

Delft University of Technology

Engineering Data Processing Workflows

Spinellis, Diomidis

DOI
10.1109/MS.2024.3385665
Publication date
2024
Document Version
Final published version
Published in
IEEE Software

Citation (APA)
Spinellis, D. (2024). Engineering Data Processing Workflows. IEEE Software, 41(4), 25-29.
https://doi.org/10.1109/MS.2024.3385665

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MS.2024.3385665
https://doi.org/10.1109/MS.2024.3385665

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

ADVENTURES CODE
Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

0 7 4 0 - 7 4 5 9 / 2 4 © 2 0 2 4 I E E E 	 JULY/AUGUST 2024 | IEEE SOFTWARE � 25

ADVENTURES IN CODE Editor: Diomidis Spinellis
dds@aueb.gr

DATA SCIENCE, BUSINESS ana-
lytics, and machine learning applica-
tions routinely churn large volumes
of data. Often, you can rely on do-
main-specific tools, such as Pro-
metheus for performance monitoring
or Snort for intrusion detection. In
other cases, you need to develop be-
spoke data processing workflows.
I have noticed that experts typically
follow specific best practices when
engineering such workflows, which
they have learned through tedious
experimentation and expensive mis-
takes. Here, based on my experience
in applying data analytics in diverse
fields, ranging from software1 and the
environment2 to bibliometrics3 and
finance,4 I am distilling the most im-
portant practices for engineering data
processing workflows. When building
such workflows, your goal is to de-
rive correct results in a reproducible,
maintainable, and efficient manner.

Split Data and Tasks
You may be tempted to create a pro-
gram that performs in one go all the
required processing, but this is a
mistake. Workflows based on such
programs are difficult to test, to run

reliably, to troubleshoot, and to par-
allelize. Instead, structure your input
data, your calculations, and your
output into chunks (shards) that can
be processed in reasonable amounts
of time, for example, a few hours.
Choose the size so that the fixed
overhead of running a task is only a
tiny part of the total execution cost.

At the point where each task fin-
ishes the processing of a chunk, con-
sider adding an execution hook that
will allow you to modify or grace-
fully terminate the running pro-
cess. This can be a file that a Python
script will read and evaluate if it ex-
ists or a file that a Unix shell script
will source. For example, if each
shell script loop finishes with the
command “source loop-hook.sh,” you can
terminate the loop at its next itera-
tion by writing “break” in the “loop-
hook.sh” file or see a timestamp after
each iteration by writing “date” in it.

Avoiding overly large files simpli-
fies their transfer and backup opera-
tions, especially when you deal with
failures. Splitting tasks into multiple
independent processes makes it triv-
ial for you to utilize multiple cores
or even multiple hosts with read-
ily available Unix programs such
as xargs and GNU parallel. Also, if
one of the processes fails, you have

a manageable amount of data to ex-
amine, and you can easily rerun just
the failed part.

On the other hand, also avoid
working with many overly small
files (of a few hundred bytes each).
Processing a file involves a fixed
overhead, so ensure that files carry
their weight. Group small amounts
of data into larger files or in a da-
tabase. For simple unstructured
columnar data, such as numbers,
identifiers, and dates, delimiter-sep-
arated text files can be processed
more easily and efficiently than
structured formats, such as JSON
and XML. If you can benefit from
the flexibility and power of SQL
queries but do not require the ACID
(atomicity, consistency, isolation, du-
rability) guarantees of a full-fledged
relational database system, then us-
ing the SQLite embeddable database
will make your workflow easier to
deploy and maintain.

When dealing with large num-
bers of files, avoid storing them all
in a single directory as this may
hinder their efficient processing.
Instead, organize them in a simple
tree structure, for example, by year
or the first digits of their Univer-
sally Unique Identifier. Add further
tree levels until you have hundreds,

Engineering Data
Processing Workflows
Diomidis Spinellis

Digital Object Identifier 10.1109/MS.2024.3385665
Date of current version: 12 June 2024

mailto:dds@aueb.gr
https://orcid.org/0000-0003-4231-1897

ADVENTURES IN CODE

26	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

rather than many thousands, of en-
tries in each directory.

Furthermore, consider splitting
your processing into intermediate
steps. Thus, you can develop and
test each step independently. As
with split data, if a step fails, after
fixing it, you can continue process-
ing from that step onward. Often,
Unix pipelines automatically allow
a multistep job to utilize simply and
efficiently the several cores of mod-
ern processors.

Splitting adds costs for interpro-
cess communication, for file input/

output (I /O), and for combining
the upstream results, so consider
the tradeoffs to avoid overburden-
ing your workflow. Remember that
keeping your data sorted on appro-
priate keys allows you to compare,
merge, and join them efficiently with
O(N) operations.

