
Software-Based Geometry Operations for
3D Computer Graphics

Mihai Simaa, Daniel Iancub, John Glossnerb,c, Michael Schulted, and Suman Mamidid

aUniversity of Victoria, Department of Electrical and Computer Engineering,
P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6, Canada

e-mail: msima@ece.uvic.ca
bSandbridge Technologies, Inc., 1 North Lexington Avenue, White Plains, NY 10601, U.S.A.

e-mail: {DIancu,JGlossner}@sandbridgetech.com
cDelft University of Technology, Department of E.E.M.C.S., Delft, The Netherlands

dUniversity of Wisconsin-Madison, Department of Electrical and Computer Engineering,
1415 Engineering Drive, Madison, WI 53706, U.S.A.

e-mail: schulte@engr.wisc.edu, mamidi@cae.wisc.edu

ABSTRACT

In order to support a broad dynamic range and a high degree of precision, many of 3D renderings fundamental algorithms
have been traditionally performed in floating-point. However, fixed-point data representation is preferable over floating-
point representation in graphics applications on embedded devices where performance is of paramount importance, while
the dynamic range and precision requirements are limited due to the small display sizes (current PDA’s are 640 × 480
(VGA), while cell-phones are even smaller). In this paper we analyze the efficiency of a CORDIC-augmented Sandbridge
processor when implementing a vertex processor in software using fixed-point arithmetic. A CORDIC-based solution for
vertex processing exhibits a number of advantages over classical Multiply-and-Acumulate solutions. First, since a single
primitive is used to describe the computation, the code can easily be vectorized and multithreaded, and thus fits the major
Sandbridge architectural features. Second, since a CORDIC iteration consists of only a shift operation followed by an
addition, the computation may be deeply pipelined. Initially, we outline the Sandbridge architecture extension which
encompasses a CORDIC functional unit and the associated instructions. Then, we consider rigid-body rotation, lighting,
exponentiation, vector normalization, and perspective division (which are some of the most important data-intensive 3D
graphics kernels) and propose a scheme to implement them on the CORDIC-augmented Sandbridge processor. Preliminary
results indicate that the performance improvement within the extended instruction set ranges from 3× to 10× (with the
exception of rigid body rotation).

1. INTRODUCTION

Multimedia applications for 3D graphics such as computer animation, video games, medical imaging, scientific visualiza-
tion and simulation, virtual reality, CAD tools etc. have tremendous computational requirements. To support high-speed
computations, 3D applications have traditionally been implemented in specialized hardware accelerators such as geometry
and rasterization engines. The geometry engine, which is also referred to as a vertex processor, executes the geometric
transformation and performs the lighting calculation for each vertex. The rasterization engine, which is also referred to
as a fragment processor, performs pixel value calculation, texture mapping, scan conversion, shading and hidden surface
removal. However, such dedicated hardware is expensive and not flexible; since a different full-custom circuit is needed
for each distinct task, a considerable engineering effort is needed to keep pace with the rapid evolving standards in the 3D
graphics application domain.

To alleviate the lack of flexibility of dedicated hardware, the newer graphics processors, such as the GeForce series by
nVIDIA1 and the Radeon series by ATI,2 support more geometry processing operations at the front-end of the 3D graphics
pipeline with increased programmability. For example, GeForce3 1 is a multi-threaded vector processor operating on quad-
float data. A similar engine has been proposed by Ide et al.. 3 It is a VLIW processor that consists mainly of a vector
unit with four floating-point Multiply-and-Accumulate units and one floating-point division and square-root unit. Aside of
building graphics processors, there is the approach of augmenting the instruction set of a general-purpose processor with

Multimedia on Mobile Devices II, edited by Reiner Creutzburg, Jarmo H. Takala, Chang Wen Chen,
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6074, 60740B, © 2006 SPIE-IS&T · 0277-786X/06/$15

SPIE-IS&T/ Vol. 6074 60740B-1

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms

instructions 3D graphics. The PLX FP extension belongs to this class.4 Our approach is slightly different; we propose to
use the Sandbridge multi-threaded vector processor augmented with a CORDIC unit for 3D graphics. Using the CORDIC
algorithm for 3D graphics has been suggested by Lang and Antelo. 5 Since the 3D operations are of a geometric nature, it
is natural to express them using CORDIC-type primitives. One of the advantage of using CORDIC is that a single primitive
is used to describe the computations, and as such the implementation is highly scalable.

