<]
TUDelft

Delft University of Technology

FPGA Acceleration of Zstd Compression Algorithm

Chen, Jianyu; Daverveldt, Maurice; Al-Ars, Zaid

DOI
10.1109/IPDPSW52791.2021.00035

Publication date
2021

Document Version
Accepted author manuscript

Published in
2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Citation (APA)

Chen, J., Daverveldt, M., & Al-Ars, Z. (2021). FPGA Acceleration of Zstd Compression Algorithm. In L.
O'Conner (Ed.), 2021 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (pp. 188-191). Article 9460400 IEEE. https://doi.org/10.1109/IPDPSW52791.2021.00035

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/IPDPSW52791.2021.00035
https://doi.org/10.1109/IPDPSW52791.2021.00035

FPGA Acceleration of Zstd Compression Algorithm

L.2Jianyu Chen

2Maurice Daverveldt

17aid Al-Ars

! Accelerated Big Data Systems, Delft University of Technology, Delft, The Netherlands
QOptiver, Amsterdam, The Netherlands

Abstract—With the continued increase in the amount of big data
generated and stored in various application domains, such as high-
frequency trading, compression techniques are becoming ever
more important to reduce the requirements on communication
bandwidth and storage capacity. Zstandard (Zstd) is emerging
as an important compression algorithm for big data sets capable
of achieving a good compression ratio but with a higher speed
than comparable algorithms. In this paper, we introduce the
architecture of a new hardware compression kernel for Zstd
that allows the algorithm to be used for real-time compression
of big data streams. In addition, we optimize the proposed
architecture for the specific use case of streaming high-frequency
trading data. The optimized kernel is implemented on a Xilinx
Alveo U200 board. Our optimized implementation allows us to
fit ten kernel blocks on one board, which is able to achieve a
compression throughput of about 8.6GB/s and compression ratio
of about 23.6%. The hardware implementation is open source and
publicly available at https://github.com/ChenJianyunp/Hardware-
Zstd-Compression-Unit.

I. INTRODUCTION

Many big data applications face the challenge of managing
the immense amount data needed for their operations. Particu-
larly for applications where large amounts of data need to be
transferred in real-time to a remote storage location, bandwidth
limitations represent a serious bottleneck. This challenge can
be mitigated by compressing the data at the source location,
thereby reducing the bandwidth requirements.

In some big data applications, such as high-frequency trading
(HFT), it is more cost effective to increase the compute capacity
of a single server than use multiple servers. HFT data is
collected at international stock exchanges and transferred to re-
mote locations across the globe. This introduces the additional
limitation of the excessively high cost of co-locating compute
services at the exchanges. Therefore, increasing the amount
of compute capacity per co-located server provides a more
cost-effective solution than increasing the number of servers.
This makes using hardware accelerators such as FPGAs an
interesting alternative for offloading the data compression task
as well as other compute intensive tasks from the processor.

There has been much research investigating the acceleration
of compression algorithms on FPGAs. [1]-[3] propose hard-
ware implementations of the Gzip algorithm, which consists
of LZ77 compression combined with Huffman coding. [4]
introduces a hardware implementation of the LZW algorithm,
which is based on dictionary compression rather than LZ77.
However, these classical compression algorithms are not very
suited for compressing big data sets. Some accelerated solu-
tions targeting big data applications focus on decompression
rather than compression of streaming data [5]-[7]. Some major
technology providers also have their compression acceleration
solutions. Microsoft, for example, has their own hardware
compression architecture and implementation for Zlib and

Gzip [8]. These solutions are proprietary and can only be
accessed in the cloud. Xilinx also provides an open-source
library for data compression and decompression for Zlib and
Snappy algorithms. However, these kernels are relatively slow,
where the compression speed of a single-engine kernel is
limited to about 300MB/s. IBM [9] provides an embedded
Zl1ib compression accelerator on-chip on the state-of-art Power9
processor rather than an external accelerator, which makes it
only accessible for Power9 users.