Work With Data Subsets
Rapid feedback is important in all
engineering workflows. Big data,
with processing latencies that can
range from hours to months, can
obviously derail this feedback pro-
cess. To prototype, test, simulate a
full run, and troubleshoot your solu-
tion without long delays, implement
your tasks so that they can easily
process only a subset of the data.
The splitting I described in the pre-
vious section obviously helps here,

but other approaches are also pos-
sible. For example, a command-line
switch or a configuration item can
set up the task to process only one
day each month or only customers
whose identification number ends in
242. A related approach is to sample
a pseudorandom number generator
to select only a subset of the records.
For example, a condition based on
random() < 0.01 will sample 1% of the
data. Seeding the random number
generator with a fixed value ensures
that the process is reproducible. This
helps both your debugging efforts

and your colleagues who might want
to verify your findings.

While at it, consider whether
processing all the data is actually
required. For many tasks, a small
random sample may offer you the re-
sults you require. Verify this through
the cross-validation of the results’
stability across multiple samples or
by taking increasingly larger samples
and looking at the results’ quality,
for example, through statistical hy-
pothesis testing.

Log
Logging your workflow’s progress
allows you to monitor and fore-
cast progress, to detect stuck jobs and
sources of inefficiency, and to pin-
point errors. Log liberally: as a mini-
mum, when a task starts, ends, the
same for each independent processing

step, and all errors. On the other
hand, do not log within hot loops to
avoid the corresponding performance
impact. Instead, monitor a counter
and log at intervals that provide you
with reasonable progress feedback.
Include in your log output all identi-
fiers needed to unambiguously deter-
mine when, where, and what went
wrong. This may include a timestamp
(in UTC if you work across multiple
time zones), hostname, the process
identifier, and input or output file
names. When working with a high-
level language, it may be worth using
a logging library so that you can easily
configure the required logging at run-
time. In shell scripts, you can achieve
some of this functionality by perform-
ing logging through a common func-
tion. For shell scripts with infrequent
command invocations, it can be suffi-
cient to configure the shell to log them
(set -x) together with a prefix specified
with Bash’s PS4 variable. Keep log files
along with the generated data so that
you can refer to them if you find a
problem months or even years later.

Some constructs make it diffi-
cult to inspect the data you process,
but there are workarounds. You can
inspect data flowing through Unix
pipes by placing a tee command at the
point you want to inspect. A file ar-
gument to tee will be the file receiving
a copy of the data flowing through it.
In vectorized processing, via Python’s
NumPy package or languages that
deal directly with n-dimensional ar-
rays, peeking inside array processing
is also tricky. You can inject logging
by structuring your code in the form
of apply(function, array) and then in-
strument the function with the (tem-
porary) logging you need.

Document
Processing workflows can be dif-
ficult to understand because they

Keeping your data sorted on
appropriate keys allows you to

compare, merge, and join them
efficiently with O(N) operations.

ADVENTURES IN CODE

are often built around many diverse
technologies: bespoke high-level lan-
guage code, specialized tools, script-
ing and shell glue, databases, cloud
services, and file system hierarchies.
Help your colleagues and your fu-
ture self who has forgotten how you
designed the workflow by document-
ing all aspects. Provide a high-level
overview in a README file as well
as comments in each bespoke tool
or script describing its purpose, ex-
pected input, generated output, and
available configuration elements.

Internally, attach metadata to
the data you generate so that you
can easily determine their prov-
enance. These can take the form of
file names incorporating timestamps
and other identifiers, comments in
XML documents, a metadata object
in a JSON file, or corresponding col-
umns in plain text files or database
tables. These metadata should allow
you to trace back faulty data to the
processes that generated them and
the associated log files.

Expect Invalid Data
and Failures
I have often posited the following
Law of Big Data Analytics, “Any suf-
ficiently large dataset will contain
elements that will trip your analysis
tools,” and its obvious corollary, “In
any sufficiently large collection of
positive integers, at least one value
will be −1 or null.” Data at any stage
within your processing can be cor-
rupt (violating a specification) or in-
valid (in allowed but unanticipated
ways). Structure your processing to
deal with these issues. One approach
is to log such instances and handle
them gracefully (for example, skip-
ping or imputing the corresponding
records) to avoid a few expected bad
apples spoiling an expensive pro-
cessing task. (The logging helps you

ensure that the problematic records
are indeed few and unfixable.)

When dealing with floating point
numbers, you can prevent your ac-
cidental use of missing data by uti-
lizing the hardware’s support for
handling invalid values. On input,
rather than using zero as a stand-in
for missing values, set these to the
processor’s not a number (NaN)
representation. Arithmetic opera-
tions involving NaNs will propa-
gate them to their result, making
the use of missing values apparent
in the output.