Each of the mentioned 3D engines is at the core of a high-end graphics processor. To provide a large computational
resolution and dynamic range, a floating-point format is necessary. However, there are systems for which the performance
is of paramount importance, while the dynamic range and precision requirements are limited due to the small display sizes
(for example, current PDA’s are 640 × 480, while the cell-phones are even smaller). If the dynamic range and precision
requirements can be constrained , then fixed-point arithmetic can be as accurate as and much faster than floating-point
arithmetic. A low-end graphics engine that uses 16-bit, fixed-format is more than adequate for such applications.

In this paper we describe a fixed-point implementation of the vertex processor operations using the COordinate Rota-
tion DIgital Computer (CORDIC) instruction for the Sandbridge multithreaded processor. In particular, we will address
rigid-body rotation, lighting, exponentiation, vector normalization, and perspective division (which are some of the most
important data-intensive 3D graphics kernels). A CORDIC-based solution for vertex processing exhibits a number of
advantages over classical Multiply-and-Acumulate solutions. First, since a single primitive is used to describe the com-
putation, the code can easily be vectorized and multithreaded, and thus fits the major Sandbridge architectural features.
Second, since a CORDIC iteration consists of only a shift operation followed by an addition, the computation may be
deeply pipelined. Third, the CORDIC algorithm produces one bit of accuracy per iteration. Thus, all CORDIC-based ro-
tations will have the same latency for a given precision, which allows trade-offs to be made between precision and latency
at run-time.

The paper is organized as follows. For background purposes, we outline the CORDIC algorithm in Section 2 and the
3D graphics pipeline in Section 3. Sections 4 and 5 outlines the Sandbridge multithreaded processor and the CORDIC
architectural extension. The execution scenario of the 3D graphics pipeline within the extended instruction set along with
experimental results is discussed in Section 6. Section 7 completes the paper with some conclusions and closing remarks.

2. COORDINATE ROTATION DIGITAL COMPUTER

A Givens transformation6 is a 2-by-2 orthogonal matrix R(θ) of the form described in Equation (1). It can be observed
that multiplication by R(θ) of a vector [x, y]T amounts to a counterclockwise rotation of θ radians in plane.

R(θ) ·
[
x
y

]
≡

[
cos θ sin θ
− sin θ cos θ

]
·
[
x
y

]
=

[
x′

y′

]
(1)

Historically, the Givens transformation has been used in QR factorization, 7 since it can zero matrix elements selec-
tively. Clearly, by setting

cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

(2)

it is possible to force the second entry in the vector [x, y]T to zero:

[
cos θ sin θ
− sin θ cos θ

]
·
[
x
y

]
=

[√
x2 + y2

0

]
(3)

The Givens transformation is computationally demanding. For example, given an arbitrary angle θ, the direct evaluation
of the rotation (Equation (1)) requires four multiplications, two additions, and a large memory storing the cosine and sine
tables. Also, finding the angle θ which satisfies the trigonometric Equations (2), translates to a sequence of multiplications,
additions, and memory look-up operations if the common Taylor series expansion is employed.

COordinate Rotation DIgital Computer (CORDIC) is an iterative method performing vector rotations by arbitrary
angles using only shifts and additions. The main idea is to first split the rotation angle θ into a sequence of subrotations of
angles θ(n), where the rotation for iteration n is

SPIE-IS&T/ Vol. 6074 60740B-2

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms

[
x(n + 1)
y(n + 1)

]
=

[
cos θ(n) sin θ(n)
− sin θ(n) cos θ(n)

]
·
[
x(n)
y(n)

]
(4)

Then, the rotation matrix R(θ(n)) is written as

R(θ(n)) = cos θ(n) ·
[

1 tan θ(n)
− tan θ(n) 1

]
(5)

and the rotation angles are restricted so that tan θ(n) = ±2−n. This way, the multiplication by the tangent factor is reduced
to simple shift operations.

Arbitrary rotation angles can be obtained by performing a series of successively smaller elementary rotations. If the
decision at each iteration, n, is which direction to rotate rather than whether or not to rotate, then the factor cos θ[n]
becomes a constant for the current iteration (since cos θ[n] = cos(−θ[n])). Then, the product of all these cosine values is
also a constant and can be applied anywhere in the system or treated as system processing gain.

