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CHAPTER ONE 

INTRODUCTION 

1.1. Background of research 

1.1.1 Stroke rehabilitation and brain plasticity 

According to World Health Organization, stroke is the clinical syndrome of rapid onset of 

focal (or global, as in subarachnoid haemorrhage) cerebral deficit, lasting more than 24 hours 

(unless interrupted by surgery or death), with no apparent cause other than a vascular one. 

There are two main types of stroke: ischemic, which is due to lack of blood flow, and 

hemorrhagic, which is due to bleeding. According to the estimations, some 16 million people 

per year experience stroke, from which about two-thirds survive worldwide (Strong et al., 

2007). Stroke remains the most common cause of disability for adults. Stroke survivors suffer 

various deficits that generate disability in motor, perceptual, and cognitive functioning (Carr 

& Shepherd, 1996). Among these disabilities, motor deficits have a large impact on managing 

everyday activities (Feys et al., 1998). Hemiplegia caused by stroke brings terrible burden on 

patients and their families, especially with the impaired upper extremity, because lack of arm-

movement control affects independent daily living.  

This thesis studies the field of stroke rehabilitation mainly regarding upper limb. It has been 

proved that activity-based rehabilitation can improve the regaining of upper-limb motor 

functions (Richards et al., 2008), which enable patients to perform daily living activities and 

maintain independence (Whitall et al., 2000). Activity-based rehabilitation utilizes the 

phenomenon of brain plasticity (Hallett, 2001), which means that human brain is able to 

reorganize neural pathways by motor relearning. The changes caused by plasticity in the 

lesioned hemisphere coincide with motor function improvement after activity-based 

rehabilitation (Richards et al., 2008). In addition to neural plasticity changes in the lesioned 

side, motor recovery may occur because of a shift of balance in the motor cortical recruitment 

toward the undamaged hemisphere via the neural pathways in the same side of the brain 

(Jang, 2009) (Timmermans et al., 2009).  
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1.1.2 Post-stroke pathophysiological status of patients 

During rehabilitation, (i) acute, (ii) sub-acute, and (iii) chronic phases are distinguished in the 

literature as after-event pathophysiological states of stroke survivors. Stroke survivors should 

receive different therapies and treatments in each phase according to their pathophysiological 

states. The acute phase starts right after the occurrence of the stroke and typically last not 

more than a week. The sub-acute phase is the beginning of healing. It normally begins in the 

second week after the event and lasts until the 12th week (Zhu, 2001). It is followed by the 

chronic phase in which intense therapy is applied. The duration of this phase is vague. It 

depends on many factors such as heaviness of the stroke, the physical condition of the patient, 

and the applied rehabilitation therapy.  

Based on observing a large amount of hemiplegic patients, Brunnström (1970) proposed to 

consider six stages of sequential motor recovery after a stroke, which is mainly used in 

current clinical rehabilitation practice. The principles implied by this model are to adapt the 

therapy to the pathophysiological states, to avoid abnormal movements of the patients, and to 

encourage the correct mode of movement training according to the successive stages. An 

overview of the stages and the description of the related therapies are shown in Table 1.1.  

Rehabilitation training can start from sub-acute phase, and brain plasticity mainly happens in 

the first three months post-stroke (Zhu, 2001). However, research has shown that even in 

rehabilitation of patients with chronic stroke, the motor function of the upper-limb can also be 

improved (Van der Lee et al., 1999), (Page et al., 2004). However, due to the limited 

resources in the hospital, such as access to physical therapy, availability of the hospital beds 

and rehabilitation equipment, most stroke patients are discharged from the hospital six month 

after stroke when motor recovery can be still enhanced.  

Table 1.1 Description of the stages of recovery identified by Brunnstrom 

Phase 
Stages of 
recovery 

Duration Goal of treatment Therapy 

acute 
 

post-stroke 
first week 

pain reduction and 
stabilization of the 

injured tissue 

ensure proper position in bed, 
turn over every second hour to 

pat back 

sub- 
acute 

stage I: 
flaccid 

post-stroke 
second 
week 

prevent spasticity 
maintain proper position and 

training in bed 

stages II - 
IV 

post-stroke 
third week 

to third 
month 

prevent spasticity and 
induce correct modes of 

movement 

passive movement, body weight 
training, trunk control training, 

and correct abnormal movement 

chronic 
stages V or 

higher 

post-stroke 
fourth 

month -  

improve ADL, 
functional ability, and 

movement coordination 

active movement, coordination 
training, and fine movement 

training 
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1.1.3 Specific rehabilitation treatments 

In upper limb stroke rehabilitation, besides traditional treatment delivered by physical 

therapists, other treatments that are mainly used in clinical rehabilitation include (i) bilateral 

arm training, robotic therapy, (ii) constraint-induced movement therapy (CIMT), (iii) 

electromyographic feedback, (iv) electrostimulation, (v) high-intensity therapy, (vi) mental 

practice with motor imagery, (vii) repetitive task training, (viii) robotics, and (ix) strength 

training. Explanations of these treatments are listed in Table 1.2. 

Langhorne et al. summarized that among these treatments only CIMT or modified CIMT and 

robot-assisted training are beneficial or likely to be beneficial for the patients; while only 

uncertain benefit or unknown effect can be identified in other treatments (Langhorne et al., 

2011). Since CIMT restrains the less-affected arm, it is only applicable to patients with 

relatively mild impairment (Green et al., 2011), whereas robot-assisted training is able to 

cover the range from assistive training to resistive training, so it is applicable to patients in all 

stages.  

Robot assisted rehabilitation systems were introduced some 30 years ago with the goal to 

assist physical therapists in providing consistent, repeatable training to stroke patients. Robot 

Table 1.2 Description of specific rehabilitation treatments for upper limb (Langhorne et al., 
2011) 

Bilateral arm training Training involving use of both arms for identical activities in a 
simultaneous but independent manner 

CIMT Involves many repetitions of task-specific training of the affected 
limb with restraint of the unaffected limb 

Electromyographic 
feedback 

The use of external electrodes that are applied to muscles to 
capture electrical potentials of motor units. Instrumentation 
converts the recorded potentials into visual or auditory 
information. 

Electrostimulation Electrostimulation is delivered to the peripheral neuromuscular 
system by internal or external electrodes 

High-intensity 
therapy 

An increased amount of focused therapy compared to another 
reference group 

Mental practice with 
motor imagery 

Mental practice of a physical action that aims at improving 
movement 

Repetitive 
task training 

Repeated practice within a single training session of an active 
motor sequence that is aimed at a clear functional objective 

Robotics Robotic devices can allow repetitive, interactive, high-intensity, 
task-specific treatment of a limb. 

Strength training Progressive resistance exercises aiming at improving muscle 
strength 
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assisted rehabilitation enables patients to train independently of a therapist and to improve 

upon their own functional level. The use of robotic devices in rehabilitation can provide high-

intensity, repetitive, and interactive treatment of the impaired upper limb. With robotic 

devices, patients can achieve increased gains from rehabilitation treatment (Prange et al., 

2006). In the next section, we will review the current trends in robot-assisted stroke 

rehabilitation with the aim of casting light on the attainments and some limitations. 

1.2. Current state and limitations of robotic assisted rehabilitation 

1.2.1 Review of the instruments  

There are two major branches of assistive robotics, namely socially assistive robotics and 

therapy assistive robotics. Many therapy assistive robotic devices have been developed in the 

last decade, for example, Amadeo Robot (Sale et al., 2012), Assisted Rehabilitation and 

Measurement (ARM) Guide (Reinkensmeyer et al., 2000), ARMin (Nef & Riener, 2005), Bi-

Manu-Track (Hesse et al., 2003), Mirror Image Motion Enabler (MIME) (Burgar et al., 2000), 

Massachusetts Institute of Technology (MIT)-Manus (Krebs et al., 1999), Neurorehabilitation 

Robot (NeReBot) (Rosati et al., 2007), and Wrist Gimbal (Martinez et al., 2013). These 

robotic instruments have been used in clinical rehabilitation. The results of the first large 

randomized study, in which training with MIT-Manus have been compared with intensive 

therapist-provided therapy and usual care, have revealed that there is no significant difference 

in the outcomes of the two intensive forms of the therapy (Lo et al., 2010). Recently, the 

issues of user-robot personality matching and assistive robot behavior adaptation have come 

to the limelight (Tăpus et al., 2008). While the first generation therapy assistive instruments 

were typically controlled by therapist, the second generation instruments support patient-

controlled therapeutic exercises (Burgar et al, 2000).  

An overview of some typical instruments developed in the last 20 years is presented in Table 

1.3. They are compared from some important aspects, such as (i) target, (ii) type of assistance, 

(iii) feedback, (iv) degree of freedom, (v) type of exercises, and (vi) type of robot.  

The overview presented in Table 1.3 is compiled based on the information available at the 

website: http://www.strokengine.ca/intervention/robotics-introduction/ (accessed on 

17/06/2016). For further information, the links given in Table 1.4 can be used. The 

explanations on the various aspects are as follows. 

1) Target 

Robotic devices may focus on the whole of the upper limbs on specific part of it, as target. In 

the literature, devices focusing on the recovery of shoulder and elbow are referred as 

“proximal”, while “distal” refers wrist, hand, and fingers.   

2) Type of assistance 
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Various types of assistance are identified in the literature, such as active, assisted, active 

assisted, and passive. ‘Active’ means that the patients have to move by themselves ‘assisted’,  

Table 1.3 Versatility of the robotic rehabilitation instruments (part one) 

Robot characteristics Image 

Device: Amadeo Robot1 

Target: Distal 

Type of assistance: Assisted and active 

Feedback: Visual and auditory 

Degree of freedom: 5 

Type of exercise: Fingers’ movement  

Type of robot: End effector  

Device: ARMGuide2 

Target: Proximal 

Type of assistance: Active-assisted 

Feedback: Graphical feedback of the hand 
position and feedback on the amount of motor 
assistance 

Degree of freedom: 3 

Type of exercise: Reaching movements in 
different directions 

Type of robot: singly-actuated   

Device: ARMin I and ARMin II3 

Target: Proximal and distal 

Type of assistance: Passive and active 

Feedback: Visual and auditory 

Degree of freedom: 6 independently actuated 
DOF and 1 coupled DOF 

Type of exercise: Functional 3D workspace 
repetitive exercises 

Type of robot: Exoskeleton  

Device: Bi-Manu-Track4 

Target: Distal 

Type of assistance: Passive-passive, passive-
active, active-active 

Feedback: Visual 

Degree of freedom: 1 

Type of exercise: Bilateral elbow pronation and 
supination, wrist flexion and extension in a 
mirror or parallel fashion. 

Type of robot: End-effector  
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Table 1.3 Versatility of the robotic rehabilitation instruments (part two) 

Robot characteristics Image  

Device: MIME5 

Target: Proximal 

Type of assistance: Passive, active –assisted, 
active-constrained, bilateral modes 

Feedback: Feedback of the fraction of the 
movement completed or the time to complete was 
used to track and motivate performance 

Degree of freedom: 6 

Type of exercise: Unilateral or bilateral shoulder 
and elbow movement in target reaching activities 

Type of robot: End effector  

Device: MIT-Manus6 

Target: Proximal 

Type of assistance: Assisted 

Feedback: Visual, auditory, and tactile 

Degree of freedom: 2 

Type of exercise: Shoulder and elbow movement 
in horizontal plane, repetitive reaching exercises 

Type of robot: End effector 

Device: NeReBot7 

Target: Proximal 

Type of assistance: Assisted 

Feedback: Visual and auditory 

Degree of freedom: 3 

Type of exercise: Flexion and extension, pronation 
and supination, adduction and abduction, circular 
movements of shoulder and elbow 

Type of robot: Direct drive wire actuation 
 

Device: Wrist Gimbal8 

Target: Distal 

Type of assistance: passive, assistive, and resistive 

Feedback: Visual and auditory 

Degree of freedom: 3 

Type of exercise: Forearm Pronation and 
supination, wrist flexion and extension, and wrist 
adduction and abduction 

Type of robot: Exoskeleton  



7 

and ‘active-assisted’ means the robot will assist the patients when they cannot complete the 

task. ‘active-constrained’ means the robot can exert resistance for the advance patients. 

‘Passive’ means the patients are unable to move voluntarily, but the robot drives the patients’ 

arm to move. These modes enable different difficulty levels of motor task training during 

rehabilitation. Different modes can be tailored to the patients according to their motor 

capability. ‘Active’ and ‘active-assisted’ modes can help the patients who are unable to 

complete the task to move along the trajectory toward the goal.  

3) Feedback 

Current robotic systems are able to provide visual, tactile, and auditory feedback to the 

patients. Sensory modalities, such as visual, tactile, olfactory and auditory, play an important 

role in functional recovery of stroke patients, as they can significantly increase the sense of 

presence during training (Dinh et al., 1999). Conscious, active involvement during 

rehabilitation shortens the recovery time, and contributes to mental well-being of patients. 

Therefore, integration of multi-sensory feedback mechanisms into robot assisted training is of 

importance for robot assisted rehabilitation systems.  

4) Degree of freedom 

Robot assisted rehabilitation devices are capable to fully support all 7 degrees of freedom of 

movement of the shoulder, elbow and wrist. However, an increase in degree of freedom also 

increases the complexity of the development of the instrument.  

5) Type of exercises 

The type of exercises supported by current robotic devices are focused on delivering therapy 

for a single joint movement type of movement, but complex motion or direct support of daily 

activities is still a challenge. Nevertheless, some recent findings of research in rehabilitation 

Table 1.4 Links to websites 

 Links 

1 http://tyromotion.com/en/products/amadeo  

2 http://www.rehab.research.va.gov/jour/00/37/6/reink376.htm 

3 http://cabrr.cua.edu/devicegallery.cfm 

4 http://www.reha-stim.de/cms/index.php?id=60 

5 http://www.strokengine.ca/intervention/robotics-introduction/  

6 http://www.rehab.research.va.gov/jour/06/43/5/lum.html 

7 http://www.techshout.com/science/2010/17/mit-manus-robot-assisted-therapy-may-
help-stroke-patients-regain-function 

8 http://www.mechatronics.it/index.php?lingua=ENG&pag=res&sub=att&id=16 

http://inside.mines.edu/~ocelik/research.html 
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therapy showed that ADL focused exercises not only increases patient motivation but also 

yields an improved therapeutic outcome compared to single joint movements (Langhammer & 

Stanghelle, 2000). So it is a limitation for the current robotic devices that they cannot enable 

natural movements of the patients.  

6) Type of robot 

The term ‘end effector robot’ refers to robots interacting with the patient using a single distal 

attachment point on the forearm by means of orthosis. It simplifies the structure of the device. 

However, it may complicate the control of the limb position in the case of multiple possible 

degrees of freedom. The term ‘exoskeleton robot’ refers to robots having a mechanical 

structure, which mirrors the skeletal structure of the limb. This design allows independent 

control of movements in a few limb joints. Maciejasz et al., (2014) found that the mechanical 

and control algorithm complexity of these devices are significantly higher than of the end-

effector devices, and the complexity escalates as the number of DOF increases. Major 

limitation of the current robotic devices from the instrument point of view is the high cost of 

the system; therefore, there is still a significant need to reduce cost of home-based devices for 

therapy and ADL assistance (Maciejasz et al., 2014). 

1.2.2 Review of clinical experiments  

A review of clinical experiments conducted with robotic assisted rehabilitation devices 

suggested that physical rehabilitation performed with robotic devices can enhance arm-

movement recovery following stroke. However, there are still some questions to be further 

studied. Prange et al. (2006) found that robot-aided therapy of the proximal upper limb 

improves short- and long-term motor control of the paretic shoulder and elbow in sub-acute 

and chronic patients; however, they did not find any significant improvement on functional 

abilities after robot-assisted motor trainings. This entails that only limited improvement was 

achieved in the ADL of patients.  

For example, the results obtained by applying the Fugl-Meyer Assessment method, which 

mainly measures motor ability of a single joint, show that robot assisted therapy is more 

effective in recovering motor control abilities, such as motor power, than conventional 

therapy. On the other hand, studies that used Function Independence Measurement method 

and the Wolf functional ability test, which measures functional independence, such as 

coordination of joints, communication, and social cognition, found no significant 

improvement on motor function abilities of patients (Finley et al., 2005), (MacClellan et al., 

2005). In some cases, conventional therapy had achieved even greater gains in reclaiming 

motor function abilities than robot assisted therapy (Masiero et al., 2011). So, from the 

clinical efficiency point of view, the major limitation of the current robot-assisted 

rehabilitation is to transfer the gains of motor control abilities to functional independence of 
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the patients (Loureiro et al., 2011). Table 1.5 introduces the assessment means for evaluating 

patient’s capability and concludes the outcome using each mean after robot-assisted training. 

1.2.3 Limitations in robot-assisted rehabilitation 

Evidence suggests that (i) repetitive training (Kwakkel et al., 2008), (Krouchev and Kalaska, 

2008), (ii) intensive use of the impaired limb (Wu et al., 1998), (Fisher & Sullivan, 2001), 

(Bach-y-Rita, 2003), (iii) task-specific motion practice (Bayona et al., 2005), and (iv) high 

patient motivation and engagement (Bach-y-Rita et al., 2002), (Wood et al., 2003), (Johnson 

et al., 2005), and (Langhorne et al., 2011), are the factors influencing and the major 

opportunities for a brain plasticity-based motor recovery. As we discussed above, robotic 

devices can allow repetitive, interactive, high-intensity, task-specific treatment of a limb. 

However, robot-assisted training cannot guarantee high patient motivation and engagement 

during the training. 

Maintaining and enhancing patient’s engagement in stroke rehabilitation exercises are in the 

focus of current research. In general, engagement, as the act of engaging, is defined as the 

motivation of beginning and carrying on an activity with a sense of emotional involvement or 

commitment and deliberate application of effort (Lequerica and Kortte, 2010). They found 

engagement in rehabilitation appears to be much more than just a patient attending a therapy; 

although stroke patients are supposed to proactively and intensively participate in the 

rehabilitation program and therapy exercises, it does not mean that they are actually always 

engaged. It has been shown that there are many inhibitors of building up engagement, 

therefore, the most up-to-date conceptualization of the engagement challenge extends the 

construct of participation well beyond therapy attendance and motivation. It needs to be noted 

Table 1.5 Assessment means for evaluating patient’s capability 

Mean Measurement Purpose 
Outcome after robot-

assisted training 

Fugl-Meyer 
Assessment (Fugl-
Meyer et al., 
1974) 

Motor functioning, balance, 
sensation, and joint 
functioning 

To measure 
motor control 
ability 

Significant 
improvement 

Function 
Independence 
Measurement 
(McDowell & 
Newell, 1996) 

Motor and cognitive: self-
care, sphincter control, 
mobility, locomotion, 
communication, and social 
cognition 

To measure 
functional 
independence

No significant 
improvement 

Wolf functional 
ability test (Wolf 
et al., 2001) 

Upper extremity motor 
ability through timed and 
functional tasks 

To measure 
motor 
function 
ability 

No significant 
improvement 
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here that stimulation is seen as extrinsic motivation, which can lead to intrinsic motivation, 

and directly addresses the role and quality of engagement of the patients in short and long 

term rehabilitation processes (Kortte et al., 2007). Kortte et al., proposed that rehabilitation 

engagement is “a construct that captures multiple elements, including the patient’s attitude 

toward the therapy, level of understanding or acknowledgement of a need for treatment, need 

for verbal or physical prompts to participate, level of active participation in the therapy 

activities, and level of attendance across the rehabilitation program” (Kortte et al., 2007). In 

2010, Lequerica and Kortte defined engagement as a construct that is driven by motivation 

and executed through active and effortful participation in the context of rehabilitation 

exercises (Lequerica and Kortte, 2010). The difference between participation and engagement 

in this context is that engagement involves high levels of invested interest (Lequerica and 

Kortte, 2010). 

Motivation is often conceptualized as a prerequisite to engagement in rehabilitation. Recent 

research regards motivation as a complex construct with both internal (e.g., effects of injury, 

psychological adjustment reactions related to injury, and personality traits) and external (e.g., 

rehabilitation environment, social support system, and cultural variables valued in society) 

determinants (Huyser et al., 1997). Although motivation influences the promotion of 

engagement, engagement and motivation should be considered as two distinct constructs 

(Lequerica and Kortte, 2010). Motivation is conceptualized as energy directed in a particular 

way, while engagement is that energy put into action (Frydenberg et al., 2005). Motivation to 

engage in an activity is influenced by one’s attitudes about the behavior and its consequences, 

one’s perceived ability to perform the task in question, and the desire to comply with 

perceived behavioral norms (Azjen, 1991). “External determinants”, or external stimulation, 

could facilitate internal motivation, thereby providing the “energy” needed to engage the 

participants. 

Research has shown that passive movement, which refers to the movement driven by the 

robot while the patients do not have the attempts to move, is insufficient to achieve motor 

recovery (Lynch et al., 2005), and that active engagement and movement attempts, which 

means the patients want to move, even though they may not have the ability to complete the 

movement by themselves, are essential to acquire the beneficial effects of robotic 

rehabilitation (Hogan et al., 2006), (Krebs et al., 2009) and (Cauraugh et al., 2010). 

Maintaining attention and engagement during the learning of new motor skills or the re-

learning of forgotten skills are important for inducing brain plasticity after neurological 

impairments (Fiedler et al., 2000), (Bach-y-Rita, 2001), (Fisher & Sullivan, 2001), and 

(Lynskey et al., 2008). Moreover, active engagement can remarkably improve the functional 

outcome of technology-assisted stroke rehabilitation (e.g., Prange et al., 2006), (Henderson et 

al., 2007) and (Kwakkel et al., 2007). Therefore, increasing engagement has been considered 

to be crucial in terms of the outcomes of rehabilitation (Langhorne et al., 2011). 
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The conclusion is that the factor for recovery that the robot-assisted training cannot 

sufficiently address is the possible highest level of patient motivation and engagement. 

Current robot-assisted training cannot provide highly motivating and engaging training. This 

may in turn lead to a low efficiency in regaining motor function ability of the patients in the 

clinical experiments conducted with robotic devices. Recent research has focused on 

increasing patients’ engagement during robot-assisted rehabilitation exercises; patient-specific 

training protocols, depending on each patient’s type of injury, level of impairment, and phase 

of recovery, should be designed for enhancing engagement during rehabilitation training. 

(Blank et al., 2014).  

Even if, some robots can be adaptive in the difficulty level of the motor tasks for the patient, 

the current robotic devices have not been designed to provide personalized training for each 

patient in a comprehensive point of view, which also considers patient’s interest, perceptive, 

and cognitive functioning of the patients. This means there is no reliable solution to avoid 

mundane exercising that is prone to become a routine or even boring for the patients in 

current robotic rehabilitation. Current robot-assisted rehabilitation devices cannot provide 

neither automated personalized training, nor adapt to the patients’ state in run time according 

to individual’s needs and motivate the patients’ initiative, respectively. In other words, their 

potentials to recover can be developed to their fullest. Therefore, the motivation of this thesis 

is to develop a system that is capable to maintain the engagement of patients during robot 

assisted rehabilitation training of stroke patients. 

1.3. Opportunities for cyber-physical system-based rehabilitation 

The current trend of developing complex networked and smart systems has created novel 

opportunities for assistive rehabilitation development. Having their roots in many various 

kinds of engineered technical system manifestations and enabled by cyber-physical 

computing, the concept of cyber-physical systems (CPSs) have penetrated into our daily 

reality just a bit more than a decade ago (Rajkumar et al., 2010), (Horváth and Gerritsen 

2012). The current standard definition of CPSs combines three different views. First, they are 

results of the exploitation of the fourth wave of digital computing (following centralized 

mainframe, networked personal and ubiquitous/pervasive computing). Second, they represent 

a new paradigm of system realization, which concentrates on providing novel services, rather 

than only on production and marketing artifacts. Third, they are enablers of satisfying human 

and social needs in various contexts and adjusted to different conditions. This comprehensive 

definition is a historical development, and was not in the mind of the experts who stimulated 

the formation of the discipline of CPSs, based on the knowledge and objects of disciplines 

such as advanced mechatronics, embedded systems, real-time systems, networked computing 

systems, distributed agent systems. In the recent period of the formation of the paradigm of 

CPSs, they have been seen and studied as complex technical systems (Horváth 2015). 
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Cyber-physical computing (CPC) creates a high level interaction and synergy among all 

physical (hardware and software) and cyber (algorithms and knowledge) constituents of a 

CPS (Poovendran 2010). Computing becomes deeply embedded in these systems, but it will 

be just a part of them, without its own teleology. Being equipped with computing potentials, 

systems are becoming parts of the fabric of the natural, social, technical and/or cognitive 

world (Shi et al., 2011). From a technical perspective, CPSs achieve a higher level of 

integration and synergy of hardware, software and cyberware functionalities, technologies and 

components than any other comparable type of engineered systems (Conti et al., 2012). Many 

CPSs are distributed and tightly interacting with the natural and engineered environments, but 

also penetrating into the cognitive domains of humans, and strongly influencing the social 

life. All these changes transform the originally technical and technology-driven systems into 

socially deeply embedded, cognitively interacting, environment-aware, and partially 

autonomous smart systems. This orientation of the development of cyber-physical systems 

makes it possible to consider them in various medical and care taking applications. Current 

research is engaged with working out the principles that can facilitate their proper 

intellectualization, design, implementation and application, for instance, in the field of 

medical rehabilitation. 

Adaptability of CPSs and self-adaptability of smart CPSs are the capabilities to rapidly adjust 

behavior according to changes of the operational objectives and conditions, and to the 

dynamics of the environment based on control or reasoning, respectively (Horváth and 

Gerritsen 2013). Two major forms of adaptation of systems are stakeholder-made adaptation 

and self-adaptation. Self-adaptation is the strategy to change a system without human 

interaction, which may be necessary for several reasons, such as change in the objectives, 

dynamics of the operating environment, distributed and decentralized system architecture, 

large number of operational parameters and interdependencies, and the availability of 

intelligent behavior. Literature advises us that self-adaptation may be a useful capability of 

complex systems to achieve objective and operational or behavioral requirements (Sokolsky 

2011).  

If, like living systems, CPSs are to adapt to their environments, they need to use: (i) sensory 

perception (detecting and anticipating changes in the environment), (ii) cognition (reasoning 

about perceived changes and deciding on the best action), and (iii) execution (controlling the 

implementation of cognitive decisions). Systems equipped with this capability are variously 

called self-adaptive systems (SAS), self-managing systems (SMS), or self-organizing systems 

(SOS). Often self-healing systems (SHS) and self-optimizing systems (SoS) are also sorted in 

this category. As Weyns et al. (2012) recognized, there are different communities behind 

these notional descriptions, as well as different vocabularies There is no clear standpoint in 

the current literature concerning how self-adaptation actually contributes to tackling the 

challenges of engineering and managing complex software systems.  
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CPSs are typically closed-loop systems, where sensors make measurements of physical 

processes, the measurements are processed in the cyber subsystems, which then drive 

actuators that affect the physical processes. Cyber components in a CPS application often 

include algorithms that react to sensor data by issuing control signals via actuators to the 

physical components of the CPS. Such closed-loop systems are the domain of the classic field 

of control theory, which studies stability and dynamics of such interactions. CPS, however, 

requires extending control theory to embrace the dynamics of the physical subsystems. The 

control strategies implemented in the cyber subsystems need to be adaptive (responding to 

changing conditions) and predictive (anticipating changes in the physical processes) (Canedo 

et al., 2013). Literature claims that self-adaptive CPSs should be capable to adjust or change 

their structure, functionality and behavior at run-time as a response to emerging requirements, 

changing objectives, environments, and contexts that may be unknown at design-time. Not 

only need the physical subsystem to be adaptive (responding to changing conditions), but also 

the software and the cyber subsystems, which should in addition be predictive (anticipating 

changes in the physical processes) (Lee et al., 2012). 

1.4. Scientific objective of the work  

1.4.1 Research problem and research domain 

According to the above analysis, the research problem of this PhD project was formulated as 

aggregation of specific knowledge and the development of a cyber-physical computing 

enabled system, which goes beyond the current rehabilitation systems by penetrating into the 

physical processes of stroke patient in the case of robot assisted stroke rehabilitation with the 

aim of maintaining and enhancing the patients’ engagement. In an ideal situation, a cyber-

physical rehabilitation system consists of a sophisticated physical part and a smart cyber part, 

which have balanced role and provide complementing functionalities for monitoring and 

enhancing engagement of stroke patients. However, conceptualization and implementation of 

such an ideal cyber-physical system is a huge challenge and goes beyond the possible scope 

and extent of a PhD study. It would involve both foundational and operative research, and 

hardware, software and cyberware 

development and integration.  

These altogether were deemed to be too 

complex and ambitious to address in this PhD 

project. Consequently, a decision was made 

that the research would focus on the cyber-

part of the system, which has anyway not 

been sufficiently addressed in the studied 

literature (Figure 1.1). With the intention of 

arriving at a manageable complexity and 

 

Figure 1.1 Specification of the addressed 
research domain 
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utility, the scope of research was defined so as to conduct extensive experimental studies and 

research means development concerning the cyber part, and to provide a proper but only 

minimal physical part that allows operationalization of the cyber part and testing and 

validating its usability and utility in practical cases. The functionality of the cyber part of the 

target system facilitates: (i) interaction with the patient, (ii) monitoring the patient’s status, 

and (iii) reasoning about a personalized approach to enhancing the engagement of different 

patients. 

1.4.2 Research objective  

The main research objective addressed in this PhD research was to deal with cyber-physical 

augmentation of assistive robotics-based rehabilitation and to study the effectiveness of a 

cyber-physical solution in enhancing the engagement in stroke rehabilitation. The overall 

objective was decomposed into three sub-objectives based on the following research 

questions:  

 What are the influencing factors of and their causalities with regards to patient engagement 

in the context of robot assisted rehabilitation? 

 What are the limitations of the current engagement enhancing methods, which result in 

inefficiency in terms of providing engaging training during robot-assisted rehabilitation? 

 How the characteristics and the reasoning affordances of CPSs can enhance patient 

engagement during robot assisted rehabilitation? 

Thus, the first sub-objective was to identify the factors that influence engagement as well as 

the engagement enhancing methods and their effects on engagement. In order to evaluate the 

different engagement enhancing methods, there was a need to identify the indicators for 

evaluating engagement  

The second sub-objective aimed at identifying some of the major limitations of the current 

engagement enhancement approaches. Based on this knowledge, opportunities for cyber 

physical solutions can be identified to integrate robot-assisted rehabilitation engagement 

enhancement techniques. 

The third sub-objective was to explore which characteristics and reasoning potentials of CPSs 

can be used for enhancing patient engagement during rehabilitation. Based on the identified 

opportunities, a first manifestation of a CP-SRS has been conceptualized, implemented in a 

testable form, and validated. The target cyber-physical stroke rehabilitation system will profit 

from cyber-physical computing and will demonstrate the benefits of a CPS solution in 

enhancing engagement. 
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1.4.3 Research hypotheses 

Based on the objectives and the research questions, the research hypothesis is that the CP-SRS 

is able to enhance the patient engagement in robot assisted rehabilitation. This hypothesis is 

decomposed to three sub-hypotheses:  

 There are reliable indicators to represent the engagement from the motor, perceptive, 

cognitive and emotional aspects;  

 There are technologies that can reliably measure the level of engagement in these four 

aspects;  

 There are cyber-physical based engagement enhancing methods that can be applied to 

maintain and enhance the patient engagement; 

1.5. Research methodology 

Due to the variety of objectives and contexts, a multi-methodological framing was applied to 

set up the research design. The whole of the PhD research project was divided into five 

 

Figure 1.2 Methodological framing of the research project 

(Meaning of the letters are: E: exploration, I: induction, D1: deduction, J: justification, V: validation, G: 
generalization, C: conceptualization, D2: detailing, P: prototyping) 
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interrelated research cycles (RCx) as it is shown in Figure 1.2. Each cycle had its own 

objective, context, and framing methodology. For this purpose, the methodological framing 

theory, proposed by Horváth (2013) has been applied.  

In research cycle 1, the objective was to collect information about the current state of 

knowledge and art concerning engagement in rehabilitation. To achieve this, we aggregated 

knowledge about existing models of engagement, the various manifestations of engagement, 

the current state of engagement enhancement methods and tools, and the opportunities of 

influencing enhancement of stroke patients.  

In research cycle 2, a prototype was developed in order to understand the limitations of the 

current engagement enhancing methods from a practical perspective. The prototype is an 

upper limb rehabilitation robot integrated with video games and used in the conducted 

experiment. The experiment concentrated on exploring the influence of complementing this 

robotic upper limb rehabilitation system with video games on the engagement of the 

participants. The findings were combined with the findings of the theoretical investigations in 

research cycle 1, and were used to create a robust knowledge platform for conceptualization 

of the whole and the smart reasoning mechanism of our cyber-physical stimulating 

rehabilitation system (CP-SRS) proposal.  

In research cycle 3, the concept of the smart reasoning components of the CP-SRS was 

developed and concept feasibility testing has been carried out. CP-SRS includes multiple 

functional components, which have been defined and integrated. The learning and reasoning 

mechanisms were created. A computer simulation was conducted to study the feasibility of 

the smart learning mechanism (SLM) as part of the cyber physical augmentation.  

In research cycle 4, a tangible prototype of the concept was implemented. Experiments were 

conducted to test if the identified indicators for engagement can represent the actual level of 

engagement. In this pre-medical experiments, the goal was to characterize the range and 

accuracy of the engagement indicators by influencing the subjects into different engaged 

states. Different setups were created to mimic the situations in which the subject was in 

engaged, unengaged, or neutral engagement state. Our assumption was the measurement of 

the indicator could reflect subject’s engaged state.  

In research cycle 5, More pre-medical experiments were conducted to test the system from the 

perspective of two assumptions: (i) if the stimulation strategies can maintain and enhance the 

level of engagement, and (ii) if the effects of the stimulation strategies on the level of 

engagement can be captured by smart learning mechanism. 

1.6. Structure of the thesis 

The next chapter summarizes the findings of the conducted literature study and explores the 

influencing factors for the therapeutic engagement. The third chapter provides information 
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concerning the experiment conducted with the developed upper limb rehabilitation robot 

integrated with video games, aiming at investigating the limitations of this currently widely 

used approach and methods of engagement enhancement. Then, the concept of an engagement 

enhancing cyber-physical stroke rehabilitation system is proposed in Chapter 4. Chapter 5 

introduces the reasoning components and the implementation of the proposed system. Chapter 

6 validates the concept of the prototype in a pre-clinical experiment. Finally, Chapter 7 

reflects on the research project and the findings, concludes about the contributions and the 

impacts of the thesis as a whole, and sketches up possible immediate and long term future 

research work. 
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CHAPTER TWO 

RESEARCH CYCLE 1:  

Understanding the essence and causalities of the 
phenomenon of engagement in rehabilitation 

2.1 Objectives and reasoning model of the survey 

2.1.1 Objectives 

In common language, engagement has many meanings. Interestingly, most of the common 

definitions associate it with presence at a specific time or at a specific place. In our context, 

however, engagement is also considered in many more dimensions. Therefore, using the 

preliminaries in the literature, we will synthesize a definition in the end of this chapter that 

reflects our interpretation and objective. The survey presented in this chapter was completed 

in the first research cycle, considering scientific articles and papers, as well as web pages and 

repository documents that could be found on the Internet. The main objective of the survey 

was to collect information about the current state of knowledge and art concerning 

engagement in rehabilitation. In addition to focusing on definitional and conceptual issues, we 

intended to aggregate knowledge about existing models of engagement, the various 

manifestations of engagement, the current state of engagement enhancement methods and 

tools, and the opportunities of influencing enhancement of stroke patients. Together with the 

investigation of the current day practical limitations, which will be presented and discussed in 

Chapter 3, this knowledge will be used to create a theoretical platform and conceptual 

framework for our support system development objectives.  

2.1.2 The reasoning model 

The literature of medical rehabilitation is very broad, and the phenomenon of engagement in 

rehabilitation has been addressed from many perspectives. Driven by our objectives explained 

in chapter one, we were not striving after analyzing the reported investigations and their 

results from all of the perspectives. We came to the decision that the starting body of 

knowledge necessary for the intended research and development work can be synthesized by 
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considering three perspectives. 

Shown graphically in Figure 2.1, 

these perspectives were used to frame 

and provide a reasoning model over 

the knowledge domains of 

importance for our explorative 

survey. These knowledge domains 

are mutually connected and the 

interconnections have been 

considered at drawing our 

conclusions. 

The first domain of interest is 

engagement models that have been discussed in the literature in various contexts, such as 

engagement increased by gamification, enhancement of engagement in education, social and 

cognitive engagement, and engagement in therapeutic context. The variety of the models is 

large, ranging from theoretical through conceptual and procedural models to operation 

models.  

The second domain of interest is influencing factors, which play a role in therapeutic 

engagement in stroke rehabilitation and within which the human-related ones play an 

important role. Actually, we concentrated mainly on these human-related factors in our 

review. We observed that the overwhelming majority of engagement models were probably 

defined by considering a set of fundamental influencing factors. We imposed a classification 

on the influencing factors. This created an interrelationship between the engagement models 

and the influencing factors. 

The third domain of interest is enablers of engagement enhancing. Enablers are various 

resources that are operationalized in and by various methodologies. Surprisingly, we found 

that formal methodologies, which rest on some underpinning theories, and includes 

procedural specifications, pools of methods, dedicated instruments, and quality indicators and 

measures, have not received explicit attention in the literature yet. There have been 

approaches, rather than systematic methodologies, related to models of engagement, which 

are based on less rigorous theoretical fundamentals and conceptual frameworks. On the other 

hand, various engagement enhancing systems have been developed considering the influential 

factors, which create a basis for making causalities and dependences explicit. While the 

enablers are addressed dominantly from a therapy-centered view in the current literature, in 

our survey the technical perspectives of instrumentation and system aspects also received 

attention. There have been many different proposals for systems and principles for enhancing 

the efficiency of rehabilitation. These include technical systems, social systems, and even 

 

Figure 2.1 Reasoning model used in the survey 
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socio-technical systems. It will be shown that many of them just tangentially touch upon the 

specific topic on monitoring, maintaining, and enhancing therapeutic engagement. 

2.2  Models of engagement 

Various models have been proposed to capture the essence of engagement from various fields, 

such as psychology, technology, education, social interaction, medicine and so on. Based on 

our study, we identified: (i) flow theory-based model, (ii), model of technology application 

raised engagement, (iii) models of social engagement, (iv) models of education engagement, 

and (v) model of therapeutic engagement. They will be analyzed and compared below. 

2.2.1 Flow theory-based models of engagement 

The first model that can be used to explain engagement is the theory of flow 

(Csikszentmihalyi & Csikszentmihalyi, 1988). Csikszentmihalyi defined flow as a discrete 

state of human experience in which one’s potential is realized through a specific activity that 

demands an optimal amount of individual resources. The notion of flow is well-known from 

cognitive psychology. There is a clear definition and explanation of these tem on Wikipedia. 

It is understood as the mental state of operation in which a person performing an activity is 

fully immersed in a (i) feeling of energized focus, (ii) full involvement, and (iii) enjoyment in 

the process of the activity. In essence, flow is characterized by complete absorption in what 

one does. Flow is set to the position of a completely focused motivation and immersion, 

which represents a kind of ultimate experience in harnessing the emotions in learning and 

performing. The flow theory-based models of engagement intend to achieve emotions that are 

positive, channeled, energizing, and aligned with the task at hand.  

