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Highlights

What are the main findings?

e  Multitemporal surface reflectance shows trends in oxbow lake area and water types.
e  Oxbow lake connectivity peaks during the flooding period under natural conditions.

What are the implications of the main findings?

e  Connectivity-based groups of oxbow lakes represent the availability of fish habitat.
e  Oxbow lake diversity and connectivity are essential for river ecological integrity.

Abstract

In meandering river floodplain systems, remote sensing is a valuable tool for assessing
connectivity processes relevant to fish ecological functions. This study used the Google
Earth Engine platform and multispectral Landsat 7 imagery. A random forest classifier was
used to evaluate water types and area changes in oxbow lakes of the Beni River in Bolivia.
Water type dynamics were mainly associated with lake age and distance from the main
channel. Seasonal variations highlighted the role of wind-driven sediment resuspension
and overflow during high discharge conditions. Long-term lake area changes reflected
typical oxbow lake evolution as well as alterations caused by the main channel. Multian-
nual changes showed a notable area decrease during years of low discharge. Relationships
between discharge and lake area dynamics allowed the classification of three lake groups
with different levels of connectivity and overbank flow influence. The ecological relevance
of these groups was evaluated based on fish habitat preferences and migration patterns.
Results emphasize the importance of preserving natural hydrologic variability, with flood-
ing associated with increased habitat availability. Overall, this study demonstrates the
usefulness of satellite remote sensing for detecting ecohydrological processes and offers
insights to preserve ecological functions in data-scarce regions.

Keywords: meandering river; oxbow lakes; remote sensing; Google Earth Engine; ecohydrology

1. Introduction

In large river floodplains where the main channel carries substantial sediment loads,
water surface reflectance represents water quality and connectivity processes relevant to
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ecological functions [1-3]. Water turbidity associated with suspended sediment reflects key
characteristics linked to fish habitat preferences [4]. In addition, hydrologic connectivity
among water bodies is vital for aquatic habitat availability [5,6]. Long-term satellite records
and platforms such as Google Earth Engine help characterize water surface reflectance,
turbidity, and flooded area over time and space [7-9]. Analyzing these dynamics provides
insights into habitat characteristics, while understanding their relationship with hydrologic
variability helps evaluate the potential impact of hydrologic alterations.

In river floodplain systems, surface hydrologic connectivity among water bodies
determines their status as lentic or lotic aquatic habitats [10]. In systems where overbank
flow is the primary driver of connectivity, its ecological influence is described by the flood
pulse concept [6]. Fish rely on this connectivity to access habitats and complete their life
cycles. They migrate to floodplains for spawning, feeding, and shelter during extended
and predictable flood pulses. As water levels recede, fish return to the main channel
or tributaries [11-13]. Fish abundance is essential to riverine communities that rely on
this resource for their livelihoods. High recruitment and growth rates are often linked
to extreme flooding events and flooded areas, leading to higher catches in subsequent
years [14,15]. Seasonal flood pulse variability affects fish concentration and fishing effort,
with higher catches during low flow periods and lower catches during floods as fish
disperse into inaccessible floodplains [16,17].

Meandering channels are the most common pattern in systems where the main channel
dominates connectivity [10,18,19]. Their aquatic habitat structure includes the main channel,
oxbow lakes, connection channels, and internal drainages. The formation of cutoffs and
oxbow lakes is influenced by slope, vegetation density, and bank erodibility [20]. Following
cutoffs, oxbow lakes evolve through typical life stages, from initial plug bar formation to
progressive sedimentary infilling and eventual near-complete infill [21,22]. Lake responses
to flood pulses have been linked to characteristics such as lake age, orientation angle, and
distance from the main channel [23-25]. To evaluate connectivity, previous studies have
integrated oxbow lake life stages with the flood pulse concept, emphasizing functional
differences among these stages [24].

Seasonal changes in water turbidity, driven by suspended sediment, also influence
fish habitat preferences and behavior. Reduced light availability affects fish sensory re-
sponses, altering predator—prey interactions and modifying prey abundance [4,26]. In
addition, water bodies with higher turbidity have been associated with a greater presence
of detritivorous fish species [27].

Water turbidity in meandering rivers can be represented by surface reflectance, es-
pecially in rivers with high sediment loads [2,3,28]. Relationships between water optical
properties and physico-chemical parameters have been widely used to classify water
types in different regions [29,30]. Optical water types identified in Brazilian waters re-
flect dominant limnological traits associated with turbidity, trophic status, and organic
matter [31,32]. An increase in suspended particles is often linked to the change in spectra
in the green to near-infrared bands [33]. In turn, sediment settling enhances light pene-
tration and photosynthetic activity, increasing chlorophyll levels. Together, these optical
responses provide proxies that reflect sediment dynamics and hydrologic conditions in
river floodplain environments.

Remote sensing has become a key tool for monitoring river floodplain waters due to its
spatiotemporal coverage of optical properties. Several studies have characterized channel-
floodplain dynamics by monitoring water type transitions that reveal areas of dilution,
sedimentation, flow reversal, backwater effects, and wind-driven resuspension [2,33-37].
The classification of water types is often performed using machine learning methods [38].
Among these, the widely used random forest classifier consists of an ensemble of decision
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trees that introduce randomness in their building process [39]. These classifiers have been
used to assess hydrologic connectivity in floodplain lakes, classify land cover and water
areas in wetlands, and distinguish water types based on water quality parameters [25,37].
A key advantage of decision tree classifiers is their flexibility in handling different feature
subsets and decision rules, balancing accuracy and efficiency [40]. Random forest classi-
fiers also allow the estimation of feature importance while maintaining high predictive
performance [37].

Previous studies in the Amazon basin have assessed hydrologic connectivity of oxbow
lakes using optical image classification [25,41]. However, reliance on high-resolution
commercial imagery limits transferability and long-term analysis. A recent study in the Beni
River evaluated oxbow lake hydrologic dynamics using remotely sensed area changes and
rainfall patterns [42], but did not incorporate river discharge data or water optical proxies
that are particularly relevant in turbid systems. Field-based studies in other regions have
provided insights into physico-chemical processes within individual oxbow lakes [24,43];
however, their specificity and cost limit their application to multi-lake assessments. In this
paper, we address these limitations by applying a multitemporal, satellite-based analysis
that combines lake area dynamics, water optical types, and river hydrologic variability to
infer hydrologic connectivity and habitat availability in a turbid river floodplain system.
This approach enables a comparative, long-term assessment of oxbow lake dynamics and
their ecological relevance in a low-data region.

2. Materials and Methods
2.1. Case Study

The meandering Beni River originates in the Eastern Andes and flows 840 km through
Bolivia’s lowlands to its confluence with the Madre de Dios River (see location in Figure 1a).
This study covers a 250 km reach downstream of the town of Rurrenabaque, which is the
primary fish landing site concentrating small-scale production (see Figure 1b). Our focus
is on key fishing locations within this reach, including the main channel and forty oxbow
lakes, as indicated by local fishers [44].

The climate in the region presents a seasonally distinct pattern, with the rainy season
from November to March and the dry period from April to October. Significant moisture
flux from the Atlantic and Amazon rainforest is retained by Andean orography, creating
rainfall hotspots in various locations [45]. The discharge at Rurrenabaque station presents
a typical southern tropical unimodal regime with mean monthly discharges ranging from
760 m3/s in August to 4700 m®/s in February. Also, the interannual variability is high,
with frequent peaks and low flows [46]. Several floods were linked to La Nifia events, and
no long-term negative trend was observed during the wet season. Additionally, there is
an intensification of the dry period associated with changes in rainfall timing. The mean
monthly wind speed varies from 4.2 km/h in June to 8.3 km/h in September, remaining
above 7.5 km/h until December.