These existing solutions are tuned for general purpose
compression and do not implement more recent compression
algorithms specifically designed for big data applications, such
as Zstd [10]. Our research shows that Zstd is one of the most
suitable compression algorithms for compression of big data
sets, such as HFT data, and can benefit from FPGA acceleration
to increase real-time throughput and increase the cost efficiency
of the implementation.

This paper makes the following contribution:

1) An efficient HW architecture for the Zstd algorithm.

2) Implementing the Zstd compression format, with new
features like FSE (finite state entropy) encoding on HW.

3) HW optimization for real-time compression of HFT data.

In this paper, we first introduce the Zstd format in Sec-
tion II and discuss a number of new features it provides.
Section III discusses the proposed hardware architecture of
the algorithm along with various implemented innovations.
Section IV optimizes the hardware implementation for the HFT
data characteristics. In Section V, we compare the compression
ratio and throughput of the hardware implementation with
the software implementation of Snappy and Gzip. Finally, we
conclude the paper in Section VI.

II. ZSTD COMPRESSION ALGORITHM

Like most Deflate compression algorithms, Zstd consists of
two stages, that can be executed independently. The first stage
is the LZ77 compression stage and the second stage is the
entropy encoding stage. Zstd also provides a special mode to
use dictionary compression as the first stage for small data.
This mode is not discussed in this paper since we focus on big
data application domains. Particularly for HFT data, the amount
of data generated is usually in the range of gigabytes per
second. The compression output of the first stage is organized
in two streams of data: literal stream and sequence stream.
The literal stream is the data that cannot be matched to the
sequences already identified and stored in the history buffer,
while the sequence stream is the set of data consisting of
matches found within the history buffer. Each matching result
is represented using three numbers: offset of the match, length
of the match, and the number of literal bytes preceding the

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works

match. Zstd uses a special method to encode the repeated offset
values. In this method, if the offset of the sequence is the
same as one of the last three sequences, the offset will be
encoded into some special values which take fewer bits. The
normal way to find matches is to use hash tables. Therefore
the size of hash tables is related to the compression ratio.
In the second stage, the literal stream and sequence stream
are compressed using Huffman coding and FSE coding, re-
spectively. However, the compression ratio of Huffman coding
highly depends on the distribution of symbols, which means
the size of the compressed data is not always smaller than the
original. Therefore, the Zstd compression software first tries to
compress the literal data, then checks whether the compressed
data is smaller. If not, the literal bytes will be stored directly
instead of Huffman streaming. Therefore, we only use FSE
coding in our accelerator and do not implement the Huffman
coding algorithm.
III. THE PROPOSED ARCHITECTURE

| Processing server

OpenCL library

i

i
i |

i
| Application !
! I
! I

Scheduler

& 6 o |

’ KernelO ‘ Kernell ‘ ’ Kernel n

Fig. 1. System overview of the Zstd accelerator solution

Fig. 1 shows an overview of the system implementing the
Zstd accelerator. The accelerator is implemented using the
Xilinx Vitis platform running on the processing server. The
host software is designed with the OpenCL library provided by
Xilinx. During the compression, the application first passes the
raw data and some other necessary compression information to
the FPGA. To increase throughput, multiple compression tasks
are executed at the same time. The scheduler on the FPGA
distributes the tasks to multiple compression kernels. After the
compression is performed, the compressed data is transferred
back to the processing server. The application on the processing
server packages the compressed data into the Zstd format. The
communication protocol between server and FPGA is PCle 3.0.

On the Vitis platform, the OpenCL library, the PCle con-
troller, the DMA and the scheduler are provided by Xilinx. This
paper implements the software application and the hardware
compression kernels. The application and the hardware kernels
interact with the Vitis platform through the OpenCL API and
the AXI interface, respectively.

