the number of solved instances as a function of the maximum timeout. Figure 6.12
shows the number of decisions that are required to solve the problem to optimality. Combining the
information from both figures, we see that when core-guided search is enabled, the bounds inferences
do virtually nothing. However, when the solver uses linear search, there is a difference, which can be
seen in figures 6.11b and 6.12b. However, it is unclear whether the effect is positive; in some cases,
the number of decisions required to solve the problem is higher when bounds inferences are enabled.

6.2. Results

41

elapsed_time comparison using core-guided search

[] [{] [J []
104_
o
L
103_
(] [J
° L d { (]
Mode
(9] ° L4 ° [.
€ e o ® Binary
£ e "
hat 107 L @ Transitive
2 o ® ° ® Unary
Q.
o ® dense
© ¢ o e ® sparse
° e o ® o P
o o ¢
[J
o
10 4 ® ® :
[]
[J e =a)
° o a S e ® o
[3
®
)
10° 4 o °
e e °
[J
T T T T T T T T T T T T T T T T T T T T
o L Q N e & & O 2.9 L & o O o &
& & @‘0'\ Q7 S & (0\\6 & ¢ E S S zeb & NS
RS S o o) & & K & & &S & X
FE & & & < & S & & S ®
& X R @ 3 K S S
Instance
(a) Runtime in seconds.
normalised_time comparison using core-guided search
10° [] [J e [] {] : [J [] [] [] [J [] [] [] [J [] [J [] [J (]
° []
° [J
[J
[J
10—1_
[J [J
[
[]
£ a H o
BI [] e 2 PY
2 ° (]) ®
© -
£ °
g 2)
1074 4 [J
e o ° °
° [J
e o
[J Mode ® o
® Binary
10-34 o ® ® Transitive
® Unary
® dense °
[J
® sparse
T T T T T T T T T T T T T T T T T T T T
o & > Q A & O R L & o 9 &
S &P S SRESIE SN & O F G
P L & KRS > P D KON L X
< & O ¢ O &9 K * @ B &
PN S S «© < S & L » L
2 N < >]
Instance

(b) Normalised runtime (unitless).

Figure 6.2: Runtime of Berg and Jarvisalo, 2017’s encodings versus our lazy and sparse encodings. Missing markers indicate

a timeout. For example, Unary was unable to finish the instance Gastro within the time limit.

42

6. Experimental evaluation

decisions comparison using core-guided search

10° Mode
® Binary
® Transitive
® Unary
® dense
108_
® sparse
107.
o o (
" ® o
c 6 []
S 10 Y)
2 L] P PY
3 °
° ® o
5
(J
([J
® - (J
e ° :
1044 e ¢ 2
o ¢ ¢ ¢
[J a [J
°) 8 @
v
103_
([J
o & < Ne N QD e O Qoo L & o O > 5 &
& ’b@\ K 8 N L (@\& &8 _\\Q« NS Q(,e/ & 60(\006 & '8"@ &
SN R R & & & @ & L & § «
) o C (O I\ & & & Q2 & & 2
< < o O O & N N N
QO QQ Q/'b \)ﬁ\ Q'b) (3
°) < A
Instance
(a) Number of decisions required to prove optimality.
normalised_decisions comparison using core-guided search
10° [J
-1/
®
[J
° ° o
(] [
" [J
=
5] Mode
@ 10724 [} L] Bi
3 P [] T|nar)l/tl
° [ransitive
o (] [J ®
@ [] ° ® Unary
= ° ® L4 ® dense
€
sparse
§) ° [} p
1073-
[J
)
[J ~ o
o 5 © 8 o
10744 a
o e o o
. -
-
(] L]
T T T T T T T T T T T T T T T T T T T
o L Q o) e © @ L & 9 &
F & A AL WS FE S T &S
RN R R L &L > > & &L L
& O & O S ({\ P @ &S &
[¢ s s S o & Q PN &
& & o $ 2 o
N ('0\ AN N S
Instance

(b) Normalised number of decisions.

Figure 6.3: Runtime of Berg and Jarvisalo, 2017’s encodings versus our lazy and sparse encodings. The lazy encoding is called

‘dense’ here.

6.2. Results

43

Number of solved instances within a given time (core-guided search)

Solver mode

104 4 —— Binary
Transitive
—— Unary
—— dense
o—9 —— sparse
1034 ¢
o
L)
L &
e . °
5 . .
0 107+ o
g @ 2
=
o o—9
—
101 4 @ ¢) @ e
—° e
o &
o——e -
2 @
1004 PR—
@ @
o
T T T T T T T T T
2 4 6 8 10 12 14 16 18
num_solved
(a) Number of instances solved given a certain timeout. The solver uses core-guided search in this figure.
Number of solved instances within a given time (linear search)
Solver mode .
—— Binary pe g
104 4 Transitive
—— Unary L
—— dense @ . . '
—— sparse g @
L J
> & s 4 o @°
1034 @
] od “
3
3 o— /¢ ® e
£ °
=
1024 ¢
o
’
&
104 o
[
2 4 6 8 10 12 14

num_solved

(b) Number of instances solved given a certain timeout. The solver uses linear search in this figure.