The angle of a composite rotation is uniquely defined by the sequence of the directions of the elementary rotations.
That sequence can be represented by a decision vector. The set of all possible decision vectors is an angular measurement
system based on binary arctangents. Conversions between this angular system and any other can be accomplished using
an additional adder-subtractor that accumulates the elementary rotation angles at each iteration. The elementary angles are
supplied by a small look-up table (one entry per iteration), or are hardwired, depending on the implementation. The angle
accumulator adds a third difference equation to the CORDIC algorithm.

z(n + 1) = z(n) − d(n) arctan
(
2−n

)
(6)

The CORDIC rotator is operated in one of two modes: rotation or vectoring. 8

• In rotation mode, the angle accumulator is initialized with the desired rotation angle. The rotation decision at each
iteration is made to diminish the magnitude of the residual angle in the angle accumulator.

• In vectoring mode, the CORDIC unit rotates the input vector through whatever angle is necessary to align the result
vector with the x axis. The result of the vectoring operation is a rotation angle and the scaled magnitude of the
original vector (the x component of the result).

Using CORDIC, a large number of transcendental functions, e.g., polar to cartesian or cartesian to polar transfor-
mations, can be calculated with the latency of a serial multiplication. By providing an additional parameter, the basic
CORDIC method can be generalized to perform rotations in a linear or hyperbolic coordinate system, 9 thus providing a
more powerful tool for function evaluation. For example, the exponential and the logarithm functions can be evaluated
with the speed of a serial multiplier. Of particular importance for this paper is CORDIC operating in vectoring mode in the
linear coordinate system, since it provides a method for evaluating ratios.

3. THE 3D GRAPHICS RENDERING PIPELINE

The process of converting the geometric description of a 3D model to a 2D image to be displayed on a monitor is referred to
as 3D graphics rendering. The 3D graphics pipeline is thus the underlying tool for this real-time process. The 3D graphics
pipeline itself consists of two distinct stages: geometric transformation and rasterization, where each of these stages is
a pipeline in itself. Rasterization is not of interest for this paper; therefore, it is not discussed any longer. The sequence of
steps involved in geometric transformation is presented in Figure 1, and consists of the following stages 10:

• Model and viewing transformation positions the primitives in space. It can be described by a multiplication of the
vertex coordinate by a 4 × 4 matrix.

SPIE-IS&T/ Vol. 6074 60740B-3

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms

• Lighting evaluates the colour of the vertices given the direction of light, the vertex position, the surface normal vector.
It requires the calculation of the sine and the cosine of the angles between the light, normal, view, and tangent unit
vectors on the surface.

• Projection transformation which projects objects onto the screen. It can also be described by a multiplication by a
4 × 4 matrix.

• Clipping removes the objects that are outside the viewable area. It requires 6 comparisons per vertex.

• Perspective division divides the x, y, z by w to convert the vertex to Cartesian coordinates.

• Viewport mapping maps the vertices from the projected coordinate system to the viewport on the computer screen.

Viewport
Mapping

Perspective
Division

Clipping
Viewing

and
Model

ProjectionLighting

Figure 1. Geometric transformation stage of the 3D graphics pipline – adapted from Mitra and Chiueh.10

Out of these stages a number of computationally demanding operations emerges. It is generally accepted that these
are lighting, exponentiation, vector normalization, perspective division, and rigid body rotation. 4, 5, 11 These are the
operations which we will address in a subsequent section.

4. OVERVIEW OF THE SANDBRIDGE PROCESSOR

In this section we describe the most important issues of the Sandbridge architecture and microarchitecture. In particular,
our emphasis will be on the multi-threading capability and SIMD-style Vector Unit.

4.1. Sandbridge processor

Sandbridge Technologies has designed a multithreaded processor capable of executing DSP, embedded control, and Java
code in a single compound instruction set optimized for handset radio applications. 12–14 The Sandbridge Sandblaster
design overcomes the deficiencies of previous approaches by providing substantial parallelism and throughput for high-
performance DSP applications, while maintaining fast interrupt response, high-level language programmability, and low
power dissipation.

The Sandbridge processor12–14 is partitioned into three units; an instruction fetch and branch unit, an integer and
load/store unit, and a SIMD-style vector unit. The design utilizes a unique combination of techniques including hardware
support for multiple threads, SIMD vector processing, and instruction set support for Java code. Program memory is
conserved through the use of powerful compounded instructions that may issue multiple operations per cycle. The result-
ing combination provides for efficient execution of DSP, control, and Java code. The instructions to speed up CORDIC
operations are executed in the Sandbridge Vector Unit described in Subsection 4.4.