The Beni River is notable for its high sediment load, with an estimated mean suspended
sediment load of 200 million tons/year (+/—27%) at the Rurrenabaque station [47]. This
high sediment transport has been correlated to high meandering and cutoff rates within
the Amazon River network [48]. The primary factors influencing main channel migration
are the heterogeneity of the banks, with clay-rich zones acting as hinge points and sandy
banks migrating actively [49]. An evaluation of the influence of hydrology on meandering
dynamics used topographic data and satellite images to estimate erosion and deposition
rates, revealing links with the intensity, timing, and duration of bankfull flow [50]. This
study also described the behavior of oxbow lakes based on their age and changes in flooded
area, emphasizing the role of the connection channel and its capacity to allow flood inflow
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and return flows. Sediment deposition in the oxbow lakes varied with the distance from the
main channel and the connectivity angle. Field measurements in one oxbow lake revealed
sediment variation linked to overflow duration, local rain influence, local erosion, and
wind-driven sediment resuspension [23].
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Figure 1. (a) Location of study area; (b) study reach of the Beni River indicating the location of the
hydrometric station Rurrenabaque, oxbow lakes, and water bodies detailed in areas (i—iii).

The Beni River floodplain system plays a vital role as an aquatic habitat for fish that
support the livelihoods of small-scale riverine communities. The influence of hydrology
on this ecological function and socioeconomic activity was explored through local fish-
ers’ knowledge [44]. Fishers highlight the importance of water body connectivity, flood
duration, and extent. They use this information to predict future catches, select fishing
locations, and plan trips, similar to other fishers in the region [14-17]. In addition, the
fishers associated fish species with habitat characteristics such as turbidity.
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2.2. Available Data

The selection of the satellite data sensor was based on its suitability to represent
the Beni River system. The Landsat 7 Enhanced Thematic Mapper plus (ETM+) sensor
was selected because it acquires satellite images with 6 reflective bands, 30 m spatial
resolution, 15-day revisit frequency, and data available from 1999 until 2023. This period
is the longest compared to Landsat 5, Landsat 8, and Sentinel 2. The data were accessed
through the Google Earth Engine (GEE) catalog, specifically Level 2, Collection 2, Tier 1,
courtesy of the U.S. Geological Survey (Reston, VA, USA). This dataset contains ready-
to-use atmospherically corrected surface reflectance created using the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) algorithm [51]. Additionally, images
accessed through Google Earth Pro’s (version 7.3.6.10441) timeline were used to visually
analyze patterns at higher spatial resolution.

Image filtering and preprocessing were performed in GEE, applying first a 40% cloud
coverage threshold to the entire image and later a 20% limit within each oxbow lake
polygon to mask clouds. Thus, the number of images varies among lakes, especially when
local or sparse clouds only affect a group of lakes. Then, for each lake, the calculated
area (after land cover classification) was screened for values outside the 10th and 90th
percentiles. These images were inspected for residual clouds, haze, or cloud shadows
and removed from the analysis of that lake. The monthly distribution of valid satellite
images per each of the 40 lakes is indicated in Figure 2a. Finally, the areas in lakes affected
by Scan Line Corrector-off (SLC-off) striping were corrected using a morphological mean
filter applied to each band, with a square kernel of radius equal to 3 and 3 iterations.
The number of affected lakes varies as the stripes originate farther or closer to the scene
centerline; in the April 2022 image, half of the lakes were affected. Additional analysis of
the stripe interpolation effect is presented in Appendix A. The resulting images were used
for further analysis.

10,000 4
b
£ 7500
201 o
=
& 50004
5
1 '§ 2500
5 - 5 b g
0- ST d o 01
5 2 Y £ 9 B B > g 5 o o v o Y S 9 H B B g B o o
S f & = & s T & 25 23 S 2 A g s & & 22 23
25,000 -
15,0004 €
10,000 4
.
5000 1 ¢ t -
25001 I 1 o I ¢ M N ° ! LA, olel = r
9 eop® e (] . L ]
o % ETR BB NN e .P y M| e
10001 oty Wl « */ % @ ° " o
(] (3 ° o o S o . g O o L~
P ®
LSRR S
® @ o = o @ F 1y B N ® @ S o o © *F 1B 8 N ® & o = o @
E 8 EEEEEEE8cEEEEEEE8E5E8E:3&E8¢E¢E 888
- =4 & &8 & &8 &8 8 &8 & &8 & 8 &8 & &8 & &8 & &8 &8 & & & @& «©
Time period ® Apr-Sep ®  Oct-Mar

Figure 2. (a) Boxplot of image count per month per lake, (b) boxplot of monthly discharge [m3/s]
at Rurrenabaque, (c) daily discharge showing the timing of satellite images: red (April-September),
blue (October—-March).

Additionally, historical imagery from Google Earth Pro was used to identify lake
formation years. Also, the analysis of wind-driven effects was performed using a high-
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resolution image (©2020 Maxar Technologies, Westminster, CO, USA). Landsat 5 images
corresponding to Level 2, Collection 2, Tier 1 were accessed through GEE (courtesy of the
U.S. Geological Survey) and used to evaluate stripe interpolation effect. The hydrologic
records at the Rurrenabaque station were accessed from Hydrologie et Géochimie du
Bassin de ’Amazone (HyBAm) (https://hybam.obs-mip.fr/, accessed on 2 February 2022;
note that the new platform may provide different access) and included observed water
levels and calculated discharge values from 1989 to 2016. The analysis period was set to
coincide with the availability of satellite images from 1999 onward. Water levels were
not monitored from October 2016 to 2019, resulting in a data gap for this period. Water
level measurements from October 2019 to October 2022 (provided by Servicio Nacional
de Meteorologia e Hidrologia SENAMHI) were used to estimate discharge using adjusted
rating curves [52]. Figure 2b presents the boxplot of monthly discharge at the Rurrenabaque
station. The year was separated into two periods: October-March with low availability of
satellite data and mainly wet conditions, and April-September with high availability of
satellite data and primarily dry conditions. The hydrologic year was set to match these
months. Figure 2c illustrates the daily hydrograph at Rurrenabaque station from 1999 to
2022, indicating the capture time of satellite images during these periods.

Wind speed data observed at the Rurrenabaque airport station was also recorded by
SENAMHI. The period selected for analysis (2010-2016) follows a change in recording
device and has continuous data.

2.3. Workflow and Conceptualization

Figure 3 presents the workflow of this study, indicating how remote sensing analysis
of surface reflectance was used to inform habitat characteristics and availability for fish.

Water type
Classification

Surface
Reflectance

Multitemporal
analysis

|

Water type area, total
lake area

Relationship
with discharge

Discharge

Water types in
oxbow lakes

v

Turbidity status in
lakes

\/

Connectivity lake
groups

l l

Ecologic function

‘ Habitat relevance ‘ ’ Habitat availability ‘

Figure 3. Workflow of analysis (detailed explanation of each step in Sections 2.4-2.7).