The flow theory identified several 

components that made an 

experience enjoyable, namely: (i) 

a challenging but tractable task to 

be completed, (ii) full immersion 

in the task, while no other 

concerns intrude, (iii) feeling of 

being fully in control, (iv) sensing 

a complete freedom to 

concentrate on the task, (v) the 

task has clear unambiguous goals, 

(vi) provisioning and receiving 

immediate feedback on actions, 

(vii) becoming less conscious of 

the passage of time, and (viii) 

 

Figure 2.2 Implication of the flow theory (Nakamura 
and Csikszentmihalyi, 2014) 
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sense of identity lessens, but is afterward reinforced (Csikszentmihalyi, 1990). 

Figure 2.2 is adapted to show a current model interpreting the flow state (Nakamura and 

Csikszentmihalyi, 2014), in which the challenge/skill terrain are divided into eight 

experiential channels. Flow is experienced when perceived challenges and skills are above the 

actor’s average levels. When they are below, apathy is experienced. The intensity of 

experience increases with distance from the actor’s average levels of challenge and skill, as 

shown by the concentric rings. The model showed in Figure 2.2 also informs us about the fact 

that, towards a highest level of flow, the skill has to be practiced at a high level and it has to 

happen in a context of high challenge. Nakamura and Csikszentmihalyi concluded the 

conditions of flow include: 

 perceived challenges, or opportunities for action, that stretch existing skills; a sense that 

one is engaging challenges at a level appropriate to one’s capacities;  

 clear proximal goals and immediate feedback about the progress that is being made;  

Under these conditions, experience unfolds from moment to moment, and one enters the flow 

state with the following characteristics:  

 intense and focused concentration on what one is doing in the present moment 

 merging of action and awareness 

 loss of reflective self-consciousness 

 a sense that one can control one’s actions 

 distortion of temporal experience 

 experience of the activity as intrinsically rewarding, such that often the end goal is just an 

excuse for the process 

This theory has widely been used to understand engagement in association with media and 

video game entertainment (Weber et al., 2009), (Brockmyer et al., 2009). Theorizing flow and 

media enjoyment as cognitive synchronization of attentional and reward networks gave the 

motivation for practical developments. This model indicates the influencing factors for 

engagement during the process of video game playing. Obviously, this process models 

engagement for a short term, which is quite similar to each session of rehabilitation training 

exercise, especially for those integrated with video games. However, it differs from 

therapeutic engagement as this engagement model does not take therapeutic aspects of the 

patients into consideration.  

2.2.2 Model of technology application raised engagement 

Engagement has also been studied in the field of technology applications. For instance, in 

video games, factors of engagement, such as feedback, intrinsic motivation, fun, user control, 

and interactivity, have been studied (Carroll and Thomas, 1988), (Vorderer, et al., 2003), 

(Choi and Kim, 2004). Said (2004) varied the amount of control participants had over a video 
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game, e.g., some children took on the role of characters, some manipulated the characters’ 

world, and the others watched the game unfold without being able to intervene; results 

indicated that immediate feedback from the system, well-defined goals, prior experience, and 

increasing challenge in proportion to game playing skills were essential factors of engagement. 

In online shopping and web searching applications, qualities of web sites, such as novelty 

(Toms, 1998) and aesthetics (Lavie and Tractinsky, 2004), as well as feedback, navigability, 

control, and interactivity (Huang, 2003), can be associated with user intentions. Actually, it 

was demonstrated that users’ needs for information and entertainment are to be satisfied when 

it comes to engaging searching and shopping experiences. Based on the analysis of the 

engagement attributes in the above technology applications, O’Brien and Toms (2008) 

proposed an engagement model. This is applicable to people’s experiences with technology, 

such as web searching, online shopping, webcasting, and gaming applications.  

This model of engagement identifies four stages, which are: (i) point of engagement, (ii) 

engagement, (iii) disengagement, and (iv) reengagement. Point of engagement can be initiated 

by the aesthetic appeal or novel presentation of the interface, the users’ motivations and 

 

Figure 2.3 Model and influential factors of technology application raised engagement 
(O’Brien and Toms, 2008) 
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interests, and the users’ ability and desire to be situated in the interaction and to perceive that 

there is sufficient time to use the application. Engagement can be maintained when the users 

are able to keep their attention and interest in the application and is characterized by positive 

emotions. During this stage, users want to customize the interface and receive appropriate 

feedback from the application. Disengagement can be caused by many reasons, such as 

challenge and interactivity of the technology, or distractions in the environment. As far as 

reengagement is concerned, users may return to the application because they have past 

success with it, or it can offer them something new; positive experiences increase the 

likelihood of returning to an application. 

This model can also be used to explain the engagement during playing video games, and it 

considers more factors or attributes than the flow theory-based model, such as aesthetic and 

sensory appeal, novelty of the application, attention, awareness, and emotional aspect. 

Moreover, it extents the above model with the process of engaging. Therefore, it can explain 

the engagement both for a short term and a long term, since it explains why the user would 

reengage with the application. However, therapeutic aspects are missing from this model.  

2.2.3 Social models of engagement 

Models of social engagement intend to capture (i) engagement of individual with the 

objectives and activities of a team, (ii) engagement of a team with the activities of an 

organization, (iii) engagement in networked sociality, and (iv) models of specific social 

engagement. Engagement of individual with the objectives and activities of a team is of a 

strong social nature. The engagement model of social interaction proposed by Tyler and 

Blader (2003) captures the influencing factors of group engagement. They have identified 

attitude, value, and cooperative behavior towards groups as essential components of 

motivation for participating in group activities.  

Engagement of a team with the activities of an organization is another form of social 

engagement. Networked systems and web-based communities increase the virtual proximity 

of participants in near social interactions (Mejias, 2007). Engagement in networked sociality 

has been described and explained by several different models. Singletary and Starner, (2001) 

studied social engagement based on visual models. Mahmud, J., et al. (2014) analyzed how 

word use can predict social engagement behaviors such as replies and retweets in Twitter, and 

computed psycholinguistic category scores from word usage. Online social engagement is 

operationalized through concepts such as connectivity, social presence and social space (Kim, 

Y., et al. 2015). The issue of online social engagement is important since it can promote 

quality social interactions that increase belonging and directed participation. Engagement 

defines the phenomena of being captivated and motivated. Engagement can be measured in 

terms of a single interactive session or of a more long-term relationship with the social 

platform across multiple interactions. Thus, social media engagement is not just about how a 
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single interaction unfolds, 

but about how and why 

people develop a 

relationship with a platform 

or service and integrate it 

into their lives (Jaimes, et 

al, 2011). 

One typical specific social 

engagement is employment. 

The engagement model of 

employment by Zigarmi 

and Nimon (2011) suggests 

that employee engagement 

is highly correlated with 

work intention, which is 

defined as a composition of different work-related intents including, intent to perform, intent 

to endorse, intent to stay, intent to use discretionary effort, and intent to use organizational 

citizenship behaviors. Though this model presents valuable insight into the influencing factors 

of intent forming, it is rather incomplete in terms of factors that are relevant for engagement 

for short term. Social entrepreneurship has also been interpreted as a specific form of social 

engagement (Martin, R., & Osberg, S., 2007). They identified pure forms of social 

engagement and demarcated social entrepreneurship from social service provisioning and 

social activism based on this (Figure 2.4). 

2.2.4 Models of engagement in education 

Under this topic, we investigated only those publications that reported on subject engagement 

in education, and neglected those addressing various aspects of policy engagement in 

education, though some policy initiatives considered concrete actions in order to reduce the 

‘diminished self, to develop emotional well‐being, and to encourage emotional engagement in 

educational conducts (Yonezawa, S., et al., 2009). The emotional needs and the triggered 

commitment of individuals have been put into the center of a huge number of studies in 

education and training. As a typical empirical approach of examining whether learners 

routinely experienced challenge, stimulation and enjoyment, experience sampling forms are 

used as questionnaires (Johnson, L.S. 2008). Though many efforts were made to formally and 

rigorously study engagement in education, comprehensive models are rather scarce (Harris, L. 

2010). The one, which relies on the assessment model of the National Survey of Student 

Engagement (NSSE) benchmarks, is seen as the most relevant. As reported by Kuh, G.D., 

(2003), it takes into account five aspects: (i) academic challenge (AC), (ii) active and 

 

Figure 2.4 Pure forms of social engagement (Martin R., & 
Osberg S., 2007) 
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collaborative learning (ACL), (iii) student-faculty interaction (SFI), (iv) supportive campus 

environments (SCE), and (v) enriching educational experiences (EEE). Based on this, 

LaNasa, S.M. et al., (2009) developed the so-called five factor model of student engagement 

that actually decomposes the above five aspects into 37 items and accounts for the inter-

correlations underlying aspects. This is shown in Figure 2.5. An exploratory factor analysis of 

the data obtained was completed by the abovementioned authors in order to benchmark the 37 

NSSE items, using principal components with varimax rotation. Based on the outcome of this, 

an eight-factor model was derived as a solution. It considers factors such as (v) learning 

strategies, (ii) academic 

integration, (iii) 

institutional emphasis, (iv) 

co-curricular activity, (v) 

diverse interactions, (vi) 

exerted efforts, (vii) overall 

relationships, and (viii) 

workload. The authors 

validated the results and 

explain the engagement 

situation with a single first-

time freshman cohort at an 

urban 4-year institution. 

They did not explicitly 

address the issue of long 

term monitoring or possible 

enhancements. 

Corrigan et al. (2013) 

regarded engagement as a 

mix of components, related 

to: (i) behavioral: 

persistence and 

participation, (ii) 

emotional: interest, value 

and valence, (iii) cognitive: 

motivation, effort and 

strategy, and (iv) 

achievement and 

development. Engagement 

model of education shows 

 

Figure 2.5 The five-factor model of student engagement (Kuh, 
G.D., 2003) 
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many similarities to therapeutic engagement as both fields are dealing with cognitive training 

of people. Therefore, the influencing factors of engagement in education are relevant for 

cognitive training of stroke patients. Digital disruptions such as multimedia, social portals, 

augmented reality, and connected peer learning are all based on vaguely formulated models of 

educational engagement (Lester and Perini, 2010). The promises of the emerging educational 

groupware are that it permits new forms of engagements (Kelly 2007). 

2.2.5 Therapeutic model of engagement 

Shown in Figure 2.6, a dedicated model of engagement for therapeutic treatments was 

proposed by Lequerica & Kortte (2010). This model can be interpreted as having a motivation 

driven by attitudes and beliefs that lead up to the intention to engage in the treatment. More 

specifically it captures, (i) the perceived need of treatment, (ii) the perceived likelihood of a 

successful outcome, and (iii) the perceived self-efficacy to complete the tasks are the 

necessary drivers of the willingness of a person to get engaged in treatment. Besides this 

intention, preparation is also a necessary component for therapeutic engagement. It consists 

of: (i) the setting up rehabilitation goals and development of a treatment plan to achieve these 

goals, (ii) the energy that is depicted as one takes on more active involvement. In the active 

phase of engagement, a feedback loop assessing the costs and benefits is used to form a 

decision whether to remain engaged in the exercise or not. In conclusion, the components 

influencing therapeutic engagement in this model includes (1) perceived need of treatment, 

(2) perceived likelihood of a successful outcome, (3) perceived self-efficacy to complete the 

tasks, and (4) reassessment of beliefs, attitudes, & expectations (Lequerica & Kortte, 2010). 

In the process of rehabilitation program, these influencing factors are necessary to maintain 

the engagement of the patients. However, it lacks the specific details about engaging the 

patient during the rehabilitation training exercise. Instead, the influencing factors for 

engagement in this model have to be addressed outside the process of the training exercise.  

2.2.6 Time related differentiation of engagement 

In the above-discussed model of technology application raised engagement (Figure 2.3), 

‘reengagement’ is a crucial element since it implies consideration of order and timing in 

modeling of the process. This resonates with the issue of maintenance of engagement in the 

therapeutic model of engagement (Figure 2.6), which points at the necessity of considering 

the duration of engagement and the influential factors. What these elements of the two 

engagement models imply is the inevitability of differentiation of engagement from a time 

(temporal) perspective, from which engagement can be differentiated as: (i). long term 

engagement (LTE) and short term engagement (STE). These notions can be projected onto the 

above engagement models. For instance, STE is achieved according to the model of 

technology applications raised engagement while the user is interacting with a video game, an 

online shopping application, or web searching. On the other side, LTE is achieved when the 
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user comes back to the application with a high frequency and over a relatively long period of 

time, and when this becomes a kind of routine.  

Likewise, the model of therapeutic engagement also reflects temporal factors, by allowing for 

over the whole of a rehabilitation program (which can last for years) and engagement during 

single rehabilitation session or exercise (which may happen in a predefined time window). 

The differentiation of LTE and STE can be applied to the model of education engagement as 

well. In this context, they may concern engagement during the whole educational program 

and engagement during one specific lesson, respectively. In the realm of video games, long 

term engagement has been identified and defined as the degree of voluntary use of a system 

 

Figure 2.6 Model of therapeutic engagement (Lequerica & Kortte, 2010) 
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along a long period of time (i.e., weeks, months, or years), involving dozens, if not thousands, 

of interactions, each one spanning for significantly longer than few seconds or minutes 

(Febretti and Garzotto, 2009). Since the influencing factors for these two kinds of engagement 

are different, as well as the strategies to achieve them, differentiation between long term 

engagement and short term engagement has a legacy. 

Since a complete stroke rehabilitation program usually takes months, investigation of LTE is 

of importance at defining complete rehabilitation programs conducted in a hospital or a 

rehabilitation center, and typically finished with home care servicing. According to the model 

of therapeutic engagement (Lequerica & Kortte, 2010), possible strategies of enhancing LTE 

are identified. One possible of strategy is ensuring the awareness of patients about their 

deficits and the potential outcome of the therapy, considering their actual medical status, 

existing functional capabilities, and regained skills. This improves their willingness to comply 

with the treatment and dedication to achieve the goals. Another strategy is based on the 

communication of the potential benefits of the treatment on their daily life. This strategy 

focusses on the management of expectations so that anticipation, recovery, and the treatment 

of the patients are continuously harmonized with the goal of maintaining the motivation and 

engagement in the rehabilitation program. A third strategy can involve setting a clear and 

properly adjusted goal for the patient, for instance, in terms of completing a series of tasks or 

reaching gradually increasing Fugl-Meyer score. This is a keen issue because if the previous 

goal has been achieved, then the patients may opt to disengage themselves according to the 

forecast of the therapeutic engagement model. Therefore, a recurrent update of the goals is an 

important element of long term engagement of the patients in enduring rehabilitation 

programs. A fourth strategy to increase LTE can be based on encouragement and convincing 

the patients. The related literature advises that self-confidence and self-efficacy of the patients 

are also important factors with regards to the success of a rehabilitation program. 

In the present-day practice of stroke rehabilitation, these strategies are often applied by 

physical therapists in various combinations in order to motivate, encourage and convince the 

patients effectively in a personalized manner. Many researchers have endeavored to enhance 

engagement of the patients during robot-assisted rehabilitation exercises (Krebs et al., 2003) 

and (Loureiro et al., 2006). Wolbrecht et al., (2008) reported on three desirable features that 

they found important to maintain STE in robot-aided movement training following stroke: (i) 

high mechanical compliance of the device, (ii) the ability to assist patients in completing 

desired movements, and (iii) the ability to provide only the minimum assistance necessary. 

Burke, et al., (2009) proposed the use of serious games in order to optimize STE for stroke 

rehabilitation. Hu, et al., (2013) investigated the opportunities of influencing motor 

engagement in the case of an electromyography-driven hand rehabilitation robot. Sarac, et al., 

(2013) experimented with the application of brain-computer interface in robotic rehabilitation 

in order to maintain engagement through online modification of task speed. Among many 
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others, the work of Zimmerli, et al., (2013) concentrated on patient engagement during virtual 

reality-based motor rehabilitation exercises. Hinted at by the current practice of rehabilitation, 

combination of strategies should receive attention whenever a cyber-physical system based 

support of rehabilitation is planned. 

In the context of rehabilitation, STE is defined as measure of the motivated involvement 

during a single session of a rehabilitation training exercise. Obviously, short term engagement 

also influences LTE since positive experiences in engaging therapeutic exercises and 

treatments maintains the willingness of the patients to keep participating the rehabilitation 

program. On the other hand, a higher level of LTE typically implies that patients even more 

engage themselves in (short term) rehabilitation training exercises, assumed that they are 

aware of the need for the concerned exercise. Based on the interpretation of the models, we 

came to the conclusion that different factors influence STE than LTE. The difference in 

influencing factors entails that different strategies are needed for the enhancement of STE and 

LTE. In this PhD research, we will focus on enhancing the engagement during the 

rehabilitation exercises, that is, we will deal with STE since there are still many challenges 

and unresolved issues in this field. Consequently, in the rest of the thesis, the term 

‘engagement’ will always be used to refer to engagement during rehabilitation exercises, 

unless indicated otherwise. 

2.3. Factors influencing therapeutic engagement 

The analysis of the models in sections from 2.2.1 to 2.2.6 revealed that the concerned authors 

considered many influential factors at constructing these engagement models. Some of the 

influencing factors reflect human aspects, which can be associated with therapeutic 

engagement. After sketching up the interrelationships between the found influential factors in 

the next subsection, we concentrate on these human-related factors. 

2.3.1 Discussion of the interrelationships of influential factors 

Our literature review has been made with two interconnected objectives. On the one hand, we 

intended to gain insight in the state of the art of assisting stroke rehabilitation, and to explore 

and aggregate knowledge about engagement in general and in therapeutic rehabilitation. We 

also concentrated on the influential factors of engagement of patients in rehabilitation, the 

proposed engagement models, and the causalities of the engagement phenomenon in 

rehabilitation. The point of embankment of our review was the analysis of the existing 

engagement models, which provided insight into the influencing factors of engagement from 

the perspective of different knowledge domains (i.e. cognitive psychology, education, 

technology raised engagement, social science, rehabilitation therapy). Our study also offered 

an overview of the methods, techniques and systems that aim to enhance engagement. The 

main findings of our study are summarized in Figure 2.7. 
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The engagement models proposed by researchers of the different knowledge domains 

identified a wide range of influencing factors. Although these models aimed at understanding 

and representing engagement from different perspectives, they identified several common 

factors that we considered as substantial influencing factors of the phenomenon of 

engagement. For instance, each of engagement models emphasizes as important factor the 

understanding the goal of the patients/users as the most essential contributor to engage 

humans in any activity. There are however some differences. While flow theory stresses the 

need for clearly setting the proximal goals (short term), the therapeutic engagement also puts 

emphasis on the individual’s perception of the long term goals and expected outcome of 

engagement. However, awareness of the activity and goal of the task has to go beyond the 

pure cognitive understanding. It must be valued and shared by the individual, which in the end 

influences his/her attitude towards the tasks at hand.  

Besides the goal of activities/tasks, challenge is another key factor. Challenge in the context 

of enhancing engagement means not only creating and managing tasks that meet the skills and 

capabilities of the users, but it also means that an individual has self-desire to seek out new 

things and new tasks (i.e. the individual has an intrinsic motivation to engage in an activity). 

Besides skills and capabilities of the individual, physical, mental, and emotional readiness to 

 

Figure 2.7 Conclusions based on the reasoning model 
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engage in a new challenge is of importance. Challenge is a dynamically changing aspect of 

engagement, as learning influences the actual skills and capabilities of humans. It may be 

negatively influenced by the individual’s task familiarity, predictability, event and temporal 

uncertainty. First time experience with a task or activity on the other hand can be considered 

as the most effective way of therapy therapeutic engagement or relearning of functions as it 

first time experience leaves a strong impression in the mind that is difficult to erase. 

The third group of influencing factors is the circumstantial elements, including the settings of 

an activity, aesthetics of the environment, feedback, and control. It was found that sharp, 

clear, vivid, dramatic, or exciting realistic activities are more likely to engage and retain 

individuals. It was also shown that activities should engage the several modalities of senses 

(hearing, sight, touch, taste, smell, balance, rhythm, depth perception, and others). Well-

designed engaging exercises should simultaneously incorporate the aspects discussed above. 

They should engage individuals so that they perform at their competency, they are guided by 

clear goals and they receive proper feedback. Methods and systems aiming to enhance 

engagement should address specific aspect of motor, perceptive, cognitive and emotional 

aspects. Based on a logical analysis of the influencing factors for therapeutic engagement and 

the current engagement enhancing methods and systems, the opportunities of a cyber-physical 

solution are identified as following. CPS enabled specific stimulations that could be able to 

enhance the engagement during rehabilitation exercises are also identified. The current 

technology trends are pointing towards adaptable or self-adaptive systems. This indicates that 

the future will see the realization of self-adaptive systems, in which the system features and 

functions can be adjusted by the system itself. 

2.3.2 Initial categorization of human-related factors 

We started out of the fact that the studied flow theory establishes interrelationships between 

various emotional factors (Figure 2.2). By doing so, it also creates a bridge between flow and 

therapeutic engagement through four sets of human-related factors in our interpretation. These 

sets include: (i) motor, (ii) perceptive, (iii) cognitive, and (iv) emotional factors, respectively 

(Figure 2.8). 

With some simplification, the ultimate goal of stroke rehabilitation is recovering the motor 

ability of patients. Therefore, a strand of recent research concentrates on the understanding 

and manipulation of the motor engagement of patients. Active involvement in rehabilitation of 

motor functions was found indispensable. Adaptive robotic training protocols were proposed, 

as well as detecting the effect profile and responding to the movement intent of patients 

(Blank, et al., 2014). Actually, most of the known approaches provide assistance by exploiting 

the motor potential and capability of the patients in during the training exercises. Research has 

shown that some of these approaches are able to improve not only the motor ability of the 
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patients, but also their functional 

ability (Squeri, et al., 2014). As 

mentioned in Chapter 1, functional 

ability enhancement was seldom 

reported as the outcome of robotic 

rehabilitation. 

The sense of presence and timely 

feedback were also incorporated in 

the above models as important factors 

of engagement. These perceptive 

factors can contribute to engagement 

in technology-assisted rehabilitation 

and training. By executing robot-

assisted rehabilitation training 

exercises in a virtual reality (VR) 

environment, the patient can have strong and immediate perceptive feedback. Efforts have 

been made to extend it also with haptic feedback in the case of motion therapies. This 

indicates the trend that advanced robot-assisted rehabilitation environments are supposed to 

react on the activities of the patient, but also the patient should know how to properly interact 

with the rehabilitation system (Zimmerli, et al., 2013). Visual feedback, auditory feedback, 

and tactile feedback should be perceived real time an on a perpetual basis by the patients in 

order to be able to properly interact with the rehabilitation system. 

Many of the above models also identified cognitive factors crucial to achieve and maintain 

engagement, such as attention, awareness, control, and motivation. According to the 

therapeutic model of engagement, the patients have to perceive the need of treatment, the 

potential benefits of the treatment, self-efficacy to complete the task, and the need of further 

treatment in order to stay engaged. These cannot be realized without a certain level of 

cognitive functioning from the patients. Moreover, understanding and reacting to the 

feedbacks of the systems in the rehabilitation exercises also presumes the cognitive functions 

of the patients (Cicerone et al., 2005). Contrary to the awareness of these issues, many stroke 

survivors leave the hospitals with cognitive impairments, such as attention, orientation, and 

task execution deficits (Tatemichi, et al., 1994), (Stephens, et al., 2004). Cognitive 

impairments can hinder the patients from understanding the rehabilitation tasks, perceiving 

the need and benefits of the treatment, and more importantly, lowering the attention level of 

the patients during rehabilitation training. Research has shown that impaired cognitive status 

negatively affects the rehabilitation outcome of stroke patients (Heruti, et al., 2002). 

Therefore, engagement in the cognitive aspect should not be neglected at considering 

therapeutic engagement in rehabilitation. 

 

Figure 2.8 Extraction of influencing factors based 
on the studied engagement models 



38 

The investigated engagement models also identified influencing emotional factors, such as 

enjoyment, interest, positive affect, and willingness. Researchers has come to the conclusion 

that the relationship between the emotional factors and the therapeutic engagement are 

somewhat vaguer and has a huge variance compared to the other influencing factors. 

Nevertheless, Kortte et al., (2007) developed the so-called Hopkins Rehabilitation 

Engagement Rating Scale (HRERS) for evaluating patients’ engagement during rehabilitation 

program in hospitals. The HRERS scale takes many measurements into account, including 

emotional functioning and affective state. Based on these results, therapeutic engagement can 

be conceptualized as a construct that captures also the patient’s emotional state and takes 

emotional factors into account. 

2.3.3 Factors influencing motor engagement 

Providing adaptive robotic training protocols and detecting movement intent were considered 

as the best practice of engaging patients in therapeutic activities (Blank et al., 2014). In 

addition, providing motor challenge according to the patient’s capability has also been 

proposed. Krebs et al. (2003) used a performance-based impedance control algorithm to 

determine the robot assisted therapy, which is optimally tailored to various stroke patients. 

The aim of using this algorithm was to motivate the patients to try and move their arms, and 

not just passively let the robot to move it. The algorithm relied on signals such as speed, time, 

and EMG. However, physical therapists found a significant reduction in arm tone after the 

therapy. The reason is that there is a tendency among the patients to rely heavily on the 

provided assistive force (Reinkensmeyer, et al., 2007). Of course, it means that proper 

motivation cannot be achieved. 

With the aim of ensuring that patients attempt to actively move during robot assisted therapy, 

Dipietro, et al. (2005) developed an EMG-based control mechanism. This mechanism used 

the muscle signals to detect patient’s intent and assisted the patient in performing point-to-

point movements in a horizontal plane. Though the preliminary experiments validated the 

functionality of the system, information about further clinical experiments was not found in 

the literature. Hu, et al. (2013) reported on a similar study. In order to encourage the patients 

to make voluntary movements, they developed an EMG-driven control algorithm for a hand 

robot. Their algorithm was based on real-time detection of the levels of the EMG signals in 

the respective muscles. After conducting the therapy with ten chronic patients, significant 

motor improvements were found in the Fugl-Meyer hand/wrist and shoulder/elbow scores, 

and significant reduction in spasticity of the fingers. Tough detection of intent to initiate 

movement is an important element of the engagement in physical exercises, other factors (e.g. 

motor function abilities of the patient) should also be considered at determining the right level 

of assistive forces during robotic rehabilitation. 
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Wolbrecht, et al. (2008) proposed an assistance-as-needed controller to provide only the 

minimum necessary assistance in order to increase the involvement of the patient’s motor 

system. The controller used a standard, model-based adaptive control approach to adjust the 

assisting force when small errors in task execution were observed. A problem with the model-

based control of assistive forces was that it was not able to adapt neither to the individual 

needs of patients, nor to the motor function development, or fatigue. With the aim of 

maximizing the recovery of the active range of motion, Squeri, et al., (2014) developed an 

adaptive control scheme, which trained wrist movements with slow oscillatory, small 

amplitude patterns and progressively increasing bias. They observed improvements in the 

active range of motion and in the motor function, measuring it by the Fugl-Meyer assessment. 

They also observed the increase in functional capability, measuring it by the Wolf motor 

function test. Their approach demonstrated that increased motor challenge not only helps 

improving the range of motion, but it also maintains and enhances motor engagement. 

2.3.4 Factors influencing perceptive engagement 

Sensory feedbacks, including visual, auditory, olfactory, and tactile, have been applied to 

enhance multi-channel perceptive engagement of patients. For example, Dinh, et al. (1999) 

conducted an experimental study with 322 subjects in order to investigate the effects of 

tactile, olfactory, audio, and visual sensory cues on the participants’ sense of presence in a 

virtual environment. The results indicated that increasing the modalities of sensory input 

could increase the sense of presence in a virtual environment and memory for objects in this 

environment. As suggested by the flow theory-based engagement model, presence is one of 

the most important components of engagement. Therefore, meaningful stimulation of the 

perceptive channels of patients in sensory-motor interaction during rehabilitation trainings is 

an essential factor of influencing their engagement. 

In order to assess the effectiveness of rehabilitation training with computer games integrated 

with haptic force feedback and three-dimensional visualization, Broeren, et al. (2007) 

conducted a clinical experiment with the involvement of five chronic patients. They found 

significant improvements in terms of the speed of movement, the time needed to reach, and 

the hand path ratio (reflecting superfluous movements) after the therapy. Feintuch, U., et al. 

(2006) integrated haptic-tactile feedback into a video-capture-based virtual environment. Fan, 

R.E., et al. (2009) developed and tested a haptic feedback rehabilitation system on a lower-

limb amputee. The results of these and many other works indicate that haptic feedback during 

rehabilitation training helps recover motion control functions, which is essential to improve 

other aspects of motion recovery. 

In general, as a feedback modality, auditory feedback is underexploited in current robotic 

rehabilitation systems. Among the pioneers, Batavia, M., et al (1997) developed an 

augmented auditory feedback device. In order to investigate the effect of auditory feedback in 
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robot-assisted rehabilitation, Rosati, et al. (2011) conducted a study in which auditory 

feedback was provided in the form of sequences of tonal beeps. Each beep was of 800 Hz, 

lasted for 0.1s, and was delivered through headphones either to the left or to the right ear 

(audio channel) according to the sign of the error. The result of this study was that generating 

a proper sound cue during the training can help patients in improving their engagement, 

performance, and learning in the exercises. Furthermore, it was found in the above study that 

single channel of perceptive feedback can contribute to increasing engagement. Thielman, G. 

(2010) conducted an investigation concerning tactile versus auditory feedback for trunk 

control. Contrary to these studies, the knowledge about using multi modalities of sensory 

feedback in the field of rehabilitation in order to engage the patients is not sufficient. 

2.3.5 Factors influencing cognitive engagement 

To examine the effects of working memory training in adult patients with stroke, Westerberg 

et al. (2007) completed a randomized pilot study with 18 participants. The study consisted of 

computerized training on various working memory tasks for five weeks. At the end of this 

interventional study, there was a significant improvement in patients’ working memory and 

attention. It demonstrated that training exercises, which involve cognitive tasks such as 

working memory, attention, and problem solving, can be applied in order to retrain cognitive 

abilities of patients. However, few randomized control trial has been conducted to compare 

computerized training and conventional therapy. Therefore, no information about the 

efficiency of the trainings has been reported. Monitoring of EEG signals was used to evaluate 

participant’s attention levels. For instance, Szafir and Mutlu (2012) used adaptive agents that 

monitor students’ attention using EEG and recapture diminishing attention levels by applying 

verbal and nonverbal cues to maintain their attention. They found that adaptive agents can 

improve students’ recall abilities and significantly improve female motivation and rapport. 

However, the cues were only dependent on the event, but were not personalized. 

Lao, J., & Kuhn, D. (2002) investigated the relationship between cognitive engagement and 

attitude development. As they wrote, the results were consistent with the view that more 

active forms of engaging a topic are conducive to cognitive growth, but that there is a limit to 

the degree of exposure to opposing views that is beneficial. Sarac, et al. (2013) developed an 

approach that enabled online adaptation of robot assisted rehabilitation exercises by 

monitoring cognitive intention levels of patients utilizing an EEG based brain-computer 

interface. They used passive velocity field control to change the speed of contour following 

tasks with respect to intention levels of motor imagery; the aim was to motivate active 

involvement of patients throughout exercise, but clinical experiment results were not reported 

yet. This study did not monitor the patient’s involvement in the motor aspect, which may lead 

to inaccurate analysis of the patient’s involvement. 
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2.3.6 Factors influencing emotional engagement 

Evidence suggests that when a client “focuses” on a game, rather than on their impairment, 

the prescribed exercises become more enjoyable and motivating (Lange, et al., 2009). 

Furthermore, it is more likely that their focus is maintained over the many trials needed to 

induce plastic changes in the neural system. Competitive features such as identified by (Wood 

et al., 2004) and (Burke, et al., 2009), and collaborative features (Loureiro, et al., 2006) have 

been found not only more interesting, but also more motivating in games. Specifically, 

Loureiro et al. (2006) developed a collaborative rehabilitation environment that encouraged a 

long-distance collaborative play using two robot-mediated therapies. The subjects found the 

collaborative environment more valuable, interesting, and enjoyable. Aiming at minimizing 

the loss of independence, isolation, and depression of the patients, Johnson, et al. (2008) used 

this approach to socially engage patients. They found that engagement of patients in the 

training could be maintained longer with this approach. 

Matarić et al. (2007) developed a socially assistive robot, which can provide encouragement 

and reminders by helping the patient to remember to follow a rehabilitation program. The 

results showed that this method had a positive impact on patients’ willingness to perform 

prescribed rehabilitation. It was concluded that collaborative training with other users can 

engage the patients by increasing their positive emotion due to social interaction with the 

other users during the training. In order to optimize the engagement of the patients in stroke 

rehabilitation training, Burke, et al., (2009) designed video games with meaningful play and 

challenge for the participants. They argued that majority of the participants found the games 

enjoyable. This study pointed at the fact that challenges and meaningful play can also increase 

the patient’s positive emotions. 

2.3.7 On some limitations of current approaches 

The majority of the above discussed studies integrate game features into rehabilitation 

training exercises. In general, gamification is a proliferating approach of rehabilitation 

training in robot assisted stroke rehabilitation. It is underpinned by evidences that assistive 

devices integrated with gamification provide more engaging motor, perceptive and cognitive 

training. However, the existing solutions have typically addressed only one specific aspect of 

engagement, rather than the whole of the phenomenon and the issues. Holistic models for 

short term engagement of patients in rehabilitation are still representing an unresolved 

research challenge. On the other side of the coin is that there are no reliable solutions to 

comprehensively and efficiently enhance therapeutic engagement in rehabilitation. 

As shown in Chapter 1, current robotic rehabilitation devices do not provide personalized 

therapy for patients, which in turn may easily result in a decline of motivation and 

engagement in therapeutic exercises. On the other hand, recent results studying engagement 

enhancing methods indicate that need for personalized treatment according to the patient’s 
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capabilities and needs. Because of the nature of engagement, there is no quantitative method 

to evaluate the level of engagement. This can be seen as another limitation. The current 

methods developed to evaluate and measure engagement are subjective and qualitative (Kortte 

et al., 2007). The same patient’s engagement could be different according to different 

therapists, which may lead to an inaccurate assessment. Consequently, without precise 

measurement, the methods of engaging the user cannot be validated. Therefore, quantitative 

assessment of engagement is required for evaluating the effectiveness of the engagement 

enhancing methods. 

2.4. Engagement enabling systems and technologies 

Basically, three kinds of beyond-assistive-robotics systems have been developed with the 

capability of enhancing engagement: (i) virtual reality-based environments/systems, (ii) 

personalized treatment systems, and (iii) cyber-physically supporting systems. 

2.4.1 Virtual reality-based environments/systems 

Proliferation of virtual reality (VR) in stroke rehabilitation is admitted to its capability to 

deliver customizable biofeedback and personalizable rehabilitation program in a safe and 

motivating environment (Yin, et al., 2014). These virtual rehabilitation environments are 

designed to provide audio-visual and haptic-tactile feedback that promotes motor learning and 

enhances participation in a rehabilitation process (Burdea, G.C., 2003). VR-based 

rehabilitation enables therapists to adjust target tasks to the abilities of individual patients, 

offering the potential of greater engagement in treatment sessions and increased sensory 

feedback to enhance motor learning. As argued by da Silva Cameirão, M., et al. (2011), VR-

based rehabilitation speeds up functional recovery of the upper extremities after stroke. 

Tracking technologies of VR also enables therapists to quantitatively monitor the skill 

development and recovery process of patients and perform real time diagnosis of movement 

dysfunction. 

VR solutions aim at augmenting the information gained from intrinsic sensory organs with the 

goal to offer motivation, guidance and encouragement (Holden, M.K., 2005). Interactive 

environments can be used to encourage sensory-motor integration by providing feedback 

relevant to a specific function through various modalities, and present this information in a 

meaningful and intuitive way (Sveistrup, H., 2004). The task and feedback should encourage 

active physical and cognitive participation by the patient to learn generalizable movement 

strategies (Schmidt, R.A., 1991). Measuring the activities has an important role, as argued by 

Adamovich, S.V., et al., (2005). The task and feedback must also be adaptable to the patient's 

individual ability and progress, allowing for patients to be challenged physically and 

cognitively without frustrating them (Piron, L., et al., 2005). 
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VR-based rehabilitation systems offer numerous advantages. On the other hand, they also 

have weaknesses and limitations such as: (i) challenging user interface and interaction 

methods, (ii) using instruments, displays and wiring, (iii) immature engineering processes, 

(iv) platform compatibility and interoperability, (v) front-end flexibility, (vi) back-end data 

extraction, management, analysis, and (vii) visualization side effects (Kim, G.J. 2005). In 

order to overcome some of the non-technical limitations, the cognitive integration of gaming 

features in VR- based rehabilitation systems was also considered (Rizzo, A.A., et al., 2004). 

Efforts were made to work out methodologies and systems for remote tele-rehabilitation 

(Rizzo, A.A., et al., 2004). As alternatives of VR-based systems, socially assistive 

robots/systems have been studied and developed for supporting personalized rehabilitation. 

Paiva, A., et al. (2004) presented an agent based system that is capable to offer empathy to 

patients by adjusting the facial expression, voice and body posture of virtual avatars. They 

proposed two approaches to adjust the behavior of agents of the system. The first approach 

has a cognitive nature, in which the character must behave in ways that show empathy by 

understanding others, mimicking others’ (e.g. other characters or people) emotions, and acting 

as if the others’ emotions affected it. The second approach implemented an affective nature, 

in which the character expressed emotions in facial expressions, voice and body posture, 

presents it to the external world and learns from the reactions. Both approaches have their 

merits in developing systems that implement a virtual therapist, capable to stimulate and offer 

empathy to patients. Tapus and Mataric (2008) introduced a socially assistive robot which is 

capable of adjusting its social interaction parameters toward customized rehabilitation therapy 

based on the user’s personality traits and performance. Their experiments validated the 

feasibility of mapping the user’s extroversion-introversion personality dimension to a 

spectrum of robot therapy styles that range from challenging to encouraging. This system can 

customize the rehabilitation therapy based on the patient’s emotional characteristics. Although 

they have not validated its functionality with real stroke patients, the study demonstrated the 

promises of a socially assistive system in increase patient’s motivation.   

There are very few research projects (e.g., Bickmore, 2003), in human-computer interaction 

(HCI) that attempt to emulate empathy in virtual agents. We are not aware of any studies that 

have examined the role of empathy in assistive embodied human-robot interaction. While 

machines cannot feel empathy, they can express it. The strand of the related research leads to 

the concepts and development of personalized treatment systems, which well be analyzed 

below. 

2.4.2 Personalized treatment systems 

Personalization is an elementary need in recommendation oriented rehabilitation systems. 

Various methods have been developed to make recommendations to users. Most of the 

methods are based on: (i) collaborative filtering, (ii) content based filtering, (iii) ant colony 
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optimization, (iv) particle swarm optimization, and (v) different combinations of these 

techniques (Nilashi, et al. 2013). Currently, there have been various computer supported tools 

developed for personalized rehabilitation. Most of these tools can only calibrate the difficulty 

of the training exercise according to the capability of the patients, or customize the difficulty 

level of the training exercise or the game according to the performance of the patients 

(Borghese, et al., 2013), (Ding, et al., 2013), (Pastor, et al., 2012), (Chen, et al., 2010), (Duff, 

et al., 2010), (Szturm, et al., 2008), (Johnson, et al., 2007), (Nef, et al., 2005).  

Collaborative filtering methods operate with a large amount of information concerning users’ 

behaviors, activities or preferences and, based on their similarity to other users, make 

predictions on what users will like. A benefit of the collaborative filtering method is that it is 

capable to accurately recommend content and items without requiring a model of the content 

itself. Algorithms such a k-nearest neighbor or Pearson Correlation has been used to measure 

user similarity or item similarity in recommender systems. The use of collaborative filtering 

methods in the domain of stroke rehabilitation, however, raises many issues (Li, et al., 2013). 