Another approach involves stop-
ping the processing and providing
enough data so that you can fix the
issue and repeat the correspond-
ing step. Add assertions liberally in
your code to catch data-breaking
invariant failures as early as pos-
sible. This is especially worthwhile
when you initially prototype your
solution and later when the pol-
ished workflow is running in a pro-
duction environment.

For the case of invalid data or
software failures, set up your work-
flow to provide you with all the trou-
bleshooting data you need. Configure
native code to include debug symbols
and to record a core dump on failure,
which you can inspect with a debug-
ger. Configure higher level code, writ-
ten, for example, in Java or Python,
to provide a complete stack trace. Set
up Unix shell scripts to terminate in
the case of unanticipated errors (set -eu
-o pipefile) and terminate them by ex-
iting with a nonzero code when you
encounter an error so that their call-
ers will also fail.

Problems will also arise from
hardware faults. Depending on your
environment and setup, the most
common ones are likely to be power
failures and network outages. Both
can result in interrupted processes

and truncated output files. Deal with
these by ensuring that your results
appear ready through an atomic op-
eration that takes place only when
all processing completes correctly.
When using a database, committing
a transaction is an obvious solution.
When writing files, generate them
with a temporary name and rename
them to the final one only when the
task completes. Operating systems
rename files atomically, ensuring
your task’s transaction integrity.

When dealing with thousands
of hosts, networking, and storage
devices, you can also bet on these
failing or behaving in unpredict-
ably wrong ways, often corrupting
your data or results. Addressing
these issues is beyond the scope of
this article.

Automate a Reproducible
Incremental Workflow
Manually running your workflow’s
steps is a recipe for disaster. You may
miss or misconfigure steps, incorpo-
rate stale data, or entirely forget how
the process worked when you revisit
it in the future. Instead, express the
required steps so that a single com-
mand can execute the entire process.
You can do this with a script, or bet-
ter, with a specialized tool, such as
Unix make. Both approaches will
also serve as your process’s docu-
mentation. You can bootstrap the
automation process with a log of ex-
ecuted statements, which allows you
to recall the order of processes and
their arguments. For this task, Py-
thon notebooks and the shell’s his-
tory are your friends.

Implement your workflow to run
tasks incrementally so that if you
want to rerun only some downstream
steps, you will not need to pay the
price of running the upstream ones.
At a very simple level, you can do

	 JULY/AUGUST 2024 | IEEE SOFTWARE � 27

ADVENTURES IN CODE

28	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

this by skipping the generation of
output files that already exist. A bet-
ter approach is to represent all depen-
dencies between tasks as a directed
acyclic graph and run only those
whose outputs are missing or are
stale with respect to their dependen-
cies. You can easily implement this
idea with Makefile rules. Also, create
a “clean” rule or process that will de-
lete all intermediate and cached data
so that you verify your process from
the beginning to the end.

Ensure that your workflow re-
mains reproducible over time by pin-
ning the versions of dependencies
you are installing through a package
manager; by cloning Git repositories
through release tags or specific com-
mit hashes; by seeding random num-
ber generators with fixed values; by
using persistent resource identifiers,
such as digital object identifiers; and
by maintaining local copies of fungible
third-party data. Ideally, you should
be able to run your process without
using any external data sources, rely-
ing only on locally cached data.

Do Not Overengineer
The abundance of big data process-
ing facilities brings the temptation to
overengineer. Steer away from it! Be-
fore launching a cloud-based Spark/
Flink/Hadoop/Kubernetes cluster,
driven by a message queue, and stor-
ing data into a multimaster distrib-
uted relational database, see how far
you can get by following the KISS
(keep it simple, stupid) principle. Com-
plex tools bring with them depen-
dencies that over time will introduce
breakages and the need for expensive
maintenance. Therefore, choose your
approach pragmatically, adopting the
simplest solution that can reliably and
efficiently deliver the goods.

Experiment, prototype, and adopt
for production (if viable) workflows

using plain (often text) files and
your bespoke code, together with
simple, powerful, mature, and widely
available Unix tools, such as curl,
xargs, parallel, awk, sed, find, sort,
join, comm, grep, and make, glued
through shell scripting.5 I recently
experienced the robustness of the
Unix tools approach when I reran an
almost unmodified Unix documen-
tation typesetting workflow written
in the early 1970s.

Optimize the Heavy Lifting
In processing tasks, typically only a
small part of the code is responsible
for most of the runtime cost. This is
the part you should focus on optimiz-
ing. If you have coded your workflow
in Python, the heavy lifting should
be performed by libraries written in
performant C/C++, such as NumPy,
SciPy, Pandas, TensorFlow, PyTorch,
and scikit-learn. Similarly, in shell
scripts, the core processing should
be carried out by heavily optimized
Unix tools, such as sort or grep, or
more specialized command-line tools
running on large volumes of data.
You should avoid having your hot
loop perform its core processing in
pure Python, in the Unix shell, or in-
voke a new process in each iteration.