2.4. Classification of Water Types

The water type classification aims to distinguish turbid from non-turbid water in the
oxbow lakes, which we interpret as reflecting changes in suspended sediment. The land
cover and water types listed in Table 1 represent the dominant classes in the study area.
We selected an image from the receding-water period (4 April 2022) because it contains a
balanced combination of exposed sand, clear water, and turbid water, capturing spectral
variability that is absent during peak flood or extreme dry conditions. Using an image
with a broad set of spectral responses provides a robust basis for defining a representative
classification scheme for oxbow lakes. Appendix B illustrates the spectral variability among
oxbow lakes in this image and compares it with dry and flooded conditions.
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Table 1. Spectral indices and thresholds to separate land and water types in 4 April 2022 image.

Type Spectral Indices and Thresholds
Vegetation NDVI = NR-Red NDVI > 0.6 [50,51]
Exposed sand NSI = %,0.5 < NSI < 0.75 [52]
Turbid water in main channel (WTO) 0.1 <Red <0.15and 0.1 < NIR < 0.15
Very turbid water in oxbow lake (WTA) Red > 0.15
Turbid water in oxbow lake (WTB) Green/Red <1
Water in oxbow lake with chlorophyll (WTC) Green/Red > 1 [53]
Dark water in oxbow lake (WTD) Green < 0.05

NDVI: Normalized Difference Vegetation Index, NSI: Normalized Sand Index; NIR: Near infrared, SWIR1:
Short-wave infrared 1.

Class separation was guided by commonly used spectral indices. Vegetation was
identified using the Normalized Difference Vegetation Index (NDVI) [53,54], exposed sand
using the Normalized Sand Index (NSI) [55], and water bodies were first separated by
hydromorphological setting (lotic main channel from lentic oxbow lakes). Water in the
main channel showed stronger influence of the Near Infrared (NIR) band, while within
oxbow lakes, a red-band gradient helped distinguish turbid from dark water. Intermediate
water types were further separated using the green/red band ratio, which is sensitive to
chlorophyll production [56] as light availability increases when sediment settles [36,57,58].

Figure 4 shows the mean surface reflectance values for each water type. The water
types in oxbow lakes (WTA, WTIB, WTC, and WTD) presented a gradual decrease in surface
reflectance across all bands. WTO in the main channel indicated lower surface reflectance
than WTA but resembled WTB in the blue and green bands while presenting higher values
in the red and near-infrared.

WTO WTA WTB WTC WTD
0.204

0.15- -
0.10- L 1 E Q $ $
005- ™ é =

0.00 4

Surface Reflectance [-]

|
2
SERS

Wavelength [ um ]

E Blue E Green E Red Near-infrared

Figure 4. Mean surface reflectance of the water types in the blue, green, red, and near-infrared bands.
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<
=}

T
e}
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The classification was conducted in GEE using the Landsat 7 ETM+ image for
4 April 2022. For each class, an average of 208 points was identified as training and val-
idation points. The training sample contained 65% of the points, while 35% were used
for validation. A random forest algorithm was employed for the classification. This en-
semble learning method is based on decision trees that incorporate randomness in their
construction [38,39].

This process involves the random selection of training data subsets for each class and
the definition of conditional rules using input variables, in this case, the surface reflectance
of each band. These rules start with a root node and split into branches until they reach a
leaf node, which represents the optimized probability of the sample belonging to the class.
The parameters of the algorithm are the number of trees and the number of variables to
consider at each split. They control the structure and randomness level of the forest. The
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former was set to 50, and the latter was set to the square root of the number of variables.
The prediction capacity of the random forest is the mean response from the regression trees.
The internal classification consistency for the selected image was assessed with a confusion
matrix and overall accuracy metrics. Additionally, the feature importance of each variable
(surface reflectance in each band) was evaluated.

2.5. Multitemporal Analysis Approach

The classifier tree derived from the water type classification was applied to the pre-
processed collection of images from 1999 to 2022. Afterwards, the area of each water type
and total area were calculated for each oxbow lake throughout the analysis period. In
order to allow for comparison among lakes, an area-weighted measure of turbid water
types (turbidity status) was calculated for each lake as the percentage of the summed area
of turbid water types (WTO, WTA, WTB) relative to the total water area of the lake. The
turbidity status was separated into quartiles to categorize the dominant water type of each
lake, with 0-24% representing low turbidity, 25-49% moderate low, 50-74% moderate high,
and 75-100% high turbidity.

To compare the behavior of similar lakes, both qualitative and quantitative indicators
were used to characterize them. Lakes that were modified as a result of the migration of
the main channel into their area were identified, along with the year of alteration. Lake
age was categorized into three groups based on the formation year identified through the
historical imagery in Google Earth Pro: old (before 1999), middle-aged (1999-2013), and
recent (after 2014). Dynamic characteristics, such as the distance from the closest plug bar
to the continuously migrating main channel (along the direction of the connecting channel),
were distinguished for the years 1999 and 2020 as close (<1300 m), medium (1300-2600 m),
or far (>2600 m), and the change between those years as closer or farther. The recent lake
area, calculated as the mean value over three years (2019-2022), was categorized into three
size intervals: <1, 1-2, and >2 km?. The relative frequency (%) of the turbidity status for
each lake was aggregated over the study period, allowing lakes to be classified as primarily
turbid lakes (frequency of low turbidity status lower than 33%), mainly clear lakes (dark
and green, frequency of low turbidity status higher than 67%), or intermediate.

The multiannual analysis of lake area and turbidity status was divided into the two
data periods described in Section 3.1. For the turbidity status, the most frequent status
for each time step (month or year) was identified, and its relative frequency (%) was cal-
culated across all lakes for the same time step. For the area analysis, the mean monthly
difference (%) relative to the mean annual area was calculated for each lake and later aver-
aged across all lakes. The annual area difference (%) was calculated relative to the recent
area, and the variability was aggregated across all lakes. Finally, the dynamics of both vari-
ables in time, the timing of changes, and trends were associated with lake characteristics.

2.6. Evaluation of Relationship with Discharge

The relationship between discharge at the Rurrenabaque station and the variables in
the oxbow lakes was evaluated through various steps. First, mean monthly and annual
variability of discharge, lake area, and turbidity status were analyzed to identify multitem-
poral trends and relevant processes. Then, water types during an extreme hydrologic year
were described to identify the causes of turbidity changes. For each lake, the relationship
between area changes and discharge was evaluated in scatter plots, and similar patterns
were used to group lakes. Finally, these patterns allowed an interpretation of the dominant
hydrologic processes that cause area changes, and the identification of lakes in which
overflow from the main channel is more relevant.
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2.7. Interpretation of Ecological Functions

The availability and relevance of oxbow lakes as aquatic habitats were evaluated based
on the aspects highlighted in the exploration of fishers’ knowledge in [44]. Regarding fish
habitat preference, fishers indicated that water clarity is associated with fish body cover,
which also reflects the meat quality. The preferred scaled fish are commonly found in clear
waters, in contrast to skin-covered fish that are mainly present in turbid waters.

Figure 5 presents fish migration patterns of native species and non-native Arapaima
gigas (locally known as paiche). The year is divided into four periods: dry (July to October),
rising waters (November to December), flooding (January to March), and receding waters
(April to June). During the dry period, native fish species carry out their upstream repro-
duction migration along the main channel. As water levels rise, eggs drift, and juvenile
fish migrate downstream, where connectivity from the main channel to the oxbow lakes
allows them access to grow in these water bodies. During the flooding period, fish disperse
into more distant oxbow lakes and flooded depressions. As water levels recede in the main
channel, return flow from the oxbow to the main channel cues fish to begin their upstream
migration again.