It is rather difficult, if not impossible, to collect reliable information about the preferences of 

patients concerning particular rehabilitation programs. The reason is that patients may have 

little or no experience with rehabilitation exercises until they undergo the treatment. Choosing 

of therapy based on the earlier experiences cannot be based on the preferences or activities of 

patients. 

Content-based filtering methods use data collected or modelled based on (i) content (e.g. 

learning material, therapeutic training) or items (e.g. products) and (ii) a profile of the user’s 

preference (Aher, et al., 2013). In a content-based recommender system, keywords are used to 

describe the items and a user profile is built to indicate the type of item this user likes. In 

other words, these algorithms try to recommend items that are similar to those that a user 

liked in the past (or is examining in the present). Content-based filtering has been used to 

maintain long term user engagement in stroke therapeutic programs and to offer personalized 

therapies. However, recommendations and system adaptations during rehabilitation and for 

enhancing short term engagement is still an unresolved research challenge. 

Ant colony optimization (ACO) is a metaheuristic technique that operates with a set of 

software agents, called artificial ants, to search for sufficient solutions to a given optimization 

problem (Yang and Wu., 2009). The optimization problem is transformed into a path search 

problem on a weighted graph. The ants (i.e. agents) explore possible paths by moving on the 

graph and gradually construct a stochastic solution influenced by the pheromones (i.e. weights 

of the nodes or edges of the graph). Krynicki, et al., (2016) have developed an evolutionary 

algorithm, which extends ACO with three important features to be utilized in recommending 

personalized long term rehabilitation programs for people with brain injury. Their algorithm 

(i) takes into account the state of the individuals to drive the optimization search, (ii) 
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dynamically adapt the recommendation according to the recent behavior of individual user or 

a group of users with similar characteristics, and (iii) models the cognitive state of the user as 

the set of deficits (deductive reasoning, sustained attention, short-term memory, etc.). Their 

solution offers a hybrid model for personalizing possible routes through the rehabilitation 

program, which found to be effective in composition of personalized programs, but 

enhancement of engagement on exercise levels is not addressed. Until the publication of this 

thesis there were no attempts reported in the literature that have managed to transform the 

problem of engagement enhancement to a search problem of a weighted graphs.  

Particle swarm optimization (PSO) is a population-based metaheuristics technique used for 

stimulating social behavior. PSO is a subset of swarm intelligence developed in the late 1980s 

in the context of cooperating cellular robotic systems. It applies a number of agents in an 

environment interact based on local rules. Liu, et al., (2015) has developed a new student 

engagement measurement algorithm based on PSO technique to find the optimized parameters 

for the engagement measurement algorithm. In their study, the proposed algorithm measures 

the engagement of two groups of students in two different writing activities (long-term and 

short term writing activities) carried out in our cloud-based writing platform. The system uses 

parameters of writing time to monitor social, behavior and emotional engagement and uses 

PSO to predict how people will be engaged in writing in the future with writing. Similar to ant 

colony optimization, this method also requires transforming the engagement enhancement 

problem to an optimization problem, which is rather difficult to formulate on an individual 

basis. Although some users' behavior can be modelled, other users do not exhibit typical 

behavior. These users can skew the results of a recommender system and decrease its 

efficiency. Furthermore, users can exploit a recommender system to favor one product over 

another, based on positive feedback on a product and negative feedback on competitive 

products, for example. A good recommender system for engagement must manage these 

issues. 

Few studies have been conducted to address personalized treatment in other relevant aspects, 

such as cognitive, perceptive, and emotional. Alankus, et al., (2010) developed customizable 

games for stroke rehabilitation, in which cognitive and motor challenges can be adjusted by 

physical therapists. In a case study, they found one stroke patients recovered significant motor 

abilities training with customizable games for six weeks (Alankus, et al., 2011). This system 

personalized the cognitive aspects during rehabilitation, which has been shown to be 

beneficial for the motor recovery, but they did not evaluate the patient’s engagement in the 

study. Tam et al. developed tele-cognitive rehabilitation program which can be customized to 

patient’s functional levels and living environment. Specifically, the software can customize 

immediate visual, auditory and personalized feedback to motivate the client. Three persons 

with brain injury showed improving trends and levels of specific cognitive performance 

during the treatment phase (Tam, et al., 2003). This system customized the perceptive 
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feedback in the study, but they failed to demonstrate if this customization actually enhanced 

the patient’s engagement.  

2.4.3 Cyber-physically supporting systems for enhancing engagement 

Our literature study informed as that the rapidly emerging and proliferating field of cyber-

physically supporting rehabilitation systems provides opportunities for: (i) self-adaptive 

personalized treatment, (ii) monitoring and evaluation of engagement, (iii) creating synergy 

between real life cyber and physical processes. From the above studies, we concluded that 

most of the current personalized treatments only consider the patient’s motor capability or 

performance. But perceptive, cognitive, and emotional factors also influence engagement – a 

fact implies that comprehensive personalization methods are needed in rehabilitation. 

Cyber-physical rehabilitation systems (CPRS) has the potential to address personalization in 

rehabilitation training (Bideaux et al., 2014) using autonomous problem solving strategies and 

situational learning. CPRS is able to activate parts of the rehabilitation system to provide 

adaptive solutions. In the context of rehabilitation, based on the patient’s capability monitored 

by the system, CPRS can provide adaptive training protocol to each patient. For instance, 

CPRS can provide assistance as needed for the patient not only in completing motor tasks but 

also in perceptive and cognitive training. It can adjust the level of assistance or even 

resistance for more advanced patients. Additionally, learning mechanism in CPRS can 

monitor the skill development and the performance of the patients in different situations and 

context, and enable the system to solve the problem automatically based on situational 

reasoning. This affordance of CPRSs can help to achieve personalized training by applying 

suitable treatment that has been proven to be more effective. 

Monitoring and medical status evaluation by CPRSs raised the research interests of both 

rehabilitation experts and CPS developers (Yang, 2008) (Wang, 2012). For instance, their use 

is widely proliferating in monitoring the patients’ status in applications as well as in homecare 

environments (Annese & Venuto, 2015) (Prittopaul, 2015) (Zhang, 2015). More specifically, 

Bidaux, et al. have developed a CPS system to monitor brain seizure of epileptic patients. 

Their system is reconfigurable to accommodate the needs of monitoring according to the type 

of epilepsy, different brain and body parameters, and length of assessment. The different 

monitoring parameters used for multi-parametric analysis included ECG, GSR, multichannel 

EEG and physical activity sensor (acceleration sensors), and sensors providing context 

information about the measurement conditions and the patient’s environment.  

HealthMote is a remote elderly monitoring CPS system developed by Dagale, et al., (2015). It 

can be remotely configured for periodic data acquisition and time period for which the data 

are to be sensed. The HealthMote communicates data retrieved from several biosensors, e.g. 

IMEC ECG module, over Bluetooth and BPL SPO2 sensor using on-board analog front-end. 

The system is capable of doing real time remote analysis of biometric data and is embedded 
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into a Hospital Management System. Cloud-supported cyber-physical localization system 

proposed by Hossain, M.S, (2015) facilitates the seamless integration of devices in the 

physical world (e.g., sensors, cameras, microphones, speakers, and GPS devices) with 

cyberspace. This CPS supports patient monitoring using smartphones and acquiring voice and 

electroencephalogram signals in a scalable, real-time, and efficient manner. As demonstrated 

by the examples above, CPSs offers mechanisms for data fusion, which enables real time 

processing of several bio signals and reasoning with processed information about the patient’s 

status, well-being and engagement. CPRSs can be used in rehabilitation to monitor the 

patient’s engagement state during rehabilitation training, if reliable indicators of all aspects of 

engagement can be identified.  

It is not only known, but also has been proven by researchers that CPSs create synergy 

between cyber and physical processes (Horváth and Gerritsen, 2012). In this context synergy 

means, on the one hand, architectural and functional holism, on the other hand, demolishing 

the demarcation between the physical hardware (both analogue and digital), the digital 

software (control, middleware, application programs), and the cyberware contents (media, 

data/info, codified knowledge, concept ontologies, learnt agency). Model-based design has 

been identified in as a driver for enhanced synergy of CPS (Jensen, J.C., et al., 2011). Model-

based design and model-based development (application implementation) automates the 

mapping from one representation into the next, and as such reduces interpretation errors 

(Karsai, G., & Sztipanovits, J., 2008). Furthermore, modelling can generally be shifted to the 

higher level primitives. Incidental designer errors can be trapped by comparing the two levels 

through forward and backward chaining based on the model. However, model-based design is 

not sufficient for developing personalized cyber physical rehabilitation systems, as the 

individual needs of the users are not predictable at design time (Derler, P., et al., 2012). 

Extending model-based design with data driven reasoning methods is a promising approach, 

which aims to utilize information collected about the user and the context of use at run time. 

The synergy of formal modelling and data driven modelling, nevertheless, needs to be 

addressed at both design and development time in order to assure reliable model adaptations 

and responses to contextual information (Lee, I., & Sokolsky, O., 2010). 

Collecting information about the user and context requires approaches capable to handle 

issues of data fusion, such as signal and data synchronization, reasoning with real time data, 

and handling of data consistency (Lee, I., et al., 2012). Monitoring of engagement typically 

requires synergetic integration of biometric devices measuring indicators of engagement. 

These devices may operate at different sample rates and with different computational 

latencies, and may use different signal processing methods (Lim, et al., 2011). On the other 

hand, data produced from different sources representing the same indicators of engagement 

can show inconsistencies for the reasoning mechanisms (Ma, et al., 2011). These issues can 

be overcome by relying on service oriented development principles of CPSs, as reported in 
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(La, H.J., & Kim, S.D., 2010). Cyber-physical systems offer many opportunities for run time 

learning and development of various stimulation strategies. Below, we provide an overview of 

the related concerns. 

2.4.4 Stimulation strategies for motor engagement 

Stimulation of patients during rehabilitation should be harmonized with the process of human 

activities and personal profiles (such as personality and interest, but also with the 

physiological and mental well-being of patients). This requires the implementation of smart 

CPSs capable to classify user activities and create profiles of patients. On the other hand, 

stimulation approaches improving specific aspects of engagement needs to be combined into 

synergetic stimulation strategies in order to overcome possibility of the cancelling effect of 

their combinations. This requires the development of learning mechanisms capable to explore 

how the combination of stimulation strategies in order to have more intense effect on the 

engagement of individuals. There are two issues to expose here: (i) training natural 

movements that cover full motion envelop, and (ii) adaptive training protocol that remains 

challenging for the patients. 

Concerning the first issue, it is known that one of the major limitations of current robot 

assisted rehabilitation training methods that engagement of motor functions is not able to offer 

adaptive assistance for training of fine motoric movements and natural motion patterns. The 

range of motion envelop, the capability of performing natural movement, as well as the level 

of motor assistance are influenced by factors of learning and skill development of patients. 

There are no devices that would be able to offer assistance for full range of motion of the 

hand, which would enable the training of grasping functions that are the most important motor 

functions of independent daily living. Instead of focusing on training the strength of the 

muscles as current devices do, cyber-physically assisted motor training should focus on the 

training of hand function and coordination of all the muscles of the affected limb. 

Concerning the second issue, active participation in robot assisted motor training has been 

shown to lead to faster recovery of motor functions. One of the limitations of current 

rehabilitation systems is that they are not able to exploit the patients’ full potentials in motor 

training. Cyber-physical solutions could offer remedy for this problem by monitoring active 

participation and the effort of patients during therapy, measuring the capabilities and skill 

development of patients, and automatically adapting their rehabilitation programs to maintain 

or enhance engagement and the level of assistance offered during exercises. Consequently, 

model driven control of robot assistance should be extended with data driven control. This 

makes the systems capable to learn from the history of exercises and performances of patients 

with similar profile and offer adaptive control strategies to robot assisted training. The future 

systems of cyber physical rehabilitation will be intervening inactive participation and 

stimulate patients to make bigger effort.  
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2.4.5 Stimulation strategies for perceptive engagement 

One expectation toward cyber-physical rehabilitation systems is to provide functional 

feedback that makes the patients aware of the training exercise. Stroke patients have typically 

deficits in their sensory-motor and cognitive functions, and as a result their ability to control 

voluntary and involuntary movement is limited. Our literature study has shown that feedback 

on the functional capabilities of the patients and their performance of exercises has a positive 

influence in the execution of rehabilitation training program. This implies that methods and 

systems should be developed that are able to inform the patients about their motor function 

abilities (i.e. position, motion of and forces exerted by their affected limb), cognitive abilities, 

and perceptive abilities, as well as the stage of recovery. However, the currently used methods 

and measures for assessing patient capabilities (Fugl-Meyer, Brunstrom, etc.) were developed 

for medical assessment by therapists and require assistance of medical personnel. They are 

limited to measure long term developments. In conclusions, functional feedback on the 

capabilities of patients requires methods that are able to measure both short and long term 

development and provide feedback that is meaningful for patients. 

Another opportunity of using CPSs in rehabilitation is generating an immersive environment 

with multisensory feedback. The current robotics-based rehabilitation systems are still limited 

in providing the patients with a fully immersive training environment. As discussed above, 

cyber-physical augmentation can go beyond the capabilities of existing augmented reality and 

VR technologies by deeply penetrating the physical processes of daily activities and 

connecting it to mental world and capabilities of the patients. For example, sensory 

deficiencies of patients may be compensated by extra stimulation of other senses using 

technologies developed for VR (visual, auditory, tactile, olfactory, and even gustatory 

sensors). CPSs may provide strategies for adaptive stimulation of various senses of patients 

based on information collected from sensors of smart environments, patient performance 

measures and monitoring of and learning from reactions of patients to various stimulations. 

The realization of this scenario, however, needs to rely on the real time information 

processing capability of cyber physical systems. Training of patients for daily activities with 

cyber physical augmentation has potential impact on engaging and motivating the patients in a 

deeper level, and stimulating larger part in the central nervous system leading to a faster 

recovery. 

2.4.6 Stimulation strategies for cognitive engagement 

While gamification has become the de facto standard of cognitive interaction with patients in 

therapeutic treatments, serious games are not the only and exclusive cognitive tasks that 

cyber-physical systems can get them involved in. The latest trends of gamification of training 

exercises have demonstrated the potential of combining cognitive and motor exercises. The 

wider integration of various modalities offered by CPSs can also result in strong stimulating 
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experiences. This opportunity is strongly needed because in the current rehabilitation practice, 

cognitive and motor exercises are handled separately. Cognitive games extended with kinetic 

interfaces and kinetic games extended with cognitive elements have been developed to create 

multimodal engagement for patients. Despite the initial successes in medical experiments, 

proliferation of these solutions is not happening due to high development costs and the need 

for smart systems. CPS-based generic kinetic interfaces combined with learning mechanisms 

are capable to reconfigure the interaction with the games according to the need of patients and 

may overcome the abovementioned problems. Likewise, self-reconfigurable generic 

interfaces can adapt themselves to the profile of patients, content and settings of the games 

and actual engagement level. 

2.4.7 Stimulation strategies for emotional engagement 

Though the role of emotional and habitual engagement is often discussed in the literature, the 

methodology of managing and controlling it in exposure therapies seem to be stepchild of 

researchers (Andersson, S., et al., 1999). For instance, what works in the context of learning, 

i.e. identification with school and a sense of school belonging (Wang, M.T., & Eccles, J.S., 

2012), cannot be transferred directly to the domain of medical rehabilitation. On the other 

hand, the proposed new definitions for emotional engagement as “the amount of subconscious 

'feeling' that is independent of attention or do not require high levels of attention are also not 

working with impaired (Heath, R., 2009). In the context of robotics assisted rehabilitation it 

has been argued that the effective outcomes depend on the people's emotional engagement 

with robots (Choi, J.J., et al., 2004). In the context of neurorehabilitation it was found that key 

concerns are such as the patient's emotional engagement with his or her problems and 

potential goals, and harnessing patients' intrinsic motivation to change (van den Broek, M.D., 

2005). Cyber-physical systems may apply high level person-adapted control to each patient 

individually and bring together multiple patients in social set-ups. This way, they are able to 

replace game-entailed ‘competition’ into cooperation, ‘training program’ into social coaching. 

Under person-adapted control, even competitive training among the patients, or 

“rehabilitation match”, is imaginable, which can engage the patients to exploit their fullest 

potential. Since cyber physical systems may manifest as a distributed and decentralized multi-

user system, the patients can do the same exercise at the same time in order to cooperate with 

each other to complete a task. Cooperation with the other patients and interaction with the 

system may have the potential to emotionally engage the patients into the status of flow. 

2.5. Concluding comments 

Our major finding in this chapter is that there are tremendous opportunities for utilizing CPS 

to enhance engagement during rehabilitation. According to the literature review, there are 

mainly three limitations in the current engagement enhancing approaches, namely: (i) they 

typically consider only one form of engagement of the four identified forms (motor, 
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perceptive, cognitive, and emotional), (ii) there is no reliable solution to engage the patients 

because the current rehabilitation systems fail to deliver a fully personalized training, and (iii) 

no quantitative measurement of engagement is available in the current rehabilitation practice. 

Since CPSs offer the affordances of multi-sensor networking, generation of problem solving 

strategies, conducting situational learning, and synergistic coupling cyber and physical 

processes, they have the potential to improve the efficacy of rehabilitation based on 

personalized enhancement of engagement. A CPRS can offer comprehensive personalized 

rehabilitation therapies by monitoring the patient’s engagement status, and applying dedicated 

stimulation strategies to maintain short engagement during rehabilitation. Utilizing self-

adaptation and self-learning principles of CPS, the effect of stimulation strategies can be 

learned by the systems enabling personalization of stimulation and adaptation of system 

environment and therapy settings. In order to create a robust knowledge platform for the 

research work and conceptualization of the kernel elements of a CPRS, the finding of this first 

research cycle will be blended with the findings of the second research cycle at the end of the 

next chapter. 
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CHAPTER THREE 

RESEARCH CYCLE 2:  

Experimental investigation of current limitations of 
enhancing engagement in practice 

3.1 Objective and methodological frame of research cycle 2 

Based on the survey in Chapter 2, gamification of rehabilitation is a proliferating approach of 

robot assisted stroke rehabilitation. One of the objectives of this chapter was to understand the 

limitations of current engagement enhancing methods in practice. To this end, an upper limb 

rehabilitation robot integrated with video games was designed and developed. Another 

objective was to understand which gamification method and factors make the video game 

exercise engaging. Therefore, three exercises were conducted and the measure of engagement 

of the participants during each exercise was compared. The three exercises were: (i) a video 

game exercise, (ii) a tracking exercise, and (iii) a traditional exercise. First, this chapter 

introduces the development of the robot and the user interface used for enabling gamification. 

Then, the conduct of the experiment and data analyses is demonstrated.  

Design inclusive research was applied in this research cycle (Horváth, 2007). In the phase of 

explorative research actions, the method of gamification was introduced from Chapter 2 as 

input for this chapter. In order to conduct the video game exercise, a prototype of an upper 

limb rehabilitation robot integrated with video games was designed and developed. In the 

phase of creative design actions, an empirical study, which compared the engagement during 

different exercises, was designed and used as a research means to investigate the causalities of 

the factors on engagement. In the phase of confirmative research actions, the results from the 

experiment were generalized as consolidated knowledge.  
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3.2 Design and implementation of a research means:  
An upper limb rehabilitation robot integrated with video game 

3.2.1 Overview of the upper limb rehabilitation robot 

Our starting point at designing the upper limb rehabilitation robot was that training of natural 

movements, which covers the full motion envelop and mimics the activities of daily living, is 

effective in stimulation of the motor activities. Therefore, the robot was designed with the 

intention to focus on training both large movements of shoulder, elbow, and the wrist, and the 

fine movements of the fingers. According to the current standard, gamification has been 

considered for enhancement of engagement. In order to integrate video games into training 

exercises, the rehabilitation robot should be extended with a user interface, which enables 

interactive human-computer interaction during the exercises.  

The robot subsystem is shown in Figure 3.1 (a) It consists of the platform, two parallel robotic 

arms, one computer, two servo motors (MAXON RE50, with encoder HEDL 5540, 500 CPT), 

two controllers, and three screens. The parallel robotic arms are fixed on the platform, in 

which a horizontal screen is also embedded. 

The embedded screen and the vertical 

screen installed on the platform give visual 

feedback to the patients. The third screen is 

used by the physical therapist to control the 

system. The two servo motors, fixed under 

the platform, drive the robotic arm in the 

passive mode of the robot.  

We have implemented both passive and 

active mode for the upper limb 

rehabilitation robot. In passive mode, the 

movements of patients are generated by the 

electric motors of the robotic arms. This 

enables rehabilitation of acute or sub-acute 

stroke patients, whose motor control ability 

of the shoulder and elbow in the impaired 

limb need active robotic assistance. In the 

active mode, the patient is supposed to 

generate the motions and the two motors 

only record the position. A shown in Figure 

3.2, there are two slide rails, two sliders, 

and one rod (fixed with one of the sliders) 

in each arm. The redundant degrees of 

 

a 

 

b 

Figure 3.1 a. Upper limb rehabilitation robot 
based on parallel robotic arms b. 
Elbow tray used in passive mode  
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freedom provide the structure with 

flexibility. This mechanical structure 

helps the patients move the handle 

grip precisely in the active mode, 

according to their will. As discussed 

in Chapter 1, the literature advised 

us that passive movements are 

insufficient to achieve motor 

recovery (Lynch et al., 2005), and 

that active engagement and 

movement attempts are essential to 

acquire the beneficial effects of 

robotic rehabilitation (Hogan, et al., 2006), (Krebs, et al., 2009) and (Cauraugh, et al., 2010). 

Therefore, active mode integrated with video game exercise is used in this study. 

To provide static support for the impaired arm, a tray for the elbow is used in the passive 

mode, as shown in Figure 3.1 (b). In the active mode, the stroke patients, who already have 

fairly good motor control ability at the shoulder and elbow, move voluntarily. In this case, as 

mentioned above, the electric motors only record the position of the handle grip of the 

rehabilitation robot. The active mode makes it possible for the patients to interact with the 

video game that is displayed in the screens in front of them. The exercise requires the patient 

to move the handle grip with their impaired limb to certain points and to trigger mouse events 

by different grasping postures as required by the task of the game. The following part focuses 

on introducing the active mode integrated with gamification. 

3.2.2 Principle of the user interface 

To integrate motor training with video games, the upper limb rehabilitation robot subsystem 

needs an effective, efficient, and easily learnable human-computer interface. In addition to 

making possible for the patient to play video games, it should also support engagement of the 

patient. In the development of the user interface for the stroke patient rehabilitation system, 

three challenges had to be addressed. 

1) In the context of the fine movements of the fingers, the first challenge was to develop an 

interface that enables the users to perform different types of grasping tasks.  

2) The second challenge was to implement a human-machine physical interface that enables 

the system to understand which part of the interaction can improve engagement in a 

particular exercise.  

3) Finally, the third challenge was to develop a protocol for adaptive training of different 

types of grasping, and applying grasping forces of different magnitudes, which is 

 

Figure 3.2 Mechanical structure of the parallel 
robotic arms 
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personalized to each patient. 

The relationships between these 

challenges are represented 

graphically in Figure 3.3. The 

principles of finding solutions to 

the challenges are as follows: 

1) The goal of the interface is to 

facilitate training fine finger 

movements. Therefore, what 

these fine movements exactly 

are had to be defined first. 

Cutcosky, et al. (1989), 

distinguished power grasping 

and precision grasping as 

means of manipulating objects 

in daily activities; Humans typically make a decision on the actual type of grasping based 

on the combined evaluation of task-oriented and geometric considerations concerning the 

task at hand; If the object must be clamped, then some basic geometric considerations and 

the purposes are the most important factors to determine the posture of grasping. Our 

system concept implements five different types of rehabilitation exercises as presented in 

Table 3.1. These five grasping postures enable the users to execute meaningful 

rehabilitation exercises in realistic daily life circumstances. A list of possible video games 

is given in the second column of Table 3.1 facilitating the practice of specific grasping 

 

Figure 3.3 Challenges of building the robotic 
rehabilitation user interface 

Table 3.1 Posture-sensor data mapping table 

Posture/ 
Sensor 

Sphere 
top 

Sphere 
left 

Sphere 
right 

Cylinder 
left 

Cylinder 
right 

Flat left Flat right 

Object pick 
up 

     Pressed Pressed 

Heavy 
grasping 

Pressed Pressed Pressed     

Gripping    Pressed Pressed   

Finger 
extension 

Pressed 

Touche
d- 

Release
d 

Touche
d- 

Release
d 

    

Lateral 
pinching 

small 
     Pressed Pressed 

Lateral 
pinching 

large 
     Pressed Pressed 
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postures in realistic context. The fourth column illustrates how the pressure sensors are 

placed on the grasping interface in order to be able to detect the posture and strength of 

grasping. We use Force Sensing Resistors (FlexiForce A401, force range: 0-110N, 

thickness: 0.208 mm, sensing area: 25.4 mm diameter), which can be attached to different 

parts of the handle grip flexibly, for the detecting contact and measure the contact forces 

between the hand of the user and the handle grip. 

2) The second challenge was to develop software for enabling natural human–machine 

interaction for rehabilitation exercises. In order to integrate the hardware interface with 

video games, we had to map the detected signals of the pressure sensors of the handle grip 

and angle sensors of the robotic arms onto mouse movements and events. The flow chart of 

the algorithm of the software is shown in Figure 3.4. In the first step, the cursor of the 

system is supposed to move as the handle grip moves. This means that the system has to 

track the position of the handle grip and compute the X and Y coordinate of the cursor 

based on the actual position of the handle grip. The tracking of the position of handle grip 

is achieved by using angular position sensors of the electric motor of the robotic arm. In 

the second step, the system also has to recognize which part of the handle grip is engaged 

for a particular rehabilitation exercise.  

 

Figure 3.4 Flow chart of the algorithm of the system software 
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Table 3.2 Different types of training exercises with fingers 

Rehabilitation 
exercise 

Video game Grasping posture Sensor data 

 

Picking up small 
ingredients 

 

 

Grasping an apple, 
throwing a ball 

 

 

 

Quiz button, 
(pushing down a 
large red button. ) 

 

 

 

Gear shift in a car  

 

 

Using a knife 
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To detect that the user is using the appropriate part of the interface and applies to proper 

grasping posture a mapping algorithm has been developed that recognizes grasping 

postures based on pressure sensors’ signals.  

Table 3.2 summarizes the principle of this mapping algorithm. The algorithm reads the 

analog input of all force sensors, and if signals indicate the right combination with the 

expected grasping posture, then it proceeds to the next step. To implement this mapping, 

we have adapted the principle of grasping posture recognition proposed by Rusák, Z. et al. 

(2010). In their paper, they proposed a new principle to control contact forces and to 

determine the grasping posture during human-virtual object interaction in virtual reality 

environments. They used the penetration of a virtual hand into a virtual object as virtual 

sensor data in order to determine the applied grasping posture based on the distribution of 

contact patches on the hand.  

We have adapted this principle to a real environment by replacing the virtual sensors data 

by real sensor data. In the last step, the algorithm processes the signals of pressure sensors 

to compute the magnitude of the grasping forces. The threshold of each force sensor is set 

in the program in advance. If the force exerted by the patients is higher than this threshold 

value, which means the finger movement has met the demand, then the system triggers a 

mouse event expected by the video game. 

3) The third challenge was to offer personalized training which is adaptive according to the 

game tasks and patient’s capabilities. The proposed interface enables rehabilitation 

therapists to select online and offline games for exercising a specific rehabilitation tasks, 

set the magnitude of the contact forces for the handle grip according to the patient’s 

capability. Ideally, we want to realize a system that could detect the shape and weight of 

the object used in the games and the recovery level of patients, and automatically set the 

type of required grasping posture and magnitude of forces. Specifically, the system is 

supposed to set which part of the interface is engaged and the threshold value of the force 

sensors according to the shape and weight of the object displayed in the game. For 

instance, if the object in the game is long and thin, like a pencil, then a small force is 

required to exert on the lateral pinching part. The system is also supposed to monitor how 

the patients perform in the training exercise and record their training parameters, such as 

the magnitude of the force that the patient exerts, the speed and distance that the patient 

moves, and the time that the patient completes the tasks. Then the system can 

automatically analyze the gathered data and evaluate the performance of the patient. If the 

patient finishes the tasks smoothly, the system is expected to make the video game harder 

in order to develop the patient’s potentials. But this self-adaptive capability of the system is 

not our focus. Therefore, we use adaptable user interface, which means the physical 

therapist can set the magnitude of the contact forces for the handle grip and select the 
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grasping type.  

3.2.3 Implementation of the user interface 

1) Design of handle grip  

For different game tasks, patients are 

required to use different ways of 

grasping to mimic activities of daily 

living. For instance, in an online 

cooking game shown in Figure 3.5, the 

users are supposed to grasp and move 

several ingredients and a knife in the 

screen. Players have to put the correct 

ingredients in the right order into a 

bowl  

to complete the game task. For 

grasping the onions, the patients are 

required to grasp the sphere of the handle grip 

and exert the proper level of force to pick up 

and hold the onion and move it to the cutting 

board. To chop the onion, they have to pick up 

the knife using the lateral pinching part of the 

interface of the handle grip. The design of the 

universal handle is shown in Figure 3.6, which 

is rotatable to the robotic arm. For the haptic 

interface, we use the Force Sensing Resistor as 

the force sensor, and use Arduino (Mega 2560) 

to read the analog input of the sensors. 

2) Control design 

Since the handle grip moves above one of the displays of the rehabilitation device, it offers a 

platform for almost direct interaction with virtual objects. To track the position of the handle 

grip on the display, we use the motor encoders to read the angles the motors rotate, θ  and θ , 

as shown in the Figure 3.7. We compute the coordinates of the handle grip based on Equation 

1.  

x
	

sinθ cosθ 50

y 400 sinθ sinθ 225
                                (1) 

 

Figure 3.5 Cooking game: Kebab Make 

 

Figure 3.6 Sketch map of the universal 
handle grip (force sensors are 
shown as blue parts) 
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The position of the cursor is 

computed based on the physical 

dimension of the screen and the 

applied resolution. Once the cursor’s 

position is determined it can be 

moved to the same location as the 

handle grip.  

The control of the hardware has been 

implemented in Labview. The control 

algorithm is shown in Figure 3.4. First 

the algorithm read analog inputs of 

those force sensors that are engaged 

by the user. It detects if the user is 

applying the expected posture for the rehabilitation exercise. If the force by the hand is higher 

than the threshold value of all the sensors engaged, it acts a click down of the left button of 

the mouse. If the force is higher than the value continuously, then it acts a drag of the mouse. 

It acts a release of the left button of the mouse if the force is lower. In this way the patients 

can manipulate the computer via this interface.  

3.2.4 Rehabilitation exercise with video games 

This section presents some illustrative examples that enable users to complete their 

rehabilitation program by playing video games. When this robot is used for delivering therapy 

integrated with games to the patients, in the first step, physical therapist should set the game 

settings for the patient. First, a proper game can be selected for the patient. Then the therapist 

should analyze the type of objects to be grasped in the game and set the expected threshold 

values for grasping. Next, the physical therapist should help the patient sit in the chair and 

grasp the handle grip, which is supposed to fix the upper body of the patient because the 

patient should not move his or her body to complete the task. After these preparatory steps, 

the physical therapists can run the program and patient can start the motor training exercises. 

The stroke patients are required to use their fingers to press the right combination of the force 

sensors according to the task instructed by the physical therapist. 

Any online and offline games, that can be controlled by a computer mouse, can be used for 

rehabilitation exercise. Table 3.3 presents some relevant examples representing daily life 

activities designed for children to be played on the Internet. As illustrated in Figure 3.5, a 

cooking game requires the patients to manipulate ingredients and kitchen ware in a virtual 

environment. As a result, the patients has to apply many kinds of arm-movements, such as 

humeral adduction, internal rotation, elbow flexion, forearm pronation, and wrist and finger 

 

Figure 3.7 Handle grip in the geometry coordinate  
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flexion, all of which also needed in the activities of daily life. While playing the games, the 

patients’ functional abilities are trained.  

The difficulty of the rehabilitation system integrated with video games can be easily increased 

to develop the patients’ potential. For example, if the pictures of the game on the screen 

become larger, patients need to move the handle grip to reach further on the screen. Another 

method is that the threshold value of the force sensor can be increased according to the 

performance of the patient, so that it will demand larger force from the hand. Thus the 

potentials of the patients can be developed. Users can use different grasping postures to 

Table 3.3 Rehabilitation delivered by different games 

Games Game task Arm and finger movements

 

Grasp the objects and use 
the knife to slice them. 

http://spele.nl/kebab-
maken-spel/ 

Shoulder and elbow 
movement; 

Grip strengthening; 

Lateral pinch; 

 

Keep pressing the force 
sensor and move the handle 
grip to track the task path. 

http://spele.nl/cook-show-
buffalo-spel/ 

Shoulder and elbow 
movement; 

Wrist flexion; 

Grip the handle cylinder to 
simulate stirring materials. 

 

Put the raw material on the 
oven, after the cake is done, 

move it to the plate. 

http://spele.nl/poffertjes-
spel/ 

Shoulder and elbow 
movement; 

Object picking up; 

 

Select the proper ball and 
make it into the bag. 

http://spele.nl/snooker-2-
spel/ 

Shoulder and elbow 
movement; 

Finger extension (press the 
force sensor to use the 

proper force to hit the ball.)
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manipulate the robot. For instance, they may grasp the cylinder or the ball on the top of the 

handle grip using two or three fingers. Different grasping posture will exercise different 

muscles of the hand, wrist and the forearm. Consequently, several ways of grasping in the 

daily life can be simulated by playing the video games, in which the functional abilities of the 

patients will be retrained. 

3.3 Conduct of the experiment 

3.3.1 Experiment protocol 

In Chapter 2, the factors for therapeutic engagement have been identified in the four aspects, 

namely, motor, perceptive, cognitive, and emotional. One objective of this experiment was to 

investigate which factors in gamification can increase engagement of the participants 

compared to other exercises, such as tracking exercise and traditional exercise, which were 

different in addressing the factors. One limitation we found in this field is that there is no 

quantitative method to evaluate the level of engagement. Another objective of this experiment 

was to identify the relationship between the engagement level and muscle activities with the 

aim of identifying indicators to represent engagement in a quantitative way. The considered 

adjustable parameters were: (i) versatility of motion, (ii) motion envelope, (iii) velocity of 

motion, (iv) versatility of feedback, (v) cognitive tasks, and (iv) competitiveness. In Table 3.4 

the differences of the adjustable parameters of the factors that each exercise addresses are 

listed. The motion envelope and velocity of motion were analyzed using the motion 

characteristics. In the next section, the influence of different factors on engagement was 

analyzed.  

1) Video game exercise 

The upper limb rehabilitation robot was used for the video game exercise. In the video game 

exercise, the subject was required to complete the game tasks in the active mode (Figure 3.8). 

The subjects could choose a game between Air Hockey and Cooking Game. In the Air 

Table 3.4 Parameters of the factors in different exercises 

Aspects 
Adjustable parameters of 

the potential factors 
Video game 

exercise 
Tracking exercise 

Traditional 
exercise 

Motor 

Versatility of motion Random Regular Regular 

Motion envelope Analyzed by motion characteristics 

Velocity of motion Analyzed by motion characteristics 

Perceptive Versatility of feedback 
Interaction with 

video game 
Continuous 

feedback 
Discontinuous 

feedback 

Cognitive Cognitive tasks 
Attention and 

problem solving 
Attention and 

judgment 
Attention 

Emotional Competiveness/challenge 
Play against the 

computer 
Track more 

precisely 
None 
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Hockey, the subjects played against 

the computer. While in Cooking 

Game, the subjects were required to 

follow the game tasks and complete 

a dish in a fixed time. Completing 

the tasks not only required subjects’ 

physical movement but also 

cognitive reactions, such as 

attention, understanding the tasks 

and solving the problems. Therefore, 

versatility of motion, versatility of 

feedback and tasks were changing, 

and it was also combined with the 

feature of competitiveness in this exercise.  

2) Tracking exercise 

During the tracking exercise (Figure 

3.9), there was a circle shown on the 

screens. Then the subject was 

required to grasp and move the 

handle grip to follow the circle 

precisely. Since it was the same 

circle, versatility of motion was 

relatively regular in the tracking 

exercise. As for the versatility of 

feedback, the tracking exercise provided continuous feedback to the subjects with the position 

of the handle grip. The distance between the handle grip and the circle could make the 

subjects aware of the error so as to 

adjust their movement to follow 

the circle more precisely, which 

required attention and adjustment 

as cognitive activities. With 

regarding to the aspect of 

challenge, the subjects were 

required to track the circle 

precisely.  

3) Traditional exercise 

In traditional exercise the subject 

was required to grasp objects with 

 

Figure 3.8 Video game exercise 

 

Figure 3.9 Tracking exercise  

 

Figure 3.10 Traditional exercise 
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different shapes and masses and move into and out of the box, and repeat with this regular 

movement (Figure 3.10). Different from the other two exercises, the traditional exercise did 

not require the subjects’ continuous attention. Because the subjects only needed to notice 

when grasping the object and putting the object, but the path of movement was not required so 

that no attention were needed from the subjects between the start position and the end 

position. That means the traditional exercise could only provide discontinuous feedback to the 

subjects and attention as cognitive task. There was no competiveness or challenge feature in 

this exercise.   

3.3.2 Subjects and measurements  

In this study, 15 healthy subjects, 8 men and 7 women, age between 23 and 55 (mean, 

33.4 8.8y), were involved. We assume that the effects of factors on engagement are similar 

between healthy subjects and stroke survivors. In order to analyze the relationship between 

engagement level and muscle activities, during the experiment, EMG data on the arm was 

measured, which represented the muscle activities of the subjects. Several studies have been 

conducted to investigate the relationship between engagement and EMG. Most of these 

studies adopted facial EMG as indicator of arousal of engagement (Herbert, et al., 2006), 

(Schuurink, et al., 2008), (Murray & Goldfarb, 2015). However, in the context of 

rehabilitation, engagement in the motor aspect should represent how much effort the patient 

makes in the training tasks. Zimmerli, et al. (2013) used root mean square (RMS) of EMG 

from the legs to measure engagement during gait exercise in a virtual reality environment.  

RMS is considered to be the most meaningful calculation of the amplitude of the EMG signal, 

since it gives a measure of the power of the signal. Since the amplitude of EMG is mainly 

correlated with movement velocity (Mustard and Lee, 1987), we have introduced the 

normalized EMG signal, which is defined as RMS of the EMG signal divided by the average 

velocity in window of 0.33 seconds. With this normalization step, the effect of the movement 

velocity was removed from the signal, which would otherwise alter EMG amplitude 

(Somasundaram, 1974), (US Department of Health and Human Services, 1992). For this 

analysis, data from the tracking exercise were used for the reason that the movements in this 

exercise were fairly the same. EMG signals were recorded from extensor carpi radialis longus, 

flexor carpi radialis, first dorsal interosseous muscle and extensor digitorum, in order to 

measure the level of activation of the muscles. EMG signals were sampled at 1000Hz, and 

filtered by a band pass filter at 20-500Hz and a band stop filter at 50 Hz.  

Since there is no objective measurement to quantify engagement for each person, within 

subject design was used in this experiment. All subjects were required to complete three 

exercises with their right hands without stop, while the order of these three exercises was 

random for each subject. This is because engagement in different exercises could also be 

related with the sequence of the exercises. Each exercise lasted for 5 minutes. It has been 
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shown that positive emotions, such as joy 

and surprise, are the signs of viewers’ 

engagement in watching Internet video 

advertisements (Teixeira et al., 2012). So 

web cam was utilized to capture the 

facial expression of the subjects in order 

to evaluate the engagement level. The 

engagement level was identified 

according to different expressions of the 

subjects shown on the video. Three levels 

of engagement can be identified from the 

video, which were engaged level, normal level and bored level. The characteristics of each 

level were summarized in Table 3.5. In the normal level, the subjects did the exercise with a 

normal facial expression. When the subjects were engaged, it could be identified from their 

facial expression usually with smiles and they were more focused and concentrated their 

attention on the exercises. The subjects seemed to be more careful with the exercise than they 

were in the normal level. In the bored level, the subjects lost interests in the exercises, just 

repeated the tasks and looked around sometimes, usually with a dull expression on their faces. 