Multiple levels of caching can
help you further reduce the cost of
expensive processing. Keeping pro-
cessed data, rather than reproducing
them from scratch, buys you speed
and efficiency (at the expense of
increased storage) when you need
to rerun only a subset of down-
stream tasks.

Reduce the cost of textual data
storage, communication, and I/O by
storing them in a streaming-friendly
compression format. The Zstandard
program and its zstd implementa-
tion are particularly well suited, of-
fering a high compression ratio, fast

decompression, the utilization of
multiple processing cores, and a ro-
bust checksum to detect data cor-
ruption. The employed compression
format is append-friendly, allowing
you to add more data to an already
compressed file simply by appending
them to it. Furthermore, using the
zstd program’s --rsyncable flag allows
the efficient (partial) transfer of your
data files with rsync after they have
been slightly modified.

Follow Software
Engineering Practices
Data processing workflows can be a
key part of your organization’s opera-
tions, so treat them with the care you
would give to any production software
artifact. Follow the established guide-
lines for writing maintainable code,6
such as organizing the workflow
along short, simple, and loosely cou-
pled units serving distinct concerns;
incorporating automated tests; and
avoiding the accumulation of techni-
cal debt. Put your workflow’s elements
under version control, review changes,
and establish a continuous integration
process for verifying the workflow’s
quality through formatting checks,
static analysis, and tests.

Where possible, also version your
data. For small amounts of textual
data, you can use your process’s
revision control repository. To keep
your source repository lean, version
larger blobs in a separate repository,
in the file system, or through your
cloud provider’s storage services.

I n essence, the successful en-
gineering of data processing
workflows merges the exper-

tise, insight, and ingenuity of a data
scientist with the methodical and
disciplined approach of a software
engineer.

ADVENTURES IN CODE

	 JULY/AUGUST 2024 | IEEE SOFTWARE � 29

References
	 1.	D. Spinellis, “Tools and techniques

for analyzing product and process

data,” in The Art and Science of

Analyzing Software Data, T. Men-

zies, C. Bird, and T. Zimmermann,

Eds., San Mateo, CA, USA: Morgan-

Kaufmann, 2015, pp. 161–212.

	 2.	D. Spinellis and P. Louridas, “The

carbon footprint of conference pa-

pers,” PLoS One, vol. 8, no. 6, May

2013, Art. no. e66508, doi: 10.1371/

journal.pone.0066508.

	 3.	D. Spinellis, “Open reproducible scien-

tometric research with Alexandria3k,”

PLoS One, vol. 18, no. 11, Nov. 2023,

Art. no. e0294946, doi: 10.1371/

journal.pone.0294946.

	 4.	T. Evgeniou, M. Pontil, D. Spinellis,

and N. Nassuphis, “Regularized ro-

bust portfolio estimation,” in Regu-

larization, Optimization, Kernels,

and Support Vector Machines, J. A.

K. Suykens, M. Signoretto, and A.

Argyriou, Eds., London, U.K.:

Chapman & Hall, Oct. 2014, ch. 11,

pp. 237–256.

	 5.	B. Kernighan, “Sometimes the

old ways are best,” IEEE Softw.,

vol. 25, no. 6, pp. 18–19, Nov./

Dec. 2008. doi: 10.1109/MS.

2008.161.

	 6.	Visser, J. Building Maintainable

Software: Ten Guidelines for Future-

Proof Code. Sebastopol, CA, USA:

O’Reilly Media, 2015.

ABOUT THE AUTHOR

DIOMIDIS SPINELLIS is a professor in the Department of Management

Science and Technology, Athens University of Economics and Business, Ath-

ens 104 34, Greece, and a professor of software analytics in the Department

of Software Technology, Delft University of Technology, 2600 AA Delft, The

Netherlands. He is a Senior Member of IEEE. Contact him at dds@aueb.gr.

Digital Object Identifier 10.1109/MS.2024.3399275

IEEE Computer Society
Has You Covered!
WORLD-CLASS CONFERENCES —
Over 195 globally recognized conferences.

DIGITAL LIBRARY — Over 900k articles covering
world-class peer-reviewed content.

CALLS FOR PAPERS — Write and present your
ground-breaking accomplishments.

EDUCATION — Strengthen your resume with the
IEEE Computer Society Course Catalog.

ADVANCE YOUR CAREER — Search new positions
in the IEEE Computer Society Jobs Board.

NETWORK — Make connections in local Region,
Section, and Chapter activities.

Explore all member benefi ts
www.computer.org today!

mailto:dds@aueb.gr

	025_41ms04-adventurescode-3385665