Figure 6.4: A plot showing the effect of turning on inference for both the sparse and dense encoding. See section 5.2.4 for an
explanation of what inferences entails.

44 6. Experimental evaluation

Average learnt clause size for different modes.

107

10

avg learnt clause size

10°

) @ Q 5 5
&L N @ QN o)
‘b\(\ &ﬁfb&,\ ¥ i =
Mode

Figure 6.5: Violin plot for the average learnt clause size for different instances and different modes. As a general rule of thumb,
smaller clauses are (much) better at pruning the search space than larger clauses. Dashed lines within violins indicate quartiles
of the distribution. The dataset used for this plot is the ‘Original’ dataset (see table 6.1).

6.2. Results 45
normalised_time of solver modes vs edge_density of the instance
10{ (@@ 8200 ote @@ co¢re@d00OD) G) O
L [
o [
0.8 . o
o _
° ® ®
) Solver mode
2 '. level_0
0.6 -
:% ® 9 .@ ® dense
o
o} ® sparse
bl e o num_vertices
3 ° ® 150
E ® o ® 300
5 0.4 450
- e § ° 600
([
0.2
[]
° L
0.0 ' ° L ()
N N Ny Q° o°

edge_density

(a) The relative amount of time required to solve an instance for the modes dense and sparse. Each point represents a
solver-instance pair; the size of the point indicates the instance’s number of nodes. Note that we have chosen to omit any

instance with a solving time less than 1 second, because these measurements could be inaccurate.

normalised_decisions of solver modes vs edge_density of the instance

10{ (@@)@@ ¢ cCel((nep)efeon@lore GDOO@MNe ®) O
o ° ®
e © ®
0.8 - o ®
‘e
. a
P [] () . ®
PY Q Solver mode
2 o ° Y level_0
0.6 - ° _
:% ® .\J) o ® dense
E PY PY ® ® sparse
o ° ® num_vertices
2 @ 150
E o ® ® 300
5 0.41 ° 450
o
(]
[]
0.2 o ®
°
° o
[
0.0 ® ()
QQ Q"L Q‘b‘ Qb Q

edge_density

(b) The relative number of decisions required to solve the problem for the modes dense and sparse. Each point indicates
a solver-instance pair; the size of the point indicates the instance’s number of nodes. Contrary to figure 6.6a, we have not
chosen to omit solver-instance pairs with a solving time less than 1 second. This is because the number of decisions is a

deterministic metric, and therefore has no variance.

Figure 6.6: Two plots showing the relative performance of sparse and dense as a function of edge density. The dataset used for

this plot is ‘Inflated’ (see table 6.1 for a short description on this dataset).

46

6. Experimental evaluation

level_0
10° 5 -
2 ® Transitive
e
@ ® Unary
® Binary
8 |
10 ® dense
sparse
107 4 %
106 4
o -
2 ¢
%)
3
ko] 105 E| 6 s
2 -
® .5
28
104 4 ~ €
&
. 0
103 4 §
S
102 4
3 > >
,\Q '\9 '\Q

num_vertices

(a) Time required to solve the instance to optimality. The minimum resolution of the timer on Starexec was 1 millisec-

ond;
level 0
10° 4 T
2 ® Transitive
e ® Unary
s ® Binary
10° ® dense
sparse
107 4 %
106_
0 -
S g
.
3 1095
< 10° 4 @s
] _
® .5
ae
10% 4 ~ »
o
Q ?
10°] &
5
102_
2 2 >
~> > ~

num_vertices

(b) Number of decisions required to reach optimality.

Figure 6.7: Comparing the performance of our encodings on tree-graphs. We see that the sparse encoding is almost indifferent
to the problem size, whereas the baseline encodings by Berg and Jarvisalo, 2017 break down very quickly. Missing datapoints
represent either a timeout (for example, the dense encoding on the tree with 10k nodes), or an inability to encode the problem
into the correct format (a Transitive encoding of a 1000-node tree would already be over 5 GB)