Dry (J-A-S-O) Rising (N-D) Flooding (J-F-M) Receding (A-M-])

A A A A

-
<

Main flow mmm  Main channel

< direction

Native species migration

Oxbow lakes Paiche migration

Figure 5. Conceptual model of Beni River connectivity and fish migration patterns of native species
and the non-native paiche across hydrologic periods (adapted from [44]).

In contrast to the native fish species, the paiche primarily migrates between the main
channel, oxbow lakes, and flooded depressions (bajios) during the flooding and receding
periods, completing most of its life stages in the oxbow lakes. For this species, the extent of
flooding, both interannually and seasonally, is key to exploring new lakes, accessing food
resources, and shelter in flooded depressions.

The selected satellite and hydrologic datasets allow the representation of physical
habitat features that influence the ecological function of oxbow lakes. For instance, a
seasonal increase in flooded area and shift to a turbid water type would reflect an increase
in water input caused by overflow from the main channel (hydrologic connectivity), which
enables fish access to oxbow lake habitats for refuge and food resources. In addition,
the satellite-based classification of clear and turbid water types allows us to associate
oxbow lakes and their most frequent water type with fish species based on their water type
preferences. Furthermore, the water level variability in the main channel indicates periods
of potential hydrologic connectivity or disconnection.
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3. Results
3.1. Water Type Classification Results

Figure 6a presents the Landsat 7 ETM+ image (4 April 2022) in area iii, while Figure 6b
shows the classified water types in each lake. Feature importance analysis identified
near-infrared reflectance (31%) and the red band (20%) as the most relevant classification
variables. The internal consistency check showed high agreement (99%) for the selected
image, noting that both training and validation samples belong to the same date.

a

Water types [JJJll wro I wra WTB wrc il wto

Figure 6. (a) Red, green, blue (RGB) composite of Landsat 7 ETM+ image of 4 April 2022 in areas
(i-iii), and (b) classified image of water types in areas (i-iii).

3.2. Multitemporal Patterns of Lake Area and Water Types

Table A3 in Appendix C presents all lake properties, and Figure 7 illustrates important
aspects: (a) satellite data availability (1999-2022), (b) mean recent lake area (2019-2022),
and (c) turbidity status frequency % (1999-2022). Most oxbow lakes (23 of 40) were formed
before 1999, with additional formations in 2001, 2005, 2008, and 2012-2018. Nine of these
recently formed lakes were altered by main channel migration (AMC) into their area (2011
and 2019). Among the fifteen smallest lakes (<1 km?), a few remained far from the main
channel (6), while others suffered alterations (6). Nine lakes, mostly old (7) and distant from
the main channel (2), presented a more frequent low turbidity status (clear). In contrast, ten
lakes are primarily categorized as high turbidity (turbid), displaying formation or alteration
post-2012 (6). No clear relationship exists between turbidity status and the recent lake area.
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Figure 8a presents the most frequent monthly turbidity status for each lake. Low turbidity
status is predominant in most lakes at the beginning of the dry period. This status is reached
at different timings and persists for distinct months. Notably, 12 recently formed lakes (or
altered) show late transition (June-July) and only 2 months of clear water status. The shift to
intermediate turbidity status begins in August, September, and October for 15, 8, and 6 lakes.
There are also four lakes (OL17, OL21, OL1, OL6) that consistently exhibit high turbidity
year-round.

Figure 8b presents the annual turbidity frequency (%) across all lakes for the dry
period (based on 101 valid images for at least 15 lakes compared to 18 images during the
wet period). There were insufficient images for 1999, 2008, 2014, and 2022. Low turbidity
prevailed (25-52% of images) in 2007, 20092010, 2013, and 2018. In contrast, high turbidity
status was more common (25-30% of images) in 2000-2003, 2006, 2011, 2015-2016, and
2019-2021.

These multitemporal results indicate that turbidity dynamics are strongly seasonal
and suggest a link to lake age and alteration with the main channel.

Figure 9a illustrates the mean monthly area difference (%) compared to the annual
mean for each lake. Most lakes exceed the mean from January to July, showing mixed
values during January-March due to limited satellite imagery. In contrast, a majority of
lakes present small differences below the mean from August to December. Lake area
variability is low, medium, and high for 21, 13, and 6 lakes (mainly turbid OL6, OL9, OL28,
OL31, OL32, and OL33).

For multiannual trends, only dry-period data were used. Figure 9b presents the mean
annual difference (%) relative to the recent area (2019-2022), indicating different trends:
decreasing (positive difference for 11 lakes), increasing (negative difference for 5), mixed
high variability (8), or stable (15). Eleven lakes decreased in area (notably OL5, OL12, OL13,
and OL18), presenting old age (8) and medium to far distance to the main channel. In
contrast, five lakes (OL1, OL16, OL33, OL35, and OL36) slightly expanded, displaying
medium to high turbidity.
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Figure 7. (a) Satellite data availability for each lake (1999 to 2022). (b) Mean recent lake area
(2019-2022). (c) Turbidity status frequency (%) for each lake (1999 to 2022).
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Figure 8. (a) Most frequent monthly turbidity status, and for the dry period (April-September);
(b) multiannual turbidity status frequency (%) across all lakes.
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Figure 9. (a) Mean monthly area difference (%) compared to the annual mean, (b) mean annual
difference (%) relative to the recent area (2019-2022).
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3.3. Discharge Relationship with Lake Area and Water Types

The multitemporal comparison of discharge, lake area, and turbidity status is pre-
sented in Figure 10. The mean monthly lake area difference (Figure 10b) presents a break
in February due to limited satellite imagery. The increase in lake area coincides with the
rising discharge (Figure 10a) and remains above the mean until June, indicating the role of
lakes as water storage. Figure 10c shows that low turbidity status frequency (%) peaks in
June-July, but high turbidity status sharply increases in September and persists into the
rising and flooding periods, despite the lake area continuously reducing until October.
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Figure 10. (a) Mean monthly discharge at Rurrenabaque. (b) Mean monthly area difference (%) with
mean annual across all lakes. (c) Monthly turbidity status frequency (%) across all lakes. (d) Mean
annual discharge at Rurrenabaque. (e) Mean annual difference (%) with recent area across all lakes.
(f) Multiannual turbidity status frequency (%) across all lakes in the wet period (October—-March).
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Annual discharge variability (Figure 10d) is mainly coherent with mean annual lake
area differences (%) with the recent area (Figure 10e, calculated with dry period data).
Coincident lows occur in 2000, 2010, and 2016, while highs coincide in 2001 and the extreme
year 2014. Figure 10f shows that annual turbidity status frequency (%) across all lakes
is predominantly high during the wet period (45-75%), which considerably exceeds dry-
period values (Figure 8b). Notably, high turbidity years include 2000, 2003, 2006, 20152016,
2019, and 2021, while lower values appear in 2005, 2010, and 2018, only coinciding with
discharge lows in 2005 and 2010. This comparison is limited due to data gaps (2008-2009,
2014, and 2018) and the complex processes that affect lake behavior.