In order to ensure a 4-byte per cycle throughput for a single
kernel, we propose using 4 hash match engines in each com-
pression kernel. Fig. 2 shows the general work distribution over
the four hash match engines in each kernel. The insert operation

insert(1-4)

[ookupta) | [msertia) | [rookupta) | [[mseria) | [Lookup3) | [insert(1-4) ‘ [Lookup(4) ‘

insert(1) Lookup(1) insert(2) Lookup(1)
Hash table 1 Hash table 2
Hash table4 Hash table4 Hash table4
..... t(3) Lookup(1) insert(4) Lookup(1)
T T T
g 4 1 31 = = =
Hash table 3 Hash table 4
Hash match engine 1 Hash match engine 2 Hash match engine 3 Hash match engine 4
[])

Fig. 2. Four hash match engines to process 4 insert and 4 lookup operations

inserts information of a string starting at 4 subsequent bytes to
the hash tables. Each lookup operation searches for information
of one string from each of the hash match engines. Four hash
match engines process the same four insert operations and
one different lookup operation. While inside each engine, four
hash tables perform the same lookup and different inserts.
Four engines contain 16 hash tables in total, which means
that the number of hash tables is quadratic with the number
of concurrent input bytes.

IV. OPTIMIZATION FOR HFT DATA

In this section, we optimize our implementation for HFT
data. We use three example datasets data-1, data-2 and data-3
that represent data from 3 international stock exchanges. Each
of these datasets is 400MB.

A. History size optimization

17500

15000

12500

10000

7500

Number of occurrency

5000
2500 l
of Dbt o |

0 0 500 750 1000 1250
Length of offset/byte

1500 1750 2000

Fig. 3. Distribution of match offset for trading data

The size of buffered history is an important optimization
parameter in Zstd software. A larger buffer is able to extend
older matches, thus increase the compression ratio. But a larger
buffer also consumes more RAM resources. To explore the
suitable size of the history buffer, we analyze the statistics
of the offset of matches. As presented in Fig. 3, most of the
offsets are shorter than 750 bytes. With the increase of length,
the occurrence of offsets decreases. There are three spikes
identified at the length of about 1100, 1300 and 1550 bytes.
Therefore, the size of buffer should be larger than 1550 bytes.

In this paper, we implement the history buffer using 2 Ultra
RAMs (URAMs), the storage of which is 64KB.

B. Static FSE hash tables

| Dynamic FSE tables | Static FSE tables

data-1 17.4% 17.6%

data-2 14.9% 15.0%

data-3 22.2% 22.3%
TABLE I

COMPRESSION RATIO USING DYNAMIC AND STATIC FSE TABLES

The generation of dynamic FSE tables consists of several
steps: calculate the possibility of every symbol, normalize the
possibility, and generate the transformation tables [10]. The
computation in these steps is highly sequential in nature and
thus is not suitable for FPGA implementation. To measure
the overhead on the compression ratio of using static tables
compared with using dynamic tables, we first add code to
the software implementation to output the tables of all blocks
when compressed. Then we use the tables of one block and
force the software to use the pre-defined tables and record the
compression ratio. As listed in Tab. I, the overhead of using
static FSE tables is small. Therefore, we conclude that the
method of using static FSE tables is more suitable for trading
datasets targeted in this work.

C. Size of hash tables and hash functions

Compression ratio
0.235
0.23
0.225
0.22
0.215
0.21
0.205
0.2

0.195

3 4 5 6 7
Length of hash function input/Byte

== Size of hash table = 4096 Size of hash table = 8192

Fig. 4. Compression ratio when using different hash functions

In this work, we use the same hash functions as the Zstd
official software. The Zstd software includes five different
hash functions, of which the length of input data ranges from
three bytes to seven bytes. Since the matches in Zstd should
be at least three bytes, it is not suitable to use less than
three bytes to calculate the hash value. Using different hash
functions influences the compression ratio. On the other hand,
the optimal hash function also varies when using hash tables
of different sizes. In this work, we explore the compression
ratio of different hash functions using two different sizes of
hash tables. The results are presented in Fig. 4. The size of
hash table shown in the figure indicates the number of entries

in each hash table. The figure shows that when using 4096-
entry hash tables, the 4-byte hash function achieves the best
compression ratio. The compression ratio of §192-entry hash
tables outperform that of 4096-entry under every hash function
input length. However, the improvement brought by 8192-entry
is small, while the RAM resources used by 8192-entry hash
tables is doubled. Therefore, we decide to use 4-byte hash
function and 4096-entry hash tables.