The time durations of the three engaged levels were manually counted based on off-line video 

analysis.  However, there were small periods that were difficult to judge. Therefore, we 

introduced to transition levels when the subjects’ facial expressions were between two levels.  

We used another web cam fixed above the platform to record the arm movements of the 

subjects in order to monitor the motion characteristics. The motion analysis software, Tracker 

(https://www.cabrillo.edu/~dbrown/tracker/), was used to analyze the motion from the videos. 

Lastly, post event questionnaires were used to indicate the engagement level (Brockmyer, et 

al., 2009). This questionnaire was intended to measure the engagement in violent video game 

playing. As a result, some items in the questionnaires were adopted or deleted. For example, 

questions like “I feel scared”, “I get wound up”, “Things seem to happen automatically” and 

“playing seems automatic” were deleted from the questionnaire. Terms like “play” and 

“game” were changed to “do the exercise” and “exercise” respectively. Each subject was 

required to fill in this same questionnaire after each exercise. Some of the questions were 

categorized into different aspects in order to indicate the engagement in motor, perceptive, 

cognitive, and emotional aspect. There were three answers for each question, which were yes, 

maybe or not. Different answer resulted in different scores (Brockmyer, et al., 2009), then the 

total score was used to indicate the engagement level of the subjects during the exercise. The 

questions of the adopted questionnaires were listed in Table 3.6. 

Table 3.5 Indicators for engagement based on 
facial expressions 

Engagement 
level 

Indicators 

Engaged Smile, focus on the exercise 

Normal 
Normal face, looking at the 
exercise 

Bored 

Dull, looking around or looking 
at the exercise but not 
concentrating, holding the chin 
with hand  
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3.4 Data analysis and findings 

Within subject ANOVA was used to analyze the differences between different groups. 

3.4.1 Analysis of engagement level  

According to criteria of identifying the engagement level, a typical pattern of facial 

expression in each exercise was shown in Figure 3.11. 1, 0.5, 0, -0.5 and -1 were referred to 

engaged, transition between engaged and normal, normal, transition between normal and 

bored and bored respectively. According to the typical pattern of facial expression in each 

exercise, the subjects were interested in each exercise at first. As the exercise proceeded and 

they were getting familiar with the exercise, the level of engagement changed from engaged 

level to normal level, and then to bored level. In the video game exercise, engagement level 

may change from engaged level to transition and change back to engaged level from 

transition, which could be interpreted as new stimulations in the video game. While in the 

other two exercise, there were no such stimulations.  

The mean and standard deviation of time duration of each engagement level in different 

exercise was calculated as it was shown in Figure 3.12. In the box, the central line was the 

median, the circle was the mean, and the edges of the box were the 25th and 75th percentiles. 

Post hoc analysis of the durations in the engaged level showed significant differences between 

Table 3.6 Items and scores of the Engagement Questionnaire  

Item No Maybe Yes Aspect 

1 I lose track of time -2.82 -1 0.82  

2 I feel different  -0.82 0.82 2.5  

3 The exercise feels real -2 -0.32 1.32 Perceptive 

4 If some talks to me, I do not hear them -1.82 0 1.82 Perceptive 

5 Time seem to kind of standstill or stop -1 0.66 2.32  

6 I feel spaced out -1.16 0.5 2.16 Emotional 

7 I do not answer when some talks to me -1.32 0.32 2  

8 I cannot tell that I am getting tired -1.5 0.16 1.82  

9 My thoughts go fast -2.16 -0.5 1.16 Cognitive 

10 I lose track of where I am 0 1.66 3.32  

11 I do the exercise without thinking about 
how to do it 

-2 -0.5 1.16 Cognitive 

12 The exercise makes me feel calm -2 -0.5 1.16 Emotional 

13 I do the exercise longer than I meant to -2.32 -0.66 1 Motor 

14 I really get into the exercise -3.5 -1.82 -0.16  

15 I feel like I just cannot stop doing the 
exercise 

-1.82 -0.16 1.5 Motor 
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the video game exercise (175±32/s) and the tracking exercise (85±30/s) (P=2 10(-5)), 

between the video game exercise and the traditional exercise (46±17/s) (P=3 10(-9)), and 

between the traditional exercise and the tracking exercise (P=2 10(-4)). Therefore, we could 

conclude that the video game exercise leads to longer period of engaged level during training 

exercise than the other two exercises.  

Post hoc analysis of the questionnaires also showed significant differences in the scores that 

indicated engagement, between the video game exercise (3.98±1.2) and the tracking exercise 

 

Figure 3.11 Typical pattern of engagement level changes based on facial expression 

 

Figure 3.12 Boxplot of the durations of different engagement levels in different exercises.  
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(-2.64±1.8) (P=0.01), and between the 

video game exercise and the traditional 

exercise (-6.28±2.1) (P=0.006). 

However, no significant differences were 

found in the scores between the tracking 

exercise and the traditional exercise 

(P=0.11). These results could support the 

reliability of the engagement level based 

on facial expressions. Therefore, in the 

followed analyses, engagement level 

analyzed from facial expressions was 

used to evaluate the engagement level 

during each exercise.  

3.4.2 Analysis of motion characteristics and the questionnaire scores in 
different exercises 

In this part, the motion characteristics, such as elbow angle and hand velocity were analyzed 

and compared between different exercises. As shown in the Figure 3.13, the elbow angel is 

defined as 180° .  

As shown in Figure 3.14, in the tracking exercise, the elbow made a regular motion as the 

subject tracked the same circle. While in the other two exercises, elbow angles changed 

 

Figure 3.13 Elbow angle 

 

Figure 3.14 Typical pattern of elbow angle changes in different exercises 
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arbitrarily due to different tasks. This was the same for all subjects. The average motion range 

of the elbow angle (rad) in each exercise was calculated: the video game exercise 

(2.12±0.38—2.89±0.46), the tracking exercise (1.51±0.03—2.86±0.06), the traditional 

exercise (1.90±0.12—3.03±0.07).  

As shown in Figure 3.15, average hand velocity (236±12mm/s) in the traditional exercise was 

bigger than the video game exercise (77±25mm/s) and the tracking exercise (54±14mm/s) for 

all subjects. Post hoc analysis of the average motion range and average hand velocity both 

showed significant differences in these three exercises.  

 

Figure 3.15 Average hand velocity in different exercises for one participant 

Table 3.7 Results from the questionnaires and analyzing facial expressions 

Engaging 
methods 

Score of 
engagement 

in the 
motor 
aspect 

Score of 
engagement 

in the 
perceptive 

aspect 

Score of 
engagement 

in the 
cognitive 

aspect 

Score of 
engagement 

in the 
emotional 

aspect 

Total score 
of the 

questionnaire 

Mean 
duration 

in 
engaged 

level 

Video 
game 

exercise 
0.51±1.68 1.55±1.37 1.32±1.22 1.88±1.38 3.98±1.2 175±32/s 

Tracking 
exercise 

-0.87±1.64 -0.45±1.48 -1.08±1.29 0.11±1.17 -2.64±1.8 85±30/s 

Traditional 
exercise 

-1.37±1.62 -1.96±1.21 -1.83±1.47 -1.77±1.32 -6.28±2.1 46±17/s 



77 

Table 3.7 concluded results from the questionnaires and facial expressions, and Table 3.8 

concluded the parameters of factors in each exercise. 

Post hoc analysis of the score in the motor aspect showed significant differences between the 

video game exercise (0.51±1.68) and the tracking exercise (-0.87±1.64) (P=0.001), between 

the video game exercise and the traditional exercise (-1.37±1.62) (P=0.0003), but there is no 

significant different between the traditional exercise and the tracking exercise. Therefore, we 

could conclude that versatility of the motion influences the engagement in the motor aspect 

more than elbow range and hand velocity. Post hoc analysis of the score in perceptive, 

cognitive, and emotional aspects also showed significant differences between the video game 

exercise and the other two exercises. Therefore, we could conclude that the factors in the 

perceptive, cognitive, and emotional aspect influence the engagement in the related aspect of 

engagement score.  

3.4.3 Analysis of EMG and motion characteristics in different engagement 
levels 

In order to identify a quantitative indicator to represent engagement, this section analyzed 

EMG data in different engagement levels to understand the relationship between engagement 

and muscle activities. In the tracking exercise, same movement was selected from each 

engagement level, which was completing one circle. Although the tracking task required large 

portion of shoulder and elbow movements, we argue that it also required fine wrist and hand 

movement when the subjects were engaged in the task and dedicated to move as accurate as 

possible to track the given circle. Then, hand velocity and tracking accuracy in each level 

were calculated and analyzed. 

In Figure 3.16, post hoc analysis of the average distance also showed significant differences 

between the engaged level (9±2.3mm) and the normal level (18±4.4mm) (P=0.006), between 

the normal level and the bored level (25±4.9mm) (P=0.01) and between the engaged level and 

Table 3.8 Parameters of factors in each exercise 

Engaging 
methods 

Versatility 
of motion 

Elbow 
range 
(rad) 

Hand 
velocity 
(mm/s) 

Versatility 
of feedback 

Cognitive 
tasks 

Competitiveness/
challenge 

Video 
game 

exercise 
Random 

2.12±0.38
—

2.89±0.46 
77±25 

Interaction 
with video 

game 

Attention 
and problem 

solving 

Play against the 
computer 

Tracking 
exercise 

Regular 
1.51±0.03

—
2.86±0.06 

54±14 
Continuous 

visual 
feedback 

Attention 
and 

adjustment 

Track more 
precisely 

Traditiona
l exercise 

Regular 
1.90±0.12

—
3.03±0.07 

236±12 
Discontinu
ous visual 
feedback 

Attention No 
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the bored level 

(P=0.0007). In Figure 

3.17, post hoc analysis 

of the average hand 

velocity showed 

significant differences 

between the engaged 

level (36±7.9mm/s) 

and the normal level 

(54±6.3mm/s) 

(P=0.01), between the 

normal level and the 

bored level 

(66±11.4mm/s) 

(P=0.008) and between 

the engaged level and 

the bored level 

(P=0.0004). This may 

due to when the subjects were concentrating on the exercise, they tracked the circle more 

carefully with more accurate but slower movements.  

Then, normalized RMS of EMG were analyzed and compared in different engagement levels. 

In Figure 3.18, according 

to the results of this 

participant, the average 

of normalized EMG in 

the engaged level was 

bigger than the other two 

levels, which meant that 

the muscle activity in the 

engaged level was more 

intense than the other 

two. Then the mean 

normalized RMS in each 

engagement level of all 

subjects was calculated. 

In Figure 3.19, in the 

box, the central line was 

the median, the circle 

 

Figure 3.16 Average distance from the handle grip to the circle in 
different engagement levels for one participant 

 

Figure 3.17 Average hand velocity in different engagement 
levels for one participant 
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was the mean, and the edges of the box were the 25th and 75th percentiles.  

Extensor cr: extensor carpi radialis longus; flexor cr: flexor carpi radialis; first dorsal i: first 

dorsal interosseous; extensor d: extensor digitorum. 

Post hoc analysis of the normalized RMS for the extensor carpi radialis longus showed 

significant differences between the engaged level and the normal level (P=0.001), between the 

normal level and the bored level (P=0.04), and between the engaged level and the bored level 

(P=4 10 ). Similarly, significant differences were found in the normalized RMS of flexor 

 

Figure 3.18 RMS of EMG in different engagement levels for one participant 

 

Figure 3.19 Boxplot of the normalized RMS for the four muscles in different engagement 
levels 
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carpi radialis between the engaged level and the normal level (P=0.002), between the normal 

level and the bored level (P=0.0001), and between the engaged level and the bored level 

(P=2 10 ). No significant differences were found in the normalized RMS of first dorsal 

interosseous between the engaged level and the normal level, and between the normal level 

and the bored level, while it revealed significant differences between the engaged level and 

the bored level (P=0.01). For the extensor digitorum, no significant differences were found 

between the three levels in the normalized RMS. The results indicated that the muscle 

activities in extensor carpi radialis longus and flexor carpi radialis were more intense when 

people were engaged. But the results of first dorsal interosseous and extensor digitorum did 

not show that. This could be due to the fact that the movement of tracking the circle did not 

involve the recruitments of these two muscles, which meant that there was little finger motion 

during the tracking exercise.  

3.5 Discussion of findings 

3.5.1 Parameters of factors 

The results have shown that the three exercises engaged the subjects for different amount of 

time, which could due to the differences in the parameters of factors each exercise addressed. 

Specifically, with regards to the versatility of motion, in the video game exercises, the 

subjects had to move the shoulder and elbow randomly and use different grasping gestures on 

the user interface according to the game tasks, while in the tracking exercise and traditional 

exercise, the movements were the same and mundane. The result indicated that adaptive 

movements according to the game tasks could have a positive effect on engagement.  

As for the versatility of the feedback, the video game exercise can provide human computer 

interaction thereby giving the subjects a feeling of presence. During the tracking exercise, the 

screen provided continuous feedback, showing the distance between the circle on the screen 

and the handle grip. The traditional exercise only involved discontinuous feedbacks. Since the 

traditional exercise engaged the subjects the shortest, we can infer that engagement induced 

by discontinuous feedback is insufficient.  

Regarding cognitive tasks, we found that when the subjects were playing against the 

computer, they had to understand the feedback and then respond. During the tracking 

exercise, since they were required to track the circle precisely, the subjects should adjust their 

movements according to the distance between the target positions and the real positions. 

These two exercises required continuous attention and synchronizing motor coordination. The 

traditional exercise, on the other hand, did not require a deeper understanding of the tasks, and 

the task itself can quickly become routine, which could also lead to the shortest time in the 

engaged level. 
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As for the competitiveness in the emotional aspect, both the video game and tracking 

exercises involved more competitive or challenge elements compared to the traditional 

exercise. Another interesting result was that the level of engagement always decreased as the 

exercise proceeded, which meant that the subjects were interested in exercise that was new to 

them. As they became more familiar with the exercise, they seemed to lose interest, even in 

the video game exercise. But the video game exercise and the tracking exercise can provide 

the subjects with certain level of challenge, which meant something new to them. That was 

also the reason that these two exercises could engage the subjects for a longer time than the 

traditional exercise which cannot provide challenge. Therefore, in order to maintain a high 

level of engagement during rehabilitation exercises, interventions should be provided when 

the exercise becomes too familiar to the subjects.  

3.5.2 Personalized stimulations, and relationship between engagement and 
muscle activities 

It can be noticed that there was relative big standard deviation in each average measurement, 

which indicated that different factors have different effects on different subjects. Therefore, 

interventions are supposed to be personalized according to the subjects’ capabilities, because 

either too easy or too hard tasks cannot engage the subjects. This implicates that system 

adaptability is required to deliver suitable exercise to different stroke survivors, or to the same 

stroke patients but at different stages of recovery. 

Normalized EMG showed that muscle activities were more intense when the subjects were 

engaged than the other two levels. The relationship between engagement and muscle activities 

could make it possible to evaluate the engagement level during training exercise. As discussed 

above, the subjects tend to be less engaged when they take the exercise as routine. Therefore, 

the system could measure muscle activities of the subjects in order to monitor the engagement 

level.  

3.6 Conclusion  

Based on the results from the experimental investigation and together with findings from 

Chapter 2, it can be concluded that: 

 Gamification is not enough for maintaining engagement. When the subjects are two 

familiar with the exercise, the engagement decreases. Therefore, the identified stimulation 

strategies in Chapter 2 can be applied as interventions to maintain and enhance 

engagement during rehabilitation exercises.   

 As found in Chapter 2, personalized treatment is needed to engage the patients. Results of 

this experiment have also shown that different factors, such as increasing versatility of 

movements, providing continuous feedback, involving cognitive tasks, introducing 

competiveness or challenge in the training tasks, and introducing challenges in both motor 
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and cognitive aspects, have different effects on different subjects. For stroke patients, 

parameters of the factors have to be tailored according to their interests and capabilities. 

Therefore, personalized stimulation strategies are needed to enhance engagement of the 

stroke patients during rehabilitation training exercises. 

 A major limitation in this field is that there is no quantitative method to evaluate 

engagement. In this experiment, based on the relationship between engagement level and 

muscle activity, normalized EMG can be used as the indicator to represent engagement 

level of the muscle activities during rehabilitation exercise. This enables the rehabilitation 

system can monitor the status of the subjects and apply the interventions when the 

engagement level decreases. 
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CHAPTER FOUR 

RESEARCH CYCLE 3:  

Conceptualization of a cyber-physical engagement 
enhancing system 

4.1 Overview of current cyber-physical engagement enhancing 
solutions 

4.1.1 Objective of this chapter 

The objective of this chapter is to propose a concept for a cyber-physical stroke rehabilitation 

system (CP-SRS) with the aim of enhancing engagement. According to the findings of the 

experiment discussed in Chapter 3, even the most engaging methods, such as gamification, 

need to cope with the decrease of engagement as the users get familiar or bored with the 

game. We argued that the engagement of patients can be maintained by a continuous 

monitoring of the engagement level and introducing personalized stimulation strategies during 

rehabilitation exercises. Based on the affordances of CPSs identified in Chapter 2, a multi-

sensor network can be integrated into the enabling system and the integrated sensors can 

monitor the indicators that represent the engagement of the patients. The learning capability 

of a CPS makes it possible for the system to accomplish this problem automatically based on 

the obtained knowledge. This affordance can help the rehabilitation system to implement 

personalized training by applying treatment that has been proven suitable and effective for the 

patient.  

One of the current limitations is that most of the tools developed to evaluate and measure 

engagement are subjective and qualitative in rehabilitation. Kortte et al. (2007) developed an 

engagement rating scale, which took rehabilitation engagement, therapy absences, functional 

status, emotional functioning, affective state, level of functioning and denial into 

consideration. The engagement of the same patients could be different according to different 

therapists, which leads to inaccurate qualitative assessment. Without an accurate assessment, 

the effectiveness of the engagement enhancing methods cannot be objectively validated. In 

other therapeutic fields, such as education, researchers have been making effort to evaluate 
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engagement quantitatively. Several studies evaluated student’s engagement using postures 

(D’Mello et al., 2007) and (Sanghvi et al., 2011), body motion (Sanghvi et al., 2011), or log 

files in e-learning system (Cocea and Weibelzahl, 2007). Szafir and Mutlu (2012). developed 

an adaptive agent that monitors the cognitive engagement of students and improves their 

engagement during learning. They used EEG to quantitatively represent the engagement level 

of students. Although this method is very promising in education, engagement evaluation 

depends on context, so evaluation of rehabilitation engagement should consider indicators in 

the rehabilitation context. 

In this chapter we will present the concept of our engagement model, which consist of a set of 

indicators for measuring the engagement level of users during rehabilitation. In Chapter 3, we 

found a relationship between the engagement level and normalized EMG, i.e. the root mean 

square of EMG divided by the velocity of movement. In our engagement model, the 

normalized EMG will be used as the indicator to represent engagement in the motor aspect. 

Since the influencing factors for therapeutic engagement can be categorized into the four 

aspects, namely motor, perceptive, cognitive, and emotional, we need a more comprehensive 

characterization of the engagement that monitors not only the engagement in the motor 

aspect, but also in the cognitive, perceptive and emotional aspects. In this chapter, we will 

introduce and explain the specific indicators that have been hypothesized to be able to reliably 

represent the engagement of the participant, and discuss the concept of a cyber-physical smart 

rehabilitation system (CP-SRS) that is able to monitor the identified indicators for evaluating 

engagement, apply personalized stimulation strategies and learn the effect of stimulation 

strategies on the individuals. 

4.1.2 Methodological framing of this research cycle 

Design inclusive research was applied in this research cycle to frame the methodological 

approach and the concept development procedure. This includes an explorative phase, a 

constructive phase, and a confirmative phase as specified in (Horváth, 2013). In the phase of 

explorative research actions, the current limitations and the explored opportunities identified 

in the previous chapters were converted into technical requirements for the cyber-physical 

augmentation. In the phase of creative (design) actions, the concept of cyber-physical 

augmentation was developed in order to enhance the engagement during rehabilitation 

training exercise. In the phase of confirmative research actions, a computer simulation was 

used to validate the feasibility of the concept. The next section introduces the concept of the 

CP-SRS. The proposed CP-SRS builds on the concept of an existing upper limb rehabilitation 

robot system integrated with video games. The cyber physical augmentation is added to the 

system with the aim of eliminating the identified limitation above in order to enhance the 

engagement during the training exercises. 
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4.2 Concept of the cyber-physical engagement enhancing 
rehabilitation system 

The CP-SRS is a modularly architected system. It is composed of five subsystems, namely, (i) 

an assistive robotic subsystem, (ii) a gamification subsystem, (iii) an engagement monitoring 

subsystem, (iv) a smart learning mechanism (SLM), and (v) an engagement enhancement 

subsystem (EES) (Figure 4.1). Specifically, the assistive robotic subsystem supports the 

stroke survivors during exercises of rehabilitation program in order to compensate for deficits 

in their motor function disability. Gamification subsystem integrates video games with the 

training exercises and enables human computer interaction. However, as we found in the 

previous chapter, even the most engaging exercises integrated with video games should count 

on the decrease of engagement as the users get too familiar with the game or lost their interest 

in it. We again argue that the engagement of patients can be maintained by a continuous 

monitoring of the engagement level and introducing interventions during rehabilitation 

exercises. Therefore, the main function of the cyber-physical augmentation of the physical 

system is to enhance the patient’s engagement by introducing personalized interventions 

according to the observations in engagement monitoring. To determine when to introduce the 

interventions, we used the EMS to monitor the patient’s engagement level. 

Basically, when the patient’s engagement level decreases, the system is supposed to introduce 

interventions. Based on the 

interventions the system is 

able to re-engage the 

patients and to maintain a 

high level of engagement 

of the patient. The 

interventions are identified 

as stimulation strategies in 

motor, perceptive, 

cognitive, and emotional 

aspects, which are able to 

re-engage the patient. The 

EES applies the 

stimulation strategies, 

which are a combination of 

stimulations, by adjusting 

a bundle of parameters of 

the training exercises. 

There are several 

stimulations in each 

 

Figure 4.1 Overall concept of cyber-physical stroke 
rehabilitation system 
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aspect. Since personalized stimulation is needed, the most suitable stimulation strategy is 

personalized depending on the patient and the situation. In order to determine which 

stimulation strategy is the most suitable to be applied in the case of a specific patient, the 

SLM should be capable to make personalized suggestions on the stimulations to be applied, 

based on effects of different stimulation strategies on different patients the SLM has learned 

in previous cases.  

This chapter will focus on identifying the indicators for engagement and conceptualizing the 

SLM to make suggestions on the most suitable stimulation strategies to engage the patient. In 

order to provide personalized stimulations, one of the main constituents of this system is the 

SLM, which is able to suggest the most suitable stimulation strategies for different patients to 

increase the efficiency of rehabilitation exercises. The underpinning strategy considers motor, 

perceptive, cognitive and emotional aspects of engagement. As a reasoning engine of the CP-

SRS, the proposed SLM is able to learn the effects of the stimulation strategies on the actual 

engagement level. The operation flow of how this subsystem works is shown in Figure 4.2. 

First, the system monitors the patient’s engagement level and represents his/her engagement 

level in four aspects, which will be discussed in detail later. If there is a decrease in the 

engagement level, the system applies stimulation strategies in order to enhance the 

engagement of the patient. Then the SLM will learn the relationship between the stimulations 

and changes of the engagement level. In the next stage, when the system detects the 

engagement level decrease, the SLM can act as an artificial expert to suggest the most suitable 

stimulation strategies. The stimulation strategies are reflected and realized by adjusting the 

setup and parameters of the therapeutic exercise. After each exercise, the system evaluates the 

efficacy of the stimulation strategies and refines the model of the SLM in order to update the 

patterns of the relationship between the stimulation strategy parameters and their effect on the 

engagement aspect. 

 

Figure 4.2 Engagement evaluation and SLM 
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4.3 Specific indicators for engagement monitored in the EMS 

4.3.1 Motor engagement  

Motor engagement (E ) is defined as a state in which the patient moves with active and 

effortful motion. EMG signal represents electrical potential produced by skeletal muscles 

when they are neurologically activated, which indicates the motor control of the person. In 

Chapter 3, we found that the normalized EMG was bigger in an engaged state, which means 

more intense muscle activity was identified, compared to a normal or unengaged state. The 

normalized EMG can be used as the indicator to represent the motor engagement according to 

the following definition.  

E =         (1) 

4.3.2 Perceptive engagement 

Perceptive engagement (PE) is defined as task oriented attentive use of the sensory system of 

the human body, such as visual, auditory and tactile. For monitoring the visual system, eye 

tracking has been widely used as a method to evaluate user’s attention and concentration. 

Researchers have used several measures to evaluate the engagement, including the number of 

eye fixations (Kallinen et al., 2007, Renshaw et al., 2009) and gaze time outside the screen 

(Kallinen et al., 2007). These measures, however, do not provide accurate information about 

the decay of attention, when the person is staring at the screen, but do not process 

information. Li et al. (2014) Proposed to use eye movement speed, eye movement total 

displacement, and validity of eye data as the indicator to represent concentration. They 

demonstrated that it is possible to reliable quantify the involvement of rehabilitation patients 

in therapeutic exercises. However, we argue that their method is limited to measure 

engagement only after the therapeutic exercise is completed, and these parameters are not 

suitable for measuring engagement during therapy. When the user is interacting with 

therapeutic game, the gaze will follow the content changes on the screen.  

Although the user may sometimes look at the display unit for an overall overview, the most of 

the time, the focus of the his/her gaze should be on either the system cursor or the changing 

content elements of the game. This happens because the content change usually demonstrates 

the tasks to the patient, and the system cursor indicates what the patient controls to complete 

the tasks. For some games, there may be secondary content changes. For instance, as 

illustrated in this ice hockey game (Figure 4.3), the goal and the opponent’s bat are the 

secondary changes, which splits visual attention of the user only for a short time. To complete 

the tasks, the gaze should be mainly concentrated on either of these two locations on the 

screen. When the patient’s attention is decaying, the patient will lose track of the cursor and 

the content changes on the screen. Therefore, the perceptive engagement is evaluated by 

analyzing the position of user’s gaze (PG), the position of the system cursor (PSC), and the 
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position of the content change (PCC)in the video game. The advantage of this method is that 

this indicator can represent the reaction time of the user responding to the game tasks. In 

addition, this method can show the perceptive engagement of the user in real time and it is 

independent of the game content. Therefore, the distance between PG and PCC, and the 

distance between PG and PSC are calculated for the evaluation of the level of perceptive 

engagement. Let  be the distance between PG and PCC, and  the distance between the 

PG and PSC. The visual engagement is defined as the sum of  and . Figure 4.3 shows 

an example of ice hockey game to illustrate the method of the evaluation of visual 

engagement. On the right, the main content changes can be detected using ScreenCapture 

tool1 in MATALB. 

E 		 	   (2) 

4.3.3 Cognitive engagement 

Cognitive engagement (CE) is considered to be proportioned with the level of concentration 

during the execution of cognitive tasks. The electroencephalography a method to monitor the 

electrical activity of the brain. It is a noninvasive method that measures electrical potential on 

the surface of the scalp, arising from large areas of coordinated neural activity. The neural 

activity varies as a function of development, mental state, and cognitive activity, and the EEG 

signal can detect such variation.  

Several studies have been conducted to investigate user’s engagement and cognitive workload 

using EEG signals. These studies aimed to use EEG as measures of engagement, mental 

workload and attention (Kramer et al. 1996; Parasuraman, 2003). The EEG variables used to 

monitor engagement includes decreased alpha signal, increased beta signal, increased theta 

and their ratios such as beta/alpha plus theta and alpha plus theta/beta. In addition, the event 

                                                           
1 http://nl.mathworks.com/matlabcentral/fileexchange/24323-screencapture-get-a-screen-capture-of-a-figure-frame-or-
component 

 

Figure 4.3 Positions of the elements in an ice-hockey game 
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related potential of EEG such as the N100 and P300 components have been employed to 

assess cognitive tasks and engagement (Kramer, 1996). ERPs, however, have several short 

comings in assessing cognitive tasks and engagement in naturalistic setups, as they require the 

introduction of stimuli with precise time tracking, which is expected to generate specific brain 

response from the user. In a naturalistic setup, such as a rehabilitation exercise, it is not 

possible to control the stimuli nor it is doable to precisely interpret stimuli of game elements 

with state of the art technologies. Building on the conventional methods of engagement 

evaluation, Stevens et al. (2007) have applied a commercial wireless EEG sensor headset and 

B-Alert system to analyze the EEG data from six channels to represent cognitive workload 

and engagement in acquiring problem solving skills. Berka et al. applied a four-class 

quadratic discriminant function analysis using absolute and relative power spectra variables 

from two EEG channels to analyze engagement in vigilance, learning, and memory tasks 

(Berka et al., 2007). Galán and Beal used Theta, Alpha, Beta and Sigma wave signals 

(ranging from 3 Hz to 40 Hz) to indicate engagement (Galán & Beal, 2012) during solving 

mathematical problems. They have used SVM to make predictions of the expected 

performance students based on the engagement and workload indicators of EEG signals, 

difficulty level of the exercise and student profile. They have presented promising results 

towards implementing and intelligent teaching environment capable to adapt to the 

personalized needs of students. Mostow et al. used the average value of each standard 

frequency band to indicate the engagement level of each participant (Mostow et al, 2011). 

They also identified which EEG components appear sensitive to which lexical features. They 

found a strong relationship in children between a word’s age-of-acquisition and activity in the 

Gamma frequency band (30-100 Hz). The most widely used method was proposed by Pope et 

al. (1995), which offered the following formula for calculating a signal, E , based on the α, β 

and θ waves that are highly correlated with participant’s cognitive engagement. This formula 

has been widely used by researchers in analyzing task engagement [Brookhuis & De Waard, 

1993, Mikulka et al., 2002, Freeman et al., 2004, Szafir & Mutlu, 2012]. These EEG 

measurements are gathered from the frontal lobe which is known to manage attention, mental 

states and motor planning. FP1 region of the cortex which is known to manage learning, 

mental states and concentration (e.g., Gevins et al., 1998, Gentili et al., 2010 and Girouard et 

al., 2013). Therefore, we will use this following model for calculating cognitive engagement 

E .  

E =   (3) 

4.3.4 Emotional engagement 

Research has shown that positive emotion is associated with gains in functional status post-

stroke (Ostir et al., 2008). Therefore, the goal of the therapeutic exercise is to arouse the 

positive emotion of the patient. Emotional engagement E  is defined as emotional 
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involvement during the exercise. If the exercise can influence the patient’s emotion, it means 

that the patient is emotionally engaged. If the patient is emotionally engaged, the dominant 

emotion will change due to different events of the game. Therefore, we define the indicator 

for emotional engagement as the ratio of time duration of dominant positive emotions and the 

time duration dominant negative emotions.   

E = /  (4) 

4.4 Smart learning mechanism 

4.4.1 Stimulation strategies 

Stimulation is needed when there is a decay of the engagement. As discussed in Chapter 2, 

stimulations have been categorized into four groups: motor, perception, cognitive and 

emotional stimulation. For instance, in the case motor stimulation is to be introduced, 

meaningful changes in the exercises should result in a more intensive involvement of motor 

functions of the patient. An exercise which exceeds the patient’s capability is not a 

meaningful challenge. Consequently, a meaningful motor stimulation does not necessarily 

mean a higher difficulty level of the task, but it is the difficulty level that the patient can 

handle with effort. To characterize the patient’s capabilities, a user profile recording their 

medical status (e.g. Fugl Meyer Assessment, Functional Independence Measurement, and 

Wolf Motion Function Test) can be used. These three assessments can show the patient’s 

motor and cognitive abilities, which can indicate the most appropriate difficult level for the 

patient. In a typical robot assisted rehabilitation systems, four parameters of the motor 

stimulation (MP (i), i=1-4) can be defined and adjusted for a gamified therapeutic exercise, 

namely, (i) the assisting force of the robotic arm, (ii) the size of moving space, (iii) the 

required force exerted by the patient, and (iv) the required time to complete game task.  

With regards to the perceptive stimulation, the system can adjust the visual, auditory and 

tactile feedback to increase the patient’s sensory attention. For instance, parameters (PP (i), 

i=1-3), such as the resolution of the screen, the volume of the auditory feedback, and the 

intensity of the vibration can be adjusted respectively. In cognitive stimulations, three types of 

cognitive tasks are addressed by therapeutic exercises, that are training (i) the working 

memory, (ii) reasoning ability, and (iii) mental processing speed. Recalling a series of 

locations of items on the screen can be used to train working memory, in which the amount of 

items (CP (1)) can be adjusted. The difficulty level of the numerical reasoning task (CP (2)) 

can be adjusted to train reasoning ability. Exercises like identifying the same pictures in 

required time (CP (3)) can be used to train the processing speed. As for the emotional 

stimulations, integrating competition and cooperation features in the exercises can be used to 

influence the patient’s positive emotion level. In the competition games the difficulty level 

(EP (1)) can be adjusted. In the cooperation games, the patient can communicate with other 
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patients or physical therapist to complete game tasks together. The system can assign different 

part of the cooperation task (EP (2)) to the patients to stimulate them.  

Stimulation strategy is defined as a combination of stimulations in the four aspects. 

Symbolically, 

stimulation	strategy ∑ ∑ ∑
∑ , , , , 	 0	 	1  (5) 

When the stimulations are needed, the system applies a stimulation strategy by adjusting a 

bundle of parameters in the game exercise. 

The concrete manifestation of stimulations and how they can be addressed by the parameters 

in the game exercises are listed in Table 4.1. Motor stimulations and perceptive stimulations 

Table 4.1 Kinds of stimulations to maintain engagement  

Stimulations Adjustable items Game exercises 
Parameters in the game 

exercise 

Introducing 
motor 

challenge 

Assistance level Any game exercise 
Assisting force by the 

robotic arms 

Range of motion Any game exercise 
Size of the moving 

space 

Required force by 
the fingers 

Any game exercise 
Threshold of the force 

sensor on the user 
interface 

Movement velocity Any game exercise Time to complete tasks 

Adjusting 
sensory 

feedback 

Visual feedback Any game exercise 
Resolution of the 

screen 

Auditory feedback Any game exercise 
Volume of the auditory 

feedback 

Tactile feedback Any game exercise 
Intensity and 

magnitude of the 
vibration feedback 

Introducing 
cognitive 
challenge 

Working memory 
task 

Recalling a series of 
locations of items on the 

screen 
Amount of items 

Reasoning task 
Numerical reasoning 

task 
Difficulty level 

Processing speed 
task 

Identifying same 
pictures in required time

Required time 

Involving 
competition 

and 
cooperation 

features 

Competition 
Competing against 

opponent in the game 
Difficulty level 

Cooperation 
Cooperating with others 

in the game 
Different tasks assigned
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are realized through user interface, so they can be applied in any game exercise.  

4.4.2 Reasoning model of the smart learning mechanism 

The objective of the SLM is to make suggestions on the most suitable stimulation strategies 

based on patterns of the effects of the stimulation strategies on the engagement levels. We 

argue that supervised learning is more suitable for this purpose than unsupervised machine 

learning.  Though unsupervised learning may be considered to explore hidden structure in the 

data on the relationship of stimulations and their effect on engagement. However, since this 

data can be clearly labelled by the parameters of the input (i.e. change of the engagement 

levels) and output (i.e. stimulations and their parameters), supervised learning is preferred to 

be used in our smart learning mechanism. Supervised learning methods, such as the error 

back-propagation supervised learning algorithm are very efficient for many non- linear real 

time problems, which makes them suitable to classify the effect of stimulation strategies and 

make personalized recommendations for to simulate patients The system offering this learning 

capability should be able to reason about stimulation strategies, and match them to the case at 

hand. Further details on the system and implementation aspects will be given in the next 

section. 

In order to learn the effects of stimulation strategies, in the first stage, the system applies pre-

programmed stimulation strategies, and the changes of engagement level are recorded. Then, 

in the next stage, these known effects are used to train the learning mechanism. In the third 

stage, the system uses the trained learning mechanism to make suggestions on stimulations to 

apply. In the last stage, the new effects of the stimulation strategies are used to refine the 

trained learning mechanism.  

The learning mechanism has two possible operation modes, which are (i) regression and (ii) 

classification. In classification, inputs are divided into two or more classes, and the learner 

must produce a model that assigns unseen inputs to one or more of these classes. In 

regression, the outputs are continuous rather than discrete. In this mode, the learning 

mechanism learns the relationship between the dependent variables (which are the changes of 

the parameters in the game exercise) and the independent variables (which are the changes in 

the engagement level). Then, the trained learning mechanism is used to predict the changes of 

the parameters according to the changes in the engagement level. While in classification 

mode, stimulation strategies are sorted as different classes. Each class represents a 

combination of different stimulations. The learning mechanism learns the relationships 

between the changes of engagement levels and the applied different stimulation strategies. 

Afterwards, the trained learning mechanism is used to predict suitable combination of 

stimulations in different situations (e.g. particular pattern of decrease in the engagement level, 

or specific profile of the patient). Based on the prediction of the SLM, the parameters of the 

game exercise are adjusted.  



93 

In the first stage, the program uses a direct mapping to apply stimulation strategies, which 

means stimulations are applied according to which engagement level decreases. The 

parameters in the game exercise are adjusted according to the stimulation strategies. After the 

parameters are adjusted, the patient has to deal with the new changes in the game exercise. It 

may involve: (i) change of the difficulty level of the motor tasks, (ii) change in the patient’s 

sensory feedback, (iii) different cognitive tasks, or (iv) change in the competition or 

cooperation feature in the game exercise. These changes have the potential to stimulate and 

re-engage the patient, which result in a change in the engagement levels. Therefore, after the 

stimulations are applied, the changes in the engagement levels are recorded as the effects of 

the stimulation strategies.  

In the next stage, the data collected from the first stage are used to train the learning 

mechanism. As shown in Figure 4.4, the inputs of the learning mechanism are the patient’s 

profile and the changes of engagement level. The outputs of the learning mechanism are 

different in regression mode or classification mode. In regression mode, the outputs are the 

changes of the parameters. While in classification mode, the outputs are a combination of 

stimulations. The reason to learn the patient’s profile is that when another patient with similar 

profile uses the system, the learning mechanism can recommend the most suitable stimulation 

strategies, which have been proven to be effective with other patients. For a patient with the 

 

Figure 4.4 The reasoning scheme of the SLM 
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same patient’s profile, the outputs of the learning mechanism mainly depend on the changes 

in terms of the target engagement level.  

In the third stage, the target and the patient’s profile are inputted to the learning mechanism to 

make recommendations for the most suitable stimulation strategies. The target is set by the 

system with the objective of increasing that aspect(s) of engagement level which are 

decreasing. The learning mechanism is expected to make decision on the changes of the 

parameters or the combination of stimulations. After the stimulations are applied, the real 

changes of the engagement level are recorded. The real changes and the applied stimulation 

strategies are used as one more case to train the learning mechanism. This way, the learning 

mechanism can learn the relationship of the input and the output in more cases, so that it can 

be more accurate to suggest the most suitable stimulations to apply.  