4.2. Sandbridge pipeline

The pipelines are different for various operations as shown in Figure 2. The Load/Store (Ld/St) pipeline has nine stages.
The integer and load/store unit has two execute stages for Arithmetic and Logic Unit (ALU) instructions and three execute
stages for integer multiplication (I MUL) instructions. A Wait stage for the ALU and I MUL instructions causes these
instructions to read from the general-purpose register file one cycle later than Ld/St instructions. This helps reduce the
number of register file read ports. The vector multiplication (V MUL) has four execute stages – two for multiplication
and two for addition. It should be noted that once an instruction from a particular thread enters the pipeline, it runs to
completion. It is also guaranteed to write back its result before the next instruction from the same thread reads the result.

SPIE-IS&T/ Vol. 6074 60740B-4

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms

Ld/St Inst RF Agen XFer Int Mem Mem Mem WB
Dec Read Ext 0 1 2

ALU Inst Wait RF Exec Exec XFer WB
Dec Read 1 2

I Mul Inst Wait RF Exec Exec Exec XFer WB
Dec Read 1 2 3

V Mul Inst VRF Mpy1 Mpy2 Add1 Add2 XFer VRF
Dec Read WB

Figure 2. Sandbridge pipeline.

V Mul Inst VRF Mpy1 Mpy2 Add1 Add2 XFer WB
Dec Read

V Mul Inst VRF Mpy1
Dec Read

Figure 3. Two consecutive Vector Multiply instructions that issue from the same thread.

4.3. Sandbridge multithreading

The Sandblaster architecture supports multiple concurrent program execution by the use of hardware thread units. Multiple
copies (e.g., banks and/or modules) of memory are available for each thread to access. The Sandblaster processor uses the
Token Triggered Threading (T3) form of interleaved multithreading,13 in which each thread is allowed to simultaneously
execute an instruction, but only one thread may issue an instruction on a cycle boundary. The microarchitecture currently
supports up to eight concurrent hardware threads. Multi-threading effectively hides true dependencies which typically
occur in connection with long-latency operations.

4.4. The vector processing unit

The Vector Processing Unit (VPU) consists mainly of four Vector Processing Elements (VPEs), which perform arithmetic
and logic operations in SIMD fashion on 16-bit, 32-bit, and 40-bit fixed-point data types. High-speed 64-bit data busses
allow each PE to load or store 16 bits of data each cycle in SIMD fashion. Support for SIMD execution significantly reduces
code size, as well as power consumption, since multiple sets of data elements are processed with a single instruction. 15

Most SIMD vector instructions go through eight pipeline stages. For example, a vector MAC (V MAC) instruction
goes through the following stages: Instruction Decode, Vector Register File (VRF) Read, Mpy1, Mpy2, Add1, Add2,
Transfer, and Write Back. The Transfer stage is needed due to the long wiring delay between the bottom of the VPU
and the VRF. Since there are eight cycles between when consecutive instructions issue from the same thread, results from
one instruction in a thread are guaranteed to have written their results back to the VRF by the time the next instruction
in the same thread is ready to read them. Thus, the long pipeline latency of the VPEs is effectively hidden, and no data
dependency checking or bypass hardware is needed. This is illustrated in Figure 3, where two consecutive vector multiply
instructions issue from the same thread. Even if there is a data dependency between the two instructions, there is no need
to stall the second instruction, since the first instruction has completed the Write Back stage before the second instruction
enters the VRF Read stage.

5. AN ARCHITECTURAL EXTENSION FOR SANDBRIDGE PROCESSOR

The instructions investigated are CFG CORDIC that configures the CORDIC unit in one of the execution modes (rotation,
vectoring) and one of the coordinate systems (circular, linear, hyperbolic), and RUN CORDICwhich launches the configured
CORDIC operation. Assuming that 16-bit precision is needed, then the CORDIC algorithm reads in two 16-bit arguments
and produces two 16-bit results. If not all the CORDIC iterations can be performed by a single RUN CORDIC call, then the
angle and iteration number must be saved between successive RUN CORDIC calls.