V. EVALUATION
A. Experimental setup

The host server used for the measurements is an HP G8
machine. The HP G8 machine contains 128GB memory and
two Xeon E5-2690 server-class CPUs. Each CPU consists of
8 hyper-threaded cores, clocked at 2.9 GHz, giving a total
of 16 cores (32 threads) in the system. The FPGA used in
this paper is an Alveo U200. The interface between the host
machine and the FPGA is PCle 3.0 x 16. The host-to-FPGA and
FPGA-to-host throughput is 11.4GB/s and 12.1GB/s, respec-
tively. The throughput mentioned in this section is memory-
to-memory throughput, which means the original data is read
from host memory and written back to host memory. This limits
the maximum throughput to 11.4GB/s. Since the compressed
data is stored in the host memory after the compression, the
bandwidths of disk and Ethernet are not taken into account.

B. Resource utilization and throughput

Resource | Utilization
LUT 8883 (0.89%)
Flip-flop | 8670 (0.41%)
BRAM 87 (4.77%)
URAM 22 (2.29%)
DSP 16 (0.23%)
TABLE II

RESOURCE UTILIZATION OF A SINGLE ZSTD HW KERNEL

The resource utilization of a single kernel is listed in Tab. II.
The critical resource is the BRAM, which takes 4.77% of all
BRAM resources. In this work, we place up to 10 kernels on the
FPGA, with total resource utilization of about 47.7%. The total
throughput of these 10 kernels can be up to 12GB/s in theory.
However, the compression throughput is lower in practice. The
throughput of the different kernels is shown in Fig. 5. The x-
axis in the figure indicates the number of kernels and y-axis
is the throughput. As the figure shows, when we increase the
number of cores, the throughput first grows linearly to about
7GB/s. Then the growth of throughput slows down and finally
reaches about 8.6GB/s when using 10 kernels. This is caused
by device memory bandwidth bottlenecks. These 10 kernels
use only 50% of the FPGA resources, leaving enough area to
implement further data processing logic if needed.

C. Throughput comparison

Fig. 6 shows the throughput of Gzip, Zstd software, Snappy
and Zstd hardware. In this work, the version of the compression
software used is Zstd 1.4.2, Gzip 1.5, and Snappy 1.1.8. In
Zstd and Gzip software, we can set the compression level in the

9
s

)
6 /
é 5 /
°
E2 —
i | I/ Number of hardware compression kernels

0

1 2 3 4 5 6 7 8 9 10

Fig. 5. Compression throughput vs number of hardware kernels

Throughput(MB/s)
800

700
600
500
400
300
200

100

0
1 2 3 4 5 6 7

9
Zstd software Compression level

— GZip Snappy Zstd hardware

Fig. 6. Comparison of single-thread throughput of Gzip, Zstd software, Snappy
and Zstd single-kernel hardware

application. The higher the compression level is, the smaller the
compressed file becomes. The default levels are 6 for Gzip and
3 for Zstd. Snappy and the Zstd hardware have no compression
level setting, thus the throughput of all compression levels is
the same. The benchmark we use is a dataset of 400MB and the
tests are single-threaded or single-kernel. The figure shows that
a single Zstd hardware kernel achieves the highest throughput
compared to a single software thread, which is about 4x larger
than Zstd level-3 and 18x larger than Gzip level-6. Running the
Zstd level-3 software fully multi-threaded on the server gives a
throughput of about 3.4GB/s, which means fully utilizing the
FPGA achieves about 2.5x acceleration.