4.5 Form of realization of the smart learning mechanism 

As described above, the two possible operation modes, i.e., regression and classification, can 

be realized by using different methods. Artificial neural networks (ANN) have been widely 

used in fitting regression and recognizing patterns. In the current literature, a number of 

quantitative models including multilayer perceptron neural networks (MLPNNs), combined 

neural networks (CNNs), mixture of experts (MEs), modified mixture of experts (MMEs), 

probabilistic neural networks (PNNs), recurrent neural networks (RNNs), and support vector 

machines (SVMs) are being used in disease diagnosis cases to assist human decision makers 

(e.g., Kordylewski et al., 2001, Kwak and Choi, 2002 and Übeyli, 2009a). MLPNNs are the 

most commonly used feed-forward neural networks due to their fast operation, ease of 

implementation, and smaller training set requirements (e.g., Subasi, 2007, Kocyigit et al., 

 

Figure 4.5 Computational methods applied in the learning mechanism 
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2008 and Übeyli, 2009b). Therefore, we have decided to apply MLPNN in both regression 

and classification modes. It should be mentioned that there exist many other supervised 

learning algorithms that can be used for classification, such as the support vector machine, 

naive bayes, discriminant analysis, and nearest neighbor algorithms. Having compared their 

characteristics, we came to conclusion that naive bayes (NB) can be a good alternative 

algorithm for ANN. Naive bayes classifier normally uses less training data than other 

classifiers when accurate classification is required. Therefore, in addition to using MLPNN, 

we also explored the potential application of naive bayes (Figure 4.5).   

For regression with MLPNN, we used a two-layer-feed-forward network with sigmoid hidden 

neurons (10 neurons) and linear output neurons. It was trained with the most common 

Levenberg-Marquardt back-propagation algorithm, which is also more reliable in solving 

nonlinear inverse problems. The trained MLPNN learning mechanism was expected to fit the 

changes of parameters according to the inputs. For classification with MLPNN, we used a 

two-layer feed-forward network, with sigmoid hidden neurons (10 neurons) and softmax 

output neurons. This network was trained with scaled conjugate gradient back-propagation, 

which consumes less memory, because there are more classes of the stimulation strategies in 

the output. In this case, the trained learning mechanism was expected to classify the inputs 

into different classes, which are combinations of different stimulations. These two ANNs and 

the NB were all set up in MATLAB. Their accuracy were compared and evaluated in the next 

section. 

4.6 Validation of feasibility 

The feasibility of the proposed concept is investigated from two aspects. First the feasibility 

of measuring the proposed engagement indicators will be studied by exploring the 

requirements and identifying potential technologies capable to measure the parameters of the 

indicators. The second aspect of this feasibility study aims to explore which machine learning 

techniques could be used to capture the relationships between stimulation strategies and their 

effect on different aspects of engagement. The result of this feasibility study will provide a 

guideline to the technical implementation of the engagement enhancement rehabilitation 

system. 

4.6.1 Validation of the feasibility of the indicators 

Engagement by its nature is neither time triggered nor event triggered phenomenon. This 

means that it does not require strict time synchronization protocols that is typical for most 

cyber-physical systems. Changes in the engagement of the user during an exercise are not 

expected to happen as a sudden event or at a specific time, it is more likely to be a gradual 

process where decay in the intensity of the indicators represents the loss of engagement and 

motivation. Nevertheless, time based synchronization of signals and data is an issue, when 
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multiple devices are used to determine the indicators of engagement. Therefore, 

synchronization is an important aspect of the validation of the feasibility of indicators.  

1) Motor engagement indicator 

The indicator of motor engagement requires the measurement of EMG signal and the speed of 

motion of the upper limbs. The EMG potential of the electrical source of the muscle 

membrane is about –90 mV. EMG potentials range between 50 μV and up to 20 to 30 mV, 

depending on the muscle under observation. Typical repetition rate of muscle motor unit 

firing is about 7–20 Hz, depending on the size of the muscle (eye muscles versus seat (gluteal) 

muscles), previous axonal damage and other factors. Bio-signal measurement devices used in 

medical applications are able to measure 8-256 channels, with a sample rate of 2048-16384 

Hz, and total noise filtering of 0.8-2 μVRMS. These devices, however, have a cost price in the 

range of 2000-15000keuro, and they require professional knowledge for their setup. 

Commercial EMG devices, such as a MYO2 armband, has 8 channels to measure muscle 

activities of the lower or upper arm, with a sampling rate of 128 Hz. As in our indicator we 

are using the root mean square of the EMG signal, which has to be sampled at a minimum of 

32 samples per second (Florimond, 2009), 128Hz sample rate is expected to be accurate 

enough for monitoring motor engagement. 

In order to explore the requirement for measuring the velocity of the motion, i.e. the second 

parameter of motor engagement indicator, we have studied the paper of Rosen et al. (2005). 

They have measured the kinematics and dynamics of human motion during daily activities, 

including gross position actions (e.g. arm reach to head level), fine manipulation actions (e.g. 

moving an object at the waist level), and combined gross and fine manipulation (e.g. picking 

                                                           
2 https://www.myo.com/ 

Table 4.2 EMG devices and features 

Device Channels 
Sampling 

rate 
Range Kinematic sensing 

DELSYS 
Trigno Lab 

16 1926 Hz 40 meters Accelerometer 

NORAXON 
Desktop 
Direct 

Transmission 
System 

32 
1500/3000 

Hz 
30 meters  

BioRadio 8 
Up to 

16000 Hz 
10 meters  

BIOPAC 
Mobita 

32 
Up to 

2000 Hz 
10 meters Accelerometer 

MYO 
armband 

8 128 Hz 10 meters 
Accelerometer, 

magnetometer, gyroscope 
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up a phone on a wall). For gross activities, they found that the angular velocities of the arm 

joints are in the range of -10 to +10 degree/sec for the arm joints, up to 20 degree/sec for the 

elbow. The angular acceleration is in the range of -110 to +80 degree/sec2. For fine motor 

movement, the value of angular velocity is in the range -5 to +5 degrees/sec with a typical 

angular acceleration in the range of -70 to +70 degrees/sec2. Due to the large angular 

acceleration, the actual value of the angular velocities can only be approximated between two 

sample measurements when digital devices are used with a fixed sample rate. This means that 

measuring the actual values of the angular velocities is only possible if the sampling of the 

EMG signal and the arm movement velocity is absolutely synchronized and measured with 

the same sample rate. This implies that the proposed indicator cannot be used for measuring 

the instantaneous value of motor engagement. It is, however, can be used by using the moving 

average of the measured parameters. Since MYO is integrated with a 9 axis IMU, that can be 

used to measure the speed of motion of the body parts, where the arm band is placed. 

2) Perceptive engagement indicator 

The control mechanism of human’s visual attention focusses on perceiving meaningful 

elements of visual information and ignores others of low relevance. The spatial acuity of the 

eyes is only detailed in 2° region of the fovea, while the rest only produces a peripheral view 

with less details. To keep the image in focus the eyes move with a saccadic motions (10-

100ms) followed by a fixation of 200-300ms (Snowden et al. 2006). During the saccadic 

motion no visual information is perceived and cognitively processed (Duchowski 2003). 

Feasibility of measuring the perceptive engagement requires an analysis of the eye-tracking 

technologies and computer vision algorithms. To track the motion of the eyes, the spatial 

resolution of typical eye tracking technologies is determined by the degrees of accuracy by 

which the horizontal and vertical eye movements are measured. This typically is in the range 

of 0.5-1 degrees. It means that in a standard training setup with a screen size of 27” at a 

viewing distance of 60 cm, the accuracy of eye tracking is around 0.5cm or 16px for a Full 

HD screen. The temporal resolution of eye tracking technologies is also a relevant factor. It is 

determined by the sampling rate (i.e. in the range of 30-200Hz) and the latency (i.e. 20-50ms). 

This implies that eye tracking technologies can track fixations, but may miss rapid saccades 

(that are smaller than 30ms) of the eye movement. However, tracking of visual attention may 

reliably done by executing eye tracking. The EYETRIBE3 is then selected because it can meet 

the above requirements.  

The second parameter of the visual engagement indicator is the location of content change of 

in the screen, which supposed to attract the attention of the user. To track the changes of the 

screen content several computer vision algorithms can be considered, such as Continuously 

adaptive mean shift (CAMShift), Kanade-Lucas-Tomasi (KLT), or Kalman filtering. These 

                                                           
3 http://theeyetribe.com/ 
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algorithms provide a reliable solution for tracking object changes on the screen and making an 

estimation of expected changes of motion in real time. 

3) Cognitive engagement indicator 

The parameters of the cognitive engagement indicator, i.e. alpha and beta waves, can be 

measured by EEG that is capable to capture the electrical activity of the brain. EEG signal has 

to be sampled at a minimum of 128 samples per second, they are measured from peak to peak 

and normally range from 0.5 to 100 μV in amplitude (Teplan, 2002). The power spectrum of 

theta (4-8 Hz), alpha (8-12 Hz) and beta waves (12-30Hz) can be derived by applying Fourier 

transform on the raw EEG signal. Although the spectrum is continuous, ranging from 0 Hz up 

to one half of sampling frequency, the brain state of the individual may make certain 

frequencies more dominant.  

To measure cognitive engagement, Table 4.3 gives an overview of popular devices with 

various technical specifications. As opposed to event related potential analysis, power 

spectrum analysis does not have high demand on the spatial and temporal resolution as well as 

on the voltage resolution of the signal measured by EEG device. Since engagement is not 

event related, therefore, the temporal resolution is not a relevant factor of the measurement. 

As far as the spatial resolution is concerned, the frontal lobe can be measured by all devices 

listed in the Table 4.3. The voltage resolution represents the conversion of the analogue signal 

to digital data. Considering specs of the most cost effective solution for our research, the 

EMOTIV EPOC4, the error of the voltage resolution is 0.51 mV for the 16bit measurement. 

Within the expected range of measurements, the EPOC is expected to have 0.5% error. 

4) Emotional engagement indicator 

Tracking and monitoring the emotional engagement raises many challenges in terms of the 

feasibility of the proposed concept. Our concept aims to monitor facial expressions in order to 

track the emotions that are externalized by the user. Reliable monitoring of unexpressed 

emotions is not possible with facial tracking, but it is also difficult with other technologies 

                                                           
4 https://emotiv.com/ 

Table 4.3 EEG devices and features 

Device Channels Sampling rate Resolution 

Neuroscan SynAmps 
64,128, 
or 256 

20000 Hz 24 bit 

Neuroscan Siesta 32 1024 Hz 16 bit 
BIOPAC Mobita 32 2000 Hz 24 bit 

ENOBIO 32 32 500 Hz 24 bit 
Emotiv EPOC 14 128 Hz 14 bit 
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such as heart rate monitoring and galvanic skin response. Heart rate monitoring can detect 

decrease in heart rate (HR), which is typically associated to happiness, relaxation, boredom. 

Low heart rate variation (HRV) shows a relationship between anxiety, and emotional stress 

(Dishman, et al. 2000). Using heart rate as engagement indicator is difficult as both HR and 

HRV may be associated to both negative and positive emotions (e.g. boredom and happyness). 

Galvanic skin response has the same problem. Though there is a relationship between 

sympathetic activity and emotional arousal, one cannot identify the specific emotion being 

elicited. Fear, anger, startle response, orienting response and sexual feelings are all among the 

emotions which may produce similar GSR responses. 

Technologies for tracking the facial expressions during a training or gaming has become 

feasible due to the proliferation of computer vision algorithms and their applications, such as 

Insight5. These technologies are able to identify specific landmarks and features of the face, 

read micro-expressions in real time and predict components of emotions with probabilistic 

functions.  

4.6.2 Validation of the feasibility of the smart learning mechanism 

The computer simulations discussed in this section were conducted to explore the feasibility 

of the machine learning algorithms identified for implementing the SLM subsystem. This 

section will investigate the prediction performance of MLPNN for regression mode, MLPNN 

for classification mode, and NB for classification mode. At this stage of the research no real 

data was available to test the performance of these algorithms, therefore data were generated 

based on the following rules: i) different stimulations have different effects on engagement 

levels, thus generate different relationships between the inputs and outputs for different 

stimulations; ii) the effects of the same stimulation may vary for each individual case; 

therefore we introduced four kinds of weights, namely, large, middle, small and positive & 

negative weights to simulate different range of deviations by generating random numbers in 

different ranges; iii) stimulations applied towards a certain objective may also influence 

engagement levels in other aspects, for instance motor stimulation,  may positively or 

negatively affect cognitive engagement. 

Since the accuracy of learning mechanisms depends on the complexity and the sensitivity of 

the model it needs to learn and the deviations in the data, we compared the results from 

different learning mechanisms with different amounts of outputs and different ranges of 

variations in the data. For regression mode, we tested the learning mechanism with 4, 6 and 

12 outputs of parameters under different weights respectively, since there were 12 parameters 

to predict. While for classification mode, we tested the learning mechanism with 6 classes, 12 

                                                           
5 http://sightcorp.com/insight/ 
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classes, 24 classes and 48 classes under each weight, because each class represents 

combination of different stimulations. 

1) Learning mechanism for regression 

The factors influencing the learning have been defined for the use of MLPNN in regression 

mode as follows: 

patient s	profile changes	in	the	engagement	level	
→ 	 	 	 	 	parameters 

Table 4.4 Simulated data for regression  

Items Label Simulated data 

Patient’s profile 
PR1 Random (1-10) 

PR2 Random (1-10) 

Motor stimulations 

MP1: Assisting force by the 
robotic arms 

Random (1-5) 

MP2: Size of the moving space Random (1-5) 

MP3: Threshold of the force 
sensor on the user interface 

Random (1-5) 

MP4: Time to complete tasks Random (1-5) 

Perceptive 
stimulations 

PP1: Resolution of the screen Random (1-5) 

PP2: Volume of the auditory 
feedback 

Random (1-5) 

PP3: Intensity and magnitude 
of the vibration feedback 

Random (1-5) 

Cognitive 
stimulations 

CP1: Amount of items Random (1-5) 

CP2: Difficulty level  Random (1-5) 

CP3: Required time Random (1-5) 

Emotional 
stimulations 

EP1: Difficulty level Random (1-5) 

EP2: Different tasks assigned Random (1-5) 

Weights 

Large range Random (1-10) 

Middle range Random (5-10) 

Small range Random (7-10) 

Positive & negative Random (-5-5) 

Changes in the 
engagement level 

MC: changes in motor 
engagement 

MC PC, CC, EC PR1 PR2 ∙ ∑ ∙ ∙
∑ ∙ ∙ ∑ ∙ ∙

∑ ∙ ∙ 	  
(Note: a, b, c and d are constants in each 
function. If they are 0, it means certain 
stimulation does not influence certain 
engagement level. The symbol w represents 
weight.) 

PC 

CC 

EC 
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The inputs are the patient’s profile and changes in the engagement level. The outputs are the 

changes in the stimulation parameters. The amount of outputs represents the amount of 

stimulations. The goal is to investigate the sensitivity of the learning mechanism to the 

amount of outputs and the deviations. The simulated data are shown in Table 4.4. The data 

consist of 500 samples, for which the patient’s profiles were generated as random number 

from 1 to 10. The changes in the twelve parameters of the four aspects of stimulations were 

also generated as random numbers from 1 to 5. The large range weights were generated as 

random numbers from 1 to 10, representing a large deviation in the effects of the stimulation 

for different patients; middle range weights in the range of 5 to 10; small range of weights 

with values from 7 to 10; positive & negative weights from -5 to 5, which means certain 

stimulation may have positive effects for some patients, but negative effects for others. As for 

the changes in the engagement levels, we created different functions to calculate based on the 

patient’s profiles.  

The data presented in Table 4.4 were used to train three MLPNNs with 4 outputs, 6 outputs 

and 12 outputs. Early stopping was used to improve generalization of the MLPNN. The data 

were divided into three subsets. The first subset was the training set containing 70% of the 

data which were used to compute the gradient and update the network weights and biases. The 

second set was the validation set, which was comprised of 15% of the data. Increase in the 

error on the validation set triggers early stopping of the training process to avoid overfitting. 

The other 15% of the data were used to test the trained MLPNNs. The regression mode results 

are shown in Figure 4.6.  

 

Figure 4.6 Comparison of the regression mode results 
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The regression value R is an indication of the relationship between the outputs (calculated by 

the MLPNN) and the targets (expected outputs). If R = 100%, it indicates that there is an 

exactly linear relationship between the outputs and the targets. If R is close to zero, then there 

is no linear relationship between the outputs and the targets. Higher R means that the results 

of the MLPNN are more accurate. Therefore, in our case, when MLPNN with 4 outputs was 

used under the conditions of small and middle range, the accuracy was bigger than 70% that 

were reasonably reliable.  

2) Learning mechanism for classification 

The factors influencing the learning have been defined in classification mode as follows: 

patient s	profile changes	in	the	engagement	level	 → 	 	  

The rules for creating the simulated data were the same as in regression mode. Data related to 

this process are shown in Table 4.5. Patient’s profile and weights were also the same as in 

regression mode. Concerning the changes in the engagement levels, we generated similar 

functions as in the regression mode to calculate the changes based on the patient’s profiles 

and the weights. There were 480 samples of the data with 10 samples for each class. Exactly 

90% of the data were used to train the learning mechanism with either MLPNN or NB. The 

other 10% of the data (one sample in each class) were used to test the trained learning 

mechanism. In addition, we tested the learning mechanism with outputs of 6 classes, 12 

classes, 24 classes, and 48 classes respectively. The results generated by NB and MLPNN are 

shown in Figure 4.7 and 4.8. 

Table 4.5 Simulated data for classification 

Items Label Simulated data 

Patient’s profile 
PR1 Random (1-10) 

PR2 Random (1-10) 

Weights 

Large range Random (1-10) 

Middle range Random (5-10) 

Small range Random (7-10) 

Positive & negative Random (-5-5) 

Changes in the 
engagement 

level 

MC: changes in 
motor engagement 

MC PC, CC, EC ∙ ∙ 1 ∙ ∙ 2 c 
(Note: a, b and c are constants in each function, 
and  w represents weight.) 

PC 

CC 

EC 

Stimulation 
strategies 

Different classes S1, S2, S3…S6…S12…S24…S48 
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The classification with NB had a better performance than that with MLPNN mainly for two 

reasons. Primarily, as the number of outputs increase, the accuracy of the classification with 

MLPNN decreases. In contrast, the number of outputs does not have an obvious impact on the 

accuracy of the classification with NB. There was even an increase in the performance of NB 

with 48-outputs under the weights of small and middle range. More importantly, classification 

with NB was less sensitive to the deviation in the data. If the weights had negative deviations, 

the accuracy of 24-outputs and 48-outputs MLPNN were less than 10%, while the 

performances of all the NBs were more than 60% accurate.  

Figure 4.7 Comparison of the results of classification with MLPNN 

 

Figure 4.8 Comparison of the results of classification with NB 
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4.7 Discussion 

In this chapter, we have identified the indicators for motor, perceptive, cognitive, and 

emotional engagement. During the training exercise, these indicators will be monitored by the 

biosignal tracking devices, such as EMG device, eye tracking system, EEG device, and facial 

expression analyzing system. Before this system is implemented, the feasibility of measuring 

the engagement indicators and the expected performance of the smart learning mechanism has 

been investigated. Our feasibility study has shown that commercially available biosignal 

tracking devices have the needed technical specification to realize our concept for monitoring 

motor, perceptive, cognitive and emotional engagement. As far as the implementation of the 

learning mechanism is concerned, we have made a study with artificially generated data. 

Although the magnitude of the generated data are not the same as the real data, the 

relationships between the input data (i.e. patient’s profile and changes in the engagement 

level) and output data (i.e. changes in the stimulation strategies) are more important, which is 

what the proposed learning mechanism is expected to learn. A relative large variance in the 

simulated data has been introduced to simulate variances of the real data. The computer 

simulation showed that the three methods applied in the learning mechanism can learn the 

simulated relationships at different accuracy. High accuracy means that the implemented 

learning mechanism can make suggestions on the most suitable stimulation strategies with the 

objective to maintain the patient’s engagement during the training exercise. 

Results also showed that naïve bayes for classification is the most promising to be applied in 

our learning mechanism even when there are both positive and negative deviations of the 

stimulation strategies in different patients. MLPNN for classification mode may be also 

applicable if there are no negative deviations in the data. In addition, some stimulations 

strategies may have the same effect in increasing the engagement. If the SLM classifies 

certain case to a different class but with the same effect, it should not be considered as an 

inaccurate classification, because the output of this stimulation strategy can achieve the goal 

of increasing the engagement. Therefore, the performance of the SLM for classification may 

increase considering the context of increasing the engagement.   

However, MLPNN in regression mode had a relatively low accuracy in our study. This means 

that the suggested parameters of the exercise are different from expectations, which can cause 

problems in practice. For instance, the SLM may recommend parameters settings for an 

exercise difficulty, which may be too difficult for the patients. For this reason, we propose to 

use MLPNN in classification mode for these cases. The output of classification is the 

suggested combination of different stimulations, but no specific parameter settings are 

recommended. Knowledge of the most suitable combination of stimulations can be used by 

physical therapists set the proper settings of the game exercise or it can be implemented in a 

form of a combinatorial recommender mechanism that maps stimulation combinations to 

parameter settings.  



105 

4.8 Conclusions 

This chapter proposed a method to capture and evaluate the actual engagement levels of the 

patient during training exercise by analyzing the indicators identified in different aspects. It 

presented a smart learning mechanism (SLM) that is able to learn the effects of the 

stimulation strategies which can maintain the engagement. The objective of the SLM is to 

make recommendations on the most suitable stimulation strategies to be apply during training 

exercises. A computer simulation has been conducted to validate the feasibility of the 

proposed learning mechanism. As the results demonstrated, classification mode is more 

suitable than regression mode for recommending stimulation strategies for individual patients. 

Naive Bayes (NB) enabled learning mechanism in classification mode performed better than 

the multilayer perceptron neural network (MLPNN), for the reasons that NB was less 

sensitive to the deviations in the inputs. NB’s accuracy did not decrease as the amount of 

outputs increased. We concluded from this study that learning mechanism with NB are 

expected to classify the changes of engagement levels to classes defined as combinations of 

different stimulations. This means the proposed system can make accurate recommendations 

on the stimulations strategies to be applied. MLPNN in classification mode could be 

applicable if there are no negative deviations in the inputs. These two machine learning 

algorithms will be compared with real data in coming experiments.  

In the next chapters, the implementation and prototyping of the proposed system is reported, 

and its testing in pre-medical experiments. The objective of these experiments is to validate 

the concept from three aspects: i) to prove if the identified indicators can represent the real 

engagement; ii) to validate the effectiveness of the stimulation strategies i.e. they are able to 

increase engagement; iii) to test the accuracy of the recommendations made by the SLM for 

the most suitable stimulation strategies. 
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 CHAPTER FIVE 

RESEARCH CYCLE 4: 

Implementation in a cyber-physical system framework 

5.1 Objective of the prototype development 

Research cycle 4 concentrated on the implementation of the cyber-physical augmentation part 

of the CP-SRS in the form of a testable prototype. This chapter discusses the related work, the 

manifestation of the prototype, and the results of its testing. Cyber-physical augmentation part 

of the CP-SRS consists of: (i) an engagement monitoring subsystem (EMS), (ii) a smart 

learning mechanism (SLM), and (iii) an engagement enhancement subsystem (EES) (Figure 

4.1). In section 5.2, the architecture of the cyber-physical augmentation part of the CP-SRS is 

introduced. Section 5.3 discusses the operation flow. Section 5.4 provides technical 

information about the implementation of the EMS as a testable prototype. Section 5.5 presents 

the actions of validation of the functionality of the EMS and the results. Finally, Section 5.6 

discusses the findings and concludes. 

The main function of the cyber-physical augmentation part of the system is to enhance the 

patient’s engagement by introducing interventions during rehabilitation exercises. In order to 

be able to determine when to introduce the interventions, the EMS should monitor patient’s 

engagement level. Basically, when the patient’s engagement level decreases, the system 

introduces interventions. This is reasoned out based on the engagement indicators. Therefore, 

the reliability of the indicators was an important concern. Different experiments have been 

designed to validate the effect of the four engagement indicators and the operation of the EMS 

as a whole. 

5.2 Architecture of the CP-SRS 

The cyber-physical augmentation part of the CP-SRS integrates the EMS, SLM, and EES 

subsystems. The EMS includes engagement monitoring devices and the related engagement 

analysis software. The SLM mainly consists of the learning mechanism, which is 

implemented in MATLAB. According to the concept introduced in Chapter 4, the inputs of 
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the SLM are the personal profile and the engagement changes. The output of the SLM is the 

most suitable simulation strategies according to the learned content. Based on the suggestion 

from the SLM, the parameters of the exercise are changed by the EES. 

The architecture of this cyber-physical augmentation part is shown in Figure 5.1. The 

architecture is arranged in four layers of hardware, software, cyberware, and service 

components. The lowest level includes commercialized hardware components capable to 

monitor the activities and physiological properties of the patients. In addition to operational 

reliability, the basic requirement for selecting these monitoring devices was that they should 

not distract the patients during the rehabilitation exercise. It means that the devices should be 

wireless and easy to wear. The devices should also be of low-cost to make them generally 

acceptable. According to these principles, the MYO, Eyetribe, Emotiv Epoc devices, and a 

sophisticated web-camera were selected to monitor the patient’s muscle activities, eye 

movement, brain activities, and facial expressions of emotion, respectively. The technical 

specifications are presented in Table 5.1. 

 

Figure 5.1 System architecture of the cyber-physical augmentation in the CP-SRS 
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The next level is the software layer, which includes third party software SDKs provided with 

the commercial hardware components, converts the measured signals into a time stamped data 

stream. The data is streamed via TCP/IP from Visual Studio and Processing to MATLAB that 

processes the data and interprets them as the actual engagement levels. The cyberware layer 

consists of the engagement profile, personal profile, stimulation strategies, and the learned 

content in the leaning mechanism. The fourth layer, includes the outcome of the cyber 

physical augmentation part of the CP-SRS, and is able to make suggestions on the suitable 

stimulation strategies to apply based on the learned content. 

The cyber augmentation is also integrated with the rehabilitation robot. It provides a dynamic 

Table 5.1 Technical specifications of the monitoring devices 

Monitoring devices Technical specifications 

MYO 

 

 8 medical grade stainless steel EMG sensors 
 Bluetooth 
 Sampling rate: 128 Hz 
 Cost: 199$ 

Eyetribe 

 

 Infrared sensor 
 Sampling rate: 30-75 Hz 
 Accuracy: 0.5: 30 
 Latency:<16ms 
 Operating range: 45cm-75cm 
 Tracking area: 50cm 30cm at 65cm distance 
 Cost: 129$ 

Emotiv Epoc 

 

 14 EEG channels (10-20 electrode location), 
 2 references in P3/P4 locations 
 Bluetooth 
 Sampling rate: 128 Hz 
 Cost: 699$ 

Insight 
 Translate movements of facial muscles into universal 

facial expressions. Requirements: 
 Intel Core 2 Duo 2.0GHZ or better 
 2GB RAM 
 640×480 resolution webcam  
 Distance of user from the camera is appr. 60 cm  
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control for this part, and adjusts the physical parameters of the robot assisted training, such as 

the assisting force from the robotic arm, threshold of the force sensor on the user interface, 

size of the moving space, and so on, in accordance with the applied stimulation strategies. 

Based on this dynamic setting, the robot subsystem adjusts the exercises and assists the 

patient accordingly. 

5.3 Operation flow 

As shown in Figure 5.2, the operation flow of the proposed cyber augmentation system 

comprises four groups of operations. These are: (i) preparation, (ii) monitoring, (iii) 

suggesting stimulation, and (iv) applying stimulation. During the preparation operations, the 

physical therapist assists the patient in (i) putting on, (ii) starting, and (iii) calibrating the 

devices, as well as (iv) starting the monitoring program to record the patient’s status.  

There is a calibration process completed, by which the patient’s engagement level is 

calibrated before the exercise. Multiple approaches can be applied to calibrate the 

measurement of indicators for each aspect of the engagement. Calibration for maximum 

engagement aims to create situations, in which one or more patient’s functions (i.e. motor, 

perceptive, cognitive, and emotional) are fully engaged. The maximum values of 

Figure 5.2 The four operational stages included in the operation flow 
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engagements are then used as the goal of therapeutic exercises, and interventions/stimulations 

are introduced when large deviations from this goal is measured. Another approach that is 

applied as an alternative is calibration against the regression functions of motor, perceptive, 

cognitive and emotional engagements. In this approach, it is assumed that there is a 

characteristic relationship between the indicator of the engagement and the engagement itself. 

Having multiple measured points explored in the calibration process about the engagement, 

the regression function is approximated. During the calibration process, the patient is required 

to complete a several tasks that tend to be boring, or engaging from the aspects of motor, 

perceptive, cognitive, and emotional aspects, respectively. The result of the calibration is 

recorded in the patient’s engagement profile for each of the four aforementioned aspects. 

These calibrated values are then used as a threshold value to evaluate the patient’s 

engagement levels during the exercises and as relative response to different stimulation 

strategies.  

In the monitoring phase the patient’s engagement levels are tracked during the therapeutic 

exercises. The measured signals are filtered, processed and interpreted as engagement levels 

according to the indicators introduced in Chapter 4. Details of the filtering, signal processing 

and engagement interpretation methods are reported in Sub-sections 5.4.2 -5.4.6. The signal 

and data processing unit calculates the mean of the engagement is using a simple moving 

average, in which 10 seconds of previous data is used in the calculation. The mean of the 

engagement is displayed in a diagram implemented in MATLAB, as well as it is used the 

basis for making a decision about the introduction of stimulation strategies. If the mean 

engagement level decreases in any aspects, the trained learning mechanism recommends the 

stimulations.  

In the phase of suggesting stimulation strategies, two parallel processes are implemented that 

are running parallel. The first process is a reasoning mechanism that aims to identify the most 

appropriate stimulation strategy for increasing engagement. The second process aims to refine 

the knowledge captured by the learning mechanism by retraining with extending and 

resampling the data. As it was introduced in the previous chapter, the learning mechanism 

were realized using naive bayes or neural network. To implement NB based learning 

mechanism the following steps have been applied: 1) converting the data set into a frequency 

table, which aims to represent the parameters of the patient profile and the changes of 

engagement 2) create likelihood table by finding the probabilities of different kinds of 

stimulations based on the input, i.e. the patient profile/change of engagement, and 3) applying 

Naive Bayesian equation to calculate the posterior probability for each class of stimulation 

strategies. The class with the highest posterior probability is the outcome of prediction. The 

neural network based classification are trained with the same input and outputs, and then 

makes suggestions based on the new input.  
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In the last phase, the stimulations are applied and the patient continues with the adjusted game 

exercise. The game exercise should be involved with either motor tasks or cognitive tasks or 

both tasks, depending on the goal of the training. Then the parameters of the games can be 

adjusted according to the suggested stimulation strategies, such as the assisting force from the 

robotic arm, size of the moving space, difficulty of the cognitive tasks and so on. 

Additionally, after the stimulations are applied, the effectiveness of the stimulation, or the 

actual changes in the engagement level, is evaluated and used to refine the learning 

mechanism to make it more accurate. Moreover, when a new patient begins to use this 

system, the learning mechanism can also give recommendations of the exercise to take based 

on the knowledge it has learned. 

5.4 Implementation of the EMS 

5.4.1 Overview of the EMS 

As shown in the sequence diagram of the EMS (Figure 5.3), the system reads data from five 

sources, namely, EEG signals from Emotiv Epoc, emotion by analyzing the facial 

expressions, EMG signals from MYO, eye movement from Eyetribe, and content changes on 

 

Figure 5.3 Data sources and the monitored variables for evaluating engagement  



115 

the screen. This data is streamed to MATLAB in parallel. The MATLAB program then 

interprets these data into engagement according to the equations (1) -(4) demonstrated in the 

following subsections. The mean engagement levels are calculated in every 10 seconds, the 

results are displayed.  

Figure 5.4 shows the variables and their sources for calculating the engagement level in the 

four aspects. The data are stored in an array which contain the information needed to interpret 

 

Figure 5.4 Sequence diagram of the EMS  
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the engagement and the unix timestamp of the system to synchronize the streams of data. 

Details about processing each variable are discussed in the following subsections.  

5.4.2 Motor engagement monitoring 

As we discussed in Chapter 4, we used the normalized EMG as the indicator for evaluating 

motor engagement.  

E 	 	  (1) 

MYO armband (Thalmic Labs) consists of eight EMG sensing modules that can be strapped 

onto user’s forearm. These EMG signals can be interpreted as different hand gestures that can 

be translated into various types of computerized input via Bluetooth. There is also a 

combination of a gyroscope, an accelerometer, and a magnetometer to detect the arm motion.  

We used MYO as a low-cost, wireless, and easy-to-use device to monitor the muscle activities 

on the upper arm. MYO was put on the subject’s upper arm, with one EMG sensor right on 

the bicep. Visual Studio 2013 was used to read the data from MYO and stream the data to 

MATLAB via TCP/IP in real time. The data consisted of EMG signal and the corresponding 

time. The sample rate was 200Hz. The EMG signals were filtered using a bandpass filter (20 

Hz - 500 Hz). Maximum voluntary contraction (MVC) was used to normalize the data (Vera-

Garcia et al., 2010). Before the experiment, each participant was required to do isometric 

contractions of the biceps brachii for three times. The maximum values of each repetition are 

averaged to compute the MVC. The data acquired from the experiment was compared to the 

MVC and were rescaled to percentage of the MVC. In MATLAB, these data were used to 

calculate RMS. 

As for the velocity of movement, the moving speed of the cursor was applied as the velocity 

of movement, since the movement of the cursor reflected the patient’s movement. The 

positions of the cursor were read in Processing together with the unix timestamp of the system 

time. Then these data were streamed to MATLAB via TCP/IP. In MATLAB, the velocity of 

the movement was estimated by dividing the distance between two cursors by the time 

interval of one second. 

5.4.3 Perceptive engagement monitoring 

Perceptive engagement (E ) is evaluated by analyzing patient’s gaze (PG), the position of the 

system cursor (PSC), and the position of the content change (PCC) in the video game. PG was 

monitored by the Eyetribe. PCC was identified by comparing the screen contents at different 

times. PSC was read in Processing program. Let  be the distance between PG and PCC, 

and  the distance between the PG and PSC. If there were multiple content changes, then 

 was the average distance between PG and multiple PCCs. The system evaluated the visual 

engagement by comparing the sum of  and .  
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E 		 	  (2) 

In this case, the cursor was always one of the content changes in the screen. Therefore, we can 

only use  to represent the perceptive engagement. This distance is also an indicator of the 

reaction time of the patient. If the distance becomes bigger, it means that the patient becomes 

slower in reacting to the game tasks. The Eyetribe was used to monitor the position of gaze on 

the display unit. It relies on infrared illumination and uses advanced mathematical models to 

determine the point of gaze. The sample rate was 30 Hz. We used Processing to read the eye 

tracking data and PSC. The data also contained system time in the unit of unix timestamp. 

These data were streamed to MATLAB via TCP/IP.  

In MATLAB, example of Motion-Based Multiple Object Tracking6 was used to detect the 

moving objects in a video. The input video was made by capturing the area of the game on the 

screen using ScreenCapture tool7. The unix timestamp of the system time was also read in 

MATLAB with screen changes. Then the two timestamps read from MATLAB and 

Processing were used to synchronize these two signals so that  can be calculated.  

5.4.4 Cognitive engagement monitoring 

Cognitive engagement (E ) is considered to be proportional to the level of concentration 

performing cognitive tasks.  

E =  (3) 

Emotiv EPOC, a headset with 14 nodes, was used to monitor the EEG signal. The EEG 

measurements were gathered from AF3, AF4, F3, F4, FC5, and FC6 on the frontal lobe which is 

known to manage attention, mental states and motor planning. The sampling rate was 128 Hz. 

Similar to MYO, Visual Studio 2010 was used to read the data from the headset and streamed 

and stored in MATLAB. We adopted the processing method from Freeman's study [28]. The 

power spectrum was calculated using a fast Fourier transformation. Bandwidth powers  of α 

(8-12Hz), β (13-30Hz), and θ (4-7Hz) were calculated by combining the bin powers in these 

three bandwidths. Then bandwidth powers were divided by total power (0-80Hz) to produce 

percent power. E  was first computed over a 20-s period and then updated every 2s using a 

moving 20-s window.  

5.4.5 Emotional engagement monitoring 

The indicator for emotional engagement (E ) is the ratio between time duration when positive 

emotion is dominant and the time duration when negative emotion is dominant.  

E = /  (4) 

                                                           
6 http://nl.mathworks.com/help/vision/examples/motion-based-multiple-object-tracking.html 
7 http://nl.mathworks.com/matlabcentral/fileexchange/24323-screencapture-get-a-screen-capture-of-a-figure-frame-or-
component 
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In our system, the emotion is monitored by Insight, which is one software that can measure 

the user’s emotion based on facial expression and produces the likelihoods of the emotion in 

seven categories, namely, neutral, happiness, surprise, anger, disgust, fear, and sadness. 

Insight was run in Visual Studio 2010. So we used the same method as with MYO to send the 

results of Insight to MATLAB via TCP/IP.  

5.4.6 Test setup of the EMS 

Due to the computation capacity of a regular computer, two computers were used for 

implementing the prototype. Basic information of these two computers was shown in 

Table.5.2. As you can see in Figure.5.5, computer #1 ran the game, and Eyetribe, and 

MATLAB in its background. We selected several games from the Internet, with focuses on 

motor training and cognitive training. All the games were played with mouse in computer #1. 

Chrome was used for running the game. MATLAB interpreted the perceptive engagement 

level based on the measurement of the gaze from Processing and the measurement of screen 

 

Figure 5.5 Overview of the prototype 

Table 5.2 Properties of two computers used in the prototype 

Computer Operation 
system 

Processor Installed 
memory(RAM)

System type Monitor 
type 

Computer 
#1 

Windows 7 
Enterprise 

Inter(R) 
Core(TM) i7-

2770 CPU 
@3.40GHz 

16GB 64-bit HP 
LP2475w 

Computer 
#2 

Windows 7 
Ultimate 

Inter(R) 
Core(TM) i5-
2520M CPU 
@2.50GHz 

3GB 64-bit Thinkpad 
Display 
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changes. 

Computer #2 ran MATLAB, MYO, Insight, and Emotiv Epoc. The data from these three 

sources were streamed to MATLAB via TCP/IP from Visual Studio. The program in 

MATLAB interpreted these data as motor engagement, cognitive engagement, and emotional 

engagement. Together with the data sent from MATLAB in computer #1 via TCP/IP, the 

MATLAB program in computer #2 were able to represent all the four levels of engagement in 

real time. 

5.5 Validation of the functionality of the EMS 

5.5.1 Objective  

In this pre-medical experiments, the goal was to characterize the range and accuracy of the 

engagement indicators by influencing the subjects into different engaged states. The reliability 

of the indicators was an important issue. We expected that healthy subjects may provide a 

more consistent sample set, which allows us to see if the selected indicators of engagement 

can be used. Five healthy subjects were recruited in four experiments, which were designed 

and conducted to individually validate system modules of motor, perceptive, cognitive and 

emotional engagement monitoring. Different setups were created to mimic the situations in 

which the subject was in engaged, unengaged, or neutral engagement state. The prediction of 

the measurement in each setup is demonstrated in Figure 5.6. Our assumption was the 

measurement of the indicator for the motor and cognitive engagement would be higher and 

the measurement of the indicator for perceptive engagement would be lower in the engaged 

state than that in the neutral and the bored state. Due to the small sampling, Friedman Test, 

 

Figure 5.6 Prediction of the measurement in different setups 
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non-parametric method of analysis, was applied in each experiment to see if the results were 

consistent for all the subjects. 

5.5.2 Experiment to validate indicator of motor engagement 

1) Design of the experiment 

The objective of this experiment was to validate the indicator for motor engagement, which 

was correlated with RMS of EMG divided by the velocity of the movement. We investigated 

and compared the measurements of the indicator in the created engaged and unengaged state. 