The transition of dominant water types was analyzed for the extreme hydrologic year
2020-2021. Figure 11a shows the hydrograph, indicating two satellite images: one during
flooding (7500 m3/s) and another at the end of the dry period (900 m3/s). A middle-reach
area was selected for analysis. Figure 11c illustrates the satellite and classified images, and
Figure 11b displays the dominant water type per date and oxbow lake. During flooding,
the dominant WTA indicates high turbidity associated with high discharge for all visible
lakes. In contrast, at the end of the dry period, five lakes transition to clear WTC and dark
WTD, while four lakes display turbid WTB, especially near the point bars.

Figure 11d illustrates a similar spatial variability in OL8 and OL29 using a high-
resolution image from November 2020 (accessed from Google Earth Pro, ©2020 Maxar
Technologies) and the corresponding satellite and classified images. The high-resolution
image reveals a trace of suspended sediment originating at point bars, likely due to wind
action; an extended evaluation of this driver is presented in Appendix D. These results
emphasize the influence of wind at the beginning of rising waters and highlight the multiple
drivers of turbidity dynamics in the oxbow lakes.

Figure 12 presents the relationship between discharge at Rurrenabaque (y-axis, loga-
rithmic scale) and lake area difference from the annual mean (x-axis, %), with dot colors
indicating dominant water types. Table A3 (Appendix C) presents the Pearson correlation
coefficients for each lake and their statistical significance, assessed using a two-sided t-test
(p-value and sample size). The correlation coefficients were used to categorize lakes into
three groups:

e Group 1 (>0.4): fourteen lakes show a scattered log-linear increase (e.g., OL1, OL6,
and OL33), with ten revealing a range of discharge values linked to the area above
the mean. Most of these lakes (8) are recently formed, close to the main channel, and
predominantly turbid;

e  Group 2 (>0.1 and <0.4): thirteen lakes that exhibit a distinct separation of turbid
and clear water types, corresponding to areas below and above the annual mean,
respectively (e.g., OL10, OL22);

e  Group 3 (<£0.1): thirteen lakes predominantly older, clear water with minimal area
changes (e.g., OL40) that have the least direct influence from main channel overflow.

e  The categorization of recent lakes may change over time in response to river dynamics,
particularly the migration of the main channel relative to lake position. Thus, the
correlation analysis should be updated in future assessments.
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Figure 11. (a) Hydrograph for 2020-2021, indicating satellite images in wet and dry periods. For
selected dates 11 January 2021 and 7 August 2021 (marked by the two rightmost black circles):
(b) Tile plot of dominant water type in each lake, and (c) satellite (Landsat-7) and classified im-
ages. (d) High-resolution satellite image (accessed from Google Earth Pro, ©2020 Maxar Technolo-
gies) for 7 November 2020 and lakes OL29 and OLS, satellite (Landsat-7) and classified image for
24 November 2020 (indicated by the leftmost black circle).

3.4. Relevance of Oxbow Lakes as Fish Habitat

The relevance of oxbow lakes as fish habitat was evaluated based on characteris-
tics in Table A3, Appendix C. The total lake area is 53 km?, with 22% categorized as
turbid—mainly recent oxbow lakes close to the main channel—associated with skin-
covered fish (e.g., Zungaro zungaro), 56% intermediate, and 22% categorized as clear waters,
mostly found in old lakes, which are more suitable for scaled fish species (e.g., Pseudoplatys-
toma spp.).

Habitat availability to fish species migrating from and to the river was derived from
assumptions about surface hydrologic connectivity based on relationships between area
changes, water type, and discharge. The total available habitat area of oxbow lakes is
49 km?, distributed as 13.7 km? in Group 1 (28%), 15.2 km? in Group 2 (31%), and 20.1 km?

https://doi.org/10.3390/1s18030474


https://doi.org/10.3390/rs18030474

Remote Sens. 2026, 18, 474

16 of 30

in Group 3 (41%). Group 1 lakes display the highest correlation with discharge and have a
direct influence on overflow during most of the year. In contrast, Group 3 lakes have the
least frequent connectivity only during bankfull discharge, as evidenced by the changes
in water type in Figure 11. Group 2 lakes represent an intermediate scenario in which the
lack of discharge correlation and the presence of clear water, while exceeding the mean
annual area, may indicate overflow with lower suspended sediment after settling along the
connection channel. In addition, the occurrence of turbid water types below the mean area
is associated with wind-driven resuspension during the dry and rising periods.
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Figure 12. Scatter plot of area difference from annual mean (%) versus discharge (logarithmic scale),
with dominant water type indicated by color for selected lakes. The black vertical lines indicate the

zero value in the x axis.

For native fish species, Group 1 lakes are relevant, as early and late connectivity
provide additional migration opportunities. For instance, juvenile species born early can
access these habitats during the rising period, and species that reproduce late or undertake
a second reproductive migration (e.g., Prochilodus nigricans) can access them during the
receding period. For Arapaima gigas, which primarily inhabits oxbow lakes, Group 3 lakes
serve as important refuges, as their primarily medium distance from the main channel
reduces accessibility and minimizes the risk of alteration from channel migration, providing
a more stable habitat.

In summary, the three lake groups reflect distinct patterns in area variability, water
type trends, and relationship with discharge. These trends provide a quantitative basis to
differentiate their hydrologic behavior and ecological function.
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4. Discussion

The variability in surface reflectance among water types is consistent with regional
classifications, with high relevance of red and near-infrared reflectance for turbid waters [29,59].
Higher surface reflectance of turbid water WTA compared to WTO results from higher scatter
from finer sediment particles in the surface layer of the main channel that are transported to
the lakes [60-62]. In addition, shallower depths of oxbow lakes compared to the main channel
contribute to higher surface reflectance from the bottom [63].

Most oxbow lakes showed an intermediate turbidity (proxy) category, followed by
clear and turbid, evenly distributed (Figure 7). Turbidity was mainly associated with lake
age and distance from the main channel (Figure 8 and Table A3), similar to a previous
study [64]. The analysis of discharge, lake area, turbidity status, and wind speed at
the seasonal and event time-scale (Figures 10 and 11 and Appendix D) suggested that
monthly turbidity changes were driven by hydrologic connectivity during the flooding
period and by wind causing sediment resuspension in the dry period. Lakes with less
frequent connectivity are likely to experience stronger wind-driven effects. The role of
other processes, like rainfall erosion, requires further exploration [23].

Multiannual lake area changes primarily follow typical oxbow lake life stages
(Figure 10), with sedimentation at point bars narrowing the inner bank and reducing the
lake area [65]. These sedimentation rates depend on hydrologic connectivity and lake
geometry, with frequent flooding and higher rates in the early stages [22,24] and lower
rates as the main channel migrates away, which extends the connection channel and re-
duces its sediment conveyance efficiency until the lake area stabilizes [50,66,67]. These area
trends are similar to recent regional observations [42]. A few lakes, however, experienced
erosion due to main channel alteration (Figure 9 and Table A3). In these cases, overbank
flow through the lake prevented sediment deposition and induced erosion, increasing the
lake area.

Lake area changes are coherent with mean annual discharge trends (Figure 10), especially
during low-flow years. Monthly lake area changes correlated well with discharge (Group 1)
for recent lakes close to the main channel, while no correlation was found (Group 3) for older
lakes located at a medium distance from the main channel (Figure 12). These patterns are
coherent with previous studies evaluating relationships among lake age, distance from the
main channel, and discharge [24,41]. For that reason, lake categorizations based on similar
correlation analysis should be periodically reassessed as river dynamics evolve.