D. Compression ratio

| data-1 | data-2 | data-3

Zstd software-L3 | 0.174 0.149 0.232

Zstd hardware 0.236 0.181 0.269

Snappy software 0.279 | 0.212 | 0.313
TABLE III

COMPRESSION RATIO AMONG ZSTD SOFTWARE, ZSTD HARDWARE AND
SNAPPY SOFTWARE

The compression ratio of the 400MB data of all three types
of trading datasets using Zstd software, Zstd hardware, and
Snappy software are presented in Tab. III. The compression
ratio of the hardware is higher than the Zstd software and lower
than the Snappy software.

From our analysis, there are several reasons why Zstd
hardware cannot achieve the same compression ratio as the
software:

1) Smaller hash table and history buffer
2) Static FSE tables and no Huffman encoding
3) No lookups from the last offset

Zstd software uses a special mechanism to find matches:
buffer the offset of the last match and try to look back at the
same offset to find a match before lookup from the hash tables.
This method is not implemented in hardware since we do not
find an efficient way to implement it with low overhead. Fig. 4
shows that increasing the size of the hash tables improves the
compression ratio only a little.

VI. CONCLUSION

In this paper, we propose a high throughput hardware archi-
tecture to accelerate the Zstd algorithm. This allows for real-
time compression of data streaming in big data applications.
The paper adapts various parts of the algorithm to allow for
an efficient hardware design. The paper also discusses how
to optimize the algorithm specifically for HFT applications.
Experimental results show that our implementation is able to
achieve a throughout of up to 8.6GB/s and a compression ratio
of 23.6%, with only 50% FPGA utilization. The throughput of
a single FPGA core is about 4x larger than single thread Zstd
software, while 10 cores are about 2.5x larger than the fully
multi-threaded Zstd software for comparable compression ra-
tios. The hardware implementation is open source and publicly
available.

REFERENCES

[1] S. Rigler, W. Bishop, and A. Kennings, ‘“Fpga-based lossless data
compression using huffman and 1277 algorithms,” in 2007 Canadian
conference on electrical and computer engineering. IEEE, 2007, pp.
1235-1238.

[2] J. Ouyang, H. Luo, Z. Wang, J. Tian, C. Liu, and K. Sheng, “Fpga
implementation of gzip compression and decompression for idc services,”
in 2010 International Conference on Field-Programmable Technology.
IEEE, 2010, pp. 265-268.

[3] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip:
High performance lossless data compression on fpgas using opencl,” in
Proceedings of the international workshop on openCL 2013 & 2014,
2014, pp. 1-9.

[4] W. Cui, “New lzw data compression algorithm and its fpga implementa-
tion,” in Proc. 26th Picture Coding Symposium (PCS 2007), 2007.

[5] J.Fang,J. Chen, J. Lee, Z. Al-Ars, and H. P. Hofstee, “Refine and recycle:
A method to increase decompression parallelism,” in 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), vol. 2160. 1EEE, 2019, pp. 272-280.

[6] J. Fang, J. Chen, J. Lee, Z. Al-Ars, and H. P. Hofstee, “A fine-
grained parallel snappy decompressor for fpgas using a relaxed execution
model,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 335-
335.

[7] J. Fang, J. Chen, J. Lee, Z. Al-Ars, and H. P. Hofstee, “An efficient high-
throughput 1z77-based decompressor in reconfigurable logic,” Journal
of Signal Processing Systems, vol. 92, no. 9, pp. 931-947, Sep 2020.
[Online]. Available: https://doi.org/10.1007/s11265-020-01547-w

[8] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, “A scalable high-
bandwidth architecture for lossless compression on fpgas,” in 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines. 1EEE, 2015, pp. 52-59.

[9] B. Abali, B. Blaner, J. Reilly, M. Klein, A. Mishra, C. B. Agricola,
B. Sendir, A. Buyuktosunoglu, C. Jacobi, W. J. Starke et al, “Data
compression accelerator on ibm power9 and z15 processors.”

[10] Y. Collet. Zstd github repository from facebook. [Online]. Available:
https://github.com/facebook/zstd