When the subjects were making the movement with attention and effort, the level of their 

motor engagement was supposed to be higher. Therefore, in the experiment mimicking the 

engaged state, the subjects were required to follow a strict accuracy requirement that needed 

the subject’s attention. Whereas in 

the created unengaged state, instead 

of making active movement, the 

subjects were passively moved by 

the experimenter. We also 

investigated the influence of 

velocity of the movement by 

requiring the subjects to move at 

different speeds.  

In this experiment, the exercise was 

displayed on the screen for the 

subjects (Figure 5.7). All the five 

subjects were required to use their 

right arm to do different exercises, 

in which they controlled the computer mouse to drag the 

object (the small solid circle) to track the given circle. 

During each exercise, MYO armband was put on the 

middle of the upper right arm of the subject to measure 

the EMG signals. There were three variables in different 

exercises (Table 5.3). The first one was accuracy 

requirement. In the exercise requiring accuracy, the 

subject had to move the solid circle in the area between 

two given circles. The second one was speed 

requirement. The subject was required to move at three 

speeds respectively. At high speed, the subject had to 

complete each circle in about 3 seconds, while at 

medium and low speed, the time of completing a circle 

 

Figure 5.7 The picture for the motor exercises 
displayed on the screen 

 

Figure 5.8 The equipment used in 
the passive exercises  
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was 5 seconds and 

10 seconds 

respectively. The 

speed was 

controlled by the 

subjects. The third 

variable was the 

type of movement, 

active or passive. In 

the active 

movement, the 

subject moved 

voluntarily, while in passive movement, the subject was moved by the experimenter to move 

using the equipment shown in Figure 5.8. The subject put their right hand on one of the 

handles, and the experimenter grasped the other handle to drive the subjects to complete the 

exercise. The mouse in the middle of the equipment was also controlled by the experimenter 

by another hand.  

In the exercise with accuracy constraints, the subject was required to move the solid circle in 

the area between two given circles without speed requirement. In the second to fourth 

exercise, the subject was required to move the solid circle to track the big circle at high speed, 

medium speed and low speed respectively but without accuracy constraints. In the fifth to 

seventh exercise, the experimenter drove the subject to track a big circle at three speeds 

without accuracy requirement. Each exercise lasted one minute. The order of the exercise was 

random for different subjects. 

2) Results 

The mean of RMS of EMG and the velocity of the movement were calculated in every 

second. The typical patterns of the indicator of motor engagement, that is the RMS of the 

EMG signal divided by velocity, in all the seven exercises are shown in Figure 5.9. Boxplot of 

the measurement of all the subjects in different setups was shown in Figure 5.10. In the box, 

the central line is the median, the circle is the mean, and the edges of the box are the 25th and 

75th percentiles.  

A Friedman Test was conducted to test for differences between different setups. There was a 

statistically significant difference in the measured indicator depending on different setups, 

χ2(2) = 19.736, p = 0.003. Post hoc analysis with Wilcoxon signed-rank tests was conducted 

with a Bonferroni correction applied. Due to the reason that Bonferroni corrections are overly 

conservative, only one comparison between the active exercise with accuracy requirement and 

active exercise with a high speed. Post hoc analysis showed there was a significant difference 

Table 5.3 Independent variables in the exercises for validating motor 
engagement 

Exercises Accuracy Speed Type of 
movement

Exercise 1 Accurate No requirement Active 
Exercise 2 No requirement 3 seconds to complete Active 
Exercise 3 No requirement 5 seconds to complete Active 
Exercise 4 No requirement 10 seconds to complete Active 
Exercise 5 No requirement 3 seconds to complete Passive 
Exercise 6 No requirement 5 seconds to complete Passive 
Exercise 7 No requirement 10 seconds to complete Passive 
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in the measurement between these two exercises (Z=-2.023, p=0.043). Median (IQR) motor 

engagement for the exercise with accuracy requirement, the exercise with active movement at 

a high speed, the exercise with active movement at a medium speed, the exercise with active 

movement at a low speed, the exercise with passive movement at a high speed, the exercise 

with passive movement at a medium speed, the exercise with passive movement at a high 

speed, were 0.23 (0.14 to 0.3), 0.08 (0.035 to 0.12), 0.07 (0.045 to 0.1), 0.08 (0.06 to 0. 125), 

0.03 (0.015 to 0.07), 0.06 (0.03 to 0.085), and 0.03 (0.02 to 0.085), respectively. 

The sensitivity and the specificity of the indicator for motor engagement were also analyzed. 

Two data sets from exercise 1 and exercise 7 were used. When the measurement of one 

subject in exercise 1 was the biggest among the seven setups, it was recognized as a true 

positive; when the measurement of one subject in exercise 7 was the smallest among the 

seven setups, it was recognized as a true negative. The analysis showed that the sensitivity 

was 100% and the specificity was 86.7%, which means the indicator was able to distinguish 

the motorly engaged and unengaged setups. 

Figure 5.9 Typical pattern of the motor indicator in different exercises 
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5.5.3 Experiment to validate indicator of perceptive engagement 

1) Design of the experiment 

The objective of this experiment was to validate the indicator for perceptive engagement, 

which was characterized by the distance between the focus of the subject’s gaze and the 

content changes on the screen. According to the definition of the perceptive engagement, 

when the subject was following the content changes on the screen, he/she was regarded to be 

engaged perceptively. Therefore, in the simulated engaged state, the subject was required to 

follow the content changes all the time. While in the simulated unengaged state, the subject 

was asked to get fixated on non-changed part of the screen. 

In this experiment, the picture for the exercise was shown on the screen (Figure 5.11). During 

each exercise, the first object was always moving in the given circle on the screen. The 

subjects were required to look at the first object and follow its location until the second object 

appeared on the screen. Then the subjects were asked to look at the second object until it 

disappeared from the screen. The second object stayed at the same position during its 

appearance. A controlled 

time of appearance was 

used as independent 

variable of this experiment. 

When the second object 

appeared for a short time 

(i.e. 1 second) it was 

Table 5.4 Independent variables in the exercises for 
validating perceptive engagement 

Exercises Duration of the second object on display
Exercise 1 1 second 
Exercise 2 3 seconds 
Exercise 3 5 seconds 
Exercise 4 9 seconds 

 

Figure 5.10 Boxplot of the measurement of all the subjects in different setups 
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regarded as a screen 

change by comparing the 

two frames of the screen in 

MATLAB. When it 

appeared on the screen for 

longer time (e.g. more than 

3 seconds), it was not 

considered as a screen 

change, but as a loss of 

attention. The gaze of the 

subjects was monitored by 

Eyetribe, which was put in 

front of the subject. The 

Eyetribe was calibrated for the subject before the exercise. 

There were four exercises in this experiment. Each exercise lasted one minute. The order of 

the exercise was random for different subjects. In the first exercise, the second object stayed 

on the display for one second, and the interval between its appearances was 9 seconds. In the 

second exercise, the second object stayed on the display for 3 seconds, and the interval was 7 

seconds. In the third and fourth exercise, the second object stayed on the screen for 5 seconds 

and 9 seconds respectively, and the interval was 5 seconds and 1 second respectively. 

Therefore, in the first exercise, the subjects had full perceptive engagement, and the indicator 

for perceptive engagement was expected to increase in the other exercises.  

2) Results 

The mean of the distance between the subject’s gaze and the screen changes was analyzed in 

every second. Typical patterns of the indicator in different exercises were shown in Figure 

5.12.  

In the typical patterns, we can see that in the first exercise, since the subject was perceptively 

engaged all the time, the distance was between 1cm and 6cm in the whole exercise. While in 

the second setup, when the second object stayed longer at the same position on the screen, the 

subject got fixated on the non-changed content. As the first object moved while the subjects 

were fixated, the distance between the focus of the subjects’ gaze and the location of the first 

object has increased in the corresponding time period. As the second object appeared longer 

in the third and fourth exercises, the distance remained high for a longer duration. 

Boxplot of the measurement of all the subjects in different setups was shown in Figure 5.13. 

In the box, the central line is the median, the circle is the mean, and the edges of the box are 

the 25th and 75th percentiles. 

Figure 5.11 The picture for the perceptive exercise 
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A Friedman Test showed that there was a statistically significant difference in the measured 

indicator depending on different setups, χ2(3) = 15.00, p = 0.002. Post hoc analysis with 

Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied. Similar as in 

the analysis above, only one comparison between exercise 1 and exercise 2 was conducted. 

Result showed a significant difference in the perceptive engagement between these two 

 

Figure 5.12 Typical patterns of the distance in different exercises 

 

Figure 5.13 Boxplot of the measurement of all subjects in different setups 
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exercises (Z=2.023, p=0.043). Median (IQR) perceptive engagement for exercise 1, exercise 

2, exercise 3, exercise 4, were 3.14 (2.87 to 3.71), 6.23 (5.93 to 7.18), 8.65 (7.54 to 9.00), and 

16.91 (17.26 to 18.98), respectively. Separate Wilcoxon signed-rank tests were conducted as 

the Post Hoc Tests. However, no significant differences were found between different setups.  

The sensitivity and the specificity of the indicator for perceptive engagement were analyzed. 

Two data sets from exercise 1 and exercise 4 were used. When the measurement of one 

subject in exercise 1 was the biggest among the four setups, it was recognized as a true 

positive; when the measurement of one subject in exercise 4 was the smallest among the four 

setups, it was recognized as a true negative. The analysis showed that the sensitivity was 

100% and the specificity was 100%, which means the indicator was able to distinguish the 

perceptively engaged and unengaged setups. 

5.5.4 Experiment to validate indicator of cognitive engagement  

1) Design of the experiment 

The objective of this experiment was to validate the indicator of cognitive engagement, which 

was defined in formula (3). Our assumption was that when the subject is doing the cognitive 

tasks intensively with effort, the indicator for the cognitive engagement is higher. Therefore, 

in the artificially created cognitively engaged state, the subject was involved with challenging 

cognitive tasks. While in the artificially created unengaged state, the subject was involved 

with less intensive and less challenging cognitive tasks.  

In the experiment of cognitive engagement, all the 5 subjects were asked to play a cognitive 

game, Corsi block task (Figure 5.14), in which the subjects were required to remember order 

of the blocks that got marked, then used the computer mouse to click them in the same order. 

There were two independent variables in different exercises. The first one was difficulty of 

the cognitive tasks. The 

second one was the intensity 

of the cognitive tasks.  

In the first exercise, the 

subjects were required to 

complete 10 challenging 

tasks. During the first 

exercise, the subject can only 

play the next level with more 

blocks to remember, if he/she 

completed two tasks at the 

current difficulty level. The 

cognitive task was always 

challenging for the subject in 

 

Figure 5.14 Corsi block task 
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this way. When the subject 

completed 10 tasks, the 

exercise stopped. While in 

the second exercise, the 

subject was required to 

play 10 tasks at the easiest 

level (3 blocks to 

remember) during 2 minutes. In the third and fourth exercise, the subject was required to 

complete 5 and 1 task at the easiest level respectively during 2 minutes. After the subject 

completed the task in the second to the fourth exercise, in the rest of the time, the subject was 

asked to move the mouse between different blocks, but without doing any cognitive tasks. 

The aim of this requirement was to make the subject to make similar movement during each 

exercise to eliminate the influence of the movement on the measurement. The order of the 

exercises was random for different subjects. 

2) Results 

The results were analyzed from the 6 locations, AF3, AF4, F3, F4, FC5, and FC6. We found that 

there was a clear tendency in the data from AF3 to represent cognitive engagement of the 

subjects, but no clear tendency in the data from the other five locations. So the results 

analyzed from the data of AF3 were presented below. Typical patterns of E  were shown in 

Figure 5.15. Boxplot of the measurement of all the subjects in different setups was shown in 

 

Figure 5.15 Typical patterns of RMS of E  

Table 5.5 Independent variables in the exercises for validating 
cognitive engagement 

Exercises Amount and difficulty of the cognitive tasks 
Exercise 1 10 challenging tasks 
Exercise 2 10 easy tasks 
Exercise 3 5 easy tasks 
Exercise 4 1 easy task 
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Figure 5.16. In the box, the central line is the median, the circle is the mean, and the edges of 

the box are the 25th and 75th percentiles. 

A Friedman Test showed that there was a statistically significant difference in the measured 

indicator depending on different setups, χ2(3) = 10.92, p = 0.012. Post hoc analysis with 

Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied. According to 

our hypotheses, two comparisons were conducted, between exercise 1 and exercise 2, and 

between exercise 2 and exercise 3, resulting in a significance level set at p < 0.025. However, 

no significant difference was found in these two pairs, between exercise 1 and exercise 2 (Z=-

1.214, p=0.225), between exercise 2 and exercise 3 (Z=-1.214, p=0.225). Median (IQR) 

perceptive engagement for exercise 1, exercise 2, exercise 3, exercise 4, were 1.56 (0.90 to 

2.21), 1.14 (0.47 to2.05), 1.06 (0.32 to 2.03), and 1.11 (0.16 to 1.72), respectively.  

The sensitivity and the specificity of the indicator for cognitive engagement were analyzed. 

Two data sets from exercise 1 and exercise 4 were used. When the measurement of one 

subject in exercise 1 was the biggest among the four setups, it was recognized as a true 

positive; when the measurement of one subject in exercise 4 was the smallest among the four 

setups, it was recognized as a true negative. The analysis showed that the sensitivity was 60% 

and the specificity was 80%, which means the indicator was able to distinguish the 

cognitively engaged and unengaged setups. 

 

 

Figure 5.16 Boxplot of the measurement for all the subjects in different setups  
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5.5.5 Experiment in emotional aspect 

1) Design of the experiment 

According to our definition of the 

emotional engagement, the subject is 

emotionally engaged when the 

rehabilitation exercise can influence 

the subject’s emotion. The indicator 

for emotional engagement was the 

ratio of the time duration when 

positive emotion (happiness and 

surprise) was dominant with the 

time duration when negative 

emotion (anger, disgust, fearful, and 

sad) was dominant. The objective of 

this experiment was to validate if the 

emotion analyzed by Insight can 

reliably measure the subject’s 

emotion. If the emotions analyzed 

by Insight can match the emotions 

indicated by the subject, it can be 

inferred that the indicator for 

emotional engagement will be 

measured correctly using Insight. To 

achieve the objective, the subjects 

were required to complete a 

questionnaire in which they had to 

reflect their emotions in the given 

moments during each exercise. Then 

the emotions reflected by the 

subjects were compared to the 

emotions measured by Insight.  

During this experiment, each subject 

was required to play three online 

games (Figure 5.17). In Air hockey, 

the subjects had to play against the 

computer. They were expected to 

use the hockey stick (the one 

below), which was controlled by the 

 

 

Figure 5.17 Online games 
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mouse, to shoot the hockey in the opposite goal. The subjects were required to play the first 

two components in this game. In the game Connect, the subjects had to connect the same two 

objects with the mouse and finish in four minutes. In the Cooking game, the subjects were 

required to move the mouse to cook kebab according to the game instructions. The order of 

these three games were random for different subjects. These games were controlled by the 

mouse. During each game, the subject’s emotion was analyzed by Insight.  

After each game, the subject was required to fill in a questionnaire in Table.5.6. The 

questionnaire of each exercise was given to the subject separately after each exercise. In the 

questionnaire, the subject had to choose one of the emotions from a list of Emoji faces8, 

including neutral ( ), happy ( ), surprised ( ), anger ( ), disgust ( ), fearful ( ), sad (

), or other (named by the subject), at each given moment during the exercise, while the time 

of each moment was filled in by the experimenter. During the exercise, the experimenter 

recorded the time at each moment in the questionnaire. After the exercise, the emotion 

analyzed by Insight at each moment was identified, which was then used to be compared with 

the emotion reflected by the subject at the same moment. The result of one subject was shown 

in Table.5.6.  

 

                                                           
8 http://unicode.org/emoji/charts/full-emoji-list.html 

Table 5.6 Questionnaire----emotion at given moments during different game exercises 

Please fill in your emotion at each moment during the game you just played. You can choose 
one of the following emotions: neutral ( ), happy ( ), surprised ( ), anger ( ), disgust (
), fearful ( ), sad ( ), or other (name it). 

Air hockey Time 
(s) 

Connect Time 
(s) 

Cooking Time 
(s) Moments  Emotion  Moments  Emotion  Moments  Emotion  

Beginning Neutral 0 Beginning Neutral 0 Beginning Neutral  0 
Score first 

goal 
Surprised  19 Finding 

pairs fast 
Neutral 25 Slicing the 

meat 
Neutral 150 

Lose first 
goal 

Anger  12 Struggling 
finding 
pairs 

Anger 52 Finish 
slicing 

Happy 230 

Pass first 
level 

Happy  54 Computer 
gives you a 

hint 

Happy 86 Marinating 
the chicken 

Bored  320 

Score behind 
the 

component 

Fearful  65 One minute 
left 

Fearful 300 Finishing 
marinating 

the 
vegetables 

Bored 340 

Lose at a 
level (if any) 

Anger  103 Finished 
the task in 

time (if you 
did) 

No   Heating the 
kebab 

Bored 470 

End  Motivated 
to return 

120 Cannot 
finish in 

time 

Relaxed  360 End Relaxed 570 
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2) Results  

The mean of emotion measured by 

Insight was calculated in every second. 

The dominant emotion in each second, 

which means the highest value of the 

seven emotions at that moment, was 

identified. The analyzed dominant 

emotions of the same subject who 

filled in the questionnaire above were 

shown in Figure 5.18. Then these 

analyzed emotions were compared 

with the results of the questionnaires. 

We found that the overall accuracy of 

the emotions analyzed by Insight was 

56%. However, the accuracy was 68% 

for four subjects, who seemed to 

express their emotions explicitly. For 

the other subject, although he indicated 

in the questionnaire that his internal 

emotion changed during the games, 

neutral emotion was the dominant 

emotion for 86% of the time. 

Moreover, Insight was found to be 

more accurate in identifying happiness, 

with an accuracy of 82%, much higher 

than the negative emotions, such as 

anger, disgust, and fearful. It may 

because that the subjects tend to 

express positive emotion more easily 

and naturally than negative emotions.  

Then the proportion of the emotion at 

each moment was analyzed. The most 

dominant three emotions at each 

moment in each game were shown in 

Table 5.7. We found that although the 

dominant emotion identified by Insight 

was not the same as the emotion 

indicated by the subject at some 

 

 

 

Figure 5.18 Typical patterns of emotion analyzed 
by Insight in each game (From left to 
right: Air hockey, Connect, and 
Cooking) 



132 

moments, the emotion indicated by the subject exist in the most dominant three emotions at 

some moments, such as “lose at a level” in Air hockey, “one-minute left” in Connect, and 

“finish slicing” in Cooking. Using the most dominant three emotions identified by Insight was 

found to improve the accuracy to 89% in matching the emotion indicated by the subjects. 

Therefore, the most dominant three emotions can be used in analyzing the indicator for 

emotional engagement. The indicator for emotional engagement can be refined as:  

E =	
∗ ∗ ∗

∗ ∗ ∗
       (5) 

( : time duration when positive emotion is the dominant emotion, : time duration when 

positive emotion is the second emotion, : time duration when positive emotion is the third 

emotion; : time duration when negative emotion is the dominant emotion, : time 

duration when negative emotion is the second emotion, : time duration when negative 

emotion is the third emotion; , , and : weights are different for the top three emotions, 

here they are 0.5, 0.3, and 0.2 respectively. ) 

Table 5.7 Proportion of the components of emotion at each moment 

Air hockey 
Beginning neutral 33% fearful 62% surprised 1% 

Score first goal neutral 2% surprised 98% others 0% 
Lose first goal neutral 25% happy 49% surprised 9% 
Pass first level neutral 3% happy 94% others 3% 

Score behind the 
component 

neutral 21% surprised 36% fearful 41% 

Lose at a level surprised 41% happy 10% anger 3% 
End surprised 39% happy 27% anger 6% 

Connect 
Beginning neutral 97% surprised 2% others 1% 

Finding pairs fast neutral 73% surprised 13% fearful 6% 
Struggling finding 

pairs 
neutral 25% anger 33% sad 19% 

Computer gives you 
a hint 

happy 89% fearful 10% others 1% 

One minute left happy 46% surprised 14% fearful 25% 
Cannot finish in time neutral 85% happy 6% fearful 6% 

Cooking 
Beginning neutral 87% surprised 6% sad 1% 

Slicing the meat neutral 93% anger 4% sad 3% 
Finish slicing neutral 52% happy 26% surprised 7% 

Finish marinating 
the chicken 

neutral 36% happy 62% others 2% 

Finish marinating 
the vegetables 

neutral 8% fearful 1% sad 88% 

Heating the kebab neutral 2% anger 5% sad 91% 
End neutral 13% happy 41% sad 37% 
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These results indicated that Insight was able to identify the subject’s emotion reliably using 

the most dominant three emotions identified by Insight. Therefore, the refined indicator for 

emotional engagement can distinguish the situation when the subject is in a positive emotion 

and the situation when the subject is in a negative emotion.  

5.6 Discussion and conclusions 

5.6.1 Discussion of the work and results 

The results have shown that there were significant differences in the measured indicator 

between different setups in the experiments of the motor, perceptive, and cognitive aspects, 

which has achieved the objective of the experiments to test if the proposed indicators can 

reflect the expected results in different setups.  

Regarding the motor engagement, it was found that there was a significant difference between 

the active exercise with accuracy requirement with the active exercise with a high speed. 

However, the results showed that there is only small difference between the active exercise 

without accuracy requirement and passive exercise. This indicated that movement with 

accuracy requirement requires the subjects to pay much more attention and effort to complete 

the task. Active movement without accuracy requirement does not engage users on high level. 

Therefore, voluntary movement during rehabilitation training does not necessarily mean the 

patients are engaged. Other measures of the engagement in the perceptive, cognitive, and 

emotional aspects are also needed to have a comprehensive and accurate view on patients' 

engagement.  

As for the experiment in the perceptive aspect, the results showed a significant difference in 

the perceptive engagement between the created engaged state and created neutral state, and 

there were also recognizable differences between other exercises. Experiments are still needed 

to be conducted to measure the indicator of perceptive engagement with real patients in the 

future. 

In the cognitive aspect, no significant difference was found between exercise 1 and exercise 2, 

and between exercise 2 and exercise 3, which may be caused by the small sample size. Also, 

no clear difference was found between the exercises with different cognitive loads. It may 

because after the subject completed the required cognitive tasks during the third and fourth 

exercise, the subject’s attention was diverted when doing the mundane movement from block 

to another block, according to some subjects. This diverted attention can lead to subject’s 

cognitive action which was represented by the measurement. Therefore, this may be the 

explanation that there was no difference in the measurement between the exercise with more 

intensive cognitive tasks and less cognitive tasks.  

In the emotional aspect, the subjects may be subjective in answering the questionnaires. But 

their answer should reflect their emotion at the moment, at least the emotion they believe they 
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were in. Since it is difficult, if not impossible, to detect the subject’s internal emotion, we 

believe this is the best way to monitor the emotion in this context. However, the current 

results from the Insight was not accurate enough to measure the subject’s emotion. In the 

future, maybe it is a good idea to profile the engaged and unengaged facial expressions based 

on the results from the Insight, and then use a machine learning technique to classify the facial 

expressions into different engaged states.   

The primary reason of monitoring the engagement from motor, perceptive, cognitive, and 

emotional aspects is to provide a comprehensive understanding of the engaged states of the 

patients in the context of rehabilitation. Moreover, the ultimate goal of the CP-SRS is to 

enhance the patient's engagement during rehabilitation training. Based on monitoring the 

engagement, the SLM can make suggestions on a suitable stimulation strategy in order to 

enhance the engagement in the aspects which have decreased.  

Although the experiment has shown promising results with these healthy subjects, it is too 

early to draw conclusion if the identified indicators are able to represent the real engagement 

level of real stroke patients. Problems may occur in a real environment with stroke patients. 

For instance, there might be abnormality in the EMG or EEG measurement due to spasm or 

lesions in the region of the cortex where the EEG is measured from. Experiments with real 

stroke patients are still needed to validate the accuracy of the refined indicator because post-

stroke patients may have different facial expressions due to muscle paralysis. Moreover, a 

trade-off between cost and accuracy could be reached if the indicator is not reliable. For 

instance, if the overall accuracy of facial expression analysis by Insight with real patients is 

low, then the CP-SRS could function accurately without including the Insight. 

5.6.2 Conclusions 

This chapter introduced the implementation and validation of the EMS. The proposed EMS 

can read the data from four sources, namely, MYO, Eyetribe, Emotiv Epoc, and Insight, to 

analyze the subject’s motor, perceptive, cognitive and emotional engagement during the 

exercise. Experiments were conducted to test if the identified indicators can reflect the 

expected results in different setups, which were created to mimic the situations in which the 

subject was in different engaged states. The results have shown that there were significant 

differences in the measured indicator between different setups in the experiments of the 

motor, perceptive, and cognitive aspects. Therefore, it is promising to use the identified 

indicators to evaluate the engaged states of the patients during rehabilitation. Then, in the next 

step, based on monitoring and evaluating the engagement level during the exercise, the 

effectiveness of the stimulation strategies in enhancing the engagement and the accuracy of 

the suggestions from the SLM on the most suitable stimulation strategies will be investigated 
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CHAPTER SIX 

RESEARCH CYCLE 5: 

Validation of the functionality of the stimulation strategies 
and smart learning mechanisms 

6.1 Objective of this chapter 

This chapter focuses on the validation of the functionality of the proposed stimulation 

strategies and the smart learning mechanisms (SLMs). Two aspects were considered in the 

validation study: (i) validation of the effectiveness of the applied stimulation strategies (SSs), 

and (ii) validation of the accuracy of the classifying suggestions of the SLM. In this chapter 

the functionality of the applied learning mechanisms (the neural network-based SLM and the 

Naive Bayes-based SLM) is validated using real life data, with the objective of evaluating and 

comparing the actual effects of the SSs. The next section introduces the completed within-

subject experiment. Section 6.3 analyzes the effects of applying various SSs individually and 

in combination. After that, the results of the ANOVA investigation are presented, which was 

done to see if there was any significant difference between the effects of the different SSs. 

Section 6.4 tests the accuracy of the suggestions made by the SLMs. To achieve this, the data 

from the experiments were used to train, validate, and test the two learning mechanisms. 

6.2 Setup and conduct of experiments 

6.2.1 Kinds and implementation of stimulations 

A stimulation strategy (SS) is defined as a combination of stimulations in the motor, 

perceptive, cognitive, and emotional aspects. When stimulation is needed, the system applies 

a particular SS by adjusting a bundle of parameters in the game exercise. In total, there are 12 

stimulations in the four considered aspects. The concrete manifestations of the available 

stimulations in the current prototype, and how they can be changed by adapting the 

parameters in the game exercises are listed in Table.6.1. For instance, introducing motor 

challenge is a form of stimulation in motor aspect. In the practice it means that the speed of 

the pointer of the system can be adjusted to a lower level so that it then requires faster 
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movements from the patient. Since all of the game exercises are displayed on the screen, 

another adjustable item is the range of motion of the patient, and the related adaptable 

parameter is the displayed size of the visual image of the game. If the displayed size of the 

visual image is enlarged, the participant has to make bigger movements with the computer 

mouse to complete the task. The displayed size of the visual image can also influence the 

perceptive engagement of the participant. With regards to the perceptive stimulations, the 

contents of the sensory (visual) feedback can also be adjusted. Therefore, a combination of 

motor SS and perceptive SS can be achieved by adjusting the size of the displayed image. In 

the case of the working memory task, the cognitive challenge is that the patient is supposed to 

memorize multiple items during the game exercises. It has been found that increase of the 

competitive nature of game exercises can increase the patient’s emotional involvement. The 

corresponding parameter is the performance of the opponent (i.e. the game computer) or the 

level of difficulty of the game. 

6.2.2 Experiment design 

To test the effectiveness of different SSs, a within-subject experiment was designed. In this 

experiment, 18 healthy participants (8 men and 10 women: aged 32.1 7.7 years) were 

recruited to complete the two game exercises. The sampling strategy was convenience 

sampling. The first experiment focused on a motor task. As shown in Figure 6.1, this was an 

Air hockey game, and the participants had to play against the computer. They were expected 

to use the hockey stick (the lower one), which was controlled by the mouse, to shoot the 

hockey in the opposite goal. The second experiment focused on a cognitive task. This was a 

Corsi block game, and the participants were required to remember the order of the blocks that 

was marked, then to move the computer mouse to the right blocks, and click them in the same 

order. It was assumed that the effects of SSs on engagement of healthy participants are similar 

to the effects on the engagement of stroke survivors. 

Table 6.1 Kinds and implementation of stimulations 

Stimulations Adjustable items Parameters in the game exercise 

Introducing motor 
challenge 

Movement velocity Pointer speed of the mouse (PS) 

Range of motion 
Displayed size of the visual image of the 
game (DS) 

Adjusting sensory 
feedback 

Visual feedback 
Displayed size of the visual image of the 
game (DS) 

Visual feedback Resolution of the screen (RS) 

Introducing 
cognitive challenge 

Working memory task Amount of items to memorize (AM) 

Involving 
competition feature 

Competition 
Performance of the opponent (game 
computer) (PO) 
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During the exercise, all adjustable stimulations were applied individually in order to test their 

individual influence. Complementing this, combinations of stimulations were also applied to 

test their combined influence. The appropriate stimulations for this game exercise were 

identified as shown in Table. 6.2. Each setting of game exercise lasted for two minutes. In the 

case of the Air hockey game, SS1, SS2, and SS3 were the stimulations in motor, perceptive, 

and emotional aspect, respectively. SS4 was a combination of the SSs in motor and perceptive 

aspects, while SS5 was a combination of the SSs in motor, perceptive, and emotional aspects. 

Similarly, in the case of the Corsi Block game, SS1, SS2, and SS3 were the stimulations in 

motor, perceptive, and cognitive aspect, respectively. SS4 was a combination of motor and 

Table 6.2 Suitable SSs in the two game exercises 

Game 
exercises 

Original settings SS1 SS2 SS3 SS4 SS5 

 Motor  Perceptive Emotional 
Motor & 

Perceptive 
SS3 & SS4 

Air 
hockey 

DS: small 
PS: high 
RS: 1920 X1200 
PO: easy 

DS: small 
PS: low 
RS: 1920 
X1200 
PO: easy 

DS: small 
PS: high 
RS: 1280 
X800 
PO: easy 

DS: small 
PS: high 
RS: 1920 
X1200 
PO: hard 

DS: large 
PS: high 
RS:1920  
X1200 
PO: easy 

DS: large 
PS: high 
RS:1920 
X1200 
PO: hard 

Game 
exercises 

Original settings SS1 SS2 SS3 SS4 SS5 

 Motor  Perceptive Cognitive 
Motor & 

Perceptive 
SS3 & SS4 

Corse 
block 

DS: small 
PS: high 
RS: 1920 X1200 
AM: three blocks 
to remember  

DS: small 
PS: low 
RS: 1920 
X1200 
AM: three 
blocks to 
remember 

DS: small 
PS: high 
RS: 1280 
X800 
AM: three 
blocks to 
remember 

DS: small 
PS: high 
RS: 1920 
X1200 
AM: 
increasing 
number of 
blocks to 
remember 

DS: large 
PS: high 
RS: 1920 
X1200 
AM:  three 
blocks to 
remember 

DS: large 
PS: high 
RS: 1920 
X1200 
AM: 
increasing  
number of 
blocks to 
remember 

 

Figure 6.1 The selected tasks: using (a) the Air hockey game and (b) the Corsi block game 
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perceptive stimulations, while SS5 was a combination of motor, perceptive, and cognitive 

stimulations. Since there was no reliable method to eliminate the interplay of SS on the next 

applied SSs, the order of the SSs was random for each participant with the aim of reducing the 

interplay to a minimal level.  

6.2.3 Calibration of the engagement profile 

The indicators of the four types of engagement were monitored by the EMS during the 

exercises. Before doing the exercise, the participant’s engagement profile was calibrated in 

motor, perceptive, cognitive, and emotional aspects. This is referred to as the calibration 

phase. The participant was required to complete a task in four engaged situations. These 

situations were specifically created so as to get the participants fully engaged in motor, 

perceptive, cognitive, and emotional aspects. This resulted in a calibrated engagement profile 

for them, which was used as a reference value concerning the participant’s engagement levels. 

The four tasks used for calibrating the personal engagement profiles are shown in Figure 6.2. 

It has been discussed in Chapter 5 that the engagement levels related to these four created 

engaged tasks are supposed to be higher than that in the created unengaged situations. 

Specifically, in the case of the motor task it has been shown that when the participant was 

involved in the movement with accuracy requirement task, he/she had to complete the task 

with more attention and effort. The research data underpins that this resulted in a higher motor 

engagement. During the calibration of motor engagement, the participants were required to 

move the solid circle within the area between the two given circles, as shown in the first 

subfigure of Figure 6.2. In the case of the perceptive task, the engagement has been shown to 

be the highest when the participant followed the content changes on the screen all the time. 

During the calibration of perceptive engagement, the participants were required to look at the 

solid object and follow its movement within the big circle, as shown in the second subfigure 

of Figure 6.2. 

In the case of the cognitive task, the engagement has been shown to be the highest when the 

participant was involved in a personally matched, challenging cognitive tasks. During the 

 

Figure 6.2 The four tasks used in calibrating the engagement profiles 
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calibration of cognitive engagement, the participants were required to complete the task at a 

given difficulty level, then to move to the next level and play the game with more blocks to 

remember. In the case of the emotional task, first the participants played against the computer 

at the easiest level. On this level of challenge, it was guaranteed that the participants could 

win and enjoy the easy scoring. At a higher level of challenge, it was not guaranteed. The 

emotional engagement was measured as the ratio between the duration of time when this 

positive emotion was dominant and the duration of time when negative emotion was 

dominant. It was our observation in our previous experiment that the emotional engagement 

indicator was more accurate at mapping the emotion of the participants when the most 

dominant three emotions analyzed by Insight were used. This explains why the emotional 

engagement indicator was calculated using Equation (5) in Chapter 5. 

Each task lasted for one minute in the calibration phase. The mean of the measurement during 

this one minute was recorded as the reference value in the participants’ engagement profile. 

After finishing the calibration phase, the true experimental exercise began. First, the 

participant played the game with the original settings. Then, different SSs were applied and 

the changes were recorded. After the completion of the exercises, the mean of engagements in 

the four aspects were analyzed and compared with the reference value in the engagement 

profile. The effects of the various stimulation strategies on the output values were observable 

practically in all cases. Below we discuss the concrete effects of stimulation strategies on the 

different aspects of engagement. 

6.3 Analyses of the effects of stimulation strategies 

6.3.1 The effects on motor engagement 

The mean of RMS of EMG and the velocity of the movement were calculated in 0.33s. The 

typical patterns of the motor engagement indicator in all of the settings after applying SS are 

shown in Figure 6.3. Since engagement is not a momentary construct, the mean of the 

indicator was used during each setting to characterize the actual level of motor engagement. 

Then, the actual level values were compared to the reference level values, which were 

included in the profiles in the calibration phase. The reference value, which was the mean of 

engagement level during task execution in the calibration phase, is indicated as a straight line 

in each setting in the typical patterns. In the case of the Air hockey game, the participants 

were moving all the time, while in the case of the Corsi block game the participants stopped 

moving when the next task was displayed. This explains why the motor engagement indicator 

remained zero several times in each setting of the Corsi block exercise. This means, the Corsi 

block exercise was not an optimal exercise from the aspect of motor training. Consequently, 

we used only the data related to the Air hockey game, when we analyzed the effects of the 

SSs on the motor engagement. 
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The boxplot of the motor engagement indicator is shown in Figure 6.4 in each setting of the 

Air hockey exercise. In the box, the central line is the median, the circle is the mean, and the 

edges of the box are the 25th and 75th percentiles. Since our intention was to analyze the 

differences in the actual level of motor engagement under different settings, a within-subject 

ANOVA was used to investigate the effectiveness of each SS. Based on the result from the 

 
a 

 
b 

Figure 6.3 Typical patterns of the motor engagement indicator: (a) in the Air hockey 
game, and (b) in the Corsi block game 
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within-subject ANOVA, Mauchly’s test indicated that the assumption of sphericity had been 

violated, 	 14 36.653, p<0.05, therefore, degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ϵ 0.603). The mean of the indicator differed 

statistically significantly between different settings in Air hockey game (F (3.017, 51.290) = 

29.911, p < 0.0001). Post hoc tests using the Bonferroni correction, the most common 

method, revealed that there was significant difference in the motor engagement between the 

original setting (-0.667±0.114) and SS1 (0.333±0.140) (p<0.0001), between the original 

setting and SS4 (0.611±0.118) (p<0.0001), between the original setting and SS5 

(0.111±0.159) (p=0.024), between SS1 and SS2 (-0.722±0.109) (p=0.001), between SS1 and 

SS3 (-0.833±0.090) (p<0.0001), between SS2 and SS4 (p=0.002), between SS2 and SS5 

(p<0.0005), between SS3 and SS4 (p<0.0001), and between SS3 and SS5 (p=0.001). 

However, there was no significant difference between other pairs. Therefore, we could 

conclude that SSs which involved motor stimulation were validated to be able to increase the 

motor engagement, and increasing the displaying size of the game, the combination of motor 

and perceptive stimulation, was the most efficient SS in increasing motor engagement. 

6.3.2 The effects on perceptive engagement 

In the part of the experiment dedicated to perceptive engagement, the mean of distances 

between the positions of participant’s gaze and the positions of screen change were calculated 

in every second. The typical patterns of the indicator of perceptive engagement in all of the 

settings after applying SS are shown in Figure 6.5. The boxplot of the perceptive engagement 

indicator is shown in Figure 6.6 in each setting of the Corsi block exercise. Within-subject 

ANOVA for the perceptive engagement was conducted in the same way as in the case of the 

motor engagement.  

 

Figure 6.4 Boxplot of the measurement of the motor engagement considering all participants 
in the Air Hockey game 
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The within-subject ANOVA with a Greenhouse-Geisser correction explored that mean of the 

indicator differed statistically significantly between different settings in the Air hockey game 

(F (2.538, 43.148) = 12.926, P < 0.0001). Post hoc tests using the Bonferroni correction 

revealed that there was significant difference in the perceptive engagement between the 

 

a 

 

b 

Figure 6.5 Typical patterns of the perceptive indicator: (a) in the Air hockey game, and (b) in 
the Corsi block game 
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original setting (-0.722±0.109) and SS1 (0.444±0.166) (p<0.0005), between SS1 and SS2 (-

0.833±0.121) (p=0.001), between SS1 and SS3 (-0.778±0.101) (p=0.001), between SS1 and 

SS4 (-0.389±0.143) (p=0.011), and between SS2 and SS5 (-0.389±0.164) (p=0.027). 

However, there was no significant different between other pairs.  

In the Corsi block game, a within-subject ANOVA with a Greenhouse-Geisser correction 

determined that mean of the indicator differed statistically significantly between different 

settings in Air hockey (F (2.153, 9.568) = 14.067, P < 0.0001).Post hoc tests using the 

Bonferroni correction revealed that there was significant difference in the perceptive 

engagement between the original setting (0.111±0.137) and SS2 (-0.667±0.162) (p=0.001), 

between the original setting and SS3 (-0.611±0.164) (p=0.001), between SS1 (0.611±0.183) 

and SS2 (p=0.002), between SS1 and SS3 (p=0.003), between SS1 and SS4 (-0.222±0.129) 

(p=0.002), and between SS1 and SS5 (-0.278±0.135) (p=0.009). 