Hydrologic connectivity was represented by diverse processes and their interaction
with lake properties, with turbidity changes highlighting notable sediment input during
hydrologic events exceeding bankfull discharge (>6000 m3/s [23] as shown in Figure 11).
The influence of smaller events could be masked by wind-driven sediment resuspension.
Monthly lake area and water type patterns suggest low-sediment water input likely causes
hydrologic connectivity (Figure 12), potentially linked with lower discharge peaks, sedi-
ment settling along connection channels, or backwater effects. Additional water sources,
such as rainfall, may extend connectivity duration [68]. The influence of each driver and
flow direction depends on the hydrologic period. For instance, during the rising water
period, a discharge threshold in the main channel is associated with connectivity, while
during the receding period, thresholds of lake area or rainfall may represent connectivity
to the main channel. Further studies are needed to improve our understanding of the
interactions among these drivers, particularly for lakes in groups 2 and 3.

Oxbow lakes provide critical fish habitats, and turbidity categories reflect broader
habitat conditions that may influence fish distribution [43,69]. In the study area, local fish-
ers associated scaled fish with clear waters and skin-covered fish with turbid waters [44].
The habitat availability was assessed considering the connectivity-based lake groups, with
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Group 1 lakes providing the highest duration, Group 3 lakes acting as key refuges, and
Group 2 lakes as intermediate (Figure 12). Thus, these three lake groups serve as func-
tionally distinct fish habitats with varied hydrologic connectivity, which highlights the
complementary role of diverse oxbow lakes in supporting fish species with different life
traits in the Beni River system. Other studies have evaluated the role of connectivity, tur-
bidity levels, and lake characteristics as indicators of fish assemblages [70-72], highlighting
higher fish richness associated with higher connectivity levels [73]. Further studies are
needed to evaluate if these relationships are representative of the Beni River.

These ecohydrological insights can inform river management practices. The observed
influence of hydrologic variability on habitat availability (through surface connectivity)
highlights the importance of preserving natural flood dynamics in the river. These depen-
dence links should be considered when evaluating potential hydrologic alterations, such
as hydropower development. Flow regulation by dams typically dampens the seasonal
hydrograph by reducing peak flows and increasing discharge in the dry period. These
changes would lead to reduced flooded area and differentiated loss of oxbow lake habitats,
as high (discharge) connectivity thresholds are no longer surpassed. Group 1 and 2 lakes,
which rely on frequent and moderate connectivity, would experience fewer connectivity
events. In contrast, Group 3 lakes that mainly connect during bankfull conditions would
be vulnerable to permanent disconnection. These changes would block migratory routes of
native species and diminish the extent of paiche habitat. Therefore, management strate-
gies should incorporate connectivity thresholds of oxbow lakes to preserve hydrologic
connectivity and mitigate habitat loss.

In general, habitat conservation strategies should ensure annual connectivity to all
lakes and prevent lake infill in those with decreasing areas. Also, designating protected
oxbow lakes based on species preferences can help maintain balanced trophic dynamics.
Overall, the different turbidity and connectivity dynamics among oxbow lakes highlight
their diversity and complexity as aquatic habitats for fish and their importance in preserving
the ecological integrity of the river system.

Satellite data limitations include seasonal gaps during the flooding period (December—
March), leading to underestimation of the frequency of turbid water types linked to hydro-
logic connectivity, as well as lower estimates of mean annual lake area and its correlation
with discharge. In addition, the 15-day interval between satellite images hides short-
duration events, resulting in missed short-term connectivity during the rising and receding
periods. The 30 m resolution of Landsat 7 ETM+ also limits detection of narrow connec-
tion channels and fine-scale area changes, leading to underestimated lake area variability.
Opverall, these limitations produce conservative estimates of connectivity. Nevertheless, the
main seasonal patterns and relative differences among lakes are expected to remain robust,
as they are derived from multitemporal observations.

Analyses limitations of water type classification may mistype transitional pixels (such
as wet sand during receding waters or dark vegetated water). Also, the discharge analysis
omits flood wave travel and water mixing times (hours to days), which may result in
satellite images capturing lagged hydrologic conditions. In addition, the interpretation
of connectivity relying on the sediment-rich character of Andean-Amazon tributaries is
site-specific. Therefore, relationships between turbidity proxies and connectivity may not
transfer to clear-water systems or algae-dominated lakes. Lastly, the complex interaction of
hydrologic connectivity drivers requires further evaluation through field validation.

Our study provides innovative insights into oxbow lake dynamics by integrating
remote sensing and hydrologic data to assess connectivity, turbidity, and habitat availability.
The integration of lake area and turbidity as indicators of hydrologic connectivity and their
relevance to fish habitat offers a novel approach for evaluating aquatic ecosystems. The
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study highlights the separation of processes driving turbidity changes, such as overbank
flow and wind-driven sediment resuspension, which are often difficult to distinguish. In
addition, the classification of lakes into connectivity-based groups (1, 2, and 3) provides a
new framework for understanding their ecological roles, particularly in supporting fish
migration and refuge habitats. The study also distinguishes the atypical behavior of oxbow
lakes altered by a highly dynamic main channel, extending our knowledge of oxbow lake
evolution. These findings contribute to conservation strategies by emphasizing the need
for targeted habitat protection based on connectivity and turbidity dynamics, ensuring
sustainable fish habitat and ecosystem integrity.

5. Conclusions

This study highlights the complex dynamics of oxbow lakes in the Beni River, as re-
flected by relationships among lake properties, hydrologic processes, and sediment-related
proxies. Turbidity levels are associated with lake age, distance from the main channel,
and inferred connectivity. These patterns are also consistent with wind-driven resuspen-
sion processes. Seasonal and long-term lake area changes reflect different patterns of lake
evolution, influenced by differences in connectivity, sedimentation, and alteration by the
main channel. The identified lake groups distinguish recent lakes near the main channel
that experience frequent connectivity from older lakes that mainly connect during bank-
full discharge. These ecohydrological insights suggest higher habitat availability during
flooding conditions and highlight the importance of natural flooding dynamics. Overall,
understanding the diversity of oxbow lakes dynamics provides valuable ecohydrological
insights for river floodplain management and the preservation of ecological functions in
these systems.
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Appendix A

We assessed the impact of Scan Line Corrector-off (SLC-off) striping on oxbow lake water
area and turbidity-proxy estimates. Landsat 5 TM was used as an independent reference
to Landsat 7 ETM+ because it provides similar spatial resolution, core spectral bands, and
acquisition geometry. The Landsat 5 TM Level 2, Collection 2, Tier 1 imagery was obtained
from the Google Earth Engine (GEE) catalog (courtesy of the U.S. Geological Survey).

To separate the effect of SLC-off stripes from expected spectral differences between
sensors, lakes were separated into stripe-affected (intersecting SLC-off gaps) and unaffected.
No cross-sensor harmonization or calibration adjustments were applied.

A low-cloud sequence in September 2009 included two consecutive Landsat 5 images
(30 August and 15 September) and an intermediate Landsat 7 image (7 September). The
median of the two Landsat 5 images and the single Landsat 7 image were preprocessed
following the steps described in the main text. Then, the seven-type classification tree was
applied to both images.
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In 2009, 26 oxbow lakes existed; 18 were stripe-affected, and 8 were unaffected (see
Figure A1b). For each lake, water area and turbidity proxy were calculated as indicated in
Table A1, and group-level differences were summarized in Table A2.