The proposed RUN CORDIC instruction is a vector instruction that goes through eight pipeline stages; that is, the execu-
tion itself has a latency of 4 thread cycles. The CORDIC functional unit can perform a single CORDIC iteration in a thread

SPIE-IS&T/ Vol. 6074 60740B-5

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms

cycle (one addition and one shift), and is shared by four SIMD units. Consequently, RUN CORDIC will execute 16 times,
i.e., it will take up 16 instruction cycles, for a 16-bit precision, and will perform 4 conversions in SIMD style.

This is the result where the CORDIC unit is added to the vector unit by adding one adder, one shifter, a comparator and
some control logic to the existing pipeline. Deploying an autonomous CORDIC unit for each SIMD unit of each thread
will translate into both a memory bandwidth problem and a hardware problem, i.e., too much added hardware (32 adders,
32 shifters, 32 comparators), and the operands cannot be fetched from, or the results cannot be stored back to memory
anyway.

The CORDIC instructions are defined as follows.

• CFG CORDIC

for(i=0; i<4; i++) {
– Read 8 bits of configuration data

– Configure the CORDIC unit:

∗ Mode (1 bit): rotation or vectoring

∗ Coordinate system (2 bits): circular, linear, or hyperbolic

∗ Iteration Identifier (5 bits): ranges from 0 to 31

}

• RUN CORDIC

for(i=0; i<4; i++) {
– Reads in the first 32-bit vector register packing:

∗ 16-bit modulus and 16-bit angle for rotation mode

∗ 16-bit x-value and 16-bit y-value for vectoring mode

– Reads in the second 32-bit vector register storing:

∗ 16-bit angle for vectoring mode

– Performs one CORDIC iteration (one addition and one shift)

– Writes back one 32-bit vector register packing:

∗ 16-bit x-value and 16-bit y-value for rotation mode

∗ 16-bit modulus and 16-bit angle for vectoring mode

}

6. VERTEX PROCESSOR EXECUTION SCENARIO

3D applications usually use polygonal primitives (e.g., triangles) to represent objects in application database. Geometry
procesing only operates on vertices, while the rasterization stage takes those transformed vertices and fills in the interiors
of polygons. The 3D graphics pipeline is computationally intensive, but is amenable to parallel implementation. The
Sandbridge parallel architecture shows its real advantage when a large amount of data is to be processed. Concerning 3D
graphics, this requirements translates to a large number of vertices per polygon. Yang et al. 11 analized a set of benchmarks
from Viewperf16 and determined that Awadvs has only 3.4 vertices per glBegin/glEnd pair. That means that only 3 out of
four slots in the 4-way SIMD CORDIC will be filled-in with operations. All the subsequent estimations are carried out
assuming this worse case scenario.

SPIE-IS&T/ Vol. 6074 60740B-6

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms

6.1. Lighting

During lighting stage the sine and the cosine of angles θ between 3D unit vectors are to be computed. 17 Assuming
v1 = [x1 y1 z1] and v2 = [x2 y2 z2] are two units vectors, calculating cos θ is equivalent to calculating the dot product as
in Equation 7.

cos θ = x1 · x2 + y1 · y2 + z1 · z2 (7)

To calculate sin θ, a multiplication and an addition followed by a 32-bit square root operation are carried out:

sin θ =
√

1 − cos2 θ (8)

As opposed to Equation 7, Equation 8 is not easily vectorizable. This is due to the fact that division is essentially a
sequential algorithm and a square root unit is not available.

The strategy to calculate cos θ and sin θ by using CORDIC is similar to the one proposed by Lang and Antelo. 5

Basically, a rotation in 3D is emulated by two rotations in 2D. From the computation point of view, this strategy can be
summarized as in Figure 4. First, two CORDIC rotations are carried out to align one of the vectors with the x axis. This
gives cos θ. Then, three CORDIC rotations align the second vector with the yOz plane. This gives sin θ.

θsin ()CORDIC_V (x2, z2)

CORDIC_R (x2, z2, s12)

s12 = CORDIC_V (x1, z1)s11 = CORDIC_V (x1, y1)

CORDIC_R (x2, y2, s11)[x2, y2, z2]

[x1, y1, z1] θcos ()

Figure 4. Flowchart of CORDIC-based lighting computation.