There was no significant difference between other pairs. Based on the above results we can 

 

a 

 

b 

Figure 6.6 The boxplot of the perceptive engagement considering all subjects: (a) in the 
Air hockey game, and (b) in the Corsi block game 
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conclude that decreasing the pointer speed of the mouse as a motor stimulation was able to 

increase the participant’s perceptive engagement, while SSs, such as decreasing the resolution 

of the screen, increasing the level of competition, or increasing the difficulty level of 

cognitive task seemed to have the opposite effect. For maintaining a high level of perceptive 

engagement, it is reasonable to set the resolution of the screen to a high level and the pointer 

of the mouse to a low speed. 

6.3.3 The effects on cognitive engagement 

The mean of indicator for the cognitive engagement were calculated in every second. The 

typical patterns of the cognitive engagement in all of the settings after applying SS are shown 

in Figure 6.7. The boxplot of the indicator in each setting in the two game exercises is shown 

in Figure 6.8. Within-subject ANOVA for the cognitive engagement was conducted in the 

same way. 

 

Figure 6.7 a. Typical patterns of the cognitive engagement indicator in the Air hockey 
game 
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Related to the Air hockey game, a within-subject ANOVA suggested that there was a 

significant difference in the mean of the indicator between different settings, Wilk’s Lambda 

= 0.164, F (5, 13) = 13.230, p<0.0005. Post hoc tests using the Bonferroni correction revealed 

that there was significant difference in the cognitive engagement between the original setting 

(-0.111±0.137) and SS3 (0.389±0.641) (p=0.048), between the original setting and SS5 

(0.778±0.101) (p=0.002), between SS1 (-0.333±0.140) and SS3 (p=0.012), between SS1 and 

SS5 (p<0.0005), between SS2 (-0.389±0.143) and SS5 (p<0.0005), between SS3 and SS4 (-

0.333±0.114) (p=0.026), and between SS4 and SS5 (p<0.0005). There was no significant 

difference between other pairs. 

In the case of the Corsi block game, a within-subject ANOVA suggested that there was a 

significant difference in the mean of the indicator between different settings, Wilk’s Lambda 

= 0.048, F (5, 13) = 51.338, p<0.0005. Post hoc tests using the Bonferroni correction revealed 

that there was significant difference in the cognitive engagement between the original setting 

(0.111±0.111) and SS3 (0.889±0.076) (p<0.0005), between the original setting and SS5 

(0.833±0.090) (p=0.04), between SS1 (-0.444±0.121) and SS3 (p<0.0005), between SS1 and 

SS5 (p<0.0001), between SS2 (-0.278±0.158) and SS3 (p<0.0001), between SS2 and SS5 

(p<0.0001), and between SS3 and SS4 (0.000±0.213) (p=0.041). There was no significant 

difference between other pairs. 

Therefore, we could conclude that SSs that involve emotional stimulation and cognitive 

stimulation were able to increase the participant’s cognitive engagement significantly, while 

other SSs did not have these significant effects.  

6.3.4 The effects on emotional engagement 

 

Figure 6.7 b. Typical patterns of the cognitive engagement indicator in the Corsi Block game 
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The indicator for the emotional engagement was calculated in each setting. The pattern of the 

most dominant three emotions during the Air hockey exercise with SS1 is shown in Figure 

6.9. In this setting, the emotional engagement was calculated as follows: 

	E
∗ ∗ ∗
∗ ∗ ∗

 

∗ 0.5 ∗ 0.3 ∗ 0.2 	  

∗ 0.5 ∗ 0.3		  

∗ 0.2  

0.75 

The within-subject ANOVA for the emotional engagement was conducted in the same way as 

above. In the case of the Air hockey game, a within-subject ANOVA suggested that there was 

a significant difference in the mean of the indicator between different settings, Wilk’s 

Lambda = 0.151, F (5, 13) = 14.579, p<0.0005. Post hoc tests using the Bonferroni correction 

revealed that there was significant difference in the emotional engagement between the 

a 

b 

Figure 6.8 Boxplot of the cognitive engagement considering all participants, (a) in the Air 
Hockey game, and (b) in the Corsi Block game 
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original setting (-0.611±0.118) and SS3 

(0.389±0.164) (p=0.001), between the 

original setting and SS5 (0.578±0.219) 

(p<0.0005), between SS2 (-0.389±0.183) and 

SS3 (p=0.005), and between SS2 and SS5 

(p=0.041). There was no significant 

difference between other pairs. The mean 

and standard deviation in other settings were 

SS1 (-0.222±0.191) and SS4 (-0.222±0.207). 

In the case of the Corsi block game, a within-

subject ANOVA suggested that there was a 

significant difference in the mean of the 

indicator between different settings, Wilk’s 

Lambda = 0.139, F (5, 13) = 16.142, 

p<0.0005. Post hoc tests using the Bonferroni 

correction revealed that there was significant 

difference in the emotional engagement 

between the original setting (-0.778±0.101) 

and SS1 (-0.056±0.189) (p=0.026), between 

the original setting and SS3 (0.278±0.135) 

(p<0.0005), between the original setting and 

SS5 (0.778±0.101) (p<0.0005), between SS1 

and SS5 (p=0.020), and between SS4 (-

0.278±0.158) and SS5 (p<0.0005). However, 

there was no significant difference between 

other pairs. The mean and standard deviation 

in SS2 was -0.056±0.206. 

Therefore, we could conclude that in both 

games, the combinations of three 

stimulations were the most effective SSs in 

increasing the emotional engagement. 

Individual stimulations, such as setting the 

pointer speed of the mouse at a low level, 

introducing cognitive challenge, and 

increasing the level of competition, were also able to increase the participant’s emotional 

engagement significantly. 

 

 

 

Figure 6.9 The most dominant three 
emotions in SS1 in Air hockey 
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6.3.5 Conclusion on the effects of the proposed stimulation strategies 

Based on the results of the within-subject ANOVA in each aspect, the effects of each SS can 

be evaluated. This requires a comparison of the results with the data in the original setting in 

both game exercises. This was done and concluded in Table 6.3. The results indicated that: (i) 

the tested motor, cognitive, and emotional stimulation was validated to be effective in terms 

of increasing the engagement in the motor, cognitive, and emotional aspects, (ii) it is 

reasonable to set the resolution of the screen at a high level and the pointer of the mouse at a 

low speed in order to achieve a high level of perceptive engagement, (iii) SSs that involved 

cognitive stimulation or emotional stimulation were able to concurrently increase the 

engagement in the cognitive and emotional aspect, (iv) all of the SSs had similar effects on 

cognitive engagement and emotional engagement in both game exercises, and (v) the 

participants tend to express positive emotions to the changes of the game exercise according 

to the effects of the SSs on the emotional engagement. 

Although several SSs showed positive effects on engagement, it could be noticed that the 

engagement of the participants could reach the reference value (generated in the calibration 

phase) only in one or two SSs in each of the aspect. This can be quantitatively shown by 

comparing the engagement level values in each SS with the reference value. This may be 

explained by the fact that the participants focused only on one single aspect of the task 

execution in the calibration phase. This was not the case in the experimental set ups. It could 

result in full engagement in that aspect. However, the tasks completed in the calibration phase 

would become boring for a longer time because of their mundane nature. Therefore, the 

Table 6.3 The effects of the proposed stimulation strategies on engagement 

Game 
exercise 

SS 
Motor 

engagement 
Perceptive 

engagement 
Cognitive 

engagement 
Emotional 

engagement 

Air hockey 

SS1 + + (-) (+) 

SS2 (-) (-) (-) (+) 

SS3 (-) (-) + + 

SS4 + (+) (-) (+) 

SS5 + (+) + + 

Corsi block 

SS1 \ (+) (-) + 

SS2 \ - (-) (+) 

SS3 \ - + + 

SS4 \ (-) (-) (+) 

SS5 \ (-) + + 

+: significant positive effect; -: significant negative effect;  
(+): positive effect but not significant; (-): negative effect but not significant 
\: not considered 
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engagement level in the calibration could also be used as the reference value for a full 

engagement. Nevertheless, it has to be emphasized, that the calibration tasks were not suitable 

for training exercise. 

6.4 Set up of smart learning mechanisms and the provided 
suggestions  

In the validation described in the subsection, all the data from the above experiments were 

used to train, validate and test a neural network (NN-based) and a Naive Bayes (NB-based) 

smart reasoning mechanisms, whose implementation was described in Chapter 4. The trained 

learning mechanism was expected to classify the inputs into different classes of SSs. Here the 

term ‘class’ refers to kinds of different SSs. The inputs and outputs of the SLMs are shown in 

Table 6.4. Important aspect of validation, the accuracy of the output generated by the two 

above mechanisms will be discussed in the next section. 

In order to conduct a within-subject analysis, the engagement level during each setting was 

normalized using the 

participant’s own reference 

value. In this normalization 

procedure, which also 

extracted features from the 

data in order to train the 

SLM, the following rules 

were applied:  

1) If the mean engagement 

increased with more than 

20% of the reference 

value, then the 

engagement level was 

represented as 1.  Figure 6.10 Test confusion matrix of classification by NB 
based SLM 

Table 6.4 Input and output the SLM 

Input Output 

Participant 
number 

Game 
exercises 

Engagement level Stimulation 
strategy ME PE CE EE 

1-18 
1: Air hockey 
2: Corsi block 

1: bigger than 1.2 reference value 
2: (0.8~1.2) reference	value 
3: less than 0.8 reference value 

1:SS1 
2:SS2 
3:SS3 
4:SS4 
5:SS5 
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2) If the mean engagement did not change significantly, i.e. remained between (0.8~1.2)

reference	value, then the engagement level was represented as 0.  

3) If the mean engagement decreased with more than 20% of the reference value, then the 

engagement level was represented as -1. 

As for the NN-based SLM, a two-layer feed-forward network was used It contained sigmoid 

hidden neurons (10 neurons) and softmax output neurons. This network was trained with 

scaled conjugate gradient back-propagation. 70%, 15%, 15% of the data from the exercise 

were used to train, validate, and test the NN based SLM respectively. Likewise, 85% of the 

data were selected randomly to train the NB based SLM. And 15% of the data were used to 

test the trained learning mechanism. The accuracy of the suggestions made by these two 

SLMs was compared. For the NB-based SLM, the accuracy of suggestions for the test data set 

was 66.7% (Figure 6.10). For the NN-based SLM, the accuracy of classification in the test 

data set was 70.4%, and the overall accuracy is 70.0% (Figure 6.11). The results showed that 

 

Figure 6.11 Confusion matrix of classification by NN based SLM 
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the suggestions made by the NN-based SLM were slightly more accurate than the suggestions 

made by the NB-based mechanism.  

6.5 Discussions of the accuracy of the suggestions made by 
SLMs 

It has been shown by the analysis of effects of SSs that it is possible to influence the 

engagement level of the participants by adjusting a bundle of parameters of the games 

exercises. The proposed stimulations in the motor, cognitive, and emotional aspects were 

validated to be effective in increasing the corresponding engagement; and perceptive 

engagement can be increased by applying SS1. Furthermore, the applied SSs were found to 

have effects not only on the corresponding aspect but also on the other aspects, so it was 

essential that the SLM can learn the effects of different SSs on different participants. Based 

on the learned knowledge, the results suggested that NN based SLM and NB based SLM can 

have an accuracy of about 70% to make suggestions on which is the appropriate SS to apply.  

Although the accuracy was about only 70%, according to Table 6.3, some SSs have the same 

significant effects on the engagement level. For instance, SS1, SS4, and SS5 all have a 

significant positive effect on motor engagement. Therefore, there are possibilities that the 

SLM classifies some cases to a different class of SS which has the same significant effect as 

the correct class. Based on this criterion, misclassifications can be further divided into two 

categories. The first category includes the cases in which the SLM classifies into a different 

class with the same significant effect on the engagement that has decreased. The second 

category includes the cases in which the SLM classifies into a different class with different 

effects or not significant effects on the engagement. In this context, the first category is not 

inaccurate classification because the classified SS can have the same significant effect in 

increasing the engagement, which is goal of the SLM.  

 

Figure 6.12 Corrected confusion matrix of the test data set 
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Then, all the misclassification cases were analyzed to investigate the amount of the first 

category misclassification. The results are shown in Figure 6.12. The number in bracket 

indicates the number of cases that belong to the first category. The accuracy of classification 

of the test data set by the NN-based SLM was 88.9%, and the accuracy by the NB based SLM 

was 77.8%. Having considered the context of increasing the engagement, the accuracy of 

suggestions made by NN-based SLM was significantly higher than that of NB-based SLM. 

Therefore, it can be concluded that both the NN-based and NB-based SLM were able to learn 

the effects of the SSs on the engagement, and NN-based SLM was more appropriate to be 

applied in this context because some misclassifications can have the same effect in increasing 

the participants’ engagement. 

6.6 Conclusion 

In this chapter, a complex experiment was conducted to validate the effectiveness of the SSs 

with regards to increasing the participant’s engagement and the accuracy of the suggestions 

made by the SLM. In the two exercises, which were done with two different games, five 

different SSs were applied. The participants’ engagement was evaluated in each setting and 

compared with the engagement in the original setting to identify the effects of the applied 

SSs. The within-subject ANOVAs suggested that: (i) Tested motor stimulation, cognitive 

stimulation, and emotional stimulation was validated to be effective in increasing the 

engagement in the motor, cognitive, and emotional aspect respectively; (ii) To achieve a high 

level of perceptive engagement, it is reasonable to set the resolution of the screen at a high 

level and the pointer of the mouse at a low speed; (iii) SSs that involved cognitive stimulation 

or emotional stimulation were able to increase the engagement in the cognitive and emotional 

aspect at the same time; (iv) All the SSs had similar effects on cognitive engagement and 

emotional engagement in both game exercises; (v) The participants tend to express positive 

emotions to the changes of the game exercise according to the effects of the SSs on the 

emotional engagement.  

Then these data from the experiment were used to train a NN and NB based SLM 

respectively. Since several SSs had the same significant effect in increasing the engagement, 

if the SLM classified certain cases into the class with the same significant effect, it should not 

be considered as misclassification in this context because it can achieve the goal of increasing 

the engagement. After correction, the accuracy of the suggestions made by NN and NB based 

SLM for the test data set were 88.9% and 77.8% respectively. Therefore, considering the 

context, NN based SLM was more suitable to be applied in the system than NB based SLM. 

This result indicated that there was a pattern in the applied stimulation and its effects on the 

engagement for each participant, so that the SLM is able to identify and learn the different 

effect on each individual. In the future, more SSs or combinations of SSs should be tested for 

the purpose of validating if the SLM can be accurate in predicting new effective combination 
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of SS. For instance, if the SLM is not confident to classify a case in SS A or SS B, then the 

combination of the SS A and SS B can be applied. Then the effects of this combination of SSs 

can be analyzed in order to validate the prediction of the SLM. 

The results from the two aspects demonstrated that the proposed CP-SRS is able to enhance 

the engagement of the participants by monitoring the participant’s status and applying 

personalized interventions during the training session. Future rehabilitation system should 

monitor the patient’s status in real time and introduce interventions during training when the 

engagement of the patient decreases. Additionally, the interventions should be personalized 

according to the different patients’ situations so that the intervention can be meaningful for 

the patient and may probably have a positive effect on their recovery. In this sense, learning 

capability of the system is essential to provide personalized interventions. Furthermore, future 

system should consider a comprehensive scope of patient’s status, such as motor, perceptive, 

cognitive, and emotional. As shown in the results, some SSs have positive effects on certain 

aspects, but negative on the others. As far as stroke patients are concerned, some may have 

serious impairment in their motor ability, while some need to improve in their cognitive 

capability. Therefore, future rehabilitation systems should be capable not only to deliver 

motor therapy, but also to facilitate efficient and patient-sensitive rehabilitation in cognitive, 

perceptive, and emotional aspects too. 
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CHAPTER SEVEN 

CONCLUSIONS AND FUTURE WORK 

7.1 Reflections on the findings 

Since lack of engagement hinders the efficiency of recovery during stroke rehabilitation, this 

thesis aimed at using a cyber-physical solution to enhance and maintain the engagement 

during training exercises. As a new paradigm of computing, cyber-physical computing makes 

it possible to deeply penetrate into real life processes, such as a stroke rehabilitation process, 

to control the processes based on run-time acquired data, and to develop strategies for 

adaptation of the process, the activities of human stakeholders, and the operation of the cyber-

physical system as a whole. In order to implement a first prototype of the physical and the 

cyber part of the cyber-physical solution, five research cycles were conducted in this PhD 

research.  

In the first research cycle, a survey was conducted to understand the phenomenon of 

engagement in rehabilitation. Influencing factors of therapeutic engagement were identified 

based on various existing models of engagement. Based on studying the current state of the 

art of methodological enablers and several engagement enhancement systems, it was found as 

a major limitation that the currently used rehabilitation systems failed to deliver a 

comprehensive self-adaptive and personalized treatment. Moreover, although there were 

many enablers and systems that had been reported on engaging the patients, just few 

quantitative measures have been proposed to evaluate the level and status of patient 

engagement. Without specific measures, it was not possible to validate the related enablers 

and systems, and to sufficiently intensify the engagement of patients. Therefore, one of the 

objectives for the next RCs was to identify indicators that can reliably capture the engagement 

level.  

In the second research cycle, an experimental investigation was conducted with an entry-level 

system comprising an upper limb rehabilitation robot integrated with gamification, in order to 

better understand the current limitation of gamification. The rationale behind this 

investigation is that gamification is the most common engagement enhancing method in the 
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current practice. One of the findings was that the engagement of the patients decreased during 

the video game exercise as they became familiar with the exercise. Another important finding 

was that gamification alone is not enough to maintain a sufficiently high engagement of the 

patients. Although the video game fulfilled the requirements of providing immediate feedback 

to each patients, involve the patients in interaction, and pose a matching challenge to the 

patients, it could still not avoid becoming mundane exercising when playing for a long time. 

The abovementioned requirements pointed at factors that were identified and studied based on 

the previously proposed models of engagement. Current and next generation rehabilitation 

systems have to go beyond the paradigm of assistive robotics extended with gamification in 

order to be able to more intensely engage the patients during training exercises. Yet another 

influential finding was that the RMS of EMG signals correlated with the engagement level of 

the patients. This means that these signals can be used as one of the possible indicators of and 

representing the engagement level of the patients. Finally, we could draw as a conclusion that 

monitoring of the patients’ status is essential for providing a personalized treatment. 

In the third research cycle, new enablers for monitoring and enhancing the patients’ status and 

engagement were investigated. The functional affordances and implementation opportunities 

offered by cyber-physical computing were studied, and an overall concept of a cyber-physical 

system orientated solution has been considered. Based on additional literature studies, a series 

of brainstorm sessions, and experimental investigations, a detailed concept of a cyber-

physically stimulating rehabilitation system (CP-SRS) was derived. In the center of the 

interest were the reasoning and strategy development mechanisms of the target CP-SRS. The 

argumentation concerning the utility of the CP-SRS was that engagement of the patients can 

be maintained and influenced if the CP-SRS applies self-adaptive and personalized 

stimulations. The feasibility and prototyping of the target CP-SRS was positively judged with 

a view to utilizing the capabilities of smart cyber-physical systems, such as multi-sensor 

monitoring, smart learning, and strategy-based output adaptation. In the second part of this 

research cycle, the smart learning mechanism was developed and implemented as a prototype 

by using various adaptable commercial tools. The functioning of the proposed learning 

mechanism was tested and validated through a series of computer simulations. 

In the fourth research cycle, the engagement monitoring subsystem (EMS) of the CP-SRS was 

implemented at a testable prototype level. EMS can monitor the patient’s engagement level in 

the motor, perceptive, cognitive, and emotional aspects using MYO Armband, the Eyetribe, 

the Emotiv EPOC headset, and the Insight device respectively. Having the prototype of the 

EMS subsystem, we developed and conducted a series of experiments to validate the 

functionality of this implementation. In the experiments, different setups were used to mimic 

the engaged, normal, and unengaged situations. The results showed that the proposed 

indicators for evaluation motor, perceptive, cognitive, and emotional engagement were correct 

and able to distinguish different engaged statuses. The software part was fine tuned. 
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In the fifth research cycle, an experiment was conducted in order to validate the functionality 

of the stimulation strategies and learning mechanism. In the experimentation, different 

stimulation strategies were applied and the changes in the engagement levels were recorded. 

The analyses of the data demonstrated the effectiveness of several stimulation strategies in 

enhancing engagement, and more importantly, the learning mechanism was able to learn the 

relationship between the applied stimulation strategies and changes in the engagement level. 

This means that the learning mechanism is able to support a self-adaptive and personalized 

solution for different patients based on analyzing the data obtained in the monitoring and 

stimulation processes. 

In a general sense, the essence of the implemented cyber-physical system is acquiring related 

information and assisting decision making based on learning. Putting everything together, this 

thesis demonstrated that a cyber-physically-based rehabilitation system is able to provide self-

adaptive and personalized stimulations to enhance patient’s engagement by continuous 

monitoring and learning. Since the current assistive robotics-based systems, even with 

gamification or VR augmentation, cannot guarantee the patient’s engagement during training 

exercises, future rehabilitation systems should focus on delivering a comprehensive 

personalized training by including system features such as multi-sensor networking and smart 

learning. Then, the overall engagement in the training exercises can improve, and it in turn 

can make a significant contribution to the efficiency and successful outcome of rehabilitation 

programs in the case of very different patients.  

Indicators have been identified in the four aspects, namely from the human perspective, motor, 

perceptive, cognitive, and emotional aspects, to evaluate the engagement level during the 

exercises. These indicators have offered a dexterous way for a quantitative assessment of the 

engagement status and level. This is an important step forward since most of the current 

engagement evaluation methods tend to be qualitative or subjective based on the therapists’ 

rating on the scales. Moreover, these indicators provide a comprehensive understanding of the 

engagement status compared with other evaluation methods. Additionally, these quantitative 

assessments of engagement also offered an opportunity to evaluate the effectiveness of the 

currently used engagement enhancing methods - in order to better understand the limitations 

of these methods. For instance, VR solutions may be more effective to engage the patients 

perceptively, but cannot increase the patient’s motor engagement. 

In the engagement monitoring, commercial sensors were utilized, such as MYO Armband, 

The Eyetribe, Emotiv EPOC headset, and the Insight device. These commercially available 

physiological recording sensors are cost effective for the research. As more commercial 

products have been developed and released in the market as a result of the technology push, 

future research should take advantage of these products. Kinect and Wii have already been 

widely used in research, especially in rehabilitation to provide treatment with gamification. 
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Currently, these physiological sensors are also capable to contribute to research. Moreover, 

SDKs with these devices are usually available on the Internet, which simplifies the 

implementation. There is new trend that more and more VR devices are commercialized, so 

my vision is that future rehabilitation systems, especially systems for home rehabilitation, will 

benefit from this technology trend. 

This thesis also presents an example in developing cyber-physical systems. The core of the 

developed system is the embedded learning mechanism, which is able to learn the differences 

in different situations for different patients, thus providing self-adaptive and personalized 

training. This system was implemented in MATLAB using the machine learning toolbox. As 

a powerful tool, MATLAB is very useful for future research in building adaptive systems with 

machine learning characteristic. The presented technical ideas of smart learning and 

adaptation strategy development can also be applied in other fields, such as automatic 

diagnosis, transport management, evacuation in buildings, and so on. 

7.2 Propositions 

In line with main objectives of the PhD research work, four propositions have been 

formulated that capture the main scientific contribution and results. Based on the content of 

the research work and thesis, additional four propositions have been derived, which projects 

out from these and other achievements, and puts them into a social, personal, and cognitive 

context. The propositions are as follow: 

Proposition 1: It has been found that the ratio of the root mean square of the measured 

EMG signal and the velocity of motion of the human limb is a reliable 

indicator of motor (function) engagement. ∆ 

EMG signals represent the electrical potentials produced by skeletal muscles when they 

are neurologically activated. They can indicate the intensity of motor activities of a 

person. The root mean square gives a measure of the power of EMG signals. Since the 

amplitudes of EMG signals have correlation with the velocity of the movement of the 

human limb, we introduced the concept of normalized EMG, which has been defined as 

the root mean square of EMG divided by movement velocity. It has been found that this 

normalized EMG value is a reliable indicator of the motor engagement if the motion 

fulfils some precision requirements. When a patient makes effort to perform precisely in 

a rehabilitation exercise, he is ‘motorly’ engaged in the task up to the level, which is 

shown by the indicator. 

Proposition 2: The indicators introduced for measuring the motor, perceptive, cognitive, 

and emotional engagement should be considered together to determine an 

optimal stimulation strategy and should be interrelated in order to form a 

distinct measure. ∆ 
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Considering the influencing factors of therapeutic engagement in rehabilitation, it has 

been concluded that monitoring and analyzing the motor, perceptive, cognitive, and 

emotional engagement levels is necessary and sufficient for having a comprehensive 

and precise understanding of the overall engagement state of the patients. Therefore, 

these four attributes have to be considered together in order to determine an optimal 

stimulation strategy to maintain the engagement level when needed. 

Proposition 3: Though the motor, perceptive, cognitive, and emotional engagement 

indicators provide a robust basis for developing stimulation strategies, 

there is also a need for considering the personal profile of the patient. ∆ 

Though the proposed indicators can capture and express the actual level and changes of 

engagement, they cannot consider the patients’ interest, awareness, education, and 

abilities. These can be captured is a personal profile. When providing personalized 

stimulation strategies is aimed at, personal profiles can help figure out the expectable 

the effects and influences of the stimulation strategies on different persons. Therefore, 

personal profiles have significance in enhancing engagement in rehabilitation. 

Proposition 4: Neural network-based smart learning mechanism is able to learn the effects 

of the different stimulations strategies on different persons and to propose 

personalized enhancement. ∆ 

A neural network-based learning mechanism can be taught to recognize the pattern 

between the input (i.e. the personal profile and the changes in the engagement) and the 

output (i.e. the applied stimulation strategy). In other words, the learning mechanism 

can learn the changes in the engagement level, which is caused by the applied 

stimulation strategies. Based on this relationship it is capable to find and propose the 

most suitable stimulation strategy in different situations. 

Proposition 5: Self-adaptive and personalized training in rehabilitation achieved by 

continuous monitoring and smart learning can significantly increase the 

efficacy of stroke rehabilitation. ∆ 

Since every patient has a different personality and attitude, each of them needs 

personalized therapy. Research has shown that a self-adaptive and personalized training 

can enhance the patients’ engagement level even in a long-duration rehabilitation 

process and facilitate brain plasticity. The current trend of exploiting the working 

principles and functional potentials of cyber-physical systems creates new opportunities 

for creation of smartly adaptive systems and for improving the recovery outcome for the 

stroke patients. 
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Proposition 6: The identified engagement indicators can be useful not only for enhancing 

engagement, but also to understand the limitations of the current 

engagement enhancing methods. ∆ 

This thesis has shown in what way the identified engagement indicators can be used to 

enhance engagement. They have also been used to evaluate the effectiveness of the 

current engagement enhancing methods by quantitatively assessing the changes in the 

engagement level due to various factors. The qualitative assessment the motor, 

perceptive, cognitive, and emotional aspects, in particular in their interrelationship, is a 

new contribution to the field of assisted stroke rehabilitation. 

Proposition 7: A cyber-physical system oriented solution can penetrate into the 

rehabilitation processes, which cannot be controlled otherwise. ∆ 

In case of rehabilitation, various dimensions such as medical, social, personal, cognitive, 

exists. In each of these dimensions different processes are taking place. Based on their 

intense interaction with the embedding environment and the stakeholders, cyber-

physical systems are able to penetrate deeply into these processes. As a result of this, a 

huge amount of various pieces of information can be detected, generated, pre-clustered, 

and used as a basis for run-time operation. This was not the case with traditional robot-

assisted rehabilitation systems. The thesis has shown how a cyber-physical oriented 

learning, reasoning, and strategy planning mechanism can interact with rehabilitation 

exercises and patients, how it can monitor the patients’ status on a perpetual basis, and 

how it can apply stimulation strategy in a self-adaptive manner. Without using the 

principles of cyber-physical computing, the implementation of the necessary control 

would bump into many obstacles. 

Proposition 8: Although the methodology developed for monitoring and enhancing 

engagement is dedicated for rehabilitation, this approach can be used in 

other fields as well, such as sports, driving, and education. ∆ 

At conceptualization of the proposed cyber-physically supported engagement 

enhancement system, the needs, requirements, and application conditions of stroke 

rehabilitation were considered. This gives the flavor of the proposed implementation. 

However, the proposed methodology (including the underpinning theory, the 

computational procedures, methods, instruments, and the application criteria) can be 

adapted and then used to improve the engagement efficacy in other fields, such as sports, 

driving, and education. In these cases, the indicators of the user’s status should be 

changed, but the same computation framework and resources can be applied. 

Proposition 9: S

tudying engagement really needs engagement. ∆ 
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This proposition is independent of the topic and results of the PhD research project. 

Proposition 10: E

verything will be okay in the end - if not okay, then not yet the end. ∆ 

This proposition is independent of the topic and results of the PhD research project. 

These propositions are regarded as opposable and defendable, and have been approved as 

such by the supervisors prof. dr. Imre Horváth, dr. Zoltán Rusák and prof. dr. Linhong Ji. 

7.3 Future research work 

7.3.1 Immediate further research and development for enhancement of the 
proposed solution 

Below we give a concise overview of the planned follow up research and development actions 

that are requested and made possible based on the current state of the research. In general, the 

research will be continued with a testable level prototype implementation of the proposed CP-

SRS, including all hardware, software and cyberware elements reported in this thesis. In 

addition, various stimulation strategies will be elaborated and applied in medical testing of the 

proposed cyber-physical engagement enhancement system in some medical applications. The 

planned specific activities are as follows: 

 Integrating the cyber-physical augmentation part with the upper limb rehabilitation 

robotic system. 

Due to the capacity of the PhD project, we made a decision to focus on the cyber part of 

the proposed CP-SRS. However, without the physical part, especially the assistive robot, 

the system cannot be utilized in clinical environment to deliver rehabilitation therapy. In 

the next step, the cyber-physical augmentation part will be integrated with the upper limb 

rehabilitation robot, as the concept of the whole CP-SRS was proposed in Chapter 4.   

 Implementation of a more elaborate and adjustable/adaptive physical part for other 

rehabilitation exercises 

In this thesis, cyber solutions, such as continuous monitoring and smart learning, were 

studied to enhance the engagement during the training exercises. In the future, an adaptive 

physical part should be developed to suit the patient’s personalized need. For instance, 

different physical parts of the system can be recruited to assist the patients according to 

their capability and rehabilitation prescription.  

 Comprehensive implementation of the CP-SRS, including context dependent engagement 

stimulating cyberware 

In the current prototype, the games were selected from the available online video games. In 

the next step, the games should be designed, or selected in a systematic way, so that the 
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movement exercises in the game are in line with the prescription which will be helpful to 

restore their motor ability. Moreover, patients can have more suitable games to choose 

according to their own interests and needs. Then the engagement stimulations can be 

implemented in the context of each game, which makes the training exercise more 

immersive. 

 Development of patient and program dependent stimulation strategies, in order to apply 

personalized run time interventions based on the suggestions from the learning 

mechanism. 

In the future, run time stimulation strategies should be implemented after the development 

of the CP-SRS, such as adjusting assistive force, changing the threshold of the pressure 

sensor on the user interface, adjusting the velocity of the robotic arm. Then the system can 

apply the interventions to maintain and enhance engagement in real time based on the 

suggestions from the learning mechanism.  

 Refinement of the indicators, in particular the emotional engagement indicator 

The experiments have shown the dominant emotion analyzed by the software is not always 

the real emotion of the user. In the future, the engaged and unengaged facial expressions 

can be profiled based on the analysis from the Insight, and machine learning technique can 

be used to classify the facial expressions into different engaged states during the training 

exercise.  

7.3.2 Distant further research and development for exploitation of the 
proposed solution 

After the CP-SRS is implemented, clinical experiments will be conducted to validate the 

usability and utility of the system. Experiments with real stroke patients are still needed to 

validate the accuracy of the refined indicators. 

 Large scale clinical experiments with real stroke patients 

Although the experiments conducted so far has shown that the proposed engagement 

indicators are able to represent the real engagement level of healthy subjects, problems 

may occur in with real stroke patients. For instance, there might be abnormality in the 

EMG or EEG measurement due to spasm or lesions in the region of the cortex where the 

EEG is measured from. Therefore, further clinical study is needed to validate the 

effectiveness of the CP-SRS in enhancing engagement and improving recovery outcome.  

 Investigation of the phenomenon of long term engagement in rehabilitation programs 

This thesis focused on enhancing short term engagement during rehabilitation exercises. 

However, it was pointed out that long term engagement during the whole rehabilitation 

program also needs to be maintained in order to achieve a successful outcome.  
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 Investigation of the influencing factors and the context dependence of long term 

engagement 

Further research should be conducted to study the influencing factors for long term 

engagement, which are different from those for short term engagement. Cyber-physical 

solution has been shown to be able to penetrate into the real life process of rehabilitation. 

With the method of multi-sensor networking, the comprehensive status of the patients 

during the rehabilitation program can be monitored and understood when the influencing 

factors are identified.  

 Development stimulation strategies for long term engagement 

Stimulation strategies to enhance long term engagement should also be different from 

those of short term engagement. With the method of smart learning, the system will be able 

to apply suitable and personalized stimulation strategies according to their status in order 

to engage the patients during the program which can last for months. 

7.3.3 Application of the proposed approach and system in other application 
fields 

 Sports 

In many branches of sport, precise movement or coordination of the movement is very 

important to the athletes to improve their performances. However, sometimes, when the 

required movement is not precise enough, it is difficult to identify where they are doing 

wrong. Future research can be conducted to identify the indicators for evaluating the 

athlete’s movement or status in different sport. Then the proposed approach of continuous 

monitoring can record the related indicators with sensors, and the smart learning 

mechanism can make suggestions on how to improve their performances by identifying the 

relationship between the indicators and good performance. 

 Education 

Many researchers have studied the engagement in education. The indicators of 

engagement, such as perceptive, cognitive, and emotional engagement, can be monitored 

in education with the proposed method. Monitoring and intervention can be done on-line in 

a decentralized form. For instance, when the engagement level of a remotely located 

decreases, the system can collect information about the students individually and apply 

personalized stimulation to maintain and enhance their engagement, which can improve 

their learning efficiency.  

 Automatic diagnosis 

Clinical studies have shown that technology–assisted rehabilitation has the same effect to 

improve patient’s recovery as conventional therapy. However, current robotics cannot 
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evaluate the patient’s deficits, which makes the patients have to go back the physical 

therapist for assessment. The next step in rehabilitation is to study the indicators for 

evaluating the status of the patients. Then the smart learning mechanism can make 

suggestions on the prescription for the patients. Therefore, future research needs to be 

conducted to identify the indicators for evaluating the patient’s deficits so that the 

technology-assisted rehabilitation system can achieve an automatic rehabilitation program 
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SUMMARY 

CYBER-PHYSICAL SOLUTION FOR 
AN ENGAGEMENT ENHANCING REHABILITATION SYSTEM 

1 Background 

Stroke remains the most common cause of disability for adults. Stroke survivors often suffer 

from various impairments or disabilities concerning their motor, perceptual, and cognitive 

functions. Hemiplegia caused by stroke brings terrible burden on patients and their families, 

especially in the case of impaired upper extremity, because the lack of arm movement control 

unfavorably affects independence and the activities of daily living. Activity-based 

rehabilitation can help regain upper-limb motor functions. Rehabilitation can be made 

possible due to brain plasticity that refers to changes in neural pathways and synapses owing 

to changes in behavior, environment, neural processes, thinking, and emotions. 

Normally, (i) acute, (ii) sub-acute, and (iii) chronic phases are distinguished as after-event 

pathophysiological states of patients. Stroke patients should receive different therapies and 

treatments according to their individual condition in each phase. However, rehabilitation in 

the chronic phase is often neglected because of the limited resources of healthcare systems. 

Research has shown that, even in the case of a chronic stroke, the motor function of the upper-

limb can still be improved (Van der Lee et al., 1999), (Page et al., 2004). Evidence suggests 

that repetitive training (Kwakkel et al., 2007), (Krouchev and Kalaska, 2008), intensive use of 

the impaired limb (Wu et al., 1998), (Fisher & Sullivan, 2001), (Bach-y-Rita, 2003), task-

specific motion practice (Bayona et al., 2005), and high patient motivation and engagement 

(Bach-y-Rita et al., 2002), (Wood et al., 2003), (Johnson et al., 2005), (Langhorne et al., 

2011) are the factors influencing and the major opportunities for a brain plasticity-based 

motor recovery. 

Robot assisted rehabilitation systems were introduced some 30 years ago with the goal to 

assist physical therapists in providing consistent, repeatable training to stroke patients. 

Though these systems show promising results in providing assistance in specific rehabilitation 

exercises (e.g. gait rehabilitation), they have limitations in upper limb rehabilitation, where 
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task-oriented training exercises need to be practiced. It has been shown that patients must be 

actively engaged and must attempt to move in order to achieve positive outcome of robotic 

rehabilitation (Hogan et al., 2006), (Krebs et al., 2009). Recent research has focused on 

increasing patient engagement during rehabilitation exercise (Blank et al., 2014). However, 

there is no reliable solution to avoid mundane exercising that is prone to become a routine or 

even boring for the patients involved in current robotic rehabilitation. The motivation of this 

thesis is to develop a system that is capable to enhance the engagement of patients during 

robot assisted rehabilitation training of chronic stroke patients. 

2 Research domain and problem 

The first generation of the robot-assisted rehabilitation systems primarily includes robotic 

arms that assist the patients to do some motor exercises. Gamification of rehabilitation 

training is a proliferating approach of robot assisted stroke rehabilitation. The second 

generation of the robot-assisted rehabilitation systems includes assistive devices integrated 

with gamification or virtual reality that facilitates perceptive and cognitive training too. 

However, it is still not fully understood which factors (e.g. game difficulty, personal interest, 

game design, immersive environment) are the most influential on the engagement of patients, 

and how these factors can be managed by the system in order to maintain and enhance the 

patients’ engagement. Using a prototype system in experiments, it has been shown that an 

upper limb rehabilitation robot integrated with only video games (Figure 1) cannot fulfill the 

expectations to maintain engagement of the participants on a high level. Therefore, the 

intention of the reported PhD research was the aggregation of specific knowledge and the 

development of a cyber-physical computing enabled system, which goes beyond the second 

generation of rehabilitation systems by penetrating into the physiological processes with the 

aim of maintaining and 

enhancing the engagement of 

patients in robot assisted stroke 

rehabilitation. 

Engagement and stimulation of 

motor, sensory, and cognitive 

functions of patients are the 

primary goals of rehabilitation 

therapy. Since the patients are in 

different states, therapy 

programs personalized according 

to the individual needs of 

patients are needed. On the one 

hand, a personalized 

 

Figure.1 Upper limb rehabilitation robot integrated with 
video games 
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rehabilitation program requires insight into the actual engagement state and level of each 

patient during rehabilitation exercises and activities. On the other hand, it needs dedicated 

methods capable to select adequate engagement enhancing methods to maintain the 

engagement of patients. To get a proper insight in the actual engagement of patients, 

technologies capable to monitor and create computer representation of engagement are 

necessary. They should be able to convert and process signals obtained from monitoring 

devices of motor, sensory, and cognitive functions into meaningful computer representations. 

In this context, explorative research was conducted to identify what the most relevant, reliable 

and expressive indicators of engagement in completing motor, sensory, and cognitive 

functions were. To create reliable, consistent, and personalized models of patients’ 

engagement, both data elicitation and information processing aspects were considered. In our 

research, selection of engagement enhancing methods went beyond trial and error approaches. 