For water area, unaffected lakes showed a mean difference between Landsat 5 and
Landsat 7 of 0.4% (£2.3%), while affected lakes showed 2.5% (£3.2%). These marginally
larger differences likely show misclassified water pixels along transition types within stripes.

For turbidity proxy, unaffected lakes showed Landsat 5 values 9% (£18%) higher than
Landsat 7, and affected lakes showed a slightly larger difference of 12% (£19%). These
changes are consistent with systematic differences between sensors and underestimation of
turbid water pixels in interpolated stripes.

Overall, differences between stripe-affected and unaffected lakes are small for both
metrics. This indicates that stripe interpolation does not introduce significant systematic
bias at the lake scale. While stripes can create uncertainties at the pixel level, their influence
at lake scale area and turbidity status metrics is minor, supporting the robustness of the
Landsat 7 collection.

Table Al. List of oxbow lakes present in September 2009, indicating SLC-off stripe affectation,
differences in water area, and turbidity proxy between the median Landsat 5 TM image and the
Landsat 7 ETM+ image.

. Water Area Turbidity Status
Name Asf?:cpt:d 2 2 DWA = 0 0 DTS =
L5 [km~] L7 [km?] (L5 — L7)/L5% L5% L7% L5 — L7%

OL7 No 2.8 2.8 12 96 90 6
OL13 No 1.6 1.6 -1.6 1 3 -2
OL14 No 1.8 1.7 1.1 92 90 2
OL16 No 1.7 1.7 —2.8 54 4 50
OL18 No 1.7 1.7 —-0.5 95 94 1
OL19 No 0.3 0.3 0.0 94 94 -1
OL31 No 0.6 0.6 1.1 84 71 13
OL32 No 0.4 0.4 49 92 94 -1
OL1 Yes 0.6 0.6 4.9 93 82 12
OL2 Yes 1.3 1.3 5.3 96 80 16
OL3 Yes 0.8 0.8 —0.7 77 1 76
OL4 Yes 0.5 0.5 7.1 35 16 19
OL5 Yes 1.4 14 12 94 85 9
OL8 Yes 2.4 2.3 1.1 97 94 4
OL10 Yes 1.1 1.1 0.6 95 93 1
OL12 Yes 0.5 0.5 0.0 95 94 1
OL20 Yes 1.8 1.8 2.3 13 32 —20
OL22 Yes 1.1 1.0 6.2 98 93 5
OL25 Yes 19 1.9 0.2 85 76 8
OL27 Yes 0.8 0.8 -1.5 96 84 12
OL30 Yes 1.1 1.1 -0.2 89 55 33
OL33 Yes 0.4 0.4 9.6 26 4 22
OL35 Yes 1.8 17 6.9 86 80 6
OL37 Yes 1.6 1.6 0.8 98 93 5
OL39 Yes 29 2.8 1.0 12 7 5
OL40 Yes 2.5 2.5 0.7 5 0 5

L5: Landsat 5 TM (September 2009 median), L7: Landsat 7 ETM+ (7 September 2009); DWA: Difference in water
area %, DTS: Difference in turbidity status %.
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Figure Al. Red, green, blue raw composites of September 2009 imagery used for the SLC-off
stripe interpolation evaluation: (a) Median Landsat 5 TM image (30 August and 15 September 2009),
(b) Landsat 7 ETM+ image (7 September 2009) showing oxbow lakes affected (magenta) and unaf-
fected by stripes (cyan).

Table A2. Mean and standard deviation of water area and turbidity proxy differences between
Landsat 5 TM (September 2009 median) and Landsat 7 ETM+ (7 September 2009) for stripe-affected
and unaffected oxbow lakes.

Grou DWA DTS
P Mean (SD) Mean (SD)
Unaffected lakes 04 (+/-2.3) 9 (+/-18)
Stripe-affected lakes 25 (+/-3.2) 12 (+/-19)

DWA: Difference in water area %, DTS: Difference in turbidity status %; SD: Standard deviation.

Appendix B

The water types defined in Table 1 of the main document were derived from the
analysis of the 4 April 2022 Landsat image, which was also used as the training dataset
for the random forest classifier. This image represents a transitional hydrologic period in
which oxbow lakes show a wide range of connectivity levels and, consequently, a broad
range of water conditions. Reflectance values were extracted only from valid unmasked
pixels. As shown in Figure A2, the April 2022 scene contains a more complete combination
of clear and turbid water types in the oxbow lakes than those typically present during
extreme dry or fully flooded periods.

To verify that the spectral variability captured in the April 2022 image is representative
of the variability observed during extreme hydrologic conditions (dry on 10 September
2016 and flooded on 11 January 2021), the mean surface reflectance of 30 oxbow lakes was
calculated. These lakes have been present since 2015 and have not been eroded by the main
channel until 2021. Figure A3 illustrates the mean spectral reflectance for each lake and
hydrologic condition, while Figure A4 summarizes this information using boxplots for
each spectral band. Together, these figures show that the image of 4 April 2022 includes
most of the spectral variation observed in the extreme hydrologic conditions, supporting
its suitability for defining water types and training the classifier. The different connectivity
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levels of the oxbow lakes during transitional periods extend the diversity of spectral
signatures as observed in this image.

10 km

Figure A2. Preprocessed red—green-blue (RGB) composites of Landsat 7 ETM+ images represent-
ing three hydrologic conditions in the study area: (a) dry period (10 September 2016), (b) transi-
tional /normal conditions (4 April 2022), and (c) flooded period (11 January 2021).
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Figure A3. Mean surface reflectance (points mark blue, green, red, and near-infrared bands)
for 30 oxbow lakes under three hydrologic conditions: (a) dry (10 September 2016), (b) transi-
tional/normal (4 April 2022), and (c) flooded (11 January 2021).
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Figure A4. Boxplots of mean surface reflectance for the blue, green, red, near-infrared (NIR), short-
wave infrared 1 (SWIR1), and SWIR2 bands for 30 oxbow lakes under three hydrologic conditions:
(a) dry (10 September 2016), (b) transitional /normal (4 April 2022), and (c) flooded (11 January 2021).
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Appendix C
Table A3. Lake properties.
Recent . 1 Low TS .
Lake Year o Altered Age Distance Area Turbidity AAT Low TS Dur. High TS MAV QPC WPC
* 2 Category +) =) - U] #)
[km*] (@)

OL1 1999 NA Old Medium 0.69 Turbid Increase July 1 August Medium 0611,1x107?, 84 0.5
OL2 1999 NA Old Medium 1.64 Intermediate Decrease May 3 August Low 0.481,2x1075,73 0.7
OL3 1999 NA Old Medium 0.81 Clear Constant April 9 N Low —0.093,4x 1071, 71 0.9
OL4 1999 NA Old Far 0.63 Clear Mixed April 10 N Medium —0.073,5 x 1071, 91 0.9
OL5 1999 NA Old Medium 1.34 Intermediate Decrease May 3 August Low 0.063,6 x 1071, 86 0.8
OL6 2013 NA  Middle Close 2.19 Turbid Decrease July 1 August High 0.671,2 x 1074, 26 -
OL7 1999 NA Old Medium 2.66 Intermediate Constant April 4 August Low 0.103,3 x 101,91 0.8
OL8 2005 NA Middle  Medium 2.28 Intermediate Decrease April 4 August Low 0.083,5 x 1071, 73 0.8
OL9 2016 NA Recent Close 1.30 Intermediate  Mixed June 2 August High 0.621,1x1072,15 -
OL10 1999 NA old Close 1.10 Intermediate Constant April 5 September Low 0.202,5 x 1072, 96 0.7
OL11 2017 NA Recent Medium 0.67 Turbid Constant April 1 May Low 0471,5 %1072, 18 -
OL12 1999 NA Old Far 0.41 Intermediate Decrease April 4 August Medium 0.172,1x 1071, 94 0.9
OL13 1999 NA Oold Medium 1.39 Clear Decrease April 9 N Low —0.163,1 x 1071, 97 —-0.9
OL14 1999 NA Old Medium 1.88 Intermediate Decrease April 5 September Low 0.182,8 x 1072, 97 0.7
OL15 2014 AMC Recent Close 0.44 Intermediate  Mixed June 2 August Medium 0.292,2 x 1071, 22 -
OL16 1999 NA Old Medium 1.65 Intermediate Increase May 4 September Low 0.033,8 x 1071, 96 0.0
OL17 2015 AMC Recent Close 0.80 Turbid Constant NA N N Low 0481,7 x1072,15 -
OL18 1999 NA Oold Far 1.61 Turbid Decrease April 3 July Medium 0.112,3 x 1071, 94 0.9
OL19 1999 NA Old Far 0.30 Intermediate Decrease April 3 July Low 0.162,1x 1071, 94 0.9
OL20 1999 NA Old Medium 1.72 Clear Increase June 4 October Low 0.073,6 x 1071, 64 0.0
OL21 2020 AMC Recent Close 1.77 Turbid Decrease June 1 July Medium 0481,7 x 1072, 15 NA
OL22 1999 NA Old Medium 1.05 Intermediate Decrease June 2 August Medium 02124 x 102,98 0.7
OL23 2018 AMC Recent Close 0.42 Turbid Mixed June 2 August Medium 0342,2x 1071 14 NA
OL24 2012 NA Middle Medium 1.18 Clear Mixed April 5 September Medium 0.372,3 x 1072, 36 0.3
OL25 1999 NA Old Medium 1.87 Clear Constant April 6 October Low 0.083,5 x 1071, 102 0.3
OL26 2011 AMC Middle Medium 1.68 Intermediate Constant June 3 September Low 0.112,4 x 107, 50 0.1
OL27 1999 NA Old Far 0.76 Clear Constant May 5 October Medium 0.083,4 x 1071, 105 0.7
OL28 2017 NA Recent Close 1.17 Turbid Mixed June 2 August High 0701,8 x 1073, 13 NA
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Table A3. Cont.

Recent . 4 Low TS .
Lake Yeir ° Altered Age Distance Area Turbidity AAT Low TS Dur. High TS MAV QrcC WPC
*) [em?] Category +) ~) s 1)) )
OL29 2018 NA Recent Close 1.68 Intermediate Constant June 2 August Low 0561,5x1072,13 NA
OL30 1999 NA Old Close 1.06 Intermediate Constant May 5 October Low —0.063,5 x 107,110 —-0.1
OL31 1999 NA Old Far 0.72 Turbid Mixed May 2 July High 0.431,5 x 107°,104 0.9
OL32 1999 NA Oold Far 0.46 Intermediate ~ Mixed April 4 August High 0.541,2 x 1077, 108 0.9
OL33 1999 NA Oold Close 0.70 Turbid Increase May 1 June High 0.661,2 x 10713, 111 0.8
OL34 2013 AMC Middle Close 0.34 Intermediate Constant June 2 August Medium 0.312,7 x 1072, 36 0.2
OL35 2008 NA Middle Medium 2.20 Intermediate Increase May 4 September Medium 04912 x 1074, 54 —0.2
OL36 2015 NA Recent Close 1.82 Intermediate Increase April 5 September Medium 02522 x 101,28 NA
OL37 2003 AMC Middle Close 1.59 Clear Constant May 5 October Low 0.053,6 x 1071, 83 —-0.1
OL38 2019 AMC Recent Close 1.50 Intermediate Constant June 3 September Low 0511,4 %1072, 16 NA
OL39 1999 NA Old Far 2.89 Intermediate Constant May 5 October Low 0.192,4 x 1072,114 0.4
OL40 1999 NA old Far 252 Clear Constant May 8 N Low 0.103,3 x 107,111 -0.3

(*) Year o: First year of data; AMC: Altered by main channel; NA: Not altered by main channel; (+) AAT: Annual lake area trend; (~) Low TS: Month in which low turbidity status starts
more frequently; (") Low TS Dur.: More frequent duration of low turbidity status in months; () High TS: Month in which high turbidity status starts more frequently; N: high turbidity
status is not frequent in any month; (#) MAV: Monthly lake area variability; QPC: Pearson correlation between log discharge and area difference with annual mean (%), group number in
superscript (1, 2, 3), p-value, and sample size; WPC: Pearson correlation between mean monthly turbidity status and wind speed for the period 2010-2016.
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Appendix D

Wind influence was further analyzed using a high-resolution image and a quantitative
analysis of monthly wind speed.

Figure A5 shows selected oxbow lakes in the high-resolution imagery from
7 November 2020 (Map data: ©2020 Maxar Technologies, Google Earth Pro 7.3.6.10441).
Yellow arrows indicate areas where suspended sediment traces originate, typically along in-
ner lake margins where exposed sand bars and low water levels make lakes more sensitive
to wind-driven mixing. The effect is most evident in clear water lakes (e.g., OL7 and OL14).

Daily wind speed data from the Rurrenabaque airport station is available for 2010-
2016 as recorded by the National Service of Meteorology and Hydrology (SENAMHI). The
boxplot in Figure A6 presents the distribution of daily wind speeds aggregated by month,
showing high variability, and the mean monthly wind speed that peaks from September to
December, coinciding with the transition from the dry period to rising water levels.

Figure A7 shows scatter plots of mean monthly wind speed versus mean monthly
turbidity status for lakes with available observations (cloud-free images from April to
September). Pearson correlation values (Table A3 and column WPC, Appendix C) show
that eleven lakes have correlations above 0.7 (mostly old lakes), while eleven lakes have
insufficient data, and the rest show weak correlation.

Overall, both qualitative and quantitative analyses indicate that wind contributes to
sediment resuspension in oxbow lakes, likely interacting with the early input of turbid
water at the beginning of the flooding period.

Figure A5. High-resolution Google Earth Pro imagery on 07 November 2020 (©2020 Maxar Technolo-
gies) of selected oxbow lakes with wind-driven suspended-sediment traces (origin pointed by yellow
arrows): (a) OL7, (b) OL14, (c) OL28, (d) OL29, (e) OL21, and (f) OL24 (inner) and OL26.
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Figure A6. Distribution of daily wind speeds [km/h] aggregated by month and mean monthly wind
speed observed at the Rurrenabaque airport station (2010-2016; SENAMHI), indicating higher values

from September to December.
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Figure A7. Scatter plots of mean monthly wind speed (2010-2016) vs. most frequent monthly
turbidity status (available for cloud-free images from April to September) for selected lakes with high
(OL5, OL19, OL31) and low (OL1, OL20, OL37) Pearson correlation.
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