Assume 16-bit precision: it requires 16 vector instructions to complete a CORDIC rotation. Therefore, 90 vector
instructions are used to calculate the cosine and the sine of an angle between two 3D unit vectors. It is easy to figure out
that approx. 5 × 16 = 90 instructions are needed to calculate the cosine and the sine. This figure translates to 45 cycles
per cosine or sine. For SIMD-style processing, 15 cycles per cosine or sine per vertex are encountered for the Awadvs
benchmark. Compared to the pure software solution which requires 132 cycles, the CORDIC-based approach provides a
speed-up of almost 9×.

6.2. Exponentiation

Exponentiation d = ab is a key operation in 3D graphics. The implementation strategy is similar in both the pure software
and CORDIC-based approach: ab = eb ln a. In software, exponentiation is a very expensive operation, as a sequence of
MAC operations are needed to implement a power series expansion. Assuming a Taylor series expansion, for example,
11 terms are needed for 16-bit precision, which translates into 40 MAC instructions. Using CORDIC, 36 instructions are
needed for the same precision (16 for the hyperbolic vectoring mode to calculate the natural logarithm, 16 for the hyperbolic
rotation mode to calculate the exponential function, and some glue instructions). This translates into 12 instructions per
vertex for the Awadvs benchmark.

6.3. Vector normalization

Vector normalization consists of a dot product, a reciprocal square root and vector scaling:

V′ =
(
x′ y′ z′ 0

)T = V/|V| =
(
x/w y/w z/w 1

)T
/
√

x2 + y2 + z2 (9)

A pure software implementation requires three multiplications, two additions, one square root and one division. Since
a 32-bit square root and a 16-bit division take 130 and 50 instructions, respectively, 185 instructions including overhead
are needed to perform vector normalization in pure software.

SPIE-IS&T/ Vol. 6074 60740B-7

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms

Kernel pure software CORDIC-based
(cycles) (cycles)

Lighting 132 15
Exponentiation 40 12
Vector normalization 185 19
Perspective division 50 16
Rigid body rotation 12 n/a

Table 1. 3D graphics figures per vertex for Awadvs benchmark.

The CORDIC approach is as follows.5 First, two CORDIC vectoring rotations are needed to calculate the angles with
axes y and z. Then, a rotation of a unit vector along the x axis with the same angles will generate a unit vector (that is,
normalized) having the same direction as the initial vector. Thus 4 × 16 = 64 instructions are needed for 16-bit precision.
For the Awadvs that has 3.4 vertices per glBegin/glEnd pair on average, 19 instructions per vertex are needed for a vector
normalization task. This represents an improvement of 9.7× versus the pure software solution.

6.4. Perspective division

It consists of a division of a vector by a scalar:

V′ =
(
x′ y′ z′ w′)T = V/w =

(
x/w y/w z/w 1

)T
(10)

CORDIC unit operating in the linear vectoring mode implements essentially the non-restoring division algorithm.
Although this is a sequential division, it can be vectorized when CORDIC is used. The performance of the CORDIC-based
perspective division is 16 instructions per vertex. The performance of the perspective division in software is 50 instructions
per vertex. Since the software division cannot be vectorized, the performance improvement of the CORDIC-based solution
versus the pure software solution is significant: 3×.

6.5. Rigid body rotation

It is described by a 4 × 4 matrix:

V′ =

⎛
⎜⎜⎝

x′

y′

z′

w′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠ (11)

This operation does not pose any problem for Sandbridge processor. Since this operation fits perfectly the Sandbridge
architecture, only 12 instructions are needed to perform the rigid body rotation described by Equation 11. Thus, CORDIC
is not needed for rigid body rotation.

6.6. Experimental results – synoptic table

The computing performance has been evaluated for a pure software solution and also when CORDIC operation benefits
from customized instruction set. The experimental figures are summarized in Table 1.

We would like to note that although CORDIC is essentially a sequential algorithm (it can compute a number of functions
in a serial way, one bit per iteration), it has the very important property of being vectorizable and pipelineable. This explains
the very good performance provided by the 4-way CORDIC unit when doing 3D graphics kernels over the pure software
solution. The improvement ranges from 3× to 10×. Given the fact that Sandbridge is a multi-threaded DSP-oriented
processor, such an improvement within 3D graphics processing domain indicates that extending the Sandbridge instruction
set with CORDIC instructions is a promising approach.

SPIE-IS&T/ Vol. 6074 60740B-8

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms

7. CONCLUSIONS

We have analyzed the performance improvement provided by a CORDIC functional unit attached to a Sandbridge pro-
cessor when 3D computer graphics is performed. Preliminary results indicate a performance improvement over the base
instruction set architecture that ranges from 3× to 10×. As future work, we intend to address the entire 3D graphics
pipeline and to evaluate the overall system improvement for the CORDIC-augmented Sandbridge processor.