Instead of these, we preferred rigorous studies and experimentation with enabling hardware 

and software technologies and eventually applying machine learning techniques in order to 

fulfill the largest number of functional and technical requirements and expectations. The latter 

implied the need for systematic investigations of the applicability of various machine learning 

techniques in the context of engagement enhancement. 

According to the above analysis, the research problem of this PhD project was formulated as 

aggregation of specific knowledge and development of a cyber-physical computing enabled 

system, which goes beyond the current rehabilitation systems. By applying the principles of 

cyber-physical augmentation, it makes a robot assisted stroke rehabilitation capable to 

penetrate into the physiological processes of stroke patients with the aim of maintaining and 

enhancing their engagement at least on a short terms, i.e. during the rehabilitation exercises. 

In an ideal situation, a cyber-physical rehabilitation system would consist of a sophisticated 

physical part and a smart cyber part, which have balanced role and provide complementing 

functionalities for monitoring and enhancing engagement of stroke patients. However, 

conceptualization and implementation of such an ideal cyber-physical system is a huge 

challenge and goes beyond the possible scope and extent of a PhD study. It would involve 

both foundational and operative research, 

and hardware, software and cyberware 

development and integration. 

These altogether were deemed to be too 

complex and ambitious to get addressed in 

this PhD project. Consequently, a decision 

was made that the research would primarily 

focus on the cyber-part of the system, which 

has anyway not been sufficiently addressed 

in the studied literature (Figure 2). With the 

 

Figure.2 Research domain: cyber part with a 
minimal of physical part 
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intention of arriving at a manageable complexity and utility, the scope of research was defined 

so as to conduct extensive experimental studies and develop research means concerning the 

cyber part, and to provide only a minimal but proper physical part that allows the 

operationalization of the cyber part and makes it possible to test and validate its usability and 

utility in some practical cases. The functionality of the cyber part of the target system 

facilitates: (i) interaction with the patient, (ii) monitoring the patient’s status, and (iii) 

reasoning about a personalized approach to enhancing the engagement of different patients. 

The highlight of the work is smart adaptation of the stimulation strategies according to run 

time obtained data.  

3 Research vision, objectives, and hypotheses 

Cyber-physical systems (CPSs) are confluences of knowledge and technologies of computing 

and informing, and knowledge and technologies of physical artifacts and engineered systems 

towards situated intelligent operation and servicing as actors in human and social contexts 

(Horváth et al., 2014). CPSs consist of a digital cyber-part and analog physical-part, which are 

supposed to work together towards a high-level functional and structural synergy (Horváth 

and Gerritsen, 2012). In addition, the components of CPSs are knowledge-intensive and able 

to handle: (i) built-in formal knowledge, (ii) the knowledge obtained by sensors, and (iii) the 

knowledge generated by reasoning and learning mechanisms. Though most of the CPSs grew 

out from the merge of distributed systems and embedded systems, which are typically model-

based controlled, smart CPSs learns from and adapt themselves to varying situations based in 

their innate reasoning mechanisms. 

Our research vision was that a cyber-physical stroke rehabilitation system can enhance the 

engagement of patients. It is assumed that CPSs developed for situated smart operations 

should have built in mechanisms for sensing, reasoning, learning, adaptation, and actuation 

and/or informing. In addition to the capability of self-adaptation, smart CPSs can serve as 

actors in human and social context. When applied in the field of rehabilitation, they may act 

as artificial multi-agents and penetrate into real life human and environmental processes 

associated with stroke rehabilitation. Due to these characteristics and affordances of CPSs, a 

cyber-physical augmentation solution has enormous potentials to be integrated with robotic 

rehabilitation system and to enhance patient engagement during rehabilitation exercises in this 

manner. Based on the above research vision, the main research objective addressed in this 

PhD research was to cope with cyber-physical augmentation of assistive robotics-based 

rehabilitation, and to study the effectiveness of a cyber-physical solution in enhancing the 

engagement in stroke rehabilitation. The overall objective was decomposed into three sub-

objectives, driven by the following research questions: 

 What are the influencing factors and the causalities with regards to patient engagement in 

the context of robot assisted rehabilitation? 
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 What are those limitations of the current engagement enhancing methods, which result in 

inefficiency in terms of providing engaging training during robot-assisted rehabilitation? 

 How the system characteristics and the reasoning affordances of CPSs can enhance patient 

engagement during robot assisted rehabilitation? 

Thus, the first sub-objective was to identify the factors that influence engagement as well as 

to study the engagement enhancement opportunities (methods) and their effects on 

engagement. In order to evaluate the different engagement enhancing methods, there was a 

need to identify indicators and measures towards s quantitative evaluation of engagement. 

The second sub-objective aimed at identifying some of the major limitations of the current 

engagement enhancement approaches. Based on this knowledge, opportunities for cyber 

physical solutions could be identified and ideas could be formed about integrated robot-

assisted rehabilitation engagement enhancement techniques. 

The third sub-objective was to explore which characteristics and reasoning potentials of CPSs 

could be used for enhancing patient engagement during rehabilitation. Based on the identified 

opportunities, a first manifestation of the cyber part of the target CP-SRS has been 

conceptualized, implemented in a testable form, and functionally validated. The target cyber-

physical stroke rehabilitation system exploits cyber-physical computing and demonstrates the 

benefits of a CPS solution in enhancing engagement. 

Based on the objectives and the research questions, the research hypothesis is that the CP-SRS 

is able to enhance the patient engagement in robot assisted rehabilitation. This hypothesis is 

decomposed to three sub-hypotheses:  

 There are reliable indicators to represent the engagement from the motor, perceptive, 

cognitive and emotional aspects.  

 There are technologies that can reliably measure the level of engagement in these four 

aspects. 

 There are cyber-physical computation-based engagement enhancing methods that can be 

applied to maintain and enhance the patient engagement. 

4 Overall research approach 

Due to the variety of objectives and contexts, a multi-methodological framing was applied to 

set up the research design. The whole of the PhD research project was divided into five 

interrelated research cycles (RCx) as it is shown in Figure 3. Each cycle had its own 

objective, context, and framing methodology. For this purpose, the methodological framing 

theory, proposed by Horváth (2013), has been applied. 

In research cycle 1, the objective was to collect information about the current state of 

knowledge and art concerning engagement in rehabilitation. To achieve this, we aggregated 
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knowledge about existing models of engagement, the various manifestations of engagement, 

the current state of engagement enhancement methods and tools, and the opportunities of 

influencing enhancement of stroke patients.  

In research cycle 2, a prototype was developed in order to understand the limitations of the 

current engagement enhancing methods from a practical perspective. The prototype is an 

upper limb rehabilitation robot integrated with video games and used in the conducted 

experiment. The experiment concentrated on exploring the influence of complementing this 

robotic upper limb rehabilitation system with video games on the engagement of the 

participants. The findings were combined with the findings of the theoretical investigations in 

research cycle 1, and were used to create a robust knowledge platform for conceptualization 

of the whole and the smart reasoning mechanism of our cyber-physical stimulating 

rehabilitation system (CP-SRS) proposal.  

In research cycle 3, the concept of the smart reasoning components of the CP-SRS was 

developed and concept feasibility testing has been carried out. CP-SRS includes multiple 

functional components, which have been defined and integrated. The learning and reasoning 

 

Figure.3 Methodological framing  
(Meaning of the letters are: E: exploration, I: induction, D1: deduction, J: justification, V: validation, G: 
generalization, C: conceptualization, D2: detailing, P: prototyping) 
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mechanisms were created. A 

computer simulation was conducted 

to study the feasibility of the smart 

learning mechanism (SLM) as part of 

the cyber physical augmentation.  

In research cycle 4, a tangible 

prototype of the concept was 

implemented. Experiments were 

conducted to test if the identified 

indicators for engagement can 

represent the actual level of 

engagement. In this pre-medical 

experiments, the goal was to 

characterize the range and accuracy of the engagement indicators by influencing the subjects 

into different engaged states. Different setups were created to mimic the situations in which 

the subject was in engaged, unengaged, or neutral engagement state. Our assumption was the 

measurement of the indicator could reflect subject’s engaged state.  

In research cycle 5, More pre-medical experiments were conducted to test the system from the 

perspective of two assumptions: (i) if the stimulation strategies can maintain and enhance the 

level of engagement, and (ii) if the effects of the stimulation strategies on the level of 

engagement can be captured by smart learning mechanism. 

were used to create a robust knowledge platform for conceptualization of the whole of the 

proposed cyber-physical stimulating rehabilitation system (CP-SRS) and its smart reasoning 

mechanisms. 

5 Review on therapeutic engagement and current limitations in 
engagement enhancing methods 

In research cycle 1, a literature survey was conducted in order to collect information about the 

current state of knowledge and art concerning engagement in rehabilitation. In addition to 

focusing on definitional and conceptual issues, we intended to aggregate knowledge about 

existing models of engagement, the various manifestations of engagement, the current state of 

engagement enhancement methods and tools, and the opportunities of influencing 

enhancement of stroke patients. Together with the investigation of the current day practical 

limitations, which was presented and discussed in research cycle 2, this knowledge can be 

used to create a theoretical platform and conceptual framework for our support system 

development objectives. 

 

Figure.4 Reasoning model used in the survey 
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Shown graphically in Figure 4, these perspectives were used to frame and provide a reasoning 

model over the knowledge domains of importance for our explorative survey. These 

knowledge domains are mutually connected and the interconnections have been considered at 

drawing our conclusions. The first domain of interest is engagement models that have been 

discussed in the literature in various contexts, such as engagement increase by gamification, 

enhancement of engagement in education, social and cognitive engagement, and engagement 

in therapeutic context. The variety of the models is large, ranging from theoretical through 

conceptual and procedural models to operation models. The second domain of interest is 

influencing factors, which play a role in therapeutic engagement in stroke rehabilitation and 

within which the human-related ones play an important role. Actually, we concentrated 

mainly on these human-related factors in our review. We observed that the overwhelming 

majority of engagement models were probably defined by considering a set of fundamental 

influencing factors. We imposed a classification on the derived set of influencing factors so as 

motor, perceptive, cognitive, and emotional. This created an interrelationship between the 

engagement models and the influencing factors. The third domain of interest is enablers of 

engagement enhancing. Various engagement enhancing systems have been developed 

considering the influential factors, (i) virtual reality-based environments/systems, (ii) 

personalized treatment systems, and (iii) cyber-physically supporting systems. 

Based on our literature study we argue that gamification is still a proliferating approach in 

robot assisted stroke rehabilitation. But the literature study also demonstrated that the rapidly 

emerging and proliferating field of cyber-physically supporting rehabilitation systems 

provides opportunities for: (i) self-adaptive personalized treatment, (ii) monitoring and 

evaluation of engagement, (iii) creating synergy between real life cyber and physical 

processes. We concluded that most of the current personalized treatments consider the 

patient’s motor capability or performance only. Nevertheless, perceptive, cognitive, and 

emotional factors also influence engagement – a fact implies that comprehensive 

personalization methods are needed in rehabilitation. Possible stimulation strategies for 

enhancing engagement were also identified in the aforementioned four aspects. 

According to the literature review, there are three main limitations in the current engagement 

enhancing approaches, namely: (i) they typically consider only one form of engagement of the 

four identified forms (motor, perceptive, cognitive, and emotional), (ii) there is no reliable 

solution to engage the patients because current rehabilitation systems fail to deliver a fully 

personalized training, and (iii) no quantitative measurement of engagement is available in the 

current rehabilitation practice. Since CPSs offer the affordances of multi-sensor networking, 

generation of problem solving strategies, conducting situational learning, and synergistic 

coupling cyber and physical processes, they have the potential to improve the efficacy of 

rehabilitation based on personalized enhancement of engagement.  
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The main objective of research cycle 2 was to understand the limitations of current 

engagement enhancing methods in practice. To this end, an upper limb rehabilitation robot 

integrated with video games was designed and realized. Another goal was to understand 

which factors in the gamification method make the video game exercise engaging. Therefore, 

three exercises, namely: (i) video game exercise, (ii) tracking exercise, and (iii) traditional 

exercise were conducted, and the engagement states and levels of the participants during each 

exercise were compared. Combining the results of the survey of the current 

theoretical/methodological state of the art with the limitations found in the experimental 

investigation, we can conclude that: 

 Gamification is not enough for maintaining engagement. When the subjects are becoming 

familiar with the exercise, their engagement decreases. Therefore, the stimulation strategies 

identified in research cycle 1 should be considered as interventions to maintain and 

enhance engagement during rehabilitation exercises. 

 Personalized treatment is needed to engage the patients. The results of the experimental 

study also showed that different factors, such as increasing versatility of movements, 

providing continuous feedback, involving cognitive tasks, introducing competiveness or 

challenge in the training tasks, and introducing challenges in both motor and cognitive 

aspects, have different effects on different subjects. For each and every stroke patient, the 

parameters of the influential factors have to be tailored according to their interests and 

capabilities. Therefore, personalized stimulation strategies are needed to enhance 

engagement of the stroke patients during rehabilitation training exercises. 

 A major limitation in this field is that there is no quantitative method to evaluate 

engagement. In this experiment, based on the relationship between engagement level and 

muscle activity, normalized EMG can be used as the indicator to represent engagement 

level of the muscle activities during rehabilitation exercise. This enables the rehabilitation 

system can monitor the status of the subjects and apply the interventions when the 

engagement level decreases. 

 

6 The essence of the concept 

In order to eliminate the limitations identified with regards to the current engagement 

enhancing methods, the overall functional requirements for the CP-SRS were defined as 

follows: (i) provide proper intervention were needed to maintain the engagement when the 

engagement level decreases, (ii) evaluate the engagement whenever is needed in order to 

determine when to apply the interventions, and (iii) provide adapted interventions for different 

patients. The CP-SRS was conceptualized according to these stated requirements. 

Architecturally, the CP-SRS is composed of five subsystems, namely of: (i) an assistive 
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robotic subsystem, (ii) a 

gamification subsystem, (iii) an 

engagement monitoring 

subsystem, (iv) a smart learning 

mechanism (SLM), and (v) an 

engagement enhancement 

subsystem (EES) (Figure 5). As 

its name implies, the assistive 

robotic subsystem supports the 

stroke patients during the 

execution of the physical 

exercises in the rehabilitation 

program in order to compensate 

for deficits in their motor 

function disability. The main 

function of the cyber-physical 

augmentation of the robotic 

system is to enhance the 

patient’s engagement by 

introducing interventions during rehabilitation exercises. The gamification subsystem 

integrates video games with the training exercises and enables human-computer interaction. 

To determine the point in time of introducing the interventions, the engagement monitoring 

subsystem EMS monitors patient’s engagement level. 

Basically, when the patient’s engagement level decreases, the system introduces interventions. 

Through the interventions it is able to re-engage the patients and maintain a high level 

engagement of the patient. The interventions introduce stimulations in motor, perceptive, 

cognitive, and emotional aspects, depending on the actual state of the patient. Stimulation 

strategies are created as a combination of stimulations in multiple aspects. It is the task of the 

EES to apply the stimulation strategies by adjusting a bundle of parameters of the training 

exercises. There are several modes of stimulations in each aspect. Based on the knowledge it 

has learnt in the previous cases, the SLM is able to determine which stimulation strategy is the 

most relevant in a given case and situation, and to make suggestions on which stimulations to 

apply. In the next section, a detail description of the concept and prototype of the EMS, SLM, 

and EES system modules is presented. 

7 Detail description of the concept 

Considering the factors influencing therapeutic engagement, four types of engagement were 

defined and indicators for different types of engagement have been identified for the EMS 

 

Figure.5  Cyber-physical stroke rehabilitation system 
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(Figure 6). According to these 

indicators, engagement can be 

measured by sensors by the EMS 

during rehabilitation exercises. Motor 

engagement (ME) is defined as a state 

in which the patient moves with active 

and effortful motion. It has been 

recognized that it can be quantified as 

the root mean square (RMS) of the 

EMG signal divided by the velocity of 

the movement.  

Perceptive engagement (PE) is defined 

as sensory concentration, such as 

visual, auditory and tactile. Visual 

engagement is evaluated as the distance between the position of patient’s gaze and the 

position of the screen changes (sc), since the patient should concentrate on the display unit 

and interact with the video game. Cognitive engagement (CE) is considered as proportional 

with the level of concentration at performing cognitive tasks. Research has offered the 

formula shown in Figure 6 for determining indicator of cognitive engagement based on α, β 

and θ waves of brain signals that are highly correlated with the cognitive engagement of the 

patient (Pope, et al., 1995). Emotional engagement (EE) is defined as the degree of emotional 

involvement during the exercise. If the exercise can influence the patient’s emotion, then it 

means that the patient is emotionally more engaged in the exercise. If the patient is 

emotionally engaged, the dominant emotion will change due to some different events in the 

game exercise. The indicator of the emotional engagement has been defined as the ratio 

between time duration when positive emotion is dominant and the time duration when 

negative emotion is dominant. 

A smart learning mechanism (SLM) with a four stage workflow was conceptualized as 

illustrated by Figure 7. In the first stage, the system applies pre-programmed stimulation 

strategies, such as (i) change of the difficulty level of the motor tasks, (ii) change in the 

patient’s sensory feedback, (iii) different cognitive tasks, or (iv) change in the competition or 

cooperation feature in the game exercises. The system monitors the engagement level of the 

patient and the SLM records the effect of applying the stimulation strategies in each aspect of 

engagement. 

The data collected in the first stage are used to train the learning mechanism in the next stage. 

As shown in Figure 7, the inputs of the learning mechanism are the patient’s profile/data and 

the changes of the level of engagement. The outputs of the learning mechanism differ in 

 

Figure.6 Engagement indicators 
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regression mode and in classification mode. In regression mode, the outputs are the changes 

of the parameters. In classification mode, the outputs are a combination of stimulations. The 

patient profiles provide a kind of context information about the patients. The advantage of 

using patient profiles is that the learning mechanism can retrieve stimulation strategies, which 

have proven to be effective in the case of some previous patients, when another patient with 

similar profile uses the system. For a patient with the same patient’s profile, the differences of 

the outputs generated by the learning mechanism are normally caused by the differences in 

the intended engagement levels. 

In the third stage, the system applies the trained learning mechanism to recommend suitable 

combinations of stimulations based on the patient’s profile and the intended change in 

engagement level. The intended engagement level is set by the system in line with the 

objective of enhancing the engagement in more than one aspect. In the fourth stage, the 

effects of the recommended stimulation strategies on the engagement level are recorded. 

These changes are used as additional input for refining the knowledge of the trained learning 

mechanism. 

8 Implementation of a testable prototype 

Figure 8 shows the prototype of the cyber-physical augmentation part of the CP-SRS. Its 

Figure.7 The reasoning scheme of SLM 
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overall functioning was tested 

in a specific experimental set 

up. The rehabilitation therapy 

exercise was played with the 

computer mouse, which was 

integrated with the upper limb 

rehabilitation robot. The 

indicators for: (i) ME, (ii) PE, 

(iii) CE, and (iv) EE were 

monitored using: (i) MYO 

Armband with 

electromyographic sensors, (ii) 

Eyetribe eye tracking device, (iii) Emotiv Epoc headset (14 channel wireless EEG device), 

and (iv) a web camera, and Insight device, respectively. The data from these sensors were 

streamed to MATLAB via TCP/IP computer network transmission control protocol, where the 

engagement levels in the four aspects were interpreted. 

The architecture of this cyber-physical augmentation system is shown in Figure 9. It includes 

four layers of hardware, software, cyberware, and service components. The first layer 

includes commercialized hardware components capable to monitor the activities and 

physiological characteristics of patients. Because of the need for a two-strand parallel 

computation, two regular PC computers were used for the implementation of the prototype. 

One of them was used for visualization, and the other for monitoring. The MYO, Eyetribe, 

Emotiv Epoc devices, and the webcam were used to monitor the patient’s (i) muscle activities, 

(ii) eye movement, (iii) brain activities, and (iv) facial expressions of emotion, respectively. 

The second layer, which includes third party software SDKs provided together with the 

hardware components, converts the measured signals into a time stamped data stream. The 

data are streamed from the Visual Studio and Processing to MATLAB via TCP/IP network. 

The software, implemented in MATLAB, processes the data and computes the actual 

engagement levels. 

Based on the analysis of the current engagement level, the learning mechanism makes 

suggestions on the most suitable stimulation strategies to apply when the engagement is 

decreasing. The cyberware included in the cyber-physical augmentation subsystem consists of 

application software and database components. These handle (i) the engagement profile, (ii) 

the personal profile, (iii) the stimulation strategies, and (iv) contents learned by the learning 

mechanism. In the fourth layer, the recommendation mechanism of the CP-SRS can be found. 

It makes suggestions on the suitable stimulation strategies. This mechanism is integrated with 

the rehabilitation robot in order to apply various stimulation strategies by the means of 

adjusting the parameters in the robot assisted training. The typical adjustments are such as (i) 

Figure.8 Prototype of the cyber physical augmentation 
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the assisting force from the robotic arm, (ii) the threshold of the force sensor on the user 

interface, and (iii) the size of the moving space. 

The overall operation flow of the system can be decomposed to four operation stages, called 

(i) preparatory, (ii) monitoring, (iii) stimulation suggestion, and (iv) stimulation application 

stages (Figure 10). In the preparatory stage, the physical therapist assists the patient to put on, 

start, and calibrate the devices, and to start the program to monitor the engagement status. In 

the next stage, the patient’s engagement levels are monitored during the game exercises. In 

the third stage, the trained SLM suggests stimulations if the engagement level decreases. In 

the fourth stage, the stimulations are applied and the patient continues with the adjusted 

exercise. Additionally, when the stimulations have been applied, the effectiveness of the 

stimulation is evaluated and used to refine the contents learned by the SLM to make it more 

accurate. 

9 Validation of the prototypes part of the system 

To validate the research hypotheses, pre-medical experiments were conducted. First, 

Experiment II was conducted to individually test modules of monitoring motor, perceptive, 

 

Figure.9 Architecture of the cyber-physical augmentation subsystem 
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cognitive and emotional engagement, and to validate if the EMS can determine the actual 

engagement of the participant. Experiment III aimed at validating the cyber-physical 

augmentation part of the CP-SRS from two aspects: (i) effectiveness of the stimulations in 

enhancing the engagement of the participants, and (ii) learning capabilities and limitations of 

the SLM subsystem concerning its ability to capture the relationship between the changes in 

the engagement and the applied stimulation strategies. In these experiments, within subject 

design was used because the measurements are very much dependent on the different 

participants. 

(1) Validation of engagement indicators 

Different experimental setups were created to mimic the situations in which the subject was in 

(i) engaged, (ii) unengaged, and (iii) neutral state. In the experiment conducted to validate the 

motor engagement indicator, the set ups were different. For instance, in the set up related to 

the engaged state, the participant was required to move his hand with an accuracy 

requirement. In the set up related to the neural state, the task was to move without any 

accuracy requirement. Finally, in the set up related to the unengaged state, the participant did 

not make any voluntary movement, but was driven by the experimenter to move passively. 

These setups were managed according to the implications of the definition of engagement in 

 

Figure.10 The four operational stages included in the operation flow 
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perceptive, cognitive, and emotional aspects. Various non-impaired participants were 

recruited to do the exercises in each setup. The results have shown that there were significant 

differences in the measured indicators of the motor, perceptive, and cognitive aspects 

comparing the results of the different experimental set ups. We can argue that the objective of 

the experiments i.e. testing if the proposed indicators can properly reflect changes in the 

engagement in different set ups, was achieved. This means that the proposed indicators can be 

used to represent the engagement of the participants during rehabilitation exercises, and that 

the implemented EMS could capture the actual (momentarily) engagement of the participants. 

(2) Validation of the stimulation strategies 

In Experiment III, the engagement of the participants was measured and compared before and 

after applying different stimulations. The stimulations were applied both individually and in 

combinations during practicing with two game exercises, which were orientated towards 

motor exercise and cognitive exercise, respectively. Within subject ANOVAs suggested that: 

(i) the tested strategies of motor stimulation, cognitive stimulation, and emotional stimulation 

were validated to be effective (i.e. they sufficiently increased the engagement in the motor, 

cognitive, and emotional aspect, respectively), (ii) SSs that involved coupled cognitive 

stimulation and emotional stimulation were able to increase the cognitive and emotional 

engagement concurrently, (iii) the tested stimulation strategies had similar effects on 

cognitive engagement and emotional engagement in both game exercises, and (iv) the 

participants tended to express positive emotions concerning the changes of the game exercise 

according to the effects of the stimulation strategies on the emotional engagement. 

(3) Validation of the SLM 

The data from Experiment III were used to test the training of the two reasoning mechanisms 

of the SLM, that are: (i) the neural network (NN), and (ii) the Naive Bayes (NB). The 

accuracy of the suggestions made by the NN-based and NB-based reasoning mechanisms of 

the SLM based on the test data set was 88.9% and 77.8%, respectively. In our application 

context, the NN-based SLM was more suitable for the purpose of learning the effects of and 

recommending personalized stimulation strategies, than the NB-based SLM. The results 

concerning the accuracy of recommendations entail that the reasoning mechanisms can better 

capture the changes caused by the stimulation strategies if the data show some patterns. 

Independent of the inputs, the NN-based SLM may recommend multiple alternative 

stimulation strategies that may cause the same effect on the change of engagement. In general, 

this would be considered as a misclassification made by the neural network. However, in our 

application context, this could be interpreted as an appropriate recommendation if the 

concerned stimulation strategy indeed achieves the goal of increasing the specific aspects of 

engagement. As a conclusion we argue that the NN-based reasoning mechanism considered in 

our prototype subsystem is a robust solution for the tasks. 
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10  Constraints on the research conduct 

Since the focus of this research was on the cyber part of the whole system, we have not fully 

integrated the implemented system with the upper limb rehabilitation robot. Consequently, 

there was no clinical testing planned with stroke patients. However, the completed research 

was sufficient to show that the developed cyber-physical augmentation system can be used 

effectively in enhancing the engagement of healthy subjects during game exercises. In 

addition, the self-adaptive mechanism of the system is able to adjust stimulations strategies to 

different user profiles. It is expected that these mechanisms will have similar efficacy when 

applied in the case of stroke patients. Although one may argue that the indicators of the 

engagement of the stroke patients may be different, it has been shown that the system is 

capable to calibrate itself to capture the engagement profile of patients and to learn the effects 

of various stimulations on their engagement. Therefore, we are confident that this system can 

be utilized in the case of actual stroke rehabilitation and it will be proven in the follow up 

research work. 

11  Conclusions, propositions and future work 

Due to the characteristics and affordances of cyber-physical systems, cyber-physical 

augmentations can be integrated with robot assisted rehabilitation systems in order to enhance 

the engagement of patients during rehabilitation exercises. Based on the identified limitations 

in the current engagement enhancing methods, functionalities and architectural elements of 

the cyber-physical augmentation subsystem were identified, namely: (i) multi-sensor network, 

which can monitor patient’s status, (ii) real time information processing, which can process 

and interpret the real time signals and generate engagement models, (iii) adaptive and 

personalized reasoning, which can provide adaptive stimulations for different patients, and 

(iv) automated problem solving and situational learning capability, which can automatically 

solve the problems based on learning. These functionalities and system components have been 

conceptualized and implemented in the CP-SRS at a testable prototype level. 

The implemented engagement monitoring subsystem of the CP-SRS can monitor the patient’s 

engagement level in the motor, perceptive, cognitive, and emotional aspects using MYO 

Armband, the Eyetribe, the Emotiv EPOC headset, and the Insight device, respectively. 

Having realized the prototype of the EMS subsystem, we developed and conducted a series of 

experiments to validate the functionality of this implementation. In the experiments, different 

setups were used to mimic the engaged, normal, and unengaged situations. The results 

showed that the proposed indicators for evaluation motor, perceptive, cognitive, and 

emotional engagement were correct and able to distinguish different engaged statuses. 

Another experiment was conducted in order to validate the functionality of the stimulation 

strategies and learning mechanism. In the experimentation, different stimulation strategies 

were applied and the changes in the engagement levels were recorded. The analyses of the 
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data demonstrated the effectiveness of several stimulation strategies in enhancing engagement, 

and more importantly, the learning mechanism was able to learn the relationship between the 

applied stimulation strategies and changes in the engagement level. This means that the 

learning mechanism is able to support a self-adaptive and personalized solution for different 

patients based on analyzing the data obtained in the monitoring and stimulation processes. 

Based on the work and the results, we were able to derive the following propositions: 

Proposition 1: It has been found that the ratio of the root mean square of the measured 

EMG signal and the velocity of motion of the human limb is a reliable 

indicator of motor (function) engagement. ∆ 

Proposition 2: The indicators introduced for measuring the motor, perceptive, cognitive, 

and emotional engagement should be considered together to determine an 

optimal stimulation strategy and should be interrelated in order to form a 

distinct measure. ∆ 

Proposition 3: Though the motor, perceptive, cognitive, and emotional engagement 

indicators provide a robust basis for developing stimulation strategies, 

there is also a need for considering the personal profile of the patient. ∆ 

Proposition 4: Neural network-based smart learning mechanism is able to learn the effects 

of the different stimulations strategies on different persons and to propose 

personalized enhancement. ∆ 

Proposition 5: Self-adaptive and personalized training in rehabilitation achieved by 

continuous monitoring and smart learning can significantly increase the 

efficacy of stroke rehabilitation. ∆ 

Proposition 6: The identified engagement indicators can be useful not only for enhancing 

engagement, but also to understand the limitations of the current 

engagement enhancing methods. ∆ 

Proposition 7: A cyber-physical system oriented solution can successfully penetrate into 

the rehabilitation processes, which cannot be controlled otherwise. ∆ 

Proposition 8: Although the methodology developed for monitoring and enhancing 

engagement is dedicated for rehabilitation, this approach can be used in 

other fields as well, such as sports, driving, and education. ∆ 
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SAMENVATTING 

CYBER-FYSISCHE OPLOSSING VOOR EEN 
REVALIDATIESYSTEEM OM DE TOEWIJDING VAN DE 
PATIËNT TE BEVORDEREN 

Beroerte (cerebrovasculair accident, CVA) blijft een van de meest voorkomende oorzaken 

van beperkingen bij volwassenen. Wie een beroerte overleeft heeft vaak te kampen met 

verscheidene gebreken die de motorische, perceptuele en cognitieve vaardigheden 

verminderen. Halfzijdige verlamming veroorzaakt door een beroerte legt een zware last op 

patiënten en hun familie - vooral als een van de bovenste ledematen getroffen is, daar het 

gebrek aan bewegingscontrole over de arm een ongunstige invloed heeft op functionele 

onafhankelijkheid en de algemene dagelijkse levensverrichtingen. Op activiteit gerichte 

revalidatie kan helpen om de motoriek van de arm te herstellen. Dit is mogelijk dankzij 

hersenplasticiteit, d.w.z. veranderingen in zenuwbanen en synapsen die optreden als gevolg 

van veranderingen in gedrag, omgeving, neurale processen, denkprocessen en emoties. 

Om fysiotherapeuten te ondersteunen in het consequent en reproduceerbaar trainen van 

beroertepatiënten zijn ongeveer 30 jaar geleden gerobotiseerde revalidatiesystemen ingevoerd. 

Hoewel zulke systemen veelbelovend blijken in het ondersteunen van specifieke 

revalidatieoefeningen (bijv. looptherapie) zijn ze maar beperkt inzetbaar voor armtherapie, 

waarbij taakgerichte handelingen moeten worden geoefend. Voor patiënten die met de huidige 

robotvoorzieningen revalideren bestaat vooral geen betrouwbare oplossing om te voorkomen 

dat alledaagse oefeningen verworden tot routine, of zelfs als vervelend worden ervaren. Dit 

proefschrift is gemotiveerd door de wens om een systeem te ontwikkelen dat de toewijding 

van beroertepatiënten bij robotondersteunde revalidatietraining moet bevorderen.  

Het hier gerapporteerde onderzoek beoogde te verkennen hoe cyber-physical computing bij de 

huidige robotondersteunde revalidatiesystemen de toewijding van de patiënt kan bevorderen. 

Principes van cyber-fysische augmentatie maken het bij robotondersteunde revalidatie 

mogelijk om binnen te dringen in de fysiologische processen van patiënten om zo hun 

toewijding vast te houden en te vergroten. Het hoofddoel van dit promotieonderzoek was 

cyber-fysische augmentatie toe te passen op robotondersteunde revalidatie, en te onderzoeken 
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hoe effectief een cyber-fysische oplossing bijdraagt aan het bevorderen van de toewijding van 

de patiënt. 

Vanwege de verscheidenheid aan doelstellingen en contexten is voor een multi-

methodologische opzet van het onderzoeksontwerp gekozen. Het hele promotietraject werd 

daartoe onderverdeeld in vijf onderling gerelateerde onderzoekscycli. 

Doel van de eerste onderzoekscyclus was het verzamelen van informatie en kennis omtrent 

bestaande modellen die toewijding beschrijven, de verschillende manieren waarop toewijding 

zich kan manifesteren, de huidige stand van methoden en tools om toewijding te bevorderen, 

en mogelijkheden om de toewijding bij beroertepatiënten te beïnvloeden. Er werd 

geconstateerd dat er gebrek aan kennis is over de factoren die toewijding bij therapie bepalen, 

en over het beoordelen van de toewijding. 

In de tweede onderzoekscyclus werd een prototype ontwikkeld van een armrevalidatierobot, 

die werd gebruikt in een experiment dat vanuit een praktisch oogpunt inzicht moest bieden in 

de beperkingen van de huidige methoden voor het bevorderen van toewijding. Het experiment 

richtte zich op verkenning van de factoren die toewijding bij robotondersteunde 

armrevalidatie beïnvloeden. De bevindingen van onderzoekscycli 1 en 2 duidden erop dat er 

het ontwikkelen van een cyber-fysisch stimulerend revalidatiesysteem (cyber-physical 

stimulating rehabilitation system, CP-SRS) dat motorische, perceptuele en cognitieve 

patiënttoewijding kan monitoren, nieuwe mogelijkheden biedt om de toewijding van patiënten 

te bevorderen, bepaalde aspecten van die toewijding te versterken door stimulatiestategieën 

toe te passen, en het effect van stimulatiestrategieën op de patiënt vast te stellen. 

Uitgaand van de beperkingen vastgesteld bij de huidige methoden om toewijding te 

bevorderen, werden in de derde onderzoekscyclus de methoden, functionaliteiten en 

elementen voor de architectuur van het deelsysteem voor cyber-fysische-augmentatie bepaald, 

te weten: (i) een multisensornetwerk dat de toewijdingstoestand van de patiënt kan monitoren, 

(ii) informatieverwerking die de signalen real-time kan afhandelen en interpreteren en tevens 

modellen kan genereren die de toewijding beschrijven, (iii) adaptieve logica die kan voorzien 

in patiëntspecifieke adaptieve stimulaties, en (iv) geautomatiseerde probleemoplossing 

gebaseerd op situationeel zelflerend vermogen. Er is een concept ontwikkeld voor slimme 

logicacomponenten waarvan de haalbaarheid getoetst is. Verder is computersimulatie 

uitgevoerd om de haalbaarheid te toetsen van het slimme leermechanisme (SLM) als 

onderdeel van de cyber-fysische augmentatie. De resultaten lieten zien dat SLM gebaseerd op 

zowel neurale netwerktechnologie en SLM gebaseerd op naïeve Bayes-classificatie beide in 

staat zijn het verband te leren leggen tussen de gesimuleerde stimulaties en de veranderingen 

in de mate van toewijding. 

In de vierde onderzoekscyclus werden de vastgestelde functionaliteiten en systeem-

componenten geconceptualiseerd en geïmplementeerd in het CP-SRS tot op het niveau van 



189 

testbaar prototype. Na realisatie van een prototype van het toewijdingsmonitoringsysteem 

(engagement monitoring subsystem, EMS) is er een reeks experimenten opgezet om de 

functionaliteit van deze implementatie te valideren. Het doel van deze nog niet in medische 

context uitgevoerde experimenten was het bereik en de nauwkeurigheid van de 

toewijdingsindicatoren te karakteriseren door proefpersonen in verschillende 

toewijdingstoestanden te brengen. Verschillende opstellingen werden opgezet om situaties na 

te bootsen waarin de proefpersonen in een toestand van resp. verveeld, neutraal en toegewijd 

terechtkwamen. Aangenomen werd dat in de toegewijde toestand de meetwaarden voor de 

indicatoren voor motorieke en cognitieve toewijding hoger zouden zijn en die voor 

perceptuele toewijding lager, in vergelijking met de neutrale en de verveelde toestand. De 

resultaten toonden aan dat de voorgestelde indicatoren om de motorische, perceptuele en 

cognitieve toewijding te toetsen correct waren, en het onderscheiden van verschillende maten 

van toewijding mogelijk te maken. 

In de vijfde onderzoekscyclus werd nog een experiment uitgevoerd om de functionaliteit van 

de stimulatiestrategieën en het zelflerende mechanisme te valideren. In het experiment werden 

verschillende stimulatiestrategieën, zoals het opleggen van een motorische uitdaging, het 

aanpassen van sensorische feedback, het opleggen van een cognitieve uitdaging, en het 

inbrengen van een competitie-element toegepast, en de veranderingen in de mate van 

toewijding werden vastgelegd. De resultaten toonden het effect van stimulatiestrategieën bij 

het bevorderen van specifieke aspecten van toewijding. Bovendien werd aangetoond dat het 

slimme zelflerende mechanisme in staat was het verband te leren leggen tussen de toegepaste 

stimulatiestrategieën en de veranderingen in mate van toewijding. Deze bevindingen bewijzen 

dat het zelflerend mechanisme kan helpen een zelf-adaptieve en geïndividualiseerde oplossing 

te bieden voor patiënten met verschillende capaciteiten en interesses op basis van analyse van 

de data verkregen in het monitorings- en stimulatieproces. 

Op basis van dit werk en de resultaten konden de volgende stellingen worden afgeleid: 

Proposition 1. De verhouding tussen het kwadratisch gemiddelde van het gemeten EMG-
signaal en de bewegingssnelheid van de menselijke ledemaat vormt een 
betrouwbare indicator voor motorische toewijding.  

Proposition 2. De voor het meten van motorische, perceptuele, cognitieve en emotionele 
toewijding ingevoerde indicatoren moeten tezamen worden beschouwd om 
een optimale stimulatiestrategie vast te stellen, en ze moeten wederzijds met 
elkaar in verband worden gebracht om een afzonderlijke meetwaarde te 
vormen. 

Proposition 3. Hoewel de indicatoren voor motorische, perceptuele, cognitieve en 
emotionele toewijding een solide basis vormen voor het ontwikkelen van 
stimulatiestrategieën, is het ook nodig om het persoonlijke profiel van de 
patiënt te beschouwen. 
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Proposition 4. Het slimme zelflerende mechanisme gebaseerd op neurale netwerken kan 
zich de effecten van de verschillende stimulatiestrategieën op verschillende 
personen aanleren, en geïndividualiseerde verbeteringsvoorstellen doen. 

Proposition 5. Zelf-adaptieve en geïndividualiseerde training bij revalidatie door middel 
van continu monitoren en slimme zelflerendheid kunnen in significante mate 
de effectiviteit van revalidatie na beroerte verhogen. 

Proposition 6. De vastgestelde indicatoren voor de mate van toewijding kunnen niet alleen 
nuttig zijn om toewijding te bevorderen, maar ook om de beperkingen van 
de huidige methoden voor verbetering van toewijding te begrijpen 

Proposition 7. Een cyber-fysisch-systeemgerichte oplossing kan succesvol doordringen in 
revalidatieprocessen die op geen andere manier kunnen worden beheerst. 

Proposition 8. Hoewel de methodologie ontwikkeld om toewijding te monitoren en te 
verbeteren toegespitst is op revalidatie kan deze aanpak ook worden 
gebruikt in andere gebieden zoals sport, autorijden en onderwijs 

 
 