6.2. Results 47

normalised_time for different max_degree

1.0 4
Effect of using triangle counting methods on the runtime
1.0 0.8 4
0.8
° E 0.6 -
£ £
= 0.6 9
9]
3 2
£ ;
£ 04 S 0.4
[s]
c
0.2
0.2
0.0 ‘ ‘ using lambda
False
0.0 True
2]
N < T T T T T T T T
«? [© o o $ o) o
s R $ 5 B & $

using triangles max_degree

(a) Violin plot of the aggregated effect of using triangle counting meth- (b) Effect of counting A-triangles. Each point represents the normalised
ods on the runtime. Dashed lines within violins indicate quartiles of the time that was required to solve the problem to optimality. Colours indicate

distribution. whether the solver was using A-triangles.
normalised_time for different max_degree normalised_time for different max_degree
1.0 1.04
0.8 08
v 0.6 J
206 g o6
Z‘ ;\
o o
o o
v v
T T
£ £
£ E
g 044 g 0.4
0.2 0.2 4
using delta using both
False False
0.0 True 0.0+ True
° i} 1] ol] O o o O O O O S O S
? Ry 7 i 0 k3 k2 a9 B3 B »® 4 3 2
max_degree max dearee

(c) Effect of counting A-triangles. Each point represents the normalised (d) Each point represents the normalised time that was required to solve
time that was required to solve the problem to optimality. Colours indicate the problem to optimality. Colours indicate whether the solver was using
whether the solver was using A-triangles. both A- and A-triangles.

Figure 6.8: Comparing the runtime of several triangle modes: only A, only A, and both A and A. The set of instances used here
is an inflated version of the ones used in figure 6.3. We create new instances by randomly removing a percentage of the edges
of the original instances.

48

6. Experimental evaluation

o
<3

g
o

normalised_decisions
I
~

o
)

0.0

Number of normalised_decisions

’

®\%

’

@

<&

using lambda

(a) Effect of counting A-triangles.

o
@

e
o

normalised_decisions
I
~

e
)

0.0

Number of normalised_decisions

’

‘b\e

’

&

using lambda

(c) Effect of counting A- and A-triangles at the same time.

o
®

o
o

normalised_decisions
o
~

o
)

0.0

Number of normalised_decisions

’Q

& &

using delta

(b) Effect of counting A-triangles.

Figure 6.9: Comparing the number of decisions required to solve the problem to optimality where the MaxSAT solver uses core-
guided search. We see that the effect of triangle counting methods is almost non-existent. For this figures, we have used the
same set of instances as in figure 6.8.

6.2. Results 49
10° L] :2‘3 L] LN) 10° [] 3@{: ° ee
%e i‘:
. e []
8 o
a H o o n H M
S 5 H
g 2
3 a] _
3 e °s 3 ° %
3 e ° 3 ® op
2 H % ' X 8 H N e®
E [d © - [
§ . ° E ° °
° b °
5 8
. :
. level_0 ° . level 0
) ® dense ® dense
® dense_lambda ® dense_delta
107t ® sparse 1071 ° sparse-
® sparse_lambda ® sparse_delta
=50 0 50 100 150 200 250 300 -50 0 50 100 150 200 250 300
num_vertices num vertices
(a) Effect of counting A-triangles. (b) Effect of counting A-triangles.
10° 4 ° LN)
: W5
w
s H
@
3
] [°s
32 e
Q b4 (1Y
& H ® e°
g M ‘
g [} (]
= °
e
[J
level 0
° _
) ® dense
® dense_lambdadelta
1071 4 ® sparse
@ sparse_lambdadelta
T T T T T T T T
=50 0 50 100 150 200 250 300

num_vertices

(c) Effect of counting A- and A-triangles at the same time.

Figure 6.10: Comparing the number of decisions required to solve the problem to optimality where the MaxSAT solver uses
linear search. We can see that the bounds propagator does have an effect here, although it is not clear whether this is good.

50 6. Experimental evaluation

Number of solved instances within a given time (core-guided search)

1034 Solver mode
—— dense
dense_infer
—— sparse
—— sparse_infer

102 4

timeout

101 /,

o—“/,
/o/
- —e #
A
»
10° 4 // P

./ .

2 4 6 8 10 12 14 16 18
num_solved

(a) Number of solved instances versus the maximum timeout. The solver uses core-guided search here.

Number of solved instances within a given time (linear search)

Solver mode .
—— dense po
104 dense_infer r
—— sparse @
—— sparse_infer PR
o=@ L
103 4
4 i ®
o - s
3 o o
[} -
£ o
=]
102 | ’
| J ’
’ 4
‘ @
10! >
2 4 6 8 10 12 14
num_solved

(b) Number of solved instances versus the maximum timeout. The solver uses linear search here.

Figure 6.11

6.2. Results 51

Effect of bounds inferences for different instances (using core-guided search)

100 4 level _0
dense
dense_infer
sparse
sparse_infer

10—1 4
w
C
o
@
o
Q
-cl
el
[
iy
©
€
£
o
c
1072 4

RG N e N o (A X & < %
Ry S G S G G G
RO R R &S 5 > & &L L
< & O O @ @9 &\ (CAE NN P

& ¢ & &£