REFERENCES

1. E. Lindholm, M. J. Kilgard, and H. Moreton, “A User-Programmable Vertex Engine,” in Proceedings of the ACM
SIGGRAPH 2001, pp. 149–158, ACM, (Los Angeles, USA), August 2001.

2. ATI Technologies, Inc., “Radeon family of graphics processors.” http://www.ati.com/.
3. N. Ide, M. Hirano, Y. Endo, S. Yoshioka, H. Murakami, A. Kunimatsu, T. Sato, T. Kamei, T. Okada, and M. Suzuoki,

“2.44-GFLOPS 300-MHz Floating-Point Vector-Processing Unit for High-Performance 3-D Graphics Computing,”
IEEE Journal of Solid-State Circuits 35, pp. 1025–1033, July 2000.

4. X. Yang and R. B. Lee, “PLX FP: An Efficient Floating-Point Instruction Set for 3D Graphics,” in Proceedings of
the IEEE International Conference on Multimedia and Expo (ICME ’04), 1, pp. 137–140, IEEE, (Taipei, Taiwan),
June 2004.

5. T. Lang and E. Antelo, “High-Throughput CORDIC-Based Geometry Operations for 3D Computer Graphics,” IEEE
Transactions on Computers 54, pp. 347–361, March 2005.

6. G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, 2715 North Charles
Street, Baltimore, Maryland 21218-4363, 3rd ed., 1996.

7. G. Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press, Box 812060, Wellesley, MA 02482, 3rd ed.,
2003.

8. J. E. Volder, “The CORDIC trigonometric computing technique,” IRE Transactions on Electronic Computers EC-8,
pp. 330–334, September 1959.

9. J. Walther, “A unified algorithm for elementary functions,” in Proceedings of the Spring Joint Computer Conference
of the American Federation of Information Processing Societies (AFIPS), 38, pp. 379–385, AFIPS Press, (Arlington,
Virginia), 1971.

10. T. Mitra and T. cker Chiueh, “Three-dimensional computer graphics architecture,” Current Science 78, pp. 838–846,
April 2000.

11. C.-L. Yang, B. Sano, and A. R. Lebeck, “Exploiting Parallelism in Geometry Processing with General Purpose Pro-
cessors and Floating-Point SIMD Instructions,” IEEE Transactions on Computers 49, pp. 934–946, September 2000.

12. J. C. Glossner, E. Hokenek, and M. Moudgill, “Multithreaded Processor for Software Defined Radio,” in Proceedings
of the 2002 Software Defined Radio Technical Conference, I, pp. 195–199, (San Diego, California), November 2002.

13. M. J. Schulte, J. C. Glossner, S. Mamidi, M. Moudgill, and S. Vassiliadis, “A Low-Power Multithreaded Processor
for Baseband Communication Systems,” in Proceedings of the Third and Fourth International Annual Workshops on
Systems, Architectures, MOdeling, and Simulation (SAMOS), A. D. Pimentel and S. Vassiliadis, eds., Lecture Notes
in Computer Science 3133, pp. 393–402, Springer, (Samos, Greece), July 2004.

14. J. C. Glossner, M. J. Schulte, M. Moudgill, D. Iancu, S. Jinturkar, T. Raja, G. Nacer, and S. Vassiliadis, “Sandblaster
Low-Power Multithreaded SDR Baseband Processor,” in Proceedings of the 3rd Workshop on Applications Specific
Processors (WASP’04), pp. 53–58, (Stockholm, Sweden), September 2004.

15. J. Sebot and N. Drach, “SIMD ISA Extensions: Reducing Power Consumption on a Superscalar Processor for Mul-
timedia Applications,” in IEEE Symposium on Low-Power and High-Speed Chips (Cool Chips) IV, (Tokyo, Japan),
April 2001.

16. Standard Performance Evaluation Corporation, “OpenGL Performance Benchmark Viewperf.”
http://www.specbench.org/.

17. T. Akenine-Möller and E. Haines, Real-time rendering, CWI Tract, A K Petres, 888 Worcester Street, Suite 230,
Wellesley, MA 02482, U.S.A., 2nd ed., 2002.

SPIE-IS&T/ Vol. 6074 60740B-9

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